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Disclaimer 
 

This report was prepared as an account of work sponsored by an agency of the United States 
Government.  Neither the United States Government nor any agency thereof, nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, 
product or process disclosed, or represents that its use would not infringe privately owned rights.  
Reference herein to any specific commercial product, process, or service by trade name, 
trademark manufacturer, or otherwise does not necessarily constitute or imply its endorsement, 
recommendation, or favoring by the United States Government or any agency thereof.  The 
views and opinions of authors expressed herein do not necessarily state or reflect those of the 
United States Government or any agency thereof.
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1.  INTRODUCTION 
 
 

1.1  Background 
 
Accurate, cost-efficient monitoring instrumentation has long been considered essential to the 
operation of power plants.  Nonetheless, for the monitoring of coal flow, such instrumentation 
has been sorely lacking and technically difficult to achieve.  With more than half of the electrical 
power in the United States currently supplied by coal, energy generated by this resource is 
critical to the US economy.  The demand for improvement in this area has only increased as a 
result of the following two situations:  First, deregulation has produced a heightened demand for 
both reduced electrical cost and improved grid connectivity.  Second, environmental concerns 
have simultaneously resulted in a need for both increased efficiency and reduced carbon and NOx 
emissions.   
 
A potential approach to addressing both these needs would be improvement in the area of 
combustion control. This would result in a better heat rate, reduced unburned carbon in ash, and 
reduced NOx emissions.  However, before feedback control can be implemented, the ability to 
monitor coal flow to the burners in real-time must be established.  While there are several 
“commercially available” products for real-time coal flow measurement, power plant personnel 
are highly skeptical about the accuracy and longevity of these systems in their current state of 
development.  In fact, following several demonstration projects of in-situ coal flow measurement 
systems in full scale utility boilers, it became obvious that there were still many unknown 
influences on these instruments during field applications.  Due to the operational environment of 
the power plant, it has been difficult if not impossible to sort out what parameters could be 
influencing the various probe technologies. 
 
Additionally, it has been recognized for some time that little is known regarding the performance 
of coal flow splitters, even where rifflers are employed.  Often the coal flow distribution from 
these splitters remains mal-distributed.  There have been mixed results in the field using variable 
orifices in coal pipes.  Development of other coal flow control devices has been limited. 
 
An underlying difficulty that, to date, has hindered the development of an accurate instrument for 
coal flow measurements is the fact that coal flow is characterized by irregular temporal and 
spatial variation.  However, despite the inherent complexity of the dynamic system, the system is 
in fact deterministic.  Therefore, in principle, the coal flow can be deduced from the dynamics it 
exhibits.  Nonetheless, the interactions are highly nonlinear, rendering standard signal processing 
approaches, which rely on techniques such as frequency decomposition, to be of little value.  
Foster-Miller, Inc. has developed a methodology that relates the complex variation in such 
systems to the information of interest.  This technology will be described in detail in Section 2. 
 
A second concern regarding the current measurement systems is installation, which can be labor-
intensive and cost-prohibitive.  A process that does not require the pulverizer to be taken off line 
would be highly desirable.  Most microwave and electrostatic methods require drilling up to 20 
holes in the pipe, all with a high degree of precision so as to produce a proper alignment of the 
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probes.  At least one electrostatic method requires a special spool piece to be fitted into each 
existing coal pipe.  Overall, these procedures are both difficult and very expensive.   
 
An alternative approach is pursued here, namely the development of an instrument that relies on 
an acoustic signal captured by way of a commercial accelerometer.  The installation of this type 
of sensor is both simpler and less invasive than other techniques.  An accelerometer installed in a 
pipe wall need not penetrate through the wall, which means that the system may be able to 
remain on line during the installation.  Further, due to the fact that the Dynamical Instruments 
technology, unlike other systems, does not rely on uniformity of the air or coal profile, the 
installation location need not be on a long, straight run of pipe.  In fact, an optimal signal is 
obtained near a pipe elbow.  This is fortuitous, as bends are often more accessible on pipes in a 
power plant than straight sections.  In contrast to measurement systems that rely on the 
uniformity of the air and coal profile, the accuracy of the system under development will not 
compromised by varying levels of flow uniformity. 
 
Additionally, the ease of installation of an instrument relying on the use of an accelerometer is 
such that the resulting instrument can actually be implemented so that it can be portable.  For 
those plants that do not require continuous online monitoring, the instrument could be moved 
from unit to unit, reducing costs even further.  As an example, base-loaded plants may only be 
interested in optimizing flow balance to the burners under a single condition, full load.  The use 
of a portable device, which could be moved from mill to mill or unit to unit, to achieve a 
balanced flow, would be highly appealing for plants with a large number of burners. 
 
Overall then, the instrument under development should result in more accurate coal-flow 
monitoring, simpler installation and portability.  This in turn would allow for an increased level 
of control for a broader base of plants and therefore serve to improve cost and energy efficiency. 
 

1.2 Dynamical Instruments 
 
Foster-Miller has developed a nonlinear technique that is very sensitive to subtle changes in 
system dynamics, enabling flow conditions to be extracted from time series measurements of the 
system dynamics.  This technique, called Dynamical Instruments, involves the direct 
characterization of the dynamics of a time series signal as a set of statistics.  The resulting vector 
of statistics comprises a “signature” of the dynamics, which can then be correlated to the system 
condition (in this case, coal flow).   
 
Figure 1 provides an example of the type of results that have proven achievable using the 
Dynamical Instruments technique.  This graph compares the actual and predicted flow rates of 
liquid in liquid-gas two-phase flows, in which the prediction was based on an ultrasonic 
measurement of the liquid film thickness.  The points cluster near the Y=X line, indicating that 
the prediction is well correlated to the actual liquid flow.  In fact, two standard deviations of 
error in this correlation comprise 2.9% of full scale.  Since there is no first-principles instrument 
that can determine this liquid flow rate without first separating the liquid and gas into separate 
flows, this is an exceptionally good result. 
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Figure 1.  Sample Dynamical Instruments result: actual vs. predicted liquid flow from a wide 
range of liquid and gas flow conditions 

 
 

1.3 Phase I Technical Objectives 
 
The project’s overall objective was the development of a commercially viable dynamic signature 
based sensing system that is used to infer the flow rate and fineness of pulverized coal.  This 
effort focused on developments required to transfer the measurement system from the laboratory 
to a field ready prototype system.  In order to achieve this goal, the program pursued the 
following specific objectives: 
 

• Using an existing design, construct a portable instrument system.  The instrument system 
includes an accelerometer to be attached externally to coal feeder pipes, data acquisition 
hardware and software, a signal conditioning and data processing module, and a neural 
network module.  Raw data is collected from the impingement of the coal particles as 
well as the acoustic noise generated from the flow and is transformed into characteristic 
signatures through proper calibration to operational parameters that are meaningful to the 
operator. 

• Install the system on the test rig located in the Coal Flow Measurement and Control 
Laboratory operated by Airflow Sciences Corporation in Livonia, MI, under contract to 
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EPRI.  Conduct tests using a 12-inch pipe diameter, varying the following parameters: 
coal type, coal flow rate, air flow rate, pipe configuration and flow orientation.  Coal 
particle characteristics will include fixed fineness, unless other tests provide data, and 
fixed, uncontrolled moisture.  Perform an iterative process of data collection, data 
analysis and algorithm development in order to obtain a neural network that is 
representative of a range of flow conditions and produces a reasonably accurate 
determination of coal flow.  

•  Analyze the dynamic data to determine the combination of data acquisition rate and 
sensor characteristics that provides an optimal combination of instrument performance 
and final hardware cost. 

• Using the instrumentation package developed, perform testing at two full-scale coal fuel 
power plants in order to evaluate the ability of the algorithm to accurately infer coal flow 
rates and determine if the measurement system can be used effectively in an active 
control loop for combustion diagnostics and burner balancing. 

 
At the completion of this project, it was expected that prototype versions of both a portable 
system and a permanent installation would be available for final packaging and 
commercialization by one of the team members. Both types of systems would be marketed for 
conducting combustion diagnostics and balancing of individual flows to pulverized coal burners.  
The benefits sought through the use of this system include improvements to a plant’s combustion 
feed utilization rate as well as the overall efficiency of a pulverized coal combustion system.  
 

1.4 Program Results 
 
A sensing system was designed as planned and is fully described in Section 3.2.  The system is 
modular in structure, allowing for an easy installation that will not interfere with coal-plant 
operations.  During the project, signal noise was more problematic than had been anticipated.  
The principal source of the noise ultimately was pinpointed to electrical grounding of the 
transducer, and was due to the particular design of this laboratory-grade transducer, although the 
component was originally selected as the top-of-the-line product among available high-frequency 
transducers.  Our analysis showed that in fact we could use a lower-frequency transducer in the 
final instrument.  This conclusion could only be reached by collecting and analyzing data as we 
have done in this program, and is a key result of the effort.  In fact, this outcome is quite 
fortuitous for the instrument under development, as there are many more options for lower-
frequency transducers, which as a rule tend to be both more robust and less expensive.  
Replacing the transducer with a lower-frequency transducer should eliminate the grounding-
related noise issues, reduce the cost of the instrument system and permit the use of a much more 
rugged transducer. 
 
Due to the grounding issues discussed above, far more laboratory data was required than had 
been planned.  Fortunately, we were able to piggy-back on planned EPRI testing at the Coal 
Flow Test Facility and obtain a no-cost extension, which allowed us to obtain more laboratory 
data and to pinpoint and resolve the grounding issues.  In the end, the collection of “clean” data 
was more limited than we had hoped at the start of the program.  However, the correlation results 
were extremely good.  For the 51 test cases from the laboratory, a neural network trained to 
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predict coal flow resulted in a correlation coefficient (r2-value) of 99.3%, providing a 
measurement accuracy of + 2.9% of full scale.  This result is equivalent to a very good in-place 
instrument calibration based on a level of knowledge of actual flows that would not be possible 
in the field.  These tests were based exclusively on a magnetically mounted sensor, which would 
be used for a portable instrument.  The electrical grounding issues were more easily addressed 
with the magnetic mount than the stud mount that would be used for a permanent installation.  
Therefore, the final set of data used for the program effort was collected solely with the magnetic 
mount. 
 
Field data was collected from two generation units at the St. Claire plant in Detroit, MI.  As is 
detailed in Section 6.3, the flow conditions, pipe diameters and pipe configurations were all 
different from what had been examined in the laboratory.  Further, the “actual” coal flows came 
from extractive sampling and were therefore not as accurate as the flow values determined in the 
laboratory, where the coal was weighed.  The data was not as clean as the data that was 
ultimately obtained in the laboratory.  After eliminating data files that showed significant 
evidence of noise, only 28 files remained.  As shown in Figure 2, a neural net was trained to 
predict coal flow for the combined set of laboratory and plant data, obtaining a correlation 
coefficient of 96.1%, or a level of accuracy of +6.6% of full scale.  In light of the fact that the 
“actual” coal flows from the field testing were obtained using extractive sampling and thus were 
probably no more accurate than this, the result was as good as one could hope for. 
 
 

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

coal flow

co
al

 fl
ow

 p
re

di
ct

io
n

Training set: lab and field data

Test set: lab data of 12/02/05

 
 

Figure 2.  Correlation obtained for laboratory and field coal flow data 
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Due to the noise problems that had been present through most of the program, we felt it 
important to demonstrate the feasibility of including a real-time noise-detection algorithm as part 
of the instrumentation package.  This would serve to provide automatic warnings when 
instrument readings are likely to be unreliable.  Section 6.4 discusses this issue.  The analysis 
presented there indicates that such an algorithm should be fairly easy to construct. 
 
Overall, the results of this effort show that the operating envelope of the instrument can be 
expanded to accommodate quite different conditions.  Availability of more data should both 
broaden the range of applicability and tighten the correlation significantly.  Ultimately, with 
experience, application of an instrument in a new plant should not need to involve in-place 
calibration. 
 
Information regarding particle fineness, moisture, and other coal characteristics were not 
available to us, but probably did not vary significantly in the laboratory testing.  Therefore, we 
limited our efforts to the development of an algorithm to predict flow conditions. 
 
The following sections describe the Dynamical Instruments technique, the test facilities and 
instrumentation developed, the data collected and the ensuing analysis, as well as the results and 
a recommended approach for future commercialization. 
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2.  DYNAMICAL INSTRUMENTS METHOD 
 

 
The Dynamical Instruments technique was invented in the course of a program for the U.S. Air 
Force involving the measurement of liquid-gas two-phase flows, and has since been used in 
numerous applications for fluid flow measurement, process characterization, and sensitive 
diagnostics and prognostics.  To date, the technique is covered by 5 U.S. patents ([1]-[5]), with 
numerous complementary foreign patents either in force or pending.  
 
In developing a flow meter, one is immediately faced with the problem that there is no single 
measurement that is directly related to the flow conditions.  There is no simple gauge that reports 
the air and coal flow rates.  Methods such as those relying on a turbine wheel or orifice, which 
are appropriate for use in a liquid-flow meter, cannot even be considered here as the coal 
particles are abrasive and the mechanical components would deteriorate rapidly.  Further, the 
coal particles would tend to build up in the crevices of a turbine wheel and in any “dead” spots in 
the flow, both upstream and downstream of an orifice.  This is before even considering the fact 
that two-phase flows, in this case mixtures of coal and air, are far more complex than single-
phase flows, and therefore are much more difficult to monitor.  In short, the possibility of a flow 
meter based on first principles is nonexistent for this application.  In the absence of a suitable 
flow sensor, a different measurement approach is required.  In what might be called a 
“conventional” approach, various features of the dynamics of the system are used, often relying 
on a characterization of the dynamics of the system in the frequency domain or via gross 
statistical measures: 
 

• Frequency-domain analysis links the amplitudes of behaviors at particular frequencies, 
which are believed to reflect behaviors occurring at the fundamental or harmonics of 
frequencies of the behaviors of interest.  One problem with this approach is that the flow 
dynamics are complex deterministic, but they are not periodic.  Performing an analysis in 
the frequency domain has the effect of averaging out the “random” variations of the 
dynamics.  Unfortunately, these seemingly random variations reflect the smallest scale of 
deterministic mechanisms that are the most sensitive indication of the system dynamics, 
so that removing them from the analysis limits the sensitivity of the diagnostic.  Even 
large scale temporal variations of amplitudes, which may be clear indications of the flow 
conditions, are ignored.  In addition, by considering only the amplitudes of frequency 
components, the phase information is discarded, so that the order of events is not taken 
into account. 

 
• The alternative conventional approach, using statistics that characterize the time series, 

usually employs measures that are independent of the order of events.  For example, the 
calculations of skewness, kurtosis, etc. do not depend on the “shape” of the evolution of 
the time series data, but instead on the distribution of values that are visited.  Effectively, 
all of the time series values are jumbled together out of temporal order in computing 
these values.  Thus, a great many time series can produce identical values of skewness 
and kurtosis.  While conclusions based on the distribution associated with a the time 
series are valid, there is a loss of information in building a distribution from the time 
series,   This renders statistical measures “blunt” instruments to apply to subtle data. 



 12

 
Overall, correlation of time-series measurements to flow rates should not be approached as a 
means to extract static measures.  In fact, the variation inherent in the flow dynamics is in itself 
indicative of the flow conditions.  The basic approach of the Dynamical Instruments method is 
illustrated below in Figure 3.  It involves the following steps: 
 
• Attach a suitable sensor to the system to obtain a signal that is representative of the system 

dynamics related to the operating conditions of interest. 
• Apply amplification and signal conditioning to the sensor output. 
• Digitize and buffer the data. 
• Calculate a set of quantities that characterize the dynamic variation of the acquired data, 

comprising a “signature” of the system dynamics. 
• Correlate the dynamic signature to the operating conditions of interest, in this case flow 

conditions, producing an output that can be used by the operator. 
 
 

Dynamic
System

Sensor

Signal Conditioning

Data Acquisition

Dynamic Signature
Extraction

Correlation of Signature
to System Condition

Dynamic
Signal

Instrument
Output

 
 
 

Figure 3.  Dynamical Instruments concept 
 
 
 
The approach described above is similar in appearance to the technique used in conventional 
machinery diagnostics, where a vibration or other machine behavior is related to the mechanical 
condition of the machine.  In fact, however, Dynamical Instruments analysis is actually quite 
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different.  The fundamental difference lies in the type of characteristics of the signal that are 
considered: 
 

• Rather than time-averaging the sensor output, the raw time series data are used, including 
the seemingly “random noise” present in such signals. 

• Rather than performing frequency-domain analysis, which is computationally intensive 
and commonly throws away half of the information of the raw signal (the phase), the 
statistics are calculated from the time series data themselves.  No recursive computations 
are used, significantly reducing computational complexity. 

• Rather than computing gross statistics of the data, the statistics take into account the 
detailed shape of the time series.  This retains the ability to characterize the order of 
events, size, and “texture” of the data. 

 
The net effect is a dynamic signature that is extremely sensitive to small changes in operating 
conditions.  The following sections describe the fundamental rationale behind the Dynamical 
Instruments method and the issues that are involved in implementing it in practical applications.   
 

2.1 Fundamental Reasoning 
 
The only concept that is required to understand the Dynamical Instruments method that is new to 
most readers is the idea of an attractor.  An attractor is a behavior to which a deterministic 
dynamic system is drawn whenever its global operating conditions are steady.  A simple example 
of this is a damped driven oscillator.  Figure 4 shows the attractor for this case, which happens to 
be a simple circle in velocity/position space.  For all initial conditions not on this curve, the 
driving and damping forces of the system draw the behavior toward this circle.  Thus, after a 
short period of time, the oscillator behavior settles out to this attractor.  The radius of the circle 
increases as the driving force for the oscillator is increased (or the damping decreased), and 
conversely for decreases or increases in the driving force or damping.  Thus, the attractor 
changes as the global operating condition of the system changes. 
 

Position

Velocity

 
 

Figure 4.  Attractor for a damped, driven oscillator 
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In a more complicated example, a fluid flow, the dynamics of the flow depend on parameters of 
the flow (e.g., Reynolds number, in a single-phase flow) and its initial condition.  Even though 
the flow is probably turbulent, two different pipes of the same size, carrying identical flows, 
must have behaviors that are different instances of the same attractor.  This assertion can be a bit 
hard to understand, since the detailed dynamics of a fluid flow are highly irregular.  In fact, most 
engineers view the normal turbulent fluctuations in fluid flow as random.  Although they are 
complicated (and in some cases extremely so), the dynamics of any macroscopic physical system 
are not random.  They follow deterministic laws of physics that mandate their outcome.  
Mathematically, any deterministic system that has a steady global operating condition must 
approach an attractor.  For relatively simple, periodic systems such as the damped driven 
oscillator, the attractor is quite simple.  For highly complex systems such as fluid flow, this 
attractor happens to be highly complex. 
 
In a sense, normal engineering practice already makes use of the pervasive existence of 
attractors.  In turbulent fluid flow, detailed velocity fluctuations are responsible for the 
phenomena of pressure drop and heat transfer.  Since the pressure drops or heat transfer 
coefficients in identical pipes with identical flow conditions are expected to be the same, there is 
an implicit assumption that they have the same attractor. 

 
For systems somewhere between the simplicity of a damped driven oscillator and the complexity 
of a highly turbulent fluid flow, the attractor can look like the one shown below in Figure 5.  
This figure was constructed using experimental data collected for a nonlinear electronic 
oscillator.  As the figure shows, the behavior of this circuit is very interesting, displaying 
significant new kinds of behaviors not seen in the attractor for the damped driven oscillator.  For 
example, the attractor is not a simple closed curve, and in fact is not a closed curve at all.  In 
addition, the attractor fills space, and involves a delicate interplay among several types of 
behavior.  By the same token, this attractor has important similarities to the attractor of the 
damped driven oscillator.  For example, both show that the long-term behaviors of both systems 
are limited to a small range of possible states, and that the time evolution of the system depends 
on the current state.  The most important similarity for current purposes is that both behaviors are 
attractors, so they capture the dynamics of their respective systems for the given operating 
conditions:  when the operating conditions of either of these systems return to the condition 
corresponding to the attractor, the dynamics return to the attractor. 
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Figure 5.  Attractor for a nonlinear oscillator 
 

 
As the system operating conditions change, the attractor must also change.  That is, any change 
in the system parameters must be reflected in a change in the system dynamics because, 
otherwise, the dynamics would not be a function of the parameter.  Small changes in the 
operating conditions must cause continuous changes in the dynamics which, in many cases, 
might be expected to be small.  Still, there are cases where a small change in operating 
conditions can produce a large change in the dynamics, such as the onset of new flow regime. 
 
Given two attractors, it is always possible to differentiate between them if they are different.  For 
example, one could measure the radius of the attractor, or find the average time between visits of 
given neighborhoods, or characterize the density of trajectories for different neighborhoods, etc.  
If a given value for a measure can be found each time the measure is applied to a given attractor, 
the measure is called an invariant of the attractor.  By comparing the invariants for two attractors, 
one can always differentiate between attractors.  If one set of invariants does not discriminate 
between the attractors, it is always possible to identify another invariant that does.  In fact, it is 
always possible to define an infinite number of measures of an attractor that provides a given 
type of discrimination between attractors. 
 
The observed, temporal behavior of a system is equivalent to the system’s attractor.  This is a 
proven mathematical result, but also one that can be understood intuitively.  Mathematically, any 
temporal behavior of the system is a mapping of the attractor onto the time line.  One can 
construct the simple attractor of Figure 4 from a time series history of the damped driven 
oscillator by estimating the velocity from sequential position measurements (or the position from 
velocity measurements).  In fact, the much more complicated attractor of Figure 5 was 
reconstructed from experimental observations of the nonlinear oscillator.  Thus, in a sense, the 
observed dynamics of the system is the attractor. 
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Reconstructing an attractor from time series data requires a sufficient quantity of data that the 
system would have visited a representative sampling of the neighborhoods of the attractor.  For 
example, the simple attractor of Figure 4 could not be wholly reconstructed from less than a full 
period of the oscillator’s motion.  More to the point, the more complicated attractor of Figure 5 
could not be reconstructed from a single oscillation, but instead requires many oscillations to 
obtain a representative sample of its dynamics. 
 
The simplest way to find out how much data is needed to reconstruct an attractor is to calculate 
measures of the data and see if they vary with sample length.  For example, the classic invariant 
measure of an attractor is its radius, which is usually taken as the standard deviation of the data.  
One can tell whether enough data is available by calculating standard deviations for subsets of 
the data sample and seeing whether the result is sensitive to sample length.  When the values of a 
full set of such measures are relatively stable with sample length, the sample length can be 
declared sufficient.  Interestingly, though, a wholly sufficient sample may not be needed to 
differentiate between two attractors.  If a short sample displays a behavior that is peculiar to one 
attractor and not another, then it can be sufficient to differentiate between the attractors without 
being sufficient to reconstruct the whole attractor.  Thus, it is not obvious what the minimum 
amount of data is that is required to estimate the system operating conditions to a given level of 
accuracy. 
 
If two different sensors are used to observe a given dynamic behavior, the attractors associated 
with these two sensors are equivalent, even if the sensors are sensitive to different phenomena 
(e.g., acceleration and acoustic pressure).  This is because all of the variables of a dynamic 
system are interrelated by the dynamics.  Mathematically, these variables are simply different 
mappings of the attractor onto the time line.  It is certainly possible, even likely, that one sensor’s 
output will provide a better reflection of the dynamics of the system than another, but this is not 
a particular problem of the Dynamical Instruments method:  one should always try to use the best 
instrument for an application.  Still, there is not necessarily only one sensor that can be used as 
the basis for a Dynamical Instrument in a given application, and in many cases any of a variety 
of sensors could be used. 
 
Although an attractor can be reconstructed from dynamic data, this is not to suggest that the 
attractor actually needs to be reconstructed before comparing one operating condition with 
another.  This is simply not necessary, since the data are already equivalent to the attractor.  
Thus, one can calculate invariants of the data that are equivalent to invariants of the attractor.  In 
addition, it is often difficult to reconstruct an attractor from experimental data, particularly in 
highly complex systems such as two-phase flows.  The reasons for this are somewhat involved 
and beyond the scope of the current discussion.  Still, in order for the Dynamical Instruments 
method to work, it is not necessary to be able to reconstruct the attractor, but simply that an 
attractor exists.  Thus, the Dynamical Instruments method is implemented by correlating 
quantities calculated from the time series data to the operating condition of interest. 
 
The following sections describe the detailed application of the Dynamical Instruments method, 
and the ways that individual technical issues are reflected in the method, its implementation, and 
the results that are obtained. 
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2.2 Data Acquisition 
 
There is no longer much mystery to acquiring data digitally.  From the standpoint of the 
Dynamical Instruments method, the key issues are the rate and duration of sampling.  These 
issues have different implications for purposes of instrument development and implementation. 
 
For purposes of both development and implementation, an insufficient sampling rate can miss 
important system dynamics, limiting the accuracy and even feasibility of a flow instrument.  
Thus, during development, one should always err on the side of a high sampling rate.  The only 
cost of this approach during development is large data files.  For implementation purposes, an 
excessive sampling rate would require faster data acquisition and analysis hardware, increasing 
the overall cost of the instrument, and may actually decrease the accuracy of the resulting 
instrument.  Thus, one should optimize the sampling rate during development so that the 
resulting instrument achieves the best accuracy with the least expensive hardware.  Fortunately, 
this optimization can be done in a relatively straightforward fashion.  If the data are collected at 
an ample sampling rate, the effect of using lower sampling rates can be simulated accurately by 
skipping readings in the data files in calculating the candidate signature quantities.  One can then 
determine the effect of sampling rate on instrument accuracy, providing a solid basis on which to 
make a design decision. 
 
Just as in the case of sampling rate, during development the only cost of increasing the duration 
of sampling is large data files, while a short sampling duration potentially could cause important 
dynamics to be missed.  For a diagnostic instrument implemented in the field, the ability to 
achieve a reliable flow estimate from a relatively short data snippet is desirable to provide a 
responsive instrument system.  Thus, the size of the data sample used to update the instrument 
output should be selected to provide maximum accuracy subject to minimizing data 
requirements.  As in the case of sampling rate, sampling duration can be optimized during 
development through analysis.  During preliminary development, the system dynamics can be 
characterized using long data records to be certain of an accurate characterization.  As the 
development process advances, the issue of sample size can be examined by analyzing the data 
in snippets of various sizes to determine how sample size affects update accuracy and 
responsiveness.  The resulting strategy can then be implemented in prototype instruments with 
some confidence. 
 

2.3 Dynamic Signature Extraction 
 
This is the part of the method that most departs from conventional data analysis methods.  It 
begins by calculating a broad array of quantities that characterize the signal dynamics, in hopes 
of finding a group of such measures that reliably discriminate one operating condition from 
another.  There is no a priori method of defining which measures of a signal’s dynamics will be 
related to system operating conditions, and no way of delineating which of any group of such 
measures will provide the best results.  Thus, it is necessary to define a candidate set of measures 
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to apply to the signal, and then use the process of correlating these measures to the desired flow 
rates to help optimize the selection. 
 
While no fundamental guidance is available to define a set of measures to apply to a dataset, this 
process can be pursued with confidence, because the previously described mathematical 
argument indicates that the method should work.  If flow conditions are different, then the 
corresponding system dynamics are different, and an infinite number of measures of the 
dynamics will disclose this difference.  Thus, if a given set of measures does not satisfactorily 
determine the system operating conditions from the observed data, there are other measures that 
will improve the instrument’s performance.  In addition, there is no shortage of possible dynamic 
measures.  One could define many possible measures for any given phenomenon observable in 
the data.  In some cases, these different measures may be effectively equivalent, while in other 
cases the information contained in one measure might be complementary to information 
contained in another, similar measure. 
 
Thus, defining a set of measures to serve as a signature of a system’s dynamics is essentially a 
black art.  With that said, a set of guidelines has been developed over a series of past Dynamical 
Instruments programs to help provide a firm footing for a dynamic signature analysis: 
 
• Use measures that characterize both the temporal and amplitude behaviors of the signal.  

Thus, in addition to measuring the “size” of events in the data via amplitude, one should 
measure the frequency or period of these events. 

• Use measures that characterize a given phenomenon in different ways.  For example, one 
measure might be the average of some phenomenon, and another might be the RMS (root-
mean-squared) of the same phenomenon.  The RMS value weighs larger events more heavily 
than the average does, so the two measures together provide information about the 
distribution of the sizes of the events. 

• Use multiple similar measures.  Some measures may prove to be surprisingly insensitive to 
the system operating conditions of interest while other, similar measures might incisively 
discriminate between operating conditions. 

• Use measures that characterize phenomena at different scales within the data.  For example, 
one set of measures might characterize the largest events occurring in the data, while another 
set might characterize the smallest, “texture” scale of events. 

• Use measures that characterize both the actual time evolution of the signal and the passage of 
harmonic power in the signal.  That is, since the signals occurring in flow dynamics reflect 
the passage of events associated to the flow, the resulting signal has aspects of both low-
frequency variation (e.g., with the passage of each large event) and high frequency (with the 
detailed response to each event).  By separately considering these aspects, one can gain 
further insight into the nature of the signal dynamics.  This has led to the use of two separate 
groups of signature quantities, one calculated from the raw dataset and the other from a new 
dataset that characterizes the passage of harmonic power in the raw dataset. 

• Use at least some measures that are independent of the signal amplitude per se.  If such 
measures are successful, then two sensors with different sensitivity, or two installations of 
the same sensor with different coupling characteristics, have the potential of providing the 
same instrument output without special calibration. 
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Following this simple set of rules, a “standard” set of statistics has been developed, comprising 
57 measures, which form the baseline when examining a new application of the Dynamical 
Instruments method.  The details of these signature quantities are described in the Appendix. 
 
In a previous effort, an ActiveX dynamic link library (DLL) was developed that can be called 
from Matlab to calculate each of these quantities.  The raw data are imported into Matlab, 
preprocessed as necessary, and then sent to the DLL to calculate the 57-quantity signature.  The 
resulting signature is then returned to Matlab, where it is used in further analysis. 
 

2.4 Correlation of Signature to System Conditions or Parameters 
 
The 57 quantities described in the previous section are intended to serve as candidates for 
inclusion in signatures of the flow dynamics.  Not all of these measures would be used in the 
ultimate embodiment of an instrument, so each should be considered a candidate for inclusion in 
a dynamic signature.  Having identified such a set of properties of the attractor, the job now 
comes to correlate these quantities to the flow condition. 
 

2.4.1 Correlation Algorithms 
 
There are quite a few different approaches that have been used with success in past Dynamical 
Instruments development programs, and different situations call for different methods.  Each of 
these techniques is a form of state space analysis, in which the several statistics of the dynamic 
signature can be viewed as different dimensions in a state space, with the location of a given 
point being used to determine the flows conditions.  Exactly how this analysis is performed can 
have a very strong influence on the results that are obtained. Some of the methods that might be 
considered include the following: 
 

• Simple clustering methods – this approach involves geometrically separating different 
flow conditions according to their locations in the state space.  Common techniques 
include principal components analysis and singular value decomposition, which linearly 
map the points for similar conditions into the best available estimate of a sphere.  
Whether or not a given point is similar to other points is determined by whether it lies 
within or near one sphere or another.  This analysis can be performed readily in the 
Matlab environment using built-in function calls. 

• Convex hull analysis – this technique is an extension of the simpler techniques.  Rather 
than assuming that similar points comprise a sphere, they are assumed to form a simple 
convex shape, with points within the cluster being separated from other points by a 
geometrical boundary, called a hull.  The location of a point within the hull, or distance 
of the point from the hull surface, determines the flow conditions.  One major advantage 
of this approach over the simpler geometrical methods is that adding new points to the 
analysis simply shifts the hull, rather than rescaling the state space.  Matlab routines were 
developed in a previous program to identify the convex hull and find a point’s location 
relative to it. 
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• Local state space analysis – this is a technique in which several nearest neighbors from 
the experimental data determine the flow condition for a new data point.  By considering 
neighborhoods separately, this approach accommodates fairly strong variation of the 
system behavior with location in state space.  Among the highly capable nonlinear 
techniques, this approach has the advantage that it can be validated:  it is easy to 
determine whether the experimental data are consistent, and whether a new data point 
falls within the range of the experimental data.  In addition, this analysis can be updated 
easily when new experimental data become available.  The algorithms required to 
perform this analysis are quite involved, and cannot be performed efficiently in the 
Matlab environment (because it does not support pointers).  Consequently, in a previous 
program a special-purpose dynamic link library was developed to perform this analysis 
using calls from the Matlab environment. 

• Neural networks – in this case, a randomized training technique is used to develop the 
algorithm that relates the location of a point in the state space to the flow condition.  This 
renders the process difficult to verify, because the location of a given point relative to the 
experimental database is difficult to determine.  Despite this disadvantage, neural 
networks are extremely adept at scaling the inputs differently in different neighborhoods.  
This capability often proves to be very useful, because the experimental points are 
usually distributed heterogeneously.  Recently, Foster-Miller has funded the development 
of a proprietary analysis tool that allows very rapid training of neural networks.  This 
tool, which uses Particle Swarm Optimization (PSO), has been implemented as an 
ActiveX DLL that can be called from the Matlab environment.   

 
 

2.4.2 Selection of a Signature 
 
Given a suitable selection of dynamic characteristics, one or more of the techniques described 
above can be used to correlate signature to the flow conditions.  In many applications, it is the 
selection of the signature from among the many available statistics that is the principal barrier to 
the successful development of an analysis.  A number of different techniques have been used to 
overcome this issue in past Dynamical Instruments programs: 
 

• Graphing – viewing a scatter plot of the desired output (e.g., coal flow rate) as a function 
of a signature quantity can rapidly disclose whether a given statistic is a good candidate 
for inclusion in the signature.  This process can be performed very rapidly in Matlab, 
with each promising signature quantity noted along the way.  After this first round of 
selection, each of the promising quantities can then be plotted as a function of each of the 
other quantities, with the desired output represented by the symbol color.  This rapidly 
indicates whether an added statistic improves the appearance of the correlation.  The 
result is a relatively modest number of statistics that can be tested in exploratory 
algorithm development. 

• Mutual Information – this approach uses a statistical calculation that relates the 
information that is known about a quantity Y if one knows the corresponding value of X.  
If Y is related to X, graphing Y as a function of X produces a curve, which could take on 
a variety of shapes depending on the functional relationship.  In this case, X contains a lot 
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of information about Y.  On the other hand, if X and Y are unrelated, the graph will 
produce a random distribution of points, indicating that X contains little or no 
information about Y.  The mutual information calculation essentially characterizes the 
tendency for the X and Y values to correspond to one another in a pattern, by sorting the 
X and Y values into an NxN array of bins.  This calculation can be performed very 
rapidly to find the mutual information between each signature quantity and the desired 
output, producing a short list of quantities that are good candidates. 

• Numerical experimentation – if a simple signature is sufficient, then trying all possible 
combinations may be worthwhile.  This approach works well when the algorithm is 
simple to automate, and when only a modest number of signature quantities are required 
(say, 4 or less).  When larger numbers of quantities are used, the number of combinations 
becomes so large that other approaches tend to prove to be more efficient. 

• Particle Swarm Optimization – this is an extension of the neural network training 
algorithm.  Since PSO trains neural networks very rapidly, numerical experimentation 
can be used to try a large number of combinations of signature quantities as inputs to 
networks.  It turns out that PSO itself can be used to rapidly identify a near-optimal 
signature of the dynamics, by optimizing the output of a neural network with any N 
inputs chosen from a list of, say 57.  This capability that been implemented in the particle 
swarm ActiveX DLL described above, with great success.  It has actually proven to be 
efficient to use PSO to identify a suitable signature, and then to use this signature as 
inputs to other analysis algorithms described above. 

 
This section has described why and how the Dynamical Instruments technique works.  Later 
sections will describe how this approach was used in the program at hand to infer flow 
conditions from accelerometer time series data. 
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3.  TEST FACILITIES AND INSTRUMENTATION 
 

 
Data was collected for this project in two stages.  The first stage consisted of laboratory testing at 
the new Coal Flow Measurement and Control Laboratory, which is sponsored by the Electric 
Power Research Institute (EPRI), the cost share partner on this project, and has been built and is 
being operated by Airflow Sciences in Livonia, Michigan.  The second stage consisted of field 
testing performed at Detroit Edison’s St. Claire Power Plant. 
 

3.1 Laboratory Facilities 
 
The coal flow test facility is shown in the next four pictures taken at the project kickoff meeting 
in November 2003 at the facility in Livonia, Michigan.  Figure 6 is the coal and air feed, 
metering, and measurement system, which produces known mass flows of air and pulverized 
coal to test sections.   Figure 7 shows a transparent section of pipe with rotoprobe sampling port 
in an upflow orientation following two elbows.  Figure 8 is a picture of the control loop display, 
showing the system schematic.  Figure 9 is a closer view of this transparent test section showing 
a swirling flow of silicon dust used in shakedown tests of the facility. 
 
 

 
 
 

Figure 6.  EPRI & Airflow Sciences pulverized coal and air supply system  
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Figure 7.  Transparent coal and air test section 

 
 

   
 Figure 8.  CRT display of Coal Flow Loop schematic, instrumentation and controls   
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Figure 9.  Test section with silicon particles and air, swirl induced by offset elbows upstream 

 
 

3.2 Instrument Package by Foster-Miller  
 
The original coal flow measurement test package that was installed for use during the 
preliminary testing at the Coal Flow Test Loop consisted of four main components: 
 

• An Endevco Model 7259 uniaxial accelerometer with high frequency response (its 
bandwidth very conservatively quoted as 30 kHz) and 10 mV/g sensitivity. 

• A Kistler Model 504E isotronic signal conditioning amplifier. 
• A compact filter/amplifier module featuring a Krohn-Hite 100 kHz low-pass filter and 

amplifier. 
• A transportable computer with a Microstar Data Acquisition Processor board. 
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Initial shakedown testing revealed an unacceptable level of noise.  In remedying this situation, 
the Kistler amplifier was replaced an Endevco 133 amplifier, and the Krohn-Hite filter/amplifier 
module was replaced with a Krohn-Hite Model 2284 filter.  For a further discuss of these 
modifications, see Section 4.  The revised package consisted of the following components: 
 

• An Endevco Model 7259 uniaxial accelerometer with high frequency response (its 
bandwidth very conservatively quoted as 30 kHz) and 10 mV/g sensitivity. 

• An Endevco Model 133 isotronic amplifier. 
• A Krohn-Hite Model 2284 filter, a laboratory bench instrument. 
• A transportable computer with a Microstar Data Acquisition Processor board 

 
The components of the original instrumentation package and the revised package are illustrated 
schematically in Figure 10.  An accelerometer mounted on the outside of the pipe senses the 
vibrations produced by the coal particles striking the pipe wall.  The resulting raw signal is 
amplified using the accelerometer amplifier, producing a higher-level signal.  This signal is then 
filtered to eliminate behaviors above 100 kHz to eliminate signal aliasing, and below 1 Hz to 
eliminate any DC offset.  Originally, the signal amplitude was also increased in the same 
component, the Krohn-Hite filter/amplifier module, but the replacement module had gains set to 
unity.  The resulting signal is then digitized and stored at 300 kHz using the data acquisition 
computer.  Each data file is nominally 30 seconds in duration (with some variation due to details 
of data buffering in the data acquisition process).  
 
 

Kistler Accelerometer Amplifier
Replaced with Endevco Amplfier

Krohn-Hite Filter/Amplifier Module
Replaced with K-H Laboratory Filter

Data Acquisition Computer

Coal Pipe

Endevco Accelerometer
Steel Mount Replaced
with Insulated Mounting Stud

 
 

 

Figure 10.  Instrumentation schematic 
 
 
The Endevco accelerometer is a particularly fine instrument, with a frequency response that is as 
high as or higher than almost any transducer one might envision employing in the coal flow 
measurement application.  By low-pass filtering the signal to eliminate behaviors above 
100 kHz, and sampling the result at 300 kHz, the entire dynamics of the accelerometer response 
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can be captured.  This allowed for extensive post-test analysis of the data to examine the 
influences of sensor response, filtering, and data sampling rate on the information content of the 
data.  The intent was to select instrument configuration variables to be carried forward in further 
laboratory and plant testing. 
 
Also provided with the test package was a choice of mounts for the accelerometer: 
 

• An insulated mounting stud, to be threaded into a hole in the pipe wall, and 
• A magnetic mount to be applied manually. 

 
Our analysis indicated that the magnetic mount should provide very similar dynamic response to 
the direct threaded mount, because its size is small compared with the physical wavelength of a 
pipe wall vibration at the transducer resonant frequency of 90 kHz.  The advantage of using a 
magnetic mount is that this provides a means for streamlining later testing both in the lab and in 
the field:  transducers can be applied to the piping at will, without drilling holes (to which the 
utilities are understandably resistant, particularly for casual R&D purposes). 
 
After much testing, we decided to focus exclusively on the magnetic mount.  The stud mount 
resulted in ongoing grounding issues that were likely to persist in the field.  The data collected 
using the magnetic mount was cleaner and resulted in a better correlation of the dynamic 
signature with coal flow.  One additional modification to the instrumentation was made along the 
way.  The Krohn-Hite laboratory filter was replaced by a custom built Krohn-Hite filter module, 
which functioned identically to the laboratory filter but could be plugged into the instrumentation 
without requiring operational settings, thereby facilitating field testing. 
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4.  SUMMARY OF LABORATORY TESTS 
 

 
The following summary details the various stages of testing performed by Airflow Sciences at 
the coal flow test facility.  During the testing, there were a number of problems related to noise 
within the instrument system.  As a result of these ongoing problems, more laboratory tests were 
needed than had been anticipated.  Fortunately, many of these tests were performed in concert 
with EPRI-funded testing.  Section 5.2 will contain a comprehensive discussion regarding the 
specific noise issues involved, as well as the implications for the instrumentation developed 
during this program. 
 

4.1 Shakedown Testing of Instrument Package 
 
The instrumentation package was installed at the Coal Flow Test Facility, located in an Airflow 
Sciences facility in Livonia, MI.  Initially, several sample data files were collected to examine 
the behavior of the instrumentation:   
 

• A no-flow test, with power applied to the inverter-based variable speed power supply for 
the blower. 

• An air-only test with an air velocity of 80 fps (24.4 m/s).  
• Two coal-air tests with an air velocity of 80 fps (24.4 m/s), a coal flow of 7000 lbs/hr 

(0.882 kg/s), and two different accelerometer amplifier gains. 
 
The resulting data files were sent to Foster-Miller, where a preliminary analysis indicated the 
presence of strong frequency “lines” in the power spectrum, indicating that strong periodic 
oscillations were present in the data.  As these lines were present even when no flow passed 
through the test section, the instrumentation must have been recording behaviors unrelated to 
flow.  This issue needed to be resolved in order to proceed with the collection of calibration data. 
 
The source of the noise could not be determined following long-distance consultation of Foster-
Miller and Airflow Sciences personnel, so a Foster-Miller engineer, Bruce Barck, traveled to the 
test facility to perform hands-on debugging. 
 
The most crucial issue proved to be the transducer mount:  the accelerometer must be electrically 
isolated from the pipe using an insulated mounting stud, yet a plain steel stud had been used.  
Stray electrical currents are a common problem in coal piping, because of the tendency of the 
coal particles to become electrically charged.  Consequently, coal piping systems are electrically 
bonded to reduce the likelihood of a dangerous buildup of electrical charge.  With a plain steel 
mounting stud, any residual electrical currents would affect the output of the transducer directly.  
By replacing the steel stud with an insulated stud, the main source of noise was eliminated.  
 
With the opportunity to test the instrumentation in the operating environment, Mr. Barck 
examined the performance of each of the other instrumentation subsystems.  He found that the 
noise level of the Kistler Model 504E amplifier was higher than that of an Endevco 133 amplifier 
he had brought along, so he replaced the Kistler unit with the Endevco one.  He also found that 
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the input gain of the compact Krohn-Hite filter/amplifier module was effectively amplifying the 
noise floor of the accelerometer signal.  He remedied this by replacing the filter/amplifier 
module with a Krohn-Hite Model 2284 filter, a laboratory bench instrument.  This instrument 
was set to have filtering characteristics identical to those of the compact module it replaced, but 
with input and output gains set to unity.  This did not produce any problems, because the noise 
output of the Endevco amplifier appears to be essentially independent of its own gain.  Thus, 
raising the gain of the Endevco amplifier compensates for the reduced gain of the filter box 
without raising the noise level.  No changes to the data acquisition computer were needed. 
 
The effect of these modifications is shown in the power spectrum graph of Figure 11.  The red 
trace in this figure is the power spectrum of no-flow data from the initial shakedown testing.  The 
blue trace is the power spectrum of no-flow data after the instrumentation was modified.  Both 
traces reflect data collected with the blower inverter power supply turned on, so the principle 
likely source of electrical noise was present.  As the two traces show, the signal was now quite a 
bit cleaner than previously.  The strong variation in the red trace at low frequencies, which 
probably reflected amplifier noise, was now greatly diminished.  In particular, there is essentially 
no component of 60 Hz and its harmonics.  In addition, the strong lines at higher frequencies are 
nearly gone. 
 

 

Figure 11.  Power spectra of no-flow data before and after improvements 
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The improvement is just as clear when flow is present in the pipe, as is shown in Figure 12.  In 
this case, the flow conditions for the two data files are similar, yet the characters of the two 
signals are quite different.  With the improved instrument setup, the low-frequency noise seen 
with the previous setup is strongly suppressed, and the numerous strong frequency lines are 
essentially absent.  With this major improvement to the instrumentation setup, collection of 
calibration data could begin in earnest. 
 
 

 

Figure 12.  Power spectra of data with flow before and after improvements 
 
 
 

4.2 Preliminary Data Collection 
 
The first round of data collection was performed in August, 2004.  Our focus for this test round 
was to gain insight into an issue that has remained unsettled for the ten year span of the 
development effort, namely how the type and location of the transducer mount affects the 
dynamics of the data and the extent to which the instrument calibration can accommodate this.  
The transducer has historically been mounted just downstream of an elbow, on the outside of the 
bend, using a stud threaded into the pipe wall.  This has always worked well, but there are two 
reasons to consider alternative mounts: 
 

• Although elbows are commonplace and generally accessible in coal piping systems, there 
are instances when an elbow is not situated in a readily accessible location.  Thus, the 
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versatility of the instrument would be increased if the transducer could be mounted in 
other locations without loss of accuracy.  

• Although a stud mount is suitable for a permanent instrument installation, one market of 
great interest is for portable instruments, either to be used by plant personnel or by 
contractors who perform plant balancing efforts.  For a portable instrument, a magnetic 
transducer mount would be highly advantageous. 

 
The availability of the Coal Flow Test Facility provided an excellent opportunity to address these 
issues.  As a first step in developing a coal flow instrument calibration, data were collected with 
many mounting locations and two mount types: 
 

• Fifteen mounting locations (illustrated schematically in Figure 13), beginning 5 pipe 
diameters upstream of the middle of an elbow, and moving one diameter at a time 
downstream, ultimately to a point nine diameters downstream of the elbow. 

• Two mount types, including a stud threaded into the pipe wall and a magnetic mount. 
 

 

 
 

 
 

Figure 13.  Schematic illustration of transducer mounting locations 
 
 
Although only 7 flow conditions were visited in this testing, as outlined in Table 1, these 
conditions covered a broad range of air flow velocities and air/fuel ratios.  Thus, although these 
tests do not fill the operating space, they visit conditions that should include the range of 
dynamics encountered in practice. 
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Table 1.  Flow Conditions Visited in Scoping Testing 

Flow  
Condition 

Air Flow 
(lb/hr, (kg/s))

Air Velocity
(ft/s, (m/s)) 

Coal Flow 
(lb/hr, (m/s)) 

Air/Fuel 
Ratio 

1 11060 (1.394) 52.2 (15.9) 3690 (0.4649) 3.00 
2 11060 (1.394) 52.2 (15.9) 11060 (1.394) 1.00 
3 15670 (1.974) 73.9 (22.5) 0 inf 
4 15670 (1.974) 73.9 (22.5) 5220 (0.6577) 3.00 
5 15670 (1.974) 73.9 (22.5) 15670 (1.974) 1.00 
6 20280 (2.555) 95.6 (29.2) 5790 (0.7295) 3.50 
7 20280 (2.555) 95.6 (29.2) 13520 (1.704) 1.50 

 
 
The resulting data files, filling 7 compact disks, were sent to Foster-Miller for analysis.  Analysis 
of the first data set disclosed a very complicated variation of the signal dynamics with different 
types and locations of transducer mounts, as will be further discussed in Section 5.1.  This does 
not imply that a correlation between signatures derived from data at different location mounts 
cannot be correlated.  However, it does mean that in order to fully comprehend the impact of the 
mount location on the dynamic signature, far more data would be required than could be 
obtained within the constraints of this program.  Therefore, it was decided to limit the transducer 
locations during further data collections for the duration of the program and to focus on an 
instrument calibration that works for these locations, with the expectation that experience gained 
in the field would eventually provide sufficient data to expand the calibration to other mount 
locations.   
 

4.3 Data Collection of October 2004 
 
The second round of testing was performed by our subcontractor, Airflow Sciences Corp., during 
October, 2004.  At this time, it was decided that: 
 

• It was still of great interest to be able to use either a stud mount, for permanent 
instrument installations, or a magnetic mount, for temporary installations. 

• The outlet of an elbow offers a reliable means of obtaining a strong signal, but is not 
always readily available in a power plant. Thus, both the outlet of an elbow and a point 
well downstream of the elbow were selected as suitable measurement points (illustrated 
with red dots in Figure 13). 

 
The calibration testing was performed using 2 elbows, one turning a vertical downward flow to 
horizontal and the other turning a horizontal flow upward. For the horizontal-to-vertical elbow, 
some tests were performed with an additional horizontal elbow installed immediately upstream.  
This induces swirl in the flow, which tends to cause the coal particles to “rope” together into a 
coherent structure in the middle of the pipe, an issue of considerable concern to plant operators. 
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Tables 2-4 below summarize the flow conditions that were visited during this testing. For the 
vertical-to-horizontal elbow, each flow condition typically represents four data files, including 
two mounting types and the two locations relative to the elbow. For the other two elbows, the 
mount type used is listed in the last column, so that each row in the table typically corresponds to 
two data files (for the two mounting locations). Overall, this testing produced 181 data files, 
including: 
 

•  Stud-mounted transducers in 95 tests. 
• Magnetically-mounted transducers in 86 tests. 
• Transducers mounted at the elbow outlet in 91 tests. 
• Transducers mounted 8 diameters downstream of the elbow in 90 tests. 

 
 
 

Table 2. Conditions Visited in Downflow-to-Horizontal Configuration 

Air Flow 
(lb/hr, kg/sec) 

Coal Flow 
(lb/hr, kg/sec) 

Air/Fuel 
Ratio 

16284 2.052 0 0 NA 
12933 1.63 4263 0.537 3 
16141 2.034 4736 0.597 3.4 
19298 2.432 4802 0.605 4 
16075 2.025 6314 0.796 2.5 
19209 2.42 6339 0.799 3 
12876 1.622 6370 0.803 2 
19123 2.409 7481 0.943 2.6 
16135 2.033 7722 0.973 2.1 
12814 1.615 8428 1.062 1.5 
18315 2.308 9351 1.178 2 
15896 2.003 10223 1.288 1.6 
12694 1.599 12167 1.533 1 
15865 1.999 10335 1.302 1.5 
16322 2.057 0 0 NA 
19112 2.408 7566 0.953 2.5 
16146 2.034 7747 0.976 2.1 
16166 2.037 4675 0.589 3.5 
16065 2.024 6391 0.805 2.5 

 
 
 

Table 3. Conditions Visited for Horizontal-to-Upflow Configuration 

Air Flow 
(lb/hr, kg/sec) 

Coal Flow 
(lb/hr, kg/sec) 

Air/Fuel 
Ratio 

Transducer 
Mount 

12767 1.609 12168 1.533 1 Magnetic 
12769 1.609 21604 2.722 0.6 Stud 
12844 1.618 8656 1.091 1.5 Stud 
12858 1.62 8468 1.067 1.5 Magnetic 
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Air Flow 
(lb/hr, kg/sec) 

Coal Flow 
(lb/hr, kg/sec) 

Air/Fuel 
Ratio 

Transducer 
Mount 

12895 1.625 6352 0.8 2 Magnetic 
12938 1.63 6595 0.831 2 Stud 
12953 1.632 4353 0.548 3 Magnetic 
13002 1.638 4434 0.559 2.9 Stud 
15970 2.012 10069 1.269 1.6 Magnetic 
16035 2.02 7799 0.983 2.1 Magnetic 
16077 2.026 10421 1.313 1.5 Stud 
16122 2.031 6326 0.797 2.5 Magnetic 
16168 2.037 8230 1.037 2 Stud 
16182 2.039 7827 0.986 2.1 Magnetic 
16228 2.045 4618 0.582 3.5 Magnetic 
16257 2.048 6136 0.773 2.6 Stud 
16266 2.05 7409 0.934 2.2 Stud 
16318 2.056 4453 0.561 3.7 Stud 
16349 2.06 0 0 NA Magnetic 
16448 2.072 0 0 NA Stud 
18500 2.331 9282 1.17 2 Magnetic 
18675 2.353 6306 0.795 3 Magnetic 
18749 2.362 4869 0.613 3.9 Magnetic 
18786 2.367 7513 0.947 2.5 Magnetic 
18930 2.385 9505 1.198 2 Stud 
19396 2.444 7752 0.977 2.5 Stud 
19493 2.456 6747 0.85 2.9 Stud 
19580 2.467 4833 0.609 4.1 Stud 

 
 
 

Table 4.   Conditions Visited for Horizontal-to-Upflow Elbow, Roping Configuration 

Air Flow 
(lb/hr, kg/sec) 

Coal Flow 
(lb/hr, kg/sec) 

Air/Fuel 
Ratio 

Transducer 
Mount 

12788 1.611 11790 1.486 1.1 Stud 
12851 1.619 7713 0.972 1.7 Stud 
12928 1.629 6016 0.758 2.1 Stud 
12990 1.637 4327 0.545 3 Stud 
15965 2.012 6374 0.803 2.5 Magnetic 
16064 2.024 10247 1.291 1.6 Magnetic 
16072 2.025 10537 1.328 1.5 Stud 
16149 2.035 7696 0.97 2.1 Stud 
16216 2.043 8118 1.023 2 Stud 
16238 2.046 6715 0.846 2.4 Stud 
16294 2.053 7480 0.942 2.2 Magnetic 
16298 2.054 4976 0.627 3.3 Stud 
16399 2.066 0 0 NA Stud 
16400 2.066 0 0 NA Magnetic 
18622 2.346 9332 1.176 2 Magnetic 
18781 2.366 7574 0.954 2.5 Magnetic 
18817 2.371 6329 0.797 3 Magnetic 
18913 2.383 4844 0.61 3.9 Magnetic 
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Air Flow 
(lb/hr, kg/sec) 

Coal Flow 
(lb/hr, kg/sec) 

Air/Fuel 
Ratio 

Transducer 
Mount 

18962 2.389 9128 1.15 2.1 Stud 
19305 2.432 4690 0.591 4.1 Magnetic 
19356 2.439 7900 0.995 2.5 Stud 
19446 2.45 6753 0.851 2.9 Stud 
19569 2.466 5058 0.637 3.9 Stud 

 

4.4 Additional Laboratory Testing of July 2005 
 
Analysis performed on the laboratory data collected prior to this point had revealed ongoing 
problems with noise, but had also produced some encouraging results, considering the limitations 
of the available data.  Careful examination of each data file disclosed that various types of noise 
were present in many data files.  In many cases, the noise was of a type that would allow for an 
identification routine to be built into the instrument system so that a warning could be issued for 
similar cases.  However, through extensive analysis of the data sets that appeared to be noise-
free, it was discovered that some data sets still suffer from some form of noise that could not be 
unidentified.  The cases not suffering this noise produced extremely good flow correlations, 
while the noisy cases were essentially uncorrelated to coal flow.  As a resulted, we concluded 
that additional laboratory testing was needed to identify potential sources of noise and to obtain 
additional data to serve as the basis of the instrument calibration.  In order to reduce the cost to 
this program, we arranged for the additional testing to be done in concert with testing for an 
EPRI-funded program.  We requested and received a no-cost time extension to accommodate this 
additional testing. 
 
The testing was performed in the Coal Flow Test Facility during the week of July 25, 2005.  
Foster-Miller again sent Bruce Barck to the Coal Flow Test Facility to observe the testing and 
assist with the data collection.  The key point of focus for Mr. Barck was to be to identify 
possible sources for the noise that had been evident in the laboratory data collected previously 
and, if possible, to find ways to reduce or eliminate the noise.  Prior to this round of testing, we 
had Krohn-Hite build a filter module that would function identically to the general purpose 
Krohn-Hite laboratory filter box.  The benefit of using such a module is that installation is 
accomplished by simply plugging the module into the system, which would facilitate field testing 
and ensure uniform results.   
 
During the testing it became clear that the system still had many grounding issues that needed to 
be resolved.  In order to ensure safe operation of the system, the coal pipes must be grounded 
throughout, mandating the use of insulated mounting studs, as was discussed in Section 4.1.  
Unfortunately, the mounting studs are easily damaged when they are repeatedly installed and 
removed, as was necessary in moving the transducer to enable data collection at multiple elbows.  
Once mounting studs become damaged, they are no longer non-grounding and collecting data 
with an acceptable level of noise is no longer possible.  After several days of adjustments, it 
became clear that continued use of the stud mounts were likely to remain problematic in the 
field.  While these issues might be resolved with the permanent installation of an instrument, it 
was not practical to continue further testing with the stud mounts for the balance of the program.  
Additionally, the analysis to date had produced far more encouraging results for data collected 
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with a magnetic mount of the transducer.  Therefore, we decided it would be best to concentrate 
our efforts on obtaining a reliable instrument calibration using a magnetic mount.  The previous 
test effort had clearly demonstrated that the sensor location one diameter downstream from the 
elbow generated an optimal signal as compared to the other locations that had previously been 
considered.  Data collected at this location had more harmonic power and, as a result, had a 
higher signal to noise ratio.  Given the delays that had resulted from time spent resolving noise 
issues, the decision was reached to focus exclusively, for the duration of the program, on data 
collected from a sensor at this position.    
 
In sum, numerous adaptations were made to ensure uniformity of the data collection.  After 
several days of modifications, a small quantity of very high quality data was collected using the 
magnetic mounts.  In all, a total of ten data files were obtained using a vertical-down-to-
horizontal pipe configuration.  The air flow was approximately constant for this collection of 
case runs, and there were essentially three different coal flow conditions.  The flow conditions 
for this data are summarized in Table 5 below. 
 
 

Table 5. Conditions Visited in Downflow-to-Horizontal Testing using a Magnetic Mount 

 
Air Flow 

(lb/hr, kg/sec) 
Coal Flow 

(lb/hr, kg/sec) 
Air/Fuel 

Ratio 
Number of 

Files 
14837 1.8695 7003 0.8824 2.12 1 
14845 1.8705 6970 0.8782 2.13 3 
14785 1.8629 8192 1.0322 1.80 3 
14629 1.8433 11896 1.4989 1.23 1 
14640 1.8446 11764 1.4823 1.24 2 

 
 

4.5 Testing of August and October 2005 
 
Though the noise issues had been thought to be resolved during the July test efforts, the process 
of determining the various noise sources had occupied the bulk of the test period.  Therefore, the 
quantity of data collected was insufficient to develop the calibration, particularly as only three 
flow conditions were visited.  Airflow Sciences agreed to collect more data to use in our analysis 
efforts. 
 
In August 2005, Airflow Sciences collected and sent 60 data files to Foster-Miller.  All data were 
collected with a sensor located one diameter downstream from the elbow and all with a magnetic 
mount.  The set-up was reported to be unchanged from the final set-up in July.  However, when 
the data was compared to the ten cases collected during July 2005, it was found that the signal in 
this latest collection had been extremely weak.  In fact, the power of the signal had dropped 30-
35 dB.  Figure 14 below compares both the raw data and the power spectrum of one of the files 
collected in August with a file collected in July.  While there is some evidence of peaks at 
similar frequencies in both data sets, clearly the harmonic power was very low for the data 
collected in August, which resulted in a signal that was dominated by noise.   
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Figure 14.  A comparison of two data files collected in July 2005 and August 2005 
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As a result of these problems, additional data was collected by Airflow Sciences in October 
2005.  The connections were checked to ensure that an adequate signal was generated.  
Unfortunately, the 39 files that were sent to Foster-Miller following this test run contained data 
with amplitude ten times that collected in July and, as a result, the data acquisition was 
saturating, as displayed in Figure 15, rendering it unsuitable for analysis.  This was particularly 
surprising, given that ceramic particulate had been added to the coal, resulting in a mixture that 
was approximately 90% coal and 10% ceramic.  One would expect the power of the acoustic 
signal to be somewhat lower than obtained previously when 100% coal was used, as had been 
the case in July, because the ceramic particles were lower in density than the coal.  In sum, none 
of the data collected in August or October 2005 could be used to calibrate the instrument. 
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Figure 15.  10,000 readings of a sample data file from October 2005 

 
 
 

4.6 Laboratory Testing of December 2005 
 
Testing resumed at Airflow Sciences again in December, 2005.  When it became clear that the 
problems experienced in August and October 2005 were persisting, Bruce Barck again visited 
the test facility in Livonia.  Initially, the problem was resolved by tightening the accelerometer 
cable connector.  This was a surprise to everyone from Airflow Sciences and Foster-Miller, as 
the connection did not appear to be loose and it was not obvious that this small change would 
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have such a large impact on the signal.  Forty-one files containing high quality data were 
collected with this set-up.  In all, 11 flow conditions were visited for which the airflow was near-
constant and the coal flow varied from 5438 lb/hour to 11,098 lb/hour, as displayed in Table 6 
below. 
 
 
 

Table 6.  Flow conditions for laboratory data with initial configuration, December 2005. 

Air Flow 
(lb/hr, kg/sec) 

Coal Flow 
(lb/hr, kg/sec) 

Air/Fuel 
Ratio 

Number of 
Files 

16245 2.047 5438 0.685 2.990 1 
16110 2.030 5584 0.704 2.890 5 
16096 2.028 5898 0.743 2.730 1 
16287 2.052 6229 0.785 2.610 3 
16289 2.052 6694 0.843 2.430 5 
16036 2.021 6799 0.857 2.360 5 
16170 2.037 8541 1.076 1.890 4 
15902 2.004 8913 1.123 1.780 5 
15864 1.999 10670 1.344 1.490 5 
15845 1.996 11037 1.391 1.440 4 
16108 2.030 11098 1.398 1.450 3 

 
 

The following day, the pipes were rearranged into a new configuration, as required for the EPRI 
testing, and the accelerometer was mounted once again, only to find that the previous noise 
problems had reappeared.  At this point, Mr. Barck repeatedly disconnected and reconnected the 
accelerometer cable connector.  In doing so, all the problematic behaviors that had been seen 
before resurfaced.  Finally, following one of the reconnections, the problem appeared to be 
resolved.  Five additional runs were recorded, four of which had flow conditions quite similar to 
conditions that were visited on the previous day.  One of these had substantially lower air flow 
than all of the other December laboratory test runs.  Table 7 below lists the flow conditions 
visited with the revised piping configuration.  Figures 16-18 below contain photographs taken of 
the connector and its mount location during the first day of tests in December.  
 

  
Table 7.  Flow conditions following pipe reconfiguration, December 2005 

 
Air Flow 

(lb/hr, kg/sec) 
Coal Flow 

(lb/hr, kg/sec) 
Air/Fuel 

Ratio 
Number of 

Files 
13086 1.649 5459 0.688 2.4 1 
16351 2.06 5565 0.701 2.94 1 
16303 2.054 6804 0.857 2.4 1 
16286 2.052 8780 1.106 1.86 1 
16150 2.035 11278 1.421 1.43 1 
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Figure 16.  Close-up of accelerometer cable connector 

 
 

 
 

Figure 17.  Mount location 
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Figure 18.  Piping configuration 

 

4.7 Conclusions Regarding Instrumentation 
 
The experience of the December test period reinforced the conclusion that the connector for the 
high-frequency accelerometer had been the source of many of the problems that have been 
experienced during this program.  Disconnecting and reconnecting the connector produced 
dramatically different results despite the fact that there was no apparent difference in the 
connection from one try to the next.  At this point, there was no way to tell if the flaw was due to 
a defective connector or whether the product itself is problematic, though its selection had been 
based on the fact that it is widely considered to be top quality among high-frequency 
accelerometers. 
 
At first, the problems with the connector were a major concern as this particular part is quite 
costly and options for high-frequency connectors are extremely limited.  Fortunately, as will be 
demonstrated in the analysis sections, we found that the best results were obtained when the data 
was filtered to pass a band of relatively low frequencies.   The implications of this finding are 
that a lower-frequency accelerometer can be used, allowing a significantly wider range of 
sensors from which to choose.  The lower-frequency accelerometers should be both more robust 
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and less expensive, which would permit a less expensive instrument system.  Without the 
experimental evidence from this program, there was no way to be sure just how high a sampling 
rate was necessary.  

 

4.8 Field Testing of December 2005 
 
Field tests using the Foster-Miller instrument package were run during the week of December 
12, 2005, at Detroit Edison’s St. Claire Power Plant.  The pulverizers were Babcox and Wilcox 
E-70 mills that underwent the conversion to EL-70 about 20 years ago.  These are vertical 
spindle, air swept, ball mills.   
 
Data was collected for Unit 1, Mills 1-5 and Unit 2, Mill 5. In both units, Mills 1 and 5 have 
three pipes per mill, each with pipe diameters of 13 inches.  Mills 2-4 have two pipes per mill, 
each with pipe diameters of 14.5 inches.  In contrast, recall that a pipe diameter of 12 inches was 
used in the laboratory testing.  All tests were performed at locations where the flow was 
nominally upwards.  For Mills 2-4, due to inaccessibility of positions downstream of an elbow, 
the sensor was placed approximately 1 diameter upstream of a 90 degree elbow.  For Mill 1 and 
5, the sensor was placed 1 diameter downstream of a 30-degree bend. 
 
In comparison with the laboratory data taken earlier that month, the data from the field tests 
showed evidence of far more noise contamination and also displayed significantly less power in 
the frequency band under consideration.  While it is not at all surprising that the signal 
transmitted to a sensor upstream of an elbow (as it was for three of the mills) would have less 
power, when combined with the higher noise level, the result was a far less favorable signal to 
noise ratio.  Additionally, some of the raw data displayed erratic behavior, including unusual 
variation of amplitude.  We learned from Airflow Sciences that some of these cases had been 
collected during extractive sampling, an invasive process that proved highly disruptive to the 
signal.  Each of the 73 files collected was examined carefully, both by way of the raw data and 
the power spectrum.  In this way, we weeded out data that would not be of use for our analysis.  
Of the 73 files, 28 were selected for further analysis.  The result of this analysis will be discussed 
in detail in Section 6, as will the process of data selection.  Tables 8 and 9 below summarize the 
flow conditions of the data collected in the field and also indicate both the number of files 
collected for each flow condition and the number of files selected. 
 
 

Table 8.  Summary of Flow Conditions for 13” pipe (Mills 1 and 5) 

Air Flow 
(lb/hr, kg/sec) 

Coal Flow 
(lb/hr, kg/sec) 

Air/Fuel 
Ratio 

Number 
of Files 

Number of 
Files Used 

Unit and 
Mill 

18947 2.387 5592 0.705 3.388 4 0 U2 M5 
22119 2.787 6120 0.771 3.614 4 2 U1 M1 
21445 2.702 6733 0.848 3.185 4 1 U1 M1 
20402 2.571 7284 0.918 2.801 5 4 U2 M5 
18107 2.281 7423 0.935 2.439 6 0 U1 M5 
20508 2.584 8194 1.032 2.503 8 7 U2 M5 
21105 2.659 10224 1.288 2.064 5 0 U1 M1 
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Table 9.  Summary of Flow Conditions for 14.5” pipe (Mills 2-4) 

Air Flow 
(lb/hr, kg/sec) 

Coal Flow 
(lb/hr, kg/sec) 

Air/Fuel 
Ratio 

Number 
of Files 

Number of 
Files Used 

Unit and 
Mill 

27803 3.503 5683 0.716 4.893 7 1 U1 M2 
26005 3.277 6040 0.761 4.305 4 0 U1 M3 
25425 3.204 6749 0.850 3.767 6 0 U1 M4 
30022 3.783 7911 0.997 3.795 7 7 U1 M4 
26816 3.379 8266 1.041 3.244 7 0 U1 M2 
29369 3.701 10474 1.320 2.804 6 6 U1 M3 
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5.  PRELIMINARY ANALYSIS 
 
 

Each of the data files collected in the program effort consisted of 9 million readings, acquired at 
300 kHz for 30 seconds.  This produced files of 36 MB, large enough to require planning and 
attention in their storage and transport, but small enough not to be completely unmanageable.  
With 30 seconds of flow dynamics in each file, any irregular variation of the dynamics with time 
(such as wandering of a central “rope”, or passage of lower and higher particle concentrations) 
would be expected to occur quite a few times within a given data file.  Thus, any reasonably 
sized subset of the data could be considered a different instance of the flow dynamics, so that a 
given data file could be considered multiple data sets that could be compared against one 
another.  This proved to be very useful in the data analysis. 
 
As was mentioned previously, the signal was hardware filtered prior to acquisition to limit the 
influence of behaviors above 100 kHz.  This was done to eliminate aliasing, a classic issue in 
signal processing.  This phenomenon arises because the Fourier transform of a time series data 
set is symmetrical about the Nyquist frequency, which is half the sampling rate.  Basically, it is 
not possible to know whether a given behavior represents a low-frequency behavior or a high-
frequency behavior that is “aliased” to appear as a low-frequency behavior.  By applying the 
hardware filter to eliminate the high frequency behaviors, digital signal processing can be 
applied to the data without concern:  what appears to be low-frequency really is low-frequency. 
 
All of the data analysis was performed in the Matlab environment using software tools developed 
in previous projects.  The first step in pre-processing the data was to digitally filter each data file 
to eliminate behaviors above 100 kHz, just to be certain that extraneous dynamics had not 
entered the data.  For example, noise could be introduced in the analog-to-digital conversion, 
although this was not expected.  Basically, it is difficult to check each of these large data files for 
unusual behaviors, so that it is easier to apply the filter first and not and eliminate one potential 
source of contamination.  Each of the resulting data sets was then partitioned into 30 one-second 
snippets of data.  A dynamic signature was calculated for each snippet using an ActiveX DLL, 
and then the median value was found for each of the signature quantities over the 30 snippets of 
a single file.  This procedure greatly reduces the influence of outliers, a necessary precaution 
given that noise spikes have been found to be common in both laboratory and plant data. 
 

5.1 Analysis of the First Round of Test Data 
 

In analyzing the preliminary round of data collected in scoping tests, we were only concerned 
with the effects of the type and location of the transducer mount on the signal dynamics, as 
reflected by the signature quantities discussed in Section 2.3.  Thus, we were not interested at the 
initial stage in relating the signature quantities for each data file to the flow conditions, but 
instead were studying the trends exhibited in the signature quantities calculated for a given flow 
condition as the type and location of the transducer mount varied.  If the statistics had varied in a 
relatively simple manner with transducer location, this would have suggested that a universal 
calibration could be found for prediction of flow parameters (coal flow, air flow, and coal 
fineness) irrespective of transducer mounting location.  Similarly, if the effect of the transducer 
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mounting type (stud or magnetic mount) on the statistics was relatively simple, then the 
application of the instrument could be broadened using both types of mounts.  The primary goal 
was to determine the type and location of transducer mounts to be pursued in further testing. 
 
The initial analysis of the scoping data indicated that the type and location of the transducer 
mount had strong effects on the signature quantities.  The results presented below led to our 
decision to limit mount locations for future testing for the remainder of the program.  In fact, 
later on, following a more comprehensive analysis, it became clear that relationships between 
dynamic signatures based on data collected at different locations of the transducer mount were 
obscured by various types of noise, as will be further discussed in Section 5.2.2.  This in turn 
implied that the relationships between the statistics for data collected at different transducer-
mount locations might not be as complicated as they first appeared.  In the long run, a universal 
correlation, independent of mount location, might be more within reach than it first appeared.  
While this development held promise for our long-range goal, the decision to limit mount 
locations for this program was upheld as the noise issues limited the quantity of “good data” 
available. 
 
Sample results from the preliminary analysis are presented in Figures 19 and 20, from flow 
condition 5 (equal air and coal flows of 15,670 lb/hr).  Figure 19 displays the graph of the 
standard deviation of the signal as a function of position for both the stud and magnetic mounts.  
One striking feature of this graph is how different this variation with position is for the two 
different mounts.  For the stud mount, position 6 (corresponding to the outlet of the elbow) 
produces the strongest signal, with the signal becoming weaker in  
a manner that is essentially symmetrical for positions upstream and downstream of this location.  
This behavior can be seen in quite a few of the signature quantities that  
measure the amplitude of the signal.  By contrast, the behavior of the magnetic mount is quite 
different, with the signal at position 6 being weaker than any other location.  Both mounts 
produce similar results for positions well downstream of the elbow. 
 
The signature quantity shown in Figure 20 is a measure of the period for the passage of the 
largest events in the signal.  Larger values for this statistic reflect a longer interval, on average, 
for the passage of large disturbances.  The behaviors for the stud and magnetic mounts are 
somewhat similar for locations downstream of the elbow, but markedly different for locations 
upstream of the elbow.  
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Figure 19.  Standard deviation of signals as functions of transducer position and mount 
 
 
 

 
 

Figure 20.  A time measure of the signals as functions of transducer mount and position 
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The results for other flow conditions were generally similar to the results shown in Figures 19 
and 20, and revealed quite a bit of variation in the behaviors of some signature quantities with 
position and mount type.  The net result was that there did not appear to be a simple means of 
identifying the effects of the mount type and position of the transducer on the signal dynamics. 
 
These results did not indicate that a universal correlation cannot be achieved.  In fact, there must 
be identifiable effects of mounting type and location on the signal dynamics, but there is no 
requirement that these effects be simple.  In principle, given enough experimental data, these 
effects can be “learned” by a suitable analysis, so that the flow conditions can be determined for 
any reasonable transducer mounting type and location.  The problem is that developing such an 
analysis could potentially require a very large quantity of data, which could not be obtained 
within the constraints of this program.  Whether the actual effects of the mounting type and 
location are complicated or, as we now believe, noise made the effects appear more complicated, 
the objective of this program was to develop commercially viable instrument systems for both 
fixed and portable applications, and limiting the transducer installation to specific locations was 
a reasonable compromise at this point.  Experience gained through field use may provide the data 
required to expand the instrument calibration to different transducer locations, but it appeared 
that the best approach for the present program was to concentrate on the issues that are of 
greatest interest: 
 

• Given a standard transducer mounting position (e.g., at the outlet of an elbow), can we 
generate an instrument calibration that works favorably for a variety of pipe sizes, 
orientations, and coal flows? 

• Can both magnetic and stud mounts be accommodated? 
 
As was noted in Section 4.3, the test matrix for the following round of tests, performed in 
October, 2004, was designed with the view towards answering these questions. 
 

5.2 The Impact of Noise 
 
Once the October, 2004, data collection had been completed, we could begin to focus our efforts 
on the actual data calibration.  Frequently, in performing a Dynamical Instruments analysis, the 
computation of the dynamical signature itself effectively filters out much of the noise.  The 
signature selection process, and subsequent training of neural nets, generally results in a 
dynamical signature consisting of signature quantities that are less sensitive to noise and more 
sensitive to the key dynamics.  Therefore, originally we had hoped that digital data filtering 
would provide sufficient noise reduction.   
 
The first stage of the analysis, presented below in Sect 5.2.1, produced disappointing results from 
our point of view.  However, surprisingly, when these results were presented at an EPRI meeting 
at the Coal Flow Test Facility in Livonia, MI, this initial attempt fared surprisingly well in 
comparison to two commercial coal flow meters they had tested.  Nonetheless, in comparison to 
other Dynamical Instruments projects, we did not feel that the results were satisfactory.   
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At this point, we began to concentrate more closely on characterizing the impact of noise.  
Section 5.2.2 will describe the results of a case-by-case examination of the data, which 
ultimately resulted in the elimination of 28 files of the 209 cases collected during the first round 
of testing, and 38 files of the 181 cases collected during the second round.  Sections 5.2.3 and 
5.2.4 will then describe further efforts to develop an analysis that would be less noise-sensitive.  
While the results of these efforts resulted in a much improved calibration, they still were not yet 
what we would call “instrument-quality”.  There were many indications of multiple noise sources 
that were effectively obscuring the flow dynamics.  Therefore, it became clear that a high 
priority of the next test effort must be locating the noise sources and, where possible, revising the 
data collection techniques in order to eliminate much of the noise, so that the analysis efforts 
could focus more on calibrating an instrument with flow conditions and less on noise reduction.  
 

5.2.1 A First Pass at Calibration 
 
In analyzing the combined data sets of August and October, 2004, a pre-processing algorithm 
similar to that described earlier was followed.  In order to reduce the impact of pipe resonance on 
the observed dynamics, we decided to digitally low-pass filter the data, eliminating behaviors 
above 75 kHz, rather than 100 kHz as had been used previously.  Signature quantities were then 
computed based on the filtered data.  The signature quantities were organized into a number of 
different arrays, which considered data from various combinations of the following variables: 

• Transducer mounting types 
• Transducer mounting locations 
• Different pipe elbows 

 
The various arrays included data from both the earlier scoping tests and the more recent 
calibration tests.  The signature arrays were then analyzed using Particle Swarm Optimization to 
identify correlations between the flow dynamics and the coal flow rate. 
 
Figure 21 is a typical result that was obtained for a stud-mounted transducer located at the outlet 
of the vertical-to-horizontal elbow.  An ideal result would place all points on the diagonal line, 
producing a correlation coefficient, r2, of one.  The actual correlation coefficient was 0.946 in 
this case, which is not a bad result but does not represent a high-precision instrument. 
 
The results for the magnetic mount were not as favorable, as illustrated in Figure 22.  In this 
case, a correlation coefficient of 0.875 was obtained, a significant reduction in accuracy 
compared to the result in Figure 21. 
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Figure 21.  Typical result for stud-mounted transducer for a specific elbow mount 
 
 
 
 

 
 

Figure 22.  Typical result for magnetically-mounted transducer for a specific mounting 
location 
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The results degraded even more markedly when data for the different elbows are combined in 
one correlation, illustrated in Figure 23.  In this case, the correlation was based on data for stud-
mounted transducers in all 3 mounting situations, including the vertical-to-horizontal elbow, the 
horizontal-to-vertical elbow, and the horizontal-to-vertical elbow with a roping configuration.  
The correlation coefficient here is 0.677, far below the level one would consider acceptable in a 
commercial instrument.  Nonetheless, as previously noted, none of the results obtained from the 
commercial instruments were a significant improvement over the Dynamical Instruments 
analysis. 
 
 

 
 

Figure 23.  Typical results for a stud-mounted transducer for all elbow mounts 

 
 
 

5.2.2 A Case-by-Case Examination for Noise  
 
It was discovered in analyzing one of the data files that not all of the noise had been eliminated 
from the data through the debugging effort early in testing.  The first type that was identified was 
a relatively large-amplitude, low-frequency behavior, such as that shown in Figure 24.  
Assuming that this noise is simply additive to the otherwise correctly sampled dynamics, this 
type of noise can be eliminated by digitally high-pass filtering the data.  Consequently, it was 
decided to high-pass filter data files to suppress behaviors below 20 kHz in calculating dynamic 
signatures for the remaining analysis. 
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Figure 24.  Typical data with low-frequency noise 
 
 
 
The example above led us to perform an exhaustive examination of all of the data obtained to 
date.  We had not performed this screening earlier because of the sheer volume of data.  In this 
process, each data file was opened, graphed at two different time resolutions, and its power 
spectrum graphed.  Figure 24 above is the result of graphing the first 100,000 data points, 
comprising a mere 1/3 of a second of data.  A second kind of noise is found in graphing the 
entire data set, shown in Figure 25.  The central section of the data has an amplitude that has 
proven to be typical for the bulk of the “good” data sets.  The earlier and later sections 
presumably suffer from additive noise.  When a data file like the one shown in Figure 24 was 
encountered, the range of data that displayed “normal” amplitude was noted, and signatures 
calculated for that limited window only. 
 
Another form of noise visible in full-file graphs is shown in Figure 26.  It is not at all clear what 
combination of instrumentation, data acquisition, and/or system conditions could produce such a 
bizarre behavior, but it clearly is not representative of flow dynamics.  Such files were discarded 
out of hand. 
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Figure 25.  Noise producing a varying signal amplitude 
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Figure 26.  Over-the-top noise 
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Yet another form of noise can be seen in a power spectrum of a data file, as shown in Figure 27,  
In this case, the power spectrum is essentially flat from DC up to the roll-off produced by the 
hardware low-pass filter in the instrumentation package.  Such a behavior represents pure white 
noise, a behavior never encountered in previous Dynamical Instruments development efforts.  
Again, it is not clear what combination of instrumentation, data acquisition, and/or system 
conditions could produce such a behavior, so these cases were discarded as well. 
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Figure 27.  Noise producing a flat power spectrum 
 
 
A significant number of files were discarded through this screening process.  Of the 209 data 
files in the original scoping data, 28 cases were discarded.  Of the 181 files in the more recent 
calibration set, 38 were discarded.  In general, the cases with magnetic mounts tended to be 
noisier than with the stud mounts:  of the 95 stud mount cases in the calibration data, only 12 
were discarded, while 26 of the 86 magnetic mount cases were discarded. 
 
Figures 28 and 29 provide an indication that this screening process was on the right track.  
Figure 28 plots the signal standard deviation calculated for tests performed at a single flow 
condition with both mount types and various transducer mounting locations.  The data had been 
filtered to pass frequencies between 20 kHz and 75 kHz (the upper limit being chosen to avoid 
over-emphasizing behaviors at the transducer’s resonance in the neighborhood of 85 kHz).  A 
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similar graph was presented as Figure 19 in Section 5.1.  The current graph looks the same, but 
identifies the first four points for the magnetic mount as noisy cases.  Ignoring these cases, the 
variation with position is seen to be much smoother. 
 
 

 
 

Figure 28.  Signal standard deviation as a function of position and mount type 
 
 
 
Figure 29 plots the value of another signature quantity as a function of transducer position and 
mounting type.  This figure is similar to Figure 20 in Section 5.1, but the values of the statistic 
are now quite different.  The reason for this is that filtering the data to eliminate low-frequency 
behaviors changes the character of the signal.  The net result, ignoring the four noisy cases, is 
that the variation with position is quite smooth.  Overall, the behavior of the signatures, after 
eliminating the noisy cases, is more in line with what had been anticipated based on our 
experience in earlier programs. 
 



 54

 
 

Figure 29.  A time measure of the signal dynamics as a function of position and mount type 
 
 

5.2.3 Bimodal Correlation of Coal Flow to Dynamic Signature 
 
After eliminating the cases that had been identified as noisy, an attempt was made to correlate all 
of the magnetically-mounted cases where the transducer was mounted at an elbow outlet.  The 
procedure was repeated numerous times to ensure that the best result was obtained.  The analysis 
typically produced correlation coefficients in the general range of 0.75. This was better than the 
results of less than 0.7 obtained in earlier analysis, but not to the extent that was hoped for.  The 
outcome was surprising, as there was no particular reason to believe that any of the remaining 
cases were noisy.  It was by sheer accident that one particular correlation was graphed, with the 
extraordinary result shown in Figure 30.  In this case, the overall correlation coefficient was 
0.78, but the graph clearly shows that there are 2 separate behaviors.  One subset of the cases has 
an excellent correlation coefficient of 0.994, while the other is essentially uncorrelated (r2 = 
0.014).  The well-correlated cases, approximately half of the total, indicate that at least some 
cases sensitively disclose dynamics that are related to coal flow.  The fact that roughly half of the 
other cases did not share the same dynamics suggested that there might be yet another, as yet 
unidentified form of noise in some cases.  Fortunately, since the uncorrelated cases all fall within 
a narrow band of predicted flow, it should be possible to discern cases with normal dynamics 
from those with noisy dynamics. 
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Figure 30.  Bimodal correlation obtained after removing identifiably noisy cases 
 
 
 
The well-correlated data points in Figure 30 comprised the best result we had encountered with 
coal flow data in the many data sets we had collected over numerous test efforts, confirming that 
observed dynamics should be sensitively related to flow.  This correlation accuracy is typical of 
the results we have obtained with the Dynamical Instruments technique in other flow 
measurement applications.   
 
As these results suggested that an additional noise source was obscuring the dynamics, the focus 
turned to the identification of noisy data, with an eye towards locating measures less sensitive to 
noise.  Using Particle Swarm Optimization, neural networks were trained on Dynamical 
Instruments signature quantities to distinguish the two sets of cases, those that were well-
correlated with coal flow and those that were not.  Using just two inputs, the noisy cases could 
easily be distinguished from the others with a 100% success rate.  However, examining pairs of 
signature quantities that were used as inputs to achieve this separation, little insight was gained 
towards qualitatively distinguishing the two sets of cases or identifying the noise source.  
Figure 31 shows a typical behavior of a signature-quantity pair that distinguishes those cases 
where coal flow is well-predicted from those where it is poorly predicted.  The data does not fall 
cleanly into two distinct clusters.  Rather, there is a cluster of cases with intermediate signature-
quantity values for which information related to coal-flow could not be extracted. 
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Figure 31.  Separation of cases with good and bad predictions 

 
 
 
The noise identified in the data provided an explanation for much of the trouble that had been 
encountered in analyzing the data collected to this point.  The noise could be identified, either by 
direct analysis of the time series or by comparison of the signal dynamics to non-noisy cases.  
Still, this did not explain where the noise originated.  In addition, the data remaining after 
eliminating noisy cases was of such a modest quantity that it would be insufficient for the 
development of a reliable instrument calibration. 
 
Consequently, we felt that additional data should be collected in the Coal Flow Test Facility to 
complete the instrument calibration before plant testing was undertaken.  By piggy-backing on 
planned EPRI testing, this testing could be performed at very little cost to the program, but 
necessitated an extension to the program schedule.  A no-cost time extension was requested and 
approved.   
 
Until new data would be made available to us, there was still information to be gleaned from the 
current data set.  While our hope was that noise issues would be substantially reduced during the 
next round of testing, there would be a considerable advantage to fine-tuning the analysis 
techniques in order to reduce the noise sensitivity of the results.  We first performed a 
comparative analysis to optimize the frequency range used when digitally band-pass filtering the 
data during the preprocessing stage.  The results of this analysis are described in Section 5.2.4.  
We then examined the length of the data windows used in computing the dynamic signature and 
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were able to significantly improve the results by comparing dynamic signatures for windows of 
different lengths.  This will be discussed in Section 5.2.5. 
 

5.2.4  Comparison of Ranges for Band-Pass Filtering 
 
Based on the earlier observation that band-pass filtering had produced better results than merely 
low-pass filtering, the noise problem was now approached from the point of view of optimizing 
the window of frequency values that were passed in filtering.  Focusing on the elbow-outlet, 
magnetic-mount cases, again excluding those that were identifiably noisy, each raw data file was 
filtered six different times to allow a comparison of the results obtained when each of the 
following frequency ranges were passed: 
 

• 20-40 kHz. 
• 30-50 kHz. 
• 40-60 kHz. 
• 50-70 kHz. 
• 20-60 kHz. 
• 40-80 kHz. 

 
As before, each filtered data file was broken up into 30 one-second windows of data, with 
signature quantities computed for each window.  Again, only the median value of the signature 
quantities for each data file was used, in an effort to reduce the inaccuracies due to noise spikes.  
The resulting median signatures from each frequency window were then trained thirty times 
using Particle Swarm Optimization with five inputs and three hidden nodes.  Repeated training is 
needed to optimize the performance of the neural net due to the fact that success is highly 
dependent on initial training conditions.  Certainly, the most important result is the highest r2 

value obtained.  However, from a practical point of view, accessibility of information can 
ultimately have a major impact on the best value achieved.  The results of this analysis are 
summarized by Table 10 below.   
 
 

Table 10.  Comparison of Results in Passing Different Frequency Ranges 

 
Frequency Range in kHz Highest r2 value obtained Number of runs with r2 > 0.70 

20-40 0.77 6 out of 30 
30-50 0.75 1 out of 30 
40-60 0.76 2 out of 30 
50-70 0.78 4 out of 30 
20-60 0.76 4 out of 30 
40-80 0.69 0 out of 40 

 
 

 
Overall, the highest r2 value obtained was not all that different for the different frequency ranges, 
with the exception of the 40-80 kHz range.  Beyond that, for some of the frequency ranges the 



 58

information was more accessible, with more runs resulting in the higher r2 values.  However, 
overall most frequency windows contained comparable information and comparable noise 
interference as well, as is indicated by Figure 32 below.  Further analysis was restricted to the 
data filtered to band pass 50-70 KHz, the frequency window that yielded the highest correlation 
value. 
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Figure 32.  Comparison of r-squared values achieved for different frequency windows 
 
 
 

5.2.5  Coal Flow Predictions from Temporal Variation of Dynamic Signature 
 
An examination of the signature-quantity values for individual one-second windows revealed 
significant differences in the temporal variation from case to case.  This is illustrated in 
Figure 33 below for a representative signature quantity, sdADuSize.  That observation in turn 
raised the question of whether the temporal variation might itself be related to coal flow, or 
whether it was a reflection of the instrument noise.   
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Figure 33.  Temporal variation of sdADuSize over each 30-second file 

 
 

A simple measure of the magnitude of temporal variation is the standard deviation.  In order to 
address the above question, the training procedure that had been applied previously was now 
repeated with the median of each signature quantity replaced by the standard deviation of each 
signature quantity over the 30 one-second windows for each case.  This training resulted in a 
significant improvement of results, attaining a maximum r2 value of 0.85, as compared to a 
previous maximum of 0.78.  Figure 34 below displays two histograms, providing a comparison 
for the correlation results based on the median of each signature quantity with those based on the 
standard deviation.  Clearly, more information is extracted when the analysis is based on the 
standard deviation.  Combining both dynamic signatures did not improve the analysis further. 
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Figure 34.   Histograms comparing correlation results based on median of each signature 

quantity to standard deviation of same 

 
 
The fact that the temporal variation of the dynamic signature over a test run provided more 
information concerning coal flow than the median value suggested that one-second windows of 
data were inadequate for extracting coal flow values and that the use of longer windows was 
warranted.  Therefore, the one-second windows of data were replaced by five-second windows.  
Consecutive windows had starting points separated by one second and therefore overlapped by 
four seconds, once again resulting in a total of 30 windows for each data run.  Training was now 
attempted as before, but this time using the median of the five-second windows of each signature 
quantity over each file.  The results were not significantly different from those obtained based on 
the one-second windows.  A maximum r2 value of 0.79 was achieved as compared to that of 0.78 
using one-second snippets.  Both these results were based on the data filtered to pass a frequency 
range of 50-70 kHz.  Figure 35 below compares the histograms for 30 trainings based on the one-
second windows to 30 trainings using five-second windows.  At best, a modest improvement is 
attained with the longer windows. 
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Figure 35.   Results based on one-second windows vs. those based on five-second windows 

 
 
 
In short, the signatures of longer snippets of data produced lesser results than the standard 
deviation of each signature quantity over a longer period of time.  A comparison of the medians 
of the one-second signature quantities to the median of the five-second signature quantities 
revealed that there were two types of behaviors.  While all of the median signature quantities 
displayed similar behavior for the one-second windows and the five-second windows, for some 
signature quantities the values were essentially independent of the window size while other 
signature quantities displayed subtle variations in value between the two different window sizes.  
Figures 36 and 37 display representative examples of each of these two types of signatures.   
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Figure 36.   A signature quantity for which the median value is essentially independent of 
window length 
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Figure 37.   A signature quantity for which the median value varies with window length 
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Given the fact that the standard deviation of the signature quantities had better captured temporal 
variation than the signature quantities over longer intervals, the question arose whether the 
difference between the median values of the one-second signatures and the five-second 
signatures might in fact be more sensitive to coal flow than the values of the signature quantities 
themselves.  Training was repeated once again, this time based on the differences between the 
medians of the five-second signatures and the medians of the one-second signatures.  This 
improved the results dramatically, achieving a maximum r2 value of 0.97.  These results are 
shown in Figure 38 below.  Note that a “perfect” result would place all data points on the 
diagonal.  Referring back to Figure 30, the best results obtained based on the median signatures 
for the 1-second snippets, the level of improvement is quite striking.  Previously, the best neural 
net yielded no information at all about the coal flow for a substantive percentage of the data, 
namely, those cases mapped to the horizontal line at height 6212 in Figure 30.  In contrast, the 
current analysis performs reasonably well on the entire collection of data.   
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Figure 38.   Best neural net prediction of coal flow, based on difference between median of 
one-second signatures and median of five-second signatures 

 
 
 
The results displayed in Figure 38, although not yet of precision instrument quality, gave rise to a 
fair amount of confidence that coal flow information could be extracted with the techniques at 
hand.  It should be noted that the number of cases involved, 31, was still quite small and the 
quantity of data was insufficient to permit a test set.  Still, the fact that the product of the number 
of inputs and the number of hidden nodes was less than 50% of the number of cases precludes 
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the possibility of the neural net simply “memorizing” the data.  These cases included all pipe 
arrangements described Section 4.3. 
 
A closer examination of the signature quantities used as inputs for the optimal neural net 
revealed some unusual trends in the values over time.  For some test runs, the values of the one-
second and five-second signature quantities showed little variation with time.  For other 
signature quantities, there was a distinct trend, with the value either increasing or decreasing over 
time.  Figure 39 below contrasts the autocorrelation signature quantity for two different test runs 
with similar coal flow and air flow.  The top half of the figure illustrates a case in which the 
autocorrelation clearly decreases over time while the bottom half of the figure illustrates a case 
with no such trend.  This distinction could not be correlated with coal flow, air flow, pipe 
arrangement or test date.  It remains unclear whether these trends were related to the dynamics or 
noise.  
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Figure 39.  Trends of autocorrelation over time for two test runs with similar coal flow 
 
 
 
Two possibilities came to mind to explain the improved predictions in using the difference 
between median signatures for the longer and shorter windows over using the median signatures 
for a single window length,.  We already knew that noise has been a major problem with this 
data.  It was possible that subtracting one median from the other effectively subtracts effects of 
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the noise, with the remaining measurement a better reflection of the dynamics of the flow 
system.  A second possibility is that the degree to which a one-second window of data effectively 
populates a state space as well as the five-second window may in some way be dependent on the 
coal flow.  Our view at this point was that the analysis of additional data to be collected at the 
Coal Flow Facility would allow us to determine the extent to which the improvement in the 
analysis was due to reduced noise sensitivity and the extent to which the current algorithm had 
better pinpointed those aspects of the dynamics that vary with coal flow.  If the temporal 
variation turned out to be related to the dynamics, the signature quantities themselves could be 
fine-tuned to better capture the temporal variation of the dynamics to create a more incisive 
algorithm.  However, as we will see in Section 5.3 and Section 6, based on the later data 
collections, it now appears that the improved predictions being discussed here were due to noise 
reduction by way of the subtraction process. 
 

5.3 Ten Noise-free Cases  
 
As noted earlier, major efforts were directed toward noise reduction during the July, 2005, test 
round.  While this effort occupied most of the test period, once the modifications were put into 
effect, ten files of remarkably consistent data were obtained.  Although the quantity of data and 
flow conditions represented were not sufficient to produce an instrumentation calibration, they 
could be analyzed to ensure that we were moving in the right direction. 
 
Both the raw data and power spectral density were examined for each individual case, as had 
been done with the earlier data sets.  The aberrant behaviors evident in the earlier raw data sets 
had vanished.  Further, the power spectral density displayed a level of consistency far beyond 
what had been observed earlier, particularly in the 50-70 kHz frequency range that we had been 
using for band-pass filtering.  Figure 40 below illustrates the power spectral densities of all ten 
cases simultaneously.   
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Figure 40.  Comparison of power spectral densities for the 10 cases of July, 2005 
 
 
 
In examining these ten magnetic-mount cases, we addressed several questions: 
 

• How do the dynamic signatures of the old “good” magnetic-mount cases compare 
to the new? 

• How well does the previous best network perform on the new data?   
• What is the best correlation that can be achieved between the dynamic signatures 

and coal flow when training on the new data? 
 
Any comparison of the dynamic signatures between old and new cases is limited by the reduced 
set of flow conditions covered by the ten cases of July 2005.  A comparison of the flow 
conditions covered is shown in Figure 41 below. 
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Figure 41. Comparison of Flow Conditions between Data of October 2004 and July 2005  
 
 
 
The most dramatic differences between signature quantities in the two sets of data occur for the 
size measures.  As an example, Figure 42 below shows the standard deviation as a function of 
coal flow.  This behavior is representative of the behavior exhibited for all size measures. 
Namely, the standard deviation is larger but more consistent for July data when compared to the 
data collected earlier.  If this increased magnitude was solely due to a difference in amplification, 
there would be more variation, for the July data, in the standard deviation for any fixed coal flow 
level.  In other words, there would be less consistency in the July data rather than more.  The ten 
cases of July suggest that standard deviation may increase with increasing coal flow when 
airflow is held constant.  However, ten cases are not a sufficient number to confirm this 
behavior.  Two sets of cases from the original data, each corresponding to approximately 
constant airflow levels, are circled, one in green and the other in cyan.  These cases demonstrate 
that the original data did not exhibit a similar pattern. 
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Figure 42. Comparison of standard deviation for original data and data of October 2004 and 

July 2005 
 
 
Figure 43 below shows a comparison of a normalized time measure between the two sets of data.  
Although the two sets exhibit a similar order of magnitude for the signature quantity, the July 
data tends to be more consistent.  The legend for Figure 42 is valid for Figure 43 as well. 
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Figure 43. Comparison of AbDoStd for original data and data of October 2004 and July 2005 
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The dynamic signature that had exhibited highest correlation with coal flow to date had been 
based on the difference between the signatures of the 5-second windows of data and those of the 
1-second windows.  The signature quantities employed for this analysis were of the same order 
of magnitude for the old and new data.  However, when the “best” neural net previously 
developed was applied to the new data set, the prediction results were essentially uncorrelated 
with actual coal flow, with a correlation coefficient of only 9.71%.  The results are displayed in 
Figure 44 below.  This outcome was not really surprising considering all the adjustments that had 
been made to the instrumentation over the test period.  A number of these adjustments would 
ensure uniformity of future data collections, whether in the lab or the field.  However, the 
implications of such a poor prediction are that consistency in the installation of the sensor mount 
is critical to the success of a coal-flow prediction instrument. 
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Figure 44.  Comparison of coal flow predictions for original data and data of July 2005 

 
 
 
When neural nets were trained using only the ten cases of July 2005, the result was quite 
different.  Correlation coefficients above 99% were easily obtained, regardless of whether the 
original median signatures for the 1-second windows were used, or the median signatures for the 
5-second windows, or the difference between the signatures of the 5-second windows and the 1-
second windows, or the standard deviation of the signatures of the 1-second windows.  In fact, 
using either the median signatures of the 1-second windows or those of the 5-second signatures, 
correlation coefficients above 99% could be achieved with just one input and one hidden node.  
While it is important to remember that this data was limited in quantity and visited only three 
flow conditions, reducing coal-flow prediction to a sorting problem, these results were highly 
encouraging.  Although any predictions based on such limited data could not achieve statistical 
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significance, this data did display a variation in individual signature-quantity values that 
appeared to depend on the flow conditions.  The flow predictions for the single-input, single-
hidden-node network are shown below in Figure 45. 
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Figure 45.  Prediction of coal flow with 1 input and 1 hidden node 



 71

6.  ANALYSIS OF LAB AND FIELD DATA OF DECEMBER 2005 
 

 
 
At last, the noise issues that had been plaguing the laboratory tests had been resolved.  A total of 
56 data files had been collected in the lab and an additional 73 data files had been collected in 
the field.  Our goal at this stage was as follows: 
 

• Examine all data files and weed out any that showed clear evidence of noise corruption. 
• Apply the Dynamical Instruments techniques to both the laboratory data and the field 

time-series data for the purposes of coal-flow prediction. 
• Evaluate the success of this approach and compare the laboratory and field results to see 

if information gained through the analysis of laboratory data could be used to develop a 
field instrument. 

• Evaluate the possibility of developing a Dynamical Instruments analysis that could 
identify noisy data in real time. 

 

6.1  Weeding out Noisy Cases 
 
The greatest challenge throughout the program had been that of obtaining clean data.  Further, 
our current state of knowledge was that every time the sensor was relocated, the only way to 
guarantee continued reliability of the output quality was by trial and error adjustments to the 
sensor electrical connector.  This situation mandated that the analysis begin with the examination 
of each individual data file to ensure that the prediction algorithm would be based on reliable 
data.  Once the prediction algorithm is developed, the easier problem of automating this 
weeding-out process could be tackled. 
 
Examination of the laboratory data revealed that, once the connector was appropriately 
connected, the data was of high quality, similar to the ten files collected in July.  The raw data of 
the 41 test runs in the first piping configuration was consistent and the power spectrum of any 
one case could be used as a gold standard.  The five laboratory test files collected after 
reconfiguring the pipes, as described in Section 4.4, were also quite good.  Any major sources of 
noise were on the high frequency end and therefore beyond any frequency band that would be 
passed by the digital filtering process.  Figures 46 and 47 below show a representative power 
spectrum for each of the laboratory piping configurations. 
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Figure 46.  Sample power spectrum for lab data collected on December 1, 2005 
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Figure 47.  Sample power spectrum following reconfiguration of pipes on December 2, 2005 
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At first pass, examination of the field data was far less encouraging.  Some of the files displayed 
erratic variations in the amplitude of the raw data, an indication of severe noise.  Figure 48 below 
shows one such case from the data collected at Unit 1, Mill 5.  Such output may have resulted 
from extractive flow sampling being performed concurrently with data collection.  In any case, 
this behavior would obscure the coal flow dynamics, so files displaying such amplitude variation 
were not included in the analysis.  Note that typically the files displayed an amplitude similar to 
that present at the end of this file, i.e. the smallest of the local amplitudes that are present in this 
file. 
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Figure 48.  Example of raw data displaying amplitude variation 
 
 
 
When the power spectra of the field data were examined, it was found that for some of the files, 
the power spectrum essentially dropped off as the frequency increased, with barely a hint of the 
characteristic peak generally present at approximately 40 kHz.  These power spectra tended to be 
unusually spiky, which can be another indication of noise, because fluid flow behaviors cannot 
produce sharp spectral lines.  An example of such behavior is illustrated in Figure 49.  Further 
examination of the entire collection of power spectra for the field data revealed that, while many 
of the power spectra possessed some degree of spikiness, many appeared cleaner, i.e. less spiky, 
in the region between 35 and 50 kHz, and displayed a peak around 40 kHz that was far more 
prominent than that present in the example illustrated in Figure 48.  However, during the analysis 
of earlier data, we had ultimately opted to digitally filter the data to pass a band of 50-70 kHz.  
Fortunately, earlier in the program, as was described in Section 5.2.4, we had analyzed the effect 
of changing the band-pass filter range on the resulting coal flow prediction.  At that time, we had 
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concluded that neither the specific frequency range nor the width of this range had much impact 
on the results, provided that the components of the signal below 20 kHz and above 70 kHz were 
filtered out.  The range 50-70 kHz had been selected earlier by virtue of the fact that, in 
attempting to predict coal flow, the best correlation coefficient achieved for this range in was 
marginally better than for the other frequency bands examined.  Based on this earlier 
comparative analysis, we were confident that filtering the data to pass 35-50 kHz, the range 
where the field data appeared to be less corrupted by noise, would not hinder the analysis in any 
way.  Therefore, the decision was made to filter the data in this way.  For consistency, this 
decision was applied to both the field data and the laboratory data.  The latter appeared to be 
clean throughout the entire 20-70 kHz.  At this point, in our efforts to weed out any noisy field 
cases, we focused exclusively on the power spectra for the field between 35 and 50 kHz.    
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Figure 49.  Sample behavior of power spectrum deemed unacceptable for analysis, collected at 
Unit 1, Mill 4 

 
After eliminating cases with behavior similar to that of Figure 49, we found that some of the 
other cases displayed power spectra that contained the characteristic peak at 40 KHz but with 
relatively low power compared to other field cases.  Some of these reduced-power cases were 
quite spiky while others were not.   Figures 50 and 51 below exhibit these behaviors, with each 
graph displaying a comparison of such a power spectrum to that of other data collected at the 
same site.  It should be noted that Figure 50 compares two data files collected at Unit 1, Mill 2, 
where the sensor was placed upstream of a 90° elbow with a pipe diameter of 13”, while 
Figure 51 compares two data files collected at Unit 2, Mill 5, where the sensor was placed 
downstream of a 30° elbow with a pipe diameter of 14.5”.  Therefore, this reduced power is not 
the result of the piping configuration.  It should also be noted that, for all of the field data files, 
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the power displayed at the 40 kHz peak was significantly lower than the power present at 40 kHz 
for the files collected in the laboratory, where that power was consistently greater than -5 dB.   
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Figure 50.  A comparison of two power spectra for data collected at Unit1, Mill 2 
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Figure 51.  A comparison of two power spectra for data collected at Unit2, Mill 5 
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Admittedly, any decision to select data on the basis of case-by-case examination of raw data and 
power spectrum graphs is somewhat subjective.  However, in order to retain as much objectivity 
as possible, we established certain criteria for the acceptable power spectra.  There appeared to 
be essentially two levels of power at 40 kHz.  We decided to eliminate those cases where the 
power was approximately -30 dB or lower and retained those cases where the power was in the   
-25 to -20 dB range.  We also eliminated cases that were particularly spiky in the 35-50 kHz 
frequency range.  However, for the most part, the latter cases also had reduced power at 40 kHz, 
and so would have been eliminated anyway.  Our overall goal, in establishing this procedure, 
was to balance the fact that more data would enable improved neural net learning and ultimately 
lead to more accurate predictions, with the fact that noisy data would tend to  result in neural-net 
learning more dependant on memorization of exceptions than on pattern discovery, ultimately 
hindering generalization to other data sets.  We will return to the question of establishing more 
objective criterion for weeding out noisy data in Section 6.4.    
 
When all was said and done, only 28 of the 73 files of field data collected could be used for the 
analysis.  Each mill was represented in this reduced data set, with the exception of data for 
Unit 1, Mill 5, which needed to be discarded in its entirety. 
 

6.2 Analysis of Laboratory Data 
 
At this stage, the analysis of laboratory data was restricted to the 56 cases collected during July 
and December 2005.  Too many changes had been made in the instrumentation during the July 
test effort to consider combining the earlier noisy data sets with the recent, high quality data sets.  
A preliminary review of the new data revealed no advantage to using the difference between the 
medians of the 5-second signatures and the medians of the 1-second signatures over simply using 
the medians of the 1-second signatures.  This was anticipated based on the analysis of the 10 
cases from July and was quickly confirmed with the additional data.  In fact, the median 
signatures alone performed far better than that difference.  Additionally, there was no advantage 
to using the 5-second signatures over the 1-second signatures.  Unlike the earlier data sets, the 
latest laboratory tests showed no tendency for the variation of the signature-quantity values over 
time to increase with coal flow.  Looking back, two possible explanations had been offered at the 
time for the higher level of performance of neural nets trained on the difference. The additional 
data from the latest test sets tended to support the noise-reduction hypothesis as the explanation.  
With reduced noise in the actual signal, the effect of subtracting the signatures is to simply damp 
the signal, which provides no benefit whatsoever. 
 
The analysis of the laboratory data had begun with digitally filtering the data to pass the 50-70 
kHz frequency band, as had been done earlier in the project.  A Dynamical Instruments analysis 
based on the filtered data performed reasonably well.  However, following the arrival of the field 
data, the decision was made to adjust the frequency range passed to 35-50 kHz, for the reasons 
specified above.  Surprisingly, in contrast to the analysis of the earlier noisy data sets, this 
adjustment resulted in a clear and immediate improvement in the quality of the results. 
 



 77

The immediate question was how the July signatures compared with the December signatures, 
and how the December signatures for the five cases obtained after the piping reconfiguration 
compared with the signatures from the previous day.  A very encouraging sign was the fact that 
measures of size, such as standard deviation, exhibited the trend of increasing monotonically 
with coal flow, as had been noted in the July data set (see Figure 52 below.)  There were 
variations in the magnitude of these measures that depended on the individual data sets.   Some 
were subtle, as with standard deviation, while others more marked.  Still, other signature 
quantities involving time measures, such as the duration of standard deviation-crossing waves, 
known as SDur, (graphed in Figure 53) clearly distinguished between the three data sets, while 
exhibiting levels that appeared to be independent of coal flow.  Such signature quantities can 
actually be quite important to the accuracy of a neural-net prediction as they facilitate the fine-
tuning of a correlation by linking an individual data set to the flow conditions that it came from.  
For example, with the data at hand, there was no obvious way to adjust the somewhat different 
levels of the standard deviation obtained for the three data sets, having ruled out a simple 
explanation such as a change in the gain.  However, a neural net can learn to recognize and 
accommodate these differences, a task which is made easier by a signature quantity such as 
SDur, in this case, which can be used to point the way. 
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Figure 52.  Standard deviation vs. coal flow 
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Figure 53. SDur vs. coal flow 

 
 
Neural nets were trained to predict coal flow using particle swarm optimization applied to a 
training set consisting of the 46 cases collected in December.  Using just two inputs, standard 
deviation and SDur (graphed in Figures 52 and 53 above), and four hidden nodes, we were able 
to obtain a correlation coefficient of 99.6% between actual coal flow and predicted coal flow for 
the December laboratory data.  Given that the product of the number of inputs (2) and the 
number of hidden nodes (4) is much smaller than the number of data files (46), these results are 
quite good and of the level that had been anticipated at the start of the program.  However, 
applying the network to the laboratory data from July revealed that the results did not generalize 
well.  This was not particularly surprising, as a neural net must learn to identify the types of 
differences that we knew existed between the data sets.  Unfortunately, there simply was not 
enough data to put together a training set of files that was representative of all data sets and still 
have enough cases remaining for a test.  The results discussed above are illustrated in Figure 54 
 
A second attempt, illustrated in Figure 55 also based on particle swarm optimization, used a 
training set consisting of 51cases, namely, the July data and the December data, excluding the 
five cases collected following the piping reconfiguration.  Using 4 hidden nodes, a neural net, 
trained to predict flow based on 3 inputs, achieved a correlation coefficient of 99.3% between 
actual and predicted coal flow, an accuracy level of  +  2.9% of full scale.  Applying this network 
to the five December cases that had been excluded showed mixed success, with prediction 
capabilities being compromised at the high end.  Once again, this was not really surprising as 
many of the signature-quantity values for these five cases were out of the range of values for 
which the neural net had been trained. 
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Figure 54 Sample results, accuracy of +2.2 % of full scale on training set using 2 signature 

quantities trained on December data sets 
 
 

0 2000 4000 6000 8000 10000 12000
0

2000

4000

6000

8000

10000

12000

Actual Coal Flow (lbm/hr)

Pr
ed

ic
te

d 
C

oa
l F

lo
w

 (l
bm

/h
r)

7/28/05and 12/01/05

12/02/05

 
Figure 55 Sample results, accuracy of +  2.9% of scale on training set using 3 signature 

quantities trained on July 28, 2005 and December 1, 2005 data sets 
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In the absence of a suitably large collection of data that would provide for both a representative 
training set and a test set, the best results for which one could reasonably hope would be a neural 
net that performs well on the training set using a suitably small number of inputs and hidden 
nodes, as was found here.  In that case, the neural net’s performance cannot simply be based on 
memorizing or overtraining.  Therefore, the only way that the neural net can attain such a high 
correlation factor is by learning to identify patterns in the data.  While these results cannot 
supply the level of validation that could be achieved with a larger data set, considering the 
quantity of available data, they are very promising. 
 

6.3 Joint Analysis of Laboratory and Field Data 
 
The Dynamical Instruments approach is a data driven method that relies on the neural net 
learning to recognize the flow conditions from the dynamic signature.  The immediate problem 
in expanding the analysis to include the field data as well as the laboratory data was the fact that 
the flow conditions in the field were quite different from those in the lab, with the airflow in the 
field both higher and more varied than in the laboratory.  Additionally, both pipe diameters used 
in the field were larger than the diameter of the pipes used in the laboratory (see Figure 56).  
While one would generally expect that higher airflow levels would be needed for the larger pipes 
used in the field, there was no direct way to translate the dynamics of the small diameter pipe to 
the dynamics for the larger pipe diameter.  Additionally, there were a number of other 
differences between the laboratory and field data, as summarized in Table 11.  Some would have 
affected the actual dynamics of the flow while others would have had an impact on the signal 
being used to identify the flow dynamics.  As a result, no neural net trained exclusively on the 
laboratory data had been given the opportunity to learn the conditions that were visited in the 
field.  Given all of the above, it would have been truly surprising if the networks exhibited in 
Figures 54 and 55 of Section 6.2 performed well when applied to the data collected in the field.  
When these networks were applied to the field data, the results were as anticipated.  The neural 
nets developed to date did not generalize well to the field data.  In fact, there had been no reason 
to expect otherwise.   
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Figure 56.  Summary of flow conditions 

 
 

 
Table 11.  Comparison of Conditions for Laboratory and Field Data 

 
 Laboratory Field 

Pipe Size 12 inch pipe diameter. 13 and 14.5 inch pipe diameters. 

Sensor Position 1 diameter downstream of 90° 
elbow. 

1 diameter downstream of 30° 
elbow or 1 diameter upstream of 
90° elbow. 

Flow Conditions Airflow ~ = 16,000 lbm/hr. Airflow range: approximately 
19,000-30,000 lbm/hr. 

“Actual” Flow           
Measures 

Obtained by weighing the coal, 
high level of accuracy. 

Obtained through extractive 
sampling, accuracy ~ + 6% of 
scale. 

Signal Peak in power spectrum at ~ 40 
kHz is ~ -5 Db. 

Peak in power spectrum at ~ 40 
kHz is ~ -25  to -20 Db. 

Noise   
Extra measures taken to insure 
clean data, little evidence of noise 
in data. 

Noisy environment, noise apparent 
in data. 
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Although the calibration developed from laboratory data could not predict the flow conditions in 
the field (keeping in mind that the data were collected under different conditions), the laboratory 
data would be useful for the analysis of the field data.  As discussed in Section 6.1, after weeding 
out the noisy cases of field data, only 28 field cases remained.  With such a small quantity of 
data, an analysis limited to the field data alone would not be optimal.  A better alternative would 
be to train a neural net with a training set that included laboratory and field data.  In a best-case 
scenario, the neural net would not only learn to distinguish between the data sets but also learn 
the common patterns that existed between the two and adjust those patterns as necessary to the 
individual data sets.  While attempting these goals with a model-based analysis would be quite a 
challenge, with a neural net, the training process amounts to a search for a best fit to the data.  If 
the number of inputs and hidden nodes are suitably small, the best fit must (from an information-
theoretical standpoint) depend on general patterns, whether or not those patterns can be identified 
explicitly by a model. 
 
Once again, the training process was implemented using particle swarm optimization.  The total 
available data comprised 85 cases: 

• 10 from the lab data of July,  
• 41 from the lab data of December with the initial piping configuration 
• 5 more from the lab in December following the reconfiguration, and 
• 28 from the various locations in the field. 

 
Of these, the only cases that could reasonably be withheld without compromising the data 
representation of the different conditions were the 5 cases collected in the lab following 
reconfiguration.  While 5 cases are not a representative test set, at least there would be some 
indication of whether the efforts were pointed in the right direction.  The best correlation 
achieved involved a neural net trained using 4 inputs and 4 hidden nodes and resulted in a 
correlation coefficient of 96.1% between actual and predicted coal flow, providing an instrument 
accuracy of +6.6% of full scale.  The results of this neural net prediction are shown below in 
Figure 57.  These results gain added strength when one considers that under the best of 
circumstances, extractive sampling results in an accuracy level on the order of 5%.  In less than 
ideal circumstances, as were reported by Airflow Sciences for the field data set considered here, 
the accuracy of the extractive sampling is further compromised.  In sum, the accuracy level of 
+6.6% is about as good a result as one could hope to achieve based on extractive sampling.  Note 
that this neural net also performs well for our limited test set of 5 cases, whose predictions are 
also included in Figure 57.  The correlation coefficient for actual and predicted coal flow for the 
set of 5 test cases is comparable at 96.8%.   
 
Further, limiting the number of inputs to 3, and still using 4 hidden nodes, had only a limited 
impact on the correlation coefficient reducing the best fit result to 95.8%.  Even a neural net with 
3 inputs and 3 hidden nodes achieved a correlation coefficient of 94.4%.   
 
These results suggest that an instrument could be developed to accommodate an expanded range 
of conditions and pipe-layouts.  As the availability of data expands so that the data set visits a 
wide range of flow and operating conditions, the level of accuracy should improve.   
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Figure 57.  Coal-flow prediction for combined data set of lab and field data 
 
 
 

6.4 Development of a Noise-Recognition Algorithm 
 
The results obtained using the 35-50 KHz frequency range indicate that a more robust instrument 
can be developed through the use of a lower-frequency sensor than has been used throughout this 
program.  Nonetheless, a coal plant is a noisy environment and it is neither realistic nor practical 
to expect to eliminate every source of noise.  Further, unlike current instrumentation, the 
instrument under development is intended to monitor the coal flow without interruption of 
normal plant operations and with minimal human supervision.  In the long run, the process of 
weeding out noisy data cannot be accomplished by personnel in the field arduously examining 
raw data and power spectrum plots as has been done during the development stage, as we 
discussed in Section 6.2.  Rather, noise recognition must be automated so that the instrument can 
learn to recognize “noise signatures” and warn the user when predictive capabilities of the 
instrument are compromised.  
 
A key aspect of the Dynamical Instruments approach is that an estimate or prediction of the coal 
flow level can be made in real time based on only 30 seconds of data.  Data could be collected on 
a continuous basis, if desired, so that in the space of minutes, a sequence of estimates for the 
flow conditions would be obtained.  Averaging consecutive predictions would serve to increase 
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the accuracy as the noise would be effectively averaged out.  Even with the small quantity of 
data available here, the effects of this averaging process are noticeable.  Many of the data files 
collected by Airflow Sciences were collected consecutively, spaced by intervals of 10-20 
minutes in time.  During these time periods, the flow conditions were nominally constant and the 
“actual” coal flow assigned to such cases was obtained by a single measurement, calculated 
either by weighing the coal in the lab or by extractive sampling in the field.  The number of 
consecutive files available to us ranged from 1-7 files, with the median number of files equal to 
four and the mean nearly four as well.  We identified those flow conditions for which a minimum 
of four relatively noise-free files were collected during a single test run.  We then averaged the 
predictions obtained for a single flow condition.  Figure 58 below shows that, even after 
averaging just 4-7 predictions, we see evidence of improved accuracy, as the average of the 
predictions clusters more closely to the line than many of the individual data points.    
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Figure 58.  Mean predicted coal flow over 4-7 files compared to individual predictions 

 
 
The lesson is not that noise will not have an impact on the accuracy of the prediction, since we 
have seen repeatedly during this program that a poor signal-to-noise ratio is highly problematic.  
However, once a reasonable signal has been obtained, averaging the prediction will tend to be 
forgiving of at least low-level noise.  This statement is not unique to a Dynamical Instruments 
analysis, but rather depends on basic statistical principles.  However, the statement gains strength 
with the Dynamical Instruments approach, due to the fact that many consecutive predictions can 
be determined within a short space of time, and in particular during a time period where the flow 
conditions are stable. 
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While low-level noise can be damped through averaging, high-level noise must be identified so 
that inaccurate predictions are automatically discarded.  In order to approach the problem of 
noise identification, we considered the entire collection of data that had been obtained in the field 
during December 2005, noisy cases and all, along with the recent laboratory data from July and 
December 2005 obtained after all changes to the instrumentation had been finalized.  We 
expected that the neural nets trained on the selected data would not perform well when applied to 
the identifiably noisy data and confirmed that this was in fact the case, as is illustrated in 
Figure 59 below.  Although some of the predictions for the noisy data do appear to be reasonably 
accurate, it is difficult to conclude that there is any significance in that observation, as the entire 
set of files corresponding to the noisy data is mapped to essentially two levels.  Given that the 
noisy data covers a range of flow conditions, the more probable explanation is that on occasion 
one of those two levels “happens” to actually be the correct.   
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Figure 59.  Coal flow predictions for noisy data as compared to those for clean data 

 
 
 
Nonetheless, the development of a noise identification algorithm should be based solely on 
quantifiable observations.  Rather than try to identify those cases that we had classified as noisy 
based on a process that was admittedly somewhat subjective, we attempted to identify those 
cases for which the neural net performed poorly.  This meant that some of the cases that were 
considered to be noisy would actually be considered “good” cases for the present.  The entire 
collection of data was partitioned into two subsets, those for which the predicted coal flow 
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differed from the actual coal flow by less than two standard errors of measurement, i.e. 6.6% of 
scale or 785 lbm/hr (as determined in Section 6.2) and those for which the difference between 
predicted coal flow and actual coal flow was above that threshold.  In fact, there was a clean 
break between the error levels of the two subsets and the “good” cases were mostly well below 
that threshold, as is illustrated in Figure 60.  Despite our view that the occasional accurate 
prediction obtained for the noisy data occurred by chance, this approach ensured that the analysis 
focused directly on the question of whether we could predict those cases for which the coal-flow 
prediction would be inaccurate and depended, in this way, solely on measured quantities. 
 
 

0 2000 4000 6000 8000 10000 12000
0

500

1000

1500

2000

2500

3000

3500

Coal Flow (lbm/hr)

Er
ro

r i
n 

pr
ed

ic
te

d 
C

oa
l F

lo
w

 (l
bm

/h
r)

"good" data
noisy data

threshold

 
Figure 60.  Error levels in coal flow prediction for both clean and noisy data 

 
 
 
In all, of the 45 files that had been rejected as noisy by way of the process described in Section 
6.2, 27 resulted in predictions that were greater than the two standard errors of measurement and 
only 3 of the files selected as non-noisy resulted in such poor predictions.  (Some of the readings 
were sufficiently similar to one another that they cannot be distinguished from one another in 
Figure 60.) 
 
The initial approach to noise identification was similar to that taken for predicting coal flow.  
Particle swarm optimization was applied to the field cases to train a neural net that could 
successfully predict the Boolean output, 0 for the “good” cases and 1 for the noisy cases, where 
in this case “good” was defined by a prediction error less than two standard errors of 
measurement, as discussed above.  As it turned out, constructing such a neural net was 
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accomplished easily.  Using three inputs and three hidden nodes, a neural net was trained that 
produced a correlation coefficient of 94% for actual accuracy classification vs. predicted 
accuracy classification.  Such a correlation coefficient actually produces an extremely accurate 
Boolean classification, as correct classification does not require the neural net to produce exactly 
0 for the “good” cases or exactly 1 for the noisy ones.  All that is needed is for the outputs to be 
“close enough” to their true Boolean values so that the classification can be deduced.  The results 
of this neural net prediction are illustrated below in Figure 61.  In fact, out of 73 field cases, only 
one would be misclassified by this neural net. 
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Figure 61.  Neural net classification of field data as either “good”or noisy 
 
 
 
While this was an excellent starting point, we have found that in contrast to algorithms that 
predict flow rates (numbers in a continuum), classification algorithms tend to be more robust if 
they do not rely on a neural net.  Rather, we use the neural net to locate a collection of signatures 
quantities that will enable the desired classification.  Then, using other techniques, such as 
cluster analysis, an algorithm that functions less as a black box can be developed.  The 
importance of this approach for discrete classification lies in the fact that, when the training set is 
limited and the output is Boolean, it is particularly easy to overtrain a neural net so that it 
effectively memorizes any anomalous cases.  As with a prediction along a continuum, the risks 
of overtraining for a discrete prediction decrease as size of the training set increases.  In other 
words, with enough data, either technique is likely to be robust. 
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Prior to proceeding with a cluster analysis, the above neural net was applied to the lab data.  
Recall that this neural net had been trained exclusively on field data.  Only two cases in the lab 
data had resulted in coal flow predictions whose errors were greater than two standard errors of 
measurement.  The neural net above predicted that all of the December data was “good,” missing 
the two cases that resulted in a larger prediction error, and erroneously predicted that all ten July 
laboratory cases were noisy.  This outcome is best understood in the context of cluster analysis. 
   
Figure 62 below gives an indication of the potential success of cluster analysis for noise 
identification.  The graph contains a scatter plot of the 3-dimensional signature selected during 
particle swarm optimization of the neural net.  The field cases that are colored green are those 
selected for use in the original analysis, based on the original selection process described in 
Section 6.2.  The points in red represent the field data that was rejected during that selection 
process.  The lab data, not included in the neural-net training set is colored blue, the lighter blue 
corresponding to the 10 good cases from July.  Those points that would be classified as noisy 
based on the level of accuracy achieved in the coal flow prediction are circled.  Focusing first on 
field data, the clusters of red and green points demonstrate that the visual classification applied in 
Section 6.2 would be nearly duplicated by a cluster analysis of dynamic signatures.  Of the 73 
field cases, it appears that approximately five might change their classification through a 
clustering routine.  Considering the subjective nature of the original procedure used to identify 
noise and the fuzzy nature of the acceptance boundary, this is extremely encouraging.  The field 
cases whose coal flow was well-predicted despite the original identification of noise (red, but not 
circled in black) would likely be classified as noisy in a cluster analysis, reinforcing our earlier 
conjecture, based on Figure 59, that the accuracy did not result from true prediction capabilities 
for this particular set.  Three field cases that had originally been selected by us as “good” appear 
based on Figure 62 to have been misclassified.  One of those resulted in a poor prediction of coal 
flow.  The other two seem to lie near the cases that we suspect were predicted well by chance.  
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Figure 62. Scatter plot representing 3-dimensional dynamic signatures used to identify noise 

 
 
For the laboratory data, we see that a cluster analysis based on these signature quantities would 
do well overall, but again miss the two cases that were misclassified by the neural net.  As for the 
10 July cases, it is clear that they did in fact fall in a region of space not visited by the training 
set of the neural net, which explains the poor performance of the neural net on this set.  Visually, 
these cases appear closer to the “good” set, but a more dependable analysis, whether depending 
on clusters or neural nets, would include sufficient data to cover all conditions during the 
learning process.  In fact, the location of the July data points serves to illustrate a fact that has 
been emphasized throughout this report.  Specifically, during the training phase, the neural net 
learns the classification scheme.  However, only regions that are visited by the training set can be 
expected to be well-predicted by the resulting neural net.   
 
A key point in addressing the feasibility of designing an effective noise-identification algorithm 
for the instrument under development is that the algorithm must perform well with regards to 
eliminating noisy data, but need not perform nearly as well in evaluation of “good” data.  In 
other words, false positives are far less costly than false negatives, where positive indicates 
classification as noisy.  Data can be collected on a near-continuous basis, so if some good data is 
rejected, there will be no shortage of good data to serve the same purpose.  Even the occasional 
false negative, i.e. acceptance of noisy data as clean, will not be particularly problematic after the 
implementation of the averaging procedure discussed at the start of this section.  In short, based 
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on the results of this section, there is every reason to believe that a robust, real-time instrument 
can be developed that will perform the two-fold process of eliminating noisy data and predicting 
coal flow on the remaining data. 
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7.  COMMERCIALIZATION PLAN 
 
 
 
Any discussion of the commercial development of an instrument based on the Dynamical 
Instruments technique must take into account its inherently empirical nature.  Since the technique 
works by learning to relate observed system dynamics to the flow conditions that produced them, 
it is only as applicable, useful, or accurate as the database on which the analysis is developed.  
Given this basic starting point, plus the very broad range of conditions encountered in various 
power plants, two essentially opposite approaches to commercialization can be identified: 
 

• Develop special-purpose instruments for individual power plants.  This would involve 
installing an instrument and performing an intensive in-place calibration.  Through 
experience with data collected at a number of such installations, the amount of in-place 
calibration required would gradually decrease, hopefully ultimately to be eliminated. 

• Develop a general-purpose instrument that can be applied in a broad range of power 
plants.  This would require developing an extensive database of flow data for a broad 
range of conditions, including varying pipe sizes, piping configurations and flow ranges. 

 
In principle, either of these approaches should be achievable.  The first approach could be 
pursued with any interested utility, requiring only flexibility on the part of the utility operators to 
permit testing the plant over the full range of coal and air flows likely to be encountered in 
operation.  The calibration data would be obtained using extractive sampling, which probably 
represents the largest component of the instrument cost.  In return, the utility would be 
essentially assured of obtaining an on-line instrument that is at least as accurate as the extractive 
sampling that would be used to calibrate it. 
 
On the other hand, coal plant balancing efforts are the stock in trade for Airflow Sciences and 
several other companies, offering the opportunity to obtain an extremely large quantity of 
calibration data for a broad variety of installation conditions.  The marginal labor required to 
collect Dynamical Instruments data in the course of a plant balancing effort would be quite 
minimal, especially with a well-designed portable instrument package.  Our experience in this 
program indicates that a magnetic sensor mount provides a handy and accurate means of 
sampling the flow dynamics, so developing such a portable instrument appears completely 
straightforward.  As the database grows with each power plant balancing effort, the calibration 
analysis would be performed on an ongoing basis, permitting the calibration of the portable 
instrument system to be upgraded over time.  Thus, the portable instrument would become 
applicable to more and more operating conditions and, we believe, more accurate as well.  Thus, 
the personnel performing the plant balancing efforts could gradually gain confidence in the 
portable instrument, so that ultimately the extractive sampling involved in plant balancing would 
be obviated. 
 
Between these two approaches to the market, the first appears more attractive at the outset, 
because it would be expected to produce an income stream that would, at least partly, offset the 
cost of instrument development.  To pursue the latter would require deferring the income stream, 
and in fact would involve some cost to cover the data collection in plant balancing efforts.  By 
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the same token, the latter approach would also be expected to produce a generally applicable 
instrument in a shorter period of time, increasing the market and likely profit margin. 
 
Ultimately, the market would decide which approach was more practical.  Both approaches were 
discussed in meetings with EPRI’s Pulverizer Interest Group, the EPRI activity that funded the 
Coal Flow Test Facility.  Although it was agreed that the special-purpose instrument approach 
would be workable for a sufficiently interested utility, none could think of a utility that would be 
willing to undergo the intensive calibration process.  Considering that this group of utilities is 
among the strongest boosters of coal flow measurement in the US power industry, this is a strong 
statement about the efficacy of this approach. 
 
The group was more interested in the development of the general-purpose instrument, even if it 
delayed the instrument’s commercial availability.  Presumably, there was an element of letting 
someone else pay for the detailed calibration effort in this viewpoint, but their interest in the 
technique appears genuine:  this group is more likely to purchase such systems for their plants 
than most other utilities.  Many found it particularly attractive to consider that an instrument 
could be installed with no need for in-place calibration, although this was viewed somewhat 
skeptically:  the currently available commercial instruments typically require some baseline 
calibration, and the utilities simply do not believe that any is accurate “out of the box”.  Thus, in 
marketing an instrument, being open to the challenge of an in-place calibration or demonstration 
would be viewed positively by most utilities.  Success of such demonstrations would improve the 
customer perception of the instrument’s quality over time, solidifying the market position of the 
instrument. 
 
The process of developing a commercial instrument in this approach would involve the 
following steps: 
 

• Identify available accelerometers that would be suitable for use in a commercial 
instrument.  This involves considerations of performance characteristics, packaging, and 
cost, with the first two criteria weighted more heavily.  Since the part cost of the 
Dynamical Instruments coal flowmeter should be small compared with that of other 
commercial offerings, sensor cost is relatively unimportant.  The ideal outcome of this 
effort would be the identification of essentially interchangeable sensors from multiple 
vendors, so that the failure of any single vendor to perform would not limit availability. 

• Develop a portable instrument package that can be used both as a field data collection 
platform and prototype operational instrument.  In the program effort, we found that the 
package used in the lab and field testing was workable, but inconvenient.  The computer 
was bulky, and the signal conditioning components needed to be connected on-site.  For a 
practical field test program, all components should be arranged in a single, compact and 
convenient package with all wiring pre-connected.  This could be accomplished with the 
use of a laptop computer, PC-card based data acquisition, and an external signal 
conditioning module.  These can all be housed in a suitcase-sized package, so that setting 
up for a test would be quick and simple.  For software, it would be desirable to use a 
flexible data acquisition and analysis program that permits collecting raw data, 
calculating dynamic signatures, and implementing and updating instrument calibrations.  
It appears that the Matlab programming environment, from the MathWorks, would be a 
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good choice for this, especially since we perform all of our instrument analysis with 
Matlab.  Overall, the development of this instrument package appears straightforward. 

• If possible, perform instrument shake-out testing using the Coal Flow Test Facility to 
develop baseline data that can be compared to the data collected in the program effort, 
and to confirm noise free operation.  This testing could also compare the dynamics found 
with magnetic and permanent mounts (now with a transducer immune to the grounding 
problem of the previous transducer).  From this testing, and/or the data collected in the 
program effort, develop and implement a preliminary instrument calibration, including a 
noise-identification algorithm to confirm to the operator the quality of the data being 
collected. 

• Collect large quantities of data in plant balancing efforts.  This effort would become a 
routine part of the plant balancing effort, providing substantial quantities of data for new 
conditions at little cost.  The prediction provided by the current instrument calibration 
would hopefully assist in the plant balancing effort, with this assistance hopefully 
improving as the effort continues. 

• After each plant balancing effort, the data would be downloaded to permanent storage 
media and sent to Foster-Miller for analysis.  This analysis would include comparing the 
new data to the existing instrument calibration and the creation of a new calibration that 
includes the new data in its basis.  The resulting calibration would then be sent to 
implement in the field test system. 

 
As the calibration of the field test system expands to include a broad range of plant 
configurations and operating conditions, the potential rapidly arises to sell instruments that can 
be installed permanently in operating plants.  In many cases, the plants that contract for 
balancing efforts would be interested in permanently installed instruments if an accurate, 
inexpensive system were available, so the management of each plant will be approached about 
their interest in purchasing a system.  The sale, installation, and checkout of an instrument 
system would be pursued wherever this interest is found. 
 
The recommended route to commercialization thus appears to be through continued support by 
DoE and EPRI.  This provides an opportunity to develop both portable and permanently installed 
instrument systems.  With EPRI support and Airflow Sciences involvement, the portable version 
would add to the software data base during their plant balancing work with the aim of providing 
them with a much quicker and recordable balancing process.  With DoE support, there would be 
opportunities to incorporate prototype instruments in larger DoE supported programs in 
advanced powerplant and gasification projects, where the Dynamical Instrument would be used 
in control loops and diagnostic systems. 
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8.  CONCLUSIONS 
 

 
At the conclusion of the program effort, we are ready to move forward and develop a package 
that can serve as a prototype commercial instrument.  The key challenge throughout the program 
has been elimination of noise contamination during data collection.  However, the source of the 
noise has now been linked to electrical grounding issues specific to the particular high-frequency 
transducer used in this program.  Fortunately, we have demonstrated, as discussed in Section 6, 
that a lower-frequency transducer will not limit the analysis in any way.  Substituting a lower-
frequency transducer will do more than solve the grounding problems.  Many lower-frequency 
transducers are both less costly and more robust.  Both these qualities will serve the instrument 
well.  Further, as there are many more low-frequency transducers from which to choose, there 
will be more options available in selecting a transducer that is well suited to the final product. 
 
The only real challenge in analyzing the data during this program has been the development of 
techniques to compensate for the noise that was present in the data.  Once the noise was reduced 
to an acceptable level, correlation results between predicted and actual coal flow were as good as 
had been expected at the start of the program.  However, the data that has been collected during 
this program needs to be supplemented in order to fully develop an instrument that can be used 
in the field.   
 
It is our view that the best way forward is to develop a prototype that can be readily installed 
temporarily in interested plants and to then perform calibration based on extractive sampling.  As 
the data collection expands to include a wide range of flow conditions, pipe sizes and piping 
configurations, the calibration will be improved and the range of applicability will be expanded.  
We will continue to gain additional experience by monitoring a greater number of plants until the 
algorithm has been fully developed and fine-tuned to the point where no in-plant calibration is 
needed. 
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APPENDIX:  DESCRIPTION OF DYNAMICAL INSTRUMENTS 
SIGNATURE QUANTITIES 

 
 
The following discussion describes the several classes of measures used to characterize the 
evolution of a dynamic signature, followed by a description of each of the specific signature 
quantities.  In the following discussion, terms in parentheses refer to the short-hand notation used 
to denote the different measures. 
 

A.1  Characterization of Harmonic Power 
 
As mentioned above, two separate sets of signature quantities are calculated for each dataset, one 
calculated for the raw data and the other for a new vector that characterizes the passage of 
harmonic power in the raw data.  The single most common measure of harmonic power for 
dynamic data is the standard deviation of the data.  It is more correct to say that the variance of 
the signal (the square of standard deviation) characterizes power, but the standard deviation is 
proportional to the amplitude of the signal.  To characterize the passage of harmonic power, a 
new vector of moving standard deviations of the raw data is created (illustrated in Figure A1).  
This vector is constructed by calculating the standard deviation of a block of 20 successive 
readings.  The raw data block is then updated by dropping the “oldest” value from one end of the 
block and adding a “new” value to the other end of the block, and the process repeated until the 
moving standard deviation is computed for the entire raw data vector.  This produces a standard 
deviation vector that is 19 readings shorter than the original raw data vector.  This procedure can 
be performed very quickly when implemented in an efficient calculation.  In shorthand notation, 
signature quantities calculated for this vector are indicated by prefixing the letters sd to the 
signature quantity name.  The signature quantities calculated on the raw data lack this prefix. 
 
Whenever one devises a given measure for dynamic data, one can expect to find an application 
where the measure falls short.  A limitation of the moving standard deviation vector is that it has 
a single time scale (20 readings) for characterizing the power in the signal.  For very rapidly 
varying signals, such a short window is quite reasonable, because it can capture several periods 
of the signal variation.  For a slowly varying signal, such a window could prove to be a fraction 
of a period, and thus will under-report the amplitude of the variation.  Numerical experiments 
have demonstrated that, for data that are rapidly varying, the results of Dynamical Instruments 
analysis are insensitive to the standard deviation window size:  although the signature quantity 
values change with window size, the correlation to the system conditions of interest proves to be 
equivalent.  Consequently, the data sampling rate should be selected to ensure that the signal 
varies significantly, on average, from reading to reading.  In particular, this means that the data 
should not be greatly over-sampled, producing a very smooth variation from one reading to the 
next.  By and large, a signal that is sampled at roughly twice the maximum frequency of interest 
(or less) has proven to be suitable.  For the current program, this requirement was met by 
collecting the data at a sampling rate of 300 KHz and lowpass filtering to pass frequencies below 
100 KHz. 
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Figure A1.  Generation of moving standard deviation vector 
 
 
 

A.2  Amplitude Measures 
Average (Avg) – This is the simplest of all amplitude measures.  For a zero-centered signal such 
as those provided by accelerometers and acoustic emission detectors, the average value should 
nominally be zero.  Thus, this measure is not used to characterize the raw data of such signals. 
However, when the passage of harmonic power is characterized, the average value is significant, 
so the average is used as one measure for the standard deviation vector.  This is the only 
amplitude measure that was calculated for the standard deviation vector and not for the raw data. 
 
Standard Deviation (StDev) - The simplest measure of amplitude of an irregular signal is the 
standard deviation, which reflects the harmonic power of the signal.  In addition, in nonlinear 
dynamics, the radius of an attractor is normally taken to be the standard deviation.  Thus, this 
measure characterizes the size of the attractor. 
 
Absolute Deviation (AbsDev) – The standard deviation weighs large variations in the signal 
more strongly than small variations, so we identified this measure to weigh all events evenly.  
The absolute deviation is the average absolute value difference between each value in the time 
series and the average value of the time series. 
 
RMS Difference (RMSDif) – This measure is the RMS difference in sequential readings, a 
measure of the small-scale “texture” of the data. 
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Average Difference (AvgDif) – The RMS difference weighs larger differences more strongly 
than smaller differences, while this measure weighs all differences evenly.  The average 
difference is the average absolute value difference between sequential values in the time series. 
 
Since the average value is not used with the raw data, applying the preceding measures to the 
raw signal and standard deviation vector accounts for 9 of the 57 signature quantities. 
 

A.3  Integral Measures 
 
This group of measures characterizes the size of large events by summing the “height” of each 
value in the time series above a reference line.  Two different reference lines are used for these 
signature quantities:  the average value of the data, and the average plus the standard deviation.   
 
Size of Duration Events Above the Average Line (ADuSize) – The average sum of each value 
in a duration event minus the average value.  A duration event occurs between an upward 
crossing of the average line and the next downward crossing, as illustrated in Figure A2, below.  
Thus, this measure is an estimate of the integral of this event. 
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Figure A2.  Size of duration events for average-crossing waves 
 
 
RMS Size of Duration Events Above the Average Line (ADRMSiz) – Similar to the previous 
measure, but the RMS of the event sizes.  This measure weighs larger events more strongly than 
smaller events.  Together with the previous measure, this measure offers information about the 
distribution of the sizes of events. 
 
Size of Duration Events Above the Average-Plus-Standard-Deviation Line (SDuSize) – 
Similar to ADuSize, but considering a higher “bar”, and thus examining only the largest events 
in the data. 
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RMS Size of Duration Events Above the Average-Plus-Standard-Deviation Line 
(SDRMSiz) – The RMS version of the above measure, weighing the largest events more heavily 
than smaller events. 
 
Used in both the raw data and standard deviation vectors, the preceding measures comprise 8 of 
the total of 57 measures. 
 

A.4  Normalized Amplitude Measures 
 
Each of the measures above, including the amplitude and integral measures, is directly sensitive 
to the amplitude of the signal.  Thus, if one sensor is 10% more sensitive than another, with 
everything else held steady, the measures above will be 10% larger for that sensor.  In an attempt 
to reduce or eliminate the sensitivity of the results to sensor sensitivity, additional measures were 
created by computing the ratio of each amplitude measure to the average and/or standard 
deviation of the corresponding vector.  Thus, new signature quantities were produced that 
comprise AbsDev/StDev, AvgDif/Avg, etc.  In principle, one might expect that only one 
normalization parameter would prove to be necessary (e.g., dividing by average or standard 
deviation, but not both).  However, it often occurs that one or the other normalization parameter 
is strongly favored for different amplitude-sensitive measures, so both sets are retained.  In the 
shorthand notation, values normalized by dividing by average were signified by appending oAve 
to the signature quantity descriptor, and those normalize by dividing by standard deviation by 
appending oStd.   Of course, since the average value of the raw data is a meaningless parameter, 
the signature quantities calculated for the raw data used only the standard deviation as the 
normalization parameter.  This produced a total of 22 new measures (7 for the raw data and 15 
for the standard deviation vector). 
 

A.5  Time Measures 
 
Of course, the amplitude of the signal is rendered totally irrelevant in signature quantities that are 
measures of time.  The following measures were developed to characterize the actual time 
evolution of the signal. 
 
Characteristic Autocorrelation Time (Auto) – This is the time scale during which the signal 
loses linear correlation, and has been suggested as a measure of the rate of mixing in a process.  
The autocorrelation cxx(τ) is the integral over all time of the signal x(t) times a time-delayed 
version of the same signal, x(t-τ).  For no time delay (τ=0), the autocorrelation thus equals Σx2.  
It turns out that, for long time delays (large τ), the autocorrelation of aperiodic signals 
approaches 2

xn , where n is the number of readings in the record.  As shown in Figure A3, the 
characteristic autocorrelation time is the intercept of a line at the initial downward slope of the 
autocorrelation curve with the runout value.  Measured in sample intervals, it can be calculated 
using  
 

1
2

22

+Σ−Σ
−Σ

=Δ
ii

auto xxx
xnxt



 100

 
 
The last term in the denominator is the sum of the product of each value with it immediate 
successor in the time series. 
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Figure A3.  Characteristic autocorrelation time 
 
 
Period of Average-Crossing Waves (APd) – This is the average time between positive 
crossings of the average line, as illustrated in Figure A4, and characterizes the time period for 
first-order signal variation. 
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Figure A4.   Measures of period and duration of average-crossing waves 
 
 
RMS Period of Average-Crossing Waves (ARMSPd) – This is the RMS value of the 
preceding measure, and emphasizes the influence of waves with longer periods. 
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Duration of Average-Crossing Waves (ADur) – This is the average number of readings that 
occur between an upward and downward crossing of the average line.  It is a measure similar to 
APd, but is generally not half its value. 
 
RMS Duration of Average-Crossing Waves (ARMSDur) – This is the RMS value of the 
preceding measure, and emphasizes the influence of large-duration waves. 
 
Period of Standard Deviation-Crossing Waves (SPd) – This measure is similar to the period 
of average-crossing waves (APd), but in this case the “bar” is raised somewhat to look at the 
period of waves that cross the average plus standard deviation (Figure A5).  This measure 
characterizes the timing of large-scale waves in the data. 
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Figure A5.   Period and duration of standard deviation-crossing waves 
 
 
RMS Period of Standard Deviation-Crossing Waves (SRMSPd) – The RMS value of the 
previous measure, again emphasizing the influence of the largest waves. 
 
Duration of Standard Deviation-Crossing Waves (SDur) – The average duration of these 
large waves. 
 
RMS Duration of Standard Deviation-Crossing Waves (SDur) – The RMS value of the 
preceding measure, again emphasizing the influence of the largest waves. 
 
These time measures were applied to both the raw data and standard deviation vector, 
comprising 18 of the 57 signature quantities. 
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A.6  Summary of Signature Quantities 
 
Table A1 below summarizes the signature quantities described in the preceding sections.  This 
set of quantities has proven surprisingly capable at relating the dynamics of sensor signals to the 
system conditions in numerous Dynamical Instruments development programs. 
 
 

Table A1.  Summary of Dynamic Signature Quantities 

 
 

Sig Qty 
Name 

Raw Data or  
Standard Deviation

Amplitude Integral Normalized Time

StDev Raw data X    
AbsDev Raw data X    

AbDoStD Raw data X  X  
RMSDif Raw data X    
RDioStD Raw data X  X  
AvgDif Raw data X    

AvDoStD Raw data X  X  
Auto Raw data    X 
APd Raw data    X 

ARMSPd Raw data    X 
ADur Raw data    X 

ARMSDur Raw data    X 
ADuSize Raw data  X   
ADSoStD Raw data  X X  
ADRMSiz Raw data  X   
ARSoStD Raw data  X X  

SPd Raw data    X 
SRMSPd Raw data    X 

SDur Raw data    X 
SRMSDur Raw data    X 
SDuSize Raw data  X   
SDSoStD Raw data  X X  
SDRMSiz Raw data  X   
SRSoStD Raw data  X X  

sdAvg Std dev X    
sdStDev Std dev X    

sdSDoAve Std dev X  X  
sdAbsDev Std dev X    

sdAbDoAve Std dev X  X  
sdAbDoStD Std dev X  X  
sdRMSDif Std dev X    
sdRDioAve Std dev X  X  
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Sig Qty 
Name 

Raw Data or  
Standard Deviation

Amplitude Integral Normalized Time

sdRDioStD Std dev X  X  
sdAvgDif Std dev X    

sdAvDoAve Std dev X  X  
sdAvDoStD Std dev X  X  

sdAuto Std dev    X 
sdAPd Std dev    X 

sdARMSPd Std dev    X 
sdADur Std dev    X 

sdARMSDur Std dev    X 
sdADuSize Std dev  X   
sdADSoAve Std dev  X X  
sdADSoStd Std dev  X X  
sdADRMSiz Std dev  X   
sdARSoAve Std dev  X X  
sdARSoStD Std dev  X X  

sdSPd Std dev    X 
sdSRMSPd Std dev    X 

sdSDur Std dev    X 
sdSRMSDur Std dev    X 
sdSDuSize Std dev  X   
sdSDSoAve Std dev  X X  
sdSDSoStD Std dev  X X  
sdSDRMSiz Std dev  X   
sdSRSoAve Std dev  X X  
sdSRSoStD Std dev  X X  
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