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Abstract
A warm, relativistic fluid theory of a nonequilibrium, collisionless plasma is developed to analyze
nonlinear plasma waves excited by intense drive beams. The maximum amplitude and wavelength
are calculated for nonrelativistic plasma temperatures and arbitrary plasma wave phase velocities.
The maximum amplitude is shown to increase in the presence of a laser field. These results set a

limit to the achievable gradient in plasma-based accelerators.
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Of fundamental interest in plasma physics are highly-nonlinear electron plasma waves,
such as those produced in the laboratory via intense laser and beam plasma interactions [1].
Recent breakthrough results [2] on plasma-based accelerators have shown the production
of high-quality electron bunches using ultra-high gradient (~ 100 GV /m, several orders of
magnitude beyond conventional technology) nonlinear plasma waves driven by intense laser
pulses. In these experiments, the accelerated electrons were self-trapped from the back-
ground plasma through a process referred to as wavebreaking. A basic quantity of interest
in plasma physics, and especially relevant to plasma accelerators, is the maximum plasma
wave amplitude that is achievable prior to wavebreaking and the onset of self-trapping.
Prior calculations [3-7] of the wavebreaking limit, however, are not valid in the regime of
laser-plasma accelerator experiments.

In this Letter, a general result for the maximum field amplitude of a nonlinear electron
plasma wave of arbitrary phase velocity in a warm plasma is derived from first principles.
This result is valid in all regimes of interest, including that of short-pulse laser-plasma
interactions, and reduce to the previous wavebreaking calculations [3-7] in the appropriate
limits. The effects of an intense laser field are also included, as in the self-modulated regime
of the laser wakefield accelerator [8-10], which is shown to increase the maximum field
amplitude. The maximum field amplitude derived in this Letter sets the fundamental limit
to the achievable gradient in plasma-based accelerators.

Using the cold, relativistic fluid equations in one-dimension (1D), the maximum electric
field amplitude of a plasma wave was found [3] to be Ewp = v/2(7, — 1)/2Ey, which is
referred to as the cold relativistic wavebreaking field. Here 72 = 1/(1—32) is the relativistic
Lorentz factor, v, = ¢f3, is the plasma wave phase velocity, and Ey = cmw,/e is referred to
as the nonrelativistic wavebreaking field, with w, = (47nge?/m)'/? the plasma frequency and
no the ambient electron plasma density. For a laser driven plasma wave, v,, is approximately
the group velocity of the laser pulse, v, ~ wy/wy, where wy is the laser frequency. For a
charged particle beam driver, v, is approximately the particle beam velocity. When the
plasma wave field approaches Ewg, the cold plasma density becomes singular n — oo [4].
This singularity indicates a breakdown of the cold fluid equations.

Finite temperature fluid theories were applied to calculate the maximum amplitudes in
the limits of nonrelativistic (v, >~ 1) [5] and ultra-relativistic (3, = 1) [6, 7] plasma waves.

In the 8, = 1 limit, the maximum field was found [6, 7] to be Ey, = 074 py,(7,, 0) Ey, where



0 is the initial plasma temperature normalized to mc?/kg, with kg the Boltzmann constant,
and pun(7,,0) ~ 1 is a slowly-varying function of ., and 6. This expression for Ey, is valid
for 73091/ 2> 1, e.g., for an ultra-relativistic (3, = 1) particle beam driver. For laser-driven
plasma waves, however, typically 7, ~ 10-100 and 6mc* ~ 10 eV [11, 12]. Therefore, a
laser-plasma accelerator typically satisfies 73091/ 2 < 1, and, hence, the above expression for
Eiy, does not apply. In addition, Fy, does not reduce to the nonrelativistic result [5] or the
cold result Ewg.

Standard warm relativistic fluid theories derived for collisionally-dominated plasmas (e.g.,
Ref. [13]) are inadequate for describing short-pulse laser-plasma interactions. Short-pulse
laser-plasma interactions access a collisionless regime that is not in local thermodynamical
equilibrium, in which the plasma electrons experience relativistic motion while the tem-
perature (electron momentum spread) remains small. To model short-pulse laser-plasma

interactions, we start with the covariant form of the collisionless Boltzmann equation [13],

P'Ouf = [(e/mc*)F*p,] Of [9p™ =0, (1)

where f(x,p,t) is the phase space density, x* = (ct,x), p* = (7v,73) is the normalized par-
ticle four-momentum, o* = (0, —V), and F* = gt A” — 9" A" is the electromagnetic field-
strength tensor, with A* = (®, A) the four-vector potential and ¢g"* = diag(1, —1, -1, —1)
the space-time metric tensor.

We consider the following centered moments of the phase-space distribution [14-16]:
O = [(pt—ur)(p¥ —u”) fdQ and Q¥ = [(p® —u®)(p"—ut)(p” —u”) fdQ, where u* = J*/h
is the normalized hydrodynamic four-momentum, i = | fd2 the invariant particle density,
Jt = [ptfdQ the fluid four-current, and dQ = d*p/p° the Lorentz invariant momentum-

space volume. Equation (1) implies the exact conservation laws

Ou(hut) =0, (2)
hu'd,u” + 0,0" = (—e/mc*) F**hu,, (3)
hu®0d, (O /h) + @7 ut + OF**0 u” + 0,Q"
= (—e/mc?) (F"04 + F'0y)
which correspond to the continuity equation, energy-momentum conservation, and energy-

momentum flux conservation, respectively. The inhomogeneous Maxwell equations are ex-

pressed as 0,F" = 4w )" qsJY, where the sum is over species with ¢ the charge.
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We will assume a “warm” plasma such that the distribution f has a small momentum
spread about its mean [14-17]. We make no additional assumptions concerning the specific
form of f. This warm assumption will allow the hierarchy of moment equations to be
truncated. We define the invariant measure of thermal spread ¢ = —©%/h = u'u, — 1,
where |€] < 1is assumed, such that 3 = €*(14€?)~! ~ €? is the normalized thermal velocity
spread (temperature). We will assume that in the local plasma rest frame ©*/h = O (€?)
and Q" /h = O (€*). Truncation of the moment hierarchy to order O(e?) is achieved by
neglecting the third-order centered moment Q** in the fluid equations. Note that € is a
Lorentz invariant and €2 < 1 is satisfied if the local rest frame temperature of the plasma is
nonrelativistic. We consider the ratio A = n,/h [14, 16], where n, = (J*.J,)/? is the proper
density, and introduce (AI', \['w) = u* = J*/h, where ufu, = N and I'"'? = (1 — w - w).
Using the contraction of the energy-momentum stress tensor we find A2 = 1 — On/h =1+ €2,
such that A = (1 — 82)71/2 is identified as the Lorentz factor associated with the thermal
fluctuations.

Consider a plasma wave driven by a laser pulse propagating in the z-direction with
transverse normalized vector potential a; = eA; /mc? (Coulomb gauge). We consider 1D
motion such that f = g(z, p.,#)6*(p.L —a ) and the transverse component of Eq. (3) reduces
to ut0,(A['w; —a,) = 0. For an initially quiescent (w = 0) plasma, \N[w, = a,, ie,
w; = a; (1 — w242 + )12 with v, = (1 + a?)Y2. This is the generalization of
canonical transverse fluid momentum conservation including thermal effects.

The contraction g,, Q" = 0 [to order O(e?)] implies O = w, O and \* =1+ (1 —
w?)©" /h. Equations (2), (3), and (4) can be combined to yield

w9, (°r?e') = 0. (5)

For an initially quiescent plasma of density ng, ©' /ng = I'*(h/ng)36, where 0 is the initial
temperature normalized to mc?/kg. Equation (5) is equivalent to a statement of entropy
conservation.

Next, we assume the quasi-static approximation, such that the plasma wave driver (e.g.,
laser field or particle beam) and fluid quantities are functions only of £ = 2 — B,ct. The

continuity equation Eq. (2) becomes

Oe [RAT (8, — w.)] = 0, (6)



or, for an initially quiescent plasma of density ng, h = no[AI'(1 -3 Lw,)]~t. The components

of Eq. (3) can be combined to yield [using O = w,0" and Eq. (6)]
O [(h)\QFQ + @11) (1—Bw,)(1— ﬁ;lwz)} = ny0g P, (7)

where ¢ = e®/mc? is the normalized space-charge potential of the plasma wave and (AI')? =
(72 +€%)/(1—w?). Using Egs. (5) and (6), Eq. (7) can be written as the following longitudinal

constant of motion (conservation of energy in the wave frame):

1 - Byw, 3, (1 Bow.) (1 —w?)/?
N

The third term on the right-hand side of Eq. (8) is due to the energy in the thermal fluctu-

)
“a—e

—0. (8)

ations (pressure).

The plasma wave potential is determined by the Poisson equation ¢*07¢ = w2[J%/ng —
1 + ny/ng], where ny/ng is the normalized density of a beam driver, J%/ng = Alh/ny =
B,/ (B, —w,), and the ions are assumed stationary. The Poisson equation can be combined
with Eq. (8) to yield the evolution equation for the axial plasma fluid velocity w,.

We consider the cases of plasma wave excitation behind a beam driver where n,(§) =
0, behind a short laser driver (e.g., the standard laser wakefield regime) where v, = 1,
and excitation under a long laser pulse (e.g., the self-modulated laser wakefield regime)
where 77 *|(c/w,)0ev1| < 1 and v, ~ constant. Using Eq. (8), the first integral of the
Poisson equation is (assuming n, = 0 and 7, = constant) E? = YL (XO - X+ xo_l — X_l) +
[F(x0) = F(X)]0/71, where x* = (1 — w.)/(1 +w.), E = E/Ey = —(c/w,)d(w),
682X (1 —x1) — Bo(x* —2x*/3 + 1]
=B = B

and o corresponds to the momentum that produces the extremum of ¢ [i.e., E(xo) = 0].

F(x) ) (9)

Solving d:¢ = 0 (i.e., a quartic equation for x3), yields the momentum which produces

the extremum of ¢,

1
Xo =g (1= B, + 591°(1+ /630)_2{3@209 + B, (48673 /72 + 9526%) "2
1/2
+ 16052 (1072 /72 + 3620) + 268, (272 /72 + 3620) (4862 /% + 9526%) " 2} } (10)

Equation (10) determines the fluid momentum at the maximum compression of the plasma.

In the cold limit (§ = 0), x5 = 72(1 — (,)* and the extremum of the potential occurs when
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the axial fluid velocity equals the phase velocity of the wave, i.e., w, = 3,. In the ultra-high
phase velocity limit (8, = 1), x2 = 3v,%0/2.

Using the Poisson equation, the phase where F is maximum (0cE = 0) occurs at the

momentum y = 1 (i.e., w, = 0). Evaluating E? at y = 1 vields

Bl =7 (o +x0" = 2) + [F(xo0) — 1]6/71, (11)

where F'(xo) is given by Egs. (9) and (10). Equation (11) is the main result of this Letter,
and determines the maximum field amplitude FE,,.. of a nonlinear plasma wave with phase
velocity 3, excited in a plasma with initial temperature 6. The maximum density perturba-
tion is given by (J°/10)max = [1 — 851 (1 = x3)/(1+ x3)]~". Note that the maximum plasma
density perturbation in a warm plasma does not become singular, as in the cold fluid theory
3, 4].

In the cold plasma limit (6 = 0), Eq. (11) reduces to E2_ (8 = 0) = 2y, (7, — 1). This
is a generalization of the cold relativistic wavebreaking field [3] to include a laser field. Note
that £2,,(f = 0) is the same as the threshold field for trapping background plasma electrons
in a cold plasma wave [18] (since the cold fluid element orbits are identical to the particle

orbits).
For 3, < 1, Eq. (11) reduces to

E2 8/ 30 \* 30 \'? 1/ 30
La)ﬁzl——(ﬂ) +2(2—2> ——<2—2)> (12)
7J./6<p 3 fyj_/ggp ,}/J_/gcp 3 fyj_/gsp

where terms of order O(@ﬁi) have been neglected. For v, = 1, Eq. (12) is identical to the
result of Ref. [5].

For B, = 1 (e.g., an ultra-relativistic electron beam driver satisfying 7,* < 6 < 1),
Eq. (11) reduces to

~ 3
Bl =2 (2/3)20772 [L— 7" (30/2)72] (13)

max

For the case v, = 1, Eq. (13) scales to leading order as Fy.x = o-1/ 4pinEy. Except for the
factor py, ~ 1, this scaling is the same as that obtained in Refs. [6, 7].
In the limit, § < Vi/%% < 1, Eq. (11) reduces to

- 4 1/4 1/2
Eﬁlax = 27J-(790 - 1) - 2780 [g (3’}/;’)/3_9) - (379209) :| : (14)



Equation (14) is the cold relativistic wavebreaking field (generalized to include a laser field)
with the lowest order reduction due to the plasma temperature. For high-intensity lasers
(ay 2 1), Eq. (14) indicates that Fy,., inside a laser pulse is significantly larger compared
to behind the pulse (where a; = 0). For a laser-driver, the phase velocity of the plasma
wave is approximately the nonlinear group velocity of the laser pulse, i.e., 7, ~ [y, (1 +
v1)/2]"*(wo/w,). Therefore, for ultra-high intensities (ay > 1), Fpax =~ (2717,)Y% ~
ay(wo/wy)'/? in the limit 6 < 72 /72 < 1.

The transition from the laser-driven regime (739 < 1) to the ultra-relativistic beam-
driven regime (726 >> 1) is shown if Fig. 1, which plots Epa. [Eq. (11)] versus 726 for
6 =103 60 =10"* and = 107° with v, = 1. The dashed lines in Fig. 1 are the §, =1
limit [Eq. (13)]. Note that for typical short-pulse laser-plasma-interactions, fmc? ~ 10 eV
[11, 12], or  ~ 5x107°. Figure 1 shows the inaccuracy of using the ultra-high phase velocity
approximation (3, = 1) in the laser-plasma accelerator parameter regime (973, <1).

The wavelength A of the nonlinear plasma oscillation at the maximum amplitude is
computed from E by A = [df = —2cw;, ! [(dp/dx)E~"dx between the extrema of .
Figure 2 shows the wavelength of the plasma oscillation A, normalized to A\, = 2mc/w,
versus 7, for initial temperatures § = 107%, § = 107*, and = 107°, with v, = 1. The
dashed line in Fig. 2 shows Aus./A, for an initially cold plasma 6 = 0.

The temperature (thermal velocity spread) evolution is given by 33 = € = (1 —
w)I'?(h/ng)?, which is maximum at the maximum compression of the plasma (xy = xo),
Le., €2 = 4G [(1+x3) — 68,1 (1 - Xg)}—z §. For an ultra-relativistic beam driver (3, =1
and v, = 1), €2, = 2/3 [the upper bound of €2, (8,)]. In the limit § < 7% /72 < 1

max

(e.g., laser driver), the maximum temperature is, to leading order, €2, ~ v (720/3)"/*[1 —

(3v20)'/2/(47.)] < 1, which confirms the validity of the warm plasma approximation > < 1.

The above results for Emax are independent of the driver. Consider excitation by a
laser pulse with length optimized to maximize the wave amplitude. As the laser intensity
increases, the wave amplitude increases, up to the amplitude at which |E | = B, which
is first reached behind the laser pulse (where v, = 1). Note that the maximum density
compression occurs at the phase where E = 0, which is at a phase behind that where
|E| — Euae in a warm plasma. Physically, the limit on the wave amplitude is due to
the pressure force. As the plasma becomes highly compressed, the pressure force grows,

ultimately limiting the density compression and therefore the wave amplitude. This is in



contrast to cold fluid theories where the maximum field is reached when the density becomes
singular (and shock formation occurs). For larger drive intensities, no force balance is
possible, and no travelling wave solutions exist. Further calculations indicate that E=E,.
corresponds to significant trapping of the electrons in the wave [19].

For a laser with a square pulse profile, the maximum amplitude is obtained when the
laser pulse length is of an optimal value such that d¢¢ = 0 at the end of the laser pulse.
Note that, for an optimal length driver, the laser initially reduces the plasma density and the
pressure force will remain small during the excitation of the plasma wave by the laser pulse.
For relativistic plasma waves (7?0 > 1), the laser intensity required to excite the maximum
field Eq. (11) is 71 ~ Eax/2 4 [(Bmax/2)? + 1]/2. The limits 72> 1 and 720 < 1, imply
Y1 T — (292/3)(20/2)V + (5/9) (126/2)12).

In this Letter, a comprehensive theory has been presented that describes the properties of
nonlinear electron plasma waves with arbitrary phase velocity in a warm plasma, including
the presence of an intense laser field. An analytical result for the maximum field amplitude is
derived, Eq. (11). Equation (11) is capable of describing the regime of current ultra-intense
short-pulse laser interactions with underdense plasma, in contrast to previous results that are
limited to ultra-relativistic particle drive beams. The maximum field is larger in the presence
of an intense laser field. These results place a fundamental limit on the accelerating gradient
in plasma-based accelerators.
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ported by the Office of Science, High Energy Physics, U.S. Department of Energy under
Contract No. DE-AC03-76SF0098.



[1]
2]

E. Esarey et al., IEEE Trans. Plasma Sci. 24, 252 (1996).

S. P. D. Mangles et al., Nature 431, 535 (2004); C. G. R. Geddes et al., Nature 431 538
(2004); Faure et al., Nature 431, 541 (2004).

A. 1. Akhiezer and R. V. Polovin, Zh. Eksp. Teor. Fiz. 30, 915 (1956).

J. M. Dawson, Phys. Rev. 113, 383 (1959).

T. P. Coffey, Phys. Fluids 14, 1402 (1971).

T. Katsouleas and W. B. Mori, Phys. Rev. Lett. 61, 90 (1988).

J. B. Rosenzweig, Phys. Rev. A 38, 3634 (1988).

A. Modena et al., Nature 377, 606 (1995).

D. Umstadter et al., Science 273, 472 (1996).

W. P. Leemans et al., Phys. Rev. Lett. 89, 174802 (2002).

C. G. Durfee III, J. Lynch, and H. M. Milchberg, Phys. Rev. E 51, 2368 (1995).

P. Volfbeyn, E. Esarey, and W. Leemans, Phys. Plasmas 6, 2269 (1999).

S. R. de Groot, W. A. van Leeuwen, and C. G. van Weert, Relativistic Kinetic Theory (North-
Holland, Amsterdam, 1980).

W. A. Newcomb, Phys. Fluids 25, 846 (1982).

P. Amendt, Phys. Fluids 29, 1458 (1986).

J. G. Siambis, Phys. Fluids 30, 896 (1986).

B. A. Shadwick, G. M. Tarkenton, and E. H. Esarey, Phys. Rev. Lett. 93, 175002 (2004).

E. Esarey et al., Phys. Plasmas 6, 2262 (1999).

C. B. Schroeder et al., in Advanced Accelerator Concepts, edited by V. Yakimenko (AIP, New

York, 2004), pp. 564-570.



14
12
_10
Eg 8
=6
4
2
1073 102 107 1 10 102
eyq‘z
FIG. 1: Maximum plasma wave electric field Epax = max/Eo [Eq. (11)] versus 6’75 for initial

temperatures § = 1073, § = 107%, and # = 107, with v, = 1. Dashed lines are the ultra-high

phase velocity result 3, =1 [Eq. (13)].
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FIG. 2: Normalized nonlinear plasma wavelength Ao/, versus 7, for initial temperatures ¢ =

1073, = 1074, and # = 107, with v, = 1. Dashed line is the cold limit § = 0.
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