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Dear Sirs:
This letter transmits the Prometheus Project Reactor System Final Report.
BACKGROUND

Project Prometheus was established in 2003 with a goal of developing the first nuclear reactor-
powered propulsion system for a spaceship and demonstrating that it can be operated safely
and reliably for civilian deep-space exploration missions. The initial application of space fission
power being evaluated was the Jupiter Icy Moons Orbiter (JIMO), a nuclear electric propulsion
spaceship intended to perform deep-space scientific research.

In March 2004, the Naval Reactors Program was assigned responsibility for design and delivery
of the Reactor Module for Project Prometheus. The spaceship is comprised of a multi-mission
Deep Space System coupled with a mission specific Mission Module. The Deep Space System
consists of two modules:

1. The Reactor Module, which includes the nuclear reactor and the energy conversion
equipment to produce electric power.

2. The Spacecraft Module, which includes the spacecraft structure, radiator panels (heat
rejection segment), electric power control and distribution equipment, and the ion propulsion
system.

Design responsibility for the Reactor Module (with the exception of the Aeroshell reentry
protection cover) was assigned to the Naval Reactors Prime Contractor Team (NRPCT) and the
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approval responsibility was assigned to DOE-Naval Reactors (NR). In March 2005, the NRPCT
recommended and Naval Reactors approved a gas-cooled reactor with a directly coupled
Brayton energy conversion system for further development.

In September 2005, NASA priorities changed and NR Program participation in Project
Prometheus was terminated. Closeout activities were initiated to provide an orderly conclusion
to NRPCT work and to enable the future re-start of a nuclear space reactor project. Closeout
reports were generated to document the pre-conceptual design work that was in-progress.

DESCRIPTION OF REPORT

The Enclosure (1) Prometheus Project Reactor Module Final Report is an integrated project
summary that integrates the key program perspectives and technical findings on all space
reactor work conducted under NR cognizance. It describes the formal programmatic and
technical information that was generated, how and where it is stored, and how future
researchers can access the information. A detailed bibliography is included to serve as a
roadmap that identifies the many external references that were used by the NRPCT, as well as
important documents that were generated by the NRPCT.

Enclosure (1) is divided into three volumes. Volume 1 is a Program Summary that describes
the scope of the Prometheus Project and NRPCT involvement as the design agent for the
Reactor Module. The NRPCT approach to the program management of the project is
discussed, and key perspectives are provided.

Volume 2 is a Technical Summary that describes the key design challenges of the Prometheus
Reactor Module and summarizes NRPCT technical findings. This volume integrates the
conclusions of the detailed design reports that have been produced as part of pre-conceptual
design and project close-out. These detailed reports are referenced to provide a path for future
researchers to understand the underlying technical work that is behind the conclusions
discussed in the Technical Summary.

Volume 3 is a Bibliography which contains references to documents generated by the NRPCT,
documents from past space reactor projects, reports produced under subcontract, and other
pertinent references. Nearly 1800 references have been gathered and organized. This
bibliography will be an important resource for future researchers.

Very truly yours,

7 V.%.A\ 1
oliman, Manager M‘J élék;, Manfjger

S ACE POWER PROGRAM SPACE ENGINEERING
KAPL Bettis
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CEF Critical Experiment Facility (at Los Alamos National Laboratory)
CERMET Ceramic Fuel in Metal Matrix

DAF Device Assembly Facility

DOD Department of Defense

DOE Department of Energy

EBR-11 Experimental Breeder Reactor

ECS Energy Conversion System

EM Engineering Model: Second-generation hardware
EOL End of Life

EOM End of Mission

EP Electric Propulsion System (ion thrusters)
ERD Environmental Requirements Document

FCA Fast Critical Assembly

FFTF Fast Flux Test Facility

FIMA Fission of Initial Metal Atoms

FU Flight Unit

Ga Gallium

GNF Global Nuclear Fuels

GRC NASA — Glenn Research Center

GTR Ground Test Reactor

He Helium

HEU Highly Enriched Uranium

HeXe Helium Xenon

HFIR High Flux Isotope Reactor

HRS Heat Rejection Segment

HTGR High Temperature Gas Reactor

HTTR High Temperature Test Reactor

1&C Instrumentation and Control

INL Idaho National Laboratory
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1 EXECUTIVE SUMMARY

The Naval Reactors Prime Contractor Team (NRPCT) led the development of a power plant for a
civilian nuclear electric propulsion (NEP) system concept as part of the Prometheus Project. This
report provides a summary of the facts, technical insights, and programmatic perspectives gained
from this two-year program. The Prometheus Project experience has been extensively documented
to better position the United States for future space reactor development.

Major technological and engineering challenges exist to develop a system that provides useful electric
power from a nuclear fission heat source operating in deep space. General issues include meeting
mission requirements in a system that has a mass low enough to launch from earth while assuring
public safety and remaining safely shutdown during credible launch accidents. These challenges may
be overcome in the future if there is a space mission with a compelling need for nuclear power to drive
development. Past experience and notional mission requirements indicate that any useful space
reactor system will be unlike past space reactors and existing terrestrial reactors.

The mission requirements of Prometheus were particularly aggressive due to the requirements for
long duration, autonomous operation. The power requirements and mass constraints necessitated
high operating temperatures that led to a small, fast neutron energy spectrum reactor concept. The
operating temperatures within the reactor (1000-1700K) are beyond the range of conventional
structural materials. High temperature materials for the reactor fuel elements and other reactor
components are not well developed or characterized and have limited manufacturing experience. No
existing fuel system was found that has been qualified to provide assurance of meeting the long
duration Prometheus mission requirements at the necessary temperatures. In addition, the small size
and high fissile uranium fuel loading in the reactor require engineered features to assure safety during
a potential transport or launch accident. Delivery of a reliable Space Nuclear Power Plant will require
extensive development and testing.

The United States has a limited nuclear testing infrastructure to support developing a space reactor,
or other types of fundamentally new nuclear reactors. There are no fast neutron spectrum test
reactors in the United States that can perform testing on structural materials, fuel materials, and
integrated fuel systems to support their use in a Prometheus reactor. Fast neutron spectrum reactor
test facilities exist in Japan, Russia, France, and India. Conducting fuel testing in those facilities is
problematic. The United States also has very limited capability to perform nuclear physics
experiments on new reactor materials. Nuclear physics tests are necessary to predict the neutronic
behavior of the reactor core both to ensure the reactor will operate successfully and to demonstrate
that the reactor will remain safely shut down throughout assembly, transport, and launch. In addition,
construction of a ground test reactor is desirable for reactor physics qualification, lifetime testing,
system integration testing, and control system qualification. Future space reactor development plans
must take into consideration the state of the existing U.S. nuclear infrastructure, the challenge of
utilizing international infrastructure, and the iterative nature of qualifying nuclear materials and
systems.

No single organization has the expertise and facilities to deliver a nuclear fission power system for
space; it is necessary to use capabilities on a national scale. The complexity, difficulty, and
development risk associated with space reactor power plants demands aggressive up-front integration
of all participating engineering and scientific organizations, directed by explicit, mission-specific,
functional requirements. Formal lines of authority, individual responsibilities, and organizational
interface management should be defined early and be captured within a detailed work breakdown
structure. The critical importance and attendant effort and cost required to create and sustain such a
foundation must not be underestimated for future projects, and is independent of the concept or
technologies employed. This is especially true given the lack of practical experience with operating
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space reactors (foreign or domestic) and the degree to which scientific investigations, engineering
design and risk reduction, manufacturing development, hardware fabrication and testing, mission
definition and planning, regulatory processes, and other activities must be executed in a parallel and
(in some instances) iterative fashion. In the case of Prometheus, the Jet Propulsion Laboratory, the
Spacecraft contractor, the scientific payload community, the NRPCT, and all of the associated
subcontractor partners all brought to the project different technical skills, management and
administrative practices, vocabularies, policies, procedures, protocols, and information technologies,
as well as engineering and scientific practices, capabilities, and experiences. These differences had
to be addressed early in the project.

The development of any advanced space reactor plant will be costly and require a sustained
commitment over many years. The initial schedule laid out through launch of the Prometheus 1
spaceship was about 10 years. This was an aggressive, success-based schedule that could not
accommodate a significant setback in technology or materials performance. Such setbacks were
likely because of the developmental nature of space nuclear power technologies. Even with this
optimistic approach, the budget for developing and deploying the space reactor plant to a spaceship
was estimated to be about 3 billion dollars, which included a potential ground test reactor facility and
the first flight unit. Nuclear reactor development work is technically-exacting, time—consuming, and
testing-intensive. This necessitates high labor and facility costs starting early in the development
process. It would be inappropriate to expect that a rapid and inexpensive reactor development will
meet unprecedented performance demands for space nuclear reactors.

The NRPCT selected a gas reactor directly coupled to a Brayton energy conversion system as the
best prospect to meet the challenges of delivering a safe, reliable space nuclear power plant on an
accelerated schedule. The Naval Reactors Program reviewed many options and concluded that the
directly coupled Brayton system provided the best prospect to satisfy NASA requirements with fewer
potentially disabling technology and engineering problems than liquid metal cooled reactor concepts
traditionally envisioned for space nuclear power. For example, cooling the reactor with an inert gas
avoided fundamental and potentially disabling problems of remotely thawing a solid metal coolant in
orbit and materials degradation during long-term operation exposed to very high temperature, highly
chemically reactive metal coolant.

Mission requirements drive reactor and power plant design features and therefore must be
established early. An experienced reactor plant systems design and development organization
should be involved early in the mission planning process to ensure that mission planning assumptions
are consistent with practical nuclear technologies. While extensibility to a range of missions is a
logical goal, it may not be practical to develop a common reactor system that can provide power for
Lunar and Mars surface missions as well as for deep space NEP missions. Gas reactor technologies
could be used for both surface and NEP missions and many basic technologies (e.g., fuel materials
and core concepts) could be similar. Differences in environment, mission duration, required reliability
(e.g., to support human habitation) and power requirements could lead to different designs for each
specific mission. Regardless of mission, an appropriate focus for near term space reactor technology
investment would be in reactor core and plant materials testing for a high temperature reactor system,
so that basic materials information can be available to support a future engineering project.

This report provides (1) basic descriptions of the concepts considered by the NRPCT, (2) discussion
of the engineering, techonology development, and planning that was in progress to evolve and deliver
these concepts into a space nuclear power plant, and (3) references to more detailed documentation
of work by the NRPCT and its subcontractors. The list of references in Volume 3 includes documents
from past U.S. space nuclear reactor development projects that the NRPCT found useful for Project
Prometheus. This report provides a practical summary of space nuclear power technology within the
context of the specific mission challenges for Prometheus, to aid future efforts to develop nuclear
reactors for operations in space.
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2 INTRODUCTION AND BACKGROUND

This report summarizes the work completed by the Naval Reactors Prime Contractor Team (NRPCT)
as part of the National Aeronautics and Space Administration (NASA) Prometheus Project. Project
Prometheus was established in 2003 with a goal of developing the first nuclear reactor-powered
propulsion system for a spaceship and demonstrating that it could be operated safely and reliably for
deep-space, long duration missions. The initial application of space fission power evaluated was the
Jupiter Icy Moons Orbiter (JIMO).

Naval Reactors (NR) involvement in Project Prometheus began when the Secretary of Energy
assigned NR the lead for development of nuclear power for civilian space exploration missions,
starting with JIMO. NASA defined the Project Prometheus requirements to be a Space Nuclear
Power Plant (SNPP) useful for a range of deep space exploration missions with technology extensible
to exploration on the surface of the Moon or Mars.

Naval Reactors worked with NASA to establish a Memorandum of Understanding (MOU) at the
agency level and a Memorandum of Agreement (MOA) at the working level. These documents
formed the basis for a collaborative partnership that recognized individual NASA and NR
responsibilities derived from their respective governing statutes. Specific guidelines were provided for
managing SNPP development, production, and operational support activities and integrating those
activities with NASA's development of the Space, Launch, and Ground Systems.

Naval Reactors and the NRPCT created the Space Power Program (SPP) to deliver the JIMO
Reactor Module. The Reactor Module, the Spaceship Module and the Mission Module comprise the
spaceship. Figure 2-1 shows a pre-conceptual view of the spaceship and the associated modules.

Figure 2-1: Spaceship and Modules
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The NRPCT was made up of engineers and scientists from the NR Program prime contractors:
Lockheed Martin — KAPL, Bechtel — Bettis Laboratory, and Bechtel Plant Machinery, Inc. (BPMI). The
NRPCT was assigned design responsibility for the Reactor Module (with the exception of the
Aeroshell reentry protection cover), while NASA and its contractors were responsible for the
remainder of the spaceship, launch vehicle, and ground systems.

The NASA Jet Propulsion Laboratory (JPL) was assigned lead responsibility for the Prometheus
Project, with support from the Glenn Research Center (GRC), Marshall Space Flight Center (MSFC),
Kennedy Space Center (KSC), Johnson Space Center (JSC), and Ames Space Center (ASC). In
November 2004, Northrop Grumman Space Technology (NGST) and its industry partners won the
contract to develop the JIMO spaceship. The NRPCT drew upon existing expertise to the maximum
extent practical, working with other Department of Energy (DOE) organizations, including Los Alamos
National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Sandia National Laboratories
(SNL), Idaho National Laboratory (INL), Pacific Northwest National Laboratory (PNNL), Lawrence
Livermore National Laboratory (LLNL), Argonne National Laboratory (ANL), and Y-12. Work on
SNPP development continued through a feasibility evaluation, coolant and energy conversion
selection, and pre-conceptual design work. Based on reprioritization of missions and funding within
NASA, Naval Reactors and NASA mutually agreed to end this collaboration in September 2005. An
orderly closeout of SPP work proceeded through early 2006.

Figure 2-2 illustrates the nature of the work accomplished by the NRPCT. The project had three
major phases of work: Project Scoping, Pre-conceptual Design, and Project Close-out.

Figure 2-2: Phases of NRPCT Work
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Major Milestone Documents

During the Project Scoping phase, two major technical reports were produced. The first report, a
concept feasibility evaluation, was issued in November 2004 within the NR program [an unclassified
version was issued in April 2006, Reference (1)]. This report reviewed the developmental challenges
of a space reactor system, including the reactor design, fuel and materials performance, shielding
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design, primary coolant transport and compatibility, energy conversion and heat rejection options, and
operational concerns. In this report, the NRPCT determined that all reactor design approaches for
supporting the JIMO mission requirements needed considerable technological and engineering
development and that to support the 2015 launch date, development would need to be minimized by
selecting more well-developed technologies. From this evaluation, fuel and in-core materials as well
as integrated plant design and testing emerged as the biggest challenges.

The second technical report was the concept selection report. This report was issued in April 2005
[an unclassified version was issued in July 2005, Reference (2)] and recommended focusing on a
direct gas-Brayton concept. This report documented the formal process used to evaluate the
candidate integrated reactor plant concepts and select a specific basic concept for further
development. The feasibility assessment results were used to select five concepts for evaluation at
this stage:

A direct cycle, gas-cooled reactor with a Brayton energy conversion system

A heat pipe-cooled reactor with a Brayton energy conversion system

A liquid lithium-cooled reactor with a Brayton energy conversion system

A liquid lithium-cooled reactor with a thermoelectric energy conversion system

A lower temperature, liquid metal (e.g., sodium, potassium, or NaK) cooled reactor with a
Stirling energy conversion system

Ssaks

Each system was evaluated against criteria relevant to JIMO mission requirements, including
capability, reliability, deliverability, cost, and safety. The direct gas Brayton concept (concept #1 listed
above) was recommended to Naval Reactors for further development. Naval Reactors approved the
recommendation via Reference (3). The gas reactor system was judged to have the best prospect to
meet mission requirements within the expected development time frame. Use of an inert gas coolant
simplifies engineering development testing. In addition, Brayton technology is judged to be relatively
mature with an existing engineering and manufacturing base, and a Brayton system has fewer
components requiring development relative to the other concepts considered. Finally, a gas Brayton
system is extensible to surface missions.

The Pre-conceptual Design phase began with approval of the Direct Gas Brayton concept. The major
goals of this phase were to select the nuclear fuel and fuel element clad system materials, select plant
parameters to set the baseline heat balance, and select the baseline arrangement. This work was
well underway when the Prometheus Project was restructured in September 2005. In this
restructuring, NRPCT involvement in Prometheus through the Space Power Program was terminated.
NRPCT documented the results of progress on the Pre-conceptual Design phase in a number of
detailed technical reports.

This integrated project summary report provides important information and key perspectives on all
space reactor work conducted under NR cognizance. It describes the formal programmatic (Volume
1) and technical (Volume 2) information that was generated, how and where it is stored, and how
future researchers can access the information. A detailed bibliography (Volume 3) is included to
serve as a roadmap that identifies both external references that were found to be useful by the
NRPCT, as well as documents that were generated by the NRPCT. This report and its references
document research, development, and engineering work performed by the NRPCT and its
subcontractors at the time that NASA and NR mutually agreed to end their partnership. Most of the
technical work had not progressed to the point of a recommendation to Naval Reactors to proceed
forward with a specific conceptual plant design.
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3 PROJECT SCOPE

3.1  Prometheus Project Goals

The goal of the Prometheus Project was to develop a spaceship for use in robotic exploration
missions of the outer solar system that would combine an SNPP with electric propulsion (referred-to
collectively as Nuclear Electric Propulsion (NEP)). By providing unprecedented amounts of on-board
electrical power and energy, the SNPP was expected to increase spacecraft maneuverability, enable
high-capability instruments, provide expanded mission design options (including successive orbits of
solar system bodies), and support high-speed telecommunications to return scientific data from deep
space).

Significant and challenging technology advances are required to deliver such a space nuclear power
plant. Key developmental areas include the reactor, energy conversion, heat rejection, and radiation-
hardened components. Additionally, the SNPP technologies (in the areas of nuclear fuel, reactor core
materials and coolants, instrumentation and control, and energy conversion) were to be extensible to
Lunar and Mars surface power missions.

The initial objective of the Prometheus Project would be a scientific exploration mission to the larger
icy moons of Jupiter (Callisto, Ganymede, and Europa). This JIMO mission was targeted to launch in
2015 and initiate its first science orbit in 2021. Additional missions for this type of spaceship that were
envisioned by NASA include:

= Saturn and its moons

= Neptune and its moons

= Comet and multi-asteroid sample return
= Kuiper Belt rendezvous

The duration of these missions ranged from 10 to 12 years for JIMO, to a maximum of 20 years for
the Kuiper Belt rendezvous. These notional missions were envisioned to use the same SNPP as the
JIMO mission, requiring approximately 200 kW of electric power.

3.2 Comparison to Past Space Reactor Projects

While there have been past studies investigating the possibility of multi-megawatt space reactors for
long duration missions, the reactors that have actually been built and tested were much more modest
in capability and lifetime. For example, they were designed to operate in Earth orbit and were not
intended to use electric power for propulsion to escape orbit. The United States has flown just one
space reactor, the SNAP-10A FS-4 reactor, in 1965. This spacecraft produced approximately 550
Watts of electric power for 43 days prior to an electrical system fault which caused a reactor
shutdown. Its ground test reactor, however, operated continuously for over a year.

The Soviet Union flew 32 Bouk-RORSAT systems and 2 TOPAZ-| reactor systems over the timeframe
of the early 1970s to the late 1980s. These reactors had power levels in the range of 1 to 5 kWe and
operational lifetimes of one month to ~1 year. The TOPAZ-I| reactor system was ground tested but
never flown in space.

During the 1960s, the United States also began development of the larger scale SNAP-8 and SNAP-
50 reactor systems, which were designed for higher power (up to 100 kWe for SNAP-8 and as much
as 1200 kWe for SNAP-50) and longer life (up to approximately three years). Testing was done on
the SNAP-8 reactor, however, these reactors were never developed through launch. During the
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1980s, the United States investigated the SP-100 space reactor concept, building upon the earlier
experimental work from the SNAP-50 program. The SP-100 project had a goal of producing 100 kWe
with an operating lifetime of 7 years. This program was terminated before a reactor or many
prototypic reactor system components were developed or tested.

The Prometheus Project was more ambitious than past space reactors due to the higher electric
power level (~200 kWe), the longer calendar lifetime (up to 20 years), the greater need for system
autonomy to support propulsion and science operations in deep space, and NASA's desire to
maximize extensibility of the associated technologies to many types of missions. Autonomy of the
reactor control system is needed due to the long delay time in communications between Earth and
Jupiter and the long periods of communications blackout. The low solar incidence at Jupiter also
eliminates the ability to use solar power as a back-up power supply. Thus, continuity of reactor power
is essential for mission success.

The difficulties posed by increasing the required reactor lifetime are most significant to the space
reactor design challenge. The necessary material performance at the high operating temperatures of
the reactor system is unprecedented and requires extensive development and testing to deliver a
system that would have the desired mission assurance.

3.3 Project Challenges

The key programmatic, engineering, and scientific challenges of the Prometheus Project stem from
delivering a Space Nuclear Power Plant that:

» Relies on many as-yet undeveloped technologies
= |s required to last for up to 20 years of operation
= Will be launched in 2015

The two controlling path schedule activities that posed the greatest challenge toward meeting the
targeted launch date are (1) developing Reactor Module materials that will successfully meet the
JIMO mission duration and (2) establishing critical nuclear testing facilities to support the design
timeline.

Materials Development Timeline

The materials within a space nuclear reactor will be most affected by radiation, temperature, and time.
The specific external environments in which the reactor is expected to operate will also pose special
challenges (e.g., vacuum and chemical constituent effects on high temperature reactor structural
material integrity). Long-term materials performance for the reactor core and associated structures is
largely dependent upon empirical testing. The mass and volume constraints on the SNPP drive the
reactor design to have a higher operating temperature and higher uranium loading density than typical
terrestrial reactors. Existing performance data on candidate core and structural materials are
insufficient to provide a basis for reactor design, so materials irradiation tests are necessary. Since
the reactor design would use a fast neutron energy spectrum, some irradiation testing on candidate
structural materials must be performed in fast neutron spectrum test reactors to get a relevant
understanding of materials behavior. To design, irradiate, and examine material test specimens on an
expedited basis takes approximately two to three years per cycle. Once an irradiation test cycle is
done, specimens are examined and improvements are generally identified, fabricated, and placed into
the next two-to-three year irradiation test cycle. Because the JIMO Reactor Module design began in
2005 for a launch in 2015, only two material design and test cycles could be done before the flight
reactor must be manufactured. Because the materials are developmental, there is a significant
delivery risk if unresolvable test failures occur. Confidence in the lifetime of the Reactor Module
would increase as additional prototypical tests are performed and as the actual 10- to 12-year JIMO
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mission is underway. As succeedingly longer missions are launched and proceed satisfactorily,
confidence toward meeting the maximum 20-year lifetime requirement would increase.

Meeting the aggressive irradiation testing schedule was complicated by the lack of fast spectrum
neutron flux reactors in the United States. While the Experimental Breeder Reactor-Il (EBR-II) and
the Fast Flux Test Facility (FFTF) test reactors were available in the U.S. to provide data for the SP-
100 Program, these have since been decommissioned. NRPCT had planned to use the JOYO facility
in Japan for fuel and structural material testing, but using the international infrastructure for nuclear
development work is a challenge for an aggressive schedule. Some test work was also planned for
the Advanced Test Reactor (ATR) at INL and an initial test was conducted in the High Flux Isotope
Reactor (HFIR) at ORNL, but these thermal neutron spectrum reactors do not provide a suitable fast
neutron flux spectrum that adequately simulates fast spectrum space reactor operating conditions.

Critical Testing Facilities

Three phases of critical nuclear experiments were being evaluated to support the nuclear design of a
space reactor and to qualify the reactor design methods:

1. Benchmark Tests — Basic benchmark critical assemblies and fundamental cross section
measurements to improve cross section accuracy.

2. Mock-up Tests — Experiments to qualify the nuclear design of the Prometheus reactor as well
as the design methods.

3. Ground Test Reactor (GTR) — Prototypical reactor and power plant used for a comprehensive
physics test program. A full range of tests, including cold and hot low power tests, high power
tests, and transient tests were being considered for beginning-of-life and periodically through
life to fully qualify both calculational models and startup and operating procedures, and to
confirm lifetime trends of physics characteristics.

While numerous test reactors and reconfigurable critical facilities existed at the time of SNAP and
some remained during SP-100, many of these facilities have been decommissioned. The one
remaining facility suitable for material nuclear cross-section benchmarks, the Los Alamos Critical
Experiment Facility (TA-18), was shut down in July 2004. At the time that Naval Reactors program
involvement in Prometheus ended, no suitable domestic capability was available to perform
benchmark critical experiments of space reactor materials. The lack of such data early in the design
process carries a risk of a fundamental design data error that would delay delivery of the SNPP.

Similar challenges exist for mock-up tests. The Zero Power Physics Reactor (ZPPR) at INL was
previously used to assemble engineering mockups for fast reactors. The ZPPR facility was placed in
a cold standby status in the early 1990s, and the projected cost to restore the facility to operation was
high (~$58M). Other options, such as to design and build a new facility at a DOE or NR Program site,
exist but the cost and schedule impacts are not known. The only facility currently available for this
work is the Fast Critical Assembly (FCA) operated by the Japan Atomic Energy Research Institute.
The complexities of international operations posed additional risk to the aggressive schedule
associated with Project Prometheus.

A significant programmatic challenge to meet the 2015 launch date was the siting and construction of
a potential prototype GTR Facility. As documented in Reference (19), GTR operation would provide
valuable support to operating a SNPP, particularly for future evolution to a manned mission. It was
desirable for the prototype to begin operation at least a year before launch to provide early core
operational and performance data. Preliminary NRPCT scoping indicated that it would be challenging
to site and construct a prototype GTR Facility in time to support 2014 prototype operation before a
2015 launch. An environmental impact statement under the National Environmental Policy Act
(NEPA) was planned to be completed for the prototype GTR.
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4 PROJECT MANAGEMENT APPROACH

4.1 Planning Documents

Using the NASA/NR Memorandum of Understanding and Memorandum of Agreement as a basis, the
NRPCT further elaborated the scope of the SNPP work effort in concert with JPL by defining a Work
Breakdown Structure (WBS). A Responsibility Assignment Matrix (RAM) was developed to define
responsibilities between the NRPCT and NASA entities. A Space Reactor Planning Estimate (SRPE)
was developed to estimate resource needs.

The baseline project schedule for the JIMO mission specified a launch in 2015. Based on NRPCT's
technical review of the steps for Prometheus space reactor development, a prototype GTR was under
consideration. As discussed in Section 3.3, it would be difficult to complete prototype GTR siting soon
enough to operate before a 2015 launch. In addition, the time available to develop and deliver reactor
core materials allowed few development and irradiation test cycles, so the 2015 launch date for a 12-
year mission was considered to be optimistic and success-based. Separately, JPL performed an
analysis of alternative mission architectures that raised the potential for an earlier robotic mission to
demonstrate NEP technology with more modest mission requirements. Based on this, the NRPCT
worked with JPL on an alternative plan that would include a demonstration unit launch in 2014 and the
JIMO spaceship launch in 2017. The NRPCT developed its SRPE and project plans with a
contingency to enable an earlier demonstration launch as well as the JIMO mission.

4.1.1  Responsibility Assignment Matrix (RAM)

The NRPCT was responsible for design and delivery of the Reactor Module (with the exception of the
Aeroshell reentry protection cover) and was involved with any aspect of the spaceship that could
affect the design or operation of the nuclear reactor. The division of responsibility among the NRPCT
and the various NASA entities involved in Project Prometheus was detailed in the RAM. With the
selection of the direct gas Brayton concept, the NRPCT was assigned design agent and approval
responsibility for the power (or energy) conversion system because this concept requires the gas,
which is the primary coolant, to flow directly from the reactor through Brayton loops and back to the
reactor. This was consistent with the MOU, which defined the Space Reactor as “the collection of
hardware consisting of a space nuclear fission reactor, its instrumentation and control system, reactor
shielding, and those components in direct contact with reactor coolant, for which NR possesses both
legal ownership and technical responsibilities.”

There were a number of important system level considerations relative to NRPCT responsibility for
power conversion. The direct coupling of the reactor to the power conversion system required a
number of critical performance related issues to be managed by the NRPCT within the overall SNPP
design process, such as reactor dynamics, material compatibility, reliability and redundancy trade
studies, as well as an integrated system optimization (e.g., gas coolant composition, system
pressure). In addition, NRPCT responsibility for the power conversion system also enabled the
strategy to integrate, assemble, and test the power plant as a module and provide for nuclear material
safeguards, reactor safety, mission assurance, and indemnification of contractors under the Price-
Anderson Act.

The RAM denotes which entity is responsible to establish requirements, who is lead for design and
design approval, and who provides design concurrence. The RAM served as the basis for developing
the detailed division of responsibilities and planning for associated contracts with organizations
outside the NRPCT.
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4.1.2 SNPP Work Breakdown Structure

Further definition of the scope for design, delivery, and operational support of the Project Prometheus
SNPP, and roles and responsibilities within the NRPCT, were provided in the SNPP WBS. Figure 4-1
illustrates the SNPP WBS and its relationship to the NRPCT budget planning system and the NR
organization codes. The SNPP WBS evolved to reflect the architecture and requirements flow for the
SNPP and the JIMO spaceship and to align with the RAM discussed above. The SNPP WBS melded
the NASA-JPL WBS construct of broadly defined systems (e.g., the Space System), hardware-centric
modules, segments, and sub-systems with the Naval Reactors Program traditional nuclear power
plant WBS and product structure that mainstreams system engineering, safety, and quality assurance
elements within each area of the plant (e.g., Instrumentation and Control (I&C), Fluid Systems,
Reactor, etc.).

Figure 4-1: SNPP Work Breakdown Structure and NRPCT Budgeting System
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The NRPCT developed the WBS to highlight the importance of key elements of the project:

* The Project Management and System Engineering section of the SNPP WBS (3.2.1) fully
implemented areas within the Project Management Body of Knowledge for work such as
Human Resource Management, Communications Management, Quality Management,
Procurement Management, etc., to ensure all the work for start-up of this unique venture was
properly captured.

* To manage external interfaces, the SNPP WBS contained elements for Integration, Assembly,
and Test (IA&T) of the SNPP segments (3.2.2), IA&T of the SNPP with the spaceship (3.5),
and Launch Operations and Facilities (4.6).

= A portion of Safety and Mission Assurance work was included as a separate WBS element to
match up with corresponding NASA-JPL activities. The NRPCT judged that with the intensity
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and visibility of the Presidential Launch approval process and the challenge of supporting the
requirements of the National Environmental Policy Act, a high level WBS element to ensure
visibility and accountability for these efforts was prudent. Despite this, principal responsibility
for safety and quality remained with the personnel responsible to design and deliver the
various segments of the SNPP and did not rely on a separate quality assurance organization.

= The WBS element for the Prototype (3.2.5) brought focus to the unique facilities and regulatory
approvals that would have been required to prototype a first-of-a-kind space reactor.

The second tier of the SNPP WBS was generally defined as a Control Account, and one NRPCT
Manager was established as the Control Account Manager (CAM) accountable to the NRPCT Project
Manager for managing scope, cost, schedule, and quality for that WBS element. For several complex
elements, such as Core Manufacturing, a sub-Control Account was established to ensure focused
expertise and leadership was provided to support the CAM for the higher tier WBS element. Co-
CAMs were used for Materials Development, which was viewed as a “project within the project,” with
responsibility split between KAPL and Bettis managers at lower tiers of the WBS.

The SNPP WBS enabled a fully “projectized” organization with the primary performing organizations
within the SPP (reactor engineering, primary plant, power conversion, materials, and the project
office) matched directly to top tier WBS elements. Matrix-supporting organizations (e.g., servicing,
shielding, reactor safety) also matched up directly to the SNPP WBS. The WBS also aligned fairly
directly to the technically cognizant NR Headquarters Sections, and a lead NR Section was identified
for each control account.

4.1.3 Space Reactor Planning Estimate (SRPE)

The SRPE contained estimates for Materials and Subcontracts (M&S) and Labor costs associated
with the design and delivery of the Reactor Module, in accordance with the project milestone schedule
provided in Figure 4-2. The SRPE was issued to: (1) communicate resource needs for the duration of
the project, (2), seek approval for the RAM (discussed in Section 4.1.1), and (3) seek approval of the
SRPE WBS as well as plans for Earned Value Management.

The SRPE was issued in April 2005 after approximately one year of NRPCT involvement in the Space
Power Program. It was generated following the formation of collaborative relationships with NASA
and DOE Laboratories and was based on an investigation of Space Program history with respect to
nuclear power development, a deeper understanding of vehicle and mission requirements, and a
comparison of the Prometheus Project with past Naval Nuclear Propulsion Program (NNPP) projects.
The primary methods used by the NRPCT for the SRPE were:

= Primarily, analogous estimates were made based on the collective NR experience within the
NRPCT as applied to specific activities like reactor or fluid systems design.

= Adjustments were made given higher complexity of Prometheus work items, levels of testing,
inexperience in SNPP design, and smaller scale.

The NRPCT concluded that the initial SRPE was adequate for planning purposes, but was a work in
progress that would have been supplemented in the near future by:

Vendor inputs for core manufacturing.

Input from several vendors on cost and effort for Reactor Module integration, assembly, & test.
Independent Cost Estimates from DOE National Laboratories.

Reconciliation of scope, resources and schedule with JPL and NGST based on the NR
approved SNPP concept and implementation of the updated RAM for power conversion.
Adjustment of near-term work plans to accommodate expected funding levels for FY07.

* Refinement of Management Reserve and Contingency funding to be included in the estimate.
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The initial SRPE represented a snapshot in time. The SRPE was evolving and had not been
approved by Naval Reactors at the time the project was terminated. Furthermore, NASA was
reviewing the scope and extent of the first planned mission within a new mission architecture, which
was expected to affect key planning assumptions. Many of the planning assumptions were being re-
evaluated at the time of project termination, as discussed below.

Evaluation of a proposed demonstration mission. The SRPE assumed a preliminary flight
test spaceship for launch in 2014 as well as a JIMO mission for launch in late 2017 instead of
only one JIMO mission for launch in 2015. This was under consideration but was not the JPL
plan of record at the time of project termination. At the time of the Project Mission and Scope
Review (PMSR) in July 2005, a single 2015 JIMO launch was favored. The NRPCT notes that
this launch date was aggressive and required a success-based schedule. Any setbacks would
negatively impact the schedule and jeopardize the launch date.

Inclusion of a second Ground Test Reactor. A second GTR was included in the initial
estimate. The first ground test reactor would be tested to get early information on thermal-
mechanical reactivity feedback or other operational issues that could be incorporated into the
final, flight unit design. The second ground test reactor would be prototypic of the flight unit.
At the time of project termination, work was in progress to revise the technology development
timeline to eliminate the need for a second GTR. Note that at the time of project termination,
the NR program had not concluded that a GTR was necessary or where it would be sited.

Limited back-up plans for materials. Based on launch dates, the NRPCT needed to finalize
the primary material choices for the fuel and clad by September 2005. The NRPCT
considered it wise to carry more than one candidate fuel system through material
characterization and irradiation testing. The level of backup core design and core vendor
manufacturing development using the alternate materials had not yet been established. The
April 2005 SRPE assumed no backup plans in these areas in order to focus resources on the
primary path; however, future updates to the SRPE likely would have included different
assumptions.

Choice of primary fuel system by September 2005. This was needed to order long lead
material, build an assembly for cold critical testing, build a reactor for zero power testing, and
build a ground test reactor for full power testing. UO, was selected as the primary fuel system.

Naval Nuclear Propulsion Program (NNPP) experience. As a first approximation, NRPCT
used past experience in NNPP projects as a basis of estimates for all elements of the project.
The planning basis was under review, as some of this past experience may not be directly
applicable to a space application, resulting in either over or under-estimating costs.
Nevertheless, at the conceptual stage of development, these estimates were judged suitable
for planning purposes.

Inclusion of substantial non-nuclear testing of SNPP qualification and flight models.
This was necessary to maximize assurance that the SNPP would function as intended when
integrated with the deep space vehicle.

Inclusion of an Assembly, Integration, and Test (AIT) approach using vendors. This
integrated approach would minimize the cost, shipping complexity, regulatory effort, and cycle
time for the project.

Cost estimates for M&S and Labor were $2.9B for development and launch of a preliminary flight test
spaceship, including the construction of a GTR-1 facility. An additional $850M would be required for
development and launch of the JIMO spaceship, including the second GTR. This rolled up to a total

of ~$3.8B (with no contingency).
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Project Milestone Schedule

Program Summary
Figure 4-2
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4.2 Acquisition Strategy

The Naval Reactors Program approach was to maximize use of the existing national infrastructure
within DOE and NASA. Inter-contractor purchase orders were placed with several DOE National
Laboratories, and work agreements were established or being negotiated with Government-managed
NASA centers (Marshall and Glenn), with others planned to follow (Ames and Kennedy). A separate
purchase order or task order was planned to be placed by KAPL with NASA-JPL’s operating
contractor (CalTech) to enable Price Anderson indemnification and other requirements (e.g., security
requirements under the Atomic Energy Act) to flow from KAPL's DOE prime contract to JPL. This
process was not completed due to termination of the NASA-NR collaboration. NRPCT was also
working on a purchase order with NGST for certain SNPP development activities, the contractor
selected by JPL for co-design and delivery of the spaceship. The separate NRPCT contract (through
KAPL) was planned to facilitate NGST support of SNPP-specific work and enable Price Anderson and
other nuclear requirements to flow directly from KAPL's DOE prime contract to NGST. Negotiation of
the purchase order with NGST was underway when the NASA-NR collaboration was terminated.

As further discussed in Section 4.3, the NRPCT vision was to competitively bid the contract for the
role of Reactor Module Integration (and assembly) Contractor (RMIC). This acquisition strategy was
in its infancy at project termination, but three potential suppliers were engaged to provide conceptual
evaluations and cost estimates [References (144), (145), (146)] which would have helped the NRPCT
to further develop the acquisition strategy in this area. Directly related to this was the strategy for
acquisition of the reactor core and power unit. The configuration of the power unit and the activities to
be performed by the core vendor versus the RMIC or other contractors had yet to be worked out at
project termination. The physical similarity of some core configurations under evaluation to
commercial reactor fuel systems led to interest in exploring use of a modified version of existing
commercial fuel fabrication technology at a facility that is already licensed to handle highly enriched
uranium. This approach has potential for reduced cycle time and cost through technology sharing and
use of existing facilities infrastructure and licenses for security and handling of Special Nuclear
Material. This approach had not been pursued beyond initial site visits and conceptual ideas at the
time of project termination.

Acquisition strategies were also developed for the SNPP Reactor Instrumentation and Control
Segment. |&C components (circuit boards, racks, and sensors) were to be procured by NRPCT.
Software development, hardware integration, and Reactor I&C Segment testing were to be performed
by the NRPCT, such that a fully tested and operational I&C system would be provided to NGST for
integration with the spaceship. Interconnecting wiring and cabling would be designed and integrated
with the spaceship by NGST. Sensors would be procured by BPMI and integrated with the SNPP by
the RMIC.

Acquisition planning for the Reactor I&C Segment was considering use of common spaceship
components whenever possible to reduce overall complexity and cost. Several components (card
racks, power supplies, processor cards, etc.) would be common to the Reactor I&C, Power
Conditioning and Distribution (PCAD), and Flight Computer systems to reduce both development and
recurring costs. NRPCT anticipated that NGST would have supplied many of these components. A
limited set of custom cards were required for the reactor I&C system for specific nuclear power plant
functions. For the nuclear detector and ultrasonic cards, NR Program suppliers with existing
technology were selected and teamed with corporate partners with space experience. For other cards
that did not have an existing NR Program technology base, the intent was to competitively procure the
cards.
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4.3 Assembly, Test, and Launch Operations (ATLO) Strategy

The NRPCT developed a preliminary approach for integration, assembly, and test of the flight unit
Reactor Module (RM) and spaceship. The relatively large size of the spaceship, combined with a
significant quantity of special nuclear material, created logistical and regulatory issues (facility
licensing issues, security and safeguards, and shipping) that would preclude assembling and testing
the spaceship as a unit with a nuclear-fueled RM. In addition, the flight unit reactor should not
operate at significant power levels before launch so as not to create a large inventory of radioactive
fission products and to avoid exposing the flight reactor core to detrimental environments during
testing (e.g., rapid degradation during high temperature operation in air). To satisfy these constraints,
the NRPCT developed an integration, assembly, and test (IA&T) approach, shown in Figure 4-3,
involving two parallel paths for the flight hardware — nuclear and non-nuclear. The paths merge as
late in the assembly and test flow as possible to minimize the above concerns.

Figure 4-3: Notional Assembly, Integration, and Test Approach
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The extent of assembly at the power unit stage had not been resolved at the time work was
terminated. Instead of a fueled reactor “power unit” (PU) assembly, an unfueled reactor module
would be connected to the flight unit for qualification testing. The electrically heated RM was to be
received by the spaceship contractor (SC) and integrated into the flight spaceship along with the
scientific mission module. The SC would then subject the flight spaceship to the necessary
mechanical, thermal, and electro-magnetic environmental tests, with JPL’s guiding principle to “test-
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as-you-fly and fly-as-you-test.” This testing was to occur at both the SC integration facility and at an
off-site thermal-vacuum facility (Johnson Space Center (JSC) or GRC’s Plum Brook Station). The
early preference was for JSC due to more favorable transportation logistics with a spaceship of this
size and mass. The flight spaceship would then be shipped to Kennedy Space Center (KSC) to be
mated with the fueled PU.

The nuclear path involved the assembly of the fueled PU at the core vendor and/or physics test site,
zero power physics testing, and then transport to the launch site for integration with the previously
tested energy conversion system and spaceship. At the time of project cancellation, the scope of the
PU and options for its assembly had yet to be defined. The issues to be considered involved:

= Extent to which the PU could be assembled at a core vendor or other facility within the existing
regulatory framework (i.e. 10CFR70 license from the Nuclear Regulatory Commission (NRC)
or NR regulatory authority)

= Configuration of the PU during shipping with regard to nuclear safety and cost

= Configuration control requirements of reactivity control devices before and after physics testing

= Extent of the flight unit RM that should undergo environmental testing with the spaceship

The NRPCT and the SC conducted scoping studies of notional PU configurations ranging from a core
cartridge to the complete Reactor Module as shown in Figure 4-4. These studies did not yield a
preferred approach, but helped to define key issues that would have to be addressed.

Integration of the fueled PU with the RM and spaceship was to be performed at KSC in a dedicated
facility. The potential for critical physics testing to be done at KSC was also considered. Physics
testing at KSC was not ruled out; however, the baseline planning assumption was to conduct physics
testing at whatever site was used for physics testing of earlier test articles used for reactor
development (e.g., physics test or ground prototype reactors). KSC performed a conceptual study to
inventory and evaluate existing facilities at both KSC and Cape Canaveral Air Force Station (CCAFS)
for suitability to support the Project Prometheus spaceship processing operations [Reference (615)].
The objective of the study also included the conceptual requirements and possible locations for a new
spaceship processing facility if no existing facilities were viable candidates. This study determined
that no existing buildings were suitable and provided a recommendation for a new four-building
facility. The buildings were to include:

Spaceship processing facility large enough to accommodate a fully deployed JIMO spaceship
Power unit processing facility to house the reactor prior to integration with the spaceship
Ground support equipment storage building

Operations office building

Although the conceptual study was conducted with minimal input from the NRPCT, KSC recognized
that the scope of requirements that would be invoked by NR to support operations involving a
Category | quantity of Special Nuclear Material, would need to be developed and assessed for
compatibility with existing KSC/CCAFS requirements. These requirements were expected to dictate
some of the design attributes of the facility, and as such, they factored into the early phase of the
spaceship processing facility plan.

The ATLO plan described above requires the RMIC to perform the assembly activities in the RMIF
and potentially PU assembly operations not performed by the core vendor. It was considered likely
that synergy could be gained by the RMIC also being a supporting contractor for the spaceship
integration activity and the performing contractor for the pre-launch operation to mate the fueled PU to
the RM. The NRPCT planned to execute a competitive bid process to select the RMIC.
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Figure 4-4: Notional Reactor Power Unit Configurations
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4.4 Program Management Perspectives

Centralized Leadership and Program Management

The program structure established for Prometheus has the potential to be a successful model for
space reactor development and deployment. A responsible SNPP lead organization possessing the
authority to make technical and programmatic decisions must be established early in the project to
plan, integrate, and iterate with NASA and its contractors. This is particularly important during the
early spaceship design where requirements and interfaces are being defined for the organizations
well as the hardware. The responsibility to integrate nuclear technical information and to differentiate
among facts, opinions, and judgements from the involved parties should rest with a single lead
technical organization and be based on formal technical documentation. A central and experienced
nuclear system design and deployment agency, working in concert with the existing expertise and
infrastructure in government (domestic and foreign), industry, and academia, is an important part of
the development.

Formal Decision Process

Choosing the right reactor system technologies to meet mission requirements, maximize reliability and
deliverability, and minimize risk and cost requires detailed evaluation of alternatives and a formal
decision basis. The NRPCT selected a direct Gas-Brayton system for the NEP missions based on the
range of mission and schedule requirements envisioned. This was done through preliminary
development of multiple concepts, formal and written decision criteria, establishment of decision
teams, technical input from experts, debate among those teams, review by independent consultation
teams, formal recommendation to NR headquarters, and formal technical and funding approval. The
rigor associated with this process surfaced a number of issues, quantified the concerns, and provided
balance between performance and deliverability. A similar formal decision process was used for the
fuel material recommendation and would have been used for finalizing Reactor Module architectures,
selection of key core and plant materials, and operating strategies.

Development Schedule

The timeframe for development and deployment of the JIMO mission reactor system was ~11 years.
Given the need for materials testing, criticality testing, system testing and likely, construction of a
prototype GTR Facility, the development timeline established for the JIMO program was very
aggressive. To ameliorate this concern in future projects, the scope and timescale required for an
engineering development, manufacturing, and testing effort of this magnitude should be understood
from the beginning, and appropriate funding and mission consistency should be committed through
the duration of the program. Consideration should be given to setting less aggressive mission
requirements (i.e., shorter duration) for initial missions to allow using more readily available
technologies. More capable technologies could be pursued in parallel for follow-on missions through
a technology development program that advances key technologies. Pursuing a technology program
in parallel with initial missions would and shorten the time to deliver future projects, when identified.
Examples of appropriate technology programs might include high temperature material, fuel system
and shield material development and preliminary qualification

The gas reactor concept was selected in part because it minimized the expected development time
and cost. However, the space reactor planning estimate ground-up cost estimate for the work was
still substantial. Long-lived nuclear reactor development work is technically-exacting, time—
consuming, and testing-intensive. This necessitates high labor and facility costs starting early in the
development process. Expectation of a rapid and inexpensive reactor development and deployment
to meet unprecedented performance requirements would be misplaced.
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5 ASSET TRANSFER

5.1 NRPCT Documentation

This section describes the formal technical and programmatic information that was generated, how
and where it is stored, and how future researchers can access the information. A detailed project
bibliography is included in Volume 3 to serve as a roadmap that identifies both key external
references that were found to be useful by the NRPCT, as well as important documents that were
generated by the NRPCT or by NRPCT direction.

5.1.1  NRPCT Technical and Programmatic Documents

A number of closeout reports were generated to provide an orderly closeout of NRPCT work on
Project Prometheus. In addition, key technical and programmatic documents were generated during
the course of the project, as shown in Figure 2-2. Section 2 of the Volume 3 Bibliography
summarizes the NRPCT documentation that, taken together, provides a complete view of the NRPCT
effort through pre-conceptual design. In general, this list comprises closeout documents that
summarize a large amount of more detailed reports and analyses. The reference lists contained
within these closeout documents provide further sources of information.

5.1.2 Accessibility of NRPCT Prometheus Information

The U.S. DOE Office of Scientific and Technology Information (OSTI) will be the primary repository of
NRPCT information to be accessible to appropriate agencies external to the Naval Reactors Program.
The Volume 3 Bibliography denotes which NRPCT documents will be provided to OSTI. Two OSTI
databases will be used.

= Unclassified, non-sensitive documents will be placed in the internet-accessible Science
Resource Connection (SRC) database, which is available to DOE personnel and DOE
contractors. These documents will be downloadable from the internet.

= Sensitive unclassified documents, specifically U-SNRI (Unclassified Space Nuclear Reactor
Information) or OUO (Official Use Only) marked documents, will be stored in an OSTI
repository that is not internet accessible. OSTI will direct requests for these sensitive
documents to the Schenectady Naval Reactors Office (SNR), Security and Safeguards
Division. U-SNRI requesters that are from organizations that have been officially engaged by
the Government (e.g., the DOE or NASA) will need to demonstrate need-to-know and sign an
information protection agreement reflecting the pertinent requirements of SN-801 [Reference
(18)]. This agreement includes limiting U-SNRI access to personnel within their organization
that are U.S. citizens and have an official need-to-know. If approved by SNR, OSTI will provide
the requester a hardcopy of the requested document, as hardcopy distribution will eliminate
information protection concerns associated with electronic transfer.

The NRPCT has created a small number of documents that are classified as CONFIDENTIAL under
DOE/DOD/NASA Classification Guide for Space Reactor Power Systems, CG-SRPS-1. These
documents, as denoted in the Volume 3 Bibliography, will be maintained internal to the NR Program
and will not be provided to OSTI. Requests for CONFIDENTIAL documents should be directed to the
Schenectady Naval Reactors Office (SNR), Security and Safeguards Division. Requesters will need
to have an official security clearance, need-to-know, and meet information protection requirements as
determined by SNR. Any distribution of this material will be made by SNR and may reflect redaction
of CONFIDENTIAL information.
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5.2 Equipment and Materials

Upon termination of NR’s agreement with NASA, the NRPCT identified capital equipment and
sensitive items with original acquisition values greater than $5,000 in condition code 7’ or better to
NASA for disposition instructions. In addition, certain other non-capital equipment and non-sensitive
items that were direct funded using the NASA funding source were identified for disposition as well.
In addition, the NRPCT has finalized all potential radioactive legacy issues, such as disposal or
remediation at DOE laboratories. Future requests for or about any material or equipment that was
transferred to NASA should be directed to the points of contact listed below.

Marshall Space Flight Center (MSFC): Mike Fazah
ER11/Nuclear & Advance Propulsion Brance
George C. Marshall Space Flight Center
Huntsville, AL 35812
Office: (256) 544-8475

Glenn Research Center (GRC): Joseph Nainiger
MS86-6
NASA Glenn Research Center
Cleveland, Ohio 44135
Office: (216) 977-7103

NASA Headquarters (HQ): Beverly Hamilton / IT Program Manager
2X37
ATTN: Receiving and Inspection
NASA HQ
300 E Street SW
Washington, DC 20024-3210
Office: (202) 358-5180

! Condition code 7 Property refers to that property which is unusable in its current condition but can be
economically repaired.
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6 PROJECT COST

On March 11, 2004, the NRPCT formally commenced Space Power Program work as directed by
Naval Reactors. KAPL and Bettis were each authorized to charge 15 manyears in FY04 to begin this
project. As the initial scoping and pre-conceptual design studies began, subcontracts were
established with several DOE laboratories, and working relations were developed with NASA
agencies. At the beginning of FY05, the Prime Contractors (KAPL, Bettis, and BPMI) began to add
personnel in earnest. This staff-up, in parallel with a steady growth in subcontracted work, continued
through the selection of the spaceship integration contractor (NGST), until project close-out was
initiated on September 8, 2005. Subcontracts were then quickly terminated or re-scoped as
appropriate, and NRPCT de-staffing began.

6.1 Total Project Cost (Inception-to-Date):

The total NRPCT cost for the Space Power Program (which reflects fully burdened manpower costs),
from inception (March 11, 2004) through January 31, 20086, is estimated to be 302 manyears (at a
fully burdened cost of $50.19M) and $42.59M of Materials and Service (M&S). These figures reflect
actual costs through December 2005, combined with cost estimates for January. The inception-to-
date project costs are provided by Control Account below.

Table 6-1: Inception-to-Date Project Costs

Control Account Man Years Labor $M M&S $M Total $M

3.21 Space Management & System 39.4 $ 6.49 $10.97 $17.46
Engineering Support

3.2.2  Space Plant Integration 1.0 0.17 0.45 0.62

3.2.3  Space Reactors Safety & Assurance 3.5 0.59 2.10 2.69

3.2.4  Space Materials Development & 745 12.40 16.36 28.77
Support

3.2.5  Space Prototype Test Facilities 8.2 1.38 0.07 1.45

3.26 Space Reactor Servicing & Support 0.7 0.11 0.00 0.11
Equipment

3.2.7  Space Reactor Engineering 78.4 13.11 5.19 18.30

3.2.8  Space Plant Engineering 58.4 9.74 1.31 11.05

3.2.9  Space Radiation Shield Engineering 4.3 0.71 1.43 2.14

3.2.10 Space Instrumentation, Control & 33.7 5.48 4,71 10.19
Electrical Systems

TOTAL | 3020 | | $5019| | s4250| | $9278 ]|

Of the M&S costs above, a significant portion was subcontracted work at national laboratories. The
final contract amounts at each DOE Laboratory are, or are expected to be, as follows:

« ORNL: $ 11.30M (estimated)
« LANL: $ 10.99M (estimated)
«  PNNL: $ 1.89M (estimated)
« INL: $ 0.71M
« SNL: $ 0.50M
- Y12 $ 0.49M
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The NRPCT also sponsored work at NASA-Marshall, but that work was funded directly by NASA and
is therefore not included in this report.

6.2 Residual Project Closeout Costs (Through FY06):

Program costs for the following residual activities are expected to be incurred:
Close-out of subcontracts.
« Completion of information storage and archival activities.
» Distribution of the Prometheus Project Reactor Module Final Report to stakeholder
organizations.
Submittal of applicable NRPCT reports to OSTI.
= Assistance with External Queries and Requests for Information.
« Performance of final cost accounting.

Residual project close-out costs for the work above are estimated to be 8.5 MY (at a fully burdened
cost of $1.39M) and ~$0.32M of M&S.
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1 INTRODUCTION AND SUMMARY

Volume 2 of the Prometheus Project Reactor Module Final Report is a technical summary of the work
accomplished by the Naval Reactors Prime Contractor Team (NRPCT). Project Prometheus was
established in 2003 with a goal of developing the first nuclear-powered electric propulsion system for
a spaceship and demonstrating that it can be operated safely and reliably for civilian deep-space
exploration missions. The initial application of space fission power being developed was the Jupiter
Icy Moons Orbiter (JIMO), a nuclear electric propulsion spaceship intended to perform deep-space
scientific research.

1.1 Background

NRPCT involvement in Project Prometheus began in March 2004. The NRPCT was assigned
responsibility for design and delivery of the Reactor Module (with the exception of the Aeroshell re-
entry protection cover) for Project Prometheus, while Jet Propulsion Laboratory (JPL) and its
contractors were responsible for the remainder of the spaceship, launch vehicle, and ground systems.
The set of elements needed to generate and manage the power created by the reactor is referred to
as the Space Nuclear Power Plant (SNPP). The SNPP includes the Reactor Module, the Heat
Rejection Segment (HRS), and the Power Conditioning and Distribution (PCAD) Subsystem.

The project had three major phases of work: Project Scoping, Pre-conceptual Design, and Project
Close-out. During the Project Scoping phase, two major technical reports were produced: a concept
feasibility evaluation [Reference (1)] and a concept selection recommendation [Reference (2)]. These
reports are described in more detail in Section 1.2. NRPCT recommended a direct cycle, gas-cooled
reactor with a Brayton energy conversion system. Approval of this concept marked the start of the
Pre-conceptual Design phase. The major goals of this phase were to select the fuel and clad system
materials, select plant parameters to set the baseline heat balance, and select the baseline Reactor
Module arrangement. This work was well underway when the NASA-NR collaboration was terminated
in September 2005. NRPCT documented the results of the Pre-conceptual Design phase in a number
of detailed technical reports, as shown in Figure 2-2 of Volume 1.

Section 1.3 provides a summary of the Prometheus Project requirements. The Pre-Conceptual direct
gas Brayton concept is described in Section 1.5. Section 1.4 describes the technical challenges of
the Prometheus Reactor Module design, and serves as an introduction for the detailed technical
summaries contained in Sections 2 through 7. Section 8 discusses the mission extensibility of the
direct gas Brayton concept. Finally, Section 9 provides high level conclusions and a perspective for
future space reactor development endeavors.

1.2 Summary of Feasibility Studies and Concept Selection

The goal of the Reference (1) evaluation was to provide an initial NR Program assessment of the
design space for providing a nuclear power plant to support civilian space exploration. Viable reactor,
coolant, and energy conversion technologies were studied with respect to capability and technology
readiness. The likelihood of meeting mission requirements (e.g., electrical power requirement,
mission duration) as well as launch schedule (2015 launch date) was considered.

One of the goals of the design space assessment was to broaden the scope of potential options,
including those that had been eliminated by previous Government Team studies. Specifically, lower
temperature concepts were of interest. The Government Team had been working with an assumption
of 1350 K for reactor exit temperature (To). This was viewed to be aggressive for material systems
that could be considered for this mission and delivery timeframe. The gas Brayton system and the
liquid metal Stirling system, with their higher cycle efficiencies, both allow for lower reactor
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temperatures. The gas Brayton system being evaluated had no intermediate heat exchanger which
allowed for a reactor exit temperature of 1150 K (the maximum inlet temperature for the Brayton
engine using conventional materials), and the liquid metal Stirling system utilized conventional
materials in the reactor and was, therefore, limited to a reactor exit temperature of ~1050 K.

The NRPCT determined that all reactor design approaches for supporting the JIMO mission
requirements needed considerable development and that the minimization of such development to
support the 2015 launch date required selection of the more well-developed technologies. From this
evaluation, fuel and core materials as well as integrated plant design and testing emerged as the
biggest challenges. The topics evaluated during the design space assessment are summarized as
follows:

= Reactor types: Liquid metal-, heat pipe-, and gas-cooled reactors.

= Coolants: liquid alkali metals (lithium (Li), sodium (Na), potassium (K), and sodium-potassium
eutectic (NaK)), non-alkali liquid metals (lead (Pb), lead-bismuth (Pb-Bi), gallium (Ga), and tin
(Sn)), molten salts (fluorides and chlorides) and gas (helium and xenon (HeXe)).

» Fuel materials: uranium dioxide (UO,), uranium mononitride (UN), and uranium carbide
(UC/UC,).

= Cladding and core structural materials: refractory metal alloys (niobium (Nb), tantalum (Ta),
molybdenum (Mo), rhenium (Re), and tungsten (W) alloys), conventional metal alloys
(stainless or ferritic steel, oxide dispersion strengthened iron alloys, nickel-base (Ni-base)
superalloys, and vanadium (V) alloys), and silicon carbide (SiC) ceramics (including composite
and monolithic components).

= Shielding and reflector materials: lithium hydride (LiH), beryllium (Be), beryllium oxide (BeO),
boron carbide (B4C), other metal carbides, water, and alternate hydrides.

= Fuel configuration: fuel pellets in bonded or unbonded cylindrical pins (with fission gas plena),
dispersed particle concepts (both cermets and TRISO-like configurations), and small metal or
ceramic spheres.

= Reactor neutron energy spectrum: fast and thermal.

= Reactor safety and reactivity control features: safety rods, external control devices (sliders,
drums, other), in-core control rods, spectral shift poisons, and burnable poisons.

= Dynamic energy conversion systems: Brayton, Stirling, water Rankine, and potassium
Rankine.

= Static energy conversion systems: thermoelectric (TE), in-core thermionics (TI),
thermophotovoltaics (TPV), magnetohydrodynamics (MHD), and alkali metal thermal-to-
electric conversion (AMTEC).

= Heat rejection system coolants: NakK, water, and Li pumped loops.

The NRPCT concluded that there was a design space for three reactor/coolant types (liquid metal,
heat pipe, and gas) and three energy conversion types (Brayton, Stirling, and Thermoelectric). The
five configurations that were evaluated in the final concept selection process were:

1) A direct cycle, gas-cooled reactor with a Brayton energy conversion system

2) A heat pipe-cooled reactor with a Brayton energy conversion system

3) A liquid lithium-cooled reactor with a Brayton energy conversion system

4) A liquid lithium-cooled reactor with a thermoelectric energy conversion system

5) A lower temperature, liquid metal- (e.g., Na, K, or NaK) cooled reactor with a Stirling
energy conversion system
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Based on overall system features including capability, reliability, deliverability, cost, and safety, the
gas Brayton concept (concept #1 listed above) was recommended to Naval Reactors for approval in
Reference (2), which also documented the formal decision process and technical basis for the
decision. Naval Reactors approved the recommendation via Reference (3). The gas reactor system
is likely capable of fulfilling the mission requirements for the envisioned nuclear electric propulsion
(NEP) missions, would simplify engineering development testing and offer the fewest hurdles to
development, and could be extensible to surface missions.

1.3  Project Prometheus Requirements

Following concept selection, NRPCT focused on the pre-conceptual design effort. Definition of the
technical requirements and development of the methods and technologies to meet those
requirements became a primary focus of the pre-conceptual design phase. Evolution and details of
the driving requirements are described below.

Requirements for Project Prometheus progressed from Level O (the overall Exploration Requirements
for NASA) which include the overall NASA mission statement, exploration requirements, and
exploration objectives. The ambitious mission of orbiting and exploring the icy moons of Jupiter was
developed to meet the Exploration Requirements for NASA and to support the “goal of developing the
first reactor-powered spacecraft capability and demonstrating that it can be operated safely and
reliably in deep space on long-duration missions” [Reference (357)]. The Level 1 JIMO Requirements
[Reference (356)] issued by NASA headquarters are the Technology Development and Mission and
Science requirements derived from NASA’s Exploration Requirements at Level 0. The Level 1
Technology Development requirements describe the primary technical goals required to enable a
deep space mission, and the Mission and Science requirements describe delivery of the spaceship to
the Jovian system and operation during the science phase. The Level 1 JIMO requirements formed
the starting point for development of project requirements and conceptual design efforts. Because
some requirements presented in Reference (356) were still preliminary, some items are indicated as
objectives or requiring further review.

The following Level 1 Technology Development requirements drive key Reactor Module requirements:

The JIMO Project shall develop a Deep Space Vehicle for outer solar system robotic
exploration missions that combines a safe, reliable, Space Nuclear Reactor with electric
propulsion.

The Deep Space Vehicle shall have a Payload Accommodation Envelope with a mass
capability of no less than 1500 kg.

The following Space Nuclear Reactor technologies shall be developed for Lunar and Mars
surface power reactors: 1) Nuclear fuel, 2) Reactor core materials and coolants, and 3)
Instrumentation and Control. (This item was indicated as an objective — minimum requirement
not yet defined.)

Multiple studies and analyses were performed to develop and evolve a conceptual spaceship design
to satisfy the Level 1 requirements. These studies, and the Level 1 JIMO Requirements, formed the
basis for Level 2 Multi-mission (Deep Space Vehicle) and JIMO (Mission Module) requirements. The
Level 2 requirements define key functional needs for the spaceship, including the Reactor Module.
Numerous other Level 2 documents detail mission requirements, environments, hardware and
software selection and validation requirements, safety and security requirements, science
requirements, and many other aspects covering the design and validation of the JIMO mission.
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The primary set of non-JIMO specific Level 2 technical requirements was collected into the Multi-
mission Project Derived Requirements, Reference (358). The JIMO specific Level 2 technical
requirements were given in Reference (359). The Level 2 technical requirements which drive key
aspects of the Reactor Module design are listed in Table 1-1. Accompanying each requirement is a
statement of the impact on the Reactor Module. Also provided, where applicable, is a description of
the implementation required to meet the requirement. Electric power output of the Reactor Module is
one of the most important requirements because it ultimately drives system mass, volume, and
operating temperature. See Section 1 of the Plant Pre-Conceptual Design Report, Reference (4), for
more detailed discussion of this requirement.

In addition to the key Level 2 requirements summarized in Table 1-1, many other important
requirements were being considered in evaluating, selecting, and demonstrating design options.
Some of these are listed in the JIMO Deep Space Vehicle Level 3 Key Driving Requirements,
Reference (360): some in Prometheus Project Environmental Requirements Document (ERD),
Reference (361): and others were still being developed. Some of the more important items for the
Reactor Module are listed in Table 1-2, with references as appropriate.

Limits for several parameters such as mass and volume were still being developed in parallel with
other reactor and spaceship design efforts. Although precise values were not defined, failure to
address the limits indicated would result in a design which would overly burden the rest of the vehicle
and could even make design of a viable spaceship untenable.

See Reference (360) for a more complete listing of the driving requirements for the Deep Space
Vehicle, which includes the Reactor Module. The Plant Pre-Conceptual Design Report, Reference
(4), provides additional description of requirements allocation within the project hierarchy.
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Table 1-1: Key Level 2 Requirements, Impacts, and Implementations

Key Level 2 Requirement

Impact on Reactor Module

Implementation

The Space Nuclear Reactor design shall
utilize technologies that facilitate extensibility
to surface operations.

Consideration in the selection of design
and materials compatible with Lunar and
Mars missions.

Must consider compatibility of
pressure boundaries and external
surfaces with surface environments.

The Project shall use a Deep Space Vehicle
that provides jet power greater than or equal
to [130] kW of primary thrust during thrust
periods.

200-kWe Reactor Module power output
required to deliver net thruster power
based on JPL orbital mechanics studies.

Plant Electrical Power = 200 kWe
Plant Thermal Power ~ 1 MWt

The Project shall design the Deep Space
Vehicle to have an operating lifetime greater
than or equal to [20] years.

20 year life is long term requirement for
very deep space missions. The JIMO
requirement is for 12 years.

Initial design efforts to support 15
year operational life.

Long term design goal is to satisfy
20 year life requirement.

The Project shall use a Reactor Module that is
capable of generating the maximum electrical
power required by the Spaceship for
cumulative minimum of [10] years, and is
capable of generating the minimum required
electrical power for the rest of the operating
lifetime.

This requirement permits the option of
reducing power in order to conserve
reactor energy or reduce pressure and
temperature during non-thrust phases.
This may maximize Reactor Module life
for the most demanding follow-on
missions to the outer solar system.

Trade studies would be required to
determine if reduction of power
would improve Reactor Module
longevity.

The Project shall comply with the Prometheus
Single Point Failure Policy as documented in
the Prometheus Project Policies Document
982-00057.

Single point failure locations shall be
avoided. Where this is not practical (e.g.,
reactor), it must be demonstrated that
alternatives to single point failure are not
available and sufficient robustness must
be shown to mitigate risk of failure.

Where practical, redundancy would
be part of the Reactor Module
design.

The Project shall be able to autonomously
detect and correct any single fault that
prevents thrusting in less than or equal to [1
hour]. (Note: Missing thrust during many of
the mission phases severely jeopardizes
mission success, and therefore should be
prevented or minimized.)

This requirement must be considered in
the design of instrumentation and control
for a self-regulating plant and design for
recovery from transients for which the
module would be designed.

Robust and redundant system
architecture for instrumentation and
control.

Automatic recovery from transients
must be considered in system
design.

The Spaceship shall survive without Ground
System commanding for at least [50] days in
the presence of a single failure.

Must consider this, with other autonomy
and single point failure requirements, in
design of the control system.

Design for redundancy and
robustness wherever practical. The
spaceship cannot survive in deep
space for more than a short time
without reactor power.

The Project shall assure that all Science
System hardware in its deployed
configuration, except approved science
hardware, shall remain within the protected
zone of the reactor radiation shield.

Coordination between the shield and
spaceship designs is required to assure
that maximum dose levels are not
exceeded. Shielding of local electronics
will also be required.

Shielding sufficient to reduce
payload neutron flux to 5E10 n/cm2
and payload gamma flux to 25
kRad Si damage and cover roughly
a 12° by 6° cone angle.

The Project shall obtain launch approval as
specified in the Prometheus Launch Approval
Plans.

To meet this requirement, satisfaction of
various governing safety requirements
would have to be demonstrated by
NRPCT and NASA.

Design features will be required to
assure safety. Safety assurance
must be considered during design
of certain Reactor Module
elements.

The Spaceship total dry mass at launch shall
not exceed [25,000] kg.

Minimum module mass is a goal and a
selection criteria for design.

High temperature reactor is required
to minimize overall mass

Note: Values in [brackets] were not firm and thus subject to review.
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Table 1-2: Additional Key Requirements

Requirement Impact on Reactor Module

The Spaceship launch configuration shall be compatible with a | Arrangements and overall sizing must fit within
[5-m] launch vehicle payload fairing (dynamic envelope allocated space inside the fairing. This mainly
dimensions 4.5m diameter, 26m height), or smaller (Ref (360)) | constrains the radiator area, which drives the heat
balance design space of the Reactor Module.
Preliminary studies limited radiator area to less

than 450m°.
The Spaceship shall accommodate the solid particle mission Protection from orbital debris and micrometeoroids
environments defined in {ERD} with a probability of meeting is required, especially of the crucial pressurized

end-of-mission (EOM) requirements greater than or equal to components and moving assemblies.
0.99 ... (Ref (361))

The Spaceship shall be designed to accommodate the Solar, galactic and Jovian radiation sources,
radiation environment specified in the Environmental coupled with reactor radiation, must be considered
Requirements Document (982-00029). (Ref (360)) during electronics selection, shielding trades and

material evaluation.

The Spacecraft Module shall be capable of rejecting [682] kWt | If radiator size is constrained, temperature and

of heat from the Reactor Module. (Ref (360)) flow rate must be maximized to reject sufficient
heat. This impacts the Reactor Module heat
balance.

The Prometheus flight hardware shall be designed and verified | In addition to particle and radiation environments

to meet applicable functional, performance, operation, and described above, the module must withstand

other design requirements without damage or degradation launch loads and other space environments.

when exposed to the design environments specified herein {in | Section 10 has more details about environments.
ERD}. (Ref (361))

During no-thrust periods of Science Orbits, the Deep Space This requirement drives the need for positional
System shall continuously point a Spaceship-fixed vector to stability of the spaceship. Counter-rotating
commanded directions in the target-centric reference frame to | Braytons, or alternate localized means to offset
within 20, 20, and 20 mrad (3 sigma) about the reference frame | angular momentum, might be necessary to

X, Y, and Z axes respectively... (Ref (360)) provide the needed stability.

Note: Values in [brackets] were not firm and thus subject to review.
1.4 Technical Challenges

The Prometheus Project was aggressive from both a mission requirements and a launch schedule
standpoint. The Prometheus mission is demanding due to the long mission duration (up to 20 years),
high electrical power level relative to past space reactor projects (~200 kWe), harsh Jovian radiation
environment (for the JIMO mission), and lack of auxiliary solar power. The SNPP that successfully
meets these requirements must also fit within a launch mass and volume envelope, which was not yet
specified. Four drivers — mass, lifetime, power, and reactor safety — are the primary technical
challenges of the Prometheus SNPP.

In order to generate the required electrical power within a practical mass and volume envelope, the
operating temperature of the SNPP was relatively high. Due to the lack of thermal conduction or
convection capability in the vacuum of space, the reactor must operate at high temperature to
efficiently produce the required level of electric power and to effectively reject waste heat by means of
radiative heat transfer to space. Pre-conceptual design studies assumed a reactor exit coolant
temperature of 1150 K, which is beyond the operating range of conventional reactor core materials.
This temperature was selected to accommodate a radiator area that could fit within the fairing of an
existing launch vehicle and provide a reasonble overall mass while allowing conventional materials in
the Brayton engine and the primary plant piping and heat exchangers. However, temperatures in the
reactor core would be much higher than coolant temperature. Therefore, non-conventional materials
were under investigation for the reactor core, including refractory metal alloys and ceramics. The
mechanical properties of these non-conventional materials were not well-characterized, particularly at
the conditions envisioned for the JIMO mission. Developing well-qualified material properties to
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support a space reactor design effort requires significant lead time for testing and evaluation and
would be a major challenge for the aggressive JIMO launch schedule.

The power level, reactor temperatures, and mission duration envisioned for JIMO led to focusing
reactor design efforts on a small, fast neutron energy spectrum, external reflector-controlled core. A
thermal spectrum core was not considered practical for the long Prometheus operating life because
of: (1) practical difficulties of retaining hydrogen (in water or solid hydride) in a high temperature
system (greater than 900 K), (2) the high thermal neutron absorption in many of the suitable high
temperature structural materials, and (3) difficulties associated with controlling reactivity over core life.
However, it is difficult to qualify materials performance for a fast neutron energy spectrum reactor
because of the lack of nuclear testing and fast spectrum reactor infrastructure in the United States.
The recovery and development of this capability will involve significant cost and require a long lead
time. To address this shortcoming, the NRPCT investigated use of foreign test reactors including
those in Japan (JOYO), Russia (BOR-60), and France (PHENIX). The complexities of international
operations posed additional risk to the aggressive schedule associated with Project Prometheus.

The launch safety analysis for Prometheus reactor design efforts to date have included nominal core
configurations with both dry sand reflection and flooded scenarios. However, launch accidents
involving core re-entry and impact may result in a significant re-configuration of the core geometry,
potentially into a much more reactive condition. Safety rod performance in such a re-configuration
has not been determined. Developing a safety design basis and performing the complex mechanical
and nuclear analyses and testing of a core re-configuration will be a significant challenge for
continued development of a space reactor design.

For the remainder of the plant, the key challenges are the long mission duration, lack of auxiliary
power, and low mass and volume constraints. These requirements can result in contradictory system
design features, and important trade-offs would have been made which include aspects of
redundancy, reliability, complexity, and mass. The candidate plant materials are better characterized
than the reactor core materials but will still require significant testing at the JIMO plant conditions.

Another key challenge is overall system integration of the Reactor Module and integration of the
Reactor Module with the spaceship. A number of scaled, non-nuclear integrated system tests would
be needed to fully characterize the performance of the system and allow for component and system
design optimization. The period of time to design, construct, and perform this series of tests would
need to occur in parallel with materials testing, overall spaceship design, and ground test reactor
(GTR) facility siting and construction. After this series of non-nuclear development tests, final testing
of flight components would also be needed. This pushes the design schedule forward to facilitate
flight unit integration and testing.

System integration requires close coordination with the NASA project lead (JPL) and the spaceship
contractor (Northrop Grumman Space Technology (NGST)) to develop clear mission and component
interface requirements and to ensure that the range of spaceship systems perform in an integrated
manner. This would have required coordination of testing at DOE labs, at NGST and its vendors, at
NRPCT and its vendors, and at NASA Centers. As an example, consider the power conditioning and
distribution (PCAD) system. This was a system for which NGST had direct responsibility because it
was part of the spaceship module. However, it interfaces with the energy conversion system and,
therefore, influences reactor operation. Thus, the reactor system designer must be familiar with the
interface requirements, operational characteristics and potential faults, and how the system is
controlled by the space computer. The need to protect the reactor from some potential PCAD
casualties may have a substantial influence on the PCAD design. Therefore, close coordination on
system interface issues early in the program is a necessity.
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1.5 Gas-cooled Reactor Brayton Concept Description

The gas-cooled reactor Brayton system is depicted in Figure 1-1. It uses a single gas-cooled reactor
mounted at the forward end of the spaceship. An inert gas (a HeXe gas mixture was assumed for
initial work) is used to cool the core and transport energy around or through a shadow shield to the
Brayton energy conversion system. The reactor consists of a core with cylindrical fuel pin elements
arranged within the core structure and a reactor vessel to direct coolant flow and provide structural
support for the core and reactivity controls. Fixed and movable reflector segments are used to control
the fission reaction rate by changing the fraction of neutron leakage that is reflected back in to the
core. Removable, neutron-absorbing safety rods keep the reactor shutdown in the event of a launch
or transport accident. Reactor control drive mechanisms are used to move the reflectors and safety
rods. Gas flows directly over the fuel elements either in an open lattice array or through channels in a
block into which the fuel pins are inserted.

The fuel element concept and the assembly of fuel elements within the core are shown in Figure 1-2.
The elements consist of ceramic fuel pellets, a gas gap to accommodate swelling, a cladding liner to
improve material compatibility, and the cladding which prevents fission gas escape. A fission gas
plenum is typically situated at one end of each fuel element to accommodate the fission gas released
from the pellets without producing excessive clad strain due to gas pressure accumulation. The
elements are attached to the support structure at only one end to allow for differential growth between
the fuel element and the structure. Several refractory metal alloys as well as silicon carbide were
considered for the cladding. Several core configurations shown in Figure 1-3 were also being
investigated prior to project termination. The annular flow block geometry and open lattice geometry
were evaluated more than the other concepts prior to project restructuring. The annular flow block
arrangement allowed for more controlled coolant distribution within the core but results in higher
reactor masses as compared to the open lattice designs. The open lattice designs had the least mass
but the lack of defined coolant channels makes it more challenging to control flow to specific regions
of the core. Another option that was beginning to receive further evaluation at the time of project
redirection was the option for a modular cermet design. The cermet fuel system consists of a
refractory metal alloy matrix and small fuel particles. This approach eliminates the need for gas
plena, improves conductive heat transfer, and could allow for the ability to control coolant flow to
various regions of the core. However, the design is more aggressive than the other concepts
considered and requires optimistic fabrication and performance design assumptions to be mass
competitive.

Table 1-3 provides reactor core parameters for a number of the material and arrangement options
investigated. The table compares reactor cases and their impact on mass and shielding required for
simple changes in system pressure, reactor thermal power, core geometry, and cladding material.
Additional information on all reactor options considered can be found in Reference (5).

The reactor vessel surrounds the core and a combination of fixed and movable reflectors surround the
vessel. The reactor vessel is cooled by the incoming gas to maintain temperatures below material
limits. The coolant temperature supplied to the reactor from the plant is limited depending primarily on
the selection of vessel material, vessel heating rates due to gamma heating, and the configuration of
structures around the vessel that may insulate the vessel. The movable reflector is segmented and
used to control core reactivity to start up the reactor and maintain the desired operating temperature
over life. Instrumentation is provided to monitor neutron flux, temperature, coolant pressure, and
control position. Although the specific procedures for reactor control have not been determined, these
measurements can be used during life to determine when to move the reflectors to compensate for
uranium burn-up or to reduce reactivity during an unexpected transient condition. The reactor uses at
least one safety shutdown rod to prevent inadvertent core criticality during manufacture, assembly,
and transport and to prevent criticality in the event of certain accident conditions which can increase
the reactivity of the core relative to the normal shutdown configuration. The safety rod(s) is required
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during core assembly, transport, and launch; it would be permanently withdrawn prior to startup in
space, once a stable orbit was achieved. Table 1-4 provides a summary of material options and
issues for major Reactor Module components.

The coolant temperature supplied to the plant from the reactor is limited to ~1150 K (1610 F) in order
to allow the use of more conventional materials for the plant and energy conversion system and to
reduce pressure loading on the fuel element cladding. Sample plant arrangements and heat balance
results are shown in Figure 1-4 and Figure 1-5, respectively. The heat balance examples are based
on the preliminary plant parameter evaluations at the time of project closeout; many additional heat
balance examples are available in Reference (4). The hot gas expands through a turbine, which is
connected via a common shaft to a compressor and an alternator. The alternator converts turbine
power into electricity to be used by the on-board ion propulsion system, on-board computers, science
and spaceship health monitoring instruments, and communications systems. After passing through
the turbine, the gas passes through a regenerative heat exchanger (a recuperator) and a gas cooler.
The cooled gas is then pumped back through the recuperator and to the core by the compressor.
Heat is transferred from the gas cooler to the heat rejection system radiators via a pumped liquid loop
(water or NaK). The high frequency, three-phase power coming from the Brayton alternator(s) is
conditioned using the Power Conditioning and Distribution (PCAD) system to provide high voltage to
the propulsion units and low voltage to the computers and instruments. Excess power not used by
the propulsion system or the on-board electrical equipment is shed via a controllable Parasitic Load
Radiator (PLR). The PLR is used as a variable load to compensate for changes in the spaceship
electric load demand and to control the speed of the turbomachinery and resulting electric power
frequency and voltage.
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Figure 1-1: Spaceship and Reactor Module
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Figure 1-2: Notional Core and Fuel Element Configurations
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Figure 1-3: Comparison of Primary Core Geometry Options
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Figure 1-4: Space Nuclear Power Plant System Arrangements?
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Figure 1-5: Example Heat Balances for Single and Multi-Brayton Architecture
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Table 1-3: Parameter List of a Subset of Reactor Case Studies
High Pressure | Open Lattice
Base Case Low Power PCEH-129 PCFD-474 TZM Sic
1 0.5 1 1 1 1
15 15 15 15 15 15
uo2 uoz uo2 uo2 uo2 uo2
Ceramic wiEuo3 | Ceramic w/Euo3
Fuel Form Ceramic Ceramic Ceramic Ceramic Poison Poison
Modular Annular Modular Annular Modular Annular Modular Annular | Modular Annular
Geomelry Flow Block Flow Block Flow Block Open Lattice Flow Block Flow Block
Clad Matanal Mo-47.5Re Mo-47 5Re Mo-47 5Re Mo-47 5Re TZM Sic
Control Devica Sliders Sliders Sliders Sliders Sliders Sliders
|System Pressure (MPa) 2 2 4 2 __g __2
Gas Composition (%He/%Xe) Ta22 78122 7822 78/22 7822 7822
Gas Composition {g/mol) 315 31.5 31.5 315 315 315
Vessel Matenal Alloy-817 Alloy-617 Alloy-617 Alloy-617 Alloy-617 Alloy-617
Block Material Mo-47 5Re Mo-47 5Re Mo-47 5Re N/A TZM SiC
Shield Material Be-B4C-W Be-B4C-W Be-B4C-W Be-B4AC-W Be-B4C-W Be-BAC-W
Tcold - Average (@ nozzle B E_(K) BE0 B80 B80 880 880 880
Thot - Average @ nozzie BE (K] 1150 1150 1150 1150 1150 1150
Dimensions -
Vessal Qutside Diameter (cm) 61.81 49.71 54,55 54 88 61.67 63.32
\Vessel Thickness (cm) 0.48 0.38 0.84 0.43 048 0.46
Vassel Length (cm) 150.6 131.2 130.9 137.2 149 8 1458
Reflector Qutside Diameter {cm) 851 734 78.1 78.45 B5 44 86.9
Fuel Pellet OD {cm) 1.819 2.238 1.72 1.476 1.862 2 057
i 0.022 0.024 0.022 0.021 0.022 0.032
0.051 0057 005 0.135 0.05 0.102
1.965 2388 1.866 1788 2008 2325
Fuel Pellet U235 Loading Density (g U235/cc) 8.26 B.26 8.26 8.26 7.58 7.44
Channel Thickness (MAFB) (cm) or Distance Between Pins (OL) (cm) 0.216 0.188 0.135 0.145 0.213 0.234
Pitch (em) 2.614 2.977 235 1.84 2.213 3.01
Core Volume (L) 135.6 78.48 96.53 880 137. 1459
Number of Pins 288 144 288 402 288 228
Core Fuel Height (cm) 60.8 55.5 533 498 599 61.0
Gas Plenum Height (cm) 31 20 26 26.5 22 1556
Number of Control Elements 12 12 12 12 12 12
Number of Safety Rods 1 1 1 1 1 1
Safety Rod Diameter {cm) 12.72 9.52 11.00 11.98 12985 1517
Shield Thickness (cm) 6603 6671 6739 _ 8607 6617 6591
|Shield Leading Edge D [Dasngreal (CM) 102.68 89.54 04,84 93,32 103.26 104.78
Shield Cone Angle (deqgreas) /12 /12 612 6/12 6/12 6/12
Massas Fa
U235 Fuel Load (kg) 376 256.8 284.9 283 356 344
Reactor (kg) 2078 1360 1731 1340 1793 1432
Additional Reactor Components (kg) 831 544 692 536 717 573
Shield (kg) 648 _ 1334 1520 1511 1665 1681
Total Mass (Rx with Shield) (kg) 4557 3238 3043 3387 4175 3686
2.18 1.58 2.78 2 8l 2.1 2.14
1.49 149 1.49 1.4E 1.48 1.48
Slider/Drum Worth - Most Reactive/Least Reaclive Rod Out (Ap) 0.11 0.14 0.1 0.1 0.13 0.16
Peak EOL Volumetric Fuel Swelling (%] = 4.9 4.1 4.8 5.1 48 38
Metal - EOL Primary Membrane Von-Mises Clad Stress (MPa) 218 252 324 137 444 MNIA
1 1 1 1 1 1
226 266 324 126 481 250
112 1.06 1.10 099 10 1.00
16.6 14.9 19.9 15.8 16.3 17.5
1022 111.9 116.6 BB.B 101.9 1278
264 19.1 33.7 351 256 26.0
16_3_6'_ 1637 1638 1622 B3E B4E
1773 177 1775 1775 769 720
Peak Clad Temp over Life - B E (K} 1275 1262 1232 131 274 284
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Table 1-4: List of Materials Envisioned for Use in the Prometheus Program

Component Material Operating Developmental Concern
Option Condition
Fuel uo; 900-1773 K Swelling/Cracking at Low Fluence/Burn-up/burn-up rate, fission gas release
~10% n/em? rate uncertainty
UN Fission Product Chemistry, fission gas release rate, porosity evolution
Fuel Cladding Nb-1Zr 900-1300 K Creep Capability, Radiation-Induced and Interstitial Embrittlement
FS-85 ~10% n/cm? Phase Stability, Radiation-Induced and Interstitial Embrittiement
T-111 Phase Stability, Radiation-Induced and Interstitial Embrittiement
Ta-10W Radiation-Induced and Interstitial Embrittlement
ASTAR-811C Interstitial Embrittlement, Phase Stability, Fabricability
Mo TZM Irradiation Embrittlement, Irradiated Creep Capability, Fabricability
Mo-47Re Radiation-Induced Embrittlement, Phase Instability
SiC/SiC Hermeticity, Fracture Toughness, Conductive Compliant Layer
Liner Re, W, or W-Re 900-1500 K Embrittliement, Hermeticity, Reaction with fuel/cladding, Neutron Poison
None ~10% n/em? FP attack of cladding
Fuel Spring W-25Re 800-1300 K Radiation-Induced Embrittlement, Relaxation
Ta alloys ~10% nfcm? Radiation-Induced and Interstitial Embrittlement, Relaxation
In-Pin Axial BeO 900-1300 K Irradiation swelling, He Gas Release, "Li Neutron Poisoning, BeO Handling
Reflector ~10% n/cm® Concerns
Core Block Refractory Metal 900-1200 K Fabricability, Neutron Absorption
Graphite ~10%n/cm? Fracture Toughness, C transport to refractory metal fuel
Nickel Superalloy Irradiation Damage, C/O transport to refractory metal fuel
In-Core Structure Refractory Alloys ?ggﬂ fOOzK Fabricability, Radiation-Induced and Interstitial Embrittlement
n/cm
Reactor Vessel Nimonic PE-16 Up to 900 K Radiation-Induced Embrittlement, Creep Capability
Alloy 617 10?" nicm?
Haynes 230
Safety Rod Thimble | Same as Vessel Up to 1050 K Irradiation Embrittlement, Creep Capability
(if used) Refractory Metal 10% nlcm2 Irradiation Embrittlement, Creep, Dissimilar Material Joining
Radial Reflector BeO Up to 900 K Irradiation Swelling and He Gas Release, °Li poisoning, Be/BeO Handling
Be 10" nfcm? Restrictions
Shielding Water Up to 500 K Thermal Management
Be Up to 800 K Be Handling Restrictions during manufacturing
B.C
LiH Neutron and gamma swelling vs. temp. and irradiation
Shielding and Steel or Ni Same Range as
Reflector Canning Superalloy shielding
Titanium Alloy
Loop Piping Alloy 617 300-900 K Maintenance of internal insulation @ 900 K, Joining
Haynes 230 Maintenance of internal insulation @ 800 K, Joining
Insulation Porous Metal or Upto 1150 K Thermal conductivity, Loop Material Compatibility
ceramic
Ceramic Fiber Thermal conductivity, Loop Material Compatibility
Insulation Liner Mo Alloy Up to 1150 K Fabricability, Compatibility with insulation, embrittlement
Superalloy Compatibility with insulation
Turbine Casing In-792 Upto 1150 K Creep Capability, Dissimilar Materials Joining (to piping)
(scroll) Mar-M-247
Alloy 617 or Up to 900 K Requires internal insulation
Haynes 230
Turbine Wheel In-792 Upto 950 K Creep capability, Carburization/Decarburization/Deoxidation
Mar-M-247
Compressor Ti-Al-V 400-600 K Compatibility w/ gas loop
Superalloy
Shaft 1018 Steel 400-900 K
Superalloy
Alternator Magnets | Sm-Co 400-450 K Loss of magnet strength, compatibility with gas loop
Electrical Insulators | Ceramic or Glass | 400-450 K Hermeticity, compatibility with gas loop
Recuperator Core Alloy 625/690 600-900K Thermal Stability at Hot Side Temp, Braze Material concerns
Carbon/Carbon Compatibility with other loop components (C transport), Fabricability
Cooler Core CP Titanium 400-550 K Compatibility with gas and water loops

Alloy 625/690
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2 REACTOR SUMMARY

2.1 Issues and Challenges

As discussed in Section 1.4, the Prometheus mission requirements result in key design issues for the
reactor. The electrical power requirement of ~200 kWe, coupled with a goal to minimize mass, results
in a reactor exit coolant temperature of ~1150 K and a thermal power rating of ~1 MWth. The
Prometheus reactor design effort was focused on a small, fast neutron energy spectrum, external
reflector-controlled core as the most practical way to meet mission objectives. The major issues
identified for the reactor design based on the NRPCT work performed to-date are discussed below.

Material Data and Design Bases

Most candidate reactor materials being considered (refractory metal alloys, nickel-base super alloys,
and silicon carbide) were not well characterized for Prometheus reactor operating conditions at the
onset of the project. NRPCT did begin early to compile available material property data; however,
there were sparse data applicable to Prometheus conditions (e.g., temperature range, vacuum
environment, exposure to He-Xe coolant, irradiation environment, etc.). Extensive material test
programs would have been required to provide data on the wide range of properties required for
design and in sufficient quantities to develop statistically satisfactory databases that provide
assurance of achieving mission objectives. These test programs were being formulated and initiated
early in the program. However, despite these early efforts, it was clear that the design had to proceed
in parallel with material property development to achieve the program schedules. In addition to
establishing a consistent set of design bases for concept comparison, there was also concern
regarding the variation of confidence associated with the assumed properties for the materials under
consideration.

It became evident that the lack of significant material information at the prototypical conditions,
coupled with the complex design space evaluations to date, would result in increased reactor
performance uncertainty. The project schedule was driving decisions before significant material
information was available and before consistent design assessments could be adequately completed.
While the necessary decisions would have been made, the lack of available information creates risk to
the project schedule if initial judgements are shown to be wrong in subsequent testing. The risk can
be mitigated by selecting materials that are less developmental, although it was found that these
generally led to a more massive reactor. The characterization of the candidate materials and efforts
associated with establishing common concept comparisons must be addressed early and factored
into any realistic schedule to support a similar endeavor.

Testing and Testing Infrastructure

The lack of material data and information was further complicated by the lack of domestic fast reactor
testing infrastructure needed to test core materials, as discussed in Volume 1, Section 3.3. There are
no operating fast neutron flux test reactors in the U.S., and the NRPCT was investigating available
foreign test reactors. Material irradiation testing at the JOYO facility in Japan was being pursued
when the project terminated. The complexities of international operations posed additional risk to the
aggressive schedule associated with Project Prometheus.

Plans for critical physics experiments were in a similar situation in that no adequate facility is currently
operating within the U.S., and startup of a new or previously shut-down facility was potentially very
costly and/or had significant schedule disadvantages. There are currently no operating domestic
critical experiment facilities to support physics testing using more than 50 kilograms of highly enriched
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uranium (HEU). Two types of critical experiments were anticipated: clean benchmark experiments to
qualify neutron cross sections and engineering mockups to qualify the nuclear design and nuclear
design methods.

The Los Alamos National Laboratory (LANL) Critical Experiment Facility (CEF) in Test Area 18 (TA-
18) was initially selected to perform a series of clean benchmark critical experiments on core
structural materials. These experiments would be used to establish an initial estimate of the
uncertainty in the nuclear calculations that underly all core design performance and safety estimates.
One experiment was performed before the facility was shut down in July 2004; LANL was not able to
resume critical testing before the termination of Project Prometheus work. At the time of project
termination, domestic capability (i.e., operation of the new Critical Experiment Facility in the Device
Assembly Facility (DAF) at the Nevada Test Site) to perform critical experiments with large quantities
of fissile uranium fuel was not expected to support the JIMO launch schedule. The only other known
operating facilities of this type are in Russia.

The Zero Power Physics Reactor (ZPPR) at the Idaho National Laboratory (INL) was previously used
to assemble engineering mockups for fast reactors. The ZPPR facility was placed in a cold standby
status in the 1990s, and the projected cost to restore it to operation was very expensive. Similar
facilities exist in Japan, France, and Russia but were not evaluated before the project was terminated.

Reactor Safety Design Basis

Reactor safety and reactor fuel safeguards need to be an integral part of the reactor development
process. Designing the core to ensure public safety during all phases of assembly, transport, and
launch, including potential launch casualties, was a key part of the NRPCT development strategy. A
key reactor safety challenge is to ensure public safety in the event of an impact following a launch
accident. Preliminary structural dynamic evaluation indicates that all of the envisioned core
arrangements will substantially reconfigure upon impact. Considerably more modeling and testing
would be needed to fully understand the potential of criticality and energy release during impact as
well as to evaluate potential design features to ensure safety. Integration of dynamic core
deformation models with dynamic reactor physics calculations was being initiated at the time of
project closeout.

2.2 Summary of Work

The primary focus of the reactor design efforts following the selection of the direct gas Brayton system
included:

1. Establishing reactor design bases to facilitate consistency among the concepts under
consideration.

2. Providing the basic definition of the reactor design, culminating in a Pre-Conceptual Design
Report [Reference (5)] to support material development, manufacturing development, and
overall system conceptual design.

Initial versions of reactor pre-conceptual design bases were submitted to Naval Reactors for approval
in June 2005. These design bases began to lay the ground work for what would have become the
detailed documentation of the basis and reasoning behind the various aspects of the space reactor
design. In parallel with the design basis efforts, the NRPCT began evaluating the reactor design
space. The goal of the reactor Pre-Conceptual Design Report was to provide definition for the reactor
to support overall plant optimization studies, test development, material procurement, and
manufacturing development. The report documents the results of the design studies and key
conclusions and insights achieved at the termination of the NRPCT design effort. The report also
describes key aspects of the Prometheus reactor pre-conceptual design studies, including:
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= Reactor core material and geometry concepts
= Core reactivity control concepts
= Pressure vessel concepts
= Reactor operation assessments

Miscellaneous design-related considerations, including:
- Core manufacturing

- Launch safety

- Assembly, test, and launch operations

- Reactor design qualification testing

A key goal of the pre-conceptual design phase was to select the reactor fuel type. This early decision
was needed to avoid the additional costs associated with development of multiple fuel types over an
extended period of time. Additionally, it was believed that the fuel type recommendation could be
made somewhat independently of the clad/liner material recommendation. Therefore, in July 2005
the NRPCT recommended uranium dioxide (UO) as the fuel for the reactor design vice the alternative
uranium mononitride (UN) fuel Reference (6). A discussion of the advantages and disadvantages of
each fuel type can be found in Section 3.1.

The use of UO; results in a 300 to 500 kg mass penalty on the Reactor Module relative to similar UN
concepts. The selection of the higher mass option was based on greater confidence in successfully
delivering a reactor with UO, in the available time frame before the launch of JIMO. There was
insufficient confidence that the issues associated with UN fuel could be resolved to support a 15-year
mission, as discussed further in Section 3.1.3. UN fuel was previously proposed for the SP100 space
reactor program in the late 1980s and early 1990s. While the SP-100 design had similar burnup and
temperature performance goals, it had a shorter target mission duration (7 vs. 15 years) and short fuel
specimen test duration (2 years). The SP-100 UN fuel system was never fully developed. There is a
much more extensive operational database for UO, than for UN, although the data were obtained at
non-prototypical depletion rates and temperature gradients. Subsequent to this decision, Prometheus
reactor design efforts focused on the gas reactor core alternatives with the UO, fuel system.

The NRPCT core design space evaluation included assessments of a variety of reactor clad and liner
materials, a number of different core geometries, two basic fuel forms, and various poisons. Core
concepts were developed for each configuration and analyzed to ensure that they would meet
nuclear lifetime requirements, have acceptable control swing and temperature coefficients, provide
safe shutdown while flooded or surrounded by sand, provide adequate cooling to maintain fuel
element surface and centerline temperatures within limits, and provide adequately low core pressure
drop. External reactivity control device evaluations focused primarily on the comparison of axial
sliders versus rotating drums but also included evaluations of other control device options.
Evaluations for the pressure vessel and core structurals focused on assessing whether it was feasible
to use conventional materials or whether refractory materials would be necessary for the design.
While the primary focus of the design evaluations was on fast neutron spectrum reactors, there were
also some limited evaluations performed on moderated core concepts. A description of the reactor
configuration is provided in Section 1.5.

Reactor Materials Alternatives

The required core operating temperatures determined which materials were considered for the reactor
design. While nickel-based superalloy materials can be used in the lower temperature regions of the
reactor plant, such as the pressure vessel, refractory metal alloys and ceramic SiC were considered
for application in the higher temperature regions of the reactor due to their strength and high
temperature capability. The high temperature regions include the fuel pin liner, fuel element clad, and
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the core structure in block geometry concepts. A detailed discussion on reactor core material issues
can be found in Section 3.2. The discussion that follows describes the use of these materials in the
core design.

The refractory metals considered for use include molybdenum (Mo), tungsten (W), rhenium (Re), and
a variety of alloys containing these metals or other alloys based on niobium (Nb) or tantalum (Ta). In
addition to high strength, some refractory metal alloys absorb thermal neutrons and help keep the
core shutdown in accident scenarios that involve flooding and surrounding the reactor with water
and/or wet sand. When the fast neutron spectrum core is flooded or reflected, neutrons do not leak
out of the reactor as readily and reach lower energy levels via scattering with hydrogen and oxygen
atoms. This would increase the core reactivity level because the more neutrons are available to
fission with U-235 and the probability of fission increases by orders of magnitude. As a result, the
core could become supercritical with core flooding and/or burial upon earth impact following a launch
accident. Some of the refractory metal alloys exhibit a “spectral shift” poison characteristic in which
the parasitic neutron absorption cross section is relatively low at high neutron energies (e.g., during
normal operation), but is much larger at lower neutron energies (e.g., for a flooded, moderated core
during a launch accident). This increased neutron absorption plays an important role in meeting the
accident flooded shutdown reactivity requirements for reactor cores designed with refractory metal
alloys. However, it was determined that the same effect could also be achieved by dispersing rare
earth poisons within the fuel system. The use of the dispersed poisons can enhance the optimization
of the reactor design since the added poison can be set solely to meet shutdown requirements, unlike
some refractory metal alloy concepts where mechanical performance limits may set the amount of
metal and the attendant spectral shift poison exceeds shutdown requirements.

While refractory metal alloys were being considered due to their high temperature capability, there
were some significant materials issues to be addressed. Among these were irradiation embrittlement,
interstitial embrittlement from trace amounts of carbon, oxygen, and nitrogen transferred by the
coolant, fabricability, and thermal stability of the microstructure. Past testing has indicated that
chemical compatibility with fission products is generally good for pure Mo and W. However, some
alloying constituents and base metals can be reactive with fission products or fuel, requiring
engineered liners for implementation. The use of a liner between the fuel and clad results in a more
complex fuel system that is potentially more difficult to manufacture and may be susceptible to liner
failure. The liner can provide additional benefits to the reactor design such as providing spectral shift
poison depending on the liner material that is selected.

Silicon carbide (SiC) was assessed as a core structural material alternative to refractory metal alloys.
SiC is a low-density material with high temperature capability. This provides the potential for reactor
mass savings, especially in concepts that contain a significant amount of core structural volume.
Silicon carbide is very resistant to corrosion and is stable in a radiation environment. It is also
expected to be compatible with the nickel-base superalloy materials envisioned for the reactor vessel
and the remainder of the reactor plant. Silicon carbide has very low neutron absorption cross sections
and, therefore does not exhibit the spectral shift poison characteristic of refractory metal alloys. Thus,
neutron poisons must be added to the design to help meet launch accident shutdown requirements.

Two separate forms of silicon carbide were considered for use in the Prometheus reactor. The
monolithic form can provide a hermetic seal to retain fission gases, but is a brittle material and design
studies to assess its mechanical performance capabilities require a statistical design basis in lieu of a
more traditional deterministic design basis. The composite form is high strength and not considered
brittle, but the failure modes and methods required for structural evaluation are outside the experience
base of the NRPCT and were still being researched at the time of termination of NRPCT involvement.
In addition, it may not provide a hermetic seal. For the fuel pins in the concepts developed, monolithic
and composite silicon carbide are used together to form a “duplex” clad structure to provide both
hermeticity (monolithic) and strength (composite). A compliant layer of a material such as crushable
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sub-dense graphite may be placed between the fuel and cladding to allow for fuel swelling while still
providing adequate conductivity.

While there are advantages associated with the use of silicon carbide in reactor designs, there are
engineering development issues. For silicon carbide, mechanical design performance and associated
analysis methods as well as fabrication and joining issues are the expected engineering challenges.
Additionally, silicon carbide is susceptible to oxidation and chemical attack from some fission products
(palladium) and may require a barrier layer between the fuel and clad. The use of a compliant layer
and/or barrier layer between the fuel and clad results in a more complex fuel system that is potentially
more difficult to manufacture and may be susceptible to barrier layer failure.

Reactor Geometry Concepts

Several core geometry concepts were assessed during the pre-conceptual design phase. Each has
advantages and disadvantages. The primary concepts evaluated are shown in Figure 1-3. Two of
these geometries, annular flow block and open lattice, tend to bound the design capability of the
geometry alternatives that were evaluated. Additional geometries such as a modular cermet block
core, a plate core, and composite block core are discussed in more detail in the Pre-Conceptual
Design Report.

The open lattice configuration with open flow channels between fuel rods has the least amount of
structure within the core. This results in low overall reactor mass and low flow resistance. However,
this design may be more susceptible to flow induced vibration, increased uncertainty in flow
distribution, and mechanical distortion of the fuel.

The annular flow block configuration places each fuel pin within a flow guide block structure. This
provides a defined flow annulus around each fuel pin and a high area fraction (and volume) of
structural material inside the core. The material area fraction and volume in the annular flow
geometry becomes important in the design because of the extra mass and neutron absorption of this
material. This design is potentially the most mechanically robust and has the least uncertainty with
respect to cooling due to the well-defined flow channels that can be orificed to control flow.

The selection and optimization of reactor geometry requires a tradeoff between competing
requirements for thermal, mechanical, safety, and nuclear performance. In addition, many factors
such as manufacturing and design uncertainty also need to be considered.

Reactor Safety

Design of the Prometheus reactor and safety systems is crucial to ensure that the public and
environment are protected from undue risk. Launch safety is of special concern and must be assured
over the period from installation of the SNPP into the launch fairing to launch into a stable orbit and
depending on mission specifics, any action that could result in the Reactor Module returning to Earth.

In addition to the environmental concern regarding dispersal of toxic materials in the event of a launch
accident, there are two key nuclear safety challenges: (1) safeguarding the highly enriched uranium
fuel in the event of re-entry following launch and (2) preventing an inadvertent criticality during a
launch accident. An aeroshell was expected to be used to limit the velocity of impact and to keep the
core intact and recoverable in the event of a launch accident.

The core concept evaluations included requirements to demonstrate shutdown reactivity for both a
fully water flooded and a dry sand-reflected reactor to ensure that the reactor remains subcritical
before its intended startup. The shutdown requirements at this early stage of the analysis were based
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on past practices and engineering judgement. Additional effort was planned to define the shutdown
requirements. Several engineering features were included in the design to ensure that the reactor
remained safely shutdown, including spectral shift neutron absorbers and removable safety control
rods. Preliminary mechanical assessments indicated that the core geometry would reconfigure during
reentry and impact following a launch failure. The effects of core reconfiguration had not yet been
accounted for in the core design when the project was terminated. An experimental program was
envisioned to obtain data that could be used to more rigorously determine reactor performance
characteristics.

2.3 Key Findings and Perspectives

The Reactor Pre-Conceptual Design Report [Reference (5)] summarizes the results of the NRPCT
reactor engineering efforts in progress at the termination of Naval Reactors work on Project
Prometheus. This report does not provide a single, recommended material or design. Results are
provided, observations are stated, and issues are highlighted for future designers that may undertake
a design similar to the ones evaluated.

Of the materials and design options evaluated, there was no clear and definitive choice at the time of
project termination. The variety of primary options that were evaluated is shown in Figure 2-1. As
shown in the figure, the reactor and shield mass ranged from 3000 kg to 5000 kg. With additional
design optimization and material data, it is expected that a viable concept could be selected and
would result in a reactor and shield mass near the mid-point of this range. All of the options had
areas of promise and challenges with varying degrees of development and cost. A reasonable design
space appears to exist with a wide range of potentially viable concepts if the design basis material
properties are validated. However, not all options have equal prospect to produce a working reactor,
and judgments need to be made to balance cost, risk, and potential performance to select a pre-
conceptual design for further development.
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Figure 2-1: Mass Estimates for a Range of Core Materials and Configurations
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High level observations with respect to the reactor concept design space evaluations include:

= All concepts identified by NRPCT were preliminary and would require further evolution to
become a workable, long-lived core design that would satisfy the Prometheus mission
requirements (10 to 20 years at 200 kWe). Satisfactory materials, concepts, and engineering
methods that met all design objectives had not yet been identified for all reactor components.
The JIMO core operating conditions would have placed unprecedented demands on the
nuclear fuel system. None of the fuel systems identified has operated at conditions and
lifetimes comparable to those envisioned for JIMO. The plan to develop, test, and deliver a
reactor to confidently provide the JIMO power, energy, and calendar life requirements for
launch by 2015 as envisioned by NASA was a success-based plan. A significant setback in
siting test facilities, completing Environmental Impact Statement requirements, materials
performance, etc., could have impacted schedules, operation, or performance of the plant.

= Analytically, all of the fuel element, material, and geometry options have comparable
performance characteristics, and each contains specific benefits and challenges. For
example, the open lattice design concepts were typically lower mass than annular flow block
concepts; the open lattice concept also has relatively more thermal hydraulic performance
uncertainty and potential for flow induced vibration. Also, designs that used rare earth poisons
mixed directly with the fuel are typically lighter than concepts that use a rhenium cladding liner
for the same purpose; however, the use of the rare earth poisons at the levels assumed is
developmental. Overall, distinctions between concepts would have had to have been drawn
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based on judgments about the feasibility and potential for actual performance. Data to
characterize concept feasibility and performance are limited.

The mass of the reactor and reactor radiation shield combination is very sensitive to the
overall dimensions of each reactor concept (diameter, length), the configuration of the fixed
reflectors and control devices (drums vs. sliders), and the proximity of the core to the shield.
These factors may differentiate concepts in mass as much as variations in the mass of the
reactors alone.

No final decision was made regarding segmented, axially translating reflector sections
(“sliders™) versus rotating drums for reactivity control. Sliders offer a lower mass system and
closer to a linear differential control worth. Control drums offer a simpler and more rugged
control mechanism design, but have reduced control worth relative to sliders. Most of the pre-
conceptual reactor nuclear and mechanical design work assumed sliders.

Reactor thermal hydraulic performance is challenging due to the need to maintain a low
reactor core pressure drop to maximize energy conversion system performance and to reduce
the uncertainties associated with the gas convective heat transfer coefficient. The heat
transfer coefficient uncertainty associated with the He-Xe mixture has a potentially large
impact on the fuel element temperatures. The temperature rise in the coolant and the
resultant metal temperatures are shown in Figure 2-2. The temperatures shown are for a
refractory metal alloy Annular Flow Block (AFB) design targeting a peak fuel temperature of
1773 K. The low heat transfer coefficient for HeXe coolant results in a 200 K temperature rise
from the coolant to the clad for typical designs. Single element and Reactor Module array
tests were planned to better understand the gas convective heat transfer coefficient.

Figure 2-2: Fuel Temperature Profile
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The reactivity behavior of fast spectrum reactors is more sensitive to core mechanical
distortions than in conventional light water reactors. Reactivity feedback characteristics are
difficult to determine for fast reactor systems since they depend mostly upon subtle and small
changes in the geometry of the reactor structure due to thermal expansion. Detailed and
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linked calculations would be needed to couple thermal, structural, and nuclear reactivity
effects. These calculations would need to consider dynamic temperature distributions to
account for the time lag in the reflector structure temperatures responding to reactor
temperature changes. Sufficient work was not completed to adequately assess if any
concepts under consideration possessed an advantage with respect to the reactivity feedback
characteristics and reactor control.

* The reactor pressure vessel was assumed to be constructed of a nickel-base superalloy to
mitigate compatibility issues associated with the anticipated energy conversion system
materials. Sufficient work was not completed to assess whether a super-alloy would be a
satisfactory pressure vessel material under the design conditions.

= A key core mechanical design hurdle is incorporation of one or more drywells for safety rods.
A central drywell may be difficult to cool and may therefore have a higher temperature than the
reactor vessel. In addition, the drywell has high fluence due to its proximity to the fuel. These
issues increase the challenge associated with using nickel super-alloys throughout the reactor
pressure boundary. In conjunction with further development of the thimble design, alternatives
such as in-vessel safety control devices (eliminating the need for drywells) were being
considered.

= All of the options considered have varying degrees of applicability to different missions
dependent on the energy, power, lifetime, and other mission parameters. Since the project
remains in the initial stages of development, a re-evaluation of the technology choices would
be prudent for any significant mission changes. This re-evaluation would include reassessing
the decision on the optimum reactor and energy conversion combination. The choice would
be specific to the mission requirements including power level, operational requirements, cost,
and schedule.
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3 MATERIALS SUMMARY

Development, qualification and delivery of materials to support a Prometheus reactor plant were
considered the most difficult technical and programmatic challenges for the Reactor Module.
Generally, few materials were previously qualified in the Prometheus design space, necessitating
wide ranging materials testing, analysis and modeling. Although not the only difficult testing required,
irradiated materials testing was likely the longest lead time and most manpower and cost intensive
area of materials development. Fuel, core structural, reflector, and shield materials all required some
irradiated materials testing. Early decisions were necessary to limit the scope of the testing to be
achievable despite very limited data in many cases. Other types of challenging tests were needed,
including tests of the chemical compatibility of different materials in contact with the same coolant
flowstream. Each of these tests could produce results that would eliminate the material from further
consideration or significantly impact the design.

Generally, the materials planned to be used in a Prometheus application were to be subjected to: (1)
long time (up to 20 years) at high temperatures; (2) moderate to high neutron fluences (10%' - 10%
n/cm?at energies greater than 0.1MeV) for materials in front of the shield; (3) chemical attack from
other plant materials; and (4) no ability to inspect or repair plant components during the mission. In
addition, material choices must be made that limit SNPP mass.

Key NRPCT documentation on materials can be found in References (21) through (58). Final
summary reports for Reactor Module materials investigations were generated for fuel materials
[Reference (36)], structural materials [Reference (21)], shield materials [Reference (35)], and reflector
materials [Reference (33)].

3.1 Fuel Materials

A dense, compact fuel system facilitates a smaller overall reactor. Fission products must be retained
or managed such that there are no adverse chemical or radiological impacts on plant materials and
electronics. Minimal fuel reconfiguration (e.g., the shifting of cracked fuel pellets or excessive
irradiation swelling) is desirable because of potential associated effects on core reactivity, mechanical
performance, and heat transfer. In addition, the fuel element components must be chemically
compatible with each other and fission products. Behaviors important for reliable operation of a fuel
system include the following:

» Gas release and swelling- gaseous and solid atoms are created during the fission process,
increasing the volume of the fuel and pressure within a fuel element

= Total burnup- higher burnup means more fission products (solid and gaseous) and more
potential for damage to fuel and clad materials

= Fission rate- higher fission rates increase the fuel operational temperature along with the
mobility of atoms within the fuel, resulting in increases in fission product escape and chemical
activity leading to corrosion

» Temperature and temperature gradient- larger temperature gradients enhance fission product
diffusion leading to escape from the fuel and possible interaction with the liner/clad, along with
increased stresses in the fuel that could enhance cracking

» Restructuring- primarily a function of temperature and fission rate, is when the fuel
microstructure changes, reducing thermal conductivity, and releasing fission products

= Chemical compatibility of the system alone and with fission products- high operational
temperatures along with fission product chemical activity can lead to fuel element corrosion
resulting in cladding breach and release of fission products into the coolant

= Fabricability- an economical, repeatable process is desired
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= Ability to survive launch loads and subsequent thermal cycling- a robust fuel system that does
not suffer damage during launch (e.g., cracking) is desired

The current understanding of these behaviors along with the approaches to resolve open issues are
described in detail in Reference (36) and are summarized below.

3.1.1 Issues and Challenges

The most significant challenge for Prometheus fuel materials is the long mission time at elevated
temperature and low fission rate. These conditions are significantly beyond the range of all
commercial reactor designs (see Figure 3-1). Therefore, the necessary irradiation and compatibility
data for Prometheus do not exist. While time often is not modeled as a primary variable compared to
burnup, temperature, and fission rate, it is an important consideration when extrapolating accelerated
materials testing and when drawing on the use of known correlations for predicting fuel performance
parameters. In particular, compatibility, mass transport, and fuel element performance correlations
generally are tested at accelerated time to assess physical phenomena such as thermal creep and
diffusion. In addition, changes in restructuring behavior at low fission rates can affect gas release and
swelling behaviors in some fuels and must be accounted for properly.

Figure 3-1: Comparison of Fuel Element Residence Times
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A general comparison of commercial experience and the Prometheus concept relative to the range of
burnup and fission rate illustrates two important considerations. First, the inventory of fission product
is within commercial experience, and testing has taken burnup rates to significantly higher values.
The concern for Prometheus relates to the ability to retain the fission products within the fuel system
for the duration of the mission. Second, the lower fission rate reduces temperature gradients in the
fuel and gives credence to the possibility for reduced fission product mobility and engineering
solutions, such as using liners, thicker clad, or cold plenums. However, testing will still be required to
resolve issues related to higher temperature and lower fission rate operation not available from
commercial reactor experience.
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3.1.2 Summary of Work

The main goal of the pre-conceptual design phase was to select the reference fuel system, which
includes the fuel material, fuel form, liner material, and clad material. The fuel material, UO;, was
recommended. An assessment of the other fuel system decisions was started but not completed due
to the termination of NRPCT involvement in the project. This section discusses the fuel material and
form; the clad material assessment is discussed in Section 3.2.

In order to select fuel material, work focused on several significant areas, including assessment of fuel
performance literature and codes, evaluation of approaches for obtaining new fuel performance
information, and determination of the ease of fabricability of fuel materials. Initially a variety of fuels
(metallic, UZrH, UO,, UN, UC/UC; and UCO) were considered; however, the choice was quickly
narrowed down to UN and UO,. Metallic and hydride fuel were eliminated because of lower melting
temperatures and poorer dimensional and chemical stability compared to ceramics of uranium. UC,
UC,, and UCO were eliminated primarily due to higher swelling and gas release than UN, and less
ability to retain fission products compared to UN and UQO,.

World experience with a variety of oxide fuel systems gave confidence in the ability to manufacture
UO; fuel in a variety of configurations and correlate with available performance data. However, UN
fuel had some material properties that offered potential performance advantages over UO,. For
example, UN demonstrated higher uranium densities (nominally 12.7 g U*%/cm?® vs. 9.1 g U**/cm® for
UO,) leading to a more compact core. UN also has a much higher unirradiated thermal conductivity
which reduces the thermal gradient across the fuel (reduces risk of cracking) and reduces peak
temperatures (lower temperatures reduce corrosion activity increasing element life). It was important
to investigate UN for these potential advantages while exploring some of its key disadvantages, such
as no commercial manufacturing base and a much smaller irradiation performance database. In
addition, UN does not retain solid fission products as readily as UO, and is more highly reactive with
potential cladding materials. Resurrecting the UN fuel fabrication processes from historical, shutdown
programs such as SP-100 was a concern for the NRPCT and became a priority for determining the
feasibility of using UN for a Prometheus reactor. Initial re-establishment of the manufacturing efforts
was successful enough to minimize this as a concern in the fuel selection process, and performance
data was gathered and compared for the final two fuel options.

Since a reactor configuration (specifically, fuel element design) was not yet selected, another factor in
fuel material selection was its flexibility to support a variety of fuel forms. Fuel forms, such as pellet,
CERMET (ceramic fuel in metal matrix), and TRISO (coated particle fuel) configurations were
considered to meet the Prometheus conditions, and designs were compared based on weight and
performance confidence. Table 3-1 summarizes the pros and cons of a variety of initial fuel
configuration options and gives the initial assessment for development. Additional discussion for each
is provided below:

* TRISO-coated particle fuel, successfully used in previous high-temperature reactors and in the
Japanese High-Temperature Test Reactor (HTTR), is an option considered to be developed and
demonstrated (“off-the-shelf’) for high-temperature gas reactors. One drawback is the lower fuel
loading density in TRISO particles, which increases the core size and mass. Conceptually,
however, the commercial TRISO fuel systems can be modified to obtain a long life core, possibly
up to a burnup of ~8% fission of initial metal atoms (FIMA). A long-life TRISO-based fuel should
not be considered off-the-shelf; development and verification are required.

TRISO fuel is considerably more attractive for a moderated core concept because a moderated
core is not as dependent on high fuel loading. With TRISO geometry to contain fission products
and swelling, burnup could be pushed to higher levels. Design parameters and methods for
TRISO fuel forms were not in the preliminary design basis for Prometheus due to concerns of the
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correspondingly larger sized cores. Late in the project, concepts were being evaluated that used
a moderating medium to reduce fuel loading, such that some effort on determining the extensibility
of TRISO fuel and potential performance was warranted.

Table 3-1: Pros and Cons for Fuel Options

Fuel option Primary Pros Primary Cons Initial Decision
Uranium Chemical stability Fission gas release Investigate for
Dioxide (UO,) | Moderate swelling Pellet cracking fast and for
Pellet Established database moderated core
Most stable fission products option
Uranium High U density High swelling Investigate for
Nitride (UN) Fission gas retention Potential nitrogen instability fast reactor
Pellet Rare earth fission products not
generally nitrides
Uranium High U density High swelling Do not investigate
Carbide (UC, Potential chemical instability Data suggests
UC,, UCO) Fission gas release higher risk than
Pellet Least stable fission products UO, and UN
Cermet UO, Fission product retention Low fuel density Investigate for
Chemical compatibility with | Fabrication fast reactor
most matrix candidates
Cermet UN Moderate U density Chemical incompatibility with Do not investigate
Fission gas retention most matrices the DOE Office of
Scientific and
Technical
Information
database
Metallic Highest U Density Temperature limited Do not investigate
Distortion limited
TRISO Off the shelf Plant sizing-not attractive energy | Consider for
Demonstrated for > 3 years | density for 15 year core Moderated core
at desired temperatures option and
extensibility
UZrH Prompt feedback Temperature limited Do not investigate
Moderation H Migration the DOE Office of

Not attractive at high power
density and high temperatures

Scientific and
Technical
Information
database

= CERMET fuel elements, in which a granular ceramic fuel material is dispersed within a continuous
metallic matrix, have been evaluated for space nuclear reactors since the 1950s due to several
potential advantages. The advantages include higher effective thermal conductivity relative to
other uranium-containing fuels, superior fission gas retention capability, enhanced mechanical
stability, and minimized fission recoil damage of cladding materials. Unfortunately, there is little
published work to verify or quantify the improvements in these areas for CERMET systems.
Furthermore, there are also tradeoffs, primarily in the relatively low maximum attainable fuel
density in a matrix, which may lead to larger core size and potentially high parasitic neutron
absorption in the metal CERMET matrix.

Initial design philosophy for CERMET fuel was to assume a hermetically-bonded cladding with no
fission product release from the element and no fuel growth. It was expected that even under
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these ideal assumptions the system would not be attractive on a mass basis compared to pellet
fuels. If a compelling concept was developed, an effort to determine realistic long-term
performance would be pursued to assess the maximum loading, better define the fuel growth and
assess the probability of fission product release. Using these ideal assumptions, core design
analysis showed that a cermet design appears to be mass competitive. More realistic cermet
properties would need to be developed to better evaluate cermet-fueled core concepts.

» Most of the reactor concepts considered used pellet fuel, because it offered the highest uranium
loading. However, the major disadvantages are that the pellet has a limited barrier to fission gas
release, swells under irradiation, and has a potential for cracking. Swelling and cracking can
cause pellet clad interactions, and, under some circumstances, lead to fuel element failure via
mechanical, thermal, or chemical means. Fission gas release was accommodated by a gas-
expansion plenum within the fuel element to limit gas pressure and reduce clad stresses. The
fission gas plenum increases reactor length and possibly shield mass. Annular pellet designs can
accommodate fission gas and reduce swelling forces without increasing fuel element length, but at
the expense of average fuel density and the aforementioned potential for reconfiguration.

With the aggressive delivery schedule for Prometheus-1, development of UN and UO, fuel
manufacturing was pursued in parallel with fuel element material selection. Both pellet and CERMET
options were considered but initial fabrication efforts were concentrated on pellet fuel since the
majority of core design studies used pellets. Confidence was high that UO, pellet fabrication would be
successful due to the large manufacturing base. In addition, with the success of LANL in fabricating
UN pellets, there was confidence in UN manufacturing, albeit with stricter and more costly
environmental controls. Design studies suggested that incorporating rare earth oxide spectral poisons
in the pellets may be necessary to prevent criticality in the event of reactor re-entry and earth impact
following a launch accident (as discussed in Section 2.2). Incorporation of rare earth oxides (Gd,03)
has been demonstrated in the open literature for UO, fuel. Thermodynamic studies were performed
for UN suggesting that such incorporation is possible but additional development and experimental
verification is required.

Scoping studies for fuel element manufacturing had commenced for both block cores and fuel pin
designs. Common concerns include environmental controls for refractory metal alloy welds, avoiding
dissimilar welds of a refractory metal alloy to a Ni-base superalloy, and criticality concerns with sub-
assemblies. Manufacturing techniques were reviewed with a number of potential vendors (LANL,
ORNL, BWX Technologies, Inc (BWXT), Global Nuclear Fuels (GNF), and others). Automation for the
manufacturing of fuel element assemblies using UO, pellets was demonstrated by GNF. The
techniques and robotic equipment to automate fuel assembly are demonstrated for PWR materials
technology and could provide a cost estimate basis for producing final rod designs for Prometheus. If
this technology is pursued, it would have to be adapted to handle highly enriched uranium and non-
conventional materials such as refractory metals and ceramic cladding for Prometheus. The degree
of automation used by GNF far exceeds that needed for Prometheus (a process line such as that
used for commercial fuel can press enough pellets for a Prometheus core in a few minutes).
However, the integrated welding and quality control methods at GNF are of interest. Consideration
was also given to manufacturing of UN pellet fuel assemblies at LANL in the event that UN was
selected. The environmental controls associated with handling UN increase the complexity of UN fuel
element manufacturing when compared to UO,-based elements.

Performance data for candidate materials were being gathered to support the selection of fuel and
fuel system materials. A combination of approaches was envisioned to obtain additional relevant

information including examination of existing irradiated material, use of computational techniques,
bench-top testing, and new irradiation testing.
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Obtaining fuel performance data in a timely fashion was a significant challenge due to long lead times
associated with new irradiation test programs (test design, specimen fabrication, duration in reactor,
and subsequent examinations) and the abbreviated schedule allotted for reactor development. To
abbreviate this cycle, and potentially save costs, a search was conducted for existing materials that
had been irradiated under conditions similar to Prometheus and could be examined. Several sources
of fuel were investigated, including low fission rate blanket fuel from US reactors, Japan Nuclear
Cycle Development Institute (JNCDI) and Japan Atomic Energy Research Institute (JAERI) fuel,
Nippon Nuclear Fuel Development Company (NFD) fuel, Advanced Gas Reactor (AGR) fuel from the
UK, and specimens from the SP-100 space reactor program.

While US blanket fuel from fast reactors and PWRs has fission rates of interest, the fuel came with
many drawbacks (e.g., age and condition, the majority of it was mixed oxide fuel, inherent cost of
regulated handling and disposal) which were judged to exceed the value of the potential data.
JNC/JAERI fuel, irradiated at low fission rates (though higher burnup than Prometheus), and
additional fuel owned by NFD were more promising options available for NRPCT. Examination of this
fuel could provide important data, including microstructural characterization to locate the fission
products, annealing studies to determine fission product release, and annealing and temperature
transient studies to characterize swelling and cracking. The possibility of obtaining data from UO,
AGR fuel, which has a similar burnup but a slightly higher fission rate, was considered but never
pursued due to termination of NRPCT participation in the Prometheus project.

Removing the irradiated UN SP-100 fuel specimens from long-term storage for examination was
considered, but not pursued due to many uncertainties about pin conditions and possible costs
associated with future disposal of cask contents under newer, more restrictive regulations. However,
the NRPCT also learned about JNC/JAERI UN specimens that could be obtained for examination.
Although the density of these UN specimens was lower than desired for Prometheus, they could be
useful for obtaining valuable irradiated thermal conductivity measurements. As with the AGR fuel, the
JNC/JAERI UN was not pursued due to termination of NRPCT participation in the Prometheus project.

Computational materials techniques were also employed to predict fuel performance data for both UN
and UO, fuels. These techniques were used to predict irradiated thermal conductivity of UN and were
planned to help discern fundamental reasons for a difference in the gas release behaviors between
UN and UO,. Thermodynamic calculations were used to increase understanding about the stability of
solid fission products in UN; however, due to insufficient ternary compound data, the analysis was
incomplete. Additional calculations were planned to approximate the data needed for more complete
thermodynamic analyses. Bench-top compatibility tests with fuel element materials, and fission
products and/or simulated fuel specimens were planned.

To guide compatibility studies, fission product yields for a fast reactor prototypical of Prometheus were
calculated using the RACER Monte Carlo neutron transport computer code and reported in Reference
(29). While the fission product inventory is the same for UN and UO, fuels, the chemical state of the
products varies greatly. Therefore the chemical reactivity of these fission products is dependent on
the primary fuel. Reviews of experimental data along with thermochemical analyses to identify fission
products most likely to impact the system were performed.

A preliminary set of relationships for the irradiated behavior of fuels was established for use by
designers [Reference (28)]. Upper and lower bound relationships were extrapolated from the
available higher burnup, faster fission rate data, however many properties need to be updated with
data obtained for Prometheus operating conditions. To assist in predicting Prometheus fuel element
behavior existing codes, such as FRAPCON-3 and URANUS, were evaluated. They did not readily
apply to Prometheus designs because of their empirical dependence on PWR data. However, the UK
code ENIGMA for AGR fuel, though not fully evaluated, may have provided a more realistic model for
fission gas release because the operating conditions are closest to designs for a Prometheus reactor.
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3.1.3 Key Findings and Perspectives

Based on the investigations discussed above, UO, was selected as the fuel material for the
Prometheus reactor. Given the aggressive delivery schedule and lack of development time, it was
judged not possible to sufficiently retire the risks associated with the delivery of a UN based reactor to
meet the long, high-temperature operation. UN offered too many material interactions with potential
fuel element materials and did not confine a majority of the expected fission products in the fuel
matrix. In addition, questions about its stability during operation and increased uncertainty in existing
irradiation data were important aspects that would have needed to be addressed with irradiation
testing. There is a potential risk that these issues cannot practically be resolved for long-term
operation of UN at Prometheus temperatures. UO,, on the other hand, presents a significantly more
well-known fuel system. It has well-documented performance with several clad materials, ties up
many of the fission products in oxide and intermetallic compounds, and is not expected to dissociate
under Prometheus reactor conditions because of the strength of the U-O bond. The options available
to engineer UN fuel elements to last the duration of the mission (e.g., utilize thick or multiple clads)
posed large increases in reactor mass, with continued uncertainty in the compatibility performance.
UO, therefore became the most appropriate fuel solution.

There are significantly less data available for UN than for UO, and very few data fall within the
operational space of the Prometheus reactor. Furthermore, the existing data have high associated
experimental error because the fuel test temperatures are calculated based on coolant temperature.
Obtaining more accurate test data would be a high priority if UN were pursued. For these reasons,
selected UN studies (e.g., compatibility) were to continue in the event that a UO, system did not meet
mass requirements or possibly to support later missions.

Although UO, was recommended as the fuel material, it should be noted that the resurrection of the
LANL SP-100 UN fabrication process is important for the consideration of UN for future space reactor
projects. After being dormant for over 10 years, the SP-100 UN fabrication process was used
successfully by LANL to produce SP-100 grade UN with the exception of the grain size, due to
furnace limitations at the time. As a result, UN pellet fabrication concerns were not considered to be a
deciding factor between UN and UO, for fuel selection. Production of UO, was still expected to be
less costly and developmental than UN fuel production.

As discussed previously, several techniques were employed to obtain performance data for candidate
Prometheus reactor materials. Existing irradiated fuel was evaluated and determined to be a potential
source of fuel irradiation performance data, and irradiation test plans were developed to fill in the gaps
in the existing performance data. Preliminary correlations for fuel materials properties were compiled
for design use. Computational materials approaches were taken to predict fuel performance behavior
and compatibility. Despite these efforts, however, many issues still remain about fuel performance
under Prometheus conditions, including:

= Insufficient irradiation data at low fission rates, high temperatures, and low burnups to develop
design relationships

Reducing the uncertainty in the existing UN database

Experimental verification of UO, restructuring behavior

Determination of the best relationship for fission gas release from UO,

Alleviating uncertainty in UO, swelling calculations

Long term chemical compatibility of fuel, fission products, and fuel system materials

If NRPCT involvement in Project Prometheus had continued, additional efforts would have focused on
gathering information to alleviate these concerns.
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3.2 Core and Plant Structural Materials

Reliable operation of components for the reactor and energy conversion plant requires well
understood properties of structural materials. There are three categories of materials for structural
applications in the Reactor Module: fuel cladding, core structure (e.g., core block, structural joints),
and pressure boundary (e.g., reactor vessel, piping, plant components). The material classes
pursued for structural applications included refractory metal alloys, nickel (Ni)-base superalloys,
titanium (Ti)-base alloys and silicon carbide (SiC). Refractory metal alloys and SiC were considered
primarily for fuel cladding due to their high-temperature strength and creep resistance. In addition,
refractory metal alloys were considered for both core structure and the pressure vessel. Ni-base
superalloys were considered for the pressure vessel and a majority of the plant components due to
adequate temperature capability, an overall good balance of properties and an established industrial
manufacturing base for fabricating complex components such as heat exchangers and turbines. Ti-
base alloys were considered for lower temperature plant components to reduce mass.

As discussed in Reference (21), structural material behavior that is important for reliable performance
includes:

=  Thermal creep in multiple product forms, such as thin-walled tubing, thin sheet, thick plate and
rod or bar

Fatigue/creep-fatigue resistance

Creep crack growth resistance

Resistance to irradiation effects such as creep, swelling and embrittlement

Resistance to environmental degradation from:

- Fuel, fission products, and transmuted elements

- Impurities inherent to the helium/xenon gas

- Transport of impurities from other spaceship components

- Space vacuum
= Resistance to microstructural phase instability upon thermal exposure
= Good fabricability for: '

- Thermomechanical processing of complex shapes

- Welding and post-weld thermal annealing

- Dissimilar metal joining

3.2.1 Issues and Challenges

As discussed in Section 1.4, the Prometheus mission requirements result in key materials challenges
for the Reactor Module. The electrical power requirement of ~200 kWe, coupled with a goal to
minimize mass, results in a reactor exit temperature of ~1150 K that limited the reactor materials to
refractory metal alloys and silicon carbide. Initial materials selection considerations assumed that the
upper temperature limit of these materials would be determined by creep, chemical interactions with
the coolant, and minimum ductility or toughness requirements. No single material was expected to
satisfy all requirements, requiring combinations of materials and skillful engineering to achieve the
final design of the fuel assembly and core structural components.

A wide variety of candidate materials were considered based on the pre-decisional operating
parameters established for the reactor, shielding and energy conversion systems. Prior work on the
SP-100 program focused on Nb-1Zr fuel cladding, but a review of the data revealed unsatisfactory
creep properties for the JIMO mission requirements and uncertainties in the data. Compatibility
between the fuel and fuel cladding was a significant issue as most Ta- and Nb-base alloys degrade in
the presence of small amounts (ppm) of oxygen and nitrogen and chemical liners between the fuel
and cladding would have been needed. Molybdenum and SiC may be more chemically compatible
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with the fuel, potentially avoiding the complications associated with the SP-100 fuel liner. Refractory
metal alloys and silicon carbide exhibited more than adequate thermal creep resistance at high
temperatures, while nickel-base superalloys were satisfactory for the pressure vessel at temperatures
up to 900 K. Core structural materials would have to possess sufficient toughness to survive launch
loads and thermal transients during operation. More conventional structural materials were advocated
for the plant due to an established industrial experience with fabricating complex components such as
heat exchangers and the turbines from nickel-base superalloys and stainless steels. Ti-base alloys
were also considered as a means to reduce mass. All of the materials considered were susceptible to
degradation by radiation damage, thermal aging and chemical interactions with the fuel, working gas
impurities and space environments. Joining of similar materials is well established, but challenges
with dissimilar material joints would have required extensive research, especially for use at elevated
temperatures. Significant materials testing and development programs were planned to measure and
quantify the material limitations for designing the space reactor system. The following is a list of key
issues from References (21), (25), and (31).

Nickel-Based Superalloys

= Require an environment with sufficient oxidation potential to create and maintain a protective
surface oxide

= Relatively low (~900 K) upper limit service temperature based on thermal creep concerns

= Grain boundary embrittlement due to radiation-induced solute segregation and/or production of
helium at elevated temperatures

= Microstructural phase instability leading to degradation in mechanical properties is more likely
as the number of alloy constituents increases. Ni-base superalloys tend to have more
constituents than refractory metal alloys.

= Embrittlement of dissimilar metal joints upon joining and during service

Refractory Metal Alloys
= General concerns

- Susceptible to radiation-induced hardening and embrittlement at T<0.3 of the melting point
(800 to 1100 K, depending on the alloy).

- Possibly susceptible to radiation-induced solute segregation and production of detrimental
elements through neutron transmutation reactions that lead to phase instability and
embrittlement. Transmutation of Re to Os was a possible concern.

- Microstructural phase instability leading to degradation in mechanical properties.

- Embrittlement of dissimilar metal joints upon joining and during service

= Alloy specific concerns
- Taand Nb-based alloys (e.g., ASTAR811C, Ta-10W and FS-85)
= High susceptibility to interstitial embrittlement by carbon, oxygen and nitrogen.
Impurities may be derived from start-up and other system materials such as Ni-
base superalloys. Coatings and/or environmental controls may be required.
= Ta becomes highly activated when irradiated and could hinder ground unit
testing

- Mo-base alloys (e.g., MoRe)

= Forms a volatile oxide that is not protective at high oxygen potentials.

= Re increases Mo ductility, but there are thermal phase stability issues with
47.5% Re. Lower Re-content alloys (e.g., Mo-41Re) are marginal for
fabricability.

Silicon Carbide Materials
= General concerns
- Require an environment with sufficient oxidation potential to create and maintain a
protective surface oxide
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- No significant NRPCT experience with analysis tools and ability to set performance limits
- Require a probabilistic design approach

- Lower thermal conductivity than metals

- Joining of SiC to dissimilar materials is not well established

= Material form specific concerns

- Monolithic form - Low fracture toughness and component strength will be inversely
proportional to the size of the largest flaw

- Composite form — Improved fracture toughness, but work would be needed to understand
whether service loadings could result in matrix cracking
(While the component would still have structural strength after such cracking, there is a
concern that SiC particles from matrix cracking could enter the coolant and/or result in a
loss of hermeticity).

3.2.2 Summary of Work

Extensive experimental test programs were in progress when NRPCT’s involvement with the
Prometheus project was terminated. These included irradiation test programs at the High Flux
Isotope Reactor (HFIR) [Reference (22)], located at ORNL, and at a Japanese fast test reactor, JOYO
[Reference (32)]. The ORNL study compared thermally aged refractory metal alloys to materials
irradiated at high temperatures in HFIR. Thermally aged samples of ASTAR-811C, T-111, FS-85,
Mo-41Re and Mo-47.5Re were exposed for 1100 hours, equivalent to the comparable radiation
samples at temperatures 25 K above the expected irradiation temperature to account for
uncertainties. These exposures represented 1% of the mission thermal life and 10 to 20% of the end
of life fluence. The HFIR experiments revealed irradiation embrittliement concerns for Mo-Re alloys
(see Figure 3-2) and inconclusive results for FS-85 after 1% of the thermal exposure and 10% of the
irradiation exposure expected for the JIMO mission. No microstructural characterization of any
irradiated material or mechanical testing of Ta-based alloys T-111 and ASTAR-811C were obtained
as the program was terminated prematurely. The transmutation of Re to Os occurs more readily in
the thermal neutron spectrum of HFIR. The HFIR testing simulated an accelerated Re to Os
transmutation effect thereby showing the potential materials behavior under long time exposure in a
fast reactor. Thermal aging studies at ORNL that complemented the HFIR studies (1% of the JIMO
thermal exposure) revealed a loss of ductility for Nb-based FS-85 and Nb-1Zr alloys as well as Ta-
based T-111 [Reference (55)]. Initial microstructural characterization provided a preliminary
explanation for the thermally-aged FS-85 behavior; embrittlement of FS-85 resulted from the
precipitation of ZrO, and other Zr-rich compounds at the grain boundaries. Additionally, T-111 and
Nb-1Zr exhibited an increase in precipitation along grain boundaries with an increase in thermal aging
temperature. Chemical analyses of the aged materials were consistent with the proposition that the
loss in ductility in these alloys was due to precipitation. These results could preclude the use of
tantalum- and niobium-base alloys in lithium-cooled reactors. Removal of the reactive elements Hf
and Zr could allow their use in gas-cooled reactors, but further work is needed both to confirm the
effect and to validate the remedy. Finally, the most complete data were obtained for the Mo-Re alloys
where the tensile ductility was reduced after irradiation, Figure 3-2. In most cases, low energy,
intergranular and transgranular fracture morphology was dominant.

Irradiation testing of Ni-base superalloys was planned but not conducted. However, due to the known
susceptibility of Ni-base superalloys to radiation-induced embrittlement the NRPCT was considering
investigation of nuclear grade Ni-base and Co-base alloys as a method to mitigate radiation-induced
embrittlement by reducing helium generation and solute segregation.
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Figure 3-2: Effect of Thermal Aging and Neutron Exposure on Mo-Re Alloy Elongation
Summatry of total elongation for (a) Mo-41Re and (b) Mo-47.5Re after out of pile thermal aging and
neutron exposure at HFIR as a function of irradiation and test temperature. Both materials exhibited
radiation-induced embrittlement [Reference (22)]
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Environmental degradation programs were addressing concerns on the mass transport of impurities
such as carbon and oxygen from nickel-base superalloys to refractory metal alloys that would promote
mechanical property degradation of both materials [Reference (37)]. ORNL conducted
thermodynamic calculations for Alloy 230, Alloy 792, Nb, Nb-1Zr, Ta, Ta-1Hf and Mo. These
calculations indicated a sufficient driving force for the mass transport of carbon from Ni-base
superalloys to refractory metal alloys that would most likely result in embrittlement of the refractory
metal alloys and the decarburization and loss of mechanical properties of the Ni-based superalloys.
These results indicated the need for more sophisticated modeling that would include reaction kinetics
and system geometry. Experimental verification of potential mass transport effects was underway
with three different experimental techniques. Capsule tests would have been conducted in static gas
environments to screen for major effects. Once-through flowing gas loop tests would have evaluated
the kinetics of elemental uptake and release under more representative conditions. Recirculating gas
loop tests were being initiated at ORNL and Bettis to generate well-controlled conditions,
representative of the actual system, under which extensive evaluation of dissimilar materials behavior
could be performed.

Mechanical testing had focused initially on obtaining additional creep behavior on refractory metal
alloys and re-establishing high vacuum test facilities [Reference (189)]. Little useful data were
obtained as most of the effort was expended on establishing test capability from systems that had not
been used in many years. Although only subtle differences in microstructure were noted, the initial
results indicated that the creep resistance of tube material was inferior to that of heavily rolled sheet.
Therefore, the results did underscore the need to obtain properties from material with the appropriate
processing history.

Joining studies focused primarily on dissimilar metal joining processes of solid state joining and
brazing with the intent of minimizing the formation of embrittling intermetallics at the interface. A solid-
state joining feasibility study was conducted at the Edison Welding Institute that showed promising
results using inertia welding to join refractory metal alloys to Ni-base superalloys. NASA Glenn
Research Center began a feasibility study to better understand the kinetics of intermetallic formation
between refractory metal alloys and Ni-base superalloys, but little progress was made due to program
termination. Both NASA-GRC and NRPCT pursued the use of an interlayer to hinder interdiffusion
between dissimilar metal alloys to prevent the formation of embrittling intermetallics [Reference (50)].
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3.2.3 Key Findings and Perspectives

The selection of the Direct Gas Brayton system represented a significant challenge to the
development of materials due to the unique operational requirements of a high-temperature gas
reactor. In general, structural material choices based on existing data would have required additional
design tradeoffs to minimize lifetime risks. Materials testing and development programs were
underway and planned to determine material limitations as statistically significant data were lacking,
especially under prototypical conditions. The aggressive schedule limited initial materials selection to
those that would require minimal development and design decisions likely would have been made
with incomplete data, increasing the risk to the budget and schedule.

3.3  Shield Materials

Materials selections are based on providing both materials with low atomic mass to attenuate
neutrons and materials with a high electron density (e.g., tungsten) to attenuate gamma radiation.
The shield is a combination of these materials carefully arranged to reduce both the neutron and
gamma doses with minimal overall mass. Some of the candidate materials are damaged or changed
by the radiation (e.g., structural swelling and chemical degradation) and testing is necessary to
characterize these effects well enough that they can be accommodated in the shield design. At the
time of project restructuring, the five primary shielding materials were being considered: beryllium
(Be), boron carbide (B,C), tungsten (W), lithium hydride (LiH), and water (H,O) with neutron absorbing
material dissolved in it. Materials engineering efforts were planned to complete the materials studies
for these promising shield materials.

3.3.1 Issues and Challenges

At the time of program restructuring, a final low mass neutron shielding material had not been chosen.
Lithium hydride and H,O were being considered, but both required irradiated materials testing. The
cost and delays associated with this testing, as well as the possibility that neither material would be
found acceptable, were a concern. Generally, one of these materials was considered necessary to
ensure a low mass shield could be incorporated on a Prometheus reactor plant. However, even if
both materials were ultimately eliminated, the remaining primary materials were judged to be sufficient
to design a shield with a modest mass penalty—depending on the design. The challenge with LiH
was understanding and mitigating the irradiation-induced material swelling. For H,O, the challenge
was corrosion of a containment vessel over the long life of the shield. One complication with water
was that neutron absorbers likely would be needed in the water, e.g., lithium as LiOH, or boron as
boric acid. These chemicals were expected to make the task of understanding the corrosion of a
water/containment vessel much more challenging than for a pure H,O system.

No significént issues or developmental challenges were noted for Be, B,C or W, except that Be is
considered toxic, and controls would need to be in place to ensure safe handling.

3.3.2 Summary of Work

The NRPCT completed detailed literature reviews of LiH, and Be. In the case of LiH, the results of fifty
irradiated materials tests that were conducted over the past ~50 years were reviewed and evaluated.
The focus of much of this testing was irradiation-induced swelling. The NRPCT also performed
quantum mechanical modeling of irradiated LiH, as well as statistical studies of the prior experiments
and other research. The NRPCT developed a hypothesis as to why LiH swelled (up to 25%) in some
cases, but not significantly in other cases (e.g., <2%). The NRPCT hypothesized that LiOH
contamination of the LiH may have accelerated the irradiation-induced swelling. Therefore, eliminating
the LiOH contamination and repeating some of the prior tests along with detailed characterization was
planned, but not executed. This information is included in Reference (34).
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In the case of Be, the literature review indicated that little if any irradiated materials testing would be
needed for this material. Detailed studies of B,C, W, and H,O were not performed. Studies of shield
structural or other (e.g., insulating) materials were not performed.

3.3.3 Key Findings and Perspectives

The primary materials were judged to be sufficient to design a Prometheus shield—excluding
structural materials, etc. Although detailed design studies are required to accurately estimate the
mass of shields, the LiH and H,O based shields were both expected to be similar in mass, and lower
mass than virtually any other alternative. The foremost pre-conceptual shield concepts included: (1) a
Be/B4C/WI/LiH shield; (2) a Be/B4C/W shield; (3) and a Be/B4C/H,0O shield. Since the shield design
and materials studies were still preliminary, alternative materials (e.g., "B or '°B metal) were still
being screened, but at a low level of effort. Each of the above three shield concepts was judged to be
mass competitive for a Prometheus application, and detailed design studies were needed to
understand the final masses of each.

Key findings on each of the candidate materials are provided below. Further information can be found
in Reference (35).

Primary Gamma Shielding Materials:

Tungsten was recommended as a primary gamma shielding material. Tungsten has well known
shielding properties, is readily available, manufacturable, and relatively inexpensive. Tungsten is
commonly used in irradiation testing as a gamma heating material, with no significant material
degradation noted. It is not expected to require any materials development. A complete literature
search on this material should be performed to ensure there are no gaps in the material properties
that warrant testing.

Primary Neutron Shielding Materials:

Beryllium provides some gamma attenuation as well as neutron moderation (slowing down of fast
neutrons, which is critical to shielding effectiveness) but not absorption. A beryllium slab at the front
of the shield may also be beneficial as: (1) a mounting plate for the aeroshell; (2) a potential housing
for neutron detectors; and/or (3) a heat removal device. Beryllium is a commonly used reflector
material, with extensive irradiated materials data in the literature. From a manufacturing standpoint,
large, high quality Be slabs up to ~114 cm diameter are commercially available.

Boron carbide is a high-temperature material that provides some gamma attenuation as well as
neutron moderation and excellent thermal neutron absorption. Boron carbide is a commonly used as
a neutron absorber, especially in light water reactor control rods. As such, it has been irradiation
tested extensively. High quality plate is commercially available and relatively inexpensive, but
fabrication issues were not fully investigated, and depending on the fabrication method chosen, some
confirmatory irradiated materials testing may be required.

Lithium hydride provides excellent neutron moderation and absorption, and is very low density (~0.8
g/cm®). ORNL shield material screening studies identified that all minimum mass shields included
LiH. However, irradiation-induced swelling was identified as a key issue for LiH. The NRPCT
completed a literature review and analysis (including quantum mechanical modeling) of LiH, focused
on swelling [Reference (34)]. It was observed that either casting or out-gassing the LiH reduced
swelling in prior tests; however, this was not conclusive. The NRPCT hypothesized that LiOH
contamination is contributing to the swelling; however, further unirradiated and irradiated materials
testing and engineering evaluation are required to clarify LiH swelling mechanisms.



Prometheus Project Reactor Module Final Report SPP-67110-0008
VOLUME 2: Technical Summary Page 2-41

Pure H,O is an excellent neutron moderator, but without the addition of a neutron poison (e.g.,
dissolved boric acid and/or lithium hydroxide) neutrons would be absorbed by H atoms releasing a
gamma ray and reducing shield effectiveness. Therefore, the NRPCT and ORNL evaluated H,O
systems with dissolved neutron absorbers, which are routinely used in operating reactors to control
reactivity and in safety systems to ensure reactor shutdown. The differences between these systems
and the space reactor shield environment must be evaluated in detail to determine the viability of H,O
for use in the space shield design. For instance, no chemistry monitoring or corrections are
envisioned for the spaceship. A key issue is corrosion of the containment system over the mission
duration (12 years for the JIMO mission, up to 20 years for other Prometheus missions). Effort should
focus on defining an overall system that provides the desired neutron attenuation characteristics, and
has the lowest likelihood of having significant corrosion concerns. Radiolytic decomposition of the
water is also a concern. As with LiH, irradiated materials/system testing would likely be required.

3.4 Reflector Materials

A large fraction of neutrons (greater than 30 percent) would leak from the small, fast spectrum nuclear
reactors being considered. A neutron reflector was used to optimize the design. A combination of
stationary and movable reflectors around the reactor core was being considered for reactivity control.
An ideal reflector material would reflect leaking neutrons back into the core without absorbing them,
would not be significantly damaged by core radiation, and would be very low mass. Figure 1-1 and
Figure 1-2 in Section 1.5 show the reflector in the Reactor Module arrangement.

The two materials studied in depth by the NRPCT, which appear to have the most promise in a
Prometheus type reflector application, are Be and BeO; however, toxicity concerns would necessitate
safety controls (primarily during the manufacturing process). Three alternative materials, magnesia
(MgO), alumina (Al,O3), and magnesium aluminate spinel (MgAl,O,4) were recently identified in
reflector studies as having similar reactivity control swing performance as Be and BeO in a
Prometheus-type application. However, each of these alternate materials are denser than Be and
BeO, and therefore are expected to increase reflector mass. They also cause a difference in the
power distribution within the core and changes to the reactor kinetics parameters. Further,
isotopically enriched "'B,C provides similar reflector performance with a comparable mass to a Be or
BeO reflector. The issue with ''B,C is that the material must be highly enriched in "'B and may
require irradiated materials testing, which could be prohibitively expensive. Due to program
res1t1ructur|ng detailed literature reviews were not performed by the NRPCT for MgO, Al,O3, MgAl,O,,
B,C.

3.4.1 Issues and Challenges

The reflector essentially surrounds the reactor, and was expected to be approximately 10 to 12 cm
thick. As such, it represents a large volume, and therefore, choosing the lowest density material is
important to keeping the overall spaceship mass low. Berylhum was the lowest density material being
considered (~1.85 g/cm®), BeO was the next lowest (~2.9 g/cm ), and the other alternatives were
somewhat denser than BeO, except that ''B,C was ~2.5 g/cm®.

Ideally, the reflector material would be strong enough to support itself; however, only Be was
potentially suitable as its own structure, and that was uncertain. Therefore, structural and canning
materials must be identified in conjunction with the reflector materials.

The material properties for Be are largely known, whereas gaps in the properties of BeO relative to a
Prometheus application were identified. If BeO were selected, testing would need to be performed,
which was likely to require significant effort and several years to complete. Of particular interest was
the irradiation-induced swelling of BeO, which affects mechanical stability and would need to be
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accommodated to some extent in a BeO reflector design. This was a significant issue, since the
literature indicated that many BeO specimens had disintegrated or fractured, likely due to swelling.

Toxicity concerns for Be and BeO were also evaluated. Generally, machining of Be-bearing materials
requires significant controls; however, if the parts are fabricated, cleaned, and handled carefully,
adequate controls could be established with reasonable effort.

Due to Prometheus program restructuring, the NRPCT did not study the alternative reflector materials
in detail, and therefore significant testing may be required. However, it was expected that the toxicity
issues would be lower with these materials.

3.4.2 Summary of Work

A detailed pre-conceptual design information document was issued that provided a material property
compilation for Be and BeO [Reference (30)]. Beryllium oxide specimens were planned to be
irradiated in the JOYO Japanese test reactor to partially fill the material property gaps, but more
testing in the High Flux Isotope Reactor (HFIR) test reactor at Oak Ridge National Laboratory (ORNL)
was expected to be needed. A key issue for BeO was reducing the current commercially available
grain size from ~10 to ~5 micrometers to both improve irradiated material properties (e.g., irradiation-
induced swelling) and allow the use of historic irradiated materials test results in the literature
(lowering the extent of required testing and therefore cost of using this material). A subcontract with
Brush Ceramic Products (BCP) produced ~7 micrometer grain size BeO [Reference (33)]. The BCP
subcontract also produced material properties for the current state of the art ~10 micrometer BeO
material, BW-1000.

3.4.3 Key Findings and Perspectives

A summary of the findings from the Be and BeO reflector materials studies is presented below.

Beryllium
Unirradiated and irradiated material properties are largely known and discussed in Reference (30).

Beryllium is the lowest density candidate material (~1.85 g/cm®) and has a melting point of ~1558K. It
can be considered for structural application, but is known to irradiation embrittle at relatively low fast
fluences (~7.5x10%° n/cm?’E>1 MeV). Beryllium reflectors tend to be somewhat thicker than BeO:
however, the significantly lower density can make them a lower mass alternative to BeO. Detailed
studies must be performed to determine the best material.

Beryllium Oxide ,

In addition to the external radial reflector, BeO was also evaluated as a fuel element axial reflector
(within the fuel element) because of its very high melting point, ~2840 K. Following a detailed
literature review and analysis, material property data gaps for these applications were identified
[Reference (30)]. Most of the data available was from the 1950s and 1960s and correspond to
different grades of BeO (i.e., impurity content, processing, grain size). The grain size of BeO strongly
affects the irradiation properties (primarily swelling). A contract was placed with Brush Ceramic
Products to procure BeO specimens for material property testing, including efforts to reduce their
standard material (BW-1000) nominal grain size from 10 to 5 micrometers—7 micrometers was
achieved after three attempts. Results of this contract are discussed in Reference (33). Specimens
were planned to be tested at various fluences [13 — 51x10% n/cm? (E>0.1MeV)] and temperatures
(850K and 1050K) in the JOYO test reactor. Irradiation testing of BeO was also planned in the HFIR
at ORNL. The focus of these irradiation tests was to determine irradiation swelling, irradiated thermal
conductivity and irradiated compressive strength.
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A plan was developed with Brush Ceramic Products to safely handle BeO test specimens planned for
irradiation testing. This plan, described in Reference (33), included loose surface contamination
limits, cleaning procedures, Be detection methods and packaging/shipping requirements for BeO test
specimens. A key outcome from this planning was that BeO specimens could be handled safely
provided no actions are taken that would produce loose BeO particulate (e.g., no grinding, machining,
etc.).

3.5 Irradiation Testing of Fuel, Fuel Elements, and Structural Materials
3.5.1 Issues and Challenges

To support the development of a fuel system and core and plant materials as well as to generate the
necessary design and performance data for Prometheus, a comprehensive irradiation test plan was
developed. Based on testing needs, aggressive timing, and available test facilities, the NRPCT
formulated a plan that included existing facilities and developmental facilities in the United States as
well as existing foreign facilities. Most of these tests were at aggressive temperatures and required
extensive test specimen and test capsule development.

3.6.2  Summary of Work

Fuel Performance Testing

The ATR MICE Facility was to be used for conducting key fundamental performance testing of UN
and UO:zfuel pellet testing. Irradiation temperatures from 1400 to 1600K were planned with burn-ups
up to 4 (UO,) to 10 (UN) x10® fissions/cc pellet. Test hardware designs were being created for
testing UN and UO, specimens in the MICE test facility. Achieving prototypical conditions and
minimizing temperature uncertainties were key facility goals for these tests. The details of this testing
can be found in Reference (23). Specific details on test specimen fabrication are provided in
Reference (24). Additional testing in the MICE facility was expected to support either fundamental
fuel element testing and/or additional fuel performance testing.

Fuel Element Testing

Facility assessments were being conducted to determine the best way of irradiation testing of
prototypical fuel pins. Initial scoping efforts focused on assessing the feasibility of testing in a new or
modified facility in the ATR, the proposed Materials Testing Station being developed for the LANSCE
Facility at LANL, and the JOYO reactor. A high priority goal for the program was to establish a means
of obtaining fuel element performance irradiation data in time to support key recommendations and
decision dates. A standard facility that conducts this type of testing does not currently exist. Based
on programmatic experience, the best testing option to initiate testing in the soonest practical amount
of time involves use of uninstrumented drop-in-type capsules. Various facilities that were under
consideration included the ATR, HFIR, and some research universities. Locations in the ATR under
consideration included the I-Hole or B-Hole positions in the ATR reflector region, MICE Secondary,
and finally Loop ICE. In HFIR, the RB (removable beryllium) position was under consideration.

In assessment of the ATR for instrumented facility options, a conceptual nuclear model of a facility
with a modified thermal spectrum was developed which incorporated a “dry well” test configuration in
an inactive (South) flux trap. This concept has been referred to as MICE/ITV hybrid and is essentially
very similar to the gas test loop being developed by the Advanced Fuel Cycle Initiative (AFCI, DOE-
NE), except this concept does not include booster fuel. This facility would include gross fission gas
and temperature monitoring. Initial studies showed such a facility could be created to provide a
modified thermal neutron spectrum which minimizes transmutation concerns for the candidate



Prometheus Project Reactor Module Final Report SPP-67110-0008
VOLUME 2: Technical Summary Page 2-44

fuel system materials, with the exception of rhenium. However, preliminary thermal assessments
indicate that such a facility may require a high volume flowing gas (helium) system to cool the test
hardware and specimens. It is estimated that this type of facility could be available for fuel element
testing in early 2009.

Another option for testing fuel elements in an instrumented facility involves creating a test vehicle that
would be installed in the ATR I-Hole locations. This would be a type of drop-in test train, surrounded
by booster fuel, which would also utilize gross fission gas and temperature monitoring. This test
vehicle, however, would be inserted directly in the ATR process water instead of using a

“dry well.” The ATR process water would be in direct contact with the test hardware and should
provide sufficient cooling for the test hardware. Rough estimates indicate this test vehicle could be
available for testing by mid-2007. Transmutation concerns with the fuel systems test materials need
to be evaluated. The ATR contractor (BEA) completed a limited conceptual feasibility study of the I-
Hole facility.

In addition, the LANSCE MTS was being considered for fuel element testing and was currently
deemed to be a contingency action. Concerns with the less than prototypical test environment of a
spallation facility, along with the project funding and schedule uncertainty made this a back-up
platform.

Finally, efforts were underway to ascertain whether fuel element testing can be conducted in the
JOYO reactor. While the prototypic test environment (fast spectrum) makes this a desirable test
platform, potential complications of obtaining approvals for testing fuel abroad and JOYO reactor
licensing requirements lead to scheduler uncertainties that make this option less attractive than the
ATR option for near term testing. Efforts were being pursued to ascertain whether conventional
schedules for this type of testing could be accelerated.

Core and Fuel Element Structural Materials

For testing representative structural and fuel materials, two primary testing initiatives were pursued,
one at the High Flux Isotope Reactor (HFIR) located at ORNL and the second at the JOYO
Experimental Reactor (operated by the Japan Atomic Energy Agency, JAEA) in Japan.

The first structural materials irradiation test was the Pathfinder series in HFIR [Reference (22)]. HFIR
offers a modified thermal spectrum that can be useful for testing select structural materials. The
Pathfinder testing generated rapid, low-fluence information on refractory metal alloys (FS-85, ASTAR
811C, Mo-47.5Re, Mo-41Re, T-111). The post irradiation examinations (PIE) of these specimens was
completed in December 2005 and summarized above.

The second structural materials test program involved the JOYO Experimental Reactor. This facility
was planned for testing core, fuel system, and shielding structural materials under more prototypic
fast neutron spectrum conditions [Reference (32)]. This was a unique effort which involved the
NRPCT designing, assembling, and delivering test capsules to JAEA for insertion in the JOYO
reactor. Specimen fabrication for the JOYO-1 test campaign had begun [References (52), (53), and
(54)], and the disposition of those samples is listed in Reference (52). An assessment was underway
to determine the PIE plan which included selecting where the PIE should be conducted (totally in
Japan, totally in the United States, or a combination). Two additional structural materials testing
campaigns in the JOYO reactor were also planned to support qualification and confirmatory test
objectives. Issues related to waste and shipping, primarily associated with JOYO, as well as
international testing experiences can be found in References (27) and (38).
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3.56.3 Key Findings

The NRPCT developed a test strategy to understand fuel behavior and performance using an existing
ATR test platform in the near term and a developmental facility for longer term testing. Alternative
facilities were evaluated but were not pursued due to not meeting the required timing, technical issues
with the data to be generated, or to operational concerns. A fuel test in JOYO appears feasible, but
the timing would not support early design decisions.

The United States no longer has an irradiation testing infrastructure to prototypically test materials for
a fast reactor. Further, some materials that experience significant transmutation in a thermal reactor
cannot be evaluated effectively without a fast spectrum reactor. A review of the world’s available test
reactors identified the JOYO test reactor in Japan as the best facility to conduct the planned space
reactor materials testing. The NRPCT successfully identified an approach to conducting material
irradiation tests in the JOYO reactor and was moving ahead for a test insertion in May 2006.
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4 SHIELDING SUMMARY

The reactor shield provides neutron and gamma radiation attenuation to reduce reactor radiation
damage to the spaceship electronics at the mission module. Other components (e.g., motors,
alternators, cables, reactor plant sensors, radiator materials) that are not as radiation sensitive as the
electronics but are in higher radiation fields closer to the reactor must also be protected. The shield
also provides structural support between the reactor and energy conversion subsystems, provides
passage for reactor coolant pipes, provides support for reactor control mechanisms and shaft
penetration through the shield, and provides attachment points for the aeroshell and nuclear
instrumentation. Calculated radiation limits from reactor radiation for the mission module were 25
kRads; (gamma) and 5x10'° n/cm? 1-MeV equivalent silicon damage (neutrons).

The reactor shield is a significant mass component of the Reactor Module, with a mass approximately
equal to the reactor itself (see Section 5 for additional discussion of Reactor Module mass). Shield
mass is minimized by shielding only within a very narrow cone angle as shown in Figure 4-1, thus
creating a locally protected shadow region, rather than shielding around the entire reactor. A 12°/6°
elliptical shadow cone was based on pre-conceptual spaceship radiator and high gain antenna
configurations. A uniform 12° cylindrical cone could have been used, but would have resulted in a
higher shield mass. Outside of the shadow cone, radiation levels would be very high. All equipment
is kept within the shadow cone to prevent high direct reactor radiation doses and to prevent scattering
reactor neutron radiation back into the shadow cone and increasing doses to other components. The
reactor shield attenuates gamma and neutron radiation by about a factor of 100 and 100,000,
respectively. The mission module is located approximately 50m from the core. The radiation doses
are reduced by about another factor of 1000 due to distance (~1/r%) fall off. Other equipment, like
energy conversion components and spaceship thrust mass (xenon), can also provide shielding if they
can be beneficially arranged between the reactor shield and the mission module, which would reduce
reactor (especially gamma) shield mass. '

The shield size is a primary driver for shield mass. The shield radius is determined by projection at a
12° (6°) angle from the forward outboard most corner of the reactor or reflector as shown in Figure
4-2. The reactor diameter, reflector diameter, and reactor length are, therefore, key factors in
determining shield radius and mass. Placing the shield as close to the reactor as possible minimizes
the shield radius. The reactor control device types (e.g., sliders, drums, etc.) and assumptions (e.g.,
slider travel) also factor into the shield radius. The shield cone half-angle (12°/6°) affects shield radius
and is controlled by required radiator area, antenna size, and payload distance. The shield thickness
is primarily driven by reactor power, lifetime, core to payload distance, payload neutron dose limits,
and shield material selection and optimization.
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Figure 4-1 Reactor Shield Shadow Cone and Basic Shield Shape
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Figure 4-2 Example (12° direction) of Shield Size Projection from the Reactor (not to scale)

4.1 Issues and Challenges

Shielding the mission module from reactor radiation is a trade-off between reactor shield mass,
radiation hardening capability of electronics, and local shielding from the solar system radiation
environment. The challenge is to develop a “mass-efficient” reactor shield design; that is, the most
effective shield while minimizing mass. The NRPCT had narrowed the slate of candidate shield
materials to five primary materials [lithium hydride (LiH), beryllium (Be), boron carbide (B,C), tungsten
(W), and water (H-0)] and one alternate material ("°B metal). Each results in a different impact on the
shield design relative to mass and complexity of design. Design issues include thermal growth,
swelling, and thermal management requirements. In addition, there are other programmatic
considerations such as schedule, reliability, cost and toxicity.

Shielding benchmark testing was planned to confirm shielding calculation tools and cross sections for
both radiation attenuation and heat deposition. The benefits of this testing would be to reduce shield
mass to confirm that the shield will meet radiation and temperature limits. Development and
execution of this test needs to be early in the design process.

Another challenge to the shield design is incorporating it into the overall plant arrangement. Hot and
cold leg piping must go either through or around the shield in order to allow for core cooling and
energy transport. Piping through the shield results in radiation streaming paths, while piping around
the shield results in neutron scatter to the payload. Similar issues exist for the reactor control device
mechanism penetrations.
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High gamma levels on the outside of the reactor could drive electrons from the surface which could
significantly contribute to spaceship electrical charging and beta radiation that could go around the
shield. Further characterization, testing, and mitigation of this should be pursued in future studies.

4.2 Summary of Work
Preliminary reactor shielding development focused on:

= Understanding materials sensitivities in the design

* Understanding the impact of control drive mechanism penetrations and piping cutouts on
shield effectiveness

= Estimating the overall mass of the shield
= Estimating the shielding required for the ground test reactor

NRPCT and ORNL investigated dozens of shielding materials in many combinations for neutron and
gamma shielding effectiveness, mass effectiveness, gas generation, heating rates, thermal
requirements and capabilities, structural properties, deliverability, safety, toxicity, and cost. Results of
these studies are documented in Reference (15). A simple shield mass estimating code was
developed and used to study relationships among various reactor and spaceship parameters and
shield mass. Preliminary mass and thermal analyses were made for several shield concepts.
Investigations were made to begin optimization of large pipes and reactor control arrangements
through the shield and incorporation of nuclear instrument detectors into the shield. Investigation was
also underway to determine tradeoffs between nickel and stainless steel structural materials and
design impacts of varying gamma limits relative to neutron limits. From these investigations, alternate
shield configurations were developed. Investigations were also made of radiation levels from various
reactor/piping structural materials, from the reactor following zero power critical testing, and of
preliminary Ground Test Reactor shielding requirements. Scoping studies were conducted to
determine the effect of fission product retention levels on the shield design and on the possibility of
radiation induced reactor electrical charging. Testing of various radiation transport codes for neutron,
gamma and charged particle transport was begun.

4.3 Key Findings and Perspectives

Based on analyses performed during the pre-conceptual design phase, the NRPCT has reached a
number of technical findings:

= The diameter of the reactor and the distance between the shield and the far end of the reactor
assembly have the greatest impact on shielding mass. Minimizing core volume and core-to-
shield distance have a bigger impact on the overall Reactor Module mass than minimizing
reactor mass at the expense of reactor volume.

= Based on shielding scoping evaluations, the leading material options include lithium hydride,
water, beryllium, and boron carbide, for neutron or combined gamma/neutron shielding.
Lithium hydride-based neutron shielding, which require Be/B4C for the high flux portion of the
shield, provide a slightly lower overall mass than concepts without lithium hydride. However, a
full Be/B4C shield is considered to be a lower cost, lower risk option. A water-based shield is
mass competitive with lithium hydride if the pipes can be routed around the shield, but LiH
would still be required for shield caps behind where the pipes reenter the shadow cone after
the main shield. A water-based shield with pipes through the shield will be heavier than a LiH-
based shield. A water-based shield may require heating to prevent freezing prior to start-up,
and cooling to prevent boiling during operation. A LiH shield may require heating during low
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power (coast) modes. Reliability of a vessel used to contain either a lithium hydride or water
shielding system will require further evaluation. Tungsten is considered to be the best shield
material for strictly gamma shielding based on its high shielding effectiveness, low toxicity, and
moderate cost.

= Gas pipe streaming can be controlled by spiraling the piping through channels in the outer
surface of the shield. The overall shield thickness must be increased to retain the same
effectiveness as a system without large gas piping. Additional shielding on the loop piping
located beyond the pipe penetrations of the main shield were considered to reduce neutron
streaming, but were not necessary. Comparative studies involving routing of piping around
rather than penetrating the shield had not yet been performed.

= Shielding model results showed that the control drive mechanism penetrations can be made
without substantial impact on the shield effectiveness.

= The effectiveness of the shielding remains adequate even for unanticipated high rates of
fission products release (up to ~10 release to birth ratio of volatile fission products) from the
fuel into the gas coolant. Damage to the alternator winding insulation and sensors due to
accumulation of fission products will require further study and may create a more restrictive
limit on fission product release.
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5 PLANT SUMMARY

5.1

Issues and Challenges

Designing, building, and operating a low-mass, long-life, high-temperature power plant that operates
in a hostile environment (high radiation, high vacuum, low temperature), requires no maintenance,
and is highly reliable is a challenge:

5.2

Mass and Volume — Maintaining mass and volume that are within the capability of the launch
vehicle and that meet the spaceship mass, power, trajectory solution requires optimization
within the SNPP as well as with the remainder of the spaceship. There are many trades that
will impact mass, typically trading larger design space or less development risk for higher
mass. Reliability and redundancy trade-offs will impact system complexity and mass.

Performance and Reliability — The required design performance for major plant components
(recuperator, gas cooler, Brayton turboalternator, valves, bearings, and piping) are within the
bounds of current technology. However, designing these components to be leak tight for the
long mission duration remains a development item. The largest turbine component design
uncertainties are the scale-up of the turboalternator assembly for a single 200-kWe Brayton
system and the ability of the turbine to operate for the mission lifetime in the operating
environment. Further rotor dynamic evaluations, bearing development and alternator cooling
studies and testing would be needed.

Close coupling of the reactor and plant — The Brayton compressor is also the reactor coolant
pump, which complicates startup and reactor plant transients. Changes in plant parameters
affect both the plant and the reactor performance requiring a coordinated approach toward
optimization of the overall system.

Testing — To support the development and deployment of an SNPP, extensive material,
component, and system testing had been planned. This testing would need to be a
coordinated effort leading up to prototypical nuclear and non-nuclear testing (see Section 7 for
additional discussion on integrated system testing).

Materials - Selection of pressure boundary materials is challenging. Nickel-base superalloys
are considered as leading candidates for the reactor vessel, loop piping, turbine, and heat
exchangers. Specific concerns were thermal creep and irradiation embrittlement for the
pressure vessel at operating temperatures. Mass transport between refractory metal core
components and the pressure boundary components may limit plant lifetime. An alternative is
the use of refractory metal alloys for pressure boundary components, but these alloys required
substantial testing and development to mitigate inherent risks. Adequate protection from
contamination from reactive elements such as carbon and oxygen would have been required.

Reliability Data - Data is not and will not be available prior to launch for SNPP components.
Data is available for similar components, but service life and environment is significantly
different. Limited test results may be available, but not in statistically significant quantities.

Summary of Work

Reactor plant development work focused on a disciplined engineering approach to understand overall
system characteristics and performance for a variety of system architectures (See Figure 1-4 for
examples of system arrangements that were evaluated). Establishing this basic system
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understanding, in parallel with developing functional requirements for the Reactor Module would have
led to spaceship trade studies and the selection of the Reference system architecture and heat
balance. At the time of project termination, system optimization work had not yet been initiated. Trade
studies would have included items such as radiator size vs. operating temperatures, mass vs.
redundancy, and boom length vs. shield mass. This work is documented in Reference (4).
Evaluations completed include:

Potential system architectures and fluid schematics were developed. These evaluations
included comparisons of the potential systems, preliminary location of valves (as required) and
operating strategies. Preliminary system arrangements were also developed, resulting in
comparative piping pressure drops in the system and identifying potential packaging issues
related to the size and number of components. Design iterations relating arrangements,
pressure drops, piping stress analyses, and heat balances had not yet been initiated.

Comparative system steady-state heat balance studies and parameter sensitivity studies were
performed for a range of SNPP system architectures. These evaluations were performed to
establish the range of plant operating parameters needed to satisfy the system functional
requirements. The results of these studies are used to establish SNPP component sizing and
operating conditions, enable comparison of candidate system architectures, and initiate trade
studies. A number of sensitivity studies were performed to determine the effect of parameter
variations on the plant’s overall heat balance and other parameters of interest. Of particular
interest was the effect of parameter variation on required reactor thermal power output,
required radiator area, and reactor inlet temperature. The overall mass of the SNPP is
minimized when reactor thermal power output and required radiator area are near minimum
values as the mass of the reactor, the reactor radiation shield, and the heat rejection segment
dominate the overall SNPP mass. Minimizing the required thermal power output of the reactor
has many benefits as the mass of the fuel load, reactor structure, and reactor radiation shield
decrease with required reactor thermal power output. The effect of parameter variation on
reactor inlet temperature was of interest since concerns associated with material performance
at high temperatures are alleviated as reactor inlet temperature is reduced. Sensitivity studies
were performed for the following plant parameters: converter loop piping diameter, reactor
outlet temperature, compressor inlet temperature, compressor outlet pressure, Brayton turbine
and compressor efficiency and HRS heat pipe operating temperature

Potential power plant transients were identified as a precursor to Design Events development.
Transient reactor plant response analyses were performed to study the behavior of the primary
plant and the heat rejection segment (HRS).

All reactor plant components including the turboalternator, recuperator, gas coolers, piping,
and valves were evaluated. The evaluations included a review of the current state of
component development, independent evaluation of component performance, and initial
concept design of the hot leg piping and the gas cooler.

Overall system mass estimates and mass sensitivity studies were performed. These
preliminary mass studies are for comparative purposes (since optimizations hadn’t been
started) and provide insight into the relative masses of each system architecture (see Figure
5-1). These results were combined with the results of a system reliability study, as shown in
Figure 5-2which illustrates that system architectures consisting of more than two Brayton units
have both a mass and reliability penalty.
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Figure 5-1: Mass Comparison for Key System Architectures
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Figure 5-2: SNPP Reliability versus System Mass
[Both mass and reliability values are preliminary.]
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= Preliminary evaluations of Reactor Module thermal management were performed to evaluate
piping and component support requirements and to evaluate piping and component heat loss
rates. These studies were undertaken to scope out the magnitude of these thermal related
issues.

* Preliminary evaluations were performed to assess the relative reliability of various system
architectures. Emphasis was placed on evaluating the reliability of systems with one, two,
three, and four Brayton loops to support plant design decisions. Individual component
reliabilities were based on engineering experience with very limited data. Sensitivity studies
revealed the impact on overall system reliability due to a change in the reliability of a given
component. This can help determine which components require the most attention during
development and testing to ensure the mission is successful.

= A preliminary operational strategy was developed for the Direct Gas Brayton space nuclear
power plant. General methods of plant operation and control that will allow it to most
effectively meet its mission requirements within the constraints of the space application are
identified.

Various system architecture configurations were evaluated with respect to performance, operating
strategy, mass, and reliability. Some system architectures were being evaluated in which the PCAD
system would be designed to operate producing full rated power at multiple frequencies. This
capability would permit a mode of operation where each of two or three turboalternators are normally
operating at less than their rated capacity and jointly produce the full rated system power by operating
at a reduced turbine inlet temperature and rotational speed. In the event of failure of one
turboalternator, full rated system power is restored by increasing the turbine inlet temperature and
rotational speed of the remaining unit(s) such that each turboalternator operates at its full rated
capacity. This concept was early in development and steady state analysis had not yet been
performed.

The base case reactor vessel material for Prometheus is a Ni-based superalloy, which is cooled by
the reactor inlet flow. A design temperature of ~900K is near the limit for acceptable creep allowance.
Plant operation is envisioned to monitor and control several system parameters including the turbine
inlet temperature, controlled by reactor reflector motion, and Brayton unit speed (shaft rpm), controlled
by the Parasitic Load Radiator. Preliminary steady state heat balances show that achieving a system
performance within the originally envisioned design space is challenging. Limiting the heat rejection
area to 450 m?, maximum heat rejection heat pipe temperature to 500 K and maximum normal reactor
exit coolant temperature to 1150 K can only be achieved in plant configurations where one Brayton
unit normally provides the total electrical output given the preliminary piping system arrangements and
non-optimized plant conditions that have been developed thus far. Allowing some increase in
converter loop piping diameter, radiator area, heat pipe temperature, or allowing less margin for
reactor temperature uncertainty would be required for plant configurations where two or more Brayton
units normally provide the total electrical output.

5.3 Key Findings and Perspectives

System Architecture Impact on Reliability and Mass

* For the reactor plant, primary concerns were minimizing mass while meeting the power output
requirements and demonstrating reliable operation for the long-duration of the deep space
missions. Although spaceship mass allocations were not yet established, Project Prometheus
was iterating toward a solution of mass, power, and mission duration for the JIMO mission.
Comparisons of the reliability of plants having from one to four Brayton loops indicate that
having one or two loops would likely provide a more reliable plant than having three or four
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loops. These reliability analyses are comparative at this stage and cannot be used to
determine the absolute value for a given plant configuration.

Based on NRPCT recent evaluations of each component within the SNPP, the preliminary
mass predictions are higher than NASA'’s for most parts of the plant. These findings would
contribute to consideration of less redundancy (but potentially more reliability) among energy
conversion loops, which NASA had baselined as four in prior spaceship studies (see Figure
5-2). A decision on the appropriate number of Brayton loops was not made during this project
closeout process. This decision would have involved JPL and the spaceship designer to
include overall spaceship mass trades, evaluations of alternate methods to accommodate
angular momentum, parameter optimizations for each arrangement, and other aspects of
spaceship and mission integration which were not done prior to project termination.

System Architecture

A single Brayton system offers the simplest design, the least required component
development, and the simplest plant operation. The single Brayton system also has the lowest
mass and the highest thermal efficiency. The extra capability could not be quantified until
plant arrangements and parameter optimization studies are completed. Plant parameters that
would be part of an optimization include HeXe coolant mixture, turbine speed, coolant
temperatures at each heat exchangers, system pressure, and compressor pressure ratio. The
single Brayton concept should be considered along with other system architectures, although it
would require deviation from the single point failure tolerance criteria. An additional
momentum compensation system would be required for any spaceship architecture that does
not have counter-rotating turbines, including the single Brayton system.

To meet the single failure tolerance criteria, multiple Brayton units would be required, resulting
in a higher mass and an overall thermal efficiency decrement relative to a single Brayton
system. NRPCT and NASA experience indicates the prudence of having redundant
components, even if they have demonstrated reliability, to ensure that manufacturing defects,
human error, or an unexpected event does not lead to a mission ending failure. For those
components where redundancy is considered impractical, exceptions to the single point failure
avoidance requirement is provided. For the currently envisioned Prometheus spaceship, the
reactor, the reactor coolant loop, the boom, and the xenon propellant tank all require such
exceptions. Some critical elements of a single Brayton system could have redundancy built in
(e.g., alternators); others, such as turbine bearings, cannot have redundancy built in.
Exceptions could be provided for a single Brayton system, but the reliability of operating high-
speed equipment over an extended lifetime with little testing under service conditions must be
considered.

The determination of the most reliable system layout depends on the reliability of the
constituent components. A two Brayton system in which both Braytons are normally running
but each could, upon failure of one Brayton, supply full power to the spaceship would probably
be the most reliable system. This system would have a mass of ~2000 kg greater than the
single-Brayton system. Assuming Brayton components could be developed with a
demonstrated reliability above a certain breakpoint (approximately 97% using the assumed
values in the NRPCT study), the most reliable system would be the single-Brayton system.
However, for systems with Brayton assembly reliability less than this breakpoint, a second
redundant Brayton would result in a higher overall system reliability, offsetting the impact of
additional components and increased complexity. System architectures with three or more
Braytons (see Figure 5-2) had lower overall reliability. This reliability was reduced because of
additional welds, valves, and surface area vulnerable to leaks to space and/or micrometeoroid
impact. Because the direct gas Brayton system is significantly different than any other in



Prometheus Project Reactor Module Final Report SPP-67110-0008
VOLUME 2: Technical Summary Page 2-56

existence, the decision on plant redundancy will have to be made without specific data on
component reliability, and the envisioned test program will not be sufficient to establish a true
statistical basis.

= Actions to minimize mass had not yet been undertaken. These actions would have included
optimization of the system arrangement and heat balance; trades on the reactor shield,
mission module shield, and boom length; selection of the most appropriate reactor
configuration; selection of materials and specification of their design bases; trimming of the
reactor shadow shield configuration based on established spaceship configuration; etc.

Plant Operation and Plant Dynamics

= Reactor plant dynamic models were developed using three different modeling tools (Simulink,
RELAPS-3D, and TRACE). Model results show that a multiple closed Brayton unit system is
feasible with no apparent system instabilities. However, parallel operation of multiple Braytons
in a closed loop has never been done and substantial testing would be needed to further
demonstrate feasibility and validate the models. Preliminary model results indicate that the
HRS is more vulnerable to exceeding design limits than other components in the SNPP
including the reactor. The concern in a water-cooled HRS is coolant over-pressurization,
leading to a potential gas cooler failure, as shown in Figure 5-3. In a NaK-cooled HRS, the
coolant is not over-pressurized, but the load-carrying capacity of the heat pipes may be
exceeded. Further development of the SNPP would require a control system action to prevent
HRS damage.

Figure 5-3: Complete Loss of Electrical Load and Impact on Water-cooled HRS
Brayton Shaft Speed for Overspeed of 1 of 2 Braytons ~ Gas Cooler Water Temps for Overspeed of 1 of 2 Braytons
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= Utilization of two distinct power levels may allow for the reduction of system temperature
and/or reactor power for significant portions of the mission, extending spaceship life. Two
distinct power levels were envisioned for the JIMO mission: high power (thrusters operational,
~185-kWe load) and low power (thrusters secured, ~40-kWe or less load). Low power would
include periods when science data is being collected and may require compensation for the
angular momentum induced by the Brayton system on the spaceship. This is most efficiently
accomplished by a combination of speed control and temperature reduction. Use of on/off
control of Braytons and use of gas inventory control would require increased system
complexity and would not significantly improve performance. Reactor material performance
may be affected by lowering of reactor temperatures and must also be considered.
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Design Space

Cycle analysis shows that achieving a system performance within the originally envisioned
design space is challenging. Limiting the heat rejection area to 450 m?, the maximum heat
rejection heat pipe temperature to 500 K, and the reactor coolant outlet temperature to 1150 K
can only be achieved in plant configurations where one Brayton normally provides the total
electrical output given the preliminary piping system arrangements and non-optimized plant
conditions that have been developed thus far. Allowing some increase in converter loop piping
diameter, radiator area, heat pipe temperature, or allowing less margin for reactor temperature
uncertainty would be required for plant configurations where two or more Brayton units
normally provide the total electrical output.

A key driver to overall plant efficiency is the arrangement of the converter loop piping system
and the resulting impact on piping system pressure drop. For plants with multiple converter
loops, flow splits in the reactor inlet and outlet headers and inclusion of valves become
significant additions to the overall piping system pressure drop. Large diameter pipe, few
valves, low pressure drops through components, simple pipe runs, and large gentle bend radii
are required to minimize loop pressure drop. However, these considerations will need to be
balanced against the need to make the plant sufficiently flexible to accommodate thermal
transients and the need to make it fit within the available volume.

Allowances for off-design parameters (e.g., temperatures and pressures) need to be allocated
early in the conceptual phase of the project to account for component degradation over service
life, transient performance, casualty recovery, instrument error, operating strategy, and
associated operating bands.

Material Selection

Use of refractory metal alloys for pressure boundary components were considered, but these
alloys required substantial testing and development to mitigate inherent risks. Leading
concerns included irradiation embrittlement, interstitial embrittiement from the absorption of
working gas impurities and the integrity of dissimilar metal joints. Adequate protection from
reactive elements such as carbon and oxygen would have required vacuum facilities
exceeding those necessary for a nickel-base alloy pressure boundary. Similar complications
would exist for extensibility to Lunar or Mars surface applications. Irradiation embrittlement
would have made thermal cycling of a ground test unit a concern.

Nickel-base superalloys were considered as leading candidate materials for the reactor vessel,
loop piping, turbine, and heat exchangers. A large property, component manufacturing and
performance database exists for Ni-base superalloys with the majority of the data obtained for
air-breathing turbine engine applications. However, significant testing and development was
required for the Prometheus design. Specific concerns were thermal creep, irradiation
embrittlement for the pressure vessel, chemical interactions with the working gas and working
gas impurities and the integrity of dissimilar metal joints.

Demonstration of dissimilar metal joining feasibility, including cast to wrought nickel-base
superalloys, wrought nickel-base superalloy to titanium alloys, wrought nickel-base superalloy
to various refractory metal alloys, and possibly, stainless steel to titanium alloys will be
required prior to the selection and specification of materials for all major system components.
If dissimilar metal joints are required, development of a sound joint for the material pairs would
be required.
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A thorough understanding of environmental degradation issues relevant to the application of
all candidate material types in a common system, including the implications of the heat
rejection system materials, must be obtained prior to selection and specification of materials
for all major system components. Issues included potential degradation from the space
vacuum, fission products, impurities in the working gas and the transport of impurities from
one material to another in the common gas loop.

To support the development and deployment of an SNPP, extensive material, component, and
system testing had been planned. This testing would need to be a coordinated effort leading
up to the potential nuclear testing of a ground based prototype and non-nuclear testing
integrated with the spaceship leading up to launch. It should be noted that no final decision on
the need for a GTRF or where it should be sited had been made; preliminary engineering work
had started to support the National Environmental Policy Act (NEPA) process, establish scope,
and meet the schedule. At the time of termination of NRPCT participation in Project
Prometheus, the functional requirements for the facility were preliminary and had not yet been
reviewed against federal requirements, peer reviewed, or approved by Naval Reactors.

Components

The designs for major plant components (recuperator, gas cooler, Brayton turboalternator,
valves, bearings, and piping) are within the bounds of current technology assuming non-
refractory materials are used. Designing these components to be leak tight for the long life of
the deep space missions remains a development item.

The largest turbine component design uncertainties are the scale-up of the turboalternator
assembly for a single 200-kWe Brayton system and the ability of the turbine to operate for an
extended lifetime in the service environment. Further rotor dynamic evaluations, bearing
development, and alternator cooling studies and testing would be needed.

Reactor Module thermal management must be designed to reject sufficient heat from the hot
components while maintaining other components at acceptable temperatures. Thermal
management is complicated by structures around the plant that are needed to provide
micrometeoroid protection and by the need to provide sufficient heat before start-up to
maintain components at acceptable temperatures. Identification and testing of materials,
coatings, finishes, etc., will be needed to identify options that will satisfy requirements after
prolonged exposure to radiation and temperature. Thermal management must be integrated
with the power plant design and should be considered early in conceptual design.

Further systems integration between the heat transfer segment and the Reactor Module is
warranted to establish the design trade space available to reduce mass, spaceship size, and
project risk. Further integration will affect selection of heat transport loop coolant and ducting
materials that interface with the gas cooler, start-up and normal operational strategy, radiator
mass versus temperature capability, heat load capability, and radiator size. Lifetime
degradation in the radiator performance due to changes in effective emissivity and isolated
heat pipe failures will lead to a slow increase in radiator temperature. High temperature water
heat pipe performance and life capability for this application is not fully established. The
relatively high temperature (500K) and evaporator surface heat flux (10 W/cm?) and lifetime
are beyond established water heatpipe performance.
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6 INSTRUMENTATION AND CONTROL SUMMARY

Once the JIMO spaceship had been launched into space, real time operation of the space reactor
would be performed by the reactor Instrumentation and Control (I&C) Segment. While Earth
generated commands might enable certain events and operations to begin, it would be the I&C
Segment that would monitor the state of the reactor plant, and provide for control of the plant through
life. The Reactor I&C Segment would also be responsible to assess the condition of reactor plant
equipment, respond to emergent events, (foreseen or unforeseen), ensure the reactor at all times
remained within its operational envelope and that the power required for the spaceship would be
available without interruption. The I&C Segment would accomplish these objectives over a lifetime of
fifteen years, largely autonomously with only infrequent contact from Earth controllers.

6.1 Issues and Challenges

The high-temperature reactor plant, the space radiation environment of Jupiter, the 15-year mission,
the lack of a backup power source aboard the spaceship, the limited remote communications with the
spaceship, and the aggressive schedule to deliver prototype and flight versions of the space nuclear
power plant represented significant technical and programmatic challenges for the development and
delivery of the Instrumentation and Control equipment supporting the Prometheus program.

The Reactor 1&C Segment would be made up of a diverse set of technologies and equipment
including control element motors and sensors that are in close proximity to the reactor, electronics
and computers located in the shielded vault, software that would monitor system behaviors and define
its actions, and power conversion modules that would drive the reactivity control motors. The I&C
Segment encompasses all of the reactor sensing, instrumentation, and control equipment aboard the
spaceship as well as the reactor Ground Control station on Earth. It is through this system, that the
reactor plant would remain linked to its Earth-bound observers, allowing them to evaluate its
operational parameters, tune its performance, and adjust for emergent conditions or events.

System

The space Reactor I&C Segment would face many new and unique challenges compared to its
terrestrial predecessors. It would operate a nuclear reactor in space without the direct presence of a
human operator while traveling through some of the most difficult environments in the solar system. It
would have to operate the reactor plant flawlessly for more than a decade to allow the spaceship to
accomplish its mission and goals. For the I&C Segment to meet these challenges, significant
advances would be necessary in the key technology groups supporting it. New technologies would be
required for the sensors and electronics to meet the harsh environments of the reactor and space.
New approaches to system architecture and control would be necessary for reliable, fool-proof control
and sensing without a human-in-the-loop. New software approaches would have to be developed to
provide detailed process tracking, to mitigate the impact of emergent system faults, and to allow
system adjustments over the life of the plant. These challenges would have to be met in order to
provide the pedigreed space reactor I&C system demanded for the Prometheus SNPP and JIMO
mission.

One of the first major efforts associated with the development of a SNPP 1&C Segment was the
development of a preconceptual I&C Segment architecture that addressed some of its most important
fundamental challenges.

The 1&C Segment would have required a flexible system architecture to accomplish autonomous
reactor control for the duration of the mission with no ability to upgrade or repair hardware post
launch. Additionally, the system architecture design would have provided the ability for software
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upgrades post launch and provided for single or multiple slider (or drum) control. Moreover, the
architecture would have been extensible to a ground-based prototype of the SNPP whose
requirements may have differed in some significant ways from the flight unit.

The 1&C system architecture would need to meet the mission’s single fault requirements within tight
mass and volume constraints. A single fault cannot be allowed to either shut down the reactor and
cause a loss of spaceship power or cause the reactor plant to exceed its design limitations. The I&C
system architecture would also have accommodated the performance of fault detection, containment,
and recovery from design basis events without interaction with Ground Control.

The 1&C system would have been fully integrated with the spaceship Command, Control, and Data
Handling subsystem to provide for operation of the power plant as commanded by the spaceship, to
fully integrate the Reactor Module’s operation with the spaceship’s electrical Power Conditioning and
Distribution (PCAD) subsystem, and to provide for the flow of information and communications
between the Reactor Module, the spaceship and Earth.

Sensors

Reactor plant operations demand sufficient sensors to provide for the control and monitoring of the
reactor for all the modes of plant operation. These modes include:

Startup

Constant power operation (steady state power operation)
Power transitions

Casualty Operations

Maintenance and Testing Operations

Shutdown

These operations must be successfully performed under normal as well as off-normal conditions. To
provide for all these conceivable situations a sufficiently diverse set of reactor plant sensors would
have been required to ensure that the control actions taken by the I&C Segment were always
consistent with the actual state of the plant and its mode of operation. Accordingly, sensors for
measurement of the reactor coolant temperatures, flow(s), and pressure; neutron flux reactor power;
positions of the reactivity control elements were established as the baseline set for the SNPP reactor.
The highly integrated nature of the direct gas Brayton plant also demanded that parameters
associated with its Brayton units and its PCAD subsystem be measured as well (e.g. Brayton unit
speed, and the power, current, voltage, and frequency of its alternator, Parasitic Load Radiator (PLR),
and Start Inverter).

For the SNPP sensors, the requirements would have been exceptionally demanding and the
conditions in which many would have operated quite severe. The necessity of a low mass SNPP
would have required that the reactor plant be operated at the highest temperature possible within the
material limits of the plant to maximize its efficiency. This would lead to the need for narrow control
bands whose width was primarily limited by the accuracy of the sensors and the small discrete actions
of the reactor controls. Therefore, exceptional accuracy was demanded of the controlling reactor
parameters for the duration of the flight. For the most desirable control parameter of the plant, reactor
coolant outlet temperature, this meant sustaining a +5 K or better accuracy while measuring a 1150 K
temperature continuously for 15 years. For the reactor inlet temperature, the requirement was only
slightly less daunting. Additionally, the necessity of reactor coolant system integrity to mission
success drove a strong desire to limit the number of penetrations of the reactor coolant system
boundary by the temperature, flow, and pressure sensing elements. Conventional sensor
technologies were unable to meet these demanding requirements and goals for even a few years.
Identification of advanced sensor technologies was a necessity for the SNPP program.
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The environmental conditions (including radiation exposure) for the SNPP sensors, cables, and
connectors would have presented additional design challenges. These factors significantly influenced
considerations for sensor placement. The total radiation exposure experienced by these components
would have been a combination of the radiation produced by the reactor plus that encountered
throughout the mission from natural sources in space. The combined total ionizing dose (TID) forward
of the reactor shield was estimated to be 5.5x10° rads(Si) (4.5x10° from the reactor and 1x10° from
the space environment). Just aft of the reactor shield, the combined TID was estimated to be 1.2x10°
rads(Si) (2x10° from the reactor and 1x10° from the space environment), showing a reduction in the
reactor radiation afforded by the reactor shield. However, a design limit of 0.5x10° rads(Si) TID was
initially established for the most sensitive elements of the I&C components located in the Reactor
Module region, i.e., electrical insulation materials in the sensors, cables, and connectors. This design
limit favored sensor placement aft of the reactor shield and would have required the installation of
additional shielding (incorporated with the micrometeoroid protection) to attenuate the radiation from
space sources.

Electronics

All sensor and computational electronics would reside aft on the spaceship in a shielded, thermally
managed electronics vault. The major electronics challenge would have been to ensure reliable
operation over the duration of the mission in the high-radiation environment of the JIMO mission. JPL
had identified the expected contributions from the SNPP reactor (internal) and from space (external)
in a set of requirements for ionizing and neutron equivalent dose. The internal SNPP reactor induced
radiation allowances within the vault were set at 2.5x10* rad(Si) (gamma) and 5x10'° n/cm? 1-MeV
equivalent silicon damage (neutrons). The space environment radiation allowances within the vault
were estimated to be 2.63x10° rads(Si) and 4.4x10"" n/cm? 1-Mev equivalent neutrons. These
radiation exposures assumed a baseline vault shielding provided by 1000 mils of aluminum, and
yielded a combined total radiation exposure (reactor plus space sources) of 2.96x10° rads(Si) and
5.7x10"" n/em2 1-Mev equivalent neutrons. Applying a radiation design factor (RDF) = 2, the resulting
qualification requirements for electronics in placed in the vault would have been TID = 5.92x10°
rads(Si), and displacement damage = 11.4x10"" n/cm? 1-Mev equivalent neutrons [Reference (361)].
At the time of project termination, JPL was also considering the qualification of electronic components
to a TID of 1x10° rads(Si) as an additional project design goal.

Software

The dynamic response of a nuclear reactor plant, the requirement for continuity of power, the
remoteness of spaceship operation, and long periods without direct communication with Earth all
required the use of a robust software component in the Reactor Module I&C Segment. This included
not only the flight software used on the spaceship for reactor control and fault protection but also the
software used for telemetry and command functions in Ground Control. Communication delays and
the fast response of the nuclear power plant leave no margin for error or intervention from Earth.
Additionally, the software must be tolerant to single event upsets from high energy particle radiation.
Thus, a very robust software development and testing program was planned for the Prometheus
Project.

Controls

Terrestrial nuclear power plants employ human control and decision making for operations and benefit
from periodic maintenance. In contrast, the SNPP control system for a deep space mission would
have needed to provide continuous operation for the mission duration with limited human interaction
and no opportunity for hardware maintenance or sensor calibration. The SNPP would have to
independently operate the power plant while maintaining power production even when subject to off-
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nominal conditions or component failure. This capability would have been essential because it would
not be possible to rely upon continuous, immediate human interaction for control or maintenance of
the plant. The spaceship’s journey to Jupiter would have been generally autonomous in nature with
only limited periodic contact with Earth except when totally precluded by planetary occlusion.

While remote, infrequent communications with Earth mandated autonomous control of the plant, the
specific frequency and nature of the controls both in normal and off-normal conditions would be driven
by a number of considerations. Constant power operation requires that plant efficiency, off-nominal
performance, material and component performance limitations, electrical power quality, and casualty
response all be addressed.

The mass of the reactor plant must be limited to support the launch of the spaceship; yet, the reactor
must also meet the electrical power demands of the spaceship throughout its journey to support
continuous propulsion. The direct gas Brayton reactor plant is a tightly coupled plant whose efficiency
is a strong function of reactor temperature and is significantly affected by even small variations in its
value. Moreover, the efficiency variation with control band width is expected to be similarly mirrored in
its off-nominal performance. This suggests that reactor parameter control bands must be maintained
as small as practical.

The materials and component limitations must be accommodated by any SNPP control system. The
plant systems considered for the SNPP would require that any control system maintain the plant
within an operating envelope with sufficient margin to ensure component integrity and operability
under both normal and abnormal conditions. The design temperature limitations for the reactor
coolant system boundary materials, the operational temperature limitations on the heat rejection
system radiator fluids, the limitation of reactor power to 100%, and the maintenance of Brayton
alternator electrical frequency at 2250 Hz, all exemplify the type of operational limitations that must be
managed by the SNPP controls.

There would have been no alternate power source aboard the JIMO spaceship once the SNPP had
been brought on-line and the solar powered support system for reactor startup jettisoned. Electrical
power for plant and spaceship operation would have relied entirely upon the maintenance of reactor
power at a sufficient level to meet the minimum needs of the spaceship.

The controls would have been required to carryout complicated sequences of operations, some while
in communication with Earth and some without Earth support. An example of the former would be the
startup process for the SNPP early in the mission; an example of the latter might be the shutdown of
degraded Brayton unit and the startup of a standby unit to support power continuity to the spaceship
while in deep space.

6.2 Summary of Work

Develop a Preconceptual Reactor I&C Segment Architecture

The pre-conceptual I&C Segment architecture was a key starting point for development. This
architecture was intended to set the technical approach for the entire I&C Segment. It defined
interfaces to other spaceship systems, defined hardware blocks for future development, and provided
a basis for accurate cost and schedule estimates. Since the reactor system requirements were not
known at the start of development, it was anticipated that the architecture would evolve as the design
of the Reactor Module was matured. Figure 6-1 depicts the preconceptual reactor I&C architecture
and its interfaces to other important spaceship subsystems.

A trade study was performed on the use of a shielded multiplexer at the forward end of the spaceship
immediately behind the reactor shield. The SP-100 I&C system architecture used a multiplexer to
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reduce cable mass. However, the trade study showed that implementing a secondary electronics
vault closer to the reactor would not be practical for the JIMO mission. The increase in mass for
shielding would outweigh the increase in cabling required without multiplexing signals. Thus all
electronics in the selected architecture would reside in the main spaceship electronics vault.

This architecture was selected from several different alternatives for its relative simplicity and fault
tolerance. The selected architecture used a 3-layer approach consisting of a supervisor, reactor
controller, and sensors/actuators. Redundancy was implemented differently in each layer to achieve
overall system fault tolerance:

= Reactor Supervisor: Three Supervisor Channels, configured in a Hot/Warm/Cold or a
Hot/Warm/Warm configuration, were used to provide overall system control. The Supervisor
Channels manage diagnostic data, coordinate software upgrades, and communicate
coincidence to the Slider Controllers.

= Reactor Controller: Four Reactor Controller Channels in a channel coincidence configuration
provide sensing and control of the reactor, provide telemetry data to the Supervisor Channels,
and directly communicate to the Power Conditioning and Distribution (PCAD) subsystem.

= Sensors/Actuators: The design assumed twelve independent slider control channels, each
corresponding to one of the twelve (assumed) sliders used for reactivity control. The Slider
Controllers apply coincidence to Reactor Controller Channel signals, control slider motion,
determine slider position, and communicate errors and status information to the Reactor
Controller Channels.
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Figure 6-1: Prometheus Spaceship Control Architecture
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The pre-conceptual I&C architecture could be implemented with approximately 45 circuit cards and a
total mass of approximately 320 kg including sensors, cables, and electronics. Reference (9) contains
specific details on the following:

= Configuration and functional description of the Supervisor Channels, Reactor Controller
Channels, and Actuators.

= A breakdown of card types and sensor types with an estimate of quantity for each.

* A breakdown of mass for cards, sensors, and cables.

The salient features of the pre-conceptual I&C architecture include the following:

Redundancy with coincidence to provide adequate reliability and fault tolerance.

Channel independence to mitigate common mode failure.

Diversity to mitigate common mode failure of developmental sensor technologies.

A microprocessor-based system whose software is fully modifiable post launch to provide
flexibility to respond to anomalies, spaceship degradation, or lessons learned through
continued prototype operation.

= The ability to modify the control scheme from sensor inputs, control band setpoints, or
complete control scheme algorithm change-out post launch.
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= Modularity to scale up or down with respect to the number of required sensors, channels, and
actuators (sliders/drums, safety rod(s), and isolation valves).

= Computational capacity to support system response time between tens of milliseconds to
minutes, hours, or days.

= Provide a flexible framework to support autonomous reactor operation and fault management
with a simple system

In preparation for the next phase of the I&C architecture development, the NRPCT engaged ORNL to
survey a broad set of advanced system architectures found in safety critical applications such as
commercial nuclear and non-nuclear power, aviation, and others. The ORNL study is presented in
Reference (117).

Evaluate Candidate Sensor Technologies

The NRPCT worked with ORNL to identify the best sensor technologies for the SNPP and the JIMO
mission. This work initially sought to identify feasible sensors for measurement of reactor coolant
temperatures and flow, a single range detector for neutron flux power measurement, and the positions
of the reactivity control devices. ORNL conducted a review of the sensor technologies in each of
these areas and identified the leading candidates for the SNPP application for the JIMO mission
[References (120) and (123)].

This initial work was followed by a series of detailed studies by ORNL and the NRPCT to further
evaluate the leading sensor technologies for the SNPP reactor plant. While the initial study had
considered four notional reactor concepts in its development of a slate of feasible sensor technologies
(a reactor concept had not yet been selected at the time of the initial work), this second set of studies
focused on the identification of sensors particularly suited to the direct gas Brayton reactor plant,
including the evaluation of reactor coolant pressure sensing technologies. ORNL evaluated
resistance temperature detector and thermocouple technologies for the reactor coolant temperature
measurement, fission chambers for neutron flux measurement, ultrasonics for coolant flow
measurement, as well as cabling for all these systems as described in References (116), (118), (119),
and (121) through (123). The NRPCT studied resistance temperature detector and thermocouple
methods for reactor coolant temperature measurement; ultrasonics for coolant temperature and
pressure, position; electromagnetic and capacitive methods for control element position; and optical
methods including pyrometry and Fiber Bragg Grating technologies for coolant temperature
measurement. Their results are reported in Reference (10).

The NRPCT also initiated efforts to develop the signal processing methods and electronics for the
leading candidate sensor technologies. These efforts included Application Specific Integrated Circuits
(ASIC) electronic implementations to meet the radiation hardened requirements of the JIMO mission.
These limited efforts are documented in References (126) through (128).

The NRPCT in Reference (10) evaluated all of the technologies reviewed during the Prometheus
program by ORNL and the NRPCT and identified the leading sensor technology in each category for
the SNPP. These selections are shown in Table 6-1.
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Table 6-1: Leading SNPP Reactor Parameter Sensor Technologies

Fission Chamber

applications

- High energy neutron output pulses eases
discrimination from gamma induced pulses and
allows large separation (up to ~100m) between
sensor and electronics. Local preamplification
unnecessary.

- Capable of full range operation.

- Moderate detector bias voltage compared to other
ion chamber technologies.

- High temperature performance (~800K)

Parameter Key Advantages Key Challenges
Technology

Temperature -Potential for many sensors on a single fiber -Radiation tolerance of specialized components, including
-Demonstrated sensor robustness, accuracy, and electro-optical components (diodes, amplifiers, lasers)
low drift at high temperature -Signal processing complexity

Optical Fiber Bragg | -Non-amplitude based signal measurement, -Technology largely limited to laboratory applications
Grating tolerant to fiber optic transmission line degradation

-Small sensor mass and size

Flux -- Mature technology, widely used in nuclear plant - Handling, shipment, and storage issues associated

sensor with highly enriched Uranium coating

- Providing startup flux sensitivity and a neutron-
moderating environment within a reasonable volume

- Complex signal processing may be required to provide
pulse counting during startup and current measurement
during power operation

- Non-traditional materials required for fore-of-shield
service at ~1000K. Performance must be demonstrated.
- Large size and mass required to achieve necessary
sensitivity.

Position

Ultrasonics

- Magnetostrictive ultrasonic position technology
commercially available.

- Magnetic and insulation materials exist for the
magnetostrictive components (magnets,
waveguides, coils) that are robust in sensor
radiation and thermal environment.

- Flexible sensor range of measurement

- Relatively moderate sensor mass.

- Performance and lifetime in thermal and radiation
environment must be verified.

- Significant susceptibility to electromagnetic interference
from control element motor.

- Large sensor space envelope. Mass of sensor unknown.

Flow, Compressor

- Non-invasive flow measurement

- Radiation and aging effects of piezoelectric transducers

exist for moderate temperature service less than
550K. UT sensors in wide usage in natural gas
industry at this service temperature.

Qutlet, 550K - Widely available piezoelectric materials can be for long duration service must be verified.
used in transducer.
- UT flow systems in wide usage in natural gas
Ultrasonics industry at this service temperature.
- Current materials and design methods may be
used to design acoustic couplers and standoffs,
Pressure - Non-invasive flow measurement - Ultrasonic transducers for high temperature service
- Accurate, high resolution measurements above 850K in significant radiation fields do not exist. High
Ultrasonics demonstrated for low, moderate, and high system risk research and development required.
Thin-Walled pressures. - Radiation and aging effects of piezoelectric transducers
Bellows - Ultrasonic transducers and mounting accessories | for long duration service must be verified.

Software Process Planning

An early task in the Reactor 1&C development was to lay the foundation for a meticulous and
challenging software development effort that would integrate well with parallel development efforts at
JPL and NGST. NRPCT began this effort by selecting the software life cycle, design methodology,
and programming language to be used in the project. These selections were documented in

Reference (8).

The software life cycle provides the framework and sequence for the software requirements, design,
implementation, and testing activities performed as part of the overall software development effort.
NRPCT chose the Incremental software life cycle for the development of the Reactor Module flight
and ground software. The Incremental life cycle is defined in a series of tasks, starting with initial
requirements, architecture development, and increment planning. The tasks applied within each
increment include: detailed requirements development, detailed architecture development, module
design, module implementation, unit testing, integration, system test, release, and independent
verification and validation. Processes were identified for each of the development tasks as well as for
related tasks such as configuration management and defect tracking. The Incremental life cycle
would have provided for a series of software releases (builds) that would add increasing functionality
as the project matured until full software functionality was achieved in a final release. These releases,
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when coordinated with other spaceship software developers, would have afforded opportunities for
integration with other software components earlier in the project schedule, thus allowing the
performance of spaceship interface testing between the Reactor, Spaceship, and Mission Modules
and the mitigation of risk in a very aggressive design/construction schedule.

The software methodology (object-oriented or structured) provides the approach to requirements
development and software implementation. The structured design methodology was chosen for
requirements and software implementation because of its more frequent use in space embedded
applications and suitability for a real-time embedded design. The selection of a structured design
methodology allows for a robust software architecture design, making use of top-down design,
functional decomposition (hierarchical refinement of functionality from a coarse level of detail to a fine
level of detail), and structured programming. This allows for strong modularity in the design while
avoiding some of the inspection burden associated with object-oriented design methodologies.

The NRPCT evaluated several programming languages and chose C for use in the Reactor Module
1&C software implementation. C is widely understood and recognized, has been used in many space
applications, and has a broad experience base within the NRPCT. The selection of the C
programming language complemented the choice of the structured design methodology and would
have minimized the software inspection burden that might be associated with other languages.

The NRPCT also developed a draft Prometheus Reactor Module Software Development Plan (SDP)
to provide mission specific definitions or project roles, deliverables, a documentation hierarchy,
organizational division of responsibilities, and a description of software tools. It was envisioned that
the flight software, ground software, and test beds would have each had individual development plans
that would trace up to the Reactor Module SDP.

Evaluate Radiation Hardened Electronics

Radiation damage from both the reactor and the Jovian environment poses significant challenges for
electronics. All sensor signal conditioning and control electronics for the Reactor Module would have
resided aft on the spaceship in a shielded and thermally managed electronics vault. Although this
vault would have provided significant radiation protection, it would not have eliminated all possibility of
damage. One of the major challenges for the Reactor I&C designers would have been to ensure the
reliable operation of this electronics suite over the duration of the JIMO mission and in the high-
radiation Jovian environment.

All solid state devices (digital, analog, and power devices) are subject to various forms of radiation
damage. Radiation damage is generally considered to affect electronic devices in three different
ways: ionization due to energy deposition (total ionizing dose (TID)), damage to the crystalline
structure of the device (displacement damage dose (DDD)), and a change in the state of a device
caused by a single collision with a high energy particle (single event upset (SEU)). These damage
mechanisms have different effects on electronic circuits and require differing mitigation strategies.
The radiation qualification goals for the JIMO mission established by JPL for electronic components
within the shielded vault were 1x10° rad(Si) total ionizing dose and 11.4x10"" n/cm? 1-MeV equivalent
displacement dose. These values were intended to provide design margin that could allow reduction
in the enclosure shielding requirements and accommodate the external Jovian radiation environment
and its uncertainties. By comparison, unhardened commercial electronic devices can typically survive
only 5x10° to 10x10° rad(Si) TID without degradation.

While a robust radiation-hardened electronics industry exists to support current space and nuclear
applications, the JIMO mission's projected radiation requirements were more severe than the
advertised allowable radiation doses for most existing radiation-tolerant and radiation-hardened
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semiconductor devices. Therefore, the development of custom radiation-hardened electronic devices
would have been required, and it would have been challenging, time consuming, and expensive.

Evaluations were underway of various electronic component and circuit board vendors and
laboratories with experience in radiation tolerant electronic designs. These included BAE Systems,
Honeywell, Jet Propulsion Laboratory, and two Northrop Grumman divisions. Efforts were initiated for
the sensor interface circuits to engage two current NR Program vendors which also have corporate
partners active in the space program and knowledgeable in radiation hardening practices.

Evaluate Controls

SNPP Constant Power Control

Preliminary control studies by the NRPCT had just commenced as the project came to a close. These
studies evaluated simple temperature control strategies for operation of the SNPP at constant power
levels and during power level transitions. These efforts focused on setpoint and narrow band control
using reactor coolant outlet or average temperatures for reactor power level control and Parasitic
Load Regulator (PLR) speed and voltage setpoint control for the Brayton units. These controls were
applied in model simulations of the SNPP allowing the behavior of the plant and its components to be
investigated in constant power, power transitions, and component casualty situations. In general, the
SNPP simulations have shown a plant concept that responds in predictable, controllable, and stable
manners under these various scenarios.

The models of the plant were under development at the time of project termination and their
completion would have provided a better understanding of the plant behavior and system interactions.
These would have in turn led to the development of initial algorithms to define the control actions
needed to change or maintain the state of the plant. Model development and preliminary transient
analyses are discussed in Reference (4).

The SNPP control studies have demonstrated that measurement errors associated with a control
parameter, the size of the discrete control actions, and the width of the control band all have an
impact on the overall sizing of major plant components. The uncertainty in the measured control
parameter and the minimum plant response to a discrete control input determines the minimum width
of the control band. Other considerations such as minimization of actuator operation can add to this
width.

The incentive to minimize the size of the control band is to maximize plant operating efficiency and
minimize the potential impact on component ratings, required core power, and overall plant mass.
The upper limit of the control band for temperature is fixed at the maximum allowable (actual) plant
temperature because of material limitations. The benefits of a small control band are potentially
limited by other considerations such as actuator wear or controller complexity. These drivers would
have to be balanced to determine an appropriately sized control band.

SNPP Startup Control

An important part of the effort to understand the operation of a direct gas Brayton reactor plant was
the development of a notional startup sequence for the spaceship’s reactor and energy converters.
The NRPCT worked with JPL, NGST, Hamilton Sundstrand, and GRC to assemble a procedure that
would bring the reactor from its cold shutdown condition to hot, critical operation with the Brayton units
at full power supplying the spaceship’s electrical buses so that the powered, interplanetary transit to
Jupiter could commence.
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The procedure provided in Reference (4) called for the establishment of initial reactor coolant flow by
motoring one Brayton unit’s alternator with power from the spaceship’s solar arrays. The reactor
controller would then begin the slow and deliberate process of adding reactivity to the reactor with the
movement of its reflectors. Once critical, the reactor would be capable of producing useful heat, and
additional reactivity would then be added to raise the reactor power level further to begin heating the
gas coolant. When sufficiently high coolant temperature was reached, the Brayton unit operation
would become self-sustaining without motoring and begin producing enough electrical power to
transfer Brayton speed control to the PLR. With the reactor controller adjusting coolant temperature
through reactivity increases and the PCAD controller limiting Brayton speed with load adjustments, a
coordinated pattern of temperature and speed adjustments would then be made until the reactor
coolant reached full operating temperature and the Brayton unit reached full operating speed and
voltage. The second Brayton unit could then be started using on board electrical power from the first
Brayton and carefully brought up to full power output. At that point, the reactor plant and energy
converters would be providing rated output power and ready to support spaceship operation for the
duration of the mission.

The development of this notional startup sequence was important for several reasons. It supported
the development the overall mission phase profile by NGST and demonstrated that the startup could
easily be accomplished within the allocated time period. It confirmed earlier assumptions on the
electrical power demands for the startup and helped solidify the sizing of the solar array panels for the
spaceship. More importantly, it helped define the communication paths within the spaceship which
would impact the reactor controller, and it underscored the need for close coordination between the
reactor controller and the PCAD controller to maintain the power plant within its operating envelope.
These conclusions are reflected in the communication paths of Figure 6-1. The development of this
procedure also demonstrated the inability to manually control a space nuclear reactor in real time from
Ground Control due to the inherent time delays with space communication and the unpredictable
interruptions in the communication path between the spaceship and Ground Control. (The procedure
was based on the conclusion that all of the procedural steps would be pre-programmed in the Reactor
I1&C Segment and that Ground Control would only initiate an entire sequence of steps. Their
execution would be accomplished autonomously, and the reactor controller would return an indication
of their positive completion.) The procedure also opened discussions with JPL on communication
security and the issues concerned with directing a nuclear reactor through the normal channels of the
deep space communication network.

SNPP Control Concepts

In preparation for the next phase of SNPP control development, the NRPCT engaged ORNL to review
the general control principals, methods, and challenges that should be considered in the development
of the SNPP autonomous control capabilities. The ORNL study is presented in Reference (124).

6.3 Key Findings and Perspectives

Based on work performed during the preconceptual design phase, the NRPCT developed a number of
technical findings:

= An |&C Segment architecture was developed which included recommended redundancy,
interfaces with the spaceship and the number of sensors and board count. The I&C
architecture provided for autonomous reactor operation and fault management with a simple
system. Electronics for the control system that could withstand the Jovian radiation
environment for the intended mission duration appear to be available. Computing electronics
in particular are judged to be low risk based on available technologies. Analog electronics for
use particularly in the sensor conditioning circuits would be a significant technical challenge
and would require development of custom application-specific integrated circuits to achieve
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the level of radiation hardness and reliability needed. Based on the JIMO schedule, near term
actions would have been necessary to initiate development of these electronics.

= An evaluation of candidate sensors has been completed. Technologies appear to be available
for all key plant parameters including temperature, neutron flux, pressure, control drive
mechanism position, and coolant flow. Significant development would remain to deliver and
qualify sensors and interface electronics to support long duration space missions. Major
technical challenges would be lifetime, operating temperature, accumulated radiation dose,
and the need to operate without recalibration.

= The most challenging sensor application would be hot leg temperature due to the lifetime
degradation of the sensors at high temperature and the need to integrate the sensor with
internally insulated hot leg piping. The most promising sensor technology for this application
was judged to be sapphire Fiber Bragg Gratings, which have the potential for adequate
stability over life.

= A plan for control system software development for JIMO was completed, and selections were
made for process management, interfaces with other systems, and software design. For the
reactor controller, emphasis was placed on high reliability software design with simple
operating structures. Algorithms for system control and autonomy are not yet developed.

* The reactor plant start-up would be the most complex operation envisioned for the Reactor
I&C Segment and would require close integration with other spaceship subsystems. The
reference approach involved using a solar array to power the Brayton alternator to initiate gas
coolant flow. Once flow is initiated, the reactor would be brought critical by slow increases in
reactivity using the reactor control devices. Once critical, the reactor would be slowly heated
with reactor power until full power and temperature conditions were reached. This would
require tight coordination between CDM positioning and Brayton speed control through the use
of a start inverter and PLR. A notional start-up procedure was developed, although it was not
fully modeled or refined.

* The start-up of a second Brayton in a multiple Brayton system would create additional control
system complexity. Starting both Brayton units simultaneously might require a prohibitive
amount of electrical power. Starting the second Brayton after the reactor was critical could
lead to a sudden increase in reactor flow and heat removal, which in turn would lead to a
sudden increase in reactor power. This would require further modeling and testing to refine
the startup sequence for a second Brayton unit.

= Control studies indicate that independent control loops for both reactor temperature and
turbine speed can be successfully implemented. No stability issues with plant control have
been found. Direct communication between the PCAD subsystem and Reactor I&C Segment
controllers was planned, as opposed to communicating data through the spaceship flight
computer.

* A preliminary evaluation of spaceship radiation and thermal environments has been
completed. Materials for both sensors and cabling appear to be available that will withstand
the environment given careful design.



Prometheus Project Reactor Module Final Report SPP-67110-0008
VOLUME 2: Technical Summary Page 2-71

7 INTEGRATED SYSTEM TESTING SUMMARY

7.1 Issues and Challenges

As discussed in Section 1.4, obtaining test data in time to support design decisions was a key
challenge for Project Prometheus. While time and budget pressures are not unusual in large test
programs, this space reactor project posed unique challenges, and a robust test program was
considered necessary to achieve adequate assurance of mission success. The objective of
integrated system testing was to provide component and system data that could be incorporated into
the ongoing design process. Individual components can be tested to some extent on a stand-alone
basis, but integrated system testing inevitably identifies issues that had not been previously found.
System performance testing was important because the concept of directly coupling a gas reactor to a
multiple Brayton system has never been demonstrated.

In addition to system performance testing, reliability testing was also critical to the project. Some
lifetime data for a 15- to 20-year mission could be accelerated, but only limited data would have been
available prior to launch. Reliability is a key factor in making important decisions, such as trading off
redundancy for mass.

A significant part of the integrated system testing plan included a notional Ground Test Reactor
Facility (GTRF). GTR operation would provide invaluable support for SNPP design and operation,
particularly for a manned mission. Siting and constructing a GTRF requires significant resources
early in the project in order to deliver data in time to impact design and operational decisions. Key
issues to be addressed in GTR recommendation included the benefits, where to site the facility,
whether containment was required or confinement would be acceptable due to low radiological risk,
and the impact on project schedule and budget.

7.2 Summary of Work

The test program to support development of the Direct Gas Brayton system had just been initiated at
a low level of testing at the time of project termination. Significant progress was made in establishing
a common integrated test plan as well as a final ATLO strategy. These plans built upon the extensive
testing and deployment experiences of NRPCT, NASA Centers, DOE National Laboratories, and the
spaceship subcontractor (NGST). Input from individuals directly responsible for the SP-100 and
SNAP space nuclear power programs was also used in developing these plans.

A key strategy of the Prometheus test program was to use the existing national infrastructure to the
maximum extent practicable. This approach would minimize facility startup costs and lead time for
obtaining data, as well as take advantage of the technical expertise that existed at the various NASA
Centers, DOE National Laboratories, and vendor facilities. Test facilities internal to the NR Program
would be limited to those needed for fundamental reactor research and development, as well as those
necessary to provide designers with basic operational experience on Brayton system and
instrumentation and control hardware. However, Reactor Instrumentation and Control would be
extensively tested at NRPCT sites.

The integrated test strategy had a series of system level tests that increased in prototypicality over
time, as shown in Figure 7-1. These tests were called the Thermal Test Model (TTM), Engineering
Model (EM) and Qualification Model (QM). The test program culminated with the final flight unit
assembly, test, and launch operations (ATLO). Such an approach was methodical and logical, but
because long-term program budgets had not yet been established, schedule and plan compromises
may have had to be considered as the project progressed.
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In addition to TTM-EM-QM system testing, a GTR Facility (GTRF) was being investigated. The initial
benefits of the GTRF are to confirm key reactor design parameters and plant system dynamics. Once
the flight unit is en route, the GTRF would be used to shadow the flight unit for early indications of
problems, and to perform diagnostic troubleshooting if problems are encountered. Some of the key
benefits of operating a prototype would be:

7.3

Characterize beginning of life reactivity over the operating temperature range
Confirm worth of reactivity control devices and safety rod(s)

Verify reactor feedback coefficients and power coefficient

Characterize reactor power distribution

Demonstrate the SNPP startup sequence

Verify plant dynamic performance predictions and demonstrate plant procedures
Testing of the flight reactor instrumentation and control system

Ground communications/telemetry testing

Training of the flight unit ground control system operators

Verify throughout-life reactor operation and reactivity

Figure 7-1: Integrated System Test Strategy
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Key Findings and Perspectives

Significant test programs had not yet commenced for the project prior to termination. However, some
general testing perspective was gained over the course of the project:

“Test as you fly, fly as you test” philosophy. NRPCT used the NASA/JPL philosophy of “test
as you fly, fly as you test” to guide the development of the integrated test plan. This
philosophy is based upon lessons learned from previous missions and the need to do
everything practical to exercise the actual flight system on the ground since repair after launch
would not be possible. Ideally, the complete system would be fully tested on the ground in a
prototypical manner to provide greater certainty of success and help eliminate unknown issues
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that may not have surfaced in more isolated, separate effects test programs. While this
approach makes sense, it was recognized and accepted early on that the presence of a
nuclear reactor would present significant limitations in the ability to fully meet this principle. All
plans formulated assumed that the fueled reactor would be integrated with the spaceship after
integrated system testing was completed.

= Test early and often. The need to commence testing early in the program and to continually
iterate between testing and design was recognized because of the lack of significant
experience with the reactor plant concepts being considered for space applications. While this
issue is related to the “test as you fly...” perspective, it is different in that it drove the desire for
early fundamental testing to gain insight into the design even when the hardware being tested
was not prototypical.

= High temperature vacuum testing of refractory metal alloys. If refractory metal alloys were
required in the pressure boundary, the integrated system testing would have been significantly
more complicated and costly to 1) provide sufficiently high vacuum conditions and, 2) provide
protection for a loss of vacuum condition. This would be true for the non-nuclear test facilities,
as well as the ground test reactor facility. Furthermore, the full size integrated EM and QM
testing would likely have to be reduced in scope or prototypicality since the planned facilities
(NASA Plum Brook or Johnson Space Center) would likely not have been capable of reliably
achieving these high levels of vacuum.

= Ongoing fundamental research and development. Future space reactor projects would benefit
from maintaining some level of fundamental research and development for space nuclear
reactor development, so that key data that takes years to produce (such as irradiated material
properties and lifetime reliability data) could be available at the start of the design effort rather
than occurring in parallel.
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8 MISSION EXTENSIBILITY

8.1 Issues and Challenges

As discussed in Section 1.3, extensibility to other missions was a Level 1 requirement for Project
Prometheus. The specific Level 1 Development Technology requirement that discussed extensibility
to surface missions was as follows:

“The following Space Nuclear Reactor technologies shall be developed for Lunar and Mars
surface power reactors: 1) Nuclear fuel, 2) Reactor core materials and coolants, and 3)
Instrumentation and Control.” (This item was indicated as an objective — minimum requirement
not yet defined.)

At the time of project termination, this Level 1 requirement was further incorporated into a Level 2
requirement:

Key Level 2 Requirement Impact on Reactor Module Implementation

The Space Nuclear Reactor Consideration in the selection of Must consider compatibility of
design shall utilize technologies |design and materials compatible pressure boundaries and

that facilitate extensibility to with Lunar and Mars missions. external surfaces with surface
surface operations. environments.

Extensibility, in the context of the Prometheus Project was considered in two broad categories:

1. Other deep space, nuclear electric propulsion missions
2. Surface missions, specifically the Moon and Mars

Each of these categories of missions presented difference issues and challenges as discussed below.

Extensibility to Deep Space Missions

Extensibility of the JIMO design reactor to other deep space missions was considered to be relatively
straightforward, since the deep space missions discussed by NASA were to be similar to the JIMO
mission in terms of using nuclear electric propulsion, and the power levels were envisioned to be the
same as the power level of the JIMO reactor (~200 kWe). Similarly, the radiation levels in the Jovian
system were likely more limiting than the radiation levels expected for other deep space missions.
The key challenge with some of the envisioned deep space missions was long mission duration.
Missions of up to 20 years were being considered and this would have posed the most significant
challenge to extensibility in terms of system reliability and long term materials behavior.

Extensibility to Lunar and Mars Surface Missions

Extensibility to surface missions to the Moon or Mars presented a different set of challenges since
these missions were intended to be manned. While the requirements for such missions were not
defined, it was clear that the system design and operation would likely be significantly different for
manned surface missions to account for personnel and environmental protection. However, the
assertion that the technology developed for JIMO would be extensible to these missions even if
significant design changes were required was still considered valid. It was also unclear whether the
reactor core design would require significant changes for manned surface missions.
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8.2 Summary of Work

As part of the Reference (2) concept selection process, the NRPCT concluded that the selection of a
direct gas cooled reactor coupled to a Brayton energy conversion system had the best prospect to
support the envisioned JIMO mission and was extensible to other deep space missions and surface
missions on the Moon or Mars. Although some features of the nuclear power plant would likely be the
same, engineering and modifications would have been required for a manned surface mission vs. an
unmanned deep space mission. Despite these anticipated design changes, the underlying
technologies (e.g., material development, fuel, plant components) would have been extensible to a
surface mission. The direct gas Brayton concept remains mass competitive with other reactor
concepts over a range of powers between 25 and 300 kWe. Based on specific requirements for a
surface mission (power, lifetime, schedule, etc.), a trade study may be necessary to determine if a
direct gas Brayton system would be most appropriate for that application.

Although extensibility was only one of many factors in the selection of the gas Brayton system, it did
play a role in avoiding the use of refractory metal alloys in the pressure boundary. While refractory
metal alloys may survive the high reactor temperatures in the deep vacuum of space, they would not
easily endure the lunar or Martian atmospheres without additional protection (vacuum chamber or
coatings). This is because refractory metal alloys at prototypical operating temperatures are
extremely susceptible to embrittlement when exposed to elements commonly found in a lunar or
Martian surface environment, specifically oxygen and carbon. Such protection would significantly
complicate the design and operation, and would make the deep space reactor much less extensible to
surface missions. Nickel-base superalloys were primarily considered for the reactor and energy
conversion pressure boundary, but no final material selections were made at the time of project
termination.

Specific mission and environmental requirements for other deep space missions were not defined and
no effort was expended by the Naval Reactors program in evaluating specific issues with these
missions.

8.3 Key Findings and Perspectives
8.3.1  Extensibility to Other Deep Space Missions

Some of the Level 2 requirements were established specifically for the JIMO mission and some were
multi-mission, meaning that they would meet the expected requirements for all the deep space
missions for the Deep Space Vehicle. For example, a target mission lifetime of 20 years was based
upon supporting projected follow-on missions, even though the JIMO mission was only expected to
last 10 to 12 years. Future missions that were studied by NASA include:

Saturn and its moons

Neptune and its moons

Comet and multi-asteroid sample return
Kuiper Belt rendezvous

While these possible mission concepts were only preliminary in scope, they were all estimated to be
achievable within a 20 year lifetime and the power requirements established for JIMO (i.e., ~200
kWe). Other possible missions such as an “interstellar precursor” to the Heliopause (200 AU from the
sun) were beyond the 20 year mission life of Prometheus requirements and not truly extensible from
the JIMO design. Figure 8-1 illustrates the location of these missions relative to Earth.
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Figure 8-1: lllustration of Possible Deep Space Missions (NASA)
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The 10 years of full power operation required for JIMO were expected to encompass longer missions,
as well. This was because despite the longer mission lives, there would also be longer reduced
power periods between thrusting such that the number of full power years was no greater than for
JIMO. Because of this, the JIMO reactor design would be extensible to other deep space missions.
One key issue would be system reliability as mission life approached 20 years. A system for 20 years
of operation may become more feasible as the JIMO design matured and test and flight system data
were obtained and factored into subsequent designs.

8.3.2 Extensibility to Moon and Mars Surface Missions

Extensibility to surface missions posed significantly greater challenges for the nuclear power plant
design, particularly since missions to the Moon and Mars were expected to be manned. Specific
surface missions under consideration by NASA at the time of project termination included
establishment of a base camp on the Moon and an eventual manned mission to Mars. Because of
the major differences between these types of surface missions and the planned JIMO mission,
extensibility to surface missions was a more significant factor in the design than extensibility issues
with other deep space missions. Significant differences in the design requirements would exist for a
manned mission compared to an unmanned mission, such as personnel safety, reactor protection,
backup power supplies, shielding, redundancy, deployment, maintenance, etc.

Significant differences between surface mission requirements and the JIMO mission may be specified
such as lower power, shorter lifetime, and more power transients. At different power levels, some
alternatives to the Direct Gas Brayton concept become more competitive. At the low end of this
power range, the reactor and its shield become the mass limiting items, allowing a lower temperature
liquid metal Stirling concept to become more mass competitive. Notional lower power and lifetime
requirements for surface missions also open up the possibility of a mass competitive neutronically
moderated gas reactor. A moderated reactor would require about 70-80% less highly-enriched
uranium fuel than a small fast reactor, which may permit using some adaptation of a prior high
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temperature gas reactor fuel system for a space mission. One approach that could be considered is a
water moderated gas reactor. This reactor has considerable mechanical and thermal design
challenges and would require detailed concept development based on firm mission requirements to
better judge feasibility. These systems would not be as compatible with deep space missions, as
discussed in Reference (4).
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9 KEY FINDINGS AND A PERSPECTIVE ON NEAR-TERM DEVELOPMENT

The work completed by the NRPCT, as summarized in this Technical Summary, lead to some overall
conclusions that deserve reiteration:

1)

3)

8)

After more in-depth concept development, the gas reactor Brayton system continues to offer
the prospect to meet Prometheus mission requirements. The NRPCT judges that a direct gas
Brayton is more deliverable in the near term than liquid metal cooled reactor system at
comparable power levels. The thorough review of Brayton system component performance
capability supports the feasibility and strategy of using Brayton systems for long duration deep
space missions.

Material performance and current uncertainty in characterizing material performance affect
selection of reactor design features for a high temperature long life plant. Obtaining improved
data on fuel element cladding materials to allow for selection of a reference cladding was a top
NRPCT priority. This lack of well quantified fuel system performance is a major design
uncertainty.

Fast neutron spectrum reactor designs appear suitable for the Prometheus deep space
missions. However, fast reactors bring additional challenges of increased nuclear design
uncertainty and increased safety measures to ensure safety during a potential transport or
launch accident, including compaction considerations. Extensive reactor physics testing,
safety analysis, and safety performance testing are necessary to ensure public safety
throughout reactor transport, installation, and launch.

Preliminary evaluation of reactor plant dynamic performance indicates that the reactor system
can be started and controlled with no apparent instabilities associated with the direct coupling
of the reactor core and the Brayton energy conversion system.

Operation of the SNPP in a low power mode during periods without thrust should be evaluated
to potentially reduce overall stresses on the plant and maximize lifetime.

Preliminary system evaluations point to a system with one or two Brayton loops being more
reliable and less massive than the four loops considered in past studies.

Testing of all aspects of the design concept will be needed to increase design confidence and
demonstrate performance. The initially envisioned test sequence includes fundamental
material testing, fuel system testing, component testing, instrumentation and control testing,
physics experiments, and integrated non-nuclear system testing leading to a ground test
reactor prototype.

The Direct Gas Brayton system technologies are extensible to a range of deep space
missions, as well as manned surface missions. Design requirements for manned missions will
be substantially different than those for an unmanned mission; therefore, the specific design
will be different. Because a surface mission may have significantly different mission
requirements such as power level and duration, alternatives to the Direct Gas Brayton system
should also be evaluated.
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Perspective for Future Development

The scope and nature of the development challenges, together with the flexibility and extensibility of
the direct gas Brayton system makes it well suited, in concept, for deep space and surface missions.
NRPCT concludes that the technologies for a gas-Brayton system are within reach for a first space
reactor mission for both types of missions. Given that there may be time but limited resources for
space nuclear work prior to initiation of another large scale space reactor project, work should be
concentrated toward making progress on reactor fuel and material systems development and testing.
Specifically, irradiation testing of fuel system materials, including fuel materials, refractory metal
alloys, and ceramics as well as nickel-base superalloys should be performed to obtain this long-lead
data for the next space reactor project.
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1 INTRODUCTION

In addition to documents generated during Project Prometheus, NRPCT gathered many relevant
documents from past programs and from open literature. These references have been combined into
an extensive Bibliography to provide important information for a future space fission reactor program.
The Bibliography contains three types of information:

» Information generated by the NRPCT during Project Prometheus
» Information generated by NRPCT subcontractors and partners during Project Prometheus

» Information generated by other sources before Project Prometheus (e.g., SP-100, SNAP
Program, etc.)

The Bibliography is divided into major categories that generally follow the Reactor Module Work
Breakdown Structure. Each category is subdivided as appropriate by topic.

All documents generated by the NRPCT that are listed in the Bibliography are accessible via the
Internet-accessible U.S. DOE Office of Scientific and Technology Information (OSTI) Science
Resource Connection (SRC) database, except those marked with a star (%), plus (+), or cross (X)
after the document description. The reports available in the SRC database are unclassified and not
sensitive.

The symbols listed above denote the following types of information:
% Sensitive U-SNRI
+ CONFIDENTIAL
% Sensitive Official Use Only (OUO)

Sensitive unclassified documents, specifically U-SNRI and Official Use Only documents, will be stored
in an OSTI repository that is not internet accessible. OSTI will direct requests for these sensitive
documents to the Schenectady Naval Reactors Office (SNR), Security and Safeguards Division. Two
documents are classified as CONFIDENTIAL per the DOE/DOD/NASA Classification Guide for Space
Reactor Power Systems, CG-SRPS-1. CONFIDENTIAL material will be maintained internal to the NR
Program and will not be provided to OSTI. See Section 5.1.2 of Volume 1 for additional access
information for sensitive documents.

Bibliographic information for each NRPCT document stored at OSTI (including sensitive documents)
will be entered into the OSTI SRC database to enable topical and key word searching. The keyword
“NRPCT” will bring up all NRPCT documents. All other documents listed in this bibliography are
available in the open literature, from DOE OSTI, and/or from the originating organizations.

2 NRPCT Documents

All documents listed below are available in the SRC database, except those marked with %k, +, X.

(1) KAPL Letter SPP-67410-0014, "Documentation of the NR Program Assessment of the
Design Space for the Prometheus 1 Project," April 17, 2006. %

(2) KAPL Letter SPP-67110-0007 / Bettis Letter B-SE-0143, “Documentation of Space
Nuclear Power Plant Concept Selection,” July 27, 2005. %

(3) NR letter [#05-01228, “Space Nuclear Power - Reactor Coolant and Power
Conversion System Concept - Approval of”, dated April 20, 2005.
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(4)
(©)

(6)
(7)
(8)
(9)
(10)

(11)

(12)

(13)

(14)
(15)

(16)

(17)
(18)
(19)
(20)

(21)

(22)

(23)

(24)

KAPL Letter SPP-67210-0010 / Bettis Letter B-SE(SPS)-001, “Space Nuclear Power
Plant Pre-Conceptual Design Report; For Information,” January 27, 2006.

KAPL Letter SPP-67410-0013 / Bettis Letter B-SE(RE)-0003, “Project Prometheus
Space Reactor Pre-Conceptual Design Report, for Naval Reactors Information”
January 27, 2006. %k

Bettis Letter B-SE(RE)-0001, "Fuel Type Recommendation for the Project Prometheus
Space Nuclear Reactors, For Naval Reactors Approval," July 28, 2005. +

KAPL Letter SPP-67410-0002, “Space Program Annual Report, for Approval,”
December 15, 2004.

KAPL Letter SPP-67610-0007, “Prometheus Reactor I&C Software Development
Methodology, for Action,” July 30, 2005.

KAPL Letter SPP-67610-0008, “Space Power Program, Instrumentation and Control
System Architecture, Pre-conceptual Design, for Information,” October 20, 2005.
Bettis Letter B-SE(SPS)IC-008, "NRPCT Closeout of Prometheus Sensor
Development Work for NR Information", December 21, 2005.

KAPL Letter SPP-SRS-0002, “Request for Naval Reactors Comment on Proposed
Prometheus Space Flight Nuclear Reactor High Tier Reactor Safety Requirements
and for Naval Reactors Approval to Transmit These Requirements to JPL,” April 28,
2005.

KAPL Letter SPP-SRS-0007, “Reactor Safety Planning for Prometheus, for Naval
Reactors Information,” May 6, 2005.

KAPL Letter SPP-SRS-0022, “Prometheus Space Reactor Launch Safety - Discussion
of Approach, Technical Effort and Resources, for Naval Reactors 08Z Information,"
January 25,2006. %

KAPL Letter SPP-67210-0009, “Summary of Prometheus Radiation Shielding Nuclear
Design Analyses,” January 13, 2006.

KAPL Letter SPP-67210-0011, “Space Reactor Radiation Shield Design Summary, for
Information” February 17, 2006.

KAPL Letter SPP-SEC-0039, “Documentation of Naval Reactors Papers and
Presentations for the Space Technology and International Forum (STAIF) 2006,"
March 2, 2006.

CG-SNR-1, “DOE-NASA Classification Guide For Civilian Space Nuclear Reactors To
Support Nasa Project Prometheus Missions (U),” December, 2004. X

SN-801, “Guidelines for the Control and Protection of Unclassified Space Nuclear
Reactor Information,” August 2, 2005. X

Bettis Letter B-SE(SPS)GT-005, "Space Nuclear Power Plant - Ground Test Reactor
Facility Planning Closeout Report - For Information," December 13, 2005. X

Bettis B-TM-1639, “Specifications, Pre-Experimental Predictions, and Test Plate
Characterization Information for the Prometheus Critical Experiments,” April 2006.
KAPL Letter MDO-723-0010 / B-MT(SRME)-59, “Summary of Core, Fuel Cladding,
and Plant Structural Materials Considered for the Prometheus Space Nuclear Power
Plant,” April 14, 2006.

KAPL Letter MDO-723-0011 / Bettis Letter B-MT(SRME)-53, “Refractory Metal
Irradiation Testing at Oak Ridge National Laboratory,” February 23, 2006. X

KAPL Letter MDO-723-0015 / Bettis Letter B-MT(EDT)S-028, “Multiple Irradiation
Capsule Experiment (MICE)-3B Irradiation Test Of Space Fuel Specimens in the
Advanced Test Reactor (ATR) - Close Out Documentation for Naval Reactors (NR)
Information,” January 9, 2006.

KAPL Letter MDO-723-0017, “Haynes 230 Mini-Can Welding to Support Planned
Irradiation Testing of Candidate Space Fuel Materials,” January 17, 2006.
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(25)
(26)

(27)

(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)
(36)
(37)

(38)

(39)
(40)
(41)
(42)
(43)
(44)
(45)
(46)

(47)

KAPL Letter MDO-723-0018, “Initial Assessment of Environmental Barrier Coatings for
the Prometheus Project,” December 15, 2005.

KAPL Letter MDO-723-0027 / Bettis Letter B-MT(SRME)-34, “Fuel Material Properties
and Guidance to Support Pre-Conceptual Design Efforts,” July 7, 2005. %

KAPL Letter MDO-723-0036 / Bettis Letter B-MT(SRME)-37, “Space Nuclear
Propulsion Program — Overview of Domestic and International Shipping of Irradiated
Structural Materials and Handling Associated Waste, for NR Information,” January 23,
2006.

KAPL Letter MDO-723-0038, "Addendum to MDO-723-0027, Updated Fuel Material
Properties,” December 7, 2005.

KAPL Letter MDO-723-0040 / Bettis Letter B-MT(SPME)-15, "Comparison of fission
product yields and their impact,” February 1, 2006.

KAPL Letter MDO-723-0042, “Reflector and Reflector Material Properties For Project
Prometheus,” November 2, 2005.

KAPL Letter MDO-723-0043 “Assessing the Effects of Radiation Damage on Ni-base
Alloys for the Prometheus Space Reactor System,” January 19, 2006.

KAPL Letter MDO-723-0044 / Bettis Letter B-MT(SRME)-52, “JOYO-1 Irradiation Test
Campaign Technical Close-out, For Information,” January 31, 2006.

KAPL Letter MDO-723-0046 / Bettis Letter B-MT(SPME)-23, “Space Reflector
Materials for Prometheus Application,” January 31, 2006.

KAPL Letter MDO-723-0048, “The Evaluation of Lithium Hydride for Use in a Space
Nuclear Reactor Shield, Including a Historical Perspective,” December 9, 2005.

KAPL Letter MDO-723-0049 / Bettis Letter B-MT(SPME)-22, “Space Shield Materials
for Prometheus Application,” January 20, 2006.

KAPL Letter MDO-723-0052, “Program Summary of Prometheus-1 Fuel Development,
For Information,” February 15, 2006. +

KAPL Letter MDO-723-0053, “Mass Transport Modeling for the Prometheus Space
Nuclear Power Plant (SNPP), For Information,” January 20, 2006 %

KAPL Letter MDO-723-0057,” Naval Reactors Prime Contractor Team (NRPCT)
Experiences and Considerations with Irradiation Test Performance in an International
Environment,” to be issued (expected April 2006).

Bettis Letter B-MT(AMSI)-17, “Testing Results of Magnetostrictive Ultrasonic Sensor
Cables for Signal Loss,” May 2005.

Bettis Letter B-MT(AMSI)-43, “Materials for the Control Rod Drive Mechanisms,”
December 14, 2005.

Bettis Letter B-MT(AMSI)-44, “Alternator Electrical Feedthrough Insulator Materials for
Project Prometheus,” January 4, 2006.

Bettis Letter B-MT(SPME)-4, “Compatibility of Space Nuclear Power Plant Materials in
an Inert He/Xe Working Gas Containing Reactive Impurities,” January 31, 2006.
Bettis Letter B-MT(SPME)-17, “On-Line Coolant Chemistry Analysis and Control,”
February 27, 2006.

Bettis Letter B-MT(SPME)-18, “A Review of Tribological Coatings for Control Drive
Mechanisms in Space Reactors,” February 21, 2006.

Bettis Letter B-MT(SPME)-20, “Carbon-Carbon Composites as Recuperator Material
for Prometheus System,” February 27, 2006.

Bettis Letter B-MT(SPME)-21, “Metallic and Non-metallic Materials for the Primary
Support Structure,” February 21, 2006.

Bettis Letter B-MT(SPME)-24, “Hot Leg Piping Materials Issues,” February 27, 2006.
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(48) Bettis Letter B-MT(SPME)-25, “Barrier Coatings for Refractory Metals and
Superalloys,” February 23, 2006

(49) Bettis Letter B-MT(SPME)-26, “Double Retort System for Materials Compatibility
Testing,” February 23, 2006.

(50) Bettis Letter B-MT(SRME)-45, “Summary of Dissimilar Metal Joining Trials Conducted
by Edison Welding Institute,” November 18, 2005.

(51) Bettis Letter B-MT(SRME)-46, “Experimental Design for Evaluation of Co-extruded
Refractory Metal/Nickel Base Superalloy Joints,” December 16, 2005.

(52) Bettis Letter B-MT(SRME)-49, “Closeout of JOYO-1 Specimen Fabrication Efforts,”
October 31, 2005.

(63) Bettis Letter B-MT(SRME)-50, “Biaxial Creep Specimen Fabrication,” February 9,
2006.

(54) Bettis Letter B-MT(SRME)-51, “Processing of Refractory Metal Alloys for JOYO
Irradiations,” February 21, 2006. *

(55) Bettis Letter B-MT(SRME)-54, “Refractory Metal Mechanical Testing at Oak Ridge
National Laboratory,” February 23, 2006. X

(56) Bettis Letter B-MT(SRME)-55, “Fuel System Compatibility Issues for Prometheus-1,*
January 20, 2006.

(57) Bettis Letter B-MT(SRME)-56, “Modeling of Fission Gas Release in UO,,” January 23,
2006.

(58) Bettis Letter B-MT(SRME)-58, “Failure Analysis of Cracked FS-85 Tubing and

ASTAR-811C Endcaps,” February 9, 2006.

3 NRPCT Subcontracted Reports

The following reports were generated by DOE Laboratories, NASA Centers, and NR Program
contractors / vendors under NRPCT subcontracts during Project Prometheus.

3.1 Reactor Module Reactor Segment

Idaho National Laboratory

(59)

(60)
(61)
(62)
(63)

Olsen, D.N., et al. “Configurations and Experiments in the ZPPR-16 Power Reactor
Space Benchmark Program.” INL/ANL. INL/EXT-05-00555, ANL-ZPR-475, August
2005.

Olsen, D.N., et al. "Experiments for the SP-100 Space Reactor in ZPPR-20." INL/ANL.
INL/EXT-05-00556, ANL-ZPR-497, August 2005.

Olsen, D.N., et al. "Configurations for SP-100 Space Reactor Experiments in ZPPR-
20." INL/ANL. INL/EXT-05-00558, ANL-ZPR-498, August 2005.

McEligot, Donald M. "Convective heat transfer and pressure drop in low-Prandtl-
number gas mixtures." INL. INL/EXT-05-00779, September 26, 2005

Clayton, Kevin K. and Bruce G. Schnitzler. "Prometheus Program Fuel Pin Testing
Assessment—Phase 1." INEEL and Bechtel BWXT. INEEL/EXT-05-00965, November
2005.

Los Alamos National Laboratory

(64)

(65)

Poston, David |. "Temperature Dependent Reactivity for 1-Mwt Gas-Cooled
Prometheus Reactors." Task 2, Subtask C, ltem 2. LANL. LA-CP-05-0793, July 18,
2005.

Poston, David I. "LANL input for NRPCT Reactor Design Basis." Task 2, Subtask C,
Item 3. LANL. LA-CP-05-1368, December 12, 2005.
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(66)

(67)
(68)

(69)
(70)

(71)

(72)

(73)
(74)
(75)
(76)
(77)
(78)
(79)
(80)
(81)
(82)

(83)
(84)

(89)

(86)

(87)

Poston, David . "Detailed Description of the Nuclear and Thermal Design Processes
and Codes: ALLGEN & TMSS." Task 2, Subtask D.1, Item G. LANL. LA-CP-05-1373,
December 12, 2005.

Sadasivan, P., Testing Plan for the Heat Pipe Reactor, LANL. LA-CP-04-0786,
September 28, 2004.

Reid, R.S., Report Assessing Heat Pipe Performance Capability, LA-CP-05-0044,
January 19, 2005.

Dale, C. “Material Property Database.” LANL, LA-CP-04-0741, September 21, 2004.
Dale, C. “Design Assumptions and Methodologies Used in the Feasibility Study.”
LANL. LA-CP-04-0938, December 17, 2004.

Poston, D. “Determination and Assessment of Graded Safeguards Category and
Attractiveness Level for Lower-Enrichment JIMO Nuclear Reactor Fuel Material.”
LANL. LA-CP-04-0713, September 16, 2004.

Poston, D. “Jupiter Icy Moons Orbiter Reactor Design Studies to Support the Naval
Reactors Prime Contract Team Feasibility Report.” LANL. LA-CP-04-0882, November
23, 2004.

Marcille, T. “JIMO Reactor Module: Hydrodynamic Analysis.” LANL. LA-CP-04-0885,
November 29, 2004.

Poston, D. “Prometheus 1 Design Studies Report.” LANL. LA-CP-05-0137, February
4, 2005.

Kapernick, R. “Creep Analysis for a Liquid Metal Cooled Reactor Vessel.” LANL. LA-
CP-04-0756, September 23, 2004.

Marcille, T. “JIMO Reactor Module: MCNP(X) Code and Cross-section Qualification
Description Document.” LANL. LA-CP-04-0684, August 23, 2004.

Marcille, T. “JIMO Reactor Module: Critical Benchmark Experiment Review for
Application to JIMO.” LANL. LA-CP-04-0706, August 31, 2004.

Marcille, T. “JIMO Reactor Module: ZPPR-16 and ZPPR-20 Qualification Task.” LANL.
LA-CP-04-0723, September 16, 2004.

Reid, R. “Report Assessing Heat Pipe Performance Capability / Heat Pipe Technology
Assessment.” LANL, LA-CP-04-0722, September 14, 2004.

Loaiza, D. “Niobium-1 Zirconium Moderated by Polyethylene and Fueled with Highly
Enriched Uranium.” LANL. D-5-05-067 / LA-UR-04-8751, December 16, 2004.
Marcille, T.F. “SPACEOS5L Cross Section Library.” LANL. D-5-06-066 / LANL-SPP-05-
0002; Revision 5; Deliverable d.2, January 30, 2006.

Poston, D. “External Control Options and Design Studies for 1MWt Gas-Cooled
Prometheus Reactors.” Task 2, Subtask C, Item 4. LANL. D-5-06-066 / LA-CP-06-
0152, January 27, 2005.

Marcille, T.F. “Nb-1%Zr Experiment Plate Dimensions.” LANL. D-5-06-066 / LANL-
SPP-05-0006; close-out deliverable, January 30, 2006.

Loaiza, D., et al., "Hand-stacking for Rhenium Critical Experiments Fueled by Highly
Enriched Uranium and Moderated by Polyethylene and Various Graphite Plate
Thicknesses." LANL. LA-UR-05-9236_Draft, January 2006.

Loaiza, D., et al., "Hand-stacking for Baseline Critical Experiments Fueled by Highly
Enriched Uranium and Moderated by Polyethylene and Various Graphite Plate
Thicknesses." LANL. LA-UR-05-9237_Draft, January 2006.

Loiaza, D., et al., "Hand-stacking for Molybdenum Critical Experiments Fueled by
Highly Enriched Uranium and Moderated by Polyethylene and Various Graphite Plate
Thicknesses." LANL. LA-UR-05-9238_Draft, January 2006.

Loiaza, D., et al., "Hand-stacking for Niobium — (1%) Zirconium Critical Experiments
Fueled by Highly Enriched Uranium and Moderated by Various Graphite Plate
Thicknesses." LANL. LA-UR-05-9239_Draft, January 2006.
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3.2

(88) Loiaza, D. et al., "Hand-stacking for Tantalum — 2.5 wt% Tungsten Critical
Experiments Fueled by Highly Enriched Uranium and Moderated by Polyethylene and
Various Graphite Plate Thicknesses." LANL. LA-UR-05-9240, January 2006.

(89) Sadasivan, P. et al., “DAF Critical Experiment Estlmates ” LANL. LA-CP-05-1176,
September 26, 2005

Argonne National Laboratory and Idaho National Laboratory

(90) K. N. Grimm, R. M. Lell, R. D. McKnight, and R. W. Schaefer, “ZPPR-20 Phase C: A
Cylindrical Assembly of U Metal Reflected by Beryllium Oxide,” HEU-MET-FAST-075,
International Handbook of Evaluated Criticality Safety Benchmark Experiments, OECD
Nuclear Energy Agency, NEA/NSC/DOC(95)03, September 2005 Edition.

(91)  R. M. Lell, K. N. Grimm, R. D. McKnight, and R. W. Schaefer, “ZPPR-20 Phase D: A
Cylindrical Assembly of Polyethylene-Moderated U Metal Reflected by Beryllium
Oxide and Polyethylene,” SUB-HEU-MET-MIXED-001, International Handbook of
Evaluated Criticality Safety Benchmark Experiments, OECD Nuclear Energy Agency,
NEA/NSC/DOC(95)03, September 2005 Edition.

(92) R.W. Schaefer, K. N. Grimm, R. M. Lell, and R. D. McKnight, “ZPPR-20 Phase E: A
Cylindrical Assembly of U Metal Reflected by Beryllium Oxide and Sand,” SUB-HEU-
MET-FAST-001, International Handbook of Evaluated Criticality Safety Benchmark
Experiments, OECD Nuclear Energy Agency, NEA/NSC/DOC(95)03, September 2005
Edition.

Sandia National Laboratory
(93)  Wright, Steven A. et al. “Space-Based Gas-Cooled Reactor Design, Interim Report.”

Sandia National Laboratory. September 2005.
Reactor Module Primary Plant Segment

Los Alamos National Laboratory

(94) Lin, J.C. and R.C. Johns. "Implementation of a Brayton Model in Trace." LANL. LA-
CP-05-0948, August, 2005.

Idaho National Laboratory
(95)  Murray, P.E., "An Electromagnetic Annular Liquid Induction Pump Model for RELAP5-

3D." INL. May 2005.

(96) Davis, C.B., et al. “Implementation of Helium-Xenon Thermodynamic Properties and
Transport Properties into RELAP5-3D/ATHENA.” INEEL. R5/3D-04-10, December
2004

(97) Weaver, W.L., “Software Design, Implementation, and Verification Document R5/3D-
05-02, Upgrade Compressor Model,” January 5, 2005

Marshall Space Flight Center
(98) Houts, Michael G. “Heat ExchangerThermaI and Structural Analysis.” MSFC. NP50
(05-012), March 31, 2005.

Contractor Reports on Gas Cooler Development

(99) Heatric, Dorset, UK. "Design Study Phase 1 - Final Report." DR1-H1026. September
1, 2005.

(100) Hamilton Sundstrand, Windsor Locks, CT. “Evaluation of Gas Cooler Materials of
Construction and Reliability, Scoping Phase Final Report.” Bechtel Bettis Purchase
Order #3007352, August 30, 2005.
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(101)

(102)

Holtec International, Marlton, NJ. “Gas Cooler Materials of Construction and Reliability
for Space Based Nuclear Power Plant.” Bechtel Bettis Purchase Order, Holtec Report
HI-2053418, Project 1489, September 2005.

Honeywell, Torrance, CA. “Nuclear Propulsion System Gas Cooler Scoping Phase
Design Study.” Bechtel Bettis Purchase Order #3007132, Honeywell Report 05-73670,
October 18, 2005.

3.3 Reactor Module Shield Segment

Oak Ridge National Laboratory

(103)

(104)
(105)
(106)
(107)
(108)

(109)

(110)

(111)
(112)
(113)

(114)

(115)

(116)

(117)

Blakeman, E. D. "Quick Mass Analysis for Reactor Shields (QMARS): A Space
Reactor Shield Sizing Tool, Revision 1." ORNL. ORNL/LTR/NR-JIMO/05-04, February
2005. v

Bucholz, J.A. "Dose Rate Outside a Reactor Coolant Pipe Due to Activated Coolant."
ORNL. ORNL/LTR/NR-JIMO/05-02, January 2005.

Yugo, J.J. "Multi-layer Radiation Shield Optimization Studies and Simulations." ORNL.
ORNL/LTR/NR-JIMO/05-03, February 2005.

"Shielding Analysis, Methods Qualification Test Outline, Cross Section Development,
And Methods Development." ORNL. ORNL-SPP-05-0042, April 26, 2005.

Williams, M. L. "Application of Sensitivity and Uncertainty Analysis to Space Reactor
Shielding Designs." ORNL. ORNL/LTR/NR-PROM1/05-26, September 2005.
Williams, M.L. and S. Goluoglu. "Sensitivity and Uncertainty Analysis for Space
Reactor Shielding Calculations." ORNL. ORNL/LTR/NR-PROM1/05-16, June, 2005.
Patton, B.W. and J. O. Johnson. "Preliminary Investigations into Applicable Space
Reactor Shielding Benchmark Experiments and Facilities for Methods Qualification
Testing." ORNL. ORNL/LTR/NR-PROM1/05-25, September 2005.

Greene, N.M,, et al. "Status Report: Cross-Section Library Development to Support
Shielding Analyses for Space Reactor Applications - DRAFT." ORNL. ORNL/LTR/NR-
PROM1/05-33, October 2005.

Lillie, R.A. "GRTUNCL3D: Improvements and Extensions - DRAFT." ORNL.
ORNL/LTR/NR-PROM1/05-31, October 2005.

Slater, C.O. "User’s Manual for the FALSTF3D Last-Flight Estimation Computer Code
- DRAFT." ORNL. ORNL/LTR/NR-PROM1/05-30, October 2005.

Pevey, R.E. and R.A. Lillie. "MTT: An Analysis Tool to Link MCNP to TORT - DRAFT."
ORNL. ORNL/LTR/NR-PROM1/05-32, October 2005.
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