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ABSTRACT

In May 2000, the Cerro Grande Fire burned approximately 17,200 ha in north-
central New Mexico as the result of an escaped prescribed burn initiated by Bandelier
National Monument. The interaction of large-scale fires, vegetation, and elk is an
important management issue, but few studies have addressed the ecological implications
of vegetative succession and landscape heterogeneity on ungulate populations following
large-scale disturbance events. Primary objectives of this research were to identify elk
movement pathways on local and landscape scales, to determine environmental factors
that influence elk movement, and to evaluate movement and distribution patterns in
relation to spatial and temporal aspects of the Cerro Grande Fire. Data collection and
assimilation reflect the collaborative efforts of National Park Service, U.S. Forest
Service, and Department of Energy (Los Alamos National Laboratory) personnel.
Geographic positioning system (GPS) collars were used to track 54 elk over a period of
3" years and locational data were incorporated into a multi-layered geographic
information system (GIS) for analysis. Preliminary tests of GPS collar accuracy
indicated a strong effect of 2D fixes on position acquisition rates (PARs) depending on
time of day and season of year. Slope, aspect, elevation, and land cover type affected
dilution of precision (DOP) values for both 2D and 3D fixes, although significant
relationships varied from positive to negative making it difficult to delineate the
mechanism behind significant responses. Two-dimensional fixes accounted for 34% of
all successfully acquired locations and may affect results in which those data were used.
Overall position acquisition rate was 93.3% and mean DOP values were consistently in
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the range of 4.0 to 6.0 leading to the conclusion collar accuracy was acceptable for
modeling purposes. SAVANNA, a spatially explicit, process-oriented ecosystem model,
was used to simulate successional dynamics. Inputs to the SAVANNA included a land
cover map, long-term weather data, soil maps, and a digital elevation model.
Parameterization and calibration were conducted using field plots. Model predictions of
herbaceous biomass production and weather were consistent with available data and
spatial interpolations of snow were considered reasonable for this study. Dynamic
outputs generated by SAVANNA were integrated with static variables, movement rules,
and parameters developed for the individual-based model through the application of a
habitat suitability index. Model validation indicated reasonable model fit when compared
to an independent test set. The finished model was applied to 2 realistic management
scenarios for the Jemez Mountains and management implications were discussed.
Ongoing validation of the individual-based model presented in this dissertation provides
an adaptive management tool that integrates interdisciplinary experience and scientific
information, which allows users to make predictions about the impact of alternative

management policies.
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CHAPTER I

INTRODUCTION

Isolation of remnant populations through habitat loss and fragmentation is a
perceived threat to the conservation of biological diversity and ecological integrity
(Rosenberg et al. 1997). Corridors have been proposed as a method to lower extinction
rates, lessen demographic stochasticity, deter inbreeding depression, and fulfill the
inherent need that animals have for movement (Noss and Cooperrider 1994, Rosenberg et
al. 1997, Bennett 1999). Despite its intuitive appeal, the corridor concept has become a
major battleground in conservation science (Mann and Plummer 1995). Critics argue a
paucity of experimental data and weak empirical evidence supporting the use of
corridors. Corridors may increase edge effect, attract predators, inadvertently serve as
“sink” habitat, and act as possible conduits for disease transmission and other
catastrophic events (Simberloff et al. 1992). This is further complicated by the ambiguity
of the term “corridor” which has contributed to vague and often contradictory definitions
(Simberloff et al. 1992, Rosenberg et al. 1997).

This controversy has led biologists to explore whether the real issue is the merit of
corridors, per se, or the value of connectivity (Bennett 1999). Landscape connectivity
has been defined as “the degree to which the landscape facilitates or impedes movement
among resource patches” (Taylor et al. 1993: 571) or “the functional relationship among
habitat patches, owing to the spatial contagion of habitat and the movement responses of

organisms to landscape structure” (With et al. 1997: 151). Landscape connectivity,



therefore, depends not only on the abundance and spatial partitioning of habitat but also
on the habitat specificity and movement behavior of a species (With and Crist 1995).
Noss and Cooperrider (1994) stated, “Connectivity is not just corridors” (p. 151) and
advocated the pursuit of functional connectivity, which should be evaluated at several
spatial and temporal scales, ranging from daily movements within home ranges to long-
distance dispersal events connecting populations. “Connectivity is therefore a feature of
a whole landscape, where the scale of the landscape is determined by the habitat use and
movement scales of the organisms in question” (Tischendorf and Fahrig 2000: 633).

In addition to scale, the spatial configuration of habitats in heterogeneous
landscapes is also an important determinant of connectivity (Keitt et al. 1997, Turner et
al. 2001). The relationship between environmental heterogeneity and animal movements
and distribution at the landscape scale can have far-reaching implications for the ecology
of organisms and ecosystem function (Turchin 1998). Long-term studies on the
movement patterns of species at local and regional scales are needed because those are
the scales at which conservation strategies are planned and implemented (Saunders and
Hobbs 1991). Designing functional corridors at the landscape scale is difficult due to
limited detailed data on movements of animals through landscapes, which, in turn,
inhibits accurate identification of features essential in maintaining functional
connectivity.

Species’ perceptions of landscape structure are determined by individual
responses to spatial heterogeneity in terms of movement behavior, habitat affinities,

assessment of habitat quality and, ultimately, repercussions for fitness (With et al. 1997).



The aggregative responses of individuals — the basic units of ecology (Wiens et al. 1993)
—result in higher-order phenomena such as population dynamics, which are of concern
when considering the ecological consequences of habitat fragmentation (With et al.
1997). It follows that the effects of corridors in facilitating movement at the population
level can ultimately be explained at the level of the individual by asking how the
individual orients its movements in the presence of a potential corridor (Rosenberg et al.
1997, Turchin 1998). Quantifying landscape connectivity, therefore, requires spatially
explicit methods that are sensitive to the possibility of complex interactions between the
behavior of individual animals and landscape structure (Pither and Taylor 1998).

Natural disturbances such fires, floods, and disease outbreaks influence habitat
heterogeneity and landscape-level patch mosaics at various spatial and temporal scales.
Disturbances are unique in that they both create and respond to landscape pattern (Turner
et al. 2001). In addition, the resultant force can be stabilizing or disruptive depending on
the spatial or temporal scale under consideration (Turner et al. 2001). “Disturbance
dynamics and succession are intertwined in their effects on landscape patterns and
change, and the successional changes that follow disturbance are main components of our
understanding of disturbance in a landscape context” (Turner et al. 2001: 160).

Specifically, the role of fire disturbance in the natural landscape has gained much
attention over the past century. Dramatic increases in the occurrence of large-scale fires
following decades of fire suppression policy plague the western United States. The
immense fires in Montana, Idaho, and New Mexico during the summer of 2000 are

possible indications of events to come in many other western forests that are now loaded



with fuels. Such fuels are normally limited through the natural occurrence of smaller fires,
but fire suppression has disrupted natural fire regimes. In fact, historically anomalous,
catastrophic wildfire has been classified as potentially “the most pressing forest health
problem in Southwestern forests” (Swetnam and Baisan 1996: 12).

Fires strongly influence animal response at every level of ecosystem organization.
Long-term faunal response is determined by changes in habitat, which influence feeding
patterns, movement, reproduction, and cover (Brown et al. 2000). Variation in fire
regimes alters spatial and temporal landscape patterns, which affect habitat and often
produce major changes in faunal communities. Landscape-scale responses following
large fire events are in constant flux, which impact fauna through (Brown et al. 2000):

» Changes in the availability of habitat patches and landscape heterogeneity;

» Transformations in the composition and structure of larger areas, such as watersheds,
which provide the spatial context for habitat patches;

= Modifications in habitat connectivity.

Rocky Mountain elk (Cervus elephus nelsoni) have often been the focus of post-
fire studies that evaluate the complex interactions between the behavior of individual
animals and landscape structure. It is generally believed that fire increases biomass,
nutritional quality, palatability, and digestibility of forage species consumed by elk (Peck
and Peek 1991, Stein et al. 1992, Bartos et al. 1994, Tracy and McNaughton 1997) and,
as a consequence, elk should prefer burned over unburned habitats (Rowland et al. 1983,

Brown et al. 2000). However, many of these studies reflect effects of small-scale or



prescribed burns while few studies detail the effects of extensive fires on ungulate
populations due to the infrequent nature of such events.

The 1988 Yellowstone fires presented an excellent opportunity to examine the
effects of large-scale fires on elk. Norland et al. (1996) studied the short-term effects of
the 1988 fires on elk habitat use, forage biomass and quality, willow production, and
snow characteristics in key elk habitats. Summer habitat use was indexed through the use
of pellet groups and winter use was indexed through elk feeding craters in the snow. No
differences were found in either summer or winter use between burned and unburned
sites suggesting that elk use/behavior had not changed in response to the fire. In contrast,
Singer and Harter (1996) found elk avoided burned forests during the first three winters
post-fire possibly in response to deeper, denser accumulation of snow and reduced forage
biomass. However, both studies stated that elk use of burned areas may increase as post-
fire succession takes place. Other studies (Pearson et al. 1995, Tracy and McNaughton
1997) support this conclusion with reported preferential use of burned grasslands in
Yellowstone’s northern range three to four years post-fire. In addition, these studies
evaluated habitat use through the use of indices and observational counts. The use of
such indices as a measure of elk behavior or habitat use is debatable (Collins et al. 1978,
Leopold et al. 1984) and no longer adequate given the advanced technology that is
available through radio collar devices and more expensive and accurate global position
system (GPS) devices.

Understanding the consequences of movement for population dynamics is

practically impossible without testing and constructing empirically based, mathematical



models (Turchin 1998). The use of modeling to investigate ungulate responses to large-
scale fires has been explored in few instances. Turner et al. (1994) developed a spatially
explicit, individual-based simulation model (NOYELP) to explore the effects of fire scale
and pattern on the winter foraging dynamics and survival of free-ranging elk in
Yellowstone. Search, movement, and foraging activities — which were defined as a
function of initial body mass, amount of forage available, and depth and density of snow
— were simulated. Simulations revealed that winter severity played an important role in
ungulate survival and that spatial patterning of the fire, coupled with snow conditions,
influenced predicted ungulate dynamics. The model did not address ungulate
reproduction, ungulate/succession dynamics, or the effects of summer precipitation on
pre-winter forage availability — all of which are important in projecting the long-term
dynamics of the ecosystem (Turner et al. 1994). No models have related the effects of
post-fire landscape succession on ungulate movements and distribution.

Spatial simulation models that evaluate interactions among cells in a raster-based
environment provide a powerful approach to modeling spatial dynamics of complex
systems based on individual-level properties (Wiens et al. 1993). However, simulation
models are critically dependent on the input values for model parameters and, therefore,
have the greatest value when they are coupled with field studies, both to calibrate model
parameters and to test or confirm model projections (Turchin 1998). It is rare to find
empirical data that directly describe key parameters of landscape connectivity, such as
habitat-specific movement patterns, rates, or capabilities of animals (Pither and Taylor

1998). Even rarer are data comparing movement behaviors among landscapes that differ



in structure or that describe movements occurring at spatial scales coincident with a given
species’ population dynamics (Pither and Taylor 1998). A more thorough understanding
of landscape connectivity — and, therefore, functional corridor design — could emerge
from conducting empirical studies over sufficiently large spatial scales so as to
encompass the movement capabilities of the subject organisms (Thomas and Hanski 1997
in Pither and Taylor 1998, Rosenberg et al. 1998).
The evolution of global positioning system (GPS) devices for use in radio-
marking wildlife continues to improve the quality and quantity of data that can be
collected on animal movement and habitat use patterns. Spatially explicit ecosystem
models coupled with detailed habitat-specific movement patterns available through GPS
technology provide a unique opportunity to gain a more thorough understanding of
landscape connectivity as it relates to large-scale disturbance dynamics and animal
behavior. Therefore, the objectives of this research are:
= To evaluate the movement and distribution patterns of elk in relation to spatial and
temporal aspects of the Cerro Grande Fire, which burned approximately 19,020 ha in
the Jemez Mountains of northcentral New Mexico in May 2000;

» To integrate concurrent data collection efforts of Bandelier National Monument
(BNM), Los Alamos National Laboratory (LANL), and the U.S. Forest Service (USFS)
to gain more accurate insight into the movement and distribution of elk in the Jemez

Mountains; and



» To provide an adaptive management tool to mitigate potential adverse impacts by elk as
a result of changes in movements and distributions based on simulated conditions
projected by the model.

To accomplish the above objectives, a spatially explicit, stochastic, individual-
based model (IBM) was developed to simulate movement and distribution of elk in
relation to projected successional changes occurring from the Cerro Grande Fire. Many
methods are available for modeling animal movements and distribution (e.g., path
analysis, fractal analysis, random walks, structural equation modeling). However, there
has been a growing interest in the use of IBMs in ecological applications. Individual-
based models are capable of modeling variation among individuals and interactions
between individuals (Slothower et al. 1996). This approach to modeling animal
movements addresses two fundamental principles, which are largely ignored in other
modeling environments. First, it acknowledges that individuals are behaviorally and
physiologically distinct because of genetic and environmental influences and second, it
acknowledges that interactions among individuals are inherently localized (Slothower et
al. 1996). The basic assumption in IBMs is that each action during movement (e.g., an
animal’s choice to start, stop, or change direction) is a mixture of stochastic and
deterministic elements (Turchin 1998). An advantage to IBMs is that they do not require
many of the simplifying assumptions and mathematical derivations typically needed in
more aggregated models (Railsback et al. 1999), thus resulting in a more realistic

representation of real-world phenomena.
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CHAPTER II
AN ASSESSMENT OF GLOBAL POSITIONING SYSTEM (GPS)
COLLAR PERFORMANCE AS INFLUENCED BY

FOREST STRUCTURE AND TOPOGRAPHY

Introduction

The evolution of global positioning system (GPS) devices for use in radio-
marking wildlife continues to improve the quality and quantity of data that can be
collected on animal movement and habitat use patterns. Despite improvements over the
use of traditional very high frequency (VHF) systems, two fundamental assumptions
relevant to all telemetry studies remain. First, it is assumed that the animals carrying
transmitters are a representative sample of the entire population of interest and that the
transmitters do not adversely affect them in any way compared to non-instrumented
animals (White and Garrott 1990). Secondly, it is assumed that location estimates are
accurate and free of bias (Millspaugh and Marzluff 2001). Inaccurate locations may add
a source of error to a data set, which influences the statistical inferences that are drawn;
this, in turn, could lead to incorrect conclusions regarding habitat use by collared animals
(Moen et al. 1997) and, ultimately, erroneous management decisions. Reductions in the
weight and size of transmitters have reduced the negative impacts of the former
assumption on large animals such as elk, but the advent of GPS has done little to remove
the problems associated with locational errors and, in fact, has introduced new concerns

that must be taken into consideration when interpreting the results of telemetry studies.
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Prior to May 2000, the accuracy and precision of GPS-derived locations were
intentionally degraded as a security measure by the Department of Defense using a
process known as “selective availability” (SA). The error associated with horizontal
position estimates induced by SA was in the range of 100 m of their true location 95% of
the time (Millspaugh and Marzluff 2001) but could generally be corrected to within 10 m
through a process known as “differential correction” wherein the error in positional fixes
is determined by recording locations at a known point (i.e., base station) and calculating
the deviation from the known coordinates of the site. The resulting planimetric error
recorded at the base station is then removed at a later date from the location data received
at the corresponding times by the roving GPS module in the collar (Hulbert and French
2001).

In May 2000, the Department of Defense discontinued the use of SA six years
ahead of schedule, although they reserve the right to reinstate it in times of national crises
(Lawler 2000). Literally overnight the accuracy and precision of locations improved 10-
fold, leading some researchers to believe differential correction to be obsolete. However,
the process of differential correction has also been shown to remove other sources of
error including satellite configuration and clock errors, ionospheric and tropospheric
errors, and other sources of site and signal path error (Hulbert and French 2001,
Millspaugh and Marzluff 2001, Oderwald and Boucher 2003). Hulbert and French
(2001) recorded errors in locations up to 16 m and large instantaneous fluctuations (>6
m) not attributable to satellite availability or any other measure recorded at their

reference station (Hulbert and French 2001), leading them to conclude that other sources
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of error that were masked when SA was enabled now have a major impact on precision
and accuracy of locations. Hulbert and French (2001) found mean accuracy was
improved by 1.4 m by removing the planimetric error after SA was turned off but
concluded that differential correction may still be useful in many applications to improve
precision and remove additional sources of error. Ultimately the decision to differentially
correct locations in the absence of SA must be driven by the objectives of the specific
research project, the level of accuracy that is needed, and the technical and financial
resources available to the researcher.

Regardless of whether or not the researcher chooses to differentially correct
locations in a post-SA world, no habitat-selection study is defensible without an
assessment of the potential for observational bias (i.e., the possibility that GPS fixes may
be more or less successful in some habitats than others). Because GPS receivers operate
on a line-of-sight principle, the “visibility” of satellites under various vegetation or
topographic conditions may influence the accuracy of GPS locations and whether the
locations are representative of the proportion of time an animal spends within a habitat
(Rempel et al. 1995, Frair et al. 2004). Location inaccuracy can lead to misclassification
of habitat use dependent upon the magnitude of location error and the degree of
landscape heterogeneity (Frair et al. 2004), thereby affecting all subsequent applications
of the results of habitat-use studies. Inferences of animal habitat selection drawn from
GPS telemetry data are generally biased toward areas of open canopy (Rempel et al.
1995, Moen et al. 1996, D’Eon et al. 2001, D1 Orio et al. 2003), but topographic relief

and vegetative characteristics may also contribute to missing data, which may have a
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more profound effect on inferences of habitat selection than inaccurate locations do since
the disengagement of SA (Frair et al. 2004).

Expected accuracy of GPS locations is affected by the number of satellites from
which signals are received (Rempel et al. 1995) as well as the geometric configuration of
those satellites at the time the fix is taken. Positional dilution of precision (PDOP) is a
unitless measure of satellite configuration often used to assess the accuracy of GPS
locations (D1 Orio et al. 2003). Fixes with lower PDOP values are usually more accurate
because of better satellite geometry; PDOP is a more robust measure of precision than the
often used horizontal dilution of precision (HDOP) values (D’Eon et al. 2001). In
addition, error can be introduced in the horizontal position estimate when only three
satellites are visible resulting in a 2-dimensional (2D) fix. In such cases, the elevation is
determined from the last successful 3-dimensional (3D) position (i.e., > 4 satellites
visible) making it difficult to model animal movements because location error is a
function of the change in elevation since the last 3-dimensional fix was obtained (Rempel
et al. 1995). Such errors can be especially pronounced in areas of high topographic relief
(Rempel et al. 1995, D’Eon et al. 2001).

Previous studies have evaluated the effect of topography and habitat type on
collar performance in the Jemez Mountains of northern New Mexico (Biggs et al. 1999,
Biggs et al. 2001). However, these studies focused on collars manufactured by a
different company than the collars used in this research and under conditions that have
drastically changed since the large 19,020-ha Cerro Grande Fire burned through the

region in May 2000. The purpose of this study, therefore, was to assess general collar
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performance and to relate dilution of precision (PDOP for 3D, HDOP for 2D) and 2D
versus 3D fixes to topographic characteristics and land cover types to identify potential

biases of subsequent habitat-selection studies on which these results may depend.

Study Area

The Pajarito Plateau, located in the Jemez Mountains of north central New
Mexico, was formed by an ash flow of volcanic activity about 1.4 million years ago
(Wilcox and Breshears 1994). The region is classified as a wildland-urban interface and
is politically segmented, making natural resource management difficult. The most
conspicuous and influential government entity is Los Alamos National Laboratory
(LANL; 11,200 ha). It is bordered by Bandelier National Monument (13,290 ha) to the
southwest, Santa Fe National Forest to the northwest and southeast, San Ildefonso
Reservation to the east, and Santa Clara Reservation to the north (Figure 2.1). In
addition, the federal government purchased 37,200 ha of private land in July 2000 to the
northwest that contains the Valles Caldera National Preserve (VCNP), an ancient caldera
grassland that serves as the primary summering ground for the region’s elk population.

The plateau is topographically complex, ranging in elevation from 1,600 m near
the Rio Grande to 3,240 m near the summit of Cerro Grande. It is transected by a series
of smaller canyon systems and mesas making the terrain rough and virtually inaccessible

in some places. Vegetative patterns are highly dependent on elevation and topography
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(Wilcox and Breshears 1994), but five main vegetative associations have been described:
pifion-juniper grassland (1,600 to 1,900 m), pifion-juniper woodland (1,900 to 2,100 m),
ponderosa pine grassland (2,100 to 2,300 m), mixed-conifer (2,300 to 2,900 m), and
subalpine grassland (2,900 to 3,200 m). The Jemez Mountain region has a temperate,
semi-arid mountain climate that is strongly influenced by elevation. Average annual
precipitation is 330 to 460 mm (Davenport et al. 1996, Wilcox et al. 1996) of which
about 45% occurs in July, August, and September. Average daytime temperatures range

from 32.2 °C in the summer (max. = 41.1 °C) to -9.4 °C in the winter (min. = -30.6 °C).

Methods

Collar Deployment

Data were collected from fifty-four Rocky Mountain elk (Cervus elephus nelsoni)
that were collared on Bandelier and/or LANL property in January 2001 (n = 29) or on the
VCNP in November 2002 (n = 25). Of these, 50 animals were collared using Telonics,
Inc., GEN-II “Store-on-Board” GPS collars equipped with Trimble Lassen™ SK-2 or
SK-8 receivers and a VHF beacon transmitter. The remaining 4 animals were collared
using Lotek GPS-4000 system collars, also equipped with a VHF beacon transmitter.
Collars were programmed to acquire GPS positions at intervals ranging from 15 minutes
to 23 hours (Table 2.1) with more fixes purposefully taken during the presumed fall and
spring migrational periods.

Following a routine telemetry flight conducted in mid-August 2003, it was

discovered that a number of release mechanisms (n = 29) used on GPS collars deployed
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on elk in January of 2001 and pre-programmed to release in July of 2003 had failed to
work. The flight confirmed earlier fears that the release mechanisms might fail given that
short-term collars had already failed to release. The GPS collars store the location data
on-board the collar and, therefore, needed to be retrieved in order to download the
information. After numerous low-cost alternatives were explored and attempted
unsuccessfully, a final effort was made in mid-February of 2004 to recapture these
animals using a helicopter crew from Hawkins and Powers Aviation, Inc., headquartered
in Greybull, Wyoming. Numerous agencies contributed financially and logistically to
this effort and 22 of 29 collars were retrieved. Of the remaining seven collars, four were
no longer transmitting a signal and three were on restricted Laboratory property. Data
from the retrieved collars were downloaded and processed at Los Alamos National
Laboratory with the exception of four GPS collars, which had to be sent back to the
company in order to retrieve the data.

In response to the initial malfunctioning of the release mechanisms in early 2002
and anticipating further problems, it was decided that cotton spacers would be used in
addition to the release mechanisms during the November 2002 capture. Unfortunately,
numerous collars from that deployment suffered the opposite effect and fell off animals
prematurely. This resulted in a very dichotomous data set; some collars collected only a
few days worth of data whereas others collected data over a period of 2 to 3 years. In
addition, unseasonably warm weather prevented animals from moving off their summer

range through most of the winter months of 2002 and 2003. Therefore, many of the
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collars that fell off prematurely failed to collect data outside the Valles Caldera National

Preserve, which serves as the animals’ main summering ground.

Because the purpose of this dissertation is to model movement pathways across
the Jemez Mountains normally traversed during the fall/spring “migration” as well as
daily movements across LANL’s winter range, a decision was made to partition collars
into two groups that either met/failed all of the following conditions:

* The collar must have > 88% position acquisition rate (PAR — see below).

» The collar must have remained on the animal at least eleven months. This period was
selected to: 1) allow for the inclusion of collars pre-programmed to collect locations
every 15 minutes and scheduled to shut off in one year, and 2) to provide ample
opportunity for an animal to traverse its annual home range.

» The 95% kernel home range (KHR) must span the Cerro Grande burn area or be
continuous through transitional regions connecting summer/winter ranges. The 95%
fixed kernel home range (Worton 1989) was calculated for each animal using the
Animal Movement Analysis Extension (AMAE) in ArcView (Hooge and Eichenlaub
2000, Hooge et al. 2001). Though use of a least-squares cross validation (LSCV)
smoothing parameter would have been preferable, extensive amounts of data prevented
its use in favor of an ad hoc approach, which Hooge (pers. comm. 2003) believes
approximates the LSCV for exploratory analysis such as this. The calculated 95%
KHR with standard 50% core use areas are depicted for each of the 15 animals in
Appendix B. Criteria were met by only fifteen of the fifty-four animals analyzed [see

asterisks (*) in Table 2.1]. Descriptive measures (i.e., PARs) were calculated for all
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fifty-four animals and detailed habitat analyses on fix type (2D versus 3D) and dilution

of precision (DOP) were conducted on the fifteen collars meeting the above conditions.

Data Processing

Data were downloaded from both collar systems onto personal computers and
then processed to create an Environmental Systems Research Institute (ESRI) ArcView
shapefile and Microsoft Access table of collar attributes. Data files (*.dat) downloaded
directly from the collars required numerous reformatting steps and application of scripts
in order to put the data into a format compatible with ArcView and Access databases.
Despite the potential benefits of differentially correcting locations even after the
termination of selective availability, data were not differentially corrected due to time and
funding constraints on personnel at Los Alamos National Laboratory. In addition,
previous studies determined that differential correction of data in the Jemez Mountains
actually resulted in higher error rates than non-differentially corrected data (Biggs et al.
2001). Post-SA data have a reported horizontal accuracy of <9 m (90%) and an
altitudinal accuracy of <18 m (90%) for the Lassen™ SK-2 receiver (Trimble Navigation
Limited 1999 — 2003°) which were determined reasonable for purposes of this study.

The goal of data processing was to create a shapefile that contained information
directly related to characteristics about the physical location of each animal and an
associated attribute table with GPS collection parameters (Bennett 2004, pers. comm.).
Data files included the longitude, latitude, local date, local time, and a variety of

information about the parameters associated with the GPS location such as dilution of
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precision (DOP) and the type of fix (2D versus 3D). The information contained in each
file would allow further analyses of collar performance and accuracy based on
topographic features.

Field names assigned by Telonics were reformatted to meet MS-DOS 8.3 file-
naming convention required by ArcView software. Additional fields were added for
“collar 1.d.” and “manufacturer” and then populated with appropriate data. Edited files
were saved as comma-delimited text files and then imported into ArcView. Files were
occasionally exported in dBase IV format for additional editing.

Longitude data were downloaded from the Telonics collars and required
additional processing. Values were subtracted from 360 degrees to create decimal degree
coordinates compatible with the shapefile format. Once this conversion was complete for
each collar, individual files for each collar were imported into ArcView as an event
theme and then converted to shapefiles in New Mexico State Plane Coordinates, North
American Datum (NAD) 1983, using units of feet. All files were then merged into a
single shapefile in order to complete data processing.

A unique record identifier field (Site id) was created using multiple scripts that
reformatted the collar identification number and appended it with the date and time of the
location. To verify a unique number had been generated for each record, a script was run
to flag any duplicate “site_id” numbers. Flagged records were analyzed to determine if
those records were true duplicates and should be deleted or if a unique record identifier
had failed to be created. The “site_id” field was then used to join information from the

merged shapefile to the attribute table in various queries needed for separate analyses.

21



Land cover, elevation, slope, and aspect were determined by overlaying locational
data from individual fixes for each animal on associated raster layers using the ArcView
Spatial Analyst extension. Elevation was recorded in feet and slope and aspect were
recorded in degrees using a USGS 10-m Digital Elevation Map (DEM). Land cover was
assigned using the quarter-hectare smoothed, 15-m resolution version of the most recent
LANL land cover map (McKown et al. 2003). Completed queries for each animal were
assimilated into final data sets in Microsoft Excel and/or Access and then saved as space-

delimited text files to be imported into SAS Statistical Software for analysis.

Position Acquisition Rate (PAR)

Biggs et al. (2001, p. 214) defined position acquisition rate as the “percentage of
locations that a GPS collar successfully acquires from roving satellites based on the total
number of attempts,” which potentially can be affected by topography, plant
cover/physiology, weather, and/or animal behavior. Coupled with an analysis of DOP
and fix status (2D versus 3D), the efficacy of GPS locations can be assessed and
information resulting from such analyses can be applied to future applications of collar
data by potentially correcting GPS locations if bias is encountered.

Position acquisition rates were calculated for each of the 54 collars by dividing
the total number of successful fixes acquired by the total number of fixes attempted for
each collar regardless of fix status (2D or 3D) or DOP value. Number of fixes attempted
was based on the preprogrammed interval rates during the life of the collar while

deployed on the animal. Length of the data collection period was determined by
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examining the date the collar was deployed and either the time lapsed between collar
retrieval date, the death of the animal, or the date of battery failure when positions were
no longer recorded.

For consistency in application, PARs were also calculated yearly, monthly, and
seasonally regardless of fix type or DOP value for comparison with Biggs et al. (2001)
using a generalized linear mixed model (GLIMMIX, SAS Version 9.1, Production in
March 2005) with a binomial link function and a random collar (i.e., animal) effect
(McCulloch and Searle 2001). This approach accounted for the inherent distributional
properties of the data as well as unreasonably large differences in sample sizes (i.e., total
numbers of locations/collar). Seasons were defined as follows: spring (March and April),
calving (May and June), summer (July and August), fall (September and October), and
winter (November through February). In addition, PARs for 50 collars (Telonics only)
were analyzed by hourly periods based on six, 4-hour time blocks: 0000 to 0400, 0400 to
0800, 0800 to 1200, 1200 to 1600, 1600 to 2000, and 2000 to 2400. Time blocks were
also grouped into night-time (2000 to 0800) and day-time (0800 to 2000) periods and
period means were compared. Pairwise comparisons among months, seasons, and time

blocks were performed with a protected LSD test.

Effect of Slope and Elevation on DOP

Analysis of slope and elevation on dilution of precision (DOP) values were
conducted on the fifteen collars that met requirements as outlined in the section “Collar

Deployment.” Background information and PARs for these collars can be found in Table
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2.1. Effects of elevation (ft/1000) and slope (degrees) on DOP were assessed using
simple linear regression analyses with DOP as a dependent variable and either elevation
or slope as independent variables. The null hypothesis, therefore, is that there is no linear
relationship between either slope or elevation and DOP value (i.e., Ho: 1 = 0). For each
elk, n =1 or n = 10 locations were randomly selected with replacement 1000 times to
create sampled data sets used in a Monte Carlo analysis. Similar analyses were
conducted by fix type (2D versus 3D), by time block (0000 to 0400, 0400 to 0800, 0800
to 1200, 1200 to 1600, 1600 to 2000, 2000 to 2400), and by the combination of fix type
and time block. Due to time constraints, separate analyses were not conducted to look at
all observations regardless of DOP value versus those with DOP values < 12 — the default
DOP mask setting for the 50 collars containing SK2 receivers according to Trimble
Navigation Limited (1999). A total of 42 separate data sets were analyzed.

Regression analyses were conducted using two models that differed in
assumptions about DOP for each individual animal: (1) DOP values were normally and
independently distributed with homogeneous variances (“homoscedastic/independence”);
and (2) DOP values were normally distributed but correlated with each other (not
necessarily equally correlated) with heterogeneous variances (‘“unstructured”). The
assumptions in the second model therefore allow for the possibility that DOP locations
recorded for a given animal are not necessarily independent and/or that DOP readings for
different animals may have different variances (possibly because of differences in radio-
collars or animal behavior). For each analysis, DOP values among elk were considered

independent of each other. When n =1 location was used for each elk, only the
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“homoscedastic/independence” case applies. For n = 10 locations per animal, a null
model likelihood ratio test was used to test whether the unstructured model was
significantly better than the homoscedastic/independence case. Additionally, the elk
effect was considered a nuisance variable that was a random effect. PROC MIXED (SAS

version 9.1) was used for data analysis.

Effect of Aspect and Land Cover on DOP

Effects of aspect and land cover type on DOP were assessed on the fifteen collars
that met requirements as outlined in the section “Collar Deployment.” A mixed model
analysis of variance (with animal as a random block effect) was used to compare mean
DOP values among the aspect and land cover categories. Two variance-covariance
structures were tested: Mauchly’s (1940) test was used to evaluate sphericity, and Box’s
(1950) test was used to evaluate compound symmetry. If neither of these conditions was
satisfied, a univariate F statistic with the Greenhouse and Geisser (1959) adjustment to
the tabular degrees of freedom was used to test for overall mean equality among the
aspect or land cover categories. When the F statistic indicated differences among
categories, pairwise comparisons were performed with an LSD test using error terms
specific to each contrast (Kirk 1995).

Aspect was classified into nine categorical variables representing north (337.5° to
22.5°), northeast (22.5° to 67.5°), east (67.5° to 112.5°), southeast (112.5° to 157.5°),

south (157.5° to 202.5°), southwest (202.5° to 247.5°), west (247.5° to 292.5°), and

northwest (292.5° to 337.5°) directions as well as a category representing no aspect (i.e.,
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flat ground). Because all fifteen animals were not found in all 32 land cover classes
outlined in McKown et al. (2003), an unbalanced design resulted. Therefore, land cover
was consolidated into 18 categories for this analysis. Due to limited data, an “urban”
category was also removed from the analysis. Additional analyses were conducted by
further consolidating the eventual 17 categories into 7 growth forms (forest, woodland,
grassland, shrublands, pinyon-juniper, bare ground, and aspen) for general descriptive
analysis. Separate models evaluated the combined effects of fix type (2D versus 3D),
time block, and fix type and time block on DOP value for each aspect and land cover

category.

Results

General Overview

A brief review of fix type indicated some striking results. Approximately 34.58%
(31,646 +91,527) of fixes were 2D for all 54 animals whereas just over 34% (19,103 +
55,782) were 2D fixes for the 15 collars that were used for further analysis. A
comparison of Telonics (n = 50) versus Lotek (n = 4) collars indicated 39.96% (30,696 +
46,122) and 6.46% (950 + 14,709) of fixes were 2D, respectively. Twenty-four locations
had fix types that were not interpretable as being either 2D or 3D and were excluded from
the analysis.

Mean DOP values were calculated in light of the fix type results indicated above.
For all 54 animals, the mean DOP value for all fixes was 4.53 (= 0.1001, range 0 —

6,060). When only considering 2D fixes, the DOP value increased to 4.59 (+ 0.2890,
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range 0 — 6,060). For 3D fixes, the mean DOP value decreased slightly to 4.50 (+ 0.105,

range 0 — 50). Separating out the 50 Telonics collars resulted in a mean DOP value of
4.54 (£ 0.1191, range 0 — 6,060). These results were further separated by 2D fixes (} =

4.61 +0.2979, range 0 — 6,060) and 3D fixes (; =4.50 + 0.0060, range 0 — 38). For the
4 Lotek collars, the overall mean DOP value was 4.48 (= 0.0405, range 0 — 50). The
mean value for 2D fixes was 3.97 (£ 0.1771, range 1.4 — 50) whereas 3D fixes counter-

intuitively increased with a mean value of 4.5 (+ 0.0413, range 1.2 — 50).

Position Acquisition Rates (PARS)

A total of 91,553 locations out of a possible 98,148 were recorded for all 54
animals resulting in an overall position acquisition rate of 93.3% (Table 2.1). Individual
collar performance was generally acceptable with the exception of four collars (collar
numbers 471946, 471961, 481468, and 481469) whose PARs were less than 80%. The
overall PAR for the 15 collars used to regress DOP on slope, aspect, elevation, and land
cover was 94.3%.

Position acquisition rates varied throughout the course of the year depending on
month (Fy1319 = 116.60, P<0.0001), season (F4319 = 287.6, P<0.0001), and time of day
(Fs.204 = 269.05, P<0.0001). Rates were highest during December (96.61% + 0.6%)),
November (96.51% =+ 0.6%) and February (95.22% + 0.9%) and lowest in July (84.83%
+ 2.5%) and August (84.18% = 2.6%) (Table 2.2). Similarly, PARs were highest during
the winter (95.92% + 0.7%) months of November through February and lowest during

the summer (84.51% + 2.5%) months of July and August (Table 2.3). There was no
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difference between calving (92.39% + 1.3%) and spring (93.23% + 1.2%) seasons.
Throughout the course of the day the highest PARs were recorded during the 0000 to
0400 time block (97.07% + 0.5%) and the lowest PARs during the 0800 to 1200 (88.63%
+ 1.8%) and 1200 to 1600 (89.3% = 1.7%) time periods (Table 2.4). Nighttime (95.52%
+ 0.8%) position acquisition rates were significantly higher than those collected during

the day (92.42% = 1.2%) (F}.224 = 325.89, P<0.0001; Table 2.5).

Effect of Slope and Elevation on DOP

Monte Carlo methods involving 1,000 simulations were used to assess effects of
slope and elevation on DOP. Analysis of mixed statistical models requires iterative
algorithms to optimize the likelihood function. Ill-conditioned data are defined as data
which cause either statistical or computational difficulties in these algorithms, with the
result that convergence is not achieved. Although 1,000 data sets were used in each
analysis, failure to converge sometimes led to summary of simulation results based on
fewer than 1,000 simulations. Convergence failures were more common for 2D locations
than for 3D locations. Results from the unstructured variance/covariance matrix using a
random sample of 10 locations per animal and 1,000 sample runs were considered the
most robust results given the extensive number of observations used in the analysis (10
locations/animal * 15 animals * 1000 experiments = 150,000 observations) and the
capability to select which test (homoscedastic and independent or
unstructured/heteroscedastic) was appropriate for the underlying nature of the data.

Results were further divided into total number of significant outcomes that showed a
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positive relationship and number of significant outcomes that showed a negative
relationship between DOP value and slope or elevation out of the total number of runs
that successfully converged per 1,000 experiments. In nearly all cases, the unstructured
variance/covariance matrix was the appropriate test to use and discussion will, therefore,
focus on these results.

Detailed results will be presented for 6 of the 42 tests run to assist the reader in
interpreting tabular output. These include analyses for the effect of elevation or
topographic slope on DOP regardless of fix type or time block (Tables 2.6 and 2.9,
respectively), by 2D fixes regardless of time block (Tables 2.7 and 2.10, respectively),
and by 3D fixes regardless of time block (Tables 2.8 and 2.11, respectively). The
remaining 36 analyses examining at the effect of elevation or topographic slope on DOP
given time block regardless of fix type, time block by 2D fix, and time block by 3D fix
are outlined in Tables C.1 through C.36 in Appendix C. Tabular outputs for these 36
analyses are summarized through the use of charts and will be discussed in further detail
below.

Nine-hundred seventy (970) of the possible 1,000 experimental runs testing the
effect of elevation on DOP over all fixes and time blocks converged (Table 2.6). Of
those, 926 indicated the unstructured/heteroscedastic pattern was appropriate whereas 44
indicated the homoscedastic/independence pattern was appropriate. For the 926 runs
where the unstructured design was appropriate, results were significant an average of
58.5% (n = 517) of the time, far exceeding the 5% expected by chance alone. Of the

significant results, 18.03% (n = 167) of the total 926 runs showed positive relationships
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( Bl =0.4940 + 0.2291) and 37.80% (n = 350) showed negative relationships ( /3’1 =-

0.6101 + 0.3042) between elevation and DOP irrespective of fix type or time block.
Regression coefficients ranged from -2.0132 to 1.4422 for all 517 significant results.
When considering only 2D fixes, 864 of the possible 1000 experimental runs
testing the effect of elevation on DOP converged when time was not a factor (Table 2.7).
Of those, 861 indicated the unstructured/heteroscedastic pattern to be appropriate
whereas only 3 indicated the homoscedastic/independence case to be the appropriate test.
Of the 861 runs where the unstructured pattern was appropriate, results were significant
an average of 57.3% (n = 493) of the time exceeding the 5% expected by chance alone.

Within the significant results, 21.84% (n = 188) of the total 861 runs showed positive

relationships (,5’] =0.6472 + 0.3216) and 35.42% (n = 305) showed negative

relationships ( ﬁl =-0.7107 &+ 0.4000) between elevation and DOP irrespective of time

block. Regression coefficients ranged from -2.1240 to 2.6426 for all 493 significant
outcomes.

For 3D fixes, 934 of the possible 1000 experimental runs testing the effect of
elevation on DOP converged when time block was not a factor (Table 2.8). Of those, 789
indicated the unstructured/heteroscedastic pattern to be appropriate whereas only 145
indicated the homoscedastic/independence case to be the appropriate test. Of the 789
runs where the unstructured pattern was appropriate, results were significant in 57.3%

cases (n = 452), exceeding the 5% expected by chance alone. Within the significant

results, 39.92% (n = 315) of the total 789 runs showed positive relationships (,31 =0.3774
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+0.1792) and 17.36% (n = 137) showed negative relationships (ﬁﬂ’1 =-0.3212 £ 0.1425)

between elevation and DOP irrespective of time block. Regression coefficients ranged
from -0.9177 to 1.2202 for all 452 significant outcomes.

Significant positive and negative relationships for the effect of elevation on DOP
values by time block and fix type are displayed in Figures 2.2 and 2.3. Figure 2.2
displays the mean regression coefficients by fix type (blue = all fixes, red = 2D, yellow =
3D) as well as the total number of significant positive and negative relationships given
the total number of outcomes that converged (in parentheses) for each time block. Figure
2.3 presents the same data in a slightly different format by graphing the percent of
significant relationships for each time block and fix type. Tabular data used to construct
the figures are found in Appendix C (Tables C.1 through C.18) and follow the same
format as Tables 2.6 through 2.8 described above. Pairwise comparisons between time
blocks were not feasible given the statistical analyses used, but patterns in fix types
across time blocks were evident.

When considering all fix types (shown in blue), as well as those within 2D (red)
and 3D (yellow), the absolute value of the mean regression coefficients for negative and
positive relationships were roughly equal within and across all time blocks (Figure 2.2).
However, the total number of significant relationships given the total number of
significant and non-significant outcomes (i.e., percent of significant outcomes) changed
through the course of the day for all fix types. The percent of significant negative

relationships increased through the 0800 to 1200 time block and then decreased through
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the remainder of the day for all fix types (Figure 2.3). Similarly, significant negative
relationships for 2D fixes appeared to follow the same pattern. In contrast, the percent of
significant positive relationships for 3D fixes peaked in the 1200 to 1600 time block.
When the percentages of significant outcomes peaked within a given time block, the
corresponding positive or negative outcomes plunged (i.e., results were a mirror image of
each other). The standard errors associated with 2D fixes were the largest whereas those
associated with 3D fixes were the smallest. Standard errors for all fix types taken
together were intermediate in value (Appendix C, Tables C.1 through C.18).

When reviewing the effects of topographic slope on DOP values over all fixes and
time blocks, 970 of the possible 1000 experimental runs converged (Table 2.9). Of those,
928 indicated the unstructured/heteroscedastic pattern to be appropriate whereas 42
indicated the homoscedastic/independence case to be the appropriate test. Within the 928
runs where the unstructured design was appropriate, results were significant an average
of 53.4% (n = 491) of the time exceeding the 5% expected by chance alone. Of the

significant results, 27.48% (n = 255) of the total 928 runs showed positive relationships

A

(,=0.0570 + 0.0295) and 25.43% (n = 236) showed negative relationships

A

(B,=-0.0556 £ 0.0236) between slope and DOP irrespective of fix type or time block.

Regression coefficients ranged from -0.1622 to 0.2038 for all 491 significant results.
When considering only 2D fixes, 864 of the possible 1000 experimental runs

testing the effect of slope on DOP converged when time was not a factor (Table 2.10).

Of those, 860 indicated the unstructured/heteroscedastic pattern to be appropriate; the

homoscedastic/independence pattern was appropriate in only 4 runs. Of the 860 runs
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where the unstructured pattern was appropriate, results were significant an average of
55.12% (n = 474) of the time exceeding the 5% expected by chance alone.

Within the significant results, 26.51% (n = 228) of the total 860 runs showed positive

relationships ( /?1 =0.0695 + 0.0424) and 28.60% (n = 246) showed negative relationships

A

(B,=-0.0669 £ 0.0339) between slope and DOP irrespective of time block. Regression

coefficients ranged from -0.2185 to 0.3499 for all 474 significant outcomes.

For 3D fixes, 934 of the possible 1000 experimental runs testing the effect of
elevation on DOP converged when time was not a factor (Table 2.11). Of those, 800
indicated the unstructured/heteroscedastic pattern to be appropriate whereas only 134
indicated the homoscedastic/independence case to be the appropriate test. Of the 800
runs where the unstructured design was appropriate, results were significant an average
of 74.38% (n = 595) of the time exceeding the 5% expected by chance alone. Within the

significant results, 68.63% (n = 549) of the total 800 runs showed positive relationships
(3= 0.0446 + 0.0205) and 5.75% (n = 46) showed negative relationships ( £, = -0.0320 +

0.0146) between slope and DOP irrespective of time block. Regression coefficients
ranged from -0.0659 to 0.1160 for all 595 significant outcomes.

Significant positive and negative relationships for the effect of topographic slope
on DOP values by time block by fix type are displayed in Figures 2.4 and 2.5. Figure 2.4
displays the mean regression coefficients by fix type as well as the total number of
significant positive and negative relationships given the total number of outcomes that
converged. Figure 2.5 presents the same data in a slightly different format by graphing

the percent of significant relationships for each fix type. Tabular data used to construct
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the figures are found in Appendix C (Tables C.19 through C.36) and follow the same
format as Tables 2.9 through 2.11 described above. Pairwise comparisons between time
blocks were not feasible given the statistical analyses used, but patterns in fix types
across time blocks were evident.

When considering all fix types (shown in blue), as well as those within 2D (red)
and 3D (yellow), the absolute value of the mean regression coefficients for negative and
positive relationships were roughly equal within and across all time blocks (Figure 2.4),
although there was more variability than was found in the tests of elevation on DOP. As
with elevation, the total number of significant relationships given the total number of
significant and non-significant outcomes (i.e., percent of significant outcomes) changed
through the course of the day for all fix types. Similar to elevation, the percent of
negative significant outcomes increased through the 0800 to 1200 time block and then
decreased through the remainder of the day for all fix types although the significant
negative results for 2D fixes did not peak until the 1200 to 1600 time period (Figure 2.5).
In contrast to the results seen with elevation, the percent of significant positive results for
all fixes and 3D fixes alone diminished through the mid-day hours and increased in the
early morning and late evening periods. However, the percent of positive 3D
relationships far outweighed the total percentages seen in either the 2D fixes or across all
fix types. When the percentages of significant outcomes peaked within a given time
block, the corresponding positive or negative outcomes plunged (i.e., results were a
mirror image of each other). The standard errors associated with 2D fixes were larger

than the standard errors associated with 3D fixes.
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Standard errors for all fix types were intermediate (Appendix C, Tables C.19 through

C.36).

Effect of Aspect and Land Cover on DOP

Dilution of precision was not significantly related to aspect (F2.953333 =0.69, P =
0.5604) when considering all fix types (Table 2.12). However, 3D fixes showed a strong
effect of aspect on DOP value (F; 742263 = 11.78, P<0.0005; Table 2.13) whereas 2D
fixes did not (F2.863643 = 0.76, P=0.5163, Table 2.14) indicating the strong effect of 2D
fixes on overall results. This is further supported by the fact that 2D fixes had relatively
large standard errors when compared to 3D fixes, whereas the results for all fixes taken
together show intermediate standard error values (Tables 2.12, 2.13, and 2.14). Pairwise
comparisons of the 3D fixes show that lowest mean DOP values occur on flat terrain
(3.86 £ 0.16) whereas all other mean values ranged from 4.47 ( 0.04) to 4.59 ( 0.06).

Similarly, DOP values were not significantly related to land cover (F2.99.41.80 =
1.13, P =0.3478) or growth form (F3 19,3071 = 0.80, P = 0.4689) when considering all fix
types (Tables 2.15 and 2.16, respectively). However, 3D fixes showed a strong effect of
land cover on DOP value for all cover types (F2.7s, 3353 = 10.77, P<0.0001; Table 2.17)
and differences among growth form as well (F2.42, 3383 = 11.36, P =0.0001; Table 2.18)
while 2D fixes did not for either all land cover types (Fs.72, 6520 = 1.17, P = 0.3333; Table
2.19) or among growth forms (F2 9, 2524 = 0.88, P = 0.4301; Table 2.20) indicating the
strong effect of 2D fixes on overall results. This is also supported by the fact that 2D

fixes had relatively large standard errors when compared to 3D fixes, whereas the results
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for all fixes taken together show intermediate standard error values (Tables 2.15 through
2.20).

Pairwise comparisons of the 3D fixes outlined in Tables 2.17 and 2.18
complement each other. In general, mean DOP values increased with increasing cover.
The lowest values were reported in grasslands (4.43 + 0.0468) and shrublands (4.36 +
0.0755) and the highest values in forest (5.27 = 0.1367) where overstory vegetation was
most likely to exist in sufficient quantities to obscure satellites (Table 2.18). Similarly,
the highest standard errors were also associated with forested land cover types. The
lowest mean DOP value was found on Valles Caldera Grassland (4.2327 £ 0.0801) and
the highest in subalpine fir (4bies lasiocarpa)/Engelmann-spruce (Picea engelmannii)
forests (5.3810 = 0.1643) (Table 2.17). Intermediary values were recorded for ponderosa
pine (Pinus ponderosa) woodlands (Class #12, 23, and 27) and areas burned by the Cerro

Grande Fire (Class #20 and 33).

Discussion
The accuracy and precision of GPS systems has misled some researchers to
believe that there is negligible error associated with data acquisition when, in fact,
systematic biases can occur during data collection thereby affecting all subsequent
analyses (Frair et al. 2004). Inaccurate locations may result in increased Type I or Type
IT error rates in statistical analyses that use these data for hypothesis testing, which could
lead to incorrect conclusions regarding habitat use by collared animals (Moen et al.

1997). The location accuracy of GPS units depends on fix type (2D versus 3D) and
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satellite geometry (Rempel et al. 1995, Trimble 1999, D’Eon et al. 2001, Dussault et al.
2001, Di Orio et al. 2003). Canopy type, percent canopy cover, tree density, tree height,
and tree basal area can affect data collection efforts and may further interact with
complex terrain (White and Garrott 1990, Rempel et al. 1995, Moen et al. 1996, Rempel
and Rodgers 1997, D’Eon et al. 2001, Frair et al. 2004). The interactive effects of
topography and vegetation are often difficult to quantify given large amounts of data and
the resulting complexities in statistical analyses, but a thorough evaluation of individual
effects of land features on collar performance can identify patterns and allow the
researcher to more fully comprehend the issues surrounding potential application of
habitat studies based on GPS telemetry.

Biggs et al. (2001) previously reported on the effect of topography, land cover,
and hourly time blocks on position acquisition rates in the Jemez Mountains. Results
from this study showed an increase in overall PAR to 93.3% compared to the 69% they
reported. Other studies also reported lower rates of 88% (Rumble et al. nd), 85%
(Bowman et al. 2000), and 70% (Dussault et al. 2001) indicating an improvement over
the years in GPS technology for application in wildlife studies. However, results from
PAR analyses based on hourly and seasonal time periods generally supported conclusions
found in other studies. Although Biggs et al. (2001) reported PARs were generally
lowest during the 0000 to 1200 time block, my results indicated the lowest PARs during
the midday hours of 0800 to 1600. In addition, Biggs et al. (2001) found PARs were
highest during the spring and winter months and lowest during the fall period contrary to

results from this study which indicated the highest PARs occurred in winter months
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whereas the lowest were recorded during the summer months. Studies on moose (Moen
et. al 1997, Dussault et al. 2001) and elk (Frair et al. 2004) reported similar effects of
winter and summer seasons on PARs reported here. Signal interference caused by
canopy characteristics affects position acquisition rates (Rempel et al. 1995, Di Orio et al.
2003) and greater frequency of unsuccessful GPS location attempts during the hottest
parts of the day and year may be in response to the thermoregulatory behavior of elk
seeking dense cover for shade (Merrill 1991, Moen et al. 1996, Millspaugh et al. 1998).
Position acquisition rates were not calculated for different topographic features, so no
comparisons with Biggs et al. (2001) could be made.

Results of analyses on fix type were more variable compared to other studies.
Rumble et al. (nd) reported that 70% of fixes were 3D locations whereas results here
indicated only 60% of fixes were 3-dimensional. Moen et al. (1997) reported a range of
50 to 70% of fixes being 3-dimensional when test collars were placed under tree
canopies, but collar success reported here may also be attributable to topographic features
or collar manufacturer. Collar manufacturer was a factor in previous studies (D1 Orio et
al. 2003). Because position solutions for 2D locations are calculated using the elevation
from the last successful 3D position, location error is a function of the change in
elevation since the last 3D fix was obtained (Rempel et al. 1995, Moen et al. 1997).
Precision of 2D locations can be improved if the elevation of the GPS unit is known
when the locational fix was taken (Moen et al. 1997), but this is rarely the case in wildlife
studies involving wide-ranging species such as elk. Additionally, the information

obtained from 2D locations can be improved if locations with lower horizontal precision
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of dilution (HDOP < 5.0) values are cautiously selected for use in habitat studies
(Trimble 1999). It is therefore impossible to consider the effects of land cover or
topography on fix type without also considering their effects given satellite geometry.

Dilution of precision (DOP) is a measure of the error caused by the geometric
configuration of satellites; higher values are indicative of lower position accuracy. For
differential GPS applications requiring the highest level of accuracy, Trimble (1999)
suggests setting the DOP mask to 7 or below. Coupled with an analysis of fix type (2D
versus 3D), data accuracy can be qualified. Results from this study are encouraging
because mean DOP values were consistently in the range of 4.0 to 6.0 regardless of land
cover type, slope, aspect, or elevation, leading to the conclusion that, despite statistical
significance for some of these effects, collar accuracy is generally acceptable.

However, the effect of landscape features on collar performance was more
difficult to interpret when both DOP values and fix type were taken into consideration.
For both topographic slope and elevation effects on DOP value, fix type played a central
role in determining whether regressions were positively correlated or negatively
correlated. In general, elevation was twice as likely to be negatively than positively
related to DOP value (i.e., as elevation increased, DOP decreased) when all fix types
were considered. Likewise, 2D fixes also indicated negative relationships of elevation
with DOP were roughly twice as likely to occur as positive relationships. However, the
sign of the relationship changed when only 3D fixes were considered: in this case,
positive relationships were twice as likely to occur. When considering slope, the effect of

fix type was even more noticeable. When fix type was not considered, or when fix type
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was 2D, the relative proportions of significant positive and negative relationships were
roughly equal. When only 3D locations were considered, the percentage of positive
relationships far outweighed negative relationships (i.e., as topographic slope increased,
DOP increased) by a factor of nearly 3:1 in all cases.

The effect of time block further complicated results. When considering elevation,
the percentage of negative relationships for all fixes and 2D fixes increased in the 0800 to
1200 time block while positive relationships for 3D fixes were highest in the 1200 to
1600 time block. In comparison, the abundant frequency of positive relationships
between slope and DOP appeared even greater in the early morning or late evening hours
with fewer positive relationships occurring mid-day. Coupled with results of the
analysis of elevation on DOP, this likely indicates a change in behavior or habitat use of
animals during the mid-day versus crepuscular periods.

When results from PAR and DOP analyses are taken together, interpretation
becomes extremely complex. The highest PARs were encountered between the 0000 to
0400 and 2000 to 2400 time blocks, suggesting that animals were likely out in the open
and possibly foraging with unobstructed views of satellites. Simultaneously, DOP rates
showed strong positive relationships with topographic slope suggesting the use of steeper
terrain during the same time periods. If animals were traversing more complex terrain
during these same time periods, one would think that PAR values would go down in
conjunction with more complex topography. However, the relative change in DOP
values per unit change in slope must also be considered. Regression coefficients were in

the range of 0.0457 to 0.0478 during these periods, indicating for every one degree
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change in slope there was 0.0457 to 0.0478 units change in DOP value. Relative changes
in DOP in response to slope values (as well as elevation values) were actually very small;
statistical significance with these numerically small regression coefficients is in part a
function of large sample sizes, which increases statistical power.

The relationship of elevation on DOP values was less clear, although a negative
relationship between elevation and DOP was more likely to occur during early morning
and late evening than during the mid-day hours. During the hottest parts of the day,
animals likely sought thermal cover in the higher forested elevations of the Valles
Caldera National Preserve, which would account for increasing DOP values as elevation
increased during the 1200 to 1600 time period. This would also explain the drop in PARs
during the mid-day hours.

When considering aspect and land cover across all fix types, overall results were
non-significant. When 2D versus 3D fixes were analyzed separately, however, 3D
locations indicated significant differences in both land cover and aspect effects on DOP
value. Lower DOP values strongly corresponded to open canopy (grasslands) and flatter
terrain, which likely relates to the unobstructed “view” of satellites by the GPS collar.
These results are supported by other studies in which increased canopy cover was
negatively related to PARs and position accuracy (Deckert and Bolstad 1996, Moen et al.
1996, Rempel and Rodgers 1997). In addition, low DOP values correspond with higher
PARSs observed during the early morning or late evening hours when foraging animals

were most likely to be found on the flat, open grasslands of the Valles Caldera. Cautious
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interpretation is necessary, however, due to the potential confounding effects of slope,
elevation, time block, and fix type as described in the paragraph above.

Temporal autocorrelation of consecutive radio-telemetry locations may violate
independence assumptions that are central to many parametric statistics making habitat
selection studies, especially those related to home range analyses, difficult to interpret
(Swihart and Slade 1985, Otis and White 1999). However, some authors have argued
that autocorrelation is irrelevant if the subsample of locations from an individual animal
(treated as the experimental unit) is collected with a sampling design that assures
unbiased temporal coverage of the animal’s movement during the study period
(Aebischer et al. 1993, Otis and White 1999). The approach used in this study to test for
the possibility that DOP locations recorded for a given animal were not necessarily
independent and/or that DOP readings for different animals may have different variances
(possibly because of differences in radio-collars or animal behavior) inherently addresses
these concerns. In almost all cases, the unstructured/heteroscedastic pattern of variances
and covariances was appropriate. However, the design used presents an opportunity for
further research to determine the effect of temporal autocorrelation on habitat use results.
A comparison of the outcomes using the “unstructured” pattern versus the
“homoscedastic/independence assumed” pattern when each is applied appropriately could
challenge arguments about the effect of temporal autocorrelation on habitat selection
studies.

Despite the relative accuracy of GPS locations, spatial inaccuracy and missing

data in the form of failed location attempts contribute to locational error (Biggs et al.
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2001, Frair 2004). Though no attempt was made to quantify/qualify missing locations in
this study, results suggest that additional data management would need to address
systematic biases in collar performance prior to application of habitat use data when
location accuracy is essential for management purposes. Potential adjustments that could
be made include the complete removal of all 2D fixes or some extraction of those
associated with high DOP values. However, biases are often centered on data that are
missing or contain habitat-dependent errors in location (Rettie and McLoughlin 1999,
Biggs et al. 2001), which make such adjustments ineffective. Associated error polygons
around individual locations could provide a more thorough analysis of topographic and
land cover effects on PARs, fix type, and DOP values, which would then allow for
adjustments to be made (Rettie and McLoughlin 1999). Rettie and McLoughlin (1999)
suggested the use of error polygons related to habitat patch size and to the level of
association between two or more habitat types. Studies currently in progress in the Jemez
Mountains that evaluate elk habitat use related to patch size may allow for such
adjustments to be made.

Other authors have suggested using more satellites in locational fixes, extracting
planimetric error recorded at reference stations, and evaluating data visually to remove
locations associated with large fluctuations in latitude and longitude recorded at reference
stations (Hulbert and French 2001). With any approach, caution must be used when
manipulating data. Simulation experiments have shown that animal locations biased to
approximate GPS error led to Type II errors and incorrect conclusion of selection versus

avoidance (Rettie and McLoughlin 1999, Frair et al. 2004). Furthermore, the magnitude
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of these effects depended on the level of data loss, how often the animal used biased
vegetation types, and the degree of spatial association among vegetation types (Rettie and
McLoughlin 1999, Frair et al. 2004). Unless a thorough examination of such adjustments
to collar data and their associated biases can be made, it is best to approach the
application of habitat use data based on a clear understanding of potential biases related
to GPS radio telemetry and a thorough analysis of potential problems related to particular
land cover types or topographic features.

A thorough analysis of GPS collar accuracy indicated a strong effect of 2D fixes
on position acquisition rates (PARs) depending on time of day and season of year.
Position acquisition rates were lower during mid-day hours and summer months
indicating a possible change in animal behavior during the hottest parts of the day/season.
Slope, aspect, elevation, and land cover type affected dilution of precision (DOP) values
for both 2D and 3D fixes, although relationships varied from positive to negative making
it difficult to delineate the mechanism behind significant responses. Two-dimensional
fixes accounted for 34% of all successfully acquired locations and may affect results in
which those data were used. Despite statistical significance for some of these effects,
results from this study are encouraging because mean DOP values were consistently in
the range of 4.0 to 6.0 regardless of land cover type, slope, aspect, or elevation, leading to

the conclusion that collar accuracy is generally acceptable.
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Table 2.1. A total of 54 elk were captured over two periods (January/February 2001 and November 2002) and collared using
global positioning system (GPS) collars. Sex and age were recorded when possible. Collars were preprogrammed to record
locations at varying times throughout the day and season. Collars with an asterisk (*) met the following conditions: 1) PAR

>= 88%, 2) collar life >= 11 months, 3) 95% kernel home range spanned areas burned by the Cerro Grande Fire or were

continuous through “migrational” areas. Position acquisition rates (PARs) are calculated as the percentage of locations that a

GPS collar successfully acquired versus the total number of attempts.

Collar | Sex|  Age |StartDate| EndDate | b | i S Fixes | Locations | PAR
106* F |unknown| 11/7/2002 | 2/18/2004 | 15 months 8 (3hrs) 3698 54 10.986
107 F |unknown| 11/7/2002 | 2/17/2004 | 15 months 8 (3hrs) 3685 59 |0.984
108* F |unknown| 11/7/2002 | 2/18/2004 | 15 months 8 (3hrs) 3692 61  |0.984
109 F |unknown| 11/7/2002 | 2/17/2004 | 15 months 8 (3hrs) 3657 87  (0.977
456379 | F |unknown| 11/6/2002 | 8/27/2003 | 9.5 months 4 (6hrs) 1144 60  [0.950
456381 | F |unknown| 11/7/2002 | 6/29/2003 | 7.5 months 4 (6hrs) 932 44 10.955
456382 F |unknown| 11/7/2002 | 5/7/2003 6 months 4 (6hrs) Nov - May 595 4 0.993
4 (6hrs) Jan - Feb
471923* | M | spike |1/11/2001 | 2/17/2004 | 37 months 12 ((2132}1:;:))1\1\2[;; ) ﬁrg 3437 351 |0.907
6 (4hrs) Sep - Dec
4 (6hrs) Jan - Feb
471924 | F | 8 | 1/12/2001 | 2/17/2004 | 37 months |2 (120r) Mar-Apri 5450 208 [0.945

1 (23hrs) May - Aug
6 (4hrs) Sep - Dec
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Table 2.1. (cont.

Collar

Sex

Start Date

End Date

Total #
Months

#Fixes/Day
(Time Interval)

Total #
"Good" Fixes

# Missing
Locations

PAR

471925*

1/12/2001

7/20/2003

30 months

4 (6hrs) Jan - Feb
2 (12hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) Sep - Dec

2622

196

0.930

471926*

1/11/2001

2/18/2004

37 months

4 (6hrs) Jan- Feb
2 (12hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) Sep - Dec

3535

257

0.932

471927

lor2

1/12/2001

10/1/2003

21 months

4 (6hrs) Jan - Feb
2 (12 hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) Sep - Dec

2893

156

0.949

471928*

1/12/2001

2/17/2004

37 months

4 (6hrs) Jan - Feb
2 (12hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) sep - Dec

3517

270

0.929

471929

1/13/2001

5/10/2001

4 months

4 (6hrs) Jan - Feb
2 (12 hrs) Mar - Apr
1 (23 hrs) May

310

10

0.969

471930*

1/12/2001

2/17/2004

37 months

4 (6hrs) Jan - Feb
2 (12hrs) Mar - Apr
1 (23hrs) May _aug

6 (4hrs) Sep - Dec

3343

444

0.883
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Table 2.1. (cont.

Collar

Sex

Start Date

End Date

Total #
Months

#Fixes/Day
(Time Interval)

Total #
"Good" Fixes

# Missing
Locations

PAR

471931*

1/12/2001

2/17/2004

37 months

4 (6hrs) Jan - Feb
2 (12 hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) Sep - Dec

3403

381

0.899

471932

spike

1/12/2001

1/6/2004

24 months

4 (6hrs) Jan - Feb
2 (12 hrs) Mar - Apr
1 (23 hrs) May -
Aug 6(4hrs) Sep -
Dec

3295

321

0911

471935*

unknown

1/24/2001

12/18/2001

11 months

16 (15 minutes)
scattered throughout
days

5180

78

0.985

471936*

unknown

2/7/2001

12/28/2001

11.5 months

16 (15 minutes)
scattered throughout
days

5089

111

0.979

471938

unknown

11/7/2002

11/16/2002

9 dys

7 (3hrs) nov

62

0.954

471940*

unknown

1/31/2001

12/25/2001

12 months

16 (15 minutes)
scattered throughout
days

5090

159

0.970

471941

unknown

11/8/2002

5/5/2003

6 months

16 (15 minutes) Nov
- May scattered
throughout days

2805

75

0.974
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Table 2.1. (cont.

Collar

Sex

Age

Start Date

End Date

Total #
Months

#Fixes/Day
(Time Interval)

Total #
"Good" Fixes

# Missing
Locations

PAR

471944

unknown

11/7/2002

11/13/2002

6 dys

16 (15 minutes) Nov
scattered throughout
days

91

10

0.901

471946

unknown

11/7/2002

11/22/2002

15 dys

16 (15minutes) Nov
scattered throughout
days

166

90

0.648

471947

unknown

11/7/2002

5/7/2003

6 months

16 (15 minutes) Nov
-Apr scattered
throughout days

2746

166

0.943

471958

1/11/2001

10/15/2001

9 months

4 (6hrs) Jan - Feb
2 (12hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) Sep - Dec

575

136

0.809

471959

1/11/2001

2/1/2001

1 month

4 (6hrs)

86

0.977

471960*

1/12/2001

2/18/2004

37 months

4 (6hrs) Jan - Feb
2 (12 hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) Sep - Dec

3620

168

0.956

471961

11/7/2002

6/9/2003

7 months

6 (4hrs) Nov - Dec
January=MESS!
March=MESS!
April=MESS!

1 (23hrs) May

280

443

0.387
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Table 2.1. (cont.

Collar

Sex

Start Date

End Date

Total #
Months

#Fixes/Day
(Time Interval)

Total #

"Good" Fixes

# Missing
Locations

PAR

471962*

1/12/2001

2/18/2004

37 months

4 (6hrs) Jan - Feb
2 (12hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) Sep - Dec

3634

154

0.959

471963

Yearling

1/12/2001

6/20/2001

5 months

4 (6hrs) Jan - Feb
2 (12hrs) Mar-Apr
1 (23 hrs) May - Jun

356

11

0.970

471966

1/12/2001

2/17/2004

37 months

4 (6hrs) Jan - Feb
2 (12 hrs) Mar - Apr
1 (23hrs) May - Aug

6 (4hrs) Sep - Dec

3582

202

0.947

481465

unknown

11/6/2002

2/18/2004

15 months

7 (3hrs) Nov - Dec
4-5 (5hrs) Jan - Feb
4 (6hrs) Mar - Aug
7 (3hrs) Sep - Dec

2245

266

0.894

481466

unknown

11/7/2002

5/7/2003

6 months

7 (3hrs) Nov - Dec
4-5 (5hrs) Jan - Feb
4 (6hrs) Mar - May

891

55

0.942

481468

unknown

11/7/2002

5/9/2003

6 months

7 (3hrs) nov - Dec
4-5 (5hrs) Jan - Feb
4 (6hrs) Mar - May

599

365

0.621
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Table 2.1. (cont.

Total # #Fixes/Day Total # # Missing
Collar Sex| Age |StartDate| End Date Months (Time Interval) | "Good" Fixes | Locations PAR
7 (3hrs) Nov - Dec
481469 F |unknown| 11/6/2002 | 5/7/2003 6 months 5 (5hrs) Jan - Feb 347 606 0.364
4 (6hrs) Mar - May
7 (3hrs) Nov - Dec
481470 F |unknown| 11/6/2002 | 3/5/2003 4 months 5 (5hrs) Jan - Feb 671 30 0.957
4 (6hrs) Mar
7 (3hrs) Nov - Dec
481471% | F |unknown| 11/7/2002| 2/17/2004 | 15months | > (M) Jan-Feb 2361 144 [0.943
4 (6hrs) Mar - Aug
7 (3hrs) Sep - Dec
481472 F |unknown| 11/6/2002 | 12/2/2002 26 dys 7 (3hrs) Nov - Dec 165 18 0.902
481473 | F |unknown| 11/6/2002| 1/31/2003 | 3 months | ' (C1rs)Nov-Dec 522 19 0.965
5 (5hrs) Jan
481474 F |unknown| 11/8/2002 | 12/2/2002 24 dys 7 (3hrs) Nov - Dec 144 31 0.823
481475 F |unknown| 11/7/2002 | 11/21/2002 14 dys 7 (3hrs) Nov 88 4 0.957
481476 F |unknown| 11/7/2002 | 11/25/2002 18 dys 7 (3hrs) Nov 117 10 0.921
481477 F |unknown| 11/7/2002 | 12/4/2002 1 month 7 (3hrs) Nov - Dec 178 18 0.908
7 (3hrs) Nov - Dec
481478 F |unknown| 11/6/2002 | 3/4/2003 4 months 5 (5hrs) Jan - Feb 630 66 0.905

4 (6hrs) Mar
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Table 2.1. (cont.

Total # #Fixes/Day Total # # Missing
Collar Sex| Age |StartDate| End Date Months (Time Interval) | "Good" Fixes | Locations PAR
481479 | F |unknown| 11/6/2002 | 11/30/2002 24 dys 7 (3hrs) Nov 159 9  [0.946
481480 | F |unknown| 11/6/2002 | 11/26/2002 | 20 dys 7 (1hr) Nov 128 17 0.883
scattered intervals
4 (6hrs) Jan - Feb
4719641 | Fl 9  |1/11/2001 | 5/10/2001 | 4 months |2 (12hrs) Mar - Apr 317 11 0.966
1 (23hrs) May
4719642 | F2 |unknown| 11/7/2002 | 11/24/2002 17 dys 7 (3hrs) Nov 114 10 [0.919
4 (6hrs) Jan - Feb
4719651 | F1 9 | /112001 | 412122001 | 3months | ;' oy e 296 4 10.987
4719652 | F2 |unknown| 11/7/2002 | 11/28/2002 21 dys 6 (4hrs) Nov 117 12 [0.907
7 (1hrs) Nov - Dec
4814821 | F |unknown|11/72002 | 5/7/2003 | 1/6/1900 | > (Ohrs)Jan - Feb 656 31 {0955
4 (10, 5, or 8 hrs)
Mar - May
481483 | F |unknown| 11/7/2002 | 11/17/2002 | 10 days 7 (1hrs) Nov 78 5 10.940
481484 | F |unknown| 11/6/2002 | 11/18/2002 12 dys 7 (1hr) scattered 75 11 [0.872

intervals




Table 2.2. Monthly mean PAR (se) values collected from 54 elk (Fy; 319 = 116.60,
P<0.0001). For each month, the total number of fixes (n) is shown.

Month Total Fixes (n) Mean PAR (se)

January 10,857 0.9511 (0.008759) bt
February 10,529 0.9522 (0.008608) b
March 7,100 0.9215 (0.01374) d
April 6,698 0.9417 (0.01054) c
May 4,510 0.9415 (0.01099) c
June 4,072 0.9015 (0.01745) e
July 4,018 0.8483 (0.02481) g
August 4,057 0.8418 (0.02562) g
September 9,315 0.8771 (0.02016) f
October 9,336 0.9060 (0.01600) e
November 14,278 0.9651 (0.006275) a
December 13,378 0.9661 (0.006175) a

Y Means followed by the same letter are not significantly different (protected LSD test, P > 0.05).

Table 2.3. Seasonal mean PAR (se) values collected from 54 elk (F4, 319 = 287.6,
P<0.0001). For each season, the total number of fixes (n) is shown.

Season  Months Total Fixes (n) Mean PAR (se)

Spring  March, April 13,798 0.9323 (0.01181) al
Calving May, June 8,613 0.9239 (0.01342) a
Summer July, August 8,075 0.8451 (0.02464) b
Fall September, October 18,651 0.8924 (0.01783) c
Winter  November through February 49,042 0.9592 (0.007195) d

Y Means followed by the same letter are not significantly different (protected LSD test, P > 0.05).
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Table 2.4. Mean PAR (se) values for 4-hour time blocks throughout the day (Fs52.4 =
269.05, P<0.0001). For each time block, the total number of fixes (n) is shown.

Time of day Total Fixes (n) Mean (se)

0-4 13,483 0.9707 (0.005174) aV
4-8 12,879 0.9444 (0.009439) c
8-12 13,386 0.8863 (0.01792) d
12-16 11,852 0.8930 (0.01706) d
16-20 13,700 0.9453 (0.009274) c
20-24 12,521 0.9653 (0.006068) b

Y"Means followed by the same letter are not significantly different (protected LSD test, P
>0.05).

Table 2.5. Mean PAR (se) values for night-time and day-time hours (F;, 224 = 325.89,
P<0.0001). For each time period, the total number of fixes (n) is shown.

Time of day  Hourly Time Periods Mean (se)
Night 0000-4000, 4000-8000, 2000-2400 0.9552 (0.007577) a'
Day 0800-1200, 1200-1600, 1600-2000 0.9242 (0.01240) b

Y Means followed by the same letter are not significantly different (protected LSD test,

P >0.05).
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Table 2.6. Effect of elevation on dilution of precision (DOP) regardless of fix or time block as expressed by linear regression analysis. A random
sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between DOP and elevation was estimated
under two model scenarios involving assumptions about the distribution of DOP observations for a given elk: (1) DOP values were assumed to be
homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-covariance matrix (heteroscedastic, correlated). For
each analysis, observations among elk were assumed to be independent. For each model scenario, results include number of experimental data sets (N),
average, standard error, minimum and maximum regression coefficients for these experiments. A null model likelihood ratio test was used to test
whether the model using an unstructured variance-covariance matrix was a significant improvement over the model using the
homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for analyses when each
variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was appropriate based on
the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000 times (“Full”) or for subsets of the full data set for

which significant relationships were detected.

Locations/ animals = 1
Regression Coefficient

Locations/animal = 10
Regression Coefficient ¥

Analysis Data N Ave. Stderr Min Max N Ave Stderr Min Max
Set
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 -0.0110  7.4000 -186.7774 96.8283 1000 02141  5.3902 -32.8160 74.8383
Pos. ¥ 22 25339 3.0967  0.1637 15.5192 14 29849 23151 0.5929 6.5770
Neg. ¥ 41 -7.5494 29.1144 -186.7774 -0.4863 71 -2.2239  2.9426 -17.3255 -0.4462
Appropriate: ¥ Full ¥ 44 -0.1919  0.2691 -0.9509 0.3297
Pos. ¥ 0o - - - -
Neg. ¥ 9 -0.5681  0.1592 -0.9509 -0.4462
Unstructured
Assumed: ¥ Full ? 970 -0.1527  0.4632 -2.0132 1.4422
Pos. ¥ 170 0.4957  0.2294 0.1842 1.4422
Neg. ¥ 368 -0.6060  0.2986 -2.0132 -0.0829
Appropriate: ¥ Full ¥ 926 -0.1506  0.4677 -2.0132 1.4422
Pos. ¥ 167  0.4940  0.2291 0.1842 1.4422
Neg. ¥ 350 -0.6101  0.3042 -2.0132 -0.0829
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Table 2.6. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.
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Table 2.7. Effect of elevation on dilution of precision (DOP) for 2D fixes regardless of time block as expressed by linear regression analysis. A random
sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between DOP and elevation was estimated
under two model scenarios involving assumptions about the distribution of DOP observations for a given elk: (1) DOP values were assumed to be
homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-covariance matrix (heteroscedastic, correlated). For
each analysis, observations among elk were assumed to be independent. For each model scenario, results include number of experimental data sets (N),
average, standard error, minimum and maximum regression coefficients for these experiments. A null model likelihood ratio test was used to test
whether the model using an unstructured variance-covariance matrix was a significant improvement over the model using the
homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for analyses when each
variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was appropriate based on
the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000 times (“Full”) or for subsets of the full data set for
which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient Regression Coefficient ¥
Analysis Data N Ave. Stderr Min Max N Ave Stderr Min Max
Set
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 -0.3904 12.3423  -197.9631 273.2727 1000 -0.1955  6.2108 -42.4336 57.3683
Pos. ¥ 9 3.0055 6.2335 0.1468 19.5306 7 32980  3.4891 0.5981 10.2425
Neg. 55-11.7287 29.1544 -197.9631 -0.0870 86 -7.1341  8.1771 -42.4336 -0.6169
Appropriate: ¥ Full ¥ 302692  0.0972 0.1944 0.3790
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ? 864 -0.1146  0.5966 -2.1240 2.6426
Pos. ¥ 190 0.6470  0.3210 0.1846 2.6426
Neg. ¥ 305 -0.7170  0.4000 -2.1240 -0.0988
Appropriate: ¥ Full ¥ 861 -0.1162  0.5964 -2.1240 2.6426
Pos. ¥ 188  0.6472 03216 0.1846 2.6426

Neg. * 305 -0.7170 0.4000 -2.1240 -0.0998
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Table 2.7. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.
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Table 2.8. Effect of elevation on dilution of precision (DOP) for 3D fixes regardless of time block as expressed by linear regression analysis. A random
sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between DOP and elevation was estimated
under two model scenarios involving assumptions about the distribution of DOP observations for a given elk: (1) DOP values were assumed to be
homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-covariance matrix (heteroscedastic, correlated). For
each analysis, observations among elk were assumed to be independent. For each model scenario, results include number of experimental data sets (N),
average, standard error, minimum and maximum regression coefficients for these experiments. A null model likelihood ratio test was used to test
whether the model using an unstructured variance-covariance matrix was a significant improvement over the model using the
homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for analyses when each
variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was appropriate based on
the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000 times (“Full”) or for subsets of the full data set for
which significant relationships were detected.

Locations/animal = 10
Regression Coefficient ¥

Locations/ animals = 1
Regression Coefficient

Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full 1000 0.1964 0.8331  -2.0322  9.8607 1000 0.1421  0.2366 -0.4490 2.0621
Pos. ¥ 20 12934 13876 02596  6.9733 65 05972 0.3755 0.2907 2.0621
Neg. ¥ 12 -0.9833 02389  -1.5006 -0.6885 7 -03341  0.0425 -0.4161 -0.2868
Appropriate: 2 Full ¥ 145 0.0571  0.1491 -0.4161 0.4228
Pos. ¥ 7 03490  0.0418 0.3113 0.4228
Neg. ¥ 2 -0.3681  0.0678 -0.4161 -0.3201
Unstructured
Assumed: ¥ Full 934  0.0965  0.2885 -0.9177 1.2202
Pos. ¥ 367 03741  0.1728 0.0986 1.2202
Neg. ¥ 159  -0.3239  0.1471 -0.9177 -0.0483
Appropriate: ¥ Full ¥ 789 0.0995  0.2919 -0.9177 1.2202
Pos. ¥ 315 03774 0.1792 0.0986 1.2202
Neg. ¥ 137 -03212  0.1425 -0.9177 -0.0483
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Table 2.8. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

? The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table 2.9. Effect of topographic slope on dilution of precision (DOP) as expressed by linear regression analysis regardless of fix type or time block. A
random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between DOP and topographic
slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given elk: (1) DOP values were
assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-covariance matrix (heteroscedastic,
correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario, results include number of
experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A null model likelihood ratio
test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement over the model using the
homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for analyses when each
variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was appropriate based on
the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000 times (“Full”) or for subsets of the full data set for
which significant relationships were detected.

v9

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient Regression Coefficient ¥
Analysis Data N Ave. Stderr Min Max N Ave Stderr Min Max
Set
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000 0.0518 0.7354 -4.1354 16.5634 1000 0.0827  0.5403 -1.1808 7.0866
Pos. ¥ 34 0.8856 2.8190  0.1025 16.5634 74 03415 04677 0.0423 2.3343
Neg. 29 -0.1524 0.0765 -0.3535 -0.0016 16 -0.0598  0.0178 -0.1051 -0.0416
Appropriate: ¥ Full ¢ 42 -0.0067  0.0240 -0.0579 0.0656
Pos. ¥ 1 00655 - - -
Neg. ¥ 4 -0.0517  0.0066 -0.0579 -0.0442
Unstructured
Assumed: ¥ Full ? 970  0.0012  0.0463 -0.1622 0.2038
Pos. ¥ 262 0.0567  0.0294 0.0142 0.2038
Neg. ¥ 247  -0.0554  0.0233 -0.1622 -0.0144
Appropriate: ¥ Full ¢ 928  0.0016  0.0466 -0.1622 0.2038
Pos. ¥ 255 0.0570  0.0295 0.0142 0.2038

Neg. ¥ 236 -0.0556  0.0236 -0.1622 -0.0144
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Table 2.9. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.



Table 2.10. Effect of topographic slope on dilution of precision (DOP) for 2D fixes regardless of time block as expressed by linear regression analysis.
A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between DOP and topographic
slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given elk: (1) DOP values were
assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-covariance matrix (heteroscedastic,
correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario, results include number of
experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A null model likelihood ratio
test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement over the model using the
homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for analyses when each
variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was appropriate based on
the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000 times (“Full”) or for subsets of the full data set for
which significant relationships were detected.

99

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000  0.0181  0.8050 -9.6354 14.8388 1000 0.0989  0.6400 -1.4364 7.8955
Pos. ¥ 39 09284 24112  0.0035 14.8388 71 0.6659  0.6265 0.0605 2.3267
Neg. ¥ 25 -0.5566  1.8940 -9.6354  -0.0466 17  -0.1245  0.0623 -0.2839 -0.0592
Appropriate: 2 Full ¥ 4 -0.0068  0.0311 -0.0272 0.0392
Pos. ¥ 0 - - - _
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 864  -0.0013  0.0593 -0.2185 0.3499
Pos. ¥ 229  0.0695  0.0423 0.0191 0.3499
Neg. ¥ 246  -0.0669  0.0339 -0.2185 0.0168
Appropriate: 2 Full ¥ 860  -0.0013  0.0594 -0.2185 0.3499
Pos. ¥ 228  0.0695  0.0424 0.0191 0.3499

Neg. ¥ 246  -0.0669  0.0339 -0.2185 -0.0168
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Table 2.10. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.



Table 2.11. Effect of topographic slope on dilution of precision (DOP) for 3D fixes regardless of time block as expressed by linear regression analysis.
A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between DOP and topographic
slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given elk: (1) DOP values were
assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-covariance matrix (heteroscedastic,
correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario, results include number of
experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A null model likelihood ratio
test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement over the model using the
homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for analyses when each
variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was appropriate based on
the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000 times (“Full”) or for subsets of the full data set for
which significant relationships were detected.

89

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.0399  0.0908 -0.6065  0.8808 1000 0.0345  0.0249 -0.0326 0.1761
Pos. ¥ 94 0.1594  0.1444  0.0302  0.8808 417 0.0528  0.0222 0.0260 0.1761
Neg. ¥ 4 -0.1045 0.0793  -0.1850  -0.0012 0o - - - -
Appropriate: 2 Full ¥ 134 0.0271  0.0153 -0.0158 0.0674
Pos. ¥ 58 0.0409  0.0088 0.0304 0.0674
Neg. ¥ 0 - - - -
Unstructured 934 0.0298  0.0290 -0.0885 0.1160
Assumed: ¥ Full ¥ 632 0.0447  0.0202 0.0121 0.1160
Pos. ¥ 50 -0.0327  0.0163 -0.0885 -0.0095
Neg. Y
Appropriate: 2 Full ¥ 800  0.0299  0.0292 -0.0659 0.1160
Pos. ¥ 549  0.0446  0.0205 0.0121 0.1160

Neg. ¥ 46 -0.0320  0.0146 -0.0659 -0.0095
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Table 2.11. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.



Table 2.12. Mean DOP values (all fix types) on 8 principle aspects and level topography. Data
represent mean DOP values from a total of 55,786 fixes on 15 elk (F2~95a.38~33 =0.69, P =0.5604).

Aspect Angle (degrees) Mean (se)

0 (level topography) 4.4864 (0.8833) al
1 337.5t022.5 4.3690 (0.2474) a
2 22.51t067.5 4.8624 (0.4230) a

3 67.5t0 112.5 4.2116 (0.1683) a
4 112.5 to 157.5 5.2639 (0.8797) a
5 157.5t0 202.5 4.8927 (0.5518) a
6 202.5 to 247.5 4.2770 (0.1882) a
7 247.510292.5 4.1946 (0.1914) a

8 292.5 to 337.5 3.9991 (0.1316) a

Y"Means followed by the same letter are not significantly different (protected LSD test, P > 0.05).

Table 2.13. Mean DOP values (3D fixes only) on 8 principle aspects and level topography. Data
represent mean DOP values from a total of 36,677 fixes on 15 elk (F1A74i2_2A63 =11.78, P<0.0005).

Aspect Angle (degrees) Mean (se)
0 (level topography) 3.8569 (0.1593) v
337.5t022.5 4.5240 (0.0393)
22.510 67.5 4.5656 (0.0381)
67.5t0 112.5 4.5616 (0.0442)

0O\ L Wi~

112.5 to 157.5
157.5 to 202.5
202.5 to 247.5
247.5 t0 292.5
292.5 to 337.5

4.4703 (0.0424)
4.4956 (0.0514)
4.4967 (0.0521)
4.5895 (0.0578)
4.4683 (0.0406)

ccoococoooo e

Y"Means followed by the same letter are not significantly different (protected LSD test, P > 0.05).

Table 2.14. Mean DOP values (2D fixes only) on 8 principle aspects and level topography. Data
represent mean DOP values from a total of 19,109 fixes on 15 elk (Fg,gﬁi_36,43 = (.76, P=0.5163).

Aspect Angle (degrees) Mean (se)

0 (level topography) 5.4180 (2.1571) Y
337.5t022.5 4.2140 (0.4845)
22.5t0 67.5 5.1593 (0.8351)
67.5t0 112.5 3.8616 (0.3202)

OO DN W~

112.5 to 157.5
157.5t0 202.5
202.5 to 247.5
247.5 t0 292.5
292.5 to 337.5

6.0575 (1.7536)
5.2894 (1.1043)
4.0573 (0.3665)
4.7998 (1.9895)
3.5298 (0.2736)

OO

Y"Means followed by the same letter are not significantly different (protected LSD test, P > 0.05).
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Table 2.15. Mean DOP values (all fix types) on 17 land cover classes. Data represent
mean DOP values from fixes on 15 elk. Land cover classes were consolidated from an
original 32 land cover classes found in the most recent version of the LANL land cover
map (McKown et. al 2003). Acronyms are defined in Appendix ‘B’. With the exception
of combined types (Sparse Ground, PIED/JUMO, QUGA/RONE, and POTR), the
original numbering system is maintained. Land cover types with the same letter are not
significantly different from each other (F; 994180 = 1.13, P = 0.3478).

Class# Land Cover Mean se

1 VCNP Grassland 4.8321 0.8101 a
2 Montane Grassland 4.7487 0.5900 a
3 ABCO-PSME Woodland 5.3680 0.7959 a
4 ABCO-PSME Forest 4.7956 0.2967 a
5 Evergreen-POTR Forest 4.0597 0.1704 a
12 PIPO/BOGR-SCSC Woodland 4.0454 0.2032 a
15 Submontane Grassland 4.0541 0.2668 a
17 Other Shrubland 3.9864 0.2191 a
20 BRCA-AGTR Grassland 5.9346 1.1793 a
21 PIPO Forest 5.1698 0.4594 a
23 PIPO/QUGA Woodland 4.5460 0.2425 a
24 ALBA-PIEN Forest 5.2450 0.7823 a
27 PIPO/Other Grass Woodland 4.4656 0.2204 a
33 Sparse Ground 6.9017 2.0674 a
35 PIED/JUMO 47183 0.5215 a
36 QUGA/RONE Shrubland 8.5389 3.1953 a
37 POTR 4.4611 0.1686 a

Table 2.16. Mean DOP values (all fix types) on 7 growth forms. Data represent mean
DOP values from fixes on 15 elk. Growth form classes were consolidated from the 17
land cover classes found in Table 2.15. Acronyms are defined in Appendix ‘B’. Growth
forms with the same letter are not significantly different from each other (F2.19 3071 =
0.80, P =0.4689).

Growth form Original Classes Mean se

Grasslands 1,2,15,20 4.8901 0.5575 a
Woodlands 3,12, 23,27 4.6062 0.1940 a
Forest 4,5,21,24 4.8175 0.5575 a
Shrublands 17,36 6.2626 1.6755 a
Sparse Ground 33 6.9017 2.0674 a
PIED/JUMO 35 4.7183 0.5215 a
Aspen (POTR) 37 4.4611 0.1986 a
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Table 2.17. Mean DOP values from 3D fixes, standard errors, and P values associated with pairwise comparisons of 17 land
cover types (F2.75 3353 = 10.77, P<0.0001). Values in the body of the table are the probabilities associated with a comparison
of land cover types in the corresponding row and column of the table. Land cover types are defined in Table 2.15.

LC 1 2 3 4 5 12 15 17 20 21 23 24 27 33 35 36 37

Mean 4.2327 4.5033 5.0045 5.3732 5.1359 4.8202 4.2781 4.2906 4.6880 5.1751 4.7015 5.3810 4.7046 4.7595 4.6854 4.4353 4.8228
Se 0.0801 0.0674 0.1331 0.1951 0.1225 0.1271 0.0681 0.1199 0.0693 0.1493 0.0729 0.1643 0.0737 0.0652 0.1321 0.0795 0.0566
1 0.0120 0.0012 0.0008 0.0003 0.0015 0.5385 0.4519 0.0001 0.0008 0.0001 0.0002 0.0008 0.0002 0.0088 0.0735 0.0001
2 0.0024 0.0010 0.0009 0.0212 0.0408 0.1083 0.0989 0.0012 0.0892 0.0002 0.0004 0.0072 0.1517 0.4292 0.0048
3 0.0118 0.4593 0.1310 0.0017 0.0068 0.0812 0.0599 0.1400 0.0336 0.0810 0.0618 0.0269 0.0007 0.3153
4 0.2081 0.0151 0.0004 0.0029 0.0132 0.0128 0.0131 0.9600 0.0033 0.0079 0.0078 0.0005 0.0293
5 0.1583 0.0001 0.0009 0.0163 0.7898 0.0029 0.0662 0.0062 0.0401 0.0678 0.0007 0.0223
12 0.0071 0.0160 0.3709 0.0380 0.5134 0.0130 0.8992 0.5735 0.1042 0.0028 0.9880
17 0.9041 0.0003 0.0005 0.0001 0.0001 0.0003 0.0013 0.0396 0.1856 0.0001
20 0.0020 0.0037 0.0028 0.0005 0.0097 0.0503 0.0458 0.3067 0.0002
21 0.0236 0.8886 0.0054 0.3257 0.4102 0.9861 0.0132 0.0769
23 0.0312 0.1066 0.0050 0.0149 0.0145 0.0003 0.0786
24 0.0020 0.3644 0.6649 0.9338 0.0477 0.0303
27 0.0004 0.0061 0.0081 0.0001 0.0089
33 0.6534 0.4401 0.0014 0.8606
34 0.4304 0.0007 0.5738
35 0.0363 0.4568
36 0.0032

37




€L

Table 2.18. Mean DOP values from 3D fixes, standard errors, and P values associated with pairwise comparisons of 7 growth
forms (F242 3383 =11.36, P =0.0001). Values in the body of the table are the probabilities associated with a comparison of
growth forms in the corresponding row and column of the table. Acronyms are found in Appendix B.

Growth Form  Grasslands Woodlands  Forests Shrublands  Bare Ground PIED-JUMO  Aspen
Mean 4.4255 4.8327 5.2663 4.3630 4.7595 4.6854 4.8228
se 0.0468 0.0606 0.1367 0.0755 0.0652 0.1321 0.0566
Grasslands 0.0003 0.0003 0.2356 0.0012 0.0835 0.0001
Woodlands 0.0017 0.0005 0.3458 0.2157 0.9255
Forests 0.0003 0.0062 0.0106 0.0169
Shrublands 0.0012 0.0284 0.0001
Bare Ground 0.4304 0.5738
PIED-JUMO 0.4568
Aspen (POTR) ----




Table 2.19. Mean DOP values (2D fixes) on 17 land cover classes. Data represent mean
DOP values from fixes on 15 elk. Land cover classes were consolidated from an original
32 land cover classes found in the most recent version of the LANL land cover map
(McKown et. al 2003). Acronyms are defined in Appendix ‘B’. With the exception of
combined types (Sparse Ground, PIED/JUMO, QUGA/RONE, and POTR), the original
numbering system is maintained. Land cover types with the same letter are not
significantly different from each other (F4 7, 6520 = 1.17, P =0.3333).

Class # Land Cover Mean se

1 VCNP Grassland 5.4136 1.6060 a
2 Montane Grassland 4.9941 1.1550 a
3 ABCO-PSME Woodland 5.7314 0.1531 a
4 ABCO-PSME Forest 42181 0.5236 a
5 Evergreen-POTR Forest 2.9836 0.2767 a
12 PIPO/BOGR-SCSC Woodland 3.2706 0.4119 a
15 Submontane Grassland 3.8301 0.5167 a
17 Other Shrubland 3.6822 0.4656 a
20 BRCA-AGTR Grassland 7.1813 3.4922 a
21 PIPO Forest 5.1645 0.9295 a
23 PIPO/QUGA Woodland 4.3905 0.4769 a
24 ALBA-PIEN Forest 5.1089 1.5516 a
27 PIPO/Other Grass Woodland 4.1265 0.4674 a
33 Sparse Ground 9.0439 4.1487 a
35 PIED/JUMO 4.5334 1.2092 a
36 QUGA/RONE Shrubland 12.6424 6.3797 a
37 POTR 4.0993 0.3803 a

Table 2.20. Mean DOP values (2D fixes) on 7 growth forms. Data represent mean DOP
values from fixes on 15 elk. Growth form classes were consolidated from the 17 land
cover classes found in Table 16 and 20. Acronyms are defined in Appendix ‘B’. Growth

forms with the same letter are not significantly different from each other (F; 09, 2824 =
0.88, P =10.4301).

Growth form Original Classes Mean se

Grasslands 1,2,15,20 5.3547 1.1043 a
Woodlands 3,12,23,27 4.3798 0.3971 a
Forest 4,5,21,24 4.3688 0.5111 a
Shrublands 17, 36 8.1623 3.3299 a
Sparse Ground 33 9.0439 4.1487 a
PIED/JUMO 35 4.6037 1.2518 a
Aspen (POTR) 37 4.0993 0.3803 a
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Figure 2.1. Major landowners of the Pajarito Plateau in north central New Mexico.
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Figure 2.2. Mean regression coefficients for significant outcomes testing the effect of elevation on DOP value by fix type
and time block. Shown are the mean regression coefficient regardless of fix type (blue) and the regression coefficients
for the combination of fix type and time block. Total number of positive or negative significant outcomes versus all
potential outcomes (significant and non-significant) are in parentheses. Elevation was measured in 1000s of feet.
Standard errors for regression coefficients can be found in tables in Appendix 'C'.
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Figure 2.3. Percent of significant positive and negative relationships out of all potential outcomes (significant and
nonsignificant) for the unstructured test of the effect of elevation on DOP value by fix type and time block.
Average regression coefficients are shown in parentheses. Elevation was measured in 1000s of feet. Tabular
output containing data for this figure can be found in Appendix 'C'.
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Figure 2.4. Mean regression coefficients for significant outcomes testing the effect of topographic slope on DOP value
by fix type and time block. Shown are the mean regression coefficient regardless of fix type (blue) and the regression
coefficients for the combination of fix type and time block. Total number of significant outcomes versus all potential
outcomes (significant and non-significant) are in parentheses. Slope was measured in degrees. Standard errors for
regression coefficients can be found in tables in Appendix 'C'.
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Figure 2.5. Percent of significant positive and negative relationships out of all potential outcomes (significant and
nonsignificant) for the unstructured test of the effect of topographic slope on DOP value by fix type and time block.
Average regression coefficients are shown in parentheses. Slope was measured in degrees. Tabular output containing
data for this figure can be found in Appendix 'C', Tables C.19 through C.36.



CHAPTER III
VEGETATIVE SUCCESSION FOLLOWING THE
CERRO GRANDE FIRE — MODEL SELECTION,

CALIBRATION, AND EVALUATION

Introduction

Dramatic increases in the frequency and extent of large-scale fires following
decades of fire suppression plague the western United States. The immense fires in
Montana, Idaho, Colorado, and New Mexico in recent years are possible indications of
events to come in many other western forests that are now loaded with fuels. Such fuels
are normally limited through the natural occurrence of smaller fires, but fire suppression
has disrupted natural fire regimes. In fact, historically anomalous, catastrophic wildfire
has been classified as potentially “the most pressing forest health problem in
Southwestern forests” (Swetnam and Baisan 1996: 12).

Pickett and White (1985: 7) define disturbance as “any relatively discrete event in
time that disrupts ecosystem, community or population structure and changes resources,
substrate availability, or the physical environment.” Understanding recovery of forest
landscapes following large-scale disturbance events, such as the catastrophic wildfires
that have plagued the southwest, is a challenge because of complex interactions over a
range of temporal and spatial scales (He and Mladenoft 1999). Disturbance events such
as these are unusual in that they both create and respond to landscape pattern (Turner et

al. 2001). Environmental heterogeneity, therefore, reflects the cumulative and interactive
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effects of disturbance regimes, biophysical environments, and successional processes at a
given temporal and/or spatial scale (Pickett and White 1985, Turner et al. 2001, Keane et
al. 2002). Changes in the structure and composition of a community are associated with
changes in structural and functional properties (Drury and Nisbet 1973) including, but not
limited to, changes in animal movement and distribution.

Fires strongly influence animal response at every level of ecosystem organization.
Individuals’ responses will vary with the spatial/temporal aspects of the disturbance and
subsequent recovery (Turner et al. 2001) which, in turn, can have far-reaching
implications for the ecology of organisms and ecosystem function (Turchin 1998). Long-
term faunal response is determined by habitat change, which influences feeding patterns,
movement, reproduction, and cover (Brown et al. 2000). Therefore, any analysis of
animal movement and distribution following large-scale fires must include an accurate
representation of habitat resources and successional processes.

Integrated models of disturbance and succession offer a means of comparing
long-term effects of fire regimes on forest vegetation and other ecosystem processes that
may otherwise be difficult to observe empirically (Keane et al. 1989, Keane et al. 1996,
He and Mladenoff 1999, Turner et al. 2001). In addition, successional models enable
evaluation of the cumulative effects of management practices and ecosystem response in
a spatial context over long time periods (Keane and Hann 1998). Several approaches
have been used to model post-fire succession (Keane and Long 1998, Barrett 2001,

Turner et al. 2001) but current efforts are focused on stochastic approaches that examine
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the relationship between fire regimes and landscape heterogeneity as well as fire-affected
landscape changes through time (He and Mladenoff 1999).

In early May 2000, the Cerro Grande Fire (CGF) in north central New Mexico
burned approximately 19,020 ha as well as 400 residences in the town of Los Alamos
(Figure 3.1). The fire was the result of an escaped prescribed burn initiated at Bandelier
National Monument (BNM) to reduce unnaturally high fuel loads resulting from decades
of fire suppression. The Cerro Grande Fire, coupled with the region’s unique fire history
and interagency collaborations, presents a unique opportunity to study the long-term
ecological consequences of large-scale fires on ungulate movements and distribution.
Consequently, a “Participating Agreement” was signed by the Santa Fe National Forest
(USFS), U.S. Department of Energy/University of California (LANL), and the National
Park Service (BNM) to collaborate in data collection efforts to address concerns
regarding potential impacts of the Cerro Grande Fire on the regional elk herd. However,
before realistic assessment of elk movement and distribution following the fire can take
place, post-fire successional dynamics must be simulated.

The purpose of this chapter is to briefly review and describe various post-fire
successional models available in the literature and to select the model deemed most
appropriate for evaluating post-fire elk movement and distribution in the Jemez
Mountains. Although numerous post-fire successional models exist, only the most
applicable and appropriate for the Jemez Mountains were selected for review. Potential
models were evaluated with regard to specific research needs following the Cerro Grande

Fire and the most appropriate model based on overall research objectives was selected.
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Background information and a brief overview of the selected model components and
structure are discussed. Methods outlining the development of spatial inputs, calibration
using field data, and validation for application in the Jemez Mountains are detailed.

Finally, issues regarding model application and needs for further research are evaluated.

Methods

Assessing Research/Model Needs

In order to select an appropriate post-fire successional model for purposes of this
dissertation, overall research objectives were used as the basis for model selection and
assessment. Primary research objectives are as follows:

» To evaluate the movement and distribution patterns of elk in relation to spatial and
temporal aspects of the Cerro Grande Fire;

» To integrate concurrent data collection efforts of Bandelier National Monument
(BNM), Los Alamos National Laboratory (LANL), and the U.S. Forest Service (USFS)
to gain more accurate insight into the movement and distribution of elk in the Jemez
Mountains; and

» To provide recommendations to mitigate potential adverse impacts by elk as a result of
changes in movements and distributions based on simulated conditions projected by the
model.

Once primary research objectives were evaluated, it was apparent the selected
model must possess certain characteristics which would make it capable of meeting

overall research goals. Input and output criteria as well as model performance and
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flexibility were addressed. Included were the need to incorporate data already available

through participating agreements (input criteria), the need for a dynamic modeling

atmosphere both spatially and temporally (model performance), and the need for the
model to produce output variables (output criteria) meaningful for assessing elk
movement and distribution following the fire. These insights led to the development of
additional criteria by which models were assessed:

= Raw code for the successional model of choice must be made freely available and be
modifiable with appropriate permissions.

* The chosen model must have both a temporal and spatial component to it, each of
which could be modified to meet specific research needs for evaluating elk movement
and distribution patterns at both regional and local scales seasonally and annually.

» The chosen model must project potential succession of understory vegetation in
sufficient detail necessary to evaluate elk movement and distribution patterns.

= The chosen model should have an integrated weather component which could model
snow patterns based on complex landscape features.

» The selected model should be supported in the scientific community through published
reports, peer-reviewed literature, and wide-spread application.

» Emphasis should be given to models which require data inputs already made available
through ongoing studies at LANL or through collaborations with other stakeholders

and/or agencies participating in this research.
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Model Evaluation

Following extensive literature review, six post-fire successional models were
selected for further consideration: (1) Fire-BGC (Keane et al. 1996); (2) LANDSUM
(Keane et al. 1997); (3) FIRESUM (Keane et al. 1989); (4) Forest Vegetation Simulator
(FVS) — developed from the original “Prognosis Model for Stand Development” (Stage
1973); (5) LANDIS (Mladenoff et al. 1996); and (6) SAVANNA (Coughenour 1993).
Models were independently evaluated based on a pre-determined set of questions
reflecting overall research objectives (Appendix D). Model developers and subject
matter experts were contacted for additional information regarding model availability,
performance, structure, and computational requirements. A checklist of individual model

performance based on criteria outlined above can be found in Table 3.1.

Model Selection and Description

The majority of models reviewed, although well documented, were designed
specifically for evaluating forest (i.e., tree) dynamics. As a result, the temporal resolution
of such models was in the range of years to decades — much longer than the daily or
seasonal time step desired to evaluate elk movement across the Jemez. In addition, few
models simulated the understory component or snow dynamics to the degree deemed
critical for modeling elk movement and distribution. Only a single model, SAVANNA,
met all criteria and, therefore, was selected to meet research objectives. A complete
description of SAVANNA and its components is beyond the scope of this dissertation,

but various submodels are briefly reviewed. Detailed descriptions of model
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development, associated algorithms, and supporting documentation for the entire
SAVANNA Ecosystem Model can be found in Coughenour (1993, 2002).

SAVANNA, developed over 15+ years by Dr. Michael Coughenour and
colleagues at Colorado State University, was designed specifically for evaluating
herbivore dynamics within ecosystems. It is currently being applied across semi-arid and
arid regions of the western United States and East Africa to address natural changes,
land-use practices, and management strategies. It is inclusive by design relying upon and
inviting the participation of stakeholders to make critical decisions. It has been used to
model such diverse issues as global climate change scenarios and pastoral land use to the
effects of habitat fragmentation on wildlife populations. Coughenour et al. (2000) gives a
complete listing and description of funded projects and geographic locations where
SAVANNA has been successfully implemented.

SAVANNA is a spatially-explicit, process-oriented ecosystem model that
integrates computer modeling, geographic information systems, remote sensing, and field
studies. The model is composed of various submodels (e.g., hydrologic, plant biomass
production, plant population dynamics, ungulate herbivory/spatial distribution), which
can be run independently or in combination. User-defined spatial resolution allows
flexibility in application and the potential for cross-validation and detailed examination at
different spatial scales. In addition, SAVANNA’s weekly time step is suited to simulate
seasonal dynamics unlike many models that run on an annual or decadal time step.

Results can be displayed spatially and/or temporally. Once calibrated, SAVANNA can
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be used as an adaptive management tool to objectively explore, debate, implement, and
reassess alternative policy and management strategies.

Spatial Structure. SAVANNA has a hierarchical structure that is spatially explicit

(i.e., sensitive to spatial position) at the landscape scale and spatially inexplicit at patch
scales. The model runs in a raster-based environment. Cell resolution (grain) is
determined in part by the spatial extent of the simulated ecosystem and computer
resources as well as the needs of the researcher based on the organism in question. User-
defined spatial and temporal structures allow maximum flexibility to balance
computational efficiency and mechanistic detail.

Within each grid cell, the model simulates vegetation patches or “facets,” which
are defined by the fractional cover of herbaceous plants, shrubs and trees (Figure 3.2) and
correspond to fixed distributions of physical factors such as topography and soils.
Therefore, facet cover is a dynamic outcome of vegetation growth and mortality. Facet
locations are not explicitly modeled, only the fractions of grid cells that are covered by
the facets. The results are scaled-up to the grid-cell level by multiplying by the fractions
of the grid-cell area covered by each facet (Coughenour 1993). For example, if the
model simulates 100 g per square meter of plant biomass on a facet, and the facet
occupies 25% of the grid cell, then the total plant biomass contributed by that facet to the
grid cell is 25 g per square meter (i.e., area-weighted averaging).

The vertical spatial structure of the model is distinguished by soil and plant
canopy layers (Coughenour 2002). Soils are divided into three strata with physical

properties assigned to each: 1) A zone of potential bare soil evaporation (top layer), 2) a
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second layer (generally the deepest) that is exploited by herbaceous roots, and 3) a
bottom layer that is generally occupied only by tree roots. Plant canopies are organized
into herb, shrub and tree strata, which are further divided into three substrata to compute
light intensity.

Submodel Overview. SAVANNA is comprised of several interacting submodels

(Figure 3.3), which can be run independently or in combination. These include water
budget, light interception, net primary production, plant population dynamics, litter
decomposition and nitrogen cycling, ungulate herbivory, ungulate spatial distribution,
ungulate energy balance, ungulate population dynamics, and wolf predation submodels.
With the exception of the wolf predation submodel, which does not apply to the Jemez
Mountain elk population, brief descriptions are provided below and were taken verbatim
or near verbatim from Coughenour (1993, 2002).

The water budget submodel simulates soil moisture dynamics and use on each
patch type on each grid cell. Soils map data are used in conjunction with soil properties
for each soil type to determine soil water holding capacities of each facet on each grid
cell. Water resources are routed through three soil layers using a simple “tipping bucket”
approach that drains water in excess of field capacity to deeper layers. The water budget
includes terms for precipitation, interception, run-off, run-on, infiltration, deep drainage,
bare soil evaporation, and transpiration.

The light submodel simulates shading within and among plant canopies. On tree

covered facets, incident radiation first passes through the tree canopy, then the shrub

understory and finally the herbaceous understory. Light extinction follows an
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exponential decay function (Beer’s Law), dependent on leaf area indices and a light
extinction coefficient. The model tracks relative heights of woody plants in different
size/age classes and apportions light accordingly.

The net primary production (NPP) submodel simulates plant biomass flows and
dynamics. Plant biomass production is affected by light, water, temperature, nitrogen,
and herbivory. The NPP submodel is explicitly linked to the water budget submodel
through transpiration and plant water use efficiency. Thus, for each gram of water used
by plants, a certain amount of biomass is produced. Biomass is allocated to leaves,
stems, and roots. Plant tissues die because of water or temperature stress or phenological
stage, and they turn over at a nominal rate that reflects their maximal longevities. The
NPP submodel also simulates plant nitrogen uptake and losses due to herbivory and
tissue mortality.

Plant population submodels simulate plant establishment, size, and mortality.
Herbaceous plant establishment is represented by modeling seed biomass dynamics;
shrub and tree establishment are modeled in simpler demographic terms. Establishment
1s affected by herbaceous standing crop, water, and temperature. The herb and shrub
population models simulate a single variable-size class whereas the tree model simulates
six fixed-size classes of plants. Mortality occurs at a nominal rate accentuated by water
and temperature stress. The population submodels are explicitly linked to the NPP
model.

The litter decomposition and nitrogen cycling submodel simulates the breakdown

of dead plant materials and animal feces and urine as well as calculating the formation
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and turnover of soil organic matter (SOM). The decomposition submodel is formulated
after the CENTURY model (Parton et al. 1987, Parton et al. 1993). The model partitions
vegetation litter into a structural pool (i.e., vegetation that does not easily decompose)
and a metabolic pool (i.e., vegetation that breaks down more easily). The ratio of lignin
to nitrogen for a given plant (determined by plant phenology) determines if it is structural
or metabolic. Decomposition and mineralization are affected, in part, by water
availability within the first two soil layers, the soil temperature, and the lignin content of
plant parts. SAVANNA also models the fate of nitrogen in high detail, partitioning
nitrogen that is volatilized, fixed by plants, lost in drainage, and volatilized as part of
animal wastes.

The ungulate herbivory submodel simulates ungulate foraging. Forage intake is
determined by diet selection, forage abundance, forage quality, and snow cover and will
increase as forage biomass increases until intake reaches a maximal value (depicted
internally as a linear function) assuming snow depth does not inhibit intake. The effect of
snow depth is only applied to that fraction of the plant that is covered by snow. Diet
selection is based on preference indices and relative forage abundances and, therefore,
responds to temporal and spatial changes. Preference indices are currently calibrated so
that the diets of elk are similar to those reported by Stevens (1980), Baker and Hobbs
(1982), Hobbs et al. (1981), and Singer et al. (2002). Maximum intake rates are based
on Watkins et al. (1991).

The ungulate energy balance submodel simulates body weight of the mean

animal of each species, based on differences between energy intake and energy
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expenditure. Energy intake depends on forage biomass intake and forage digestibility.
Expenditures depend on body weight and travel patterns. The body weight of the mean
animal is used to derive an animal condition index, which affects ungulate population
dynamics. Metabolizable energy intake from forage consumption is in part the product of
total forage intake (kg) per animal per day, the mean digestibility of the forage, and the
gross energy content of digestible plant matter.

The ungulate spatial distribution submodel simulates how animals are
dynamically distributed among grid cells over the simulated landscape or region.
Animals are redistributed monthly in relationship to a calculated habitat suitability index
(HSI), which has been calculated for each cell and then normalized. Habitat suitability is
dynamically affected by changing forage distributions as well as topography, snow depth,
tree cover, a prescribed “force” that defines a population’s range at different times of the
year, and a random error term in the form of a uniform random variate (0.8 to 1.0) that
prevents animals from attaining an ideal free distribution.

The ungulate population dynamics submodel is a stage-structured model with five
age/sex classes: newborns, immature females, immature males, mature females, and
mature males. Recruitment rates and death rates are affected by animal condition indices
(i.e., as condition index increases, recruitment rates increase, and death rates decline),
which are affected by ecological conditions governing forage availability (e.g., forage
production, snow depth, intraspecific competition). Animals may be culled from their

respective populations in a prescribed or rule-based manner.
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Model Inputs and Calibration

Following model selection, efforts were made to calibrate the model for potential
use in the Jemez Mountains of north central New Mexico. Calibration was initiated with
the specific aim of modifying SAVANNA'’s existing ungulate submodels and integrating
an individual-based movement and distribution model to evaluate elk movement patterns
in response to vegetation succession following the Cerro Grande Fire. Therefore,
emphasis was placed on vegetative parameters and ungulate submodels were “turned oft”
using a flag in the simulation control (Simcon.prm) parameter file, which also designates
output files and temporal resolution of model runs. The long-term goal was to integrate
interdisciplinary experience and scientific information into a dynamic model that would
provide a systematic process for experimentation and monitoring to compare the
outcomes of alternative management actions in response to changing vegetation patterns
resulting from the Cerro Grande Fire.

Though initial attempts were made to calibrate the model across individual
agencies at a grain of 50 m, the final model for the eastern Jemez Mountains was
constructed using maps at 150 m resolution with a total study area extent of 1739.93 km®.
The choice grain size was driven by three main factors. First, the graphical user interface
(GUI) supplied with SAVANNA was designed to handle no more than 400 x 400 cells.
A cell resolution less than 150 m would exceed the capabilities of the GUI. Second,
larger cell sizes were needed to make the model computationally efficient. At 150 m

resolution without any animals on the landscape, the model took ~3 hours to run during
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the 1990 to 2002 time frame used to verify weather inputs. Longer runs with animals on
the landscape would be computationally inefficient. Finally, definition of cell resolution
and study area extent should ultimately be driven by the needs of the researcher, the
dynamics of the system being modeled, and the biology of the organism in question. A
grain size of 150 m preserved rare habitat patches and also appeared reasonable for
migrational processes in which elk must choose an adjacent location to move. The
choice of study area extent was limited by map inputs but encompassed the majority
(98%) of elk locations.

Weather. Monthly weather data are the model’s most important input and, for the
eastern Jemez region, are derived from a combination of LANL meteorological stations
and regional SNOTEL stations established by the Natural Resources Conservation
Service (NRCS) (Figure 3.4). Average monthly precipitation (mm), maximum
temperature (C), and minimum temperature (C) were calculated and input along with the
geographic coordinates for each station. Weather data from January 1990 through
December 2002 were included in the calibration.

Each month precipitation is regressed against elevation using data from all
weather stations in the study area. If the precipitation versus elevation regression
produces a coefficient of determination of r* > 0.2, the elevation-corrected weather
station data are spatially interpolated using inverse-distance weighting with the six
nearest stations. Thus, for the i™ known precipitation datum and the j™ unknown grid
cell,

Ppteg; = Pptgi) + B[E(j) — E)]
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where Ppt; is the known precipitation amount, E is elevation, B is the slope of the
precipitation/elevation regression equation, and Ppte;; is the precipitation estimate.
Estimates (Ppte;;) are then weighted by the inverse square of the distance (I/Dijz) of the
six closest stations to derive an estimate for the j™ unknown point. When the coefficient
of determination is less than 0.2, only the inverse distance weight is used irrespective of
elevation.

Stochasticity (i.e., randomness) in model outputs is generated through random
sampling of years from the weather files. During each annual run of the model, a random
year of data is drawn from the weather files and an additional amount of normally-
distributed random variation is added to the data. The sampling and added variability are
included in such a way as to affect all weather stations together, thus preserving the
spatial pattern in the original data (Coughenour 2002).

Station descriptions are located in Table 3.2. The main base station was identified
as TA-6, which serves as the official meteorological station for Los Alamos County and
LANL (Baars et al. 1998). Missing weather data are reconstructed using regression
equations between data from the main base station (i.e., TA-6, which is considered to be
complete and continuous) and other weather stations in an effort to capture primary
temporal and spatial patterns in the region. The occurrence of missing data was rare and,
therefore, minimally impacted by such calculations.

Atmospheric water vapor content is calculated from relative humidity and
temperature. Because temperature varies closely with elevation, lapse rates (change in

temperature versus elevation) are calculated based on the main base station and then
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adjusted for slope and aspect. Solar radiation is also considered. Coughenour (2002:41)
states that solar radiation “is calculated from monthly cloud cover, latitude, and day of
year, correcting for slope and aspect using the methods described by Nikolov and Zeller
(1992).” However, the complex terrain found in the Jemez Mountains may pose
significant challenges in the accurate estimation of radiation values using such
calculations which, in turn, may affect other portions of the model (e.g., snow cover and
retention). Potential evapotranspiration rates are calculated using either the Priestly-
Taylor (1972) or Penman-Monteith (Monteith 1965) equations as specified by the user.
Soils. A digital compilation of several soil surveys from a variety of sources was
used. These data are representative of the most current geographic soil information
available at the present time for the Jemez Mountain region. Original soil survey sources
include: the Santa Fe National Forest Terrestrial Ecological Units layer (Miller et al.
1993), which depicts the boundaries of the Terrestrial Ecological Units on the Santa Fe
National Forest and is part of the Southwestern Region Core Data Project; the Natural
Resource Conservation Service's Soil Survey Geographic (SSURGO) database for Rio
Arriba (NM 650) and Parts of Rio Arriba and Sandoval Counties (NM 656); and a newly-
digitized map (NRCS Soil Survey Geographic Database NM 686) representing the area
of San Ildefonso Indian Reservation. Because it conformed better to topographic and
vegetative patterns (to which elk are more likely to respond), the USFS Terrestrial
Ecological Units layer was considered the primary input layer and only supplemented
with additional soil data where needed. The data are accurate to a scale of 1:20,000 for

areas within San Ildefonso Reservation and 1:24,000 in all other regions.
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Digital soil survey quadrangles specific to the eastern Jemez Mountains (NM650
and NM656) were downloaded from the NRCS Soil Survey Geographic (SSURGO)
database website and merged to create a soil coverage of all available digital NRCS soil
data for the Pajarito Plateau. Additional hard copy maps from 1973 containing NRCS
soil survey spatial information for the area of San Ildefonso Indian Reservation
(SSURGO NM686) were scanned into electronic TIF format using a large flat-bed
scanner. Maps were individually georeferenced in ArcGIS. State Plane NAD27
coordinates were taken from each corner of each map of the hard copy maps. The
georeferencing tool yielded RMS errors ranging from 0.847 to 14.37. Each soil map was
screen digitized in polygon format. Soil code attributes were assigned as each polygon
was digitized. Individual soil maps were then merged into one large coverage and island
and sliver polygons were removed using a fuzzy tolerance of 5 feet. Quality assessment
on the final NRCS coverage was done by LANL personnel.

Digital versions of USFS Terrestrial Ecological Units and NRCS Soil Surveys
were then manually aligned using ArcView 3.2a and printed out in sections using a
plotter. Each section depicted a portion of the border along which the NRCS and USFS
soil coverages adjoined. These hard copy maps were reviewed with the assistance of the
Supervisory Soil Scientist for the Albuquerque Regional Office of the U.S. Forest
Service. Soil polygons were compared across boundaries and the maps were annotated
so as to align polygons of similar soil type. Polygons that spanned sources were assigned
a map unit symbol (musym) identifier representative of the soil type(s) being joined. In

most cases, U.S. Forest Service Terrestrial Ecological Units took priority when a clear
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decision could not be made as to which soil type was more representative of the region in
question unless the representative NRCS polygon contained a larger geographic area.

Map unit symbols (musym) for both the USFS and NRCS soil coverages are
numerical identifiers unique to a given soil type. When duplicate numbers existed
between the two sources of soil information, it was necessary to reclassify polygons from
one source so that all soil types would have a unique numerical identifier when the NRCS
and USFS soil coverages were merged. Closer inspection revealed 5 duplicate numbers
between the NRCS and USFS coverages. In these cases, the NRCS numbers were given
a new number and a comment was made in the attribute definitions of the metadata that
states what the original NRCS number used to be. This was critical in order to preserve
the original source information and naming protocols used by NRCS. On occasion, some
polygons along the boundaries of the two coverages were removed whereas others were
added in order to insure the two sources would eventually align in a seamless coverage.
Layers were edge matched using the snapping option in ArcMap, snapping with vertex,
end, and edge. Once edge matching was complete polygon continuity between the layers
was established. Common attributes were defined for each layer and coverages were
merged together. The merge was done using the geoprocessing wizard in ArcMap 8.3.
Boundary lines were removed and the final coverage was assessed to make sure all
polygons had a unique identification number.

A lookup table specifying soil properties for each soil type on the soils map was
created. Each record on the file includes a list of parameters for a single soil type linked

by a type index number referenced by various SAVANNA submodels. Parameters
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include depth of bottom layer (cm), volumetric field capacity at -1/3 bar (%), volumetric
wilting point at -15 bar (%), volumetric pore space (%), minimum run-off curve number
(%), maximum run-off curve number (%), and a bare soil evaporation parameter.
Porosity was calculated as 1 - (bulk density/2.65 g/cc) where 2.65 g/cc is the accepted
value for particle density of an unknown soil type.

Sources for data input included NRCS physical properties tables (available
through the NRCS SSURGO web site), USFS personnel, a Soil Survey of Los Alamos
County (Nyhan et al. 1978), and “Surface Water Management” documentation from Los
Alamos National Laboratory (Lane 1984). This lookup table was then joined to the
shapefile attribute table using the ‘musym’ in order to finalize the ArcView map for
creation of appropriate metadata. A final map (Figure 3.5) and associated metadata in
Federal Geographic Data Committee (1998) standard format are available through the
Ecology Group at LANL (ENV-ECO).

Vegetation. Vegetation processes in SAVANNA are initialized through the
application of a vegetation map. Following the May 2000 Cerro Grande Fire the Ecology
Group at LANL, in conjunction with the Earth Data Analysis Center (EDAC) at the
University of New Mexico, developed a land cover map using Landsat Enhanced
Thematic Mapper Plus (EMT+) satellite imagery acquired on June 4, 2001. The extent of
the area covered was approximately 1,821 km” and included Los Alamos County, Los
Alamos National Laboratory, Bandelier National Monument, the Valles Caldera National
Preserve, and parts of Santa Fe National Forest. Five hundred eighty-three training sites

were acquired from field sampling, screen digitizing, and previous projects (Table 3.3)
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and 242 sites were used to independently assess the accuracy of the resulting maps
(McKown et al. 2003). The most accurate version — a quarter-hectare smoothed map at
the association level with 30 classes (Figure 3.6) — was selected for application. The
error matrix for the independent accuracy assessment is presented in Table 3.4. Area
calculations by land cover type are presented in Table 3.5.

Within each grid cell, vegetation is divided into herbaceous, shrub, and tree
facets, which are referenced through associated parameter files (*fac.dat files). The
*fac.dat files, in turn, are used to establish the relative composition of grasses, forbs,
shrubs, and trees associated with each land cover type. Plants are generically defined by
life-form (e.g., deciduous shrubs, coniferous trees) with the exception of a few select, but
critical, species such as aspen (Populus tremuloides). Aboveground biomass (g/m”) and
percent cover for each plant type are defined within the *fac.dat files and then indexed
with associated population parameter files that provide the general growth characteristics
of each plant type. For purposes of this dissertation, modifications were made to the
*fac.dat files in order to be representative of the newly incorporated land cover map.
Because existing plant types in the latest version of SAVANNA were used (i.e., those
types used to define vegetation in Yellowstone National Park), minimal changes were
made to associated population parameter files.

Calibration was accomplished by incorporating field data collected from the
“Forest Fuels Inventory Project” [Balice et al. (unpubl. data) 2001, 2002, and 2003] at
Los Alamos National Laboratory and the “Valles Caldera National Preserve Short Term

Rangeland Monitoring Project” at the United States Department of Agriculture,
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Agricultural Research Service (USDA-ARS), Jornada Experimental Range' [2002 and
2003 (unpubl. data)]. Only post-fire data were used for calibration in order to more
accurately reflect the post-fire land cover map. Plots on the VCNP were run at 100-m
resolution whereas LANL plots were calibrated at 50-m resolution due to constraints
inherent in the spatial display of SAVANNA components using a supplied graphical user
interface (SMS). Exclosure plot data from Bandelier National Monument (Rupp 2000,
Rupp et al. 2001 a,b) were used empirically to corroborate findings when needed. A total
of 159 field plots representative of 16 land cover types were analyzed (Figures 3.7 and
3.8).

Mean aboveground biomass for grasses/forbs (g/m”), shrub diameter (cm), and
tree height (m) were calculated for each land cover type and results were used to modify
*fac.dat files. Field plots on the VCNP were scaled up from 0.25 m* by multiplying by
four prior to averaging results. Because SAVANNA attempts to distinguish between
understory vegetation (i.e., vegetation in the rooting zone of trees) and vegetation in the
interstitial spaces between canopies for purposes of modeling light/water interception,
best estimates were made based on personal experience. “Usually the model predicts a
very low herb biomass [in the rooting zone], even if you set the initial value to what you
think it is” (Coughenour 2003, pers. comm.), so exact values were not critical.
Additional missing data for rare habitat types were estimated based on land cover

descriptions found in the LANL Land Cover Report (McKown et al. 2003).

! Data sets were provided by the USDA Agricultural Research Service, Jornada Experimental Range.
Funding for these data sets was provided by USDA.
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Digital Elevation Model. Sixteen 7.5-minute digital elevation model (DEM)

quadrangles in Spatial Data Transfer Standard (SDTS) format were downloaded from the
United States Geological Survey (USGS) Earth Resources Observation Systems (EROS)

Data Center website (http://edc.usgs.gov/geodata/). All 1:24,000 quadrangles are

projected in Universal Transverse Mercator (UTM) coordinates, North American Datum
(NAD 1927) at a resolution of 10 m. Any errors inherent in the acquired data were
assumed minimal and not assessed in detail.

Once all quadrangles were downloaded, data were converted using the
SDTS2ARC conversion utility available through the above website. Resulting ASCII
files were imported into ERDAS Imagine (version 8.6) and then processed into a
composite image using the “Mosaic” tool. Quads were then converted into meters using
the “Modeler” tool as necessary and re-constructed using the “Mosaic” tool. Header
information was validated and corrected as needed and slight adjustments in positioning
were made to individual quadrangles to account for innate error in the data sets and to
ensure proper alignment. The image was once again run through the Mosaic tool to
generate a final comprehensive image (Figure 3.9).

The final DEM was then resampled to various resolutions (50 m, 100 m, 150 m,
250 m, and 500 m) using cubic convolution resampling methods available through the
Spatial Analyst extension in ArcView. Because interpolation methods compute an
average (Huber 2004, pers. comm.), slope and aspect maps were generated from the
resampled DEMs instead of resampling the slope and aspect maps generated from the

original 10 m DEM. Resultant slope and aspect maps, therefore, were also at 50 m,
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100 m, 150 m, 250 m, and 500 m resolutions. Final maps used in model runs for the

purposes of this dissertation were at a resolution of 150 m.

Model Validation

The plant growth (i.e., herbaceous production) model was validated by comparing
model outputs to independent test sets selected from field plots sampled in 2004 by
LANL and the USDA-ARS Jornada Experimental Range. Because data were limited and
emphasis was placed on model calibration instead of verification in an attempt to increase
the general applicability of the model across a range of topographic and weather
conditions, only a single year of data was used to verify the model. In addition, safety
and security concerns at LANL resulted in a “stop work™ order that lasted through much
of the 2004 summer season, limiting the field data collected within areas burned by the
Cerro Grande Fire. Therefore, though independent field data used to validate the model
reflect the grasslands of the VCNP in greater abundance than other parts of the eastern
Jemez region, model corroboration should indicate proper functioning of the overall
model.

Simulations were run on single cells at a 150 m resolution for all plots as this was
the grain size chosen for final model runs which would eventually incorporate elk
dynamics. Random weather was used during the evaluation process and was considered
an additional test of the model’s reliability. Model runs require an “initialization period”
before results stabilize. Therefore, the model was run beginning in January 2003, but

outputs were recorded only for the year/month corresponding to selected test sets.
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Ungulates were not included in the simulated ecosystem and any confounding effects
from animal foraging were considered equally inherent in both the calibrated and test
data systems. Comparisons were made for major land cover types across different slope,
aspect, and elevational ranges, but did not necessarily represent the entire study area or
all land cover types. Simulated and actual means for aboveground biomass (g/m2) were
compared using PROC GLM (SAS ver. 9.0). Levene’s test (Levene 1960) tested for
homogeneity of variances and means were adjusted using Welch’s (Welch 1951)
ANOVA when necessary. Results indicated no differences in mean aboveground
biomass between simulated results and actual field data (F;, 9s= 0.59, P = 0.4461) for any
land cover type (Table 3.6). In the Valles Caldera grasslands, simulated mean biomass
(157.48 g/m”) was very similar (F1,4182=0, P =0.9807) to actual biomass (157.18 g/m?).
Because of insufficient field data and questionable methods for making accurate
comparisons, shrub and tree cover will need to be validated at a future point in time.
Validation of weather data presented a challenge. Because weather is the model’s
most important input, all available weather data at the time was used for calibration
leaving no independent test set for model verification. Therefore, a control run was used
to analyze mean precipitation (mm) values over the 13 years of actual weather data to
ensure model raw data were being processed correctly. PROC GLM (SAS ver. 9.0) was
used to compare mean monthly and yearly precipitation values for 3 weather stations
falling within the extent of the study area (Figure 3.10). Results indicate model inputs

were processed correctly on both a monthly and yearly basis (Table 3.7) with no
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significant differences between actual and simulated mean precipitation values detected.
Due to drought conditions over the past several years, snow data were not available in
sufficient quantity to verify model outputs. However, spatial patterns of precipitation
were realistic; precipitation and snow depth values increased with elevation (Figure 3.11)

indicating the spatial interpolation algorithm was working properly.

Future Research Needs

During the calibration and validation process, several concerns arose over
potential model application and evaluation. Of critical concern was the initialization of
post-fire successional dynamics in areas burned by the Cerro Grande Fire. SAVANNA is
capable of reading in fire severity maps during the course of a model run. However, this
requires that the initial land cover map reflect pre-fire conditions. Though LANL has
access to a post-fire severity map that would work in SAVANNA’s modeling
environment, the most recent and accurate version of the land cover map (McKown et al.
2003) was constructed using imagery acquired after the fire. Discussions with the model
developer concluded we should start the run right after the fire, and initialize vegetation
on lookup tables as it was after the fire (Coughenour 2004, pers. comm.), but additional
work may be needed to calibrate the model so that it properly mimics post-fire
succession. Ongoing field studies will continue to provide data in the burn area to update
the model.

A second concern revolves around the production of snow in the study area.

Though patterns of snow deposition are reasonable, actual amounts appear to be lower
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than observed. Though SAVANNA has been used in places like Rocky Mountain
National Park and Yellowstone, the topography of the eastern Jemez Mountains is more
complex than other places in which the model has been previously applied. This may
pose significant challenges in the accurate estimation of solar radiation which, in turn,
may affect snow deposition and retention. Additional parameters exist for wind-induced
snow redistribution and stochastic snow crusting, which may also need to be further
manipulated to produce realistic patterns. Drought conditions have prevented reliable
testing of the snow submodel, but increased precipitation and snowfall this past winter
should provide additional data with which to better calibrate this portion of the model.
Finally, because of the computational resources required to run a model of this
magnitude, no work has yet been done to address issues of scale. Because disturbance
events such as the Cerro Grande Fire both create and respond to landscape pattern, the
spatial distribution of resources in heterogeneous landscapes can have important effects
on the growth, reproduction, and movement of individuals. Though SAVANNA was
calibrated at 150 m with the intent of looking at elk movement and distribution following
the Cerro Grande Fire, the process of succession and how plants respond to the scale of
choice within the modeling context must also be considered. Conclusions about how
species respond to pattern at one scale are difficult to translate to species at another scale
(Turner et al. 2001), but an initial attempt was made to strike a balance between elk
responses to the environment and plant responses to post-fire succession. Considerable
work remains to test these assumptions and draw conclusions about appropriate scales at

which SAVANNA should be calibrated to effectively address both concerns.

105



Discussion

Research opportunities following extraordinary, large-scale fire events must be
exploited. Because of their infrequent nature, few studies exist detailing the effects of
large fires on elk movements and distribution. At present, no studies have related the
effects of post-fire landscape succession on ungulate movements and distribution using
dynamic modeling techniques. Though studies have evaluated the effects of fire scale
and pattern on elk (Turner et al. 1994), the models used did not address ungulate
reproduction, ungulate/succession dynamics, or the effects of summer precipitation on
pre-winter forage availability — all of which are important in projecting the long-term
dynamics of an ecosystem. Consequently, models linking the responses of herbivores to
environmental heterogeneity and successional dynamics following large-scale fires are
needed (Turner et al. 1994).

A primary consideration driving the conceptualization and implementation of
scientific studies should be their potential value to resource managers for purposes of
mitigation. As management agencies move toward the concept of adaptive management,
the demand for dynamic modeling is increasing. Active adaptive management has been
defined as the “systematic process of modeling, experimentation, and monitoring to
compare the outcomes of alternative management actions” (Farr 2000: 2). Adaptive
management aims to integrate interdisciplinary experience and scientific information into
dynamic models that attempt to make predictions about the impact of alternative policies

(Holling 1978, Walters 1986, Van Winkle et al. 1997). The development, calibration,
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and application of the SAVANNA model in the Jemez Mountains of northern New
Mexico will provide such a dynamic model to be used for adaptive management
applications following the Cerro Grande Fire that burned the region in May 2000.

A participating agreement was signed by the Santa Fe National Forest (USFS),
U.S. Department of Energy/University of California (LANL), and the National Park
Service (BNM) to collaborate in data collection efforts to address concerns regarding
potential impacts of the Cerro Grande Fire on the regional elk herd. This collaborative
agreement benefits agencies by providing data for mitigation purposes on the free-
ranging elk herd that moves on and across agency boundaries. Data collected as part of
that agreement were incorporated into the SAVANNA Ecosystem Model as part of this
dissertation for further application in the Jemez Mountains.

Model predictions of herbaceous biomass, the primary forage items for elk, were
consistent with available data when present and should be within levels acceptable for
management applications in the Jemez Mountains (Table 3.6). Control runs for weather
data from 1990 through 2002 indicated proper functioning of the model in terms of
precipitation output (Tables 3.7). Additional calibration for snow components is
required, but snow estimates are likely working within the bounds of current model
parameters and may be reasonable across the study area in its entirety given spatial
interpolations appeared to be functioning reasonably (Figure 3.11).

Shrub and tree components require additional testing to assure model outputs are
within reasonable levels given the scarcity of data for model validation. Woody plants

can be initialized through the application of lookup tables or woody cover/density and
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height maps. This option is controlled by the flags inside the parameter file that also
controls maps. Currently the model is calibrated using just a land cover map, which
initializes woody plants by using lookup tables that give abundance and size of trees and
shrubs by life form. However, another option exists in newer versions of SAVANNA in
which a second vegetation map is used to specify vegetation types by the successional
stage of the tree layer. This is useful where the vegetation has been affected by
disturbances which cause the tree layer to differ from the climax vegetation type on the
primary vegetation map. Application of two separate maps may help to address
disparities caused by the Cerro Grande Fire.

The ability to detect spatial pattern depends on the scale at which we make
measurements, which, in turn, will affect an organism’s ability to detect and respond to
environmental heterogeneity (Wiens 1989). Because species differ in the scales at which
they use resources or perceive the environment, studies of interactions among species
may be especially sensitive to scale (Wiens 1989). The scale at which the SAVANNA
Ecosystem Model is ultimately applied to evaluate post-fire successional processes and
its affect on elk movement and distribution must balance two equally important concepts:
1) The animal’s ability to perceive and use the environment at a scale applicable to the
process in question (i.e., movement and distribution), and 2) the appropriate scale at
which plants respond to post-fire successional processes. Understanding the responses of
organisms to spatial patterns at multiple scales is in its infancy but remains a high priority

for ecology (Levin 1992, Turner et al. 2001).
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Table 3.1. Criteria driving the selection of a post-fire successional model for application
in the Jemez Mountains and relative performance of potential models selected. See text

for discussion of model selection based on these criteria.

Criteria FIRE-BGC LANDSUM FIRESUM FVS LANDIS SAVANNA

/CRBSUM
Ravy code Yes Yes Yes No No Yes
available?
Permission to Yes Yes Unknown No No Yes
change code?
Complexity — pop High Med  High High  Med
(low, med, high) g & & g
Temporal
resolution Yearly Yearly Yearly Decadal Decadal = Weekly
(1° time step)

Spatial 2 Tree User- User-
resolution Tree Stand  Tree Stand 400 m Stand  defined defined
Integrated
With GIS? Yes Yes No Yes Yes Yes
Understory
vegetation suff}l\i(i);ntl suff”f\(l:?;ntl No No No Yes
modeled? Y y

Snow model . .
Yes Indirect Indirect No No Yes
present?
Model well- Yes Yes Yes Yes Yes Yes
documented?
Data already
collected through No No Yes Yes Unknown Yes

field studies?
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Table 3.2. Descriptions of weather stations used in calibrating the SAVANNA
Ecosystem Model for the eastern Jemez Mountains of northcentral New Mexico.

Elevation is in meters and coordinates are in Universal Transverse Mercator (UTM),
North American Datum (NAD) 1927, Zone 13 N.

STATION ELEVATION  NORTHING EASTING AGENCY Y
QUEMAZON 2896 377078 4086683 NRCS
BATEMAN 2835 381811 4042234 NRCS
CHAMITA 2561 353084 4090394 NRCS
HOPEWELL 3049 386581 4064360 NRSC
SENORITA DIVIDE 2622 335053 3985296 NRCS
LOS ALAMOS 2683 376278 3972692 LANL
TA-49 2148 382660 3963819 LANL
TA-6 % 2263 380907 3969178 LANL

Y'NRCS = Natural Resources Conservation Service; LANL = Los Alamos National Laboratory
¥ TA-6 serves as the main weather station for Los Alamos National Laboratory and Los Alamos County.
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Table 3.3. Accuracy totals for the quarter-hectare, smoothed version of the LANL land
cover map (association level). Overall classification accuracy was 88.68% (adapted from
McKown et al. 2003). Plant species acronyms are given in Appendix B.

Training Classified Number Producer’s User’s

Land Cover Sites Totals Correct Accuracy Accuracy
Valles Caldera Grassland 36 37 33 91.67%  89.19%
Montane Grassland 25 23 23 92.00%  100.00%
ABCO-PSME Woodland 11 9 9 81.82%  100.00%
ABCO-PSME Forest 30 31 25 83.33%  80.65%
Evergreen-POTR Forest 15 12 10 66.67%  83.33%
Sparse-Bare Soil 12 12 10 83.33%  83.33%
Open Water 22 17 17 77.27%  100.00%
Riparian-Wetland 23 17 17 73.91%  100.00%
Sparse-Bare Rock 36 31 31 86.11%  100.00%
PIED-JUMO/BOGR Woodland 70 78 69 98.57%  88.46%
PIPO/BOGR-SCSC Woodland 14 18 14 100.00%  77.78%
QUGA Shrubland 19 19 17 89.47%  89.47%
PIED-JUMO/Sparse-Soil 13 11 11 8462%  100.00%
Woodland
Submontane Grassland 38 35 34 89.47%  97.14%
PIED-JUMO/Sparse-Rock 5 7 4 80.00%  57.14%
Woodland
Other Shrubland 46 43 43 93.48%  100.00%
PIED-JUMO/ARTR Woodland 17 17 16 94.12%  94.12%
PIED-JUMO/BOER 0 0
Wooded Grassland 12 12 10 83.33%  83.33%
BRCA-AGTR Grassland 6 6 4 66.67%  66.67%
PIPO Forest 29 32 28 96.55%  87.50%
PIPO/QUGA Woodland 22 19 16 72.73%  84.21%
ABLA-PIEN Forest 12 12 10 83.33%  83.33%
POTR Shrubland 4 4 4 100.00% 100.00%
POTR Forest 11 11 10 9091%  90.91%
PIPO/Other Grass Woodland 8 10 8 100.00%  80.00%
JUMO Wooded Grassland 29 28 27 93.10%  96.43%
RONE Shrubland 3 8 2 66.67%  25.00%
PIED Forest 15 15 15 100.00% 100.00%
Urban, Vegetated 0 3 0 --- ---
Urban, Paved 0 1 0 --- ---
Totals 583 578 517
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LTI

Reference Producer’s
1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 23 24 25 26 27 28 29 30 31 32 Totals Accuracy

1 3 2 5 60%
2 13 1 5 60%
3 1 1 0%

4 17| 1 2 3 23 74%
5 3|5 1] 2 11 45%
6 9 2 11 82%
7 5 5 100%
9 1 4 5 80%
10 7 7 100%
11 m| 1] 1|1 1] 3 1 1 20 55%
12 131 1 3 1 10 10%
13 3 1 5 2 1 1 13 38%
14 2 1 1 2 6 17%
15 2 13 2 1 18 72%
16 3|2 5 0%

17 2 1 7 1 2 13 54%
18 3 1 4 25%
19 1 2 3 0%

20 5 4 2 11 36%
21 4 10| 1 15 67%
23 2 3] 2 1 1 9 22%
24 3 1 4 25%
25 11 2 50%
26 1 3 6 | 1 11 55%
27 1|1 2 0%

28 1 1 0%

29 1 1 0%

30 1 2 2 5 40%
31 3 100%
32 1|7 8 38%

Classified | 1 4 | o | 2810|145 |5 |11|28| 4| o290 1alal1|e6lials|e|a|7]3]|5]0]s5]|09]7 242
Totals
User’s | X § R § NI R B R R R R A R R A R I R A R Y § Overall Accuracy:
Accuracy | & [T [ S| R | [S|R| || [& ||| {|R|Q&|S|S|2|&|=|&|R|2|=]|i]|F|8]|S 55.0%

Table 3.4. Error matrix for the quarter-hectare, smoothed version of the LANL land cover map at the association level. Overall accuracy was 55%
based on an independent sample of 242 sites.



Table 3.5. Area calculations for the quarter-hectare, smoothed version of the LANL land
cover map (adapted from McKown et al. 2003). Class numbers 8 and 22 were null and,
therefore, are not represented in this table. Land cover types are listed in descending
order based on total area. Rank is based on total area. Plant species acronyms are given
in Appendix B.

Class Land Cover Km’ % Rank
4  ABCO-PSME Forest 358.04 19.66 1
11  PIED-JUMO/BOGR Woodland 280.80 15.42 2
21 PIPO Forest 144.75 7.95 3
1 Valles Caldera Grassland 114.10 6.27 4
15 Submontane Grassland 84.86 4.66 5
23 PIPO/QUGA Woodland 84.72 4.65 6
28 JUMO Wooded Grassland 84.33 4.63 7
12 PIPO/BOGR-SCSC Woodland 76.07 4.18 8
17 Other Shrubland 70.92 3.89 9
24 ABLA-PIEN Forest 65.22 3.58 10
10 Sparse-Bare Rock 64.34 3.53 11
5 Evergreen-POTR Forest 58.13 3.19 12
13  QUGA Shrubland 45.63 2.51 13
6  Sparse-Bare Soil 44.67 2.45 14
27 PIPO/Other Grass Woodland 40.48 2.22 15
30 PIED Forest 37.85 2.08 16
3 ABCO-PSME Woodland 27.86 1.53 17
19 PIED-JUMO/BOER Wooded Grassland 23.43 1.29 18
20 BRCA-AGTR Grassland 20.30 1.11 19
2 Montane Grassland 18.17 1.00 20
26 POTR Forest 14.67 0.81 21
18 PIED-JUMO/ARTR Woodland 13.55 0.74 22
31 Urban, Vegetated 12.48 0.69 23
32 Urban, Paved 9.77 0.54 24
9 Riparian-Wetland 9.44 0.52 25
7  Open Water 4.46 0.24 26
25 POTR Shrubland 4.46 0.24 27
14 PIED-JUMO/Sparse-Soil Woodland 3.83 0.21 28
16 PIED-JUMO/Sparse-Rock Woodland 2.68 0.15 29

29 RONE Shrubland 1.13 0.06 30
Totals 1821.14 100.00
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Table 3.6. Mean aboveground biomass values (g/m”) comparing actual field plots to
simulated results for a variety of land cover types. Means with the same letter are not
statistically different within a given land cover type (a = 0.05).

Land Cover n Actual Simulated F-Value P-Value

157.18%  157.48°
Valles Caldera Grasslands 33 (£8.7292) (£8.7292) F14152=0.00 0.9807

1 52.65° 5.90° _
PIPO Forest 8 (£14.3522) (£14.3522) F 7=5.31 0.0547

92.62° 51.70° B
PIPO/Other Grass Woodland 2 (£30.6744) (£30.6744) F1,,=0.89 0.4451

ABCO-PSME Forest % 1 77.92 2.90
ABLA-PIEN Forest % 1 66.60 1.00
BRCA-AGTR Grassland % 1 9.18 86.30
POTR Forest % 1 88.92 24.90
RONE Shrubland % 1 73.44 81.80
Sparse-Bare Ground Z 1 0.00 11.20 — —

124.68°  113.38° ~
Overall 49 (£10.4487) (£10.4487) F1oe= 059 04461

Y Heterongenous variances required adjustment using Welch’s ANOVA.
Z Lack of replication prevented the use of statistical procedures to compare actual and simulated results.
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Table 3.7. Monthly and yearly mean precipitation (mm) and associated standard errors
by station for actual versus simulated results based on a control run for the years of 1990

through 2002.
Los Alamos TA-6 TA-49

Month Actual Simulated Actual Simulated Actual Simulated

(n=13) (n=13) (n=13)Y (n=13) (n=13) (n=13)

Janua 2643° 22.43% 26.58° 25.80° 24.83% 23.57°%
Ty (£ 6.4403) (£ 6.4403) (£6.9414) (£6.9414) (£ 6.5866) (£ 6.5866)

Februa 18.05% 13.7846% 18.03% 17.82°% 17.40% 16.15%
Ty (£4.9155) (£4.9155) (£4.9810) (+4.9810) (£5.2668) (£ 5.2668)

March 26.36% 20.20% 26.50% 26.02°% 23.16% 21.44%
(£4.0193) (£4.0193) (£4.1070) (£ 4.1070) (£ 3.4406) (£ 3.4406)

April 24.09% 21.17% 23.70% 23.42% 22.65% 21.75%
p (£5.6939) (£5.6939) (£5.7915) (£5.7915) (£5.3429) (£5.3429)

Ma 34.10°% 33.14% 33.59% 33.44% 31.84% 31.60%
Y (£7.9048) (£7.9048) (= 8.0352) (+8.0352) (£7.4615) (£7.4615)

June 38.53% 38.11° 37.26% 35.84% 31.58% 31.70%
(£5.9940) (£5.9940) (£ 6.4565) (+6.2032) (£6.5141) (£6.5141)

Tul 71.57% 71.00° 65.01% 65.08? 62.76% 62.81%
y (£9.0062) (£9.0062) (£ 7.5465) (x7.5465) (£9.3271) (£9.3271)

Aucust 87.02° 85.75% 87.02° 86.64° 79.75% 79.64%
ug (£12.3205) (£12.3205)  (£12.2321) (£12.2321) (£ 11.3307) (£ 11.3307)

September 48.11% 47.21° 48.11% 47.94% 45.57% 45.39%
p (£ 7.6899) (£7.6899) (x7.5830) (x7.5830) (£7.1095) (£7.1095)

October 38.87% 37.31% 38.87° 38.65*° 36.68*° 36.31°
(£11.1028) (x11.1028) (£11.0765) (£11.0765) (£10.8976) (£10.8976)

November 31.12° 26.38% 29.85% 29.50% 29.59% 28.21%
(£5.4967) (£5.4967) (£5.2432) (£5.2432) (£5.6454) (£5.6454)

December 21.37% 18.23% 21.37% 21.08% 20.38% 19.38%
(£5.2622) (£5.2622) (+£5.3822) (£ 5.3822) (£ 5.4442) (£ 5.4442)

Yearly 465.62° 434.71° 450.98* 451.22° 426.15° 417.93%
Mean (£27.5292) (£26.7112)  (£26.6538) (£26.3144) (£ 27.8470) (£ 27.5049)

Y-Mean values for the months of January and June at TA-6 are based on 12 observations.

* Actual and simulated average monthly rainfall within a station followed by the same lower case letter are

not significantly different.
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Figure 3.1. The Cerro Grande Fire burned 19,020 ha in early May 2000.
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Figure 3.2. SAVANNA'’s representation of vegetation within a cell. A rasterized map in
SAVANNA (a) represents spatial data in reality (b), which is then collapsed into three
“facets” including herbs, shrubs, and trees (c) (adapted from Boone 2000).

a) Raster map in Savanna b) Spatial data in reality c¢) Collapsed into facets

B - o=
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Figure 3.3. Submodels found in the SAVANNA Ecosystem Model. Submodels can
be run independently or in conjunction with one another (adapted from Boone 2000).
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Figure 3.4. Locations of weather stations used to calibrate the SAVANNA Ecosystem

Model in the Jemez Mountains of north central New Mexico.

124



W | “‘11;;::;‘\‘
“ “Hﬂ ;

S
At Hﬂw resl;w wuu
MM H\mm\ B\

[ Ancho Clay Loam [Eutric Glossoboralfs, cbl t F itland Complex
[ Ancho Clay Loam (saline) Eutric Glossoboralfs, grfsl %l gdo%m\l;‘elly%?r?dy Clay Loam
] Apache Stony Fine Sandy Loam Eutric Glossoboralfs, grl ock Etgmp-Cypher Complex
[ Alanos Very Cobbly Loams Eutric Glossoboralf, grsl ock Quicrop-Hackroy Comple
‘Alanos-Rock Outerop Complex Eutric Glossoboralfs, sl c ulcrop—Prleta omplex
[ * p Lomp [ Eutric Glossoboralfs, stsl Outcm Sedgra Assoclatlon
[ Andg)tm Udorthents, byvsl [JFruitland Sandy Loam (<3% slopes) ¥ ve COb Loam
[ Andic Dystrochrepts, cbsl [ Fruitland Sandy Loam (3-5% slopes) edillo Verira ravellsy e Sandy Loam
[ Andic Dystrochrepts, cbvsl Fruitland Sandy Loam (saline) = Fgfmmote-ruson association
[ Andic Dystrochrepts, grsl Flugle-Waumac Complex Ti majla Rock (mtcrop Complex
[ Andic Ustochrepts, byxsl Fluventic Ustochrepts, Im oca Very Fine Sandy Loam
[ Andic Ustochrepts, s1 Frijoles Very Fine Sandy Loam Totavi Loamy a d
B Aquic Haplobaroll,s Im Fruitland Sandy Loam ;}a qullr?r {’ar il Conﬂplex
. > Guaje Gravelly Sandy Loam TVhic CR lf
[ Aquic Haploborolls, stsl [ Gravel Pit ThS ¢ 8\,31[2 %
P yxscl
Badland, Basalt Rock Land Ty C)
= Bluewing Gravelly Sandy Loam ?:ﬁgo 13]01:%] ek Association N § ".:1 ztﬁ; : %:Ibvl
Cajete-Cypher Association Los Alamos Silver Sandy Loams Typic Eutroboralfs, fsl
Calaveras Loam Laventana Cobbly Loams Ty g utropora Flsl
Calaveras-Palon Very Gravelly Sand E?C gap%‘-'smllff: Stl"l ) c Eutroboralfs, s !
Carjo Loam ithic Huplustalfs, s| Typic Eutroboralfs, sts|
Chiminet-Rock Outcrop ng 1% IEJS?‘."J]Q&’% fss,tgis)ll T C Haplusta %’%’;l
Chrishall Gravelly Loam Mollic Eutroboralfs, cbvl Ty g aplustatis, vl
Cumlic Cryaquolls, m Molhe Eutroborals’ grvl his faplsiatis
gun:]uhc’é[{_aplzqémlls, llm %0 ic ¥!$ngepts, ’grf?l T3 g :: a srvl
‘ypher-Mirand Complex ollic Vitrandepts, grv. Typic Haplusta stxsl
Dystric Cryochrepts, bysl &eéj%ps_lgllejseagoi'n%?am Typic Ustr fluvent oS
Dystric Cryochrepts, scl gfjaspmuc% dtu'i)g complex '3’, g Ustac u'é'l',','"gbxssl
Dystric Cryochrepts, s1 mljestal_llgaeFlgg andy ].oam (<5% slopes) '§ 8 Ustoc] :}35: §{3‘151
|:| El Rancho Sandy Clay Loam (<1% slopes) EOJ Eg%rg]}%uogg Bsroll(en Land Complex Typic Ustorthents, “chyls
s c U cixls
[C]El Rancho Sandy Clay Loam (1-3% slopes) Pachic Cryobom s, byl :§ C Ustorthents; stxsi
El Rancho-Fruitland Comple Pac c Cr s, | chtroboralfs fs1
A achic Pa?’eborolls, bylm 3/[ ter
Entic Cryandepts, cbsl Balon de\r/y Fog bly, Sw Loam umac-Bamac Association
[ Entic Cryandepts, stsl enista el dyAssoclanon ¥g&s e%%nd 0%‘%5
[Espiritu-Bamac Association Egmavet]es o

-Espirim-wauquie association

Figure 3.5. Soils of the eastern Jemez Mountains created from several sources including
Santa Fe National Forest Terrestrial Ecosystem Survey, NRCS-SSURGO databases for Rio
Arriba (NM 650) and Parts of Rio Arriba and Sandoval Counties (NM 656), and a newly-
digitized map (NRCS Soil Survey Geographic Database NM 686) representing the area of
San Ildefonso Indian Reservation. The map is 1:24000 except for the area of San Ildefonso,
which is at a scale of 1:20000.
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Figure 3.6. Quarter-hectare, smoothed version of the LANL land cover map created from Landsat ETM+
imagery taken June 4, 2001. The extent of the area is roughly 1,821 km” and includes Los Alamos County,
Los Alamos National Laboratory, Bandelier National Monument, the Valles Caldera National Preserve, and
parts of Santa Fe National Forest. Land cover types are delineated at the association level (n = 30).
Acronyms are defined in Appendix B. Areas in black (i.e., Sparse-Bare Soil and BRCA-AGTR
Grasslands) were primarily burned by the Cerro Grande Fire.
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Figure 3.7. Location of field plots used to calibrate the SAVANNA Ecosystem Model
for the eastern Jemez Mountains. A total of 159 plots were assessed representative of 16
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Figure 3.8. Relative frequency of survey plots by land cover type used for calibration of the SAVANNA Ecosystem Model. A
total of 159 plots representative of 16 out of 30 different land cover types were analyzed and incorporated into the model.
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Figure 3.9. Hillshade created from DEM coverages downloaded from the United States Geological Survey (USGS) Earth Resources Observation
Systems (EROS) Data Center website (http://edc.usgs.gov/geodata/). All 1:24000 quadrangles are projected in UTM coordinates, North American
Datum (NAD 1927) at a resolution of 10-meters. Geographic boundaries for Los Alamos National Laboratory, the Valles Caldera national Preserve,
Bandelier National Monument, Santa Clara reservation, San Ildefonso Reservation, and Santa Fe National Forest are given for spatial reference.
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Figure 3.10. Locations of Los Alamos, TA-6, and TA-49 weather stations used in
control runs to ensure weather inputs were being read correctly by the model.
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Figure 3.11. Simulated snow output for November 1992 through April 1993. Patterns of snow deposition are spatially realistic, but
actual snow depth may be low indicating additional calibration for the snow submodel may be necessary. Snow depth is recorded in
centimeters.



CHAPTER IV
DEVELOPMENT OF AN INDIVIDUAL-BASED MODEL TO
EVALUATE ELK (Cervus elephus nelsoni) MOVEMENT
AND DISTRIBUTION PATTERNS FOLLOWING

THE CERRO GRANDE FIRE

Introduction

Quantitative models take complex ecological processes and attempt to explain
them in simple mathematical terms for the purpose of exploring data, formulating
predictions, and guiding research. Models serve as useful tools in cases where strongly
opposed views or ethical considerations prevent field studies, at spatial or temporal scales
that are logistically or economically impossible to study, or as low-cost preliminary
alternatives to expensive field studies. Despite the usefulness of models, however, they
are no panacea and remain an abstraction of real-world phenomena.

The modeling process is iterative and is comprised of a series of steps. These
include model conceptualization, development, calibration, application, and
validation/corroboration. An effective conceptual model forces the formulation of
hypotheses, specification of data needs/expectations, and assessment of key components
(i.e., variables and processes) of the system (Jackson et al. 2000) and usually takes the
form of a block diagram or flowchart. A well-structured conceptual model will help the
modeler define the type of model to be used (e.g., stochastic or deterministic, spatial or

non-spatial, simulation or analytical, etc.) and the level of ecological detail to include.
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Model development includes not only writing the equations and/or logical operations to
be performed and interpretation of field data and/or literature for parameter estimation,
but also selecting appropriate software and computer resources for model application.
Model calibration refers to the iterative adjustments to inputs and parameters to improve
model fit to measured output variables thus minimizing the error between predictions and
observations (Turner et al. 2001). Once reasonable calibration has been achieved, model
application under realistic circumstances provides an environment in which the model
can be objectively evaluated. Though sometimes termed ““validation,” many modelers
prefer to use the term “corroboration”; to validate means “to assess the truth of” and
given that models are never true it is a misnomer (Johnson 2001, Turner et al. 2001).
Objective testing requires an independent set of data not used in the original model
development or calibration and results may be compared graphically, statistically, or in
tabular form.

Many methods are available for modeling animal movements and distribution
(e.g., path analysis, fractal analysis, random walks, structural equation modeling).
However, there has been a growing interest in the use of individual-based models in
ecological applications. “The essence of the individual-based approach is the derivation
of the properties of ecological systems from the properties of individuals constituting
these systems” (Lomnicki 1992, p. 4). Individual-based models (IBMs) are capable of
modeling variation among individuals and interactions between individuals (Slothower et
al. 1996). This approach to modeling animal movements addresses two fundamental

principles, which are largely ignored in other modeling environments. First, it
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acknowledges that individuals are behaviorally and physiologically distinct because of
genetic and environmental influences and second, it acknowledges that interactions
among individuals are inherently localized (Slothower et al. 1996, Schank 2001). The
basic assumption in IBMs is that each action during movement (e.g., animal’s choice to
start, stop, or change direction) is a mixture of stochastic and deterministic elements
(Turchin 1998). An advantage to IBMs is that they do not require many of the
simplifying assumptions and mathematical derivations typically needed in more
aggregated models (Railsback et al. 1999) thus resulting in a more realistic representation
of real-world phenomena.

Individuals usually react according to a sequence of basic rules that, when applied
iteratively to many individuals over time, are capable of generating realistic and complex
behavior (Slothower et al. 1996, Schank 2001). Movement rules are a critical component
of spatially explicit IBMs and include both departure rules to determine when an animal
leaves a location and destination rules used to select a new location (Railsback et al.
1999). Departure and destination rules are normally based on some measure of fitness
(i.e., the ability of an organism to survive and reproduce viable offspring) and how fitness
varies among potential locations. These rules reflect the ability of an animal to select
habitat over the temporal and spatial scales used in the model.

Movement rules in IBMs can be expressed as algebraic statements, which
minimize the need for more complex mathematical operations associated with other
modeling approaches (Slothower et al. 1996). These statements can then be translated

into the command syntax of many raster GIS packages (Slothower et al. 1996). Raster
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images are useful because: (1) they are compatible with remotely sensed imagery and
geographic information data, (2) the structure is easy to work with conceptually and
mathematically, and (3) a variety of quantitative measures are available to analyze spatial
patterns in raster landscape data (Turner et al. 1994). However, in IBMs space is
continuous and location is explicit whereas in raster GIS, space is discrete and location is
implicit. Therefore, implementation of IBMs into raster GIS requires translating the
definition of individuals, neighborhoods, and rules into the implicit locations used in
raster GIS.

The use of modeling to investigate ungulate responses to large-scale fires has
been explored in few instances and no models have related the effects of post-fire
vegetation succession on ungulate movements and distribution. The purpose of this study
is to develop a spatially-explicit, stochastic, individual-based model that can be used to
identify potential movement pathways (~migration corridors) across the eastern Jemez
Mountains related to spatial and temporal aspects of the Cerro Grande Fire using the
SAVANNA Ecosystem model as the basis for post-fire successional dynamics. Methods
(model conceptualization, assumptions, development and calibration, integration,
corroboration/validation), results, discussion, and future research needs are discussed in
this chapter. Model application and experimentation, which may serve as a precursor for

management decisions and future alterations to the model, are presented in Chapter V.

135



Study Area

The Pajarito Plateau, located in the Jemez Mountains of north central New
Mexico, was formed by an ash flow of volcanic activity about 1.4 million years ago
(Wilcox and Breshears 1994). The region is classified as a wildland-urban interface and
is politically segmented, making natural resource management difficult. The most
conspicuous and influential government entity is Los Alamos National Laboratory
(11,200 ha). It is bordered by Bandelier National Monument (13,290 ha) to the
southwest, Santa Fe National Forest to the northwest, San Ildefonso Reservation to the
east, and Santa Clara Reservation to the far north. In addition, the federal government
recently purchased 37,200 ha of private land to the northwest that includes the Valles
Caldera National Preserve (VCNP) — an ancient caldera grassland that serves as the
primary summering grounds for the region’s growing elk population.

The plateau is topographically complex, ranging in elevation from 1,600 m near
the Rio Grande to 3,240 m near the summit of Cerro Grande. It is transected by a series
of smaller canyon systems and mesas making the terrain rough and virtually inaccessible
in some places. Vegetative patterns are highly dependent on elevation and topography
(Wilcox and Breshears 1994), but five main vegetative associations have been described;
pifion-juniper grassland (1,600 to 1,900 m), pifion-juniper woodland (1,900 to 2,100 m),
ponderosa pine grassland (2,100 to 2,300 m), mixed-conifer (2,300 to 2,900 m), and
subalpine grassland (2,900 to 3,200 m). Average annual precipitation is 330 to 460 mm

(Davenport et al. 1996, Wilcox et al. 1996) of which about 45% occurs in July, August,
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and September. Average daytime temperatures range from 32.2 °C in the summer (max.
=41.1°C) to -9.4 °C in the winter (min. = -30.6 °C).

In the last 30 years the Jemez Mountain region has experienced 4 major fires — the
La Mesa fire in 1977, the Dome fire in 1996, the Oso fire in 1998, and the Cerro Grande
Fire in 2000 (Figure 4.1). Of these, the most prominent fires were the La Mesa and the
Cerro Grande burning 6,180 and 19,020 ha, respectively. These fires were centered in
areas of dense, monotypic ponderosa pine forests which, in the case of the earlier fires,
were converted into a more productive and diverse mosaic of grassland, shrubland, and
forest communities. It is believed such conditions may have created prime wintering

range, which contributed to population increases in the regional elk herd (Allen 1996).

Methods

Model Conceptualization

The development of an effective conceptual model is an iterative process and
begins to take shape when specific research objectives are formulated (Jackson et al.
2000). For purposes of this study, efforts were made to balance ecological detail
regarding variables and processes while still providing enough clarity to formulate
questions, determine data needs, and assess key components of the system. In essence,
the goal of conceptual model development was to provide a “state-and-transition” block
diagram that could be critically analyzed by area experts in an effort to clarify potential
biases and assumptions that may arise in the course of model development. Questions to

be answered through development of the conceptual model included:
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* What are the important variables and parameters that affect elk movement and
distribution?

» What are the driving variables that influence model behavior, but are external to the
model?

= What outputs need to be generated to answer research objectives?

= What is the appropriate level of spatial and temporal resolution of the model?

= What are the state variables (initial conditions) going to be? State variables preserve
static state information in terms of variable values that are globally accessible.

= What type of model (e.g., stochastic/deterministic, dynamic/static,
simulation/analytical, spatial/non-spatial) is appropriate for addressing research
objectives?

* What computer hardware/software will be needed to accommodate the model?

Though basic research objectives aided the development of the conceptual model,

additional questions regarding factors that influence elk movement and distribution had

to be evaluated. The primary objective of the research was to analyze potential

movement pathways across the Jemez typically used in “migration” and assess whether

these pathways may change in response to spatial and temporal aspects of the Cerro

Grande Fire. By definition, migration indicates a periodical shift from one seasonal

home range to another, which can be assessed through an analysis of site fidelity within

each range (Hooge 2003, pers. comm.). The elk population in the Jemez Mountains,

however, is more properly referred to as “quasi-migratory” in that movements are not

periodic and seasonal home ranges are difficult to delineate, but animals move in
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response to the best resources (food, water, shelter) available at the time. Nevertheless,
it was assumed the factors that affect migratory patterns in other populations likely affect
quasi-migratory behaviors as well. These may include preferred ranges, weather, snow
depth, forage availability, sex and age, habitual behavior, hunting pressure, and barriers
to migration (e.g., roads, buildings, fences, and other impassable barriers) (Adams 1982).
Similarly, factors that influence habitat selection by elk (Table 4.1) irrespective of
migration must also be considered given the quasi-migratory behavior of this population.

By definition, the process of modeling involves abstraction and simplification
leading to a loss of information (Shenk and Franklin 2001) and leaving researchers to
struggle with the question of how complex to make a model to effectively capture the
dynamics of a given system. The natural tendency of many researchers is to include
every possible variable that might explain more variation seen in the observed system.
However, the result of this approach often is a model so complex that it has little use.
Modeling is as much art as science — there is always a tradeoff between the amount of
mechanistic detail necessary to explain a biological phenomenon and the model’s
tractability and transparency, which makes it more useful in the long term (Shenk and
Franklin 2001). Ideally, the goal of model development should be to identify the most
parsimonious model among a variety of plausible models that range from the most simple
to the most complex (cf. Millspaugh and Marzluff 2001).

Initial selection of model components was kept simple and only included those
variables considered necessary to the system under investigation. Following a number of

iterations, a block diagram was constructed in which state variables, processes, driving
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variables, and dependent variables were depicted (Figure 4.2). This initial conceptual
model guided expert discussion, data needs and assessment, and further introspection that
led to the conclusion that numerous ecological models already existed to address various
components depicted in the conceptual model. Of particular interest were models that
could simulate the post-fire successional processes driving elk movement and
distribution.

Extensive literature review led to the selection of the SAVANNA Ecosystem
Model (Chapter III), which contained ecological components at spatial and temporal
resolutions relevant to elk movement and distribution dynamics with added flexibility to
manipulate these variables as necessary. Efforts were made to implement the
SAVANNA Ecosystem Model in the eastern Jemez region and the conceptual model was
re-written to incorporate these changes (Figure 4.3). The new conceptual model,
therefore, specified the remaining variables necessary to model elk movement and
distribution patterns across the eastern Jemez region. These variables, which would need
to be modeled through the application of the individual-based model, can be grouped into
three classes: topography, human influences (roads, buildings, fences), and habitual
movement/memory. Model development, therefore, aimed to incorporate these

components and integrate them with the SAVANNA Ecosystem Model.

Model Assumptions

The following fundamental assumptions are made in the development of this

individual-based model for elk movement and distribution in the Jemez Mountains:
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* Animal movements occur on a daily time step, but dynamic processes generated by the
SAVANNA Ecosystem Model used to drive movement are updated weekly.

» Grain size is defined as 150 sq. meters in order to balance mechanistic detail with
computational efficiency while working within the confines of the underlying
successional model.

» The total extent of the study area (~1739.93 km?) was driven by the availability of
input data (i.e., the LANL land cover map and soil information) and not necessarily by
the biology of the animals in question. However, preliminary analysis of elk locations
indicated only ~2% of animal locations fell outside the final study area. Of those, only
2 of the 15 animals used in model construction were affected and they accounted for
only 0.2% of total locations used in model development and calibration. Therefore, it
is assumed points outside the extent of the study area would not affect overall model
results and/or conclusions.

= |t is assumed that study area extent and grain are representative of the scale over which
elk use and select habitat.

= Factors that affect migratory patterns and habitat selection in other (migratory)
populations likely affect quasi-migratory behaviors as well and are considered in this
analysis.

* Primary external variables driving elk movement and distribution over time include
precipitation, temperature, forage quantity and quality, and snow depth whose values
are decided by the application of the Savanna Ecosystem Model (Chapter III). Any

underlying assumptions and limitations of SAVANNA apply to this IBM as well.
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Food intake by elk is determined by the quantity, quality, and availability of forage in a
given cell and can be influenced by the presence of other elk in that cell.

The effect of predators (mountain lions and hunters), though likely to affect elk
movement and distribution patterns, are not simulated in this system due to insufficient
data at time of model development.

Simulated elk do not have “vision” beyond the 8 cells immediately surrounding their
current location and, therefore, must move through each adjacent cell to a final
destination point.

It is assumed elk move in response to spatial and temporal variation in variables
associated with calculated habitat suitability indices (HSIs) in a manner that will
maximize fitness.

It is assumed that migratory pathways are, in part, a habitual behavior that may be
influenced by immediate circumstances encountered during migration (Adams 1982)
and are therefore modeled accordingly.

It is recognized that elk are a gregarious species and that social interactions and group
size will vary throughout the year. No attempt is made to adjust for seasonal social
behaviors and no limit is placed on density of animals within individual cells; however,
parameter files are capable of adjusting density of animals per cell.

No attempt is made to distinguish variability among individuals based on size, age, sex,
or other distinguishing features. Population demographics and life cycles are ignored
but can be incorporated at a future point in time when additional information becomes

available that allows for such distinctions.
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Fifteen animals that met the following criteria were selected for model
development and/or corroboration. Of these, 10 were randomly selected for model
development and 5 were used as an independent test set during model corroboration. All

15 animals met the following conditions (see Chapter II):

» The collar had > 88% position acquisition rate.
* The collar remained on the animal at least eleven months.
* The 95% kernel home range (KHR) spanned the Cerro Grande burn area or was

continuous through transitional regions connecting summer/winter ranges.

Preliminary tests of GPS collar accuracy indicated a strong effect of 2D fixes on
position acquisition rates (PARs) depending on time of day and season of year. Position
acquisition rates were lower during mid-day hours and summer months indicating a
possible change in animal behavior during the hottest parts of the day/season. Slope,
aspect, elevation, and land cover type affected dilution of precision (DOP) values for
both 2D and 3D fixes, although relationships varied from positive to negative making it
difficult to delineate the mechanism behind significant responses. Two-dimensional fixes
accounted for 34% of all successfully acquired locations and may affect results in which
those data were used. Nonetheless, mean DOP values were generally in the range of 4.0
to 6.0, regardless of fix type (see Chapter II), and the application of all collar data was

considered reasonable for this study.
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Model Development and Calibration

Topographic Features. Sixteen 7.5-minute digital elevation model (DEM)

quadrangles in Spatial Data Transfer Standard (SDTS) format were downloaded from the
United States Geological Survey (USGS) Earth Resources Observation Systems (EROS)

Data Center website (http://edc.usgs.gov/geodata/). All 1:24,000 quadrangles are

projected in Universal Transverse Mercator (UTM) coordinates, North American Datum
(NAD 1927) at a resolution of 10 m. Any errors inherent in the acquired data were
assumed minimal and not assessed in detail.

Once all quadrangles were downloaded, data were converted using the
SDTS2ARC conversion utility available through the above website. Resulting ASCII
files were imported into ERDAS Imagine (version 8.6) and then processed into a
composite image using the “Mosaic” tool. Quads were then converted into meters using
the “Modeler” tool as necessary and re-constructed using the “Mosaic” tool. Header
information was validated and corrected as needed and slight adjustments in positioning
were made to individual quadrangles to account for innate error in the data sets and
ensure proper alignment. The image was once again run through the Mosaic tool to
generate a final comprehensive image and the final map was clipped to fit the extent of
the study area (1739.93 km?). Analysis of topographic features was conducted on the
original 10 m maps to provide the most accurate information on habitat use, but final
maps used in the IBM had a cell resolution of 150 m.

Logistic regression is often used in studies of wildlife habitat use to predict the

presence or absence of an animal using independent variables which can be either
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categorical and/or continuous. Regression coefficients in a logistic regression equation
can be used to estimate the odds ratios (Cody and Smith 1997, Keating and Cherry 2004).
The odds ratio is:
y(xlxr) = exp(B'x — Po) = exp(Bix1 + ...+ Bpxp)
where y(x|xr) is the odds ratio and B = (Bo,B1, ... Bp) is a vector of regression coefficients
for the variables x; 1=1, 2, ...p. Odds ratios can be used to approximate relative risk —
the probability of use given x relative to the probability of use given a reference type, xz:
that 1s,
R (xber) = [Py = 1)V P(y = 1| xg)]
where R is relative risk, P(y = 1|x) is the probability of occurrence given the
independent variable(s) ‘x’, and P(y = 1| xg) is the probability of occurrence given a
reference type ‘xg’. The odds ratio is related to relative risk as:
y(xper) = R (xler)[1 - Py = 1) )/[1 - P(y = 1] xr)]

Thus, if use is assumed to be rare everywhere (i.e., P(y = 1|x) = 0 for all x, including xr),
then y(x|xg) = R (x|xr), and the odds ratio can then be used to approximate relative risk
in a case-control design (Keating and Cherry 2004). Relative risk is simply the ratio of
two conditional probabilities. A relative risk of ‘1’ indicates an event is equally probably
in both groups.

The case-control design of Keating and Cherry (2004) was, therefore, applied to
calculate odds ratios for topographic variables (slope, aspect, and elevation)
independently and in combination. Using the Spatial Analyst extension for ArcView

3.2a, elk locations were overlaid on constructed slope, aspect, and elevation maps using
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the original DEM coverage and then queried to determine actual values (i.e., N; used
locations) for each variable at each location. Because of the circular nature of aspect
readings, aspect values were converted into nine categorical variables as follows: north
(337.5° to 22.5°), northeast (22.5° to 67.5°), east (67.5° to 112.5°), southeast (112.5° to
157.5°), south (157.5° to 202.5°), southwest (202.5° to 247.5°), west (247.5° to 292.5°),
and northwest (292.5° to 337.5°) directions as well as a category representing no aspect
(i.e., flat ground). A total of 55,782 locations were recorded for the 10 animals used in
model development. Thirty-four percent of these locations were 2-dimensional.

For each animal, the 95% KHR was used to define available habitat. Cells from
the slope, aspect, and elevation maps that had been marked as “used” were removed and
remaining cells (i.e., unused cells) were then exported from ArcView as ASCII text files
into FORTRAN 90. Remaining cells were randomly sampled with replacement to create
a dataset for each animal that included Ny unused locations with associated slope, aspect,
and elevation values. Aspect values were converted into categorical variables as before.
Therefore, for each animal a complete dataset included N; used locations and equivalent
number of Ny unused locations. Data were then imported into SAS (ver. 9.0) and
analyzed using PROC LOGISTIC with a stepwise procedure and aspect as a class
variable. Resultant regression coefficients (beta values) were used to estimate odds ratios
(= relative risk) for each cell at a final model resolution of 150 m in the study area based
on that cell’s topographic features (see raw code and associated parameter file in Tables
E.1 and E.2 of Appendix E, respectively). The product was a map of “impedance values”

(Figure 4.4) based on topographic features where a value of ‘1’ indicates no selection,
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values less than ‘1’ indicate the cell is less likely to be used than a reference cell, and

values greater than ‘1’ indicate the cell is more likely to be used.

Habitual Movement (Memory). The role that habitual behavior plays in elk

migration and/or movement patterns has not been clearly defined, but likely is an integral
part of migration (Adams 1982). Fall migrations are often initiated in response to snow
(Vales and Peek 1996). Various authors have concluded elk utilize the same migration
paths year after year (Altmann 1952, Brazda 1953, and Anderson 1958 in Thomas and
Toweill 1982) during both the spring and fall migrations (Skinner 1925, Anderson 1958,
and Compton 1975 in Thomas and Toweill 1982) and elk may even use the same
crossing-points at places such as streams even though alternative crossings are nearby
(Anderson 1958). Seasonal affinity for specific areas may be passed down from cow to
calf (Murie 1951 from Wolf 2003) and some research has shown the mother-offspring
relationship to be a relatively stable assemblage that persists throughout the life of the
animal (Franklin and Lieb 1979). Thus migratory routes are likely established

through some combination of topography and habitual use passed down through maternal
relationships. In addition, one can argue that habitual migration — a learned behavior
(proximate causation) that is genetically influenced and subject to natural selection —
evolved because it increased evolutionary fitness over time (ultimate causation).

Habitual migration/memory thus serves as an important factor to consider in destination

and departure rules for development of an IBM when considering elk behavior.
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Modeling habitual use/memory is a challenge. One method is to weight
individual cells based on prior use (Wolf 2003) and then test results with an independent
data set. However, with this approach emergent behaviors that may be elicited from an
individual-based model can not be revealed. This approach also limits the potential
outcomes of model runs by restricting use to certain cells. A better approach allows
patterns of potential use to emerge naturally through simulation runs based on factors that
influence these movements and do not change over time. Given that migratory routes are
likely established through a combination of topography and habitual use as discussed
above, and given that the objective is to model habitual use, topography remains the
likely driver that influences elk memory/habitual use over evolutionary time scales.
Individual animals most likely selected the path of least-resistance based on topographic
features in an effort to maximize potential fitness and these paths were then passed down
through each generation. Therefore, a new approach to modeling habitual habitat use is
attempted here.

The map of impedance values generated through the analysis of topographic
features was used as a base map for running a series of simulated animals through the
landscape in order to create “memory” — a map of accumulated frequencies of simulated
visits normalized between 0 and 1 that could be used as an independent variable in the
final IBM. Based on actual location data from the 10 animals used in the logistic
regression, 3 areas on the Valles Caldera National Preserve were subjectively defined as
potential destination areas and 3 areas on LANL and/or BNM were defined as departure

areas. In preliminary model runs, simulated animals randomly selected a given departure
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and destination area and were allowed to move freely until they reached a chosen
destination regardless of the number of moves taken (i.e., no “kill cap” set). In addition,
animals were not allowed to immediately return to the cell from which they just departed
(i.e., no “tag backs”). The frequency of occurrence of animals within a given cell was
modeled under two scenarios: 1) frequencies reflected only one occurrence by a
simulated animal even if the animal returned to that cell multiple times (i.e., no
“wandering”) therefore making the maximum value in a given cell the number of
simulated animals run through the system, and 2) frequencies reflected multiple
occurrences by a simulated animal if it returned to the cell (i.e., wandering).

Preliminary runs indicated there were three main barriers with which simulated
elk had to contend. First, initial model runs indicated simulated animals were commonly
crossing the Rio Grande based solely on topographic features, which did not support
patterns of actual movement. Second, an intermediate area known as the “escarpment”
contained a combination of slope, aspect and elevation values such that simulated
animals would not traverse it without an incentive to reach more attractive summering
ground on the VCNP. Finally, on occasion a simulated animal would find itself
inhabiting a cell surrounded by cells that contained values of ‘0’ or -9999” making it
impossible to find a way out and eventually crashing the program. The third problem
was easy to resolve by allowing “tag backs” in situations where all other cells were
unattractive, but the first two issues required more thought.

To address the natural barrier posed by the Rio Grande, it was decided the river

would be coded as an impassable barrier to elk movement. In order to accomplish this at
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the 150 m resolution of the model, the river needed to be widened slightly using the
“expand” function in the Spatial Analyst extension of ArcView. The river was then
reassigned values of “-9999” forcing the Fortran model to exclude any data from the river
and east of the river in the memory model.

The area of the escarpment was more difficult to address and required
manipulation of animal movements in order to overcome this obstacle. A minimum
amount of incentive (i.e., force) was applied to model runs to encourage animals to
traverse the escarpment. This incentive would normally come as a response to the
receding snow line as animals moved toward more attractive vegetation a higher
elevation summer ranges. Because snow and vegetation were not variables in the
memory model, however, this “incentive” was modeled by applying a force in the
direction of the destination cells by taking the Euclidean distance between the animal’s
current location and the center of the chosen destination area. This distance was then
compared to the Euclidean distances of the surrounding eight cells and a pre-specified
force was added to the 4 cells with the lowest values. Simulated animals, therefore,
responded to a combination of topography and a slight force to encourage them to move
in the direction of the VCNP over less attractive areas of the escarpment. However, a
small amount of stochasticity was still applied to each move made by a simulated animal
by allowing the computer to randomly select a uniformly-distributed value between 0 and
1. The random number was then applied to the surrounding eight cells and the area in
which it fell determined the cell that was selected. The likelihood of a given cell being

selected, therefore, was a function of the normalized value (i.e., probability value) of that

150



cell. Cells with higher values were more likely to be selected than those with lower
values, but through random chance a lower value cell could still be selected.

Once the basic program was in place, simulation runs were conducted with 100,
500, 1,000, 5,000, 10,000, and 50,000 animals. Each animal was run through the matrix
independently and cell counts were accumulated. Various simulations were run by
modifying parameters and/or flags (i.e., a binary indicator used to determine if the
condition is “on” or “off”) associated with kill caps, wandering counts, tag backs, and the
forced incentive value until an overriding pattern emerged that was consistent between
simulations. The final map selected for incorporation into the individual-based model as
a “memory/habitual use” variable, which was normalized from 0 to 1 with higher values
indicating cells more likely to be used perpetually, resulted from a run of 50,000 animals
using a minimum incentive of 0.05 in the direction of the VCNP with no “tag backs” and
no “wandering.” Examples of model runs are located in Figures 4.5 to 4.8. Model code

and the associated parameter file are found in Appendix Tables E.3 and E.4, respectively.

Human Influences. Unlike geographic barriers, most of which elk are capable of

negotiating, manmade obstacles such as roads, fences, and buildings can alter migrational
patterns and restrict elk access to winter range (Adams 1982). These obstacles are
obviously more prominent in areas classified as “wildland-urban interfaces” such as the
Pajarito Plateau. In addition, the diversity of government agencies in the region — many
with conflicting mission statements — is reflected in the prominence and overall impact of

human structures and influences.
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Fences. Elk behavior changes with the presence of fence lines. Bauman et al.
(1999) found elk typically spend considerable time at fences up to 122 cm engaged in
pacing, rubbing, and licking behaviors before finally jumping the fence. In contrast, the
fences present within the bounds of Los Alamos National Laboratory typically are in the
range of 228.6 cm to 243.84 cm and may (security fences) or may not (industrial fences)
have an additional 61 cm of razor wire along the top. Therefore, these fences are
ultimately impermeable to elk movement and were modeled accordingly by assigning all
150 m cells containing industrial or security fences a value of ‘0’.

Buildings. Though buildings themselves are barriers to elk movement patterns,
the presence of buildings is also positively correlated with human activity in most cases.
Just because a cell has a building in it, however, does not mean it is impermeable to elk.
Therefore, in order to model the effect of buildings on elk movement, an assumption was
made that the greater relative area occupied by buildings per m” the greater impact to elk
movement and distribution.

An ArcView shapefile coverage of building structures across Los Alamos County
was obtained that included both residential areas and technical buildings present on
LANL. The coverage was converted into grid format at a resolution of 1 m in order to
preserve the presence of small buildings in the study area that might otherwise be lost in
the conversion to larger cell sizes. A C++ program (Table E.5 of Appendix E) was
constructed to count the number of 1-m cells occupied by a building within larger grid
cells at the final resolution of 150 m. The resultant map of building frequencies (i.e.,

total area in m” covered by buildings) was then normalized from 0 to 1 and inverted so
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that cells with values closer to O (i.e., those cells with more buildings) were least likely to
be used and those closer to 1 were more attractive. The level of aversion or attraction to
cells with these structures was assumed constant regardless of time of day.

Roads. Roads may be one of the best predictors of elk dispersion (Lyon and
Ward 1982, Lyon 1983, Thomas et al. 1988, Ager and Hitchcock 1992, Hitchcock and
Ager 1992, Christensen et al. 1993, Holthausen et al. 1994, Cole et al. 1997, Rowland et
al. 2000, Benkobi et al. 2004), but the level of aversion depends on several factors
including the kind and amount of traffic, quality of road, and density of cover adjacent to
the road (Lyon and Ward 1982). To complicate matters, the level of aversion may vary
with time of day (Millspaugh and Marzluff 2001). Though road density and distance
from roads are commonly used as indicators of elk habitat effectiveness, the spatial
patterning of roads may also have an effect (Rowland et al. 2000).

In order to effectively model the effect of roads on elk movement and distribution
in the Jemez Mountains, two points had to be addressed. First, given all roads are
avoided according to the literature, how much of an aversion is a particular type of road
(i.e., primary, secondary/paved, or tertiary/dirt)? Second, once a basic “aversion factor”
is applied to a given type of road, can portions of that road be modified to account for
locations where elk appear to congregate or cross the road? Attempts were made to
structure the model and provide flexibility to address both questions.

An ArcView shapefile with primary, secondary, and tertiary roads was converted
into grid format at 150 m resolution. Locations from the 10 animals used in model

development were overlaid on each grid and two measures were taken. First, the total
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number of elk occupying a cell with a given type of road was recorded. It was assumed
that road cells with more elk locations were relatively more attractive than other road
cells with fewer elk locations. Second, using the Animal Movement Analyst Extension
(AMAE) in ArcView 3.2a (Hooge and Eichenlaub 2000, Hooge et al. 2001), movement
pathways (i.e., polylines) were constructed for each animal by connecting consecutive
locations. Points at which these polylines crossed roads were identified and frequencies
of crossings were recorded for each road cell by differing road types. Though the time
between consecutive locations could affect the accuracy of road crossings, it was
assumed that a conglomeration of road crossings in a particular region was indicative of a
segment of road with greater relative use (i.e., less avoidance).

In order to develop a final “aversion factor” for each cell of the study area
occupied by a primary, secondary, or tertiary road, two final steps were taken. First, the
total number of elk locations in a given road cell was cross-multiplied by the total
number of road crossings for that same cell and normalized from 0 to 1. If cells had
neither elk nor crossings, a value of ‘1’ (i.e., a trace amount of use) was assigned to the
cell prior to normalization to prevent future divisions by ‘0. The resultant value was a
relative “attractiveness index”, indicative of portions of each road that account for
locations where elk appear to congregate or cross the road. Second, the “attractiveness
index” was re-normalized using a sliding scale based on road type. An associated
parameter file contains maximum and minimum aversion factors (with the potential to be
modified by the user) for primary, secondary, and tertiary roads. The maximum and

minimum values were then used as the sliding scale to which the “attractiveness indices”
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were applied. Cells with the lowest attractiveness were assigned the maximum aversion
while cells with the highest attractiveness were assigned the lowest aversion (Figure 4.9).
On the small chance that a given cell contained a combination of primary, secondary,
and/or tertiary roads, primary roads took precedence over secondary roads, which took
precedence over tertiary roads. The final roads map was then imported for use in the
IBM. Final code and the associated parameter file to generate the effect of roads can be

found in Tables E.6 and E.7 of Appendix E, respectively.

Integration with SAVANNA: The HSI. The development of the individual-based

movement model was completed with the specific intention of providing the option to
replace SAVANNA'’s existing ungulate distribution submodel. A flag was added to the
“Simcon.prm” file that allows the user to select SAVANNA'’s existing distribution model
or replace it with the integrated IBM. This modification required changes to the
“SVLAND.{” program, which calls submodels and sets the time step for SAVANNA'’s
internal operations, and “MAINPROG.f” program, which initializes all of SAVANNA’s
subroutines.

The true integration of the IBM comes in the application of the habitat suitability
index values (HSI), which integrate movement rules written for the IBM and variables
modified and produced by the ecological processes run in SAVANNA. A habitat
suitability index is a numerical index ranging from O to 1 (with the assumption there is a
direct linear relationship between HSI value and carrying capacity) that represents the

capacity of a given habitat to support a selected wildlife species (U.S. Fish and Wildlife
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Service 1981). The HSI value is calculated in a two-step process. The first step requires
the development of a “cost” map, which designates those variables that potentially inhibit

movement by simulated animals:

COST = Impedance Map * Roads Map * Fences Map * Buildings Map

The “impedance map” — generated from the logistic regression based on elk use of
topographic features (slope, aspect, elevation) — is modified by applying the roads and
buildings maps to increase the aversion to applicable cells where buildings or roads are
found. The resultant map is then further modified by masking cells wherever a security
or industrial fence occurs. The resultant “cost map” is then applied to the final HSI,

which is the normalized 0 to 1 product of the following:

HSIr = COST*P(snow)*P(diet)*P(forage)*P(ME)*P(temp)*min(shrub/thicket)*P(green)*P(dead)

where P(snow) is the functional response of elk to snow at a given depth, P(diet) is the
preference-weighted forage biomass based on dietary preferences, P(forage) is based on
total amounts of green and dead herbaceous biomass, P(ME) is the potential metabolic
energy (MJ/kg/d) acquired by moving into a given cell, P(temp) is functional response of
elk to temperature, min(shrub/thicket) uses the “Law of the Minimum” to select the
lowest value between shrub and thicket cover, P(green) is the preference for green

biomass, and P(dead) is the inverse-weighted avoidance of dead biomass. Each variable
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is controlled by a series of flags in the associated “IBM” parameter file, which allows the
user to decide whether or not to include the variable. Additional variables from the
original distribution submodel that were not used during application of the IBM for
purposes of this dissertation, but were preserved for potential future use include:

= Force maps to define a population’s range at different times of the year;

= Distance to water ;

= Preferred maps.

Preference values are most often generated through the application of a linear
interpolation function (Alint.f) that uses x-y pairs to generate a response graph based on
behavioral or physiological responses of elk to a variable. Typically, an x-value is
generated either through a user-defined parameter file or an internal SAVANNA
algorithm that produces a value needed for the function. A corresponding y-value is then
generated, which will either be used directly in the HSI or as an input variable in another
portion of the code. An example of the functional response graph for elk to snow depth is

given in Figure 4.10.

Movement Rules. Movement rules are a critical component of spatially-explicit

IBMs because movement is an essential method used to adapt to changing environmental
conditions (Railsback et al. 1999). Movement includes initialization rules to determine
cell origination for each animal, departure rules to determine when an animal leaves a
location, and destination rules that govern when an animal selects a location. Departure

and destination rules are often based on some measure of “fitness” — the ability of an
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animal to survive and reproduce viable offspring. Fitness measures are often identified
from optimal foraging literature in which net energy intake is further adjusted by the
associated risk of mortality, which has the apparent advantage of considering both
survival and growth. Because no measure of risk was identified for elk in the Jemez
Mountains, fitness was assumed to be positively correlated with increasing HSI value.
The potential to incorporate mortality risks (e.g., predation, harvest) using the predation
submodel in SAVANNA can be considered at a future point in time.

Model Initialization. Before individuals can begin to move across the landscape,

the model must be initialized by reading in appropriate maps and designating starting
locations for each individual (Figure 4.11). During the initial steps the model reads in the
cost impedance map created in the analysis of topographic features and then modifies it
by overlaying maps created for roads, buildings, and fences, with each input controlled
by a flag in the associated parameter file. Animals are initialized by designating the total
number of individuals to be simulated across the landscape using SAVANNA'’s
“cons4900s.dat” file and a parameter called “hpopmult,” which can be read in as total
numbers of individuals or density (no./km?). A separate parameter (“startnum’) was
created to allow flexibility in individual animal’s starting locations. The “startnum”
parameter is connected to an associated parameter (“startlocs”) that specifies the x-y
coordinates of each individual designated in the “startnum” parameter. Additional
animals have the option of starting at random locations on the summering grounds (i.e.,
VCNP) or across the landscape. The percent of animals to start at a random location on

the summering grounds (minus the “startnum” animals) is specified and the remaining

158



portion are then randomly distributed across the landscape in any cells considered
available after masked out cells are eliminated.

Departure Rules. Some models have been designed in which animals do not

depart a location until after their fitness declines to less than their average on previous
days (Van Winkle et al. 1998). This approach is disadvantageous in that such rules
prevent individuals from seeking locations that actually improve their fitness (Railsback
etal. 1999). Railsback et al. (1999) and Railsback and Harvey (2001) apply departure
rules that reflect an individual’s knowledge of surrounding cells within some maximum
distance, but this is computationally intensive. Therefore, a simpler version of these
departure rules was applied to elk in the Jemez Mountains. Individuals were only given
the “vision” to see the surrounding eight cells in their neighborhood, but a parameter
allows the total number of cells moved to be adjusted based on actual movement data of
the 10 animals used in model development. They also have the option of remaining in
their current cell or traveling to an adjacent cell with a potentially higher HSI value
resulting in more realistic movement patterns throughout the course of a day. A decision
tree documenting the major steps used during the model run is found in Figure 4.12.
Given the quasi-migratory behavior of elk in the Jemez Mountains, a parameter to
trigger migrational responses between distinct summer and winter ranges could not be
modeled using a robust measure such as a break in site fidelity. Migration date has been
defined in the literature as the median date between the last location an animal was within
its seasonal home range and the next location when the animals was not on its seasonal

home range (Vales and Peek 1996). Therefore, migrational responses were triggered
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once a simulated animal decided to leave the perimeter of the VCNP, which is considered
the primary summering grounds of the Jemez Mountain elk population. Once outside the
VCNP, a migration “flag” was turned on that would allow conditional modifiers to be
applied to HSI values depending on the current location of a simulated animal and the
conditions found in that cell. Fall migrations are often initiated in response to snow
(Vales and Peek 1996); therefore, if snow was present in the cell, the inverse of the
“alint” function for snow response (Figure 4.10) was applied as a force in the direction of
the wintering grounds to the HSI of the 4 cells in the nine-cell neighborhood containing
the shortest Euclidean distance between the current cell location and a designated cell on
the wintering range. If snow was not present in the cell, a force was applied in the
direction of the summering grounds (i.e., VCNP) to the 4 cells in the nine-cell
neighborhood containing the shortest Euclidean distances to a designated cell on the
VCNP. This approach was used in an effort to model empirical observations that elk
move in response to the advancing and receding snow line.

Destination Rules. Destination habitat is selected using combinations of

fractional stochasticity, exclusion of destinations that do not meet some habitat
requirement (e.g., presence of fences, snow depth exceeds tolerance), and optimization of
habitat variables through the application of the HSI. The fractional stochasticity, as
described in the “Habitual Movement/Memory” section of the model, is applied in such a

way as to allow individuals to still select cells most likely to maximize fitness.
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Model Outputs. Individuals move a specified number of cells per day, but

SAVANNA updates its dynamic model components on a weekly basis in order to
maximize computational efficiency. Therefore, animals respond to resources available at
the start of each week. All applicable spatial and temporal output files associated with
SAVANNA still apply (e.g., herbaceous production, offtake, animal distribution, current
annual growth for woody species, precipitation patterns, etc.).

Addition of the IBM improves the application of SAVANNA by recording
individuals’ movement pathways in the form of calculated x-y coordinates representing a
random location within each inhabited cell on a daily stepwise basis compared to the
monthly distribution routine currently used by the program. Because of the method in
which information is stored, queries on specific points within the movement pathway can
be used to select subsets of data according to specific management needs and then
analyzed within a GIS at various temporal scales (i.e., daily, weekly, monthly, seasonally,
annually) allowing maximum flexibility in data application. Model code for output data
generation is found in Table E.8 of Appendix E. Final code and the associated parameter

file for the IBM are found in Tables E.9 and E.10 of Appendix E, respectively.

Model Corroboration/Validation

Model corroboration acknowledges that models as abstractions of real-world

systems can never be proven “true”, but can be tentatively accepted until proven false
(Shenk and Franklin 2001). The goal should be to establish how suitable the model is for

its intended purpose, not whether the model is suitable. In this sense, model
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corroboration can be viewed as assembling evidence for why the IBM is valuable for its
intended application. Model corroboration is classified into four basic categories:
subjective assessment, visual techniques, measures of deviation, and statistical tests
(Mayer and Butler 1993, Shenk and Franklin 2001, Turner et al. 2001).

“There is little sense in analyzing an IBM’s system-level behavior before
developing confidence that the model’s individual-level behavior is acceptable, and there
1s no reason to expect individual behavior to be acceptable before the environmental
processes that drive individual behavior have been tested” (Grimm and Railsback 2005,
p. 317). By testing the underlying parts of an IBM, including the submodels representing
the environment, validation proceeds from the bottom-up. Given that the SAVANNA
Ecosystem Model drives the dynamic processes used in the calculation of HSI values,
which are in turn the basic building blocks of this IBM, critical evaluation of the
functioning of SAVANNA was a primary step in determining the validity of this IBM.
Model calibration and testing of SAVANNA (Chapter III) indicated the underlying
environmental processes driving the variables used for development of the HSI were
within reason. Weather patterns were functioning as intended and biomass production
showed no significant differences between simulated results and independent field data
for a variety of land cover types. In addition spatial interpolations of snow depth were
realistic, although simulated values may be low for the region. Other model functions not
specifically tested were assumed reliable given the long history behind SAVANNA’s
development and its presence in peer-reviewed literature (i.e., face validity — see Rykiel

1996).
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Uncertainty can occur in both model structure and parameter values, but for IBMs
the strategy of pattern-oriented modeling is useful for separating analysis of structure
from analysis of parameter values by looking beyond random variation to the IBM’s
underlying structural validity (Grimm and Berger unpubl. rep., Railsback 2001, Grimm
and Railsback 2005). Using patterns as currency for analysis can supercede quantitative
methods for evaluating the precise fit of simulated or observed patterns as long as clear
criteria for qualitative patterns are established and met (Rykiel 1996, Grimm and
Railsback 2005). This type of corroboration is well suited to mechanistic modeling
approaches whose aim is to identify underlying processes (such as migration) and is often
the primary step before more sophisticated methods of model corroboration are
undertaken. Pattern-oriented modeling naturally incorporates spatial and temporal scale,
guidelines to aggregate biological information, and serves as a tool by which to
understand the mechanisms underlying the pattern (Grimm et al. 1996).

Observation of real data used to construct the IBM revealed stark patterns in
animal behavior that served as the preliminary basis for model corroboration/validation.
For purposes of modeling the quasi-migratory behaviors of elk in the Jemez Mountains it
was essential for the model to reproduce these individual- and population-level responses.
In particular, four distinct patterns related to movement across the eastern Jemez were
identified and used for model corroboration:

1. The overall pattern of habitat use by real animals should serve as the primary basis
for model corroboration. Similar patterns of habitat use across the landscape should

emerge from population-level responses when simulated individuals are exposed to
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realistic scenarios that mimic real-life conditions during similar time periods (i.e.,
visual validation/time-series analysis — see Rykiel 1996). Stray activity by one or
more individuals can then be analyzed to determine if stochasticity might account for
the pattern or if an underlying mechanism in the model is erroneous. Abstract
patterns that emerge from model runs that are not present in the real population may
be revealed and guide further model development. For purposes of this dissertation,
patterns will be analyzed by visually comparing overall habitat use between real and
simulated animals and analyzing density maps generated from actual locations and
model results.

Using AMAE (Hooge and Eichenlaub 2000) in ArcView 3.2a, movement pathways
were constructed for the 10 animals used in model development by connecting
consecutive locations and projecting them on landscape maps. Two primary and two
secondary movement corridors used to traverse the eastern Jemez Mountains were
identified (Figure 4.13). Primary corridors had > 4 of the 10 animals using them
while secondary corridors had < 2 animals using them. Emergent properties of the
individual-based model should reveal use of these same corridors in roughly equal
proportions to those seen in the real population.

When actual animal locations for the 10 animals used in model development were
superimposed on interpolated maps of mean monthly snow depths generated by the
SAVANNA Ecosystem Model (see Chapter III), > 68% of locations were in cells
free of snow. The remaining locations where snow depth was greater than or equal to

1 cm produced a nonlinear response curve (Figure 4.14). Ninety percent of locations
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were in snow less than 8 cm. Simulations should reveal similar patterns in response
to snow (i.e., event validity — see Rykiel 1996).

4. In conjunction with the pattern observed in #3, animals moved to the lower
elevations of BNM and LANL during months with heavy snow fall (early 2001), but
this pattern was not obvious during months with little to no snowfall. Model
simulations should show temporal and spatial patterns of habitat use that mimic the
real population.

One method of model validation is to compare the mean of several replicate IBM
runs to observed patterns (Wiegand et al. 1998, Wiegand et al. 2003). The strongest
evidence of structural realism, however, is independent predictions of system properties
using data not involved in model construction or parameterization (Grimm and Berger
unpub. rep., Rykiel 1996). Therefore an independent test was run on 5 simulated animals
to evaluate model performance compared to real-life data collected on 5 animals which
were not used in model parameterization or calibration over the 2001 to 2004 period.
Simulated animals were initialized on cells that contained the actual starting location of
the corresponding “real” animals and runs were conducted for the length of time for
which data were actually collected in the field. Animals were allowed to move up to 86
cells (~ 13,000 m/day) per day to mimic the maximum distance moved by the 10
animals used in model development. The total population of elk was set to 3,500 — a
conservative estimate of elk along the eastern Jemez based on sightability estimates

conducted by the New Mexico Department of Game and Fish (Kirkpatrick et al. unpub.
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rep.). Actual weather data were used for 2001 and 2002 and random weather was

initiated in 2003. Patterns were analyzed as outlined above.

Results

Overall patterns of habitat use by simulated animals during 2001 to 2004 were
consistently similar to patterns observed in the independent test set (Figure 4.15).
Because simulated animals were programmed to follow the advancing and receding snow
line, they exhibited less movement down mesa tops than the real population. Overall
habitat-use patterns were consistent with the real population, though simulated animal
densities were higher than those of the real animals just south of the Cerro Grande burn
area and not as high in the southeast portion of the Valles Caldera National Preserve
(Figure 4.16). In addition, higher use was consistently exhibited by real animals in the
southwest portion of the area burned by the Cerro Grande Fire. Differences in density
patterns, especially in areas burned by the Cerro Grande Fire, may be due to stochasticity
in simulation runs, decreased resolution of the underlying land cover map, or movement
rules related to topography.

Three of four pathways identified during model development were used by the 5
independent test animals as well as the 5 simulated animals (Figure 4.17). Movement
pathways of the 5 simulated animals fell within paths used by real animals in roughly
equal proportions to those seen in the real population. Modeled movements were not as

linear as those exhibited by real animals, however. Simulated animals tended to display
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more exploratory behavior. Real animals traversed single mesa tops whereas simulated
animals crossed more canyon systems than their real counterparts. Therefore, movement
pathways of simulated animals were not as clearly defined as in the real population
though the same pathways used by the population clearly emerged.

Patterns of snow use were remarkably similar between simulated and real
animals. Animals avoided cells with snow in the majority of cases (72.67% for simulated
animals compared to 70.66% for the independent test set and 68.66% for animals used in
model development). Ninety-one percent of simulated animals’ locations were found in
cells containing < 8 cm of snow compared to 90.30% of the independent test animals and
89.98% of animals used in model development. Though more simulated animals were
found in cells containing > 42 cm of snow, this is likely explained through the application
of the underlying SAVANNA Ecosystem Model, which may deposit “instantaneous”
snow on a weekly basis.

Patterns of use in relationship to snow depth (Figure 4.18) were compared using

regression analyses. The curvilinear relationships in Figure 4.18 were modeled with a

power function Y = ,BO X7 +e (where Y is percent of elk locations and X is snow depth)

which was linearized by taking logarithms of both Y and X; slopes were compared
between the modeled animals, the independent test set animals, and the simulated
animals. Observations of snow depth > 42 cm for the simulated animals were removed
from the data set; these observations were considered artifacts of SAVANNA snow
generation. Simulated animals and the 10 animals used to develop the model responded

similarly (F 162 = 1.18, P> 0.1642) to snow depth. An even stronger test for
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corroboration involves a comparison between simulated animals and the 5 independent
animals; in this comparison, simulated animals and real animals also responded similarly
(F152=10.97, P> 0.1265) to snow depth. Interestingly, the 10 real animals used for model
development and the 5 real animals that act as an independent data set with respect to
model development responded differently (F ;56 =4.13, P <0.0112) to snow depth.

Thus, although different groups of real animals vary with regard to their response to snow
depth, the response of simulated animals to snow was similar to the response of real
animals to snow. These results suggest that the model was functioning properly in terms
of animals’ response to snow depth.

In conjunction with the above results, patterns of landscape use by simulated
animals during periods of heavy snowfall appeared realistic (Figure 4.19). In 2001 — the
wettest year of the study period — simulated animals were at lower elevations in February
and March and more scattered in November and December. December showed the
greatest difference in habitat use patterns between the simulated animals and the
independent test set. Simulated animals remained on the VCNP whereas actual animals
moved into areas of the escarpment just below the snowline. This difference in land use
was likely the result of “instantaneous snow” generated by the SAVANNA Ecosystem

Model, which “trapped” simulated animals in snow-free areas of the VCNP.

Discussion and Future Research

Understanding the consequences of movement for population dynamics is

practically impossible without testing and constructing empirically-based, mathematical
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models (Turchin 1998). Spatial simulation models that evaluate interactions among cells
in a raster-based environment provide a powerful approach to modeling spatial dynamics
of complex systems based on individual-level properties (Wiens et al. 1993). However,
simulation models are critically dependent on the input values for model parameters and,
therefore, have the greatest value when they are coupled with field studies, both to
calibrate model parameters and to test or confirm model projections (Turchin 1998). Itis
rare to find empirical data that directly describe key parameters of landscape
connectivity, such as habitat-specific movement patterns, rates, or capabilities of animals
(Pither and Taylor 1998). Even more rare are data comparing movement behaviors
among landscapes that differ in structure or that describe movements occurring at spatial
scales coincident with a given species’ population dynamics (Pither and Taylor 1998). A
more thorough understanding of landscape connectivity — and, therefore, functional
corridor design — could emerge from conducting empirical studies over sufficiently large
spatial scales so as to encompass the movement capabilities of the subject organisms
(Pither and Taylor 1998, Rosenberg et al. 1998).

There has been an increasing interest in the use of individual-based models in
recent years, especially by ecologists interested in modeling movement (Turchin 1998).
The traditional approach to modeling using population-based parameters has come under
scrutiny because population-level parameters do not recognize the inherent variation that
exists among individuals (DeAngelis et al. 2001). Individuals have long been considered
the building blocks of ecological systems (Grimm and Railsback 2005). In fact,

population persistence through the process of natural selection is often packaged in the
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form of individual-level fitness. Because natural selection works on genetic variation
caused by mutation and recombination, organisms should develop optimal behavioral
features that maximize fitness over time (Drickamer 1998, Rettie and McLaughlin 1999).
The essence of the individual-based approach is the derivation of the properties of
ecological systems from the behavioral and physiological properties of the individuals
constituting the system (DeAngelis and Gross 1992, L.omnicki 1992, Slothower et al.
1996, Schank 2001).

A key principle of individual-based models is that they are more powerful if
realistic behavior patterns emerge from simple, fitness-maximizing rules for individual
behavior (Railsback 2001, Railsback and Harvey 2001). Attempting to model too many
behaviors or individuals can strain both the capacity of the computer used to run the
simulation and the human mind to interpret the results (Fahse et al. 1998, Turchin 1998).
For purposes of this research, measures of fitness were implemented through the
modeling of habitual migration — a learned behavior that is genetically influenced and
subject to natural selection — and application of an HSI that reflected forage quality,
quantity, and metabolic energy intake, among others. Adjustments to fitness measures in
the form of mortality risks (i.e., predation) can be incorporated at a future point in time
by implementing the predation submodel available in SAVANNA when additional data
needed for calibration are made available through ongoing studies.

The novelty of the individual-based modeling approach in ecology has resulted in
caveats about which readers should be aware. Developing IBMs is a challenge because

more of the complexity of the real-world is acknowledged a priori, making model
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development more time consuming, complex, and difficult to communicate (Fahse et al.
1998, Grimm et al. 1999, Lorek and Sonnenschein 1999, Grimm and Railsback 2005). In
IBMs higher level processes often affect lower levels; that is, not only do system
dynamics arise from individual behavior, but individual behavior is affected by system
dynamics (Grimm and Railsback 2005). In addition, the lack of standard terminology
and widely accepted methods by which to construct IBMs makes modeling controversial,
inefficient, and difficult to compare with other modeling approaches (Grimm 1999,
Lomnicki 1999, Grimm and Railsback 2005). The consequence of these challenges has
been the misinterpretation of models as being truly individual-based when, in fact, they
lack certain defining characteristics inherent in true IBMs.
Uchmanski and Grimm (1996) in Grimm and Railsback (2005) have proposed
four criteria that distinguish IBMs from other models:
1. The degree to which the complexity of an individual’s life cycle is modeled;
2. Whether or not the dynamics of resources used by individuals are explicitly
represented;
3. Whether real or integer numbers are used to represent the size of the population;
4. The extent to which variability among individuals of the same age/cohort is
considered.
Using these criteria, even the IBM developed in this dissertation falls short of being
considered a true IBM, although efforts were made to address each criterion and/or
provide the flexibility in the program code to modify it at a future point in time. The

underlying ecosystem model (SAVANNA) used as the foundation for the integration of
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the IBM models dynamic ecosystem processes (Criterion #2) and, though not yet
implemented, has the potential to look at life cycle dynamics (Criterion #1) based on life
table information already built into the population dynamics submodel. The newly
incorporated IBM addresses Criterion #3 by following the movements of specific
individuals in the population and it meets Criterion #4, in part, by allowing stochasticity
in animal movements and the ability to respond to other animals in the individual’s
immediate neighborhood. The overall strength of the model is its dynamic nature, which
will allow alternative management scenarios to be explored with respect to temporal and
spatial aspects of the Cerro Grande Fire. Future research and model development will
only make the IBM approach even stronger so it can fully meet the criteria above.
Traditional methods of analyzing classical models that rely on differential
equations and other mathematical derivations are often not appropriate for analyzing
individual-based models. Sensitivity analysis and uncertainty analyses have limited use
for analyzing complex IBMs because comprehensive analysis of all parameters is
infeasible and techniques do not address how system dynamics arise from individual
traits (Grimm and Railsback 2005). Goodness-of-fit to census data also has limitations in
analyzing IBMs given their stochasticity and inherent variation among individuals — two
of the defining characteristics of IBMs (Grimm and Railsback 2005). In addition, the
arbitrary selection of numbers of model replicates, the a-value used to define
significance, the degree of difference chosen among model scenarios, and the degree of
variability among replicate simulations (i.e., stochasticity) within the same scenario — all

of which can affect statistical significance - make the use of traditional statistics in
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analyzing IBMs problematic (Railsback 2001). Time series and spatial methods that
consider dependence are often more appropriate than standard statistical procedures that
assume independence between observations given many outputs from IBMs are not
independent over space and time (Grimm and Railsback 2005). However, census data
contain patterns that can be useful analyzing IBMs, such as ranges in abundance and
relations between abundance and environmental conditions (Grimm and Railsback 2005).
Testing models against patterns of response rather than against magnitude of observed
responses allows model mechanisms to be tested comprehensively with a reasonable
level of effort and expense and can lead to better understanding of how system dynamics
emerge from the traits of individual agents — one of the most important problems in
ecology and management (Railsback 2001).

Overall pattern analysis indicated that realistic migrational processes and habitat-
use patterns were likely emerging from movement rules incorporated into the IBM in
response to advancing and receding snow. Primary and secondary movement pathways
emerged from the collective responses of simulated individuals. Animals responded
realistically to snow patterns and overall patterns of use across the landscape were
reproduced. These considerations suggest the model was adequately corroborated based
on existing data and outlined objectives.

Visual observation of raw data revealed additional patterns that also deserve
further consideration. An analysis of net displacement of animal locations per day (i.e.,
distance moved/day) on a randomly-selected subset of data indicated increased

movement activity in November and April/May (Figure 4.20). This pattern was
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supplemented by an increase in variation in distance moved during these time periods
when compared with other times of the year. Movement activity in the month of
November was not sufficiently recreated with sufficient accuracy, perhaps because of
hunt season activity or post-rut behavior: additionally, increased movement in April/May
could be related to pre-calving activity. Obvious patterns emerged during the rutting
season (i.e., September) when animals tend to congregate in typical harem groups (Figure
4.21). Additionally, grouping behavior of animals in colder months (January through
March) during periods with trivial snow deposition suggests a possible thermoregulatory
behavior of elk to decreasing temperatures (Figure 4.22). Given that the primary
objective of model development was to recreate movement pathways no efforts were
made to model such behavior. Additional research is necessary to evaluate such response
mechanisms in order to sufficiently model these interactions. Caution must be used in
interpretation of patterns, however. Human nature often perceives patterns even though
they may not actually exist and, should a pattern truly exist, it cannot be assumed the
underlying mechanism in the model is correct (Grimm and Berger, unpubl. report).
Additional tests of the model’s reliability will come as more telemetry data are collected

and additional research is conducted.
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Table 4.1. Factors that influence habitat selection by elk. Adapted from Skovlin (1982).

Category of Category of
Variables Variable Name Variables Variable Name
Topographic Food
Elevation Availability
Slope Quality
= Gradient
= Position on slope Cover
= Aspect Cover Type
Land Features * Thermal
* Hiding
Meteorologic Density
Precipitation - snow Composition
* Depth Site Productivity
= Condition Structure
Temperature Successional Stage
= Solar radiation Configuration
» Radiation
» Convection Space
Humidity
Barometric Pressure Water and Salt
Wind
= Velocity Specialize
Habitats
* Direction Calving
Wallows
Trails
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Figure 4.1. Major landowners and historic fire boundaries on the eastern slope of the Pajarito Plateau in the Jemez
Mountains of north central New Mexico.
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Figure 4.5. The effect of the force variable on the modeling of “Habitual Behavior/Memory” using 10,000 simulated animals,
no “tag backs”, and no “wandering”: a) No force applied, b) 0.01 force applied, c) 0.025 force applied, d) 0.05 force applied, e)
0.1 force applied, and f) 0.25 force applied. As force increases, the overall patterns constrict and the paths of highest use
become more linear. Normalized values are based on a maximum value of 10,000 potential animal observations/cell.
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Figure 4.6. The effect of the “wandering” and “tag back” flags on the modeling of
“Habitual Use/Memory” using 10,000 simulated animals. When “wandering” was turned
on, simulated animals were counted every time they returned to a cell. When “tag backs”
was turned on, simulated animals could immediately return to the cell from which they
just departed: a) “Tag backs” turned on, but no wandering, b) “Wandering” turned on, but
no tag backs. The effect of using the “tag back™ and “wandering” options did not result
in very realistic patterns based on actual observations and neither option was used in the
creation of the final version of the habitual use/memory variable.
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Figure 4.7. The effect of total numbers of simulated animals on the modeling of “Habitual Use/Memory” using no tag backs and no
wandering at a force of 0.05: a) 1000 individuals b) 10,000 individuals, and ¢) 50,000 individuals. The addition of animals did not change
overall patterns much, but resulted in a sharper image. The model using 50,000 animals was chosen as the final model.



061

Normalized V alues

0.001 - 0.111
0.111 - 0.222
0.222 - 0.333

[ 0333-0.444
B 0.444 - 0.556
B 0.556 - 0.667
B 0.667-0.778
I 0.778 - 0.889
I 0889-1

@ EIk Locations

Figure 4.8. The final version of the “Habitual Use/Memory” model used in the individual-based model. Actual locations from the 10 elk
used in model development are overlaid on the resultant map. The simulation run used 50,000 animals, a minimal force of 0.05, no “tag
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snow depth exceeded a minimum value, but was not so high as to exclude animals from a cell.
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Figure 4.13. Identification of primary and secondary movement routes across the east Jemez Mountains based on 10 GPS-collared
animals. Primary routes were used by > 4 animals and secondary routes were used by < 2 animals.
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Figure 4.15. Daily locations for simulated and real animals during the time period of January/February 2001 through February
2004. A single simulation run was conducted with a total elk population of 3,500. Starting locations for simulated animals (n
= 5) were matched with the capture location for the corresponding real animals (n = 5). Total numbers of locations between
simulated (n = 5045) and real (n = 3255) animals differ due to missing GPS locations for the real animals. Aside from
stochastic behaviors, overall patterns of habitat use between simulated and actual animals match fairly well and indicate no
substantial errors in model performance. Additional simulation runs were essentially the same, which further validates model
results. Acronyms for land cover types are found in Appendix B.
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Figure 4.16. Normalized density (number/km?) for the ten animals used in model
development (a), the 5 independent test animals used in validation (b), and 5 animals
generated through a single simulation run (c). Though simulated animals exhibited
similar habitat-use patterns, densities were higher just south of the Cerro Grande burn
area and not as high in the southeast portion of the Valles Caldera National Preserve.
Differences in density patterns, especially in areas burned by the Cerro Grande Fire, may
be due to stochasticity in simulation runs, decreased resolution of the underlying land
cover map, or movement rules related to topography.
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The southernmost route did not correspond to the independent test animals, but fell within a primary corridor identified during model development. The
primary movement route was used by 4 of 5 simulated animals and secondary routes were used by < 2 animals. The goal of model validation was to
recreate pathways in roughly the same proportions used by real animals and that was accomplished.
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the “instantaneous” production of snow by the SAVANNA Ecosystem Model, which resulted in simulated animals remaining on the Valles Caldera.
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Figure 4.21. The individual-based model was not designed to capture behavior seen by
animals during the rutting season when animals typically form harem groups as seen in
this map of animal locations from September 2001. Acronyms for land cover types are
listed in Appendix B.
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Figure 4.22. Animals congregated during colder months in which there was little snow.
Shown are all animal locations for February 2002. Snow cover is depicted in shades of
blue and ranges from 0 (lighter) to 57 cm (darker). This pattern of behavior was not
sufficiently captured by the individual-based model and deserves further consideration.
Acronyms for land cover types are listed in Appendix B.
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CHAPTER V
APPLICATION OF AN INDIVIDUAL-BASED MODEL
TO ASSESS ELK (Cervus elephus nelsoni) MOVEMENT
AND DISTRIBUTION PATTERNS FOLLOWING

THE CERRO GRANDE FIRE

Introduction

In early May 2000, the Cerro Grande Fire (CGF) in northcentral New Mexico
burned approximately 17,200 ha and 400 residences in the town of Los Alamos. The fire
was the result of an escaped prescribed burn initiated at Bandelier National Monument
(BNM) to reduce unnaturally high fuel loads resulting from decades of fire suppression.
National Park Service (NPS) policy states that rehabilitation guidelines for newly burned
areas will be implemented to mitigate short- and long-term detrimental consequences of
severe wildland fires (National Park Service 2001). The specific goal of this policy is to
prevent further degradation of resources following wildland fire, and mitigate threats to
life, property, and natural and cultural resources. This cannot be achieved without sound,
scientific research that evaluates the effects of large-scale fires on landscape succession
and ecosystem recovery. The recent Cerro Grande Fire, coupled with the region’s unique
interagency collaborations, presents a rare opportunity to study the long-term ecological
consequences of large-scale fires through the use of simulation modeling.

It is generally believed that fire increases biomass, nutritional quality, palatability,

and digestibility of forage species consumed by elk (Peck and Peek 1991, Stein et al.
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1992, Bartos et al. 1994, Tracy and McNaughton 1997) and, as a consequence, elk should
prefer burned over unburned habitats (Rowland et al. 1983, Brown et al. 2000).
However, many of these studies reflect effects of small-scale or prescribed burns: few
studies detail the effects of extensive fires on ungulate populations due to the infrequent
nature of such events. Despite the lack of information, it is certain that large-scale
wildfires influence the availability of habitat patches and change landscape heterogeneity
and habitat connectivity (Brown et al. 2000), which affects the distribution and
movement patterns of ungulates.

The effect of large-scale fires on elk has not been adequately investigated.
Norland et al. (1996) studied the short-term effects of the 1988 Yellowstone fires on elk
habitat use, forage biomass and quality, willow production, and snow characteristics in
key elk habitats. Summer habitat use was indexed through the use of pellet groups and
winter use was indexed through elk feeding craters in the snow. No differences were
found in either summer or winter use between burned and unburned sites, suggesting that
elk use/behavior had not changed in response to the fire. In contrast, Singer and Harter
(1996) found elk avoided burned forests during the first three winters post-fire, possibly
in response to deeper, denser accumulation of snow and reduced forage biomass.
However, both the Singer and Harter (1996) and Norland et al. (1996) studies stated that
elk use of burned areas may increase as post-fire succession takes place. Other studies
also support this conclusion (Pearson et al. 1995, Tracy and McNaughton 1997) with
reported preferential use of burned grasslands in Yellowstone’s northern range 3 to 4

years post-fire. In addition, habitat use in the former studies was evaluated through the
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use of indices and observational counts. The use of such indices as a measure of elk
behavior or habitat use is debatable (Collins et al. 1978, Leopold et al. 1984) and no
longer adequate given the advanced technology that is available through radio collar
devices and more expensive and accurate global position system (GPS) devices.

The eastern Jemez Mountains of northcentral New Mexico are not new to the
impacts of large-scale fires. In the last 30 years the Jemez Mountain region has
experienced 4 major fires — the La Mesa fire in 1977, the Dome fire in 1996, the Oso fire
in 1998, and the Cerro Grande fire in 2000. Of these, the most prominent fires were the
La Mesa and the Cerro Grande burning 6,180 and 17,200 ha, respectively. These fires
were centered in areas of dense, monotypic ponderosa pine forests, which, in the case of
the earlier fires, were converted into a more productive and diverse mosaic of grassland,
shrubland, and forests. It is believed such conditions may have contributed to population
increases in the regional elk herd, which has previously been estimated to have an annual
growth rate of 21.3% and doubling time of 3.6 years (Allen 1996).

The purpose of this chapter is to apply a spatially explicit, stochastic, individual-
based model (IBM) and assess its use as a flexible, cost-effective adaptive management
tool following the Cerro Grande Fire. Efforts will be made to evaluate changes in
movement and distribution patterns of elk in relation to spatial and temporal aspects of
the fire under two potentially realistic model scenarios given elk dynamics and
management concerns in the Jemez Mountains. Pattern-oriented analysis following
methods outlined in Chapter 4 will be used to assess changes in movement and

distribution from baseline conditions. Management implications as a result of changes in
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movements and distributions based on simulated conditions projected by the model will be

discussed.

Study Area

Los Alamos National Laboratory (LANL) is situated on the eastern edge of the
Jemez Mountains in north-central New Mexico along the Pajarito Plateau — an area
formed by an ash flow of volcanic activity about 1.4 million years ago (Wilcox and
Breshears 1994). LANL covers 112 sq km (43 sq mi) and is approximately 120 km (80
mi) north of Albuquerque and 40 km (25 mi) west of Santa Fe (Bennett et al. 1997). It is
bordered by Bandelier National Monument to the southwest, Santa Fe National Forest to
the northwest, San Ildefonso Pueblo to the east, and Santa Clara Pueblo to the north. In
addition, the federal government recently purchased 37,200 ha of private land that
contains the Valles Grande — an ancient caldera grassland that serves as the primary
summering ground for the region’s growing elk population.

The territory is topographically complex ranging in elevation from 1,631 m near
the Rio Grande to 3,199 m at the crest of Sierra de los Valles (Balice et al. 2000) and is
transected by a series of smaller canyon systems and mesas making the terrain rough and
virtually inaccessible in some places. Five main vegetative associations have been
described (Foxx et al. 1999). Pinyon-juniper grassland is found along the Rio Grande on
the eastern border of the plateau and extends upward on the south-facing sides of canyons
between 1,700 and 1,900 m. Elevations between 1,900 and 2,100 m are characterized as

pinyon-juniper woodland, which include moderate stands of pinyon pine (Pinus edulis)
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and one-seed juniper (Juniperus monosperma) with understory shrubs of wavy leaf oak
(Quercus undulata), Apache plume (Fallugia paradoxa), and mountain mahogany
(Cercocarpus montanus). Ponderosa pine communities range in elevation from 2,100 to
2,300 m and are characterized by an overstory of ponderosa pine (Pinus ponderosa) and
understory of Gambel oak (Quercus gambelii), New Mexican locust (Robinia
neomexicana), and mountain mahogany. Typical grasses in the transitional zone include
mutton grass (Poa fendleriana), June grass (Koeleria cristata), and mountain muhly
(Muhlenbergia montana). Mixed-conifer, at an elevation of 2,300 to 2,900 m, has a
variety of overstory species that include Douglas fir (Pseudotsuga menziesii), white fir
(Abies concolor), blue spruce (Picea pungens), and quaking aspen (Populus tremuloides).
Gambel oak, rock spirea (Holodiscus dumosus), and waxflower (Jamesia americana) are
typical understory shrubs and slender wheatgrass (Agropyron trachycaulum), Canada
bluegrass (Poa compressa), Parry oatgrass (Danthonia parryi), and blue grama
(Bouteloua gracilis) are common grasses in the mixed-conifer zone. Subalpine
grasslands are found at elevations of 2,900 to 3,200 m and are characterized by
intermittent stands of spruce-fir.

The Jemez Mountain region has a temperate, semi-arid mountain climate that is
strongly influenced by elevation. Average annual precipitation on the Pajarito Plateau is
330 to 460 mm (Davenport et al. 1996, Wilcox et al. 1996) of which about 45% occurs in
July, August, and September. Average daytime temperatures range from 32.2°C in the

summer (max. = 41.1°C) to -9.4°C in the winter (min. = -30.6°C).
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Methods

In traditional field ecology, hypothesis testing is typically accomplished by
creating several replicates of > 2 treatments in which 1 or more independent variables are
manipulated and then analyzed for significant differences among treatments. The same
approach can be used to analyze an IBM: treatments (a.k.a. “scenarios”) are different
versions of the IBM in which > 1 independent variable(s) are manipulated and replicates
are generated via stochastic events in the IBM (Grimm and Railsback 2005). However,
traditional hypothesis-testing statistics are often inappropriate to analyze IBM scenarios
(see “Discussion,” Chapter V). An alternative approach is followed here, whose first
(and sometimes sufficient) step is to present the degree of difference among scenarios
using visual observation techniques and pattern-oriented analysis (Rykiel 1996, Grimm

and Berger unpub. rep., Grimm and Railsback 2005).

Model Scenarios

It is clear that an infinite numbers of possible scenarios could be created through
the collective manipulation of 1 or more independent variables and/or parameters in the
individual-based model or the underlying successional model (SAVANNA — see Chapter
3). In this chapter, an attempt at simple, yet realistic, applications was pursued. Selection
of model scenarios arises from a comprehensive understanding of elk biology and issues
faced by managers in the Jemez Mountains.

In 1948, the New Mexico Department of Game and Fish (NMGF) released 21

cows/calves and seven bulls imported from Yellowstone National Park into the Jemez
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Mountain region (Allen 1996). Since then, it is believed that the population has exhibited
an exponential increase, partially in response to the 1977 La Mesa fire when thousands of
hectares of wintering range were created (Wolters 1996). By 1997, management of the
elk herd in the Jemez Mountains had become controversial enough that the New Mexico
Department of Game and Fish increased the number of elk licenses in the region,
reducing the population by 30% within 2 years (Kirkpatrick et al. unpub. rep.).

Since 1999, sightability surveys have estimated the Jemez Mountain elk
population to be roughly 3,500 to 5,000 animals (Kirkpatrick et al. unpub.rep.). The
potential for an increase in the Jemez Mountain elk population remains a management
concern. Studies estimated an annual population growth rate of 21.3% and doubling time
of 3.6 years (Allen 1996) for the region. Other studies have also reported annual growth
rates of elk exceeding 20% (McCorquodale et al. 1988). Local residents of Los Alamos
and White Rock report an increased number of elk/vehicle accidents on roads (Parker
1997). About 70% of Bandelier’s cultural resources are being damaged by erosion (Allen
1996) and there is concern that elk impacts to the area may accelerate erosion due to
excessive trampling and loss of herbaceous cover resulting from grazing (Rupp et al.
2001a,b).

An obvious application of the IBM developed in this research, therefore, is to
evaluate possible changes in elk movement and distribution following the Cerro Grande
Fire in conjunction with a potential increase in the population. Individuals will likely
respond to an increase in the population in one of two ways: 1) they will exhibit increased

tolerance for their intraspecific counterparts by increasing the number of animals per unit
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area, or 2) they will limit their number per unit area in response to increased intraspecific
competition resulting in different disbursal patterns. Given plant response to defoliation
is partially defined by the intensity (amount of plant material removed) and frequency
(the number of times a plant is defoliated) of use which, in turn, affects both the quality
and quantity of forage produced (Motazedian and Sharrow 1990), these two scenarios
may substantially impact successional processes following the Cerro Grande Fire and

affect the movement and distribution patterns of elk. Two scenarios were modeled:

» Scenario I - A current population of 3,500 animals assuming no population growth
and no limit on the number of animals occupying a single cell.
= Scenario 2 - An “instantaneous” doubling of the elk population to 7,000 animals and

no limit on the number of animals occupying a single cell.

Though the doubling of the population to 7,000 animals appears low given the
potential doubling-time reported in the region and substantiated in the literature, a
conservative approach was taken under the assumption the regional population will not
be allowed to increase beyond the 8,000 animals seen in the late 1980°s (Kirkpatrick et
al. unpub. rep.). Pressure on resources, however, will remain constant given the
population will not be allowed to fluctuate.

Each scenario was run in a computer simulation for a period of 20 years
beginning in June 2000 and concluding in May 2020. Animals were initialized by

randomly scattering them through their summering range on the Valles Caldera National
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Preserve. Maximum number of steps per day was set at 86 cells per day to (~ 13,000
m/day) to mimic the maximum observed distance moved by the 10 animals used in model
development. In order to initialize vegetative processes following the fire in the most
realistic way possible, actual weather data were used from June 2000 through December
2002 and random weather was initiated in January 2003. The HSI described in Chapter 4
was used without modification for the entire length of each run. Quasi-migratory
behavior was triggered by the emigration of individuals from the VCNP and return to the
summering ground was determined by the presence or absence of snow as outlined in

Chapter 4.

Evaluation of Results

In order to properly assess potential changes in movement and distribution
patterns of elk following the Cerro Grande fire, baseline conditions must first be
established. The most robust measure of current behavioral conditions exhibited by the
Jemez Mountain elk population arises from GPS locational data used in development of
the individual-based movement model (Chapters 2 through 4). Therefore, the 10 animals
used in development of the IBM will serve as the baseline conditions for animal
movements and distribution immediately following the Cerro Grande Fire. Movement
was assessed through analysis of primary and secondary pathways and distribution was
assessed through the application of density maps.

Preliminary assessment of movement pathways revealed two primary and two

secondary movement corridors used to traverse the eastern Jemez Mountains (Figure
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5.1). Primary corridors had > 4 of the 10 animals using them whereas secondary
corridors had < 2 animals using them. The role that habitual behavior plays in movement
patterns has not been clearly defined (Adams 1982), but fidelity to [migratory] movement
patterns appears strong (Altmann 1952, Brazda 1953, and Anderson 1958 in Thomas and
Toweill 1982). Shifts in movement pathways as succession proceeds would, therefore,
be a conspicuous behavioral response worthy of additional study and consideration.

In addition, animal densities were extremely high in the southeast portion of the
Valles Caldera National Preserve and southwest portion of the area burned by the Cerro
Grande Fire (Figure 5.2). It is generally believed that fire increases biomass, nutritional
quality, palatability, and digestibility of forage species consumed by elk (Peck and Peek
1991, Stein et al. 1992, Bartos et al. 1994, Tracy and McNaughton 1997) and, as a
consequence, elk should prefer recently burned over unburned habitats (Rowland et al.
1983, Brown et al. 2000). High densities in the southwest portion of the Cerro Grande
Fire in the first three years following the fire may reflect these factors or be related to
creation of edge habitat and/or focused reseeding efforts. Visual observation revealed
high densities of elk along edge habitat adjoining highest burn severities where reseeding
efforts were focused (Figure 5.3).

Daily movements were extracted in groups of 10 random individuals using the
output program developed in Chapter 4 (Table E.8 of Appendix E) and overall patterns
were subjectively analyzed to determine consistent changes in movement and distribution
patterns following the 20-year run for each model scenario. One set of ten randomly-

selected animals judged to best exhibit consistent overall patterns with the simulated
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population was chosen for analysis and discussion. Movement pathways were
constructed using the Animal Movement Analyst Extension (AMAE) in ArcView 3.2a
(Hooge and Eichenlaub 2000) and projected on landscape maps for a visual analysis of
primary and secondary pathways as outline in Chapter 4. In addition, density maps
(locations/km?) were created and compared to baseline conditions. Cumulative annual
net primary production (ANPP) and animal offtake/consumption (normalized in kg/ha)
were extracted from the SAVANNA Ecosystem Model following each model run and
used to further clarify changes in movement and distribution patterns. Deviation from
patterns of habitat use exhibited by the 10 animals used in model development will be

considered as consequences of changes in landscape conditions following the fire.

Results

Scenario 1

When no increase in the elk population was assumed and group size was not
limited within individual cells, distinct changes in habitat and movement patterns in
relation to spatial and temporal aspects of the Cerro Grande Fire resulted. As expected,
ANPP increased in the central portion of the Cerro Grande Fire 20 years post-burn
(Figure 5.4). Locations from GPS-collared animals 1-year post-fire indicated
concentrated behavior along forest edges next to severely burned areas (Figure 5.3).
Behavior of simulated animals 20-years post-fire also showed activity along forest edges

next to areas that were severely burned, but overall distribution patterns were not as
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concentrated (Figures 5.3 and 5.4). Twenty years following the fire simulated animals
began exploring more central portions of the burn where fire severities were at their
highest, but activity was still largely limited to edges of these areas. Though not related
to the burn itself, it was also noted that ANPP decreased over 20 years in the southeastern
portion of the VCNP where historical elk use was at its highest.

A map of elk densities based on the 10 simulated animals corresponded with the
increased activity just east of the tip of Bandelier National Monument (Figure 5.5). The
region of highest density within the burn area corroborates findings based on burn
severity discussed above. In addition, animals expanded northward 20 years following
the fire compared to 1-year post-fire (Figures 5.2. and 5.5). Areas of increasing density
also showed the highest levels of consumptive activity (Figure 5.6).

An analysis of movement pathways substantiated patterns seen in distributional
behavior (Figure 5.7). Though the two primary and southern-most secondary pathways
used by animals immediately following the fire continued to be used 20 years post-fire
(Figures 5.1 and 5.7), a shift in activity northward resulted in the upgrading of the
northern-most pathway from secondary to primary. In addition, a potential new

secondary pathway emerged to the far north.

Scenario 2
When the elk population was doubled and group size was not limited within
individual cells, distinct changes in habitat and movement patterns in relation to spatial

and temporal aspects of the Cerro Grande Fire resulted but differed from those seen in
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Scenario 1. Annual net primary productivity increased in the central portion of the Cerro
Grande Fire 20 years post-burn (Figure 5.8), but overall production was lower in the
southern-most portion of the Cerro Grande Fire when compared to Scenario I (Figures
5.4 and 5.8). Behavior of simulated animals 20-years post-fire also showed activity along
forest edges next to areas that were severely burned, but overall distribution patterns were
less concentrated than those observed in Scenario 1. In addition, simulated animals
explored more central portions of the burn area and moved less distance to the southeast
than seen in the original population or the simulated population from Scenario I. Though
not related to the burn itself, it was also noted that ANPP decreased over 20 years in the
southeastern portion of the VCNP as it did in Scenario 1.

A map of elk densities based on the 10 simulated animals corresponded with the
expanding activity further north into the burned area (Figure 5.9). In addition, animals
expanded northward 20 years following the fire compared to 1-year post-fire (Figures
5.2.and 5.5). In contrast to patterns seen in Scenario 1, however, few “hot spots” of
activity existed inside the burned area and overall densities were more dispersed. This
was reflected in the map of consumption (Figure 5.10). Though more consumptive
activity was recorded for the central section of the burn, the greatest offtake was seen in
the far northwestern portion of the fire where burn severities were varied creating a
patchy mosaic often attractive to elk.

An analysis of movement pathways substantiated patterns seen in distributional
behavior (Figure 5.11). Though the two primary and southern-most secondary pathways

used by animals immediately following the fire continued to be used 20 years post-fire

216



(Figures 5.1 and 5.10), a shift in activity northward resulted in the upgrading of the
northern-most pathway from secondary to primary. In addition, a potential new
secondary pathway emerged to the far north. These patterns were also seen in Scenario 1
indicating a true pattern may be emerging as a result of changes occurring in conjunction

with spatial and temporal aspects of the Cerro Grande Fire.

Discussion
Landscape-scale responses following large fire events are in a state of constant

flux, which can impact elk through (Brown et al. 2000):
¢ Changes in the availability of habitat patches and landscape heterogeneity;
¢ Transformations in the composition and structure of larger areas, such as watersheds,

which provide the spatial context for habitat patches;
¢ Modifications in habitat connectivity.
Ecotones produced by changes in landscape heterogeneity often result in a preferred
combination of forage and cover (Skovlin 1982). Elk winter ranges are often
concentrated in areas historically impacted by fires or burned for management purposes
(Irwin and Peek 1983, Peck and Peek 1991) and may be related to animal energetics.
Rowland et al. (1983) found elk weighed significantly more and blood samples indicated
better energy status for elk wintering on the burn following the 1977 La Mesa Fire. In
addition, use of burned areas can persist beyond the initial increases of early successional

herbaceous growth (Wolf 2003) thus affecting long-term ecosystem dynamics.
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The use of modeling to investigate ungulate responses to large-scale fires has
been explored in few instances. Turner et al. (1994) developed a spatially explicit,
individual-based simulation model (NOYELP) to explore the effects of fire scale and
pattern on the winter foraging dynamics and survival of free-ranging elk in Yellowstone.
Simulations revealed that winter severity played an important role in ungulate survival
and that spatial patterning of the fire, coupled with snow conditions, influenced predicted
ungulate dynamics. The model did not address ungulate reproduction, succession
dynamics, or the effects of summer precipitation on pre-winter forage availability — all of
which are important in projecting the long-term dynamics of the ecosystem (Turner et al.
1994).

My application of a dynamic, spatially explicit individual-based model is an
extension of and possible improvement to the model developed by Turner et al. (1994).
Results were evaluated through subjective evaluation and pattern-seeking; more thorough
model corroboration (as was done in Chapter 4) is clearly needed, and will be a focus of
future research.

As with other studies, spatial patterning of the fire coupled with snow conditions
influenced the response behaviors of simulated animals. In addition, successional
processes altered movement and distribution patterns observed following the fire. Areas
of greatest density were often focused along forest/grassland edges in areas that were
severely burned and, in general, populations expanded to the north. The magnitude of
behavioral response was dependent on the total number of simulated animals. Doubling

the population caused expansion of habitat use, increased activity (movement and
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distribution, consumption) in the central portion of the Cerro Grande burn, and decreased
ANPP in the southern-most portion of the Cerro Grande Fire. These results might
suggest ecological carrying capacities were reached and/or intraspecific competition
encouraged the expansion of animals into new territory.

Though correlation does not imply causation, multilevel models yield information
about parameters within and between levels of organization and allow us to discover
heuristic principles for generating predictions about systems and possibly principles for
manipulating them (Schank 2001). Prior to the Cerro Grande Fire, the eastern Jemez
region was already concerned about potential increases in the regional elk population.
Application of this model and analysis of its results will allow managers to project where
on the landscape elk may be most likely to aggregate, paths of movement/migration, and
sites potentially vulnerable to erosion. Furthermore, LANL and Los Alamos County are
concerned about increases in elk/vehicle collisions. Model predictions may identify
potential “hotspots” of elk activity along roadways and relate this information to pre- and
post-fire vegetative characteristics. Displacement of animals as a result of the fire will no
doubt alter mitigation efforts in this area as well. Finally, the model can be used as a
predictive tool to determine the potential impacts of management activities (e.g., post-fire
tree thinning and increased human activity, reseeding efforts) on potential elk distribution
and movement patterns. The development, calibration, continued validation, and
application of this IBM will provide a dynamic tool to be used for adaptive management

applications for many years to come.
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Figure 5.1. Identification of primary and secondary movement routes across the east Jemez Mountains based on 10 GPS-collared animals. Primary

routes were used by > 4 animals and secondary routes were used by <2 animals. These routes serve as baseline conditions to analyze changes in elk
movement in relation to spatial and temporal aspects of the Cerro Grande Fire.
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Figure 5.2. Animal densities in the first 3 years following the fire showed high use of the southwestern portion of the Cerro
Grande Fire. Densities are based on 10 collared animals and represent a total of 10,812 locations taken on a daily basis.
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Figure 5.3. Cerro Grande Fire burn severity map with associated elk locations based on 10 GPS-collared animals for the period of 2001
through 2004. Hot spots of activity may be related to increased biomass, nutritional quality, palatability, and digestibility of forage
species, creation of attractive edge habitat, and/or reseeding efforts in regions with the highest burn severity. Density patterns serve as
baseline conditions to analyze changes in elk distribution in relation to spatial and temporal aspects of the Cerro Grande Fire.
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Figure 5.4. Total annual net primary production 1-year post-fire with actual locations for 10
GPS-collared animals (a) and 20-years post fire (b) with 10 simulated animals (Scenario 1). In
both cases animals appeared to prefer edge habitat. Note the increased production in the central
portion of the Cerro Grande burn and the decreased production in the southeastern portion of the
Valles Caldera National Preserve.
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Figure 5.5. Density (#/km?) for a random sample of 10 animals based on a simulation run of 3,500 animals for 20 years assuming no
population growth and no limit on the number of animals occupying a single cell (Scenario 1). Results indicate increased densities just
north of where previous densities were highest 20 years prior (compare to Figure 5.2) plus an overall shift in habitat use further north than
previously seen.



6CC

u 1 D Cerro Grande Fire
- I:l Agency Boundaries

Santa Clara

Pueblo s & Normalized Offtake (Kg/ha)
-t ek 0.001 - 0.111
= " — { —l 0.111 - 0.222
Valles Caldera r 0.222 - 0.333
National Preserve
- Wy Santa Fe 0.333 - 0.444
d National Forest - 0.444 - 0.556
B o556 - 0.667
B o667-0.778
B o775 - 0.889
B oss0-1
Los Alamos
*Nafional Laborator
’\ “ N
Bandelier N %
National ' = dph W E
Monument ’ ‘*-——
u i =l N S
= w o Iy [ haie | -
g ' o -8
0 3 6 9 12 15 18 Kilometers

Figure 5.6. Normalized consumptive offtake (kg/ha) for simulated elk under Scenario 1 20-years post-fire. The highest levels
of consumptive offtake were found just east of the tip of Bandelier National Monument, which corresponded with high elk
densities (Figure 5.5). In addition, elk habitat use expanded northward when compared to use 1-year post-fire (Figure 5.5), but
animals continued to concentrate along edges classified as high burn severities (Figure 5.3).
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were used by > 4 animals and secondary routes were used by < 2 animals. Results indicate a potential new primary movement
route emerging from a secondary route 20 years prior (compare to Figure 5.1) and a new secondary route at the far north.
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Figure 5.8. Total annual net primary production 1-year post-fire with actual locations for
10 GPS-collared animals (a) and 20-years post fire (b) with 10 simulated animals
(Scenario 2). In both cases animals appeared to prefer edge habitat. Unlike Scenario 1,
more animals exhibited exploratory behaviors near the central part of the Cerro Grande
Fire area where burn severities were high in May 2000. Close inspection also reveals
more areas denuded of vegetation in the south part of the burn where densities were
initially high post-fire.
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Figure 5.9. Density (#/km?) for a random sample of 10 animals based on a simulation run of 7,000 animals for 20 years
assuming no population growth and no limit on the number of animals occupying a single cell (Scenario 2). Results indicate
increased densities north of where previous densities were highest 20 years prior (compare to Figure 5.2) but with a more
equitable disbursement in pattern when compared with Scenario 1 (Figure 5.5).
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Cerro Grande burn. In addition, new areas of elk habitat use emerged in the far northwest portion of the Cerro Grande burn

where fire severities varied (see Figure 5.3) creating a patchy mosaic attractive to elk.
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CHAPTER VI

CONCLUSION AND DISCUSSION

A primary consideration driving the conceptualization and implementation of
scientific studies should be their potential value to resource managers for purposes of
mitigation. As management agencies move toward the concept of adaptive management,
the demand for dynamic modeling is increasing. Active adaptive management has been
defined as the “systematic process of modeling, experimentation, and monitoring to
compare the outcomes of alternative management actions” (Farr 2000: 2). Adaptive
management aims to integrate interdisciplinary experience and scientific information into
dynamic models that attempt to make predictions about the impact of alternative policies
(Holling 1978, Walters 1986, Van Winkle et al. 1997).

Quantitative models take complex ecological processes and attempt to explain
them in simple mathematical terms for the purpose of exploring data, formulating
predictions, and guiding research. Habitat selection models are widely used to evaluate
habitat quality and predict effects of habitat alteration on animal populations. Habitat
quality is typically measured by observing the frequency with which animals use various
habitat types in relation to the availability of habitat. Such approaches have come under
intense criticism in recent years because animal density does not necessarily translate into
critical habitat necessary for the survival and reproduction (i.e, “fitness”) of an individual

(Van Horne 1983, Rettie and McLoughlin 1999). In addition, application of telemetry
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data commonly employed to assess habitat selection involves a number of implicit
assumptions (Rettie and McLaughlin 1999).

Population persistence through the process of natural selection is often packaged
in the form of individual-level fitness. Because natural selection works on genetic
variation caused by mutation and recombination, organisms should develop optimal
behavioral features that maximize fitness over time (Drickamer 1998, Rettie and
McLaughlin 1999). The aggregative responses of individuals — the basic units of ecology
(Wiens et al. 1993) — result in higher-order phenomena such as population dynamics,
which are of concern when considering the ecological consequences of habitat
fragmentation (With et al. 1997). It follows that movement at the population-level can
ultimately be explained at the level of the individual (Rosenberg et al. 1997, Turchin
1998). Quantifying landscape connectivity, therefore, requires spatially explicit methods
that are sensitive to the possibility of complex interactions between the behavior of
individual animals and landscape structure (Pither and Taylor 1998).

The individual-based approach to modeling animal movements applied here
addresses these principles that are largely ignored in other modeling environments. First,
it acknowledges that individuals are behaviorally and physiologically distinct because of
genetic and environmental influences. Second, it recognizes that interactions among
individuals are inherently localized (Slothower et al. 1996, Schank 2001). However,
individual-based (bottom-up) approaches are not mutually exclusive from traditional

population-based (top-down) approaches and ecological theory would be better served by
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analyzing IBMs with tools developed for state variable models and comparing results to
determine joint interactions (Grimm 1999).

By definition, landscape connectivity is a species-specific characteristic
determined by the interaction between movement potential of each species and landscape
structure (Monkkonen and Reunanen 1999). Long-term studies on the movement
patterns of species at local and regional scales are needed because those are the scales at
which conservation strategies are planned and implemented (Saunders and Hobbs 1991).
Designing functional corridors at the landscape scale is difficult due to limited detailed
data on movements of animals through landscapes, which, in turn, inhibits accurate
identification of features essential in maintaining functional connectivity.

The evolution of global positioning system (GPS) devices for use in radio-
marking wildlife continues to improve the quality and quantity of data that can be
collected on animal movement and habitat use patterns. With the discontinuance of
selective availability (SA) in May 2000, the accuracy of GPS increased 10-fold. As a
result, many researchers regard differential correction as obsolete, yet many underlying
sources of error in locations may still exist. Regardless of whether or not the researcher
chooses to differentially correct locations in a post-SA world, no habitat-selection study
is defensible without an assessment for observational bias that may result from changes
in animal behavior or a malfunction of the collar system and lead to misapplication of
results (Rempel et al. 1995, Moen et al. 1997, Frair et al. 2004).

A thorough analysis of GPS collar accuracy (Chapter 2) indicated a strong effect

of 2D fixes on position acquisition rates (PARs) depending on time of day and season of
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year corresponding with other studies cited in the literature. Position acquisition rates
were lower during mid-day hours and summer months indicating a possible change in
animal behavior during the hottest parts of the day/season. Slope, aspect, elevation, and
land cover type affected dilution of precision (DOP) values for both 2D and 3D fixes, but
significant relationships varied from positive to negative making interpretation difficult.
Additional biases centered on data that are missing or contain habitat-dependent errors in
location (Rettie and McLoughlin 1999, Biggs et al. 2001) may be countered through the
application of associated error polygons related to habitat patch size and studies are
currently underway in the Jemez Mountains to address these concerns. Nonetheless,
thorough analysis of GPS collar accuracy indicated an overall position acquisition rate
(PAR) of 93.3%, higher than that typically seen in the literature, and mean DOP values
consistently in the range of 4.0 to 6.0 — well below the 7.0 DOP setting suggested for best
accuracy by the manufacturer (Trimble 1999) — leading to the conclusion that collar
performance was acceptable for purposes of this research.

In addition to potential bias introduced through GPS telemetry, some authors have
argued that temporal autocorrelation of consecutive radio-telemetry locations may violate
independence assumptions that are central to many parametric statistics making habitat
selection studies difficult to interpret (Swihart and Slade 1985, Otis and White 1999).
However, others have stated that when individual animals are treated as the experimental
unit, the dependencies between relocations are not an issue because we are interested in
the trajectory of space used by an animal (Aebischer et al. 1993, Millspaugh and Marzluff

2001). Attempts were made to address these concerns through the application of
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statistical procedures to test for the possibility that DOP locations recorded for a given
animal were not necessarily independent and/or that DOP readings for different animals
may have different variances. Furthermore, this approach presents an opportunity for
further research to determine the effect of temporal autocorrelation on habitat use results
thus challenging arguments about the effect of temporal autocorrelation on habitat
selection studies.

Simulation models are critically dependent on the input values for model
parameters and, therefore, have the greatest value when they are coupled with field
studies, both to calibrate model parameters and to test or confirm model projections
(Turchin 1998). A primary need for the development of an IBM to study fire effects on
elk movement and distribution was a model to simulate successional patterns following
disturbance. SAVANNA, which has survived rigorous testing and peer-review for 15+
years, was designed specifically for evaluating herbivore dynamics within ecosystems
(Chapter 3). Inputs to the SAVANNA Ecosystem Model included a detailed land cover
map developed from LANDSAT images, long-term Natural Resource Conservation
Service (NRCS) and LANL weather data, NRCS soil maps, and U.S. Geological Survey
digital elevation models — all of which have been independently validated by these
agencies as well as corroborated here. These data were assimilated and augmented with
159 additional vegetation plots to further calibrate and validate the model. Model
predictions of herbaceous biomass were consistent with available data and control runs
for weather data from 1990 through 2002 indicated proper functioning of the model in

terms of precipitation output. Therefore, weather and vegetation output worked within
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the bounds of model parameters and spatial interpolations of snow were considered
reasonable for this study.

Dynamic outputs generated through the application of the SAVANNA Ecosystem
Model were used as inputs to develop a spatially-explicit, stochastic, individual-based
model to assess potential changes in elk movement and distribution patterns related to
spatial and temporal aspects of the Cerro Grande Fire (Chapter 4). Static variables in the
form of roads, buildings, fences, and habitual use/memory were used to modify a map of
impedance values based on the logistic regression of slope, aspect, and elevation.
Integration with SAVANNA came through the application of a habitat suitability index
(HSI), which integrated movement rules written for the IBM and variables modified and
produced by the ecological processes run in SAVANNA. Fitness — the ability of an
animal to survive and reproduce viable offspring — was assumed to be positively
correlated with increasing HSI value.

A key principle of individual-based models is that they are more powerful if
realistic behavior patterns emerge from simple, fitness-maximizing rules for individual
behavior (Railsback 2001, Railsback and Harvey 2001). Overall pattern analysis
indicated that realistic migrational processes and habitat-use patterns were likely
emerging from movement rules incorporated into the IBM in response to advancing and
receding snow. Primary and secondary movement pathways emerged from the collective
responses of simulated individuals. Using regression analyses, no significant differences
between simulated animals and animals used in either model development or an

independent test set revealed any differences in response to snow patterns. These
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considerations suggest the model was adequately corroborated based on existing data and
outlined objectives.

Increases in the Jemez Mountain elk population are a concern to local managers
and residents. Over the years Los Alamos County has reported an increase in elk/vehicle
collisions (Parker 1997). Intensive browsing has largely destroyed aspen (Populus
tremuloides) suckers from upland portions of the La Mesa fire and the headwaters of the
Frijoles watershed (Allen 1996). Mature aspen trees are heavily barked in many areas.
Meadows appear to be kept in the early stages of succession by excessive elk use
(Wolters 1996). About 70% of Bandelier’s cultural resources are being damaged by
erosion (Allen 1996) and there is concern that elk impacts to the area may accelerate
erosion due to excessive trampling and loss of herbaceous cover resulting from grazing
(Rupp et al. 2001a,b). To add confusion to an already intense political situation
surrounding management of the Jemez Mountain elk population, changes in movement
and distribution patterns are anticipated as a result of the May 2000 Cerro Grande Fire.
Coupled with the region’s unique interagency collaborations, simulation modeling
presents a rare opportunity to study the long-term ecological consequences of large-scale
fires on elk movement and distribution patterns. The development, calibration, and
ongoing corroboration/validation of the individual-based model presented in this
dissertation provides an adaptive management tool that integrates interdisciplinary
experience and scientific information, which allows users to make predictions about the

impact of alternative policies (Holling 1978, Walters 1986, Van Winkle et al. 1997).

241



LITERATURE CITED

Aebischer, N. J., P. A. Robertson, and R. E. Kenward. 1993. Compositional analysis of
habitat use from animal radio-tracking data. Ecology 74(5):1313-1325.

Allen, C. D. 1996. Elk response to the La Mesa Fire and current status in the Jemez
Mountains. Pages 179-195 in C. D. Allen, technical editor. Fire effects in
southwestern forests: Proceedings of the second La Mesa Fire symposium. RM-

GTR-286. USDA Forest Service Rocky Mountain Forest and Range Experiment
Station, Fort Collins, Colorado.

Biggs, J. R., K. D. Bennett, and P. R. Fresquez. 2001. Relationship between home range
characteristics and the probability of obtaining successful global positioning

system (GPS) collar positions for elk in New Mexico. Western North American
Naturalist 61(2):213-222.

Drickamer, L. C. 1998. Vertebrate behavior: Integration of proximate and ultimate
causation. American Zoologist 38(1):43-58.

Farr, D. 2000. Defining adaptive management. Unpublished web document
(http://www.ameteam.ca/About%20Flame/A AMdefinition.PDF).

Frair, J. L., S. E. Nielsen, E. H. Merrill, S. R. Lele, M. S. Boyce, R. H. M. Munro, G. B.

Stenhouse, and H. L. Beyer. 2004. Removing GPS collar bias in habitat selection
studies. Journal of Applied Ecology 41(2):201-212.

Grimm, V. 1999. Ten years of individual-based modeling in ecology: What have we
learned and what could we learn in the future? Ecological Modelling 115:129-
148.

Holling, C. S. (ed.). 1978. Adaptive environmental assessment and management. John
Wiley, New York, New York. 377pp.

Millspaugh, J. J. and J. J. Marzluff. 2001. Radio tracking and animal populations.
Academic Press. 474 pp.

Moen, R., J. Pastor, and Y. Cohen. 1997. Accuracy of GPS telemetry collar locations
with differential correction. Journal of Wildlife Management 61(2):530-539.

242



Monkkonen, M. and P. Reunanen. 1999. On critical thresholds in landscape
connectivity: a management perspective. Oikos 84(2):302-305.

Otis, D. L. and G. C. White. 1999. Autocorrelation of location estimates and the
analysis of radiotracking data. Journal of Wildlife Management 63(3):1039-1044.

Parker, K. 1997. LANL using high-tech trapping to save elk herd. Santa Fe New
Mexican, 15 August 1997.

Pither, J. and P. D. Taylor. 1998. An experimental assessment of landscape
connectivity. Oikos 83:166-174.

Railsback, S. F. 2001. Getting “Results”: The pattern-oriented approach to analyzing
natural systems with individual-based models. Natural Resource Modeling
14(3):465-475.

Railsback, S. and B. Harvey. 2001. Individual-based model formulation for cutthroat
trout, Little Jones Creek, California. General Technical Report, PSW-GTR-182,
Pacific Southwest Research Station, Forest Service, U.S. Department of
Agriculture. 80pp.

Rempel, R. S., A. R. Rodgers, and K. F. Abraham. 1995. Performance of a GPS animal
location system under boreal forest canopy. Journal of Wildlife Management
59(3):543-551.

Rettie, W. J. and P. D. McLoughlin. 1999. Overcoming radiotelemetry bias in habitat-
selection studies. Canadian Journal of Zoology 77:1175-1184.

Rosenberg, D. K., B. R. Noon, and E. C. Meslow. 1997. Biological corridors: form,
function, and efficacy. Bioscience 47:677-687.

Rupp, S. P., M. C. Wallace, D. Wester, S. Fettig, and R. Mitchell. 2001a. Effects of
simulated elk grazing and trampling (I): Intensity. Alces 37(1):129-146.

Rupp, S. P., M. C. Wallace, D. Wester, S. Fettig, and R. Mitchell. 2001b. Effects of
simulated elk grazing and trampling (II): Frequency. Alces 37(1):147-161.

Saunders, D. A. and R. J. Hobbs. 1991. The role of corridors in conservation: what do
we know and where do we go? Pages 421-427 in Nature Conservation 2: the
role of corridors. D. A. Saunders and R. J. Hobbs (eds.). Surrey Beatty & Sons.

Schank, J. C. 2001. Beyond reductionism: refocusing on the individual with individual-
based modeling. Complexity 6(3):33-40.

243



Slothower, R. L., P. A. Schwartz, and K. M. Johnston. 1996. Some guidelines for
implementing spatially-explicit, individual-based ecological models within
location-based raster GIS. In Proceedings, Third International
Conference/Workshop on Integrating GIS and Environmental Modeling, Santa
Fe, NM, January 21-26, 1996. Santa Barbara, CA: National Center for
Geographic Information and Analysis.
http://www.ncgia.ucsb.edu/conf/SANTA FE CD-ROM/main.html

Swihart, R. K. and N. A. Slade. 1985. Influence of sampling interval on estimates of
home-range size. Journal of Wildlife Management 49(4):1019-1025.

Trimble Navigation Limited. 1999. Lassen™ SK II GPS: System Designer Reference
Manual. Sunnyville, California. 202pp.

Turchin, P. 1998. Quantitative Analysis of Movement: Measuring and Modeling
population redistribution in Animals and Plants. Sinauer Associates, Inc.
Publishers, Sunderland, Massachusetts. 396pp.

Van Horne, B. 1983. Density as a misleading indicator of habitat quality. Journal of
Wildlife Management 47:893-901.

Van Winkle, W., C. C. Coutant, H. . Jager, J. S. Mattice, D. J. Orth, R. G. Otto, S. F.
Railsback, and M. J. Sale. 1997. Uncertainty and instream flow standards;
perspectives based on hydropower research and assessment. Fisheries 22(7):21-
22.

Walters, C. J. 1986. Adaptive management of renewable resources. McMillan, New
York, New York. 374pp.

Wiens, J. A., N. C. Stenseth, B. Van Horne, and R. A. Ims. 1993. Ecological
mechanisms and landscape ecology. Oikos 66:369-380.

With, K. A., R. H. Gardner, and M. G. Turner. 1997. Landscape connectivity and
population distributions in heterogenous environments. Oikos 78:151-169.

Wolters, G. L. 1996. Elk response to the La Mesa Fire and current status in the Jemez
Mountains. Pages 196-205 in C. D. Allen, technical editor. Fire effects in
Southwestern forests: Proceedings of the second La Mesa Fire symposium. RM-
GTR-286. USDA For. Serv. Rocky Mountain Forest and Range Exper. Stn., Fort
Collins, Colorado.

244



APPENDIX A

HOME RANGE MAPS FOR ANIMALS

USED IN MODEL DEVELOPMENT

OR VALIDATION

245



9 ¢

L I
Santa Clara Pueblo I\\
Santa F
anta Fe
National Forest BLI\I/[——
(USFS)
San
! Tlldefonso
Valles Caldera = N
National Preserve Los AlSTRos BNV
‘(VCNP) R National Laborhtary
LANL)
]I
Bandelier f
Santa Fe National
National Forest
(USFS) M((;;l;;l[;nt Kernel Home Range (Collar #106)
[ |50
I 95
[ ] Agency Boundaries

N

5 0 5 10 15 20 25 30 35 Kilometers
w% E

S

Appendix A.1. Kernel home range for animal #106. Both the 95% activity area and 50% core use area are shown.
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Appendix A.2. Kernel home range for animal #108. Both the 95% activity area and 50% core use area are shown.
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Appendix A.3. Kernel home range for animal #471923. Both the 95% activity area and 50% core use area are shown
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Appendix A.4. Kernel home range for animal #471924. Both the 95% activity area and 50% core use area are shown
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Appendix A.5. Kernel home range for animal #471925. Both the 95% activity area and 50% core use area are shown.
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Appendix A.6. Kernel home range for animal #471926. Both the 95% activity area and 50% core use area are shown
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Appendix A.7. Kernel home range for animal #471928. Both the 95% activity area and 50% core use area are shown
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Appendix A.8. Kernel home range for animal #471930. Both the 95% activity area and 50% core use area are shown
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Appendix A.9. Kernel home range for animal #471931. Both the 95% activity area and 50% core use area are shown
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Appendix A.10. Kernel home range for animal #471935. Both the 95% activity area and 50% core use area are shown.
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Appendix A.11. Kernel home range for animal #471936. Both the 95% activity area and 50% core use area are shown
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Appendix A.12. Kernel home range for animal #471940. Both the 95% activity area and 50% core use area are shown
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Appendix A.13. Kernel home range for animal #471960. Both the 95% activity area and 50% core use area are shown
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Appendix A.14. Kernel home range for animal #471962. Both the 95% activity area and 50% core use area are shown.
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Appendix A.15. Kernel home range for animal #481471. Both the 95% activity area and 50% core use area are shown
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Table B.1. Acronyms used in the text.

Acronym Scientific Name Common Name
VCNP -—-- Valles Caldera National Preserve
ABCO Abies concolor White fir

PSME Pseudotsuga menziesii Douglas fir

POTR Populus tremuloides Aspen

PIPO Pinus ponderosa Ponderosa pine
BOGR Bouteloua gracilis Blue grama

SCSC Schizachyrium scoparium Little bluestem
BRCA Bromus carinatus California brome
AGTR Agropyron trachycaulum Slender wheatgrass
QUGA Quercus gambelii Gambel oak

ABLA Abies lasiocarpa Subalpine fir

PIEN Picea englemannii Engelmann spruce
PIED Pinus edulis Colorado pinyon
JUMO Juniperus monosperma Oneseed juniper
RONE Robinia neomexicana New Mexican locust
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Table C.1. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for the 0000 to 0400 time block regardless of fix type as
expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the
relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP observations
for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured
variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model
scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these
experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant
improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are
presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance
structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”)
or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 04107 49609  -28.6668 103.5435 1000 0.4568  1.5668 -4.4489 12.0875
Pos. ¥ 46 35720  7.8746 0.1616 41.5836 42 22455  2.1440 0.4914 6.5496
Neg. ¥ 45 22061 42467  -28.6668 -0.0337 18 -1.7748  1.6252 -4.4489 -0.4330
Appropriate: ¥ Full ¥ 28 -0.0408  0.1753 -0.4737 0.4067
Pos. ¥ 0 - - - -
Neg. ¥ 1 -04737 - - -
Unstructured
Assumed: ¥ Full ¥ 794 -0.0109  0.4050 -1.4200 12113
Pos. ¥ 200 04968  0.2192 0.1522 12113
Neg. ¥ 210 -0.5039  0.2154 -1.4200 -0.1528
Appropriate: ¥ Full ¥ 766  -0.0129  0.4090 -1.4200 1.2113
Pos. ¥ 194 0.5005  0.2202 0.1522 12113

Neg. ¥ 207 -0.5048  0.2166 -1.4200 -0.1528
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Table C.1. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.
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Table C.2. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for the 0400 to 0800 time block regardless of fix type as
expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the
relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP observations
for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured
variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model
scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these
experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant
improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are
presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance
structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”)
or for subsets of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000  0.8796 25.8063 -44.3716 786.8106 1000 2.0013  11.8402 -4.7638 149.2534
Pos. ¥ 31 13772 12002  0.0046  5.6545 5 09355  0.3357 0.5213 1.3564
Neg. ¥ 43 22404 43994 -292274 -0.0358 39 -0.6933  0.6863 -4.7638 -0.3878
Appropriate: ¥ Full ¥ 58  -0.1362  0.2059 -0.6079 0.3548
Pos. ¥ 0 - - - -
Neg. ¥ 3 -0.5190  0.0793 -0.6079 -0.4553
Unstructured
Assumed: ¥ Full # 816 -0.1323  0.4491 -1.6424 1.6351
Pos. ¥ 141 05482  0.2696 0.1405 1.6351
Neg. 323 -0.5476 02513 -1.6424 -0.1394
Appropriate: ¥ Full ¥ 758  -0.1274  0.4536 -1.6424 1.6351
Pos. ¥ 134 05506  0.2733 0.1405 1.6351

Neg. ¥ 296  -0.5515  0.2557 -1.6424 -0.1394
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Table C.2. (cont).

YResults are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

3 A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.3. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for the 0800 to 1200 time block regardless of fix type as
expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the
relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP observations
for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured
variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model
scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these
experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant
improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are
presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance
structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”)
or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 -0.4211 3.4021 -58.0643 11.6070 1000 -0.8534  3.5170 -35.0377 1.5153
Pos. ¥ 20 2.2911 23498 0.0136  10.0782 0 - - - -
Neg. ¥ 74 -4.2359 9.2240 -58.0643 -0.0552 107 -3.8226  6.4498 -35.0377 -0.4423
Appropriate: ¥ Full ¥
Pos. ¥ 20  -0.2469  0.1688 -0.5227 0.0500
Neg. ¥ 0 - - - -
2 -0.5102  0.0177 -0.5227 -0.4978
Unstructured
Assumed: ¥ Full ¥ 743 -0.2719  0.4963 -1.9814 1.5377
Pos. ¥ 85 05614  0.2533 0.1659 1.5377
Neg. ¥ 359 -0.6634  0.3237 -1.9814 -0.1553
Appropriate: ¥ Full ¥ 723 -0.2705  0.5003 -1.9814 1.5377
Pos. ¥ 85 0.5614  0.2533 0.1659 1.5377

Neg. ¥ 350  -0.6645  0.3267 -1.9814 -0.1553
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Table C.3. (cont).

YResults are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

3 A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.4. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for the 1200 to 1600 time block regardless of fix type as
expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the
relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP observations
for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured
variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model
scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these
experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant
improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are
presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance
structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”)
or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.0400  2.5544 -37.2811 25.532 1000  -0.0009  1.4418 -8.1795 7.0514
Pos. ¥ 22 0.8954 0.7070  0.0148  2.3489 2 11510  0.0816 1.0933 1.2087
Neg. ¥ 49 24779 54979 -37.2811 -0.0207 52 -2.6979  2.4268 -8.1795 -0.4868
Appropriate: ¥ Full ¥ 32 -0.0863  0.2337 -0.5511 0.3710
Pos. ¥ 0 - - - -
Neg. ¥ 1 -05511 - - -
Unstructured
Assumed: ¥ Full ¥ 762 -0.1622  0.4937 -1.9323 1.4347
Pos. ¥ 144 05196  0.2228 0.2390 1.4347
Neg. ¥ 284  -0.6591  0.2972 -1.9323 -0.1192
Appropriate: ¥ Full ¥ 730 -0.1658  0.4960 -1.9323 1.4347
Pos. ¥ 139 05183  0.2244 0.2390 1.4347

Neg. ¥ 278  -0.6576  0.2983 -1.9323 -0.1192
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Table C.4. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per ¢elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.5. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for the 1600 to 2000 time block regardless of fix type as
expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the
relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP observations
for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured
variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model
scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these
experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant
improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are
presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance
structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”)
or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 -0.0105  9.6642 -208.6154 210.2720 1000 -0.1438  1.8509 -8.4828 14.1376
Pos. ¥ 35 1.6023  1.6995  0.0058  7.8648 16  1.0261  0.3955 0.5681 2.1131
Neg. ¥ 39 37545  5.5676 -20.7768 -0.1458 64 -2.4852  1.8117 -8.4828 -0.3951
Appropriate: ¥ Full ¥ 29  -0.0578  0.1978 -0.4663 0.2205
Pos. ¥ 0 - - - -
Neg. ¥ 1 -0.4663 - - -
Unstructured
Assumed: ¥ Full ¥ 791 -0.0459  0.4798 -1.7843 1.9568
Pos. ¥ 195 0.5494  0.2732 0.1416 1.9568
Neg. ¥ 241  -0.5831  0.2823 -1.7843 -0.1050
Appropriate: ¥ Full ¥ 762 -0.0451  0.4817 -1.7843 1.9568
Pos. ¥ 192 0.5463  0.2731 0.1416 1.9568

Neg. ¥ 232 -0.5850  0.2847 -1.7843 -0.1050
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Table C.5. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.6. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for the 2000 to 2400 time block regardless of fix type as
expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the
relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP observations
for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured
variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model
scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these
experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant
improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are
presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance
structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”)
or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000 -0.2867 3.9743 -82.2179 30.1404 1000 0.3105  6.0540 -22.6728 65.2259
Pos. ¥ 23 13012 1.3338  0.0293 62106 4 0.6206  0.1402 0.4286 0.7339
Neg. ¥ 69 -2.5461 3.6890 -22.7139 -0.0168 68 -3.8135  6.0745 -22.6728 -0.3553
Appropriate: ¥ Full ¥ 39 -0.1054  0.2134 -0.5599 0.3425
Pos. ¥ 0 - - - -
Neg. ¥ 2 -0.4903  0.0985 -0.5599 -0.4206
Unstructured
Assumed: ¥ Full # 746 -0.0489  0.4227 -1.6833 1.8409
Pos. ¥ 171 05094  0.2491 0.0544 1.8409
Neg. 235 -0.5006  0.2450 -1.6833 -0.1140
Appropriate: ¥ Full ¥ 707  -0.0451  0.4293 -1.6832 1.8409
Pos. ¥ 168 05106  0.2507 0.0544 1.8409

Neg. ¥ 224 -0.5044  0.2492 -1.6833 -0.1140
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Table C.6. (cont).

YResults are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

3 A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.
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Table C.7. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 2-dimensional fixes during the 0000 to 0400 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.7847  7.1232  -46.5128 147.0993 1000  0.5883 1.9719 -7.5076 12.8551
Pos. ¥ 114 43786  9.5960 0.0148 68.1143 56  4.1340  2.5842 0.8064 12.8551
Neg. ¥ 64 -2.8700 5.2999 -26.4205 -0.0168 25 43119 1.2719 -7.5076 -3.2164
Appropriate: ¥ Full # 0 - - - -
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 206  0.0109  0.6034 -2.1305 1.6369
Pos. ¥ 67  0.6238  0.3349 0.1812 1.6369
Neg. ¥ 54 -0.7254  0.4095 -2.1305 -0.2022
Appropriate: ¥ Full ¥ 206 0.0109  0.6034 -2.1305 1.6369
Pos. ¥ 67  0.6239  0.3349 0.1812 1.6369

Neg. ¥ 54 -0.7254  0.4095 -2.1305 -0.2022
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Table C.7. (cont).

YResults are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

3 A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



8LT

Table C.8. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 2-dimensional fixes during the 0400 to 0800 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 3.6028 44.9825 -70.9332 836.4965 1000 45675 15.1526 -4.9680 133.6018
Pos. ¥ 49 10.5725 57.8592  0.0401 406.0156 1 08708 - - -
Neg. ¥ 74 -3.5083  8.5895  -70.9332 -0.0480 35 -1.2786  1.1651 -4.9301 -0.4857
Appropriate: ¥ Full # 4  -03157  0.4586 -0.8866 0.2299
Pos. ¥ 0 - - - -
Neg. ¥ 1 -0.8866 - - -
Unstructured
Assumed: ¥ Full ¥ 428  -0.1405  0.5401 -2.1476 1.6791
Pos. ¥ 86  0.5821  0.2873 0.1096 1.6791
Neg. ¥ 161 -0.6644  0.3521 -2.1476 -0.1671
Appropriate: ¥ Full ¥ 424 -0.1413  0.5403 -2.1476 1.6791
Pos. ¥ 85  0.5820  0.2890 0.1096 1.6791
Neg. ¥ 159  -0.6660  0.3537 -2.1476 -0.1671
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Table C.8. (cont).

YResults are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

3 A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.
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Table C.9. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 2-dimensional fixes during the 0800 to 1200 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full 1000 -2.7409 28.1705 -650.8810 19.9692 1000 -2.4597 7.5387 -70.7824 1.8180
Pos. ¥ 41 1.0301 1.1861 0.0807  6.6407 0 - - - -
Neg. y 93 -21.3209 76.6991 -650.8810 -0.0537 172 -12.3213  13.8752 -70.7824 -0.6459
Appropriate: ¥ Full # 0 - - - -
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ? 446 -0.2372  0.6618 22174 1.9535
Pos. ¥ 75 0.7168 0.3790 0.2445 1.9535
Neg. ¥ 177  -0.8633  0.4126 22174 -0.1644
Appropriate: ¥ Full ¥ 446  -0.2372  0.6618 22174 1.9535
Pos. ¥ 75 0.7168 0.3790 0.2445 1.9535

Neg. ¥ 177 -0.8633  0.4126 22174 -0.1644
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Table C.9. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.10. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 2-dimensional fixes during the 1200 to 1600 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.

(414

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 -0.4807  8.6989 -153.3957 64.6235 1000 -0.3674  2.3104 -19.1164 12.9251
Pos. ¥ 45 27329  7.8287  0.0392  53.1647 4 40277 59342 -0.8134 12.9251
Neg. ¥ 108 -9.3141 20.9074 -153.3957 -0.0094 113 -4.4521 33779 -19.1164 -0.7648
Appropriate: ¥ Full # 2 -0.6091  0.8995 -1.2451 0.0270
Pos. ¥ 0 - - - -
Neg. ¥ 1 -1.2451 - - -
Unstructured
Assumed: ¥ Full ? 526 -0.1595  0.6231 -2.6080 2.1594
Pos. ¥ 99  0.7083  0.3974 0.1375 2.1594
Neg. ¥ 195 -0.7646  0.3781 -2.6080 -0.1945
Appropriate: ¥ Full ¥ 524 -0.1618  0.6229 -2.6080 2.1594
Pos. ¥ 98  0.7084  0.3995 0.1375 2.1594

Neg. ¥ 195 -0.7646  0.3781 -2.6080 -0.1945
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Table C.10. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.
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Table C.11. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 2-dimensional fixes during the 1600 to 2000 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full? 1000 -0.6370 10.1760 -93.5735 176.4256 1000 -0.6000  2.5765 -11.3502 14.5740
Pos. ¥ 51 2.0615  2.4535 0.0077  9.7097 5 1.1925 0.3082 0.6687 1.4793
Neg. ¥ 83 -8.4543 14.8426 -93.5735 -0.0193 106 -3.8238 2.0088 -10.7437 -0.5488
Appropriate: ¥ Full # 1 -0.0162 - - -
Pos. ¥ 0 - - - -
Neg. ¥ 0 - -- - -
Unstructured
Assumed: Full ? 426  -0.1112  0.7013 -2.9300 2.3543
Pos. ¥ 113 0.7177 0.3946 0.1056 2.3543
Neg. 153 -0.8063  0.4644 -2.9300 -0.2253
Appropriate: ¥ Full ¥ 425 -0.1120  0.7019 -2.9300 2.3543
Pos. ¥ 113 0.7177 0.3946 0.1056 2.3543

Neg. ¥ 153 -0.8063  0.4644 -2.9300 -0.2253
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Table C.11. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



98¢

Table C.12. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 2-dimensional fixes during the 2000 to 2400 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000 1.0803 38.9389 -201.9384 986.0600 1000  0.2079 8.7648 -32.2684 49.8801
Pos. ¥ 119 14.2955 98.3387 0.0704 986.0600 3 24417 2.4052 0.8394 5.2074
Neg. y 153 -7.7504 26.8974 -201.9384 -0.0107 96 -10.3290 7.2984 -32.2684 -0.8516
Appropriate: ¥ Full # 0 - - - -
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 46 -0.1273  0.7102 -1.3089 1.8193
Pos. ¥ 13 0.7510 0.4758 0.3035 1.8193
Neg. ¥ 20 -0.7678  0.2706 -1.3089 -0.1444
Appropriate: ¥ Full ¥ 46 -0.1273  0.7102 -1.3089 1.8193
Pos. ¥ 13 0.7510 0.4758 0.3035 1.8193
Neg. ¥ 20 -0.7678  0.2706 -1.3089 -0.1444
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Table C.12. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.13. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 3-dimensional fixes during the 0000 to 0400 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.

Locations/animal = 10
Regression Coefficient ¥

Locations/ animals = 1
Regression Coefficient ¥

88¢

Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full 1000 0.1284  0.8596  -2.7409 13.9717 1000 0.0848  0.2677 -0.9128 1.2851
Pos. ¥ 39 12199  2.1549  0.0589 13.9717 36 0.7073  0.3508 03113 1.2851
Neg. ¥ 35 -0.7444  0.4427  -1.7090 -0.0316 11 -0.5033  0.2494 -0.9128 -0.2964
Appropriate: ¥ Full # 114 0.0258  0.1578 -0.3794 0.3809
Pos. ¥ 303472 0.0323 0.3164 0.3809
Neg. ¥ 1 -03794 - - -
Unstructured
Assumed: ¥ Full ¥ 717 0.0593  0.3211 -1.0208 0.9617
Pos. ¥ 240 0.4004  0.1922 0.1053 0.9617
Neg. ¥ 155 -0.3690  0.1654 -1.0208 -0.0996
Appropriate: ¥ Full ¥ 603 0.0599  0.3211 -0.9222 -0.9617
Pos. ¥ 207 03942 0.1927 0.1053 0.9617
Neg. ¥ 134 -0.3680  0.1599 -0.9222 -0.0996
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Table C.13. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.14. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 3-dimensional fixes during the 0400 to 0800 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full? 1000 0.1371  0.8155  -2.9971  9.9987 1000  0.1399  0.2336 -0.4641 1.3021
Pos. ¥ 44 1.3279 18115 0.0278  9.9987 57  0.5902  0.2748 0.3063 1.3021
Neg. ¥ 29 -0.9448 0.5795  -2.0338 -0.0762 6 -0.3632 0.0614 -0.4458 -0.2978
Appropriate: ¥ Full # 98  0.0466  0.1572 -0.3466 0.5035
Pos. ¥ 5 03892  0.0686 0.3318 0.5035
Neg. ¥ 1 -03466 - - -
Unstructured
Assumed: ¥ Full ¥ 680  0.1175  0.3055 -0.9001 1.1652
Pos. ¥ 282 03965  0.1958 0.0552 1.1652
Neg. ¥ 108  -0.3252  0.1439 -0.9001 -0.1024
Appropriate: ¥ Full ¥ 582 0.1179  0.3105 -0.9001 1.1652
Pos. ¥ 249 0.3954  0.1960 0.0552 1.1652

Neg. ¥ 99  -0.3247  0.1464 -0.9001 -0.1024
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Table C.14. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.15. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 3-dimensional fixes during the 0800 to 1200 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.1712  0.5635  -1.1547  4.4350 1000 0.1268  0.1568 -0.3848 0.8025
Pos. ¥ 63 0.7153  0.6167 0.0337  3.6418 41 03704  0.0759 0.2497 0.5565
Neg. ¥ 41 -0.4271 03047  -1.1547  0.0251 4 -03153  0.0691 -0.3848 -0.2378
Appropriate: ¥ Full # 45 0.0853  0.1013 -0.0928 0.2954
Pos. ¥ 3 0.2731 0.0194 0.2610 0.2954
Neg. ¥ 0 - - - -
Unstructured
Assumed: Full ? 516  0.1261  0.2491 -0.6904 1.0011
Pos. ¥ 219 03447  0.1724 0.0940 1.0011
Neg. ¥ 69 -0.2614  0.1214 -0.6904 -0.0634
Appropriate: ¥ Full ¥ 471 0.1276  0.2547 -0.6904 1.0011
Pos. ¥ 207 03460  0.1736 0.0940 1.0011

Neg. ¥ 67 -0.2618  0.1230 -0.6904 -0.0634
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Table C.15. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.16. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 3-dimensional fixes during the 1200 to 1600 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.2110  0.6099  -2.2520  8.0776 1000  0.2208  0.1749 -0.3575 0.8564
Pos. ¥ 79  0.6818  0.4809 0.0131  2.4942 178  0.3881 0.1145 0.2329 0.8564
Neg. ¥ 29 -0.3597 03159  -1.0965 -0.0013 0 - - - -
Appropriate: ¥ Full # 74 0.1447  0.1294 -0.1592 0.4946
Pos. ¥ 15 03346  0.0634 0.2561 0.4946
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 597 02015  0.2382 -0.7104 0.8948
Pos. ¥ 345 03582  0.1620 0.0839 0.8948
Neg. ¥ 35 -0.2677  0.1419 -0.7104 -0.0853
Appropriate: ¥ Full ¥ 523 0.2061  0.2436 -0.7104 0.8948
Pos. ¥ 306 0.3641 0.1658 0.0839 0.8948

Neg. ¥ 32 -0.2657  0.1472 -0.7104 -0.0853
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Table C.16. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.17. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 3-dimensional fixes during the 1600 to 2000 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient % Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full 1000  0.1715 0.7106 -2.7991  9.7519 1000 0.1742 0.2271 -0.4676 1.6130
Pos. ¥ 36 1.2463 1.2861 0.0042  6.6737 86 0.6071 0.3068 0.2648 1.6130
Neg. ¥ 27 -0.6755  0.3896 -1.4318 -0.0548 0 - - - -
Appropriate: ¥ Full # 90  0.0789  0.1333 -0.1484 0.5056
Pos. ¥ 304258  0.1019 0.3110 0.5056
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 684  0.1481  0.2710 -0.8135 1.2659
Pos. ¥ 319 0.3659 0.1744 0.0631 1.2659
Neg. ¥ 75 -0.3284  0.1508 -0.8135 -0.0606
Appropriate: ¥ Full ¥ 594 0.1530  0.2775 -0.8135 1.2659
Pos. ¥ 291 0.3677 0.1756 0.0631 1.2659

Neg. ¥ 68 -0.3296  0.1547 -0.8135 -0.0606
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Table C.17. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.18. Effect of elevation (measured in 1000-foot units) on dilution of precision (DOP) for 3-dimensional fixes during the 2000 to 2400 time
block as expressed by linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each
sample, the relationship between DOP and elevation was estimated under two model scenarios involving assumptions about the distribution of DOP
observations for a given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an
unstructured variance-covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent.
For each model scenario, results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients
for these experiments. A null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a
significant improvement over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk;
results are presented for analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-
covariance structure was appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000
times (“Full”) or for subsets of the full data set for which significant relationships were detected.

Locations/animal = 10
Regression Coefficient ¥

Locations/ animals = 1
Regression Coefficient ¥
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Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full 1000 0.0344  0.6361  -4.5389  4.0234 1000 0.0005  0.1710 -0.6537 0.5878
Pos. ¥ 33 0.8211  0.6704  0.0276  2.8670 18 03772 0.0619 0.2854 0.5240
Neg. ¥ 50 -0.7852  0.6869  -3.8540 -0.0301 10 -0.3496  0.0607 -0.4913 -0.2743
Appropriate: ¥ Full # 106  -0.0059  0.1474 -0.3929 0.4513
Pos. ¥ 2 03698  0.1152 0.2884 0.4513
Neg. ¥ 1 -03929 - - -
Unstructured
Assumed: ¥ Full ¥ 676  0.0645  0.2950 -1.1264 1.0751
Pos. ¥ 239 03640  0.1625 0.1338 1.0751
Neg. ¥ 127  -0.3621  0.1751 -1.1264 -0.0633
Appropriate: ¥ Full ¥ 570 0.0665  0.2956 -1.1264 0.8942
Pos. ¥ 213 03569  0.1552 0.1338 0.8942
Neg. ¥ 107 -03631  0.1822 -1.1264 -0.0633
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Table C.18. (cont).

Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

% The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3! Analyses were conducted for elevation measured in ft/1000. Thus, a regression coefficient of -0.2 can be interpreted as follows: for a 1000-ft increase
in elevation, DOP decreases 0.2 units.



Table C.19. Effect of topographic slope on dilution of precision (DOP) for the 0000 to 0400 time block regardless of fix type as expressed by linear
regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between
DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given
elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (‘“Full”) or for subsets
of the full data set for which significant relationships were detected.
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Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full? 1000 0.0297  0.4598  -10.9954 3.9052 1000 0.0282  0.1870 -1.1762 0.9574
Pos. ¥ 62 02442 02775  0.0023 1.4012 99  0.1667  0.1676 0.0420 0.7573
Neg. ¥ 30 -0.1369  0.0776  -0.2988 -0.0044 3 -0.0591  0.0128 -0.0706 -0.0454
Appropriate: ¥ Full # 32 0.0057  0.0275 -0.0387 0.0908
Pos. ¥ 4 00602  0.0212 0.0420 0.0908
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full? 794 0.0133  0.0456 -0.1707 0.2063
Pos. ¥ 319 0.0551  0.0279 0.0138 0.2063
Neg. ¥ 151 -0.0509  0.0268 -0.1707 -0.0169
Appropriate: ¥ Full ¥ 762 0.0133  0.0456 -0.1707 0.2063
Pos. ¥ 309 0.0548  0.0274 0.0138 0.2063

Neg. ¥ 145  -0.0512  0.0272 -0.1707 -0.0169




10¢

Table C.19. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.



Table C.20. Effect of topographic slope on dilution of precision (DOP) for the 0400 to 0800 time block regardless of fix type as expressed by linear
regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between
DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given
elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/animal = 10
Regression Coefficient ¥

Locations/ animals = 1
Regression Coefficient ¥
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Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000  0.1560  3.0509 -1.7142  94.0398 1000 0.2085  0.9297 -0.1585 11.0445
Pos. ¥ 43 04067 1.0971  0.0054  7.1923 101 05028  0.6305 0.0437 2.3495
Neg. ¥ 24 -0.1167 0.0961  -0.4027  -0.0003 7 -0.0585  0.0128 -0.0851 -0.0450
Appropriate: ¥ Full ¥ 61  0.0042  0.0229 -0.0374 0.0536
Pos. ¥ 4 0.0493  0.0039 0.0454 0.0536
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full # 816  0.0045  0.0456 -0.1923 0.1688
Pos. ¥ 257 0.0526  0.0254 0.0140 0.1688
Neg. 186 -0.0551  0.0317 -0.1923 -0.0142
Appropriate: ¥ Full ¥ 755 0.0045  0.0457 -0.1923 0.1688
Pos. ¥ 241  0.0519  0.0255 0.0140 0.1688
Neg. ¥ 175  -0.0551  0.0319 -0.1923 -0.0142




€0¢

Table C.20. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.



Table C.21. Effect of topographic slope on dilution of precision (DOP) for the 0800 to 1200 time block regardless of fix type as expressed by linear
regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between
DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given
elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (‘“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/animal = 10
Regression Coefficient ¥

Locations/ animals = 1
Regression Coefficient ¥
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Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000 -0.0171  0.2208 -2.2462  1.6290 1000 0.0102  0.2073 -0.2443 2.4829
Pos. ¥ 37 03110 03426  0.0025  1.6290 34 05305  0.8216 0.0625 2.4829
Neg. ¥ 48 -0.1705 0.1346  -0.8033  -0.0098 27 -0.1000  0.0449 -0.2396 -0.0539
Appropriate: ¥ Full ¥ 24 -0.0183  0.0268 -0.0733 0.0358
Pos. ¥ 0 - - - -
Neg. ¥ 3 -0.0617 0.0103 -0.0733 -0.0539
Unstructured
Assumed: ¥ Full # 743 -0.0150  0.0535 -0.1852 0.1797
Pos. ¥ 134 0.0597  0.0254 0.0158 0.1797
Neg. 261 -0.0708  0.0335 -0.1852 -0.0187
Appropriate: ¥ Full ¥ 719  -0.0149  0.0539 -0.1852 0.1797
Pos. ¥ 132 0.0597  0.0256 0.0158 0.1797
Neg. ¥ 254 -0.0710  0.0338 -0.1852 -0.0187
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Table C.21. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.



Table C.22. Effect of topographic slope on dilution of precision (DOP) for the 1200 to 1600 time block regardless of fix type as expressed by linear
regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between
DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given
elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/animal = 10
Regression Coefficient ¥

Locations/ animals = 1
Regression Coefficient ¥
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Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000  0.0027 0.3763  -3.0429  3.6337 1000 -0.0151  0.1401 -0.8580 0.9967
Pos. ¥ 45 03970 0.7637  0.0095  3.6337 49 02612  0.2210 0.0555 0.9967
Neg. ¥ 33 -0.2025 02376 -1.2964 -0.0135 13 -0.1084  0.0465 -0.2400 -0.0540
Appropriate: ¥ Full # 34 0.0186  0.0281 -0.0435 0.0722
Pos. ¥ 4 00616 0.0076 0.0555 0.0722
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full # 762 -0.0025  0.0560 -0.1861 0.1865
Pos. ¥ 192 0.0660  0.0330 0.0153 0.1865
Neg. 222 -0.0670  0.0311 -0.1861 -0.0142
Appropriate: ¥ Full ¥ 728  -0.0037  0.0560 -0.1861 0.1865
Pos. ¥ 180  0.0658  0.0329 0.0153 0.1865
Neg. ¥ 218  -0.0670  0.0314 -0.1861 -0.0142
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Table C.22. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.23. Effect of topographic slope on dilution of precision (DOP) for the 1600 to 2000 time block regardless of fix type as expressed by linear
regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between
DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given
elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (‘“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.0465 1.0832  -6.6509  32.2901 1000 0.1181  0.7534 -0.8784 6.3023
Pos. ¥ 55 04191  0.7893  0.0053  3.7707 53 03253 0.2074 0.0483 0.7508
Neg. ¥ 39 -0.1780  0.1274  -0.8107  -0.0217 9 -0.0731  0.0232 -0.1184 -0.0492
Appropriate: ¥ Full ¥ 29  -0.0115  0.0212 -0.0739 0.0351
Pos. ¥ 0 - - - -
Neg. ¥ 1 -00739 - - -
Unstructured
Assumed: ¥ Full ¥ 791 -0.0007  0.0456 -0.1639 0.1310
Pos. ¥ 211 0.0537  0.0253 0.0076 0.1310
Neg. ¥ 221 -0.0548  0.0259 -0.1639 -0.0141
Appropriate: ¥ Full ¥ 762 0.0002  0.0453 -0.1639 0.1310
Pos. ¥ 208 0.0540  0.0254 0.0076 0.1310

Neg. ¥ 208  -0.0541  0.0254 -0.1639 -0.0141
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Table C.23. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.24. Effect of topographic slope on dilution of precision (DOP) for the 2000 to 2400 time block regardless of fix type as expressed by linear
regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship between
DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a given
elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (‘“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/animal = 10
Regression Coefficient ¥

Locations/ animals = 1
Regression Coefficient ¥

Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000 0.0322  0.2657  -3.0300  2.0862 1000  0.0986  0.5526 -0.3893 5.8700
Pos. ¥ 89 03978 04782  0.0014 2.0143 136 0.1341  0.0851 0.0361 0.4389
Neg. ¥ 30 -0.1156  0.0719  -0.3348  -0.0154 0 - - - -
Appropriate: ¥ Full ¥ 40  0.0119  0.0246 -0.0380 0.0720
Pos. ¥ 5 0.0514 0.0142 0.0361 0.0720
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full # 746 0.0128  0.0442 -0.1846 0.1789
Pos. ¥ 291  0.0547  0.0292 0.0118 0.1789
Neg. 143 -0.0468  0.0230 -0.1846 -0.0109
Appropriate: ¥ Full ¥ 706 0.0130  0.0446 -0.1846 0.1789
Pos. ¥ 279 0.0548  0.0296 0.0118 0.1789
Neg. ¥ 135 -0.0475  0.0235 -0.1846 -0.0109
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Table C.24. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.25. Effect of topographic slope on dilution of precision (DOP) for 2-dimensional fixes during the 0000 to 0400 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000  0.0553  0.6388 -11.9454 5.5895 1000 0.0301 0.2213 -1.6028 0.5810
Pos. ¥ 148  0.4205  0.5500 0.0340 4.2330 119 0.2063 0.1283 0.0862 0.5810
Neg. y 31 -0.2109 0.1589  -0.6907 -0.0086 6 -0.1336 0.0552 -0.2233 -0.0808
Appropriate: ¥ Full ¥ 1 -0.0369 - - -
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full? 206 -0.0038  0.0505 -0.2448 0.1698
Pos. ¥ 49 0.0568  0.0277 0.0170 0.1698
Neg. ¥ 56 -0.0630  0.0364 -0.2448 -0.0170
Appropriate: ¥ Full ¥ 205 -0.0039  0.0506 -0.2448 0.1698
Pos. ¥ 49 0.0568 0.0277 0.0170 0.1698

Neg. ¥ 56 -0.0630  0.0364 -0.2448 -0.0170
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Table C.25. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.26. Effect of topographic slope on dilution of precision (DOP) for 2-dimensional fixes during the 0400 to 0800 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 03959  3.7866  -3.2717 66.2638 1000 04792 12425 -0.2686 9.5734
Pos. ¥ 67 12174 33730  0.0065 18.6498 90 1.0180  0.6800 0.0495 2.9396
Neg. ¥ 43 -0.1428  0.1592  -0.8929  -0.0007 6 -0.0969  0.0404 -0.1739 -0.0657
Appropriate: ¥ Full ¥ 2 -0.0120  0.0001 -0.0121 -0.0119
Pos. ¥ 0 - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 428 -0.0020  0.0510 -0.1760 0.1958
Pos. ¥ 108 0.0604  0.0333 0.0150 0.1958
Neg. ¥ 117 -0.0616  0.0297 -0.1760 -0.0212
Appropriate: ¥ Full ¥ 426 -0.0020  0.0511 -0.1760 0.1958
Pos. ¥ 108 0.0604  0.0333 0.0150 0.1958

Neg. ¥ 117  -0.0616  0.0297 -0.1760 -0.0212
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Table C.26. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.27. Effect of topographic slope on dilution of precision (DOP) for 2-dimensional fixes during the 0800 to 1200 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets

of the full data set for which significant relationships were detected.

Locations/ animals = 1
Regression Coefficient ¥

Locations/animal = 10

Regression Coefficient ¥

Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000  0.1237 13249  -1.7442 28.8109 1000 0.0782  0.4267 -0.5306 4.4997
Pos. ¥ 79 09644 2.8739  0.0038 18.4654 82 09252  1.0217 0.0647 4.4997
Neg. ¥ 54 -0.2184 0.2580 -1.3183  -0.0073 14 -02342  0.1185 -0.5306 -0.0908
Appropriate: ¥ Full ¥ 1 -0.0423 - - -
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full # 446  0.0040  0.0689 -0.2262 0.2834
Pos. ¥ 130 0.0825  0.0455 0.0189 0.2834
Neg. 120 -0.0765  0.0382 -0.2262 -0.0220
Appropriate: ¥ Full # 445  0.0042  0.0688 -0.2262 0.2834
Pos. ¥ 130 0.0825  0.0455 0.0189 0.2834
Neg. ¥ 119  -0.0764  0.0384 -0.2262 -0.0220
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Table C.27. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.28. Effect of topographic slope on dilution of precision (DOP) for 2-dimensional fixes during the 1200 to 1600 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 -0.0247  0.5717  -5.7027  4.0044 1000 -0.0401  0.1790 -0.9753 0.7724
Pos. ¥ 71 04236 0.7911  0.0033  4.0044 40 03321  0.1848 0.0766 0.7724
Neg. ¥ 68 -0.2984 0.6769  -5.4081  -0.0004 17 -0.1281  0.0608 -0.3306 -0.0720
Appropriate: ¥ Full ¥ 2 -0.0276  0.0319 -0.0502 -0.0051
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full? 526 -0.0035  0.0638 -0.2510 0.2808
Pos. ¥ 134 0.0763  0.0419 0.0198 0.2808
Neg. ¥ 169  -0.0703  0.0362 -0.2510 -0.0188
Appropriate: ¥ Full ¥ 524 -0.0035  0.0639 -0.2510 0.2808
Pos. ¥ 133 0.0765  0.0420 0.0198 0.2808

Neg. ¥ 168 -0.0704  0.0363 -0.2510 -0.0188
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Table C.28. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.29. Effect of topographic slope on dilution of precision (DOP) for 2-dimensional fixes during the 1600 to 2000 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets

of the full data set for which significant relationships were detected.

Locations/ animals = 1
Regression Coefficient ¥

Locations/animal = 10

Regression Coefficient >

5/

Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ? 1000  0.1279  3.4227 -10.1814 96.7012 1000  0.2397  1.0350 -1.6734 5.9172
Pos. ¥ 53 0.5877 09176  0.0057  3.5602 62 04321  0.2089 0.0662 1.0184
Neg. ¥ 51 -0.2658  0.5175 -3.2759  -0.0022 16 -0.1359  0.0569 -0.2454 -0.0554
Appropriate: ¥ Full ¥ 2 -0.0040  0.0305 -0.0256 0.0176
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full # 426 -0.0055  0.0564 -0.1877 0.2407
Pos. ¥ 91  0.0716  0.0358 0.0189 0.2407
Neg. 129  -0.0658  0.0338 -0.1877 -0.0226
Appropriate: ¥ Full # 424 -0.0055  0.0566 -0.1877 0.2407
Pos. ¥ 91  0.0716  0.0358 0.0189 0.2407
Neg. ¥ 129  -0.0658  0.0338 -0.1877 -0.0226
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Table C.29. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.30. Effect of topographic slope on dilution of precision (DOP) for 2-dimensional fixes during the 2000 to 2400 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets

of the full data set for which significant relationships were detected.

Locations/ animals = 1
Regression Coefficient ¥

Locations/animal = 10

Regression Coefficient >

5/

Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full 1000 0.1317  1.8840  -4.4258 34.5985 1000 0.0794  0.4488 -0.5080 3.1585
Pos. ¥ 111 05796 2.6803  0.0011 28.0200 29 0.1994  0.0585 0.0853 0.3051
Neg. ¥ 140 -0.1342  0.1988  -1.7053  -0.0006 3 -0.0775  0.0272 -0.1051 -0.0506
Appropriate: ¥ Full ¥ 0 - - - -
Pos. ¥ 0 - - - -
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full 46 0.0049  0.0294 -0.0673 0.0636
Pos. ¥ 12 0.0403  0.0147 0.0189 0.0636
Neg. ¥ 7 -0.0386  0.0174 -0.0673 -0.0171
Appropriate: ¥ Full ¥ 46 0.0049  0.0294 -0.0673 0.0636
Pos. ¥ 12 0.0403  0.0147 0.0189 0.0636
Neg. ¥ 7 -0.0386  0.0174 -0.0673 -0.0171
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Table C.30. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.31. Effect of topographic slope on dilution of precision (DOP) for 3-dimensional fixes during the 0000 to 0400 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.0358  0.1007 -0.5753  1.3000 1000 0.0375  0.0295 -0.0349 0.2422
Pos. ¥ 95 0.1538  0.1438  0.0009  1.0575 416  0.0574  0.0308 0.0284 0.2422
Neg. ¥ 11 -0.0345 0.0313  -0.1075  -0.0042 0 - - - -
Appropriate: ¥ Full ¥ 120 0.0296  0.0163 -0.0117 0.0721
Pos. ¥ 55 0.0432  0.0098 0.0304 0.0721
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 717 0.0316  0.0312 -0.0864 0.1520
Pos. ¥ 488  0.0475  0.0221 0.0106 0.1520
Neg. ¥ 40 -0.0323  0.0148 -0.0864 -0.0125
Appropriate: ¥ Full ¥ 597  0.0322  0.0317 -0.0864 0.1520
Pos. ¥ 413 0.0478  0.0227 0.0106 0.1520

Neg. ¥ 35 -0.0320  0.0148 -0.0864 -0.0125
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Table C.31. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.32. Effect of topographic slope on dilution of precision (DOP) for 3-dimensional fixes during the 0400 to 0800 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000  0.0388  0.0861 -0.2783 1.5100 1000  0.0373 0.0262 -0.0241 0.1475
Pos. ¥ 106 0.1304 0.1571 0.0041 1.5100 405  0.0563 0.0252 0.0268 0.1475
Neg. ¥ 9 -0.0663 0.0875 -0.2783  -0.0013 0 - - - -
Appropriate: ¥ Full ¥ 103 0.0272  0.0144 -0.0179 0.0558
Pos. ¥ 42 0.0404  0.0072 0.0309 0.0558
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 680  0.0256  0.0301 -0.0936 0.1306
Pos. ¥ 427 0.0429  0.0204 0.0077 0.1306
Neg. ¥ 47 -0.0347  0.0193 -0.0936 -0.0116
Appropriate: ¥ Full ¥ 577  0.0262  0.0309 -0.0936 0.1306
Pos. ¥ 367  0.0436  0.0210 0.0077 0.1306

Neg. ¥ 43 -0.0349  0.0199 -0.0936 -0.0116
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Table C.32. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.



8C¢

Table C.33. Effect of topographic slope on dilution of precision (DOP) for 3-dimensional fixes during the 0800 to 1200 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.0236  0.0745 -0.2626  0.7179 1000 0.0169  0.0210 -0.0349 0.1154
Pos. ¥ 97 0.1049 0.0886  0.0010  0.5708 123 0.0452  0.0146 0.0280 0.1154
Neg. ¥ 34 -0.0458 0.0398 -0.1364 -0.0013 0 - - - -
Appropriate: ¥ Full ¥ 49  0.0156  0.0128 -0.0131 0.0482
Pos. ¥ 8 0.0361  0.0076 0.0280 0.0482
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 516  0.0178  0.0281 -0.1045 0.0967
Pos. ¥ 275 0.0385  0.0166 0.0119 0.0967
Neg. ¥ 57 -0.0302  0.0181 -0.1045 -0.0098
Appropriate: ¥ Full ¥ 467  0.0183  0.0287 -0.1045 0.0967
Pos. ¥ 256 0.0388  0.0169 0.0119 0.0967

Neg. ¥ 53 -0.0302  0.0187 -0.1045 -0.0098
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Table C.33. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.34. Effect of topographic slope on dilution of precision (DOP) for 3-dimensional fixes during the 1200 to 1600 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.0256  0.0812 -0.4561  0.8444 1000 0.0265  0.0263 -0.0537 0.1474
Pos. ¥ 83 0.1206 0.1472  0.0029  0.8444 285  0.0535  0.0215 0.0255 0.1474
Neg. ¥ 33 -0.0570  0.0450 -0.1511  -0.0006 0 - - - -
Appropriate: ¥ Full ¥ 77 0.0207  0.0165 -0.0102 0.0748
Pos. ¥ 22 0.0416  0.0104 0.0287 0.0748
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 597 0.0219  0.0282 -0.0630 0.1254
Pos. ¥ 345 0.0406  0.0187 0.0113 0.1254
Neg. ¥ 50 -0.0302  0.0127 -0.0630 -0.0110
Appropriate: ¥ Full ¥ 520 0.0221  0.0280 -0.0630 0.1254
Pos. ¥ 307 0.0403  0.0183 0.0113 0.1254

Neg. ¥ 45 -0.0287  0.0116 -0.0630 -0.0110
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Table C.34. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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Table C.35. Effect of topographic slope on dilution of precision (DOP) for 3-dimensional fixes during the 1600 to 2000 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets

of the full data set for which significant relationships were detected.

Locations/ animals = 1
Regression Coefficient ¥

Locations/animal = 10

Regression Coefficient ¥

Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full? 1000 0.0252  0.0727 -0.4400  0.7119 1000 0.0253  0.0205 -0.0466 0.1338
Pos. ¥ 82 0.1165 0.0989  0.0031  0.7119 322 0.0449  0.0154 0.0219 0.1338
Neg. ¥ 18 -0.0695  0.0557 -0.2430  -0.0003 0o - - - -
Appropriate: ¥ Full ¥ 97  0.0231  0.0142 -0.0049 0.0615
Pos. ¥ 35 0.0380  0.0086 0.0263 0.0615
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full? 684  0.0234  0.0266 -0.0730 0.1142
Pos. ¥ 425 0.0392  0.0183 0.0089 0.1142
Neg. 48  -0.0273  0.0136 -0.0730 -0.0094
Appropriate: ¥ Full # 587  0.0233  0.0268 -0.0730 0.1142
Pos. ¥ 375 0.0386  0.0184 0.0089 0.1142
Neg. ¥ 46 -0.0270  0.0133 -0.0730 -0.0094
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Table C.35. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.



1433

Table C.36. Effect of topographic slope on dilution of precision (DOP) for 3-dimensional fixes during the 2000 to 2400 time block as expressed by
linear regression analysis. A random sample of n=1 or n=10 locations was selected from each of 15 collared elk. For each sample, the relationship
between DOP and topographic slope was estimated under two model scenarios involving assumptions about the distribution of DOP observations for a
given elk: (1) DOP values were assumed to be homoscedastic and independent, or (2) DOP values were assumed to have an unstructured variance-
covariance matrix (heteroscedastic, correlated). For each analysis, observations among elk were assumed to be independent. For each model scenario,
results include number of experimental data sets (N), average, standard error, minimum and maximum regression coefficients for these experiments. A
null model likelihood ratio test was used to test whether the model using an unstructured variance-covariance matrix was a significant improvement
over the model using the homoscedastic/independence variance-covariance matrix for data sets with n=10 locations per elk; results are presented for
analyses when each variance-covariance structure was assumed to be appropriate (“Assumed”), and for when each variance-covariance structure was
appropriate based on the null model likelihood ratio test (“Appropriate”). This analytical procedure was repeated N=1,000_times (“Full”) or for subsets
of the full data set for which significant relationships were detected.

Locations/ animals = 1 Locations/animal = 10
Regression Coefficient ¥ Regression Coefficient ¥
Analysis Data Set N Ave. Stderr Min Max N Ave Stderr Min Max
Homoscedastic/
Independence
Assumed: ¥ Full ¥ 1000 0.0301  0.1119  -2.4062  0.6997 1000 0.0350  0.0235 -0.0479 0.1653
Pos. ¥ 120 0.1146  0.0638  0.0009  0.3949 475  0.0513  0.0186 0.0260 0.1653
Neg. ¥ 18 -0.0692  0.0505 -0.1720  -0.0006 0 - - - -
Appropriate: ¥ Full ¥ 119 0.0318  0.0160 -0.0067 0.1110
Pos. ¥ 57 0.0442  0.0129 0.0292 0.1110
Neg. ¥ 0 - - - -
Unstructured
Assumed: ¥ Full ¥ 676 0.0308  0.0292 -0.0630 0.1454
Pos. ¥ 470  0.0452  0.0203 0.0124 0.1454
Neg. ¥ 40  -0.0308  0.0129 -0.0630 -0.0056
Appropriate: ¥ Full ¥ 557 0.0315  0.0297 -0.0630 0.1454
Pos. ¥ 393 0.0457  0.0209 0.0124 0.1454

Neg. ¥ 33 -0.0311  0.0140 -0.0630 -0.0056
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Table C.36. (cont.)
Y Results are for an analysis that assumed that the specified variance-covariance structure applied to the data.

¥ The “Full” data represents 1,000 samples of n=1 or n=10 locations per elk for the” homoscedastic/independence assumed” case; for the
“homoscedastic/independence appropriate” case, “Full” represents the number of times that this variance-covariance structure was adequate to describe
the relationship; for the “Unstructured assumed” case, “Full” represents the number of times out of 1,000 samples that a solution was possible (solutions
were not possible when, for example, the iterative fitting algorithm used by SAS to derive maximum likelihood estimates of the regression parameters
resulted in a nonpositive definite Hessian matrix); for the “Unstructured appropriate” case, “Full” indicates the number of times that this covariance
structure was appropriate for the data.

¥ A null model likelihood ratio test was used to test whether the unstructured variance-covariance structure was better than the
homoscedastic/independence variance-covariance structure; for n=10 locations per elk, this test had 54 df. Thus, results labeled as “appropriate” derive
from analyses for which the indicated variance-covariance structure was appropriate.

¥ The “Positive” and “Negative” results represent subsets for which there was a significant positive or negative relationship between DOP and slope.
For n=1 location per elk, error df = 13; for n=10 locations per elk, error df = 14 and 134 for the unstructured and homoscedastic/independence analyses,
respectively.

3 Analyses were conducted for slope measured in degrees. Thus, a regression coefficient of -0.056 can be interpreted as follows: for a 1-degree increase
in slope, DOP decreases 0.056 units.
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MODEL NAME:

APPENDIX D
POST-FIRE MODEL EVALUATION FORM

1. Level of complexity? Low Med High

2. If complex, can it be easily simplified? YES NO

Explain:

3. Type of model (stochastic, IBM, etc.):

4. Briefly describe the model’s objectives:

5. Are there associated submodels? YES NO

Describe:

6. Does it include an understory component?

7. Is there a climate component?

Describe:

8. Integrated into GIS already? YES NO

9. IfNO to #8, can it be?

10. If YES to #8, is it raster-based?

11. What is the spatial resolution/scale? Temporal?

12. Can the resolution be modified?
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13. Is the source code available? YES NO

14. Can it be modified with permissions? YES NO

15. Programming Language:

16. Hardware Requirements:

17. Input Data Needed:

COLLECTED @ LANL?
Variable Name

YES NO

NOTES:
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18. Output Data Generated:

Variable Name

Description

NOTES:
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19. Give your overall opinion about the model and if it will meet our requirements:

20. OVERALL RATING: Excellent Good Fair Poor Undecided

Reviewed By: Date:
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Table E.1. FORTRAN 90 raw code for development of a “cost impedance” map based on a logistic regression of topographic
features (slope, aspect, and elevation). The cost impedance map served as the basis for the generation of an independent
variable (Memory) that was used in the habitat suitability index (HSI) to reflect habitual use as well as the response of elk to
slope, aspect, and elevation as independent variables in the final HSI calculated through the application of the SAVANNA
Ecosystem Model (Code copyright 2005, Acorp Computers, Paul Rupp — owner).

LogReg.f90

FUNCTIONS:
LogReg - Create Cost Impedance Surface Map

| sk sk sk s sk sk sk sk ske sk sk sk s sfe sk sk sk sk sk sk sk sk sk sk sk sk skeoske sk sk sk sk skeosie skeoske sk sk sk sk sk skeoske sk sk skeosie sk s skeoske sk sk sk sk sl skeosie sk sk sk sk sk skeosie sk sk skeosk sk sk skokosk ko skok

PROGRAM: LogReg (Logistic Regression)

!

!

!

! PURPOSE: This program creates the cost impedance surface map, and exports/saves
! it in the output subdirectory. Inputs are received from LogReg.PRM,

! which needs to be located in the same directory as the executable. The

! Parameter file consists of the name of the Slope Map, the name of the

! Aspect Map, the name of the Elevation Map, and the name to use for the
! output map. The parameter file also includes the Beta values used to

! calculate the Cost Impedance Surface Map.

!

| 3k 3k 3k sk sk sk sk sk sfe sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk st st sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sie sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk skoskoskoskokoskokokok
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Table E.1. (cont.)

program LogReg
implicit none

! Variables

Real (Kind=16)::Beta(28),XVals(28),Results(28),0dds

INTEGER :: Aspect(0:8,8)

INTEGER :: nrow,ncol,cellw,nodata,i

REAL :: xllcrnr,yllernr

INTEGER :: Animals,x,y,count,RandX,RandY

REAL, ALLOCATABLE, DIMENSION(:,:) :: SlpIn,AspIn,DemIn

CHARACTER(30) :: SlpFName,AspFName,DemFName,OutFName,InDirName,OutDirName

100 FORMAT(<ncol>I4)
200 FORMAT(A,I5,A,I5)
300 FORMAT(2(A,I4))

400 FORMAT(1X, A20)

Aspect=0

! The following section of codes sets up the Aspect array as a series of 1's and 0's
I Aspect0=10000000

' Aspectl =01000000

!'Aspect2=00100000

' Aspect3=00010000

! Aspect4d=00001000

I Aspect5=00000100
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Table E.1. (cont.)

' Aspect6=00000010
I Aspect7=0000000 1
do x=0,8
do y=1,8
if (x==(y-1)) Aspect(x,y)=1
end do
end do

I Aspect8 =-1-1-1-1-1-1-1-1
Aspect(8,:)=-1

! Read directories and input/output map names from Parameter File (LogReg.PRM)
open(1,file="LogReg.PRM")

read(1,*) InDirName

read(1,*) OutDirName

read(1,*) SlpFName

read(1,*) AspFName

read(1,*) DemFName

read(1,*) OutFName

write(*,*) InDirName,OutDirName,SIpFName,AspFName,DemFName,OutFName

! Read BETA values from Parameter File
do i=1,28
read(1,*) Beta(i)
end do
close(1)
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Table E.1. (cont.)

! Open Input Maps

open(2,file=(Trim(InDirName) // Trim(SIpFName)))
open(3,file=(Trim(InDirName) // Trim(AspFName)))
open(4,file=(Trim(InDirName) // Trim(DemFName)))

! Read the Slope, Aspect, and Elevation Map Headers
! Make sure the dimension of all maps is the same, break if not
call headerin(nrow,ncol,xllcrnr,yllcrnr,cellw,nodata,2)
RandX=ncol
RandY=nrow
call headerin(nrow,ncol,xllcrnr,yllcrnr,cellw,nodata,3)
if ((RandX .ne. ncol) .or. (RandY .ne. nrow)) then
Pause
Stop "Rows/Cols don't match up..."
end if
call headerin(nrow,ncol,xllcrnr,yllcrnr,cellw,nodata,4)
if ((RandX .ne. ncol) .or. (RandY .ne. nrow)) then
Pause
Stop "Rows/Cols don't match up..."
end if

I Allocate Memory for Slope, Aspect, and Elevation Maps
allocate (SlpIn(ncol,nrow),AspIn(ncol,nrow),DemIn(ncol,nrow))

! Read the Slope, Aspect, and Elevation Maps into memory
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Table E.1. (cont.)

do y=I,nrow
read(2,*)(SlpIn(x,y),x=1,ncol)
read(3,*)(Aspln(x,y),x=1,ncol)
read(4,*)(Demln(x,y),x=1,ncol)

end do

close(2)
close(3)
close(4)

! Open Output File (Cost Impedence Surface Map) and write header info
open(1,file=(Trim(OutDirName) // Trim(OutFName)))
call HeaderOut(nrow,ncol, xllcrnr,yllcrnr,cellw, 1)

do y=I,nrow
do x=1,ncol

! Pass any "NO DATA" cells from underlying maps through to new Cost Impedence Surface Map

if ((AspIn(x,y)==-9999) .or. (SlpIn(x,y)==-9999) .or. (DemIn(x,y) ==-9999)) then
0dds=-9999

else
! Create the "X" values to multiply against the Beta Values
XVals(1)=0
XVals(10)=SIpIn(x,y)
XVals(11)=Demln(x,y)
XVals(28)=SlpIn(x,y)*DemlIn(x,y)
! Convert Aspect into one of the arrays as defined above, place it in the "X" values array
if ((AspIn(x,y) .ge. 0.00) .and. (AspIn(x,y) .le. 22.50)) XVals(2:9)=Aspect(1,:)
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Table E.1. (cont.)

if ((AspIn(x,y) .gt. 22.50) .and. (AspIn(x,y) .le. 67.50)) XVals(2:9)=Aspect(2,:)
if ((Aspln(x,y) .gt. 67.50) .and. (AspIn(x,y) .le. 112.5)) XVals(2:9)=Aspect(3,:)
if ((Aspln(x,y) .gt. 112.5) .and. (AspIn(x,y) .le. 157.5)) XVals(2:9)=Aspect(4,:)
if ((Aspln(x,y) .gt. 157.5) .and. (AspIn(x,y) .le. 202.5)) XVals(2:9)=Aspect(5,:)
if ((AspIn(x,y) .gt. 202.5) .and. (AspIn(x,y) .le. 247.5)) XVals(2:9)=Aspect(6,:)
if ((AspIn(x,y) .gt. 247.5) .and. (AspIn(x,y) .le. 292.5)) XVals(2:9)=Aspect(7,:)

if ((AsplIn(x,y) .gt. 292.5) .and. (AspIn(x,y) .le. 337.5)) XVals(2:9)=Aspect(8,:)
if ((AspIn(x,y) .gt. 337.5) .and. (AspIn(x,y) .le. 360.0)) XVals(2:9)=Aspect(1,:)
if (AspIn(x,y) .eq. -1.00) XVals(2:9)=Aspect(0,:)
XVals(12:19)=XVals(2:9)*SlpIn(x,y)
XVals(20:27)=XVals(2:9)*Demln(x,y)
! Calculate Logistic Regression
Results=Beta*XVals
odds=exp(Sum(Results))
end if
! Write Cost Impedence Surface Map Cell to output file
write(1,'(F12.5)") odds
end do
end do
close(1)

end program LogReg




Table E.2. Associated parameter file for use with the logistic regression program (Table
E.1) used to generate a cost-impedance surface map. The main purpose this file serves is
to input associated beta values generated through the logistic regression of slope, aspect,
and elevation using PROC LOGISTIC with a stepwise procedure and aspect as a class
variable in SAS version 9.0 (Code copyright 2005, Acorp Computers, Paul Rupp — owner)

C:\SAVANNA\PROJNEMEZ\
C:\SAVANNA\PROJNEMEZ\

slp150 UTM.asc
aspl150 UTM.asc
dem150 UTM.asc
cost150 UTM.asc
0.25556390856224
-3.72970021285766
0.908289812803
0.47714403573645
0.17912811236401
-0.10238587110499
-1.21075360790451
-0.24780776763488
1.9444552756285
-0.20967088123136
0.00001638758918
-0.19251538469185
0.02615273380824
0.03201311634105
0.03947718534524
0.03915524929864
0.02444280731408
0.02239622634565
0
0.00040852863859
-0.00012338987055
-0.00004988084828
-0.0000156493932
0.00001669264503
0.00016080820617
0.00002760406254
-0.00020326152888
0.00001641583175

! Input Subdirectory

! Output Subdirectory

! Slope Map

! Aspect Map

! Elevation Map

! Cost Impedance Output Map
! Beta Values

348
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Table E.3. FORTRAN 90 raw code for generation of the elk memory/habitual use map to create the variable “memory” used
in the individual-based movement model (Code copyright 2005, Acorp Computers, Paul Rupp — owner).

Husker Du.f90

!

!

! FUNCTIONS:

! Husker Du - Elk Memory Map Creator Program
!

| sk sk sk sk sk sk sk sk sk sk sk sk sk sfe sk sk sk sk sk sk s sk sk sk sk sk sk s sk sk sk sk sk sk sk sk sk sk sk sk sk stk sk sk sk sk sk sk sk sfe sk sk skeosk stk sk sk skeosk skok sk

PROGRAM: Husker Du

!

!

!

! PURPOSE: This program creates a memory map for Elk. It does so by
! running a number of elk simulations across the study area,

! with nothing but topographic features. This program is

! used to generate the most likely path Elk will take across

! the study area, based on prior history. The compilation of

! this data will be fed back in to the Individual Based

! Movement Model for the Elk as "memory." Given two equally
! attractive movement choices, Elk tend to migrate the same

! way they always have.

!

3k sk sfe i sk sfe sk s sfe s sk sfe sk st sfe sk sk sfe sk sk sfe sk sk sfe sk sk sk sk sk sk sk sk sk sk sk sk sk ke sk sk sk sk sk ke sk sk ke sk sk sk sk sk sk sk sfe s sk skt st sk st sk skeskeosk sk sk

program Husker Du

implicit none
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Table E.3. (cont.)

! Variables
include "HuskerDu.inc"

INTEGER :: nrow,ncol,cellw,nodata
REAL :: xllernr,yllcrnr

CHARACTER(LEN=50) :: QualFileNameln,QualFileNameOut,MapElkOut
CHARACTER(LEN=2) :: DayPart

INTEGER :: Time(8),count,StartCount(3)=0,EndCount(3)=0

REAL, ALLOCATABLE, DIMENSIONC(:,:) :: MapIn,MapOut,MapElk
INTEGER :: Times,x,y,i,t,ct, ThisStart, ThisEnd,Success,MaxMoves,MinMoves
INTEGER (KIND=S8) :: TotalMoves

INTEGER :: CurrentLoc(2),StartLoc(2),EndLoc(2),EndLocUL(2),EndLocL.R(2)
INTEGER :: PriorLoc(2),Choice(2),ChoiceLocs(9,2),n(2)

REAL :: Choices(9)

REAL :: TopVal,r,s,cNow,cMove,cSmall,aNow,bNow,aMove,bMove
LOGICAL :: Flag

100 FORMAT(4)

200 FORMAT(A,IS,ALS)

300 FORMAT(2(A,I4))

400 FORMAT(1X, A20)
! Body of Husker Du

! Read Control Parameters
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Table E.3. (cont.)

! The Init Vars Namelist is set up and the variable types are defined
!'in the "HuskerDu.inc" include file.

! Variables set in the "HuskerDu.PRM" parameter file are read into the
! Init_Vars Namelist with the "read" statement below.

I Since "HuskerDu.PRM" is one level above the "DEBUG" directory, where
! this program is run from, [ have to move up one directory level to find
! the "HuskerDu.PRM" file, hence the "..//" before the filename.

if (iomsg.ge.1) write(*,*) "Opening parameter file (HuskerDu.PRM) for Read..."

' Add "..//" before filename for RELEASE version
open(8,file=("HuskerDu.PRM"))
read(8,nml=Init_Vars)

close(8)

open(8,file="h-log.txt")

if (lomsg.ge.1) write(*,*) "Parameter file values read and accepted."

! Assemble our qualified path and filename, assuming a starting directory of "Debug"
' Add "..//" at the beginning of the filenames for RELEASE version

QualFileNameln = trim(InFileDir) // "//" // trim(InFileName) // ".asc"
QualFileNameOut = trim(OutFileDir) // "//" // trim(OutFileName) // ".asc"

! Output information/diagnostic messages to the screen if turned on
if (iomsg.ge.1) then

write (*,*) "Simulation will run ",RunCount," times, and"

write (*,*) "the output file name will be ",trim(QualFileNameOut)
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Table E.3. (cont.)

write (*,*) "The Path and Filename for the input map is: ",trim(QualFileNameln)
write (*,*)
write (*,*) "Opening Cost Impedance Surface map for header read..."

end if

! Open the GIS Cost Impedence Surface Map Header and test for error
open(9,file=(QualFileNameln))

! Read the GIS Cost Impedence Surface Map Header
call headerin(nrow,ncol,xllcrnr,yllcrnr,cellw,nodata,9)

! Spit out some information on the Surface Map

if(iomsg.ge.1)then
write(*,*)"Map Name: ",QualFileNameln
write(*,*)"Total domain of Cost Impedance Surface Map (rows,cols): ",nrow,ncol
write(*,*)"Geographic Coordinates (X,Y): ",xllcrnr,yllcrnr

end if

I Allocate the Input and Output Map Arrays
allocate (MapIn(MaxX,MaxY),MapOut(MaxX,MaxY),MapElk(MaxX,MaxY))

! Initialize Random Number Seed
call random_seed

! Read the GIS Cost Impedence Surface Map

! The read statement reads in a row at a time, hence the first do-loop,

I and puts each value read from the input file into the array.

! The "x=1,MaxX" handles the Columns portion of the array, so we don't
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Table E.3. (cont.)

! need another do-loop for that. Essentially we read Y Records, with each record
! containing X elements. So, you can say that we read Y Rows, and each row
I contains X Columns.
do y=1,MaxY

do x=1,MaxX

read(9,*)Mapln(x,y)

end do
end do
close(9)

! Initialize Program Variables
1i=1
MapOut =0
Times =0
Success =0
if (KillCap) then
MinMoves = KillCap
else
MinMoves =5000000
endif
MaxMoves =0
TotalMoves = 0

Open(4,file=trim(OutFileDir) // "//" // trim(OutFileName) // ".log")
write(4,*)"Husker Du Model Run Summary Information: "
write(4,*)

Call Date_and Time(Values=Time)

DayPart="AM"
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Table E.3. (cont.)

if (Time(5)>12) then
Time(5)=Time(5)-12
DayPart="PM"
endif
write(4,'(A,12,A,12,A)")"Started at ", Time(5),":", Time(6),DayPart
write(4,'(A,15,A)")"Simulation will run ",RunCount," time(s)"
write(4,'(A,14,A,14)")"Total domain of Cost Impedance Surface Map (rows,cols): ",nrow,"," ,ncol
write(4,*)

write(*,'(A,12,A,12,A)")"Started at ", Time(5),":", Time(6),DayPart

Do While (i <= RunCount) ! All Elk Loop
! Initialize and increment variables for each run
write(*,*)"Elk: ",i
MapElk =0
ThisStart =0
ThisEnd =0
Times =0
i=i+1

! Randomly choose a starting and ending area for Elk

! If we only have one start/end area, we get that area, no randomness

! If we have two start/end areas, there is a 50-50 chance we get one or the other
! If we have three start/end areas, each one has a 33% chance of being selected
CALL Random_ Number(r)

ThisStart=StrtAreas*r+1

CALL Random_ Number(r)

ThisEnd=EndAreas*r+1
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Table E.3. (cont.)

! Find out the Max X and Max Y of each area,
! then randomly choose a cell somewhere in that area
SELECT CASE( ThisStart )

CASE(1)
StartLoc(1)=StrlLRCoord(1)-Str1ULCoord(1)
CALL Random_Number(r)
StartLoc(1)=(r*StartLoc(1)+1)+Str1ULCoord(1)
StartLoc(2)=Str LRCoord(2)-Str1ULCoord(2)
CALL Random_ Number(r)
StartLoc(2)=(r*StartLoc(2)+1)+Str1ULCoord(2)

CASE(2)
StartLoc(1)=Str2LRCoord(1)-Str2ULCoord(1)
CALL Random_ Number(r)
StartLoc(1)=(r*StartLoc(1)+1)+Str2ULCoord(1)
StartLoc(2)=Str2LRCoord(2)-Str2ULCoord(2)
CALL Random_Number(r)
StartLoc(2)=(r*StartLoc(2)+1)+Str2ULCoord(2)

CASE(3)
StartLoc(1)=Str3LRCoord(1)-Str3ULCoord(1)
CALL Random Number(r)
StartLoc(1)=(r*StartLoc(1)+1)+Str3ULCoord(1)
StartLoc(2)=Str3LRCoord(2)-Str3ULCoord(2)
CALL Random_ Number(r)
StartLoc(2)=(r*StartLoc(2)+1)+Str3ULCoord(2)

END SELECT

SELECT CASE( ThisEnd )
CASE( 1)
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Table E.3. (cont.)

EndLocUL(1)=End1ULCoord(1)
EndLocLR(1)=End1LRCoord(1)
EndLocUL(2)=End1ULCoord(2)
EndLocLR(2)=End1LRCoord(2)
EndLoc(1)=End1LRCoord(1)-End1ULCoord(1)
CALL Random_Number(r)
EndLoc(1)=(r*EndLoc(1)+1)+End1ULCoord(1)
EndLoc(2)=End1LRCoord(2)-End1ULCoord(2)
CALL Random_ Number(r)
EndLoc(2)=(r*EndLoc(2)+1)+End1ULCoord(2)
CASE(2)
EndLocUL(1)=End2ULCoord(1)
EndLocLR(1)=End2LRCoord(1)
EndLocUL(2)=End2ULCoord(2)
EndLocLR(2)=End2LRCoord(2)
EndLoc(1)=End2L.RCoord(1)-End2ULCoord(1)
CALL Random_Number(r)
EndLoc(1)=(r*EndLoc(1)+1)+End2ULCoord(1)
EndLoc(2)=End2LRCoord(2)-End2ULCoord(2)
CALL Random Number(r)
EndLoc(2)=(r*EndLoc(2)+1)+End2ULCoord(2)
CASE(3)

EndLocUL(1)=End3ULCoord(1)
EndLocLR(1)=End3LRCoord(1)
EndLocUL(2)=End3ULCoord(2)
EndLocLR(2)=End3LRCoord(2)
EndLoc(1)=End3LRCoord(1)-End3ULCoord(1)
CALL Random_ Number(r)
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Table E.3. (cont.)

EndLoc(1)=(r*EndLoc(1)+1)+End3ULCoord(1)

EndLoc(2)=End3LRCoord(2)-End3ULCoord(2)

CALL Random_ Number(r)

EndLoc(2)=(r*EndLoc(2)+1)+End3ULCoord(2)
END SELECT

if (.not. EndPoint) then
EndLoc(1)=ABS((EndLocUL(1)-EndLocLR(1))/2)
EndLoc(1)=EndLocUL(1)+EndLoc(1)
EndLoc(2)=ABS((EndLocUL(2)-EndLocLR(2))/2)
EndLoc(2)=EndLocUL(2)+EndLoc(2)

endif

! Our Starting Location is also our Current Location,
!'and will become our Prior Location as soon as we move
CurrentLoc=StartLoc;PriorLoc=StartLoc

write (4,200)"Elk #",i-1," of ",RunCount

write (4,200)"Started from Area",ThisStart

write (4,300)"Cell: ",StartLoc(1),",",StartLoc(2)

if (EndPoint) then
write (4,300)"Going To: ",EndLoc(1),",",EndLoc(2)

else
write (4,'(A,I1,5(A,14))")"Going to area ", ThisEnd,": (",EndLocUL(1),",",EndLocUL(2),") x -
(",EndLocLR(1),",",EndLocLR(2),")"

endif

write(4,*)
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Table E.3. (cont.)

! Keep Statistics for how many elk start/end at each location
StartCount(ThisStart)=StartCount(ThisStart)+1
EndCount(ThisEnd)=EndCount(ThisEnd)+1

! Write this individual's map, if we are keeping it, and the
! entire simulation map.
MapElk(StartLoc(1),StartLoc(2)) = 1
! Begin searching for the end point
Do While ((Times <= KillCap) .or. (KillCap == 0)) ! One Elk Loop
! Reset and Increment Variables
! (Times: Number of times this elk has moved)
!'(t: 1-9 of the cells available to this elk)
! (ChoiceLocs: (Col,Row) Index of cells 1-9)
! (Choices: Desirability of cells 1-9)
Times=Times+1
t=0
Choices =0
ChoiceLocs =0
cSmall=5000000
ct=0
if(ForceEnd) then
aNow=(CurrentLoc(1)-EndLoc(1))**2
bNow=(CurrentLoc(2)-EndLoc(2))**2
cNow=aNow+bNow
cNow=SQRT(cNow)
endif
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Table E.3. (cont.)

! Each time through this loop is one cell move
do x = CurrentLoc(1)-1,CurrentLoc(1)+1
do y = CurrentLoc(2)-1,CurrentLoc(2)+1
! Increment Choice Index

t=t+1
! Reset Flag to default state
Flag = .true.

! Set ChoiceLocs to correspond to coordinates of cell we are evaluating
ChoiceLocs(t,1)=x
ChoiceLocs(t,2)=y

! Check to make sure Column is in-bounds high/low
! If not in-bounds set desirability to zero
if ((x > MaxX) .or. (x < 1)) then
Choices(t)=0
Flag=false.
endif

! Check to make sure Row is in-bounds high/low
! If not in-bounds set desirability to zero
if ((y > MaxY) .or. (y < 1)) then
Choices(t)=0
Flag=.false.
endif



09¢

Table E.3. (cont.)

! Check to make sure this isn't our "TagBack" cell, if we are not allowing them
! Though we don't technically allow tagbacks, the situation could occur where an
! elk moves to a cell which is surrounded by all zero option choices. In this
I case, an elk would be "trapped" forever and eventually crash the program. By
I setting the value of our tagback cell to a very small number instead of zero,
! we allow the elk to "escape" from a no alternative situation, since .01
! compared to 0 is still a better choice.
if (NoTagBack) then
if (x==PriorLoc(1) .and. y==PriorLoc(2)) then
Choices(t)=.000001
Flag = false.
endif
endif

! Check to see if we are evaluating the cell we are already in
! If so, set desirability to zero
if ((x==CurrentLoc(1) .and. y==CurrentLoc(2))) then
Choices(t) =0
Flag = .false.
endif

! Check to make sure that this isn't a "No Data" cell
if (Flag) then
if (MaplIn(x,y)==-9999) then
Choices(t) =0
Flag = .false.
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Table E.3. (cont.)

endif
endif

! If none of the special cases above apply,
! read the desirability of this cell from the Map
if (Flag) then

Choices(t)=Mapln(x,y)

! Even if cell has a desirability of zero, it still has a statistical

! chance of being selected, so increase desirability to .01

! This does not apply to cells forced to zero above, only to cells read from map as zero
if (Choices(t)==0) Choices(t)=.01

! If we are forcing Elk to migrate, do that here
if (ForceEnd) then
aMove=(x-EndLoc(1))**2
bMove=(y-EndLoc(2))**2
cMove=aMove+bMove
cMove=SQRT(cMove)
if (cMove<CNow) then
if(lomsg)then
write(4,*)"Force Exert Applied..."
write(4,*)"on cell: ",CurrentLoc(1),",",CurrentLoc(2)
write(4,*)"going to: ",Endloc(1),",",EndLoc(2)
write(4,*)"force applied to: ",t,"(",x,",",y,")"
write(4,*)"cMove is: ",cMove
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endif
Choices(t)=Choices(t)+(ForceExert)
if (cMove<CSmall) then
cSmall=cMove
ct=t

endif
endif
endif
endif
end do
end do
! The desirability of our cell choices needs to add up to 100%
! Have to mask where Choices > 0 to avoid divide by zero error
Where (Choices > 0) Choices=Choices/SUM(Choices)

! Pick a cell at "random" based on the desirability of all the cells avail
! Call random number generator
Call Random_Number(r)
if (lomsg.ge.2) then
do t=1,9
write(4,*)"  Choice #",t,"=",Choices(t),"Loc=",

- ChoiceLocs(t,1),ChoiceLocs(t,2)

end do
if(sum(Choices).eq.0)write(4,*)"The problem started here, all choices are zero!"

write(4,*)" My Random number is: ",r
end if
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Table E.3. (cont.)

! See which cell matches the random number (It will be in 't")
do t=1,9

r=r-Choices(t)

if (r<=0) exit
end do

! It is possible that we ran through the loop above, and because of REAL number
! problems we completed the loop, which would leave t=10, and cause subscript
! problems. So, if t>9, reset it to 9.

if (t>9) t=9

if (iomsg.ge.2) write(4,'(A,11,3(A,14))")" I selected choice ",t,
- " which is location: (",ChoiceLocs(t,1),",",ChoiceLocs(t,2),")"
if(ChoiceLocs(t,1).gt.334)then

Write(4,*) kst ok __PROBLEM--## ks kikokdodokdodokn
write(4,*)"  Choices: ",(choices(x),x=1,9)

do x=1,9
write(4,*)"  Choice(x,y) ",ChoiceLocs(x,1),ChoiceLocs(x,2)

end do
endif
if (WanderCount) then

MapElk(ChoiceLocs(t,1),ChoiceLocs(t,2)) = MapElk(ChoiceLocs(t,1),ChoiceLocs(t,2)) + 1
else

MapElk(ChoiceLocs(t,1),ChoiceLocs(t,2)) = 1
endif

if (lomsg.eq.1) then
write(*,'(A,110,A)")"I have moved: ", Times," times."
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Table E.3. (cont.)

write(*,300)"On Cell: ",ChoiceLocs(t,1),",",ChoicelLocs(t,2)
write(*,300)"Prior Cell: ",PriorLoc(1),",",PriorLoc(2)
write(*,300)"Started From: ",StartLoc(1),",",StartLoc(2)
write(*,300)"Going to: ",EndLoc(1),",",EndLoc(2)
write(*,*)

endif

! Update all of my location arrays
PriorLoc = CurrentLoc
CurrentLoc(1)=ChoiceLocs(t,1)
CurrentLoc(2)=ChoiceLocs(t,2)

! If EndPoint is true, looking for the random point in the end area determined above
! If EndPoint is false, we are looking for any point within the end area
! If we reached our "end point", then we're done!
if (EndPoint) then
if (CurrentLoc(1) == EndLoc (1)) then
if (CurrentLoc(2) == EndLoc(2)) exit
endif
else
if (CurrentLoc(1)>=EndLocUL(1) .and. CurrentLoc(1)<=EndLocLR(1)) then
if (CurrentLoc(2)>=EndLocUL(2) .and. CurrentLoc(2)<=EndLocLR(2)) exit
endif
endif
end do ! One Elk Loop

if (iomsg.ge.1) then
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write (*,300)"Started From: ",StartLoc(1),",",StartLoc(2)
write (*,300)"Went To: ",EndLoc(1),",",EndLoc(2)
write (*,'(A,17,A)")"In ", Times," moves."

endif

! Check if Times < KillCap; if so or no KillCap, add MapElk to MapOut
if ((Times < KillCap) .or. (KillCap == 0)) then
Success=Success+1

if (Times>MaxMoves) MaxMoves=Times
if (Times<MinMoves) MinMoves=Times
TotalMoves=TotalMoves+Times
MapOut = MapOut + MapElk
! If we are tracking individual Elk Runs, then write MapElk
if (ElkOutFile) then
MapElkOut="MapElk.asc"
where (MapIn==-9999) MapElk=-9999
open(10,File=(MapEIlkOut))
call HeaderOut(nrow,ncol xllcrnr,yllcrnr,cellw,10)
write(10,*)((MapElk(x,y),x=1,MaxX),y=1,MaxY)
close(10)
endif
else
if (.not. CountKilled) i=i-1
endif
end do ! All Elk Loop

write(4,*)"Completion Rate: ",Success," out of ",RunCount
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write(4,*)"Elk starting from Start Area 1: ",StartCount(1)
write(4,*)"Elk starting from Start Area 2: ",StartCount(2)
write(4,*)"Elk starting from Start Area 3: ",StartCount(3)
write(4,*)"Elk going to End Area 1: ",EndCount(1)

write(4,*)"Elk going to End Area 2: ",EndCount(2)

write(4,*)"Elk going to End Area 3: ",EndCount(3)
write(4,*)"Combined moves for all elk: ", TotalMoves
write(4,*)"Minimum Number of moves for any one elk: ",MinMoves
write(4,*)"Maximum Number of moves for any one elk: ",MaxMoves

TopVal=TotalMoves/Success
write(4,*)"Average Number of moves for all elk: ",(TopVal)
write(4,*)
Call Date_and Time(Values=Time)
DayPart="AM"
if (Time(5)>12) then
Time(5)=Time(5)-12
DayPart="PM"
endif
write(4,'(A,12,A,12,A)")"Simulation ended at ", Time(5),":", Time(6),DayPart

! Write MapOut to disk here

where (MapIn==-9999) MapOut=-9999

write(*,*) "MaxX=",MaxX,"MaxY=",MaxY
open(10,file=(QualFileNameOut))
write(10,*)((MapOut(x,y),x=1,MaxX),y=1,MaxY)

close(10)

open(10,file=trim(OutFileDir) // "//" // trim(OutFileName) // "-Table.prn")
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Table E.3. (cont.)

count=0
do y=1,MaxY
do x=1,MaxX
count=count+1
write(10,*) RunCount,count,MapOut(x,y)
end do
end do
close(10)

Where (MapOut/=-9999) MapOut=MapOut/MaxVal(MapOut)

' write(4,*)MaxVal(MapOut)
close(4)

if(MarkAreas)then
do y=Str1ULCoord(2),Str1LRCoord(2)
do x=Str1ULCoord(1),Str1LRCoord(1)
MapOut(x,y)=8888
end do
end do
do y=Str2ULCoord(2),Str2LLRCoord(2)
do x=Str2ULCoord(1),Str2LRCoord(1)
MapOut(x,y)=8888
end do
end do
do y=Str3ULCoord(2),Str3LRCoord(2)
do x=Str3ULCoord(1),Str3LRCoord(1)
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MapOut(x,y)=8888
end do
end do
do y=End1ULCoord(2),End1LRCoord(2)
do x=End1ULCoord(1),End1LRCoord(1)
MapOut(x,y)=8888
end do
end do
do y=End2ULCoord(2),End2LLRCoord(2)
do x=End2ULCoord(1),End2LRCoord(1)
MapOut(x,y)=8888
end do

end do
do y=End3ULCoord(2),End3LRCoord(2)
do x=End3ULCoord(1),End3LRCoord(1)
MapOut(x,y)=8888
end do
end do
end if

open(10,file=trim(OutFileDir) // "//" // trim(OutFileName) // ".asc")
call HeaderOut(nrow,ncol xllcrnr,yllcrnr,cellw,10)
write(10,"(F12.5)")((MapOut(x,y),x=1,MaxX),y=1,MaxY)
close(10)

end program Husker Du
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Table E.4. Associated parameter file for the elk memory/habitual use program (“Husker-Du” - Table E.3). Raw code was

written on FORTRAN 90 (Code copyright 2005, Acorp Computers, Paul Rupp — owner).

&lInit Vars

MaxX = 334
MaxY = 286
iomsg =0
RunCount= 100
KillCap = 0

CountKilled=.FALSE.
NoTagBack=-TRUE.
WanderCount=-FALSE.

ElkOutFile=.FALSE.
StrtAreas=3
EndAreas=3
EndPoint=.FALSE.

Str1ULCoord =233,153
Str1LRCoord =253,169
Str2ULCoord =215,174
Str2LRCoord =239,195
Str3ULCoord =194,216
Str3LRCoord =214,230
End1ULCoord =18,37
End1LRCoord =40,45
End2ULCoord =89,45
End2LRCoord =110,58
End3ULCoord =82,112
End3LRCoord =115,132
ForceEnd =.TRUE.

1/Set to the maximum number of columns (Should conincide or exceed GIS input map)

1/Set to the maximum number of rows (Should conincide or exceed GIS input map)

!/0=No Diag/info messages, 1=Diag/info messages to screen, 2=Diag/info messages to file

!/Number of times/number of elk to run the program with

I/Kill an elk/run that reaches this many moves without finding endpoint
1/ (0 = No limit; if limited, should be about 5,000,000 for this extent)
1/If TRUE, killed elk count toward the total RunCount

I/If TRUE, prevent elk from returning to immediately prior cell

I/If TRUE, count every time a cell is entered (by the same animal)

1/ if FALSE, only count each unique cell entered

I/If TRUE, create individual outfile maps for each elk/run

!/Indicate the number of possible Start Areas (Max = 3)

!/Indicate the number of possible End Areas (Max = 3)

I/If TRUE, Elk must find a randomly selected point within the End Area
I/If FALSE, Elk just needs to enter the End Area

1/(X,Y) ordered coordinate pair for Upper Left of Start Point 1

1/(X,Y) ordered coordinate pair for Lower Right of Start Point 1

1/(X,Y) ordered coordinate pair for Upper Left of Start Point 2

1/(X,Y) ordered coordinate pair for Lower Right of Start Point 2

1/(X,Y) ordered coordinate pair for Upper Left of Start Point 3

1/(X,Y) ordered coordinate pair for Lower Right of Start Point 3

1/(X,Y) ordered coordinate pair for Upper Left of Start Point 1

1/(X,Y) ordered coordinate pair for Lower Right of Start Point 1

1/(X,Y) ordered coordinate pair for Upper Left of Start Point 2

1/(X,Y) ordered coordinate pair for Lower Right of Start Point 2

1/(X,Y) ordered coordinate pair for Upper Left of Start Point 3

1/(X,Y) ordered coordinate pair for Lower Right of Start Point 3

I/If TRUE, force elk toward end-point (ForceExert must have a value > 0 if TRUE)
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Normalize=.TRUE.

MarkAreas=.FALSE.

ForceExert =.25

1/If TRUE, normalize map on high value

I/If TRUE, mark starting and ending areas on map
1/ [This will OVERWRITE ALL ELK DATA in those areas!]
I/If ForceEnd is TRUE, ForceExert is added in the direction of the end-point

OutFileDir="C:\SAVANNA\\PROJMNJEMEZ" !/Directory to write output files to
InFileDir="C:\SAVANNA\WPROJWEMEZ"  !/Directory to read input files from

ElkFileName = "Elk-"
OutFileName = "mem150_ utm"

InFileName = "costmask150 utm"
/

!/Output Map filename for each individual elk/run (Sequential numbers appended)
1/Output Map filename for the complete run
!/Input Map filename for the Surface Dependency Map
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Table E.5. C++ raw code to count the number of 1-m cells occupied by a building within larger grid cells at the final
resolution of 150 m. The resultant map of building frequencies (i.e., total area in m” covered by buildings) was then
normalized from O to 1 for use in the habitat suitability index (Code copyright 2005, Acorp Computers, Paul Rupp — owner).

// BuildScaleUp.cpp : Scales up buildings from 1m to 150m cell size
//

#include "stdafx.h"

#include <iostream>

#include <fstream>

using namespace std,;

int _tmain(int argc, TCHAR* argv[])
{

int val=0;

int count=0;

int x=0;

int y=0;

int x1=0;

int y1=0;

char readin[25];

int BuildOut[333][285];

for (y=0;y<285;y++)

{
for (x=0;x<333;x++)
{

BuildOut[x][y]=0;
}

}
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Table E.5. (cont.)

ifstream buildings;

ofstream buildingsout;

buildings.open("C:\\TRX\IN\\bldgs Im.asc", 10s::in); // declare and open
for (y=1Ly<=12;y++)

{
buildings >> readin;
cout << readin << endl;
}
for (y=0;y<42271;y++)
{
for (x=0;x<49497;x++)
{
count=count+1;
buildings >> val;
if (val !=-9999)
{
cout << "Value Read: " << val <<" at location: " << count <<" (x,y): " <<x <<")"' <<y <<endl;
x1=(x/151);
y1=(y/151);

cout << "Setting Array Location x1,yl: " << x1 <<"," <<yl <<endl;
BuildOut[x1][y1]=BuildOut[x1][y1]+val,
}
b

}
buildings.close();

buildingsout.open("bldgs 150m.asc",ios::out);
for (y=0;y<=yLiy++)
{
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for (x=0;x<=x1;x++)

{
buildingsout << BuildOut[x][y];

}
}
buildingsout << endl;

buildingsout.close();
return 0;




Table E.6. FORTRAN 90 raw code to calculate the aversion factor for roads in the study
area. Cell values were determined by combining numbers of elk observed along the
roads and number of times elk crossed roads and then weighting these values by an
associated aversion factor depending on the type of road (primary, secondary, or tertiary).
Code copyright 2005, Acorp Computers, Paul Rupp — owner.

RoadCrossings-Norm.f90

FUNCTIONS:
Road Aversion - Calculate Aversion factor for roads/crossings (Normalized)
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!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

PROGRAM: Road Aversion Normalized

PURPOSE:

REVISION:

This program accepts the input from three maps. These maps contain
values everywhere there is a road. These values are based on the
calculation of the number of elk crossings in that particular cell.

The road maps are then multiplied against a map of elk locations on
these roads to obtain an aversion number that elk have to each cell
containing a road. Finally, the map is rescaled against an average
aversion factor for that type of road using a linear interpolation.
Output will be a map containing real values which will be multiplied
against the underlying cell values (Cost Impedance) at a later time.

This is the final version of the "Road Crossing" programs.

This revision matrix multiplies Elk Locations * Road Crossings

after first converting any zeros in either matrix to one's.

The resulting map is then rescaled on the minimum/maximum aversion
factor for each type of road.
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program RoadAversion

implicit none

INTEGER :

: nrow,ncol,cellw,nodata

REAL :: xllernr,yllernr

CHARACTER(50) :: Roads(3),ElkIn,RoadsOut,InDirName,OutDirName
INTEGER,ALLOCATABLE,DIMENSIONY(:,:) :: Elklocs
REAL,ALLOCATABLE,DIMENSIONC(:,:) :: RoadFactors

374



Table E.6. (cont.)

REAL,ALLOCATABLE,DIMENSIONC(:,:,:) :: XRoads
INTEGER :: x,y,t,Cols,Rows
Logical (Kind=1) :: iomsg
REAL :: Aversion(2,2,3),alint
write(*,*) "Starting program run..."
write(*,*)
iomsg=-FALSE.
! Read in the Road Crossings Parameter File- this file will contain ten fields
! 1) File Input Directory
! 2) File Output Directory
! 3-8) Primary, Secondary, and Tertiary Road Maps/Aversion Factors
! 9) The name of the Elk Locations Map
! 10) The name for the Road Factors Output Map
write(*,*) "Reading RoadCrossing. PRM"
open(1,file="RoadCrossing. PRM")
read(1,*) InDirName
read(1,*) OutDirName
do t=1,3
read(1,*) Roads(t)
read(1,*) (Aversion(2,x,t),x=1,2)
end do
read(1,*) ElkIn
read(1,*) RoadsOut
close(1)

do t=1,3

open(t,file=(Trim(InDirName) // Trim(Roads(t))))
end do
open(4,file=(Trim(InDirName) // Trim(ElkIn)))

! Read Road Crossing and Elk Location Map Headers,
! and make sure they are all the same size
call headerin(nrow,ncol,xllcrnr,yllcrnr,cellw,nodata,4)
Cols=ncol
Rows=nrow
do t=1,3
call headerin(nrow,ncol,xllcrnr,yllcrnr,cellw,nodata,t)
if ((Cols .ne. ncol) .or. (Rows .ne. nrow)) then
Pause
Stop "Rows/Cols don't match up..."
end if

375



Table E.6. (cont.)

end do

! Allocate Memory for Road Crossing Maps, Elk Locations, and Output Map
if(iomsg)write(*,*)" Allocating memory..."
allocate (XRoads(3,Cols,Rows),ElkLocs(Cols,Rows),RoadFactors(Cols,Rows))

! Default Output Map to "No Value"
if(lomsg)write(*,*)"Initializing RoadFactors array..."
RoadFactors=-9999

! Read the Road Crossing and Elk Location Maps into memory
if(iomsg)write(*,*)"Loading maps..."
dot=1,3
if(iomsg)write(*,*)"Reading RoadCrossing Map #",t," and ElkLocs..."
do y=1,Rows
read(t,*)(XRoads(t,x,y),x=1,Cols)
if (t.eq.1)read(4,*)(ElkLocs(x,y),x=1,Cols)
end do
end do
close(1)
close(2)
close(3)
close(4)

! Replace all zeros in all Road Crossing Maps with one's
! While this introduces a small error, specifically:
! (zero elk/zero crossings) = (zero elk/one crossing) = (one elk/zero crossings)
! which is not technically correct, it solves the larger problem of making sure
! that every cell containing a road recieves an aversion factor, as per the literature.
if(iomsg)write(*,*)"Replacing zero's in maps with one's..."
do t=1,3
Where (XRoads(t,:,:)==0) XRoads(t,:,:)=1
end do
Where (ElkLocs==0) ElkLocs=1

! Order is important here. Since primary roads will have a higher aversion factor than
! secondary and tertiary roads, we apply road factors in descending order of aversion.
! Matrix Multiplication is so much fun...
do t=3,1,-1

write(*,*) "Matrix Multiplication for Roads/Crossings",t

376



Table E.6. (cont.)

! Multiply Roads/Crossings by ElkLocs everywhere there is a road (mask by -9999)
Where (XRoads(t,:,:).ne.-9999) XRoads(t,:,:)=XRoads(t,:,:)*ElkLocs

! Determine the Minimum and Maximum values from the multiplication above

! These will be used in the linear interpolation to scale the values from min to max
I"aversion for each road type. The min/max aversion factor is read in from PRM file
Aversion(1,1,t)}=MinVal(XRoads(t,:,:), MASK=(XRoads(t,:,:).ne.-9999))
Aversion(1,2,t)=MaxVal(XRoads(t,:,:))

! Application of the linear interpolation function to the entire matrix at once
! Using “Where” doesn't work, so have to use the old fashioned double-do loop
do y=1,rows
do x=1,cols
if(XRoads(t,x,y).gt.0) then
XRoads(t,x,y)=alint(XRoads(t,x,y),Aversion(1,1,t),2)
end if
end do
end do

! Place Results in the RoadFactors Array
Where(XRoads(t,:,:).ne.-9999)RoadFactors=XRoads(t,:,:)
end do

! Open File for output map
open(6,file=Trim(OutDirName) // Trim(RoadsOut))

! Write ArcView Header

call HeaderOut(nrow,ncol, xllcrnr,yllcrnr,cellw,6)
write(6,'(F12.5)") RoadFactors

close(6)

! Update command line status for user
write (*,*) "This program is done, please check your output files...'

end program RoadAversion

377
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Table E.7. Associated parameter file for the road aversion program (Table E.6). Code copyright 2005, Acorp Computers, Paul

Rupp — owner.

CA\\SAVANNAWPROJMNJEMEZ\\
C:\\SAVANNAWPROJNJEMEZ\\
X1Rds150 UTM.asc

75,.25

X2Rds150 UTM.asc

.60,.15

X3Rds150 UTM.asc

.50,.10

ElkLocs150 UTM.asc

XRrds150 .asc

Input Directory (Use \\ for subdirectories and make sure it includes a trailing \\)
!Output Directory

!Primary Roads Input Map

'Maximum/Minimum aversion to Primary Roads (Decimal Percentage)
!Secondary Roads Input Map

'Maximum/Minimum aversion to Secondary Roads (Decimal Percentage)
I'Tertiary Roads Input Map

'Maximum/Minimum aversion to Tertiary Roads (Decimal Percentage)

'Elk Locations Input Map

'Road aversion output map
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Table E.8. FORTRAN 90 raw code used to output locations for individual simulated animals run through the individual-based
movement model. The resultant program allows flexibility in data extraction, which allows the user to look at elk response by
individual days, seasons, months, or years (Code copyright 2005, Acorp Computers, Paul Rupp — owner).

ElkData.f90

FUNCTIONS:
ElkData - Extract movement data from file.

| >k sk sk sk s sk sfe sk sk sk sk s sk s sk sk sk sk sk sk sk sk sk sk s sk sk sk sk sk skeosk sk sk sk sk skeosk sk sk sk sk sk sk sk s ke sk sk sk sk sk s sk sfe sk sk sk sk sk sk sk stk sk skokosk
|

! PROGRAM: ElkData
!

! PURPOSE: Program to extract movement data from file
!
!****************************************************************************

program ElkData
implicit none

integer herds,days,months,years,xll,yll,cell,narea,startyear,stopyear,stopmon,step,t

integer herd,animal,day,month,year,maxX,maxY x,y,lowrange,highrange,startmon
integer,allocatable,dimension () :: steps,pop,stepfac,dayfac,monfac,yearfac

integer(Kind=8) i,n

character*50 Output,Outputl,Input

character*20 FName

integer iyear,imonth,iday,istep,ianimal,times,hmonhigh,hmonlow

integer anilow,anihigh,yearlow,yearhigh,monlow,monhigh,daylow,dayhigh,steplow,stephigh
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Table E.8. (cont.)
logical(Kind=1) simflag,msgscrn,badin

common/grid/maxX,maxY ,x,y,narea,xll,yll,cell,startyear,startmon,simflag
common/range/lowrange,highrange,badin,input

call random_seed()

simflag=.true.
msgscrn=.false.

if(.not.simflag)open(12,file="Testout.txt")

write(*,*) "File name (omit extension and path):"
Read(*,*) FName

open(1,file="C://SAVANNA//PROJ//JEMEZ//SITE//OUT//" // Trim(adjustl(FName)) // ".hdr")

if(simflag)open(2,file="C://SAVANNA//PROJ//JEMEZ//SITE//OUT//" // Trim(adjustl(FName)) //
- ".OUT",access="Direct",recl=1)

read(1,*)startyear,startmon,months,days,herds,maxX,maxy xlLyll,cell

years=0

i=months

do while(i.gt.12)
i=i-12
years=years+1

end do
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Table E.8. (cont.)

write(*,*)"Months Tot",months,"= Months/Years =",i,years

stopmon=(months-(years*12))-1
stopmon=stopmon-+startmon

if(stopmon.eq.0) then
stopmon=12
years=years-1

endif

if(stopmon.gt.12) then
years=years+1
stopmon=stopmon-12

endif

stopyear=startyear+years
write(*,*)"Run ",months," months."
write(*,*)"Start: ",startmon,"/" startyear
write(*,*)"End: ",stopmon,"/",stopyear

allocate(steps(herds),pop(herds),stepfac(herds),dayfac(herds),monfac(herds),yearfac(herds))
do t=1,herds

read(1,*) steps(t),pop(t)

! Setup index factors

stepfac(t)=pop(t)

dayfac(t)=steps(t)*stepfac(t)

monfac(t)=dayfac(t)*days

yearfac(t)=monfac(t)*12
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Table E.8. (cont.)

end do
close(1)

Write(*,*) "Specify the information you wish to extract using the fields below."
write(*,*) " To extract all records in a certain field, use ALL in that field"
write(*,*)

times=0

10 times=times+1
herd=1
write(output, *)times
if(simflag)open(10,file="C://SAVANNA//PROJ//JEMEZ//SITE//OUT//" // Trim(adjustl(FName)) // "-" //
- Trim(adjustl(output)) // ".txt")
if(simflag)write(10,fmt="(7(A10,","),A10)")"Index"," Animal","Year","Month","Day","Step"," X-Coord","Y-Coord"

write(output,*)pop(herd)
110 print *, "Animal # (Max= ",trim(adjustl(output)),") [ALL for all animals]: "
call charcon(1,pop(herd))
if(badin)goto 110
anilow=lowrange
anihigh=highrange
animal=(anihigh-anilow)

write(output,*)months
120  write(*,*) "Month (Min=1, Max=",trim(adjustl(output)),") [ALL for all months]:"
call charcon(1,months)
if(badin)goto 120
monlow=lowrange
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Table E.8. (cont.)
monhigh=highrange
130  write(*,*) "Day # (Max= 28) [ALL for all days]:"

call charcon(1,28)
if(badin)goto 130
daylow=lowrange
dayhigh=highrange
day=dayhigh-daylow

140 write(output,*)steps(herd)
write(*,*) "Step # (Max=",trim(adjustl(output)),") [ALL for all steps]:"
call charcon(1,steps(herd))
if(badin)goto 140
steplow=lowrange
stephigh=highrange
step=stephigh-steplow

write(*,*) "Include origination points for selected animals (Y/N)?"
read (*,*) input
if(input.eq."y".or.input.eq."Y")then
do animal=anilow,anihigh
call fileread(animal,0,0,0,0,0,0,0)
enddo
endif

write(*,*)"Loop check: "
write(*,*)" anilow,anihigh=",anilow,anihigh
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Table E.8. (cont.)

write(*,*)" monlow,monhigh=",monlow,monhigh
write(*,*)" daylow,dayhigh=",daylow,dayhigh
write(*,*)" steplow,stephigh=",steplow,stephigh

do animal=anilow,anihigh
do month=monlow,monhigh
do day=daylow,dayhigh
do step=steplow,stephigh
call fileread(animal,step,day,month,pop(herd),stepfac(herd),dayfac(herd),monfac(herd))
enddo
enddo
enddo
enddo

close(10)

write(output, *)times

write(*,*)"File Written: C\SAVANNA\PROJNEMEZ\SITE\OUT\" // Trim(adjustl(FName)) // "-"
- // Trim(adjustl(Output)) // ".txt"

write(*,*)
write(*,*) " 'X' To exit, any other key to continue..."
read(*,*)output

if(output.ne."x".and.output.ne."X")goto 10
write(*,*)" ** EXITING Elk Data Read program **"
close(2)

close(12)

end program ElkData
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Table E.8. (cont.)

subroutine FileRead(ani,st,dy,mn,pop,sf,df,mf)
integer ani,yr,mn,dy,st,mf,df,sf,pop
real r
integer n,iyear,imonth,iday,istep,east,north
integer maxx,maxy,narea,x,y,xlL,yll,cell,startyear,startmon

logical(kind=1) simflag
common/grid/maxX,MaxY narea,x,y,xll,yll,cell,startyear,startmon,simflag

if (mn.eq.0) then
i=ani
else
i=pop+(ani)+(sf*(st-1))+(df*(dy-1))+(mf*(mn-1))
endif
n=i
if(mn.eq.0)then
iyear=0
imonth=0
iday=0
istep=0
else
istep=st
iday=dy
iyear=startyear
imonth=startmon+(mn-1)
do while (imonth.gt.12)
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Table E.8. (cont.)

iyear=iyear+1
imonth=imonth-12
end do
endif

if(simflag) then

read(2,rec=i)narea
x=mod(narea-1,maxX)+1
y=max Y -(int((narea-1)/maxX))
x=x-1
y=y-1
east=((x-1)*cell)+xII
call random_number(r)
r=(r*(cell-1)+1)
east=east+(int(r))
north=((MaxY-y)*cell)+yll
call random_number(r)
r=(r*(cell-1)+1)
north=north+(int(r))
write(10,fmt="(7(110,","),110)")i,ani,iyear,imonth,iday,istep,east,north
if(msgscrn)then
write(*,fmt="(A10,5(A7),2(A9),A6)")"'Record"," Animal","Year","Month","Day","Step","Easting","Northing","narea"
write(*,fmt="(110,5(17),2(19),16)")i,ani,iyear,imonth,iday,istep,x,y,narea
write(*,*)" "
endif
else
write(12,fmt='(A10,5(A7),2(A9),A6)")"Record"," Animal","Year","Month","Day","Step","Easting","Northing","narea"
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Table E.8. (cont.)

write(12,fmt="(110,5(17),2(19),16)")i,ani,iyear,imonth,iday,istep,x,y,narea
write(12,*)" "
endif
return
end

Subroutine charcon(min,max)

character*20 input,low,high

integer lowrange,highrange,s,min,max
logical(Kind=1) badin
common/range/lowrange,highrange,badin,input

badin=.false.
read(*,*)input
if(input.eq."ALL".or.input.eq."all".or.input.eq."All") then
lowrange=min
highrange=max
else
s=index(input,"-")
if(s.eq.0) then
read(input,fmt="(I8)") lowrange
highrange=lowrange
else
low=input(1:s-1)
high=input(s+1:)
read(low,*)lowrange
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Table E.8. (cont.)

read(high,*)highrange
endif
endif
if(lowrange.lt.min.or.highrange.gt.max) then
write(*,*)" ** ERROR - Response must be ",min,"-",max," **"
badin=.true.
endif
return
end




Table E.9. Raw code for generation of the individual-based movement model. Due to
the long history behind SAVANNA and the need to integrate this IBM with that
ecosystem model, the code below is a combination of FORTRAN 77 and FORTRAN 90
(Code copyright 2005, Acorp Computers, Paul Rupp — owner).

subroutine IBM(init,ntim,idum)
¢ Individual Based Movement Model for Elk
¢ Elk move across the landscape responding to HSI,
¢ where hsi is based on forage and physical factors

include 'arraysiz.inc'

include 'state.inc'

include 'statec.inc'

include 'statew.inc'

include 'stateh.inc'

include 'runcon.inc'

include 'grdvarl.inc'

include 'grdvar2.inc'

include 'grdvar3.inc'

include 'grdvar4.inc'

include 'grdvar5.inc'

include 'grdvar6.inc'

include 'grdvar7.inc'

include 'grdvar8.inc'

include 'grdvar9.inc'

include 'imgmx.inc'

include 'cvars.inc'

include 'wdprm.inc'

include 'species.inc'

include 'plprm.inc'

include 'sppmix.inc'

include 'cdistr.inc'

include 'cdiscent.inc'

include 'consprm.inc'

include 'filenam.inc'

include 'pathname.inc'

include 'anmsk.inc'

include 'baseppt.inc'

integer nspherd(nsphx)

integer ifrcprb(nsphx)

real ansimilar(nsphx,nsphx)

real pelevmn(12,nsphx),pelevmx(12,nsphx)
real xpopsv(nsphx,ncellx)

character*4 endmark
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Table E.9. (cont.)

real emmigrants(nsphx),displeft(nsphx)

INTEGER :: Times,iter,day,x,y,x1,y1,t,startnum(nsphx),xloc,yloc
INTEGER :: CurrentLoc(2),ChoiceLocs(9,2)

INTEGER :: ULStartX(nsphx),ULStartY (nsphx),

- LRStartX(nsphx),LRStartY (nsphx),

- MidX(nsphx),MidY (nsphx),yr,mon,mem
INTEGER,ALLOCATABLE,DIMENSION(:,:) :: StartLocs
REAL :: Choices(9),vcstart(nsphx),r,cNow,MigForce

LOGICAL :: MigFlag,Flag,Problem,Skipsav,WriteData
CHARACTER*80 :: FName,FileName

CHARACTER*10 :: MonName,WeekName,YearName,HSIType
integer*2 shadecvr(ncellx),thickcvr(ncellx)

REAL :: cellsz,xllcrnr,yllcrnr,EucDist,Lint(2,3),NowDist,RadDist

common/watsup/wsuplt,wdemt

common/rangeknow/irangeexp(nsphx),prknow(nsphx),know(nsphx,ncellx)
integer*2 know

data ifrcprb/nsphx*0/

¢ initialize species similarities with respect to habitat
if(iomsg.eq.1)write(*,*)'Opening ansimilr.prm'
open(2,file=adjustl(parmpath//'ansimilr.prm"))
read(2,*)nsppc
if(nsppc.ne.nspcon)then
write(*,*)'# species on ansimilr.prm ne. nspcon '
pause
stop
end if
do nscn=1,nsppc
read(2,*)ndum,(ansimilar(nscn,nscn2),nscn2=1,nspcon)
end do
close(2)
¢ initialize total herbivore populations
if(ilomsg.eq.1)write(*,*)'Opening IBM.prm'
open(2,file=adjustl(parmpath//'IBM.prm"))

¢ read number of consumer species
read(2,*)nsppc

c Possibility of entering a zero value cell
read(2,*)stoch
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Table E.9. (cont.)

! Read IBM Outfile name
read(2,*)FName

c flag to override all with a uniform distribution
read(2,*)iuniform

c initialize habitat preference functions by consumer species

c first, flag which ones are used
read(2,*)ihdfd
read(2,*)ihdme
read(2,*)ihdwc
read(2,*)ihdsl
read(2,*)ihdel
read(2,*)ihdcost
read(2,*)ihdroad
read(2,*)ihdbuild
read(2,*)ihdfence
read(2,*)ihdmem
read(2,*)ihdfc
read(2,*)ihdzone
read(2,*)ihdpr
read(2,*)ihdmig
read(2,*)ihden
read(2,*)ihsnw
read(2,*)ihgreen
read(2,*)ihdead
read(2,*)ihtemp
read(2,*)ihrngexp
read(2,*)themmigr
read(2,*)hsipower

if(hsipower.1t.0..or.hsipower.gt.0.)then
thpower=1

else

ithpower=0

end if

if(ispatial.eq.0)then
write(*,*)'Nonspatial run - ignoring all options to use'
write(*,*)'spatial data to calculate animal distribution'
ihdfd=0
thdme=0
thdwt=0
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Table E.9. (cont.)

thdwc=0
thdsl=0
thdel=0
thdfc=0
ithden=0
ithsnw=0
thgreen=0
ihdead=0
thtemp=0
end if

¢ parameters for reporting total grazing pressure
read(2,*)(itgrzsp(nscn),nscn=1,nspcon)
read(2,*)(anunit(nscn),nscn=1,nspcon)
read(2,*)iauacc

c read parameters for each species, using approp herd/consumer index
nherdt=0
do nsp=1,nsppc
nherdt=nherdt+1
read(2,*)nherd
read(2,*)(nspherd(nh),nh=1,nherd)
nscn=nspherd(1)
if(nscn.gt.nsphx)then
write(*,*)'Exceeding max number of animal pops ',nsphx,
- 'on IBM.prm, species/herd-',nsp,nherd
pause
end if
read(2,*)((pforage(i,j,nscn),i=1,2),j=1,3)
read(2,*)((emetintk(i,j,nscn),i=1,2),j=1,2)

c the following 4 vars must range 0-1 since all in an amin] function below
read(2,*)((pshcv(i,j,nscn),i=1,2),j=1,2)
read(2,*)((pthev(i,j,nscn),i=1,2),j=1,2)
do j=1,2

if(pshcv(2,j,nsen).gt. 1..or.pthev(2,j,nscn).gt. 1)then
write(*,*)'pshcv or pthev must be <=1 in IBM.prm'
pause
stop
end if
end do
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Table E.9. (cont.)

read(2,*)((pslope(i,j,nscn),i=1,2),j=1,3)
doj=1,3
if(pslope(2,j,nscn).gt.1.)then
write(*,*)'pslope must be <=1 on IBM.prm'
pause
stop
end if
end do

read(2,*)pelev(1,1,nscn),pelev(1,2,nscn)
read(2,*)(pelevmn(m,nscn),m=1,12)
read(2,*)(pelevmx(m,nscn),m=1,12)
read(2,*)prfgmn(nscn)
read(2,*)prefam(1,nscn),prefam(2,nscn)
read(2,*)((psnow(i,j,nscn),i=1,2),j=1,3)
read(2,*)((pgreenhb(i,j,nscn),i=1,2),j=1,2)
read(2,*)((pdeadhb(i,j,nscn),i=1,2),j=1,2)
read(2,*)((ptemper(i,j,nscn),i=1,2),j=1,4)
read(2,*)((esnowemmig(i,j,nscn),i=1,2),j=1,2)
read(2,*)((ecrustemmig(i,j,nscn),i=1,2),j=1,2)
read(2,*)vcstart(nscn)
read(2,*)startnum(nscn)
if(startnum(nscn).ne.0) then
do t=1,startnum(nscn)

read(2,*)x,y

narea=((nrow-y)*ncol)+x

elkloc(nscn,t)=narea

hpop(nscn,narea)=hpop(nscn,narea)+1

end do

end if
read(2,*)ulstartx(nscn),ulstarty(nscn)
read(2,*)lrstartx(nscn),lrstarty(nscn)
read(2,*)daystep(nscn)
read(2,*)((winrange(nscn,j),j=1,2))
read(2,*)((sumrange(nscn,j),j=1,2))
read(2,*)((radius(nscn,j),j=1,2))
read(2,*)MigForce

¢ do not allow zero values - set to a very low value

c otherwise could simulate an area with all 0's, leaving no animals even though they are
there

393



Table E.9. (cont.)

c in the normal case, the very low value will translate into essentially 0 animals

ylow=1.e-6
i=2
doj=1,2

emetintk(i,j,nscn)=amax 1 (emetintk(i,j,nscn),ylow)
pgreenhb(i,j,nscn)=amax 1(pgreenhb(i,j,nscn),ylow)
pdeadhb(i,j,nscn)=amax1(pdeadhb(i,j,nscn),ylow)
pshcv(i,j,nscn)=amax1(pshcv(i,j,nscn),ylow)
pthev(i,j,nscn)=amax1(pthcv(i,j,nscn),ylow)
esnowemmig(i,j,nscn)=amax 1 (esnowemmig(i,j,nscn),ylow)
ecrustemmig(i,j,nscn)=amax I (ecrustemmig(i,j,nscn),ylow)
end do

doj=1,3
psnow(i,j,nscn)=amax 1 (psnow(i,j,nscn),ylow)
pforage(i,j,nscn)=amax 1 (pforage(i,j,nscn),ylow)
pslope(i,j,nscn)=amax1(pslope(i,j,nscn),ylow)
end do

doj=1,4
ptemper(i,j,nscn)=amax 1 (ptemper(i,j,nscn),ylow)
pelev(i,j,nscn)=amax1(pelev(i,j,nscn),ylow)

end do

c for each species fill in other remaining herds
if(nherd.gt.1)then
do nh=2,nherd
nherdt=nherdt+1
nscn2=nspherd(nh)
prfgmn(nscn2)=prfgmn(nscn)
prefam(1,nscn2)=prefam(1,nscn)
prefam(2,nscn2)=prefam(2,nscn)
do m=1,12
pelevmn(m,nscn2)=pelevmn(m,nscn)
pelevmx(m,nscn2)=pelevmx(m,nscn)
end do
doi=1,2
do j=1,2
pshev(i,j,nscn2)=pshcv(i,j,nscn)
pthev(i,j,nsen2)=pthcv(i,j,nscn)
pgreenhb(i,j,nscn2)=pgreenhb(i,j,nscn)
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Table E.9. (cont.)

pdeadhb(i,j,nscn2)=pdeadhb(i,j,nscn)
emetintk(i,j,nscn2)=emetintk(i,j,nscn)
esnowemmig(i,j,nscn2)=esnowemmig(i,j,nscn)
ecrustemmig(i,j,nscn2)=ecrustemmig(i,j,nscn)
end do
do j=1,3
psnow(i,j,nscn2)=psnow(i,j,nscn)
pforage(i,j,nscn2)=pforage(i,j,nscn)
pslope(i,j,nscn2)=pslope(i,j,nscn)
end do
doj=1,4
pelev(i,j,nscn2)=pelev(i,j,nscn)
ptemper(i,j,nscn2)=ptemper(i,j,nscn)
end do
end do
end do
end if
end do
read(2,221)endmark
221 format(a4)
if(endmark.ne.'-999")then
write(*,*)'Wrong end of file mark for IBM.prm'
write(*,*)' There must be a -999 in cols 1-4 of last line'
write(*,*)'Press Enter'
read(*,*)
stop
end if
close(2)

! Initialize Random Number Generator
call random_seed()

if(nherdt.ne.nspcon)then
write(*,*)' Number of consumer spp. in IBM.prm '
- /I'not equal nspcon '
pause
stop
end if

! Cost Impedence Surface Map
if(ihdcost.eq.1)then
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Table E.9. (cont.)

if(lomsg.eq.1)write(*,*)
- 'Opening cost impedance surface map ',costmap
call mapread(costmap)
! Cost Impedence Surface Map is a map of continuous real values
! representing the logistic regression and interaction of
! slope, aspect, and elevation.
!0 value cells are deemed to be inaccessible to elk
! The cost impedance surface map is the underlying map which
! the following maps build on
do narea=1,nareat
elkcost(narea)=(rarray(narea))

end do
! We want all no-data cells to be functionally masked out on the HSI
where(elkcost.It.0)ElkCost=0

else
elkcost=1

endif

! Memory Map
if(ihdmem.eq.1)then
if(ilomsg.eq.1)write(*,*)'Opening memory map ', memorymap
call mapread(memorymap)
! Memory Map is a map of continuous real values
! representing the memory of migration routes
! 0's will have no effect on the underlying map
! Other values will be multiplied with the underlying map,
! then added back in so that positive cells less than one
! will be viewed more favorably
! ** Memory is only "turned on" during snowfall, so the
I ** application of this map occurs during movement
! Remove the Normalization for Memory Map1
! Where(rarray.gt.0)rarray=rarray/(Max Val(rarray))
Where(rarray.gt.0)elkcost=elkcost+rarray
end if

! Roads Map
! Roads Map is a map of continuous real values
! representing roads and road crossings
! 0 values (no roads) are masked out, and the remaining
! values are inverted then cross multiplied with the
! Cost Impedance Map so that higher values (which
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Table E.9. (cont.)

! indicate more crossings) have a less adverse impact
! on the underlying map than lower positive numbers.
if(ihdroad.eq.1)then
if(iomsg.eq.1)write(*,*)
- 'Opening road map ';roadmap
call mapread(roadmap)
Where(rarray.gt.0)elkcost=elkcost*(1-rarray)
endif

! Buildings Map

! Buildings Map is a map of continuous real values

! We invert and normalize because 0's (no buildings) should

! become 1's and have no effect on the underlying map, and

! values closer to one (many buildings) should function to

! decrease HSI

if(ihdbuild.eq.1)then
if(ilomsg.eq.1)write(*,*)

- 'Opening buildings map ',buildmap

call mapread(buildmap)
! Normalize Buildings Map
where(rarray.gt.0)rarray=rarray/maxval(rarray)
! Invert and cross multiply with cost impedance map
where(rarray.ne.-9999) elkcost=elkcost*(1-rarray)

endif

! Fence Map
! Fence Map is a 1/0 presence/absence map
!'and 0's (fences) should be masked out
if(ihdfence.eq.1)then
if(lomsg.eq.1)write(*,*)
- 'Opening fence map ',fencemap
call mapread(fencemap)

where(rarray.ne.-9999) elkcost=elkcost*rarray
endif

¢ zonal maps
if(ihdzone.eq.1)then
open(2,file=adjustl(parmpath//'zonemap.prm'))
if(iomsg.eq.1)write(*,*)'Opening zone map ', zonemap
call mapread(zonemap)
do narea=1,nareat
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nzone(narea)=int(rarray(narea))
end do
wtzone=1.
read(2,*)nzonet
do n=1,nzonet
read(2,*)nscn,nz,wtzone(nz,nscn)
end do
end if

if(ihrngexp.eq.1)then
call rangeexp(1)
end if

if(ihdfd.eq.4)then
call logistic(1,0,0,0,prob)
end if

¢ hard code uniform distribution
if(iuniform.eq.1)then
write(*,*)'Overriding distribution data in IBM.f to'
write(*,*)'achieve uniform herbivore distributions '
end if

¢ Open file to track individual animal movements and write header
open(96,file=adjustl(outpath//Trim(adjustl(FName))//".hdr"))
write(96,*)nystrt,mstrt,int(nmnths),28,nsppc,ncol,nrow,
- nint(xllcrnr),nint(yllernr), 150
do iter=1,nsppc
write(96,*)int(daystep(iter)),
- int(hpopt(iter))
end do
close(96)
open(96,file=adjustl(outpath//Trim(adjustl(FName))//".out'),
- access='Direct',status='Replace’,recl=4)
ibmout=0
vetype=0

! Determine where the VC land cover is if we have animals starting on the VC
! We check here both to make sure it is VC, and that it isn't masked out
! on the cost impedance map

if(MaxVal(vcstart).gt.0)then
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do narea=1,nareat
if(vegtype(1,narea).eq.1) then
vetype=vctypetl
rarray(vctype)=narea
endif
end do
allocate(startlocs(vetype,2))
endif

! Loop through all species
do nscn=1,nsppc
=1
do iter=1,vctype
narea=rarray(iter)
x1=mod((narea-1),ncol)+1
yl=nrow-(int(narea-1)/ncol)
if((x1.ge.ulstartx(nscn).and.x 1.le.Irstartx(nscn)).and.
- (yl.ge.ulstarty(nscn).and.y1.le.Irstarty(nscn)))then
startlocs(j,1)=x1
startlocs(j,2)=y1
=i+l
endif
end do

! Determine center point of Summer Range

! midX(nscn)=int((LRStartX(nscn)+ULStartX(nscn))/2)+

! - ULStartX(nscn)

! midY (nscn)=int((LRStartY (nscn)+ULStartY (nscn))/2)+

! - ULStartY(nscn)
TopDist(nscn)=EucDist(SumRange(nscn,:), WinRange(nscn,:))

c read in maps of emmigration area
if(emmigareamap(nscn)(1:4).ne.' '.and.
- emmigareamap(nscn)(1:4).ne.'NONE'.and.
- emmigareamap(nscn)(1:4).ne.'none')then
if(iomsg.eq.1)write(*,*)'Opening emmigration areas map ',
- emmigareamap(nscn),nscn
call mapread(emmigareamap(nscn))
do narea=1nareat
emmigar(nscn,narea)=int(rarray(narea))
end do
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end if

! Set Elk Starting Locations for each herd
! Distribute VCStart% of animals on Valle Caldera Land Cover Type
y=(hpopt(nscn)-startnum(nscn))*vcstart(nscn)
X=y
if(iomsg.ge.3)open(40,file="elkinit.txt")
if(y.gt.0) then
do iter=1,y
call random number(r)
! Select a random cell within the VC area
! Max selection choice is J, the number of
! VCNP cell types on the Caldera
r=(r*(j-1)+1)
x I=startlocs(int(r),1)
y1=startlocs(int(r),2)
narea=((nrow-y1)*ncol)+x1
hpop(nscn,narea)=hpop(nscn,narea)+1
elkloc(nscn,iter+startnum(nscn))=narea
end do
endif

! Distribute remaining animals elsewhere on the map randomly
y=(hpopt(nscn)-startnum(nscn))-y
do while (y.gt.0)
call random_number(r)
! Select a random cell somewhere on the map
r=int(r*(nareat-1)+1)
! Make sure it isn't masked out
if(nstp(1,r).ne.0.and.elkcost(r).ne.0) then
! Decrease the number of animals left to distribute
y=y-1
! Increase the animal "index" number
x=x+1
hpop(nscn,r)=hpop(nscn,r)+1
elkloc(nscn,x+startnum(nscn))=r
if(lomsg.ge.3)write(40,*)" Ani=",int(x),
- "Cell=",int(r),
- "Cell Pop=",int(hpop(nscn,r))
end if
end do

400



Table E.9. (cont.)

! Put Elk Population in an array that won't get lost
elkpop=hpop

! Write elk starting points to IBM.out
if(iomsg.ge.3)then
write(40,*)"Max Cell Pop",
- int(MaxVal(hpop))," in cell",
- int(MaxLoc(hpop))
close(40)
endif
do iter=1,hpopt(nscn)
ibmout=ibmout+1
write(96,rec=ibmout)int(ElkLoc(nscn,iter))
! write(97,*)int(ElkLoc(nscn,iter))
end do
end do

return
end if

¢ end intialization
c

! Bring in Elk Population Distribution from a persistant array
hpop=elkpop
write(*,*)"Start Elk IBM..."

I iomsg=3
! open(40,"hsicomp.txt")

c read data off a file if running distrib only
c store data in arrays that are not used in this kind of run
if(idistrd.eq.1)then
nrto=nlrow-nfrow+1
nvarsv=nv_not_con3+2*nspcon
do nr=nfrow,nlrow
do nvar=1,nvarsv
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nrec= (nrto*nvarsv*(nimgsv-1)) + (nvar-1)*nrto +
- (nr-nfrow+1)

read(64,rec=nrec)(ldat3(nvar,nc),nc=nfcol,nlcol)

end do

do nc=nfcol,nlcol
na=idcel(nr,nc)
wdcvr(1,na)=Idat3(1,nc)/100.
shevr(1,na)=Idat3(2,nc)/100.
shadecvr(na)=ldat3(1,nc)
thickcvr(na)=ldat3(2,nc)
snwdp(na)=ldat3(3,nc)
ncrust(na)=Idat3(4,nc)
gbiom(1,na)=ldat3(5,nc)
dedb(1,na)=Idat3(6,nc)
meantemp(na)=Idat3(7,nc)
do n=1,nspcon

tforage(n,na)=float(ldat3(nv_not con3+n,nc))/10.
metabintk(n,na)=Idat3(nv_not con3-+nspcon-+n,nc)

end do

end do

end do
end if

if ((MaxVal(snwdp).le.0).and.(MaxVal(meantemp).le.0)) then
Write(*,*)"Meantemp & Snow Depth for entire area <=0..."

pause
endif

c call range expansion monthly - at ntim=4 so works w. distrib-only run
if(ihrngexp.eq.1)then
if(ntim.eq.4)then
call rangeexp(0)
end if
end if

¢ Loop over a single animal herd/species at a time
do 1 nsen=1,nspcon
if(skipsav)goto 888

! fname="elkstart-"

! write(fname,*)ntim
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! fname=fname//".txt"

! write(fname,*)"elkstart-",ntim,".txt"

! open(40,file=fname)

! write(40,*)"Population Check #'s: "

! write(40,*)"  Theoretical=",hpopt(1)
! write(40,*)"  hpop array=",sum(hpop)
! write(40,*)"  elkpop array=",sum(elkpop)
! i=nscn

! do x=1,hpopt(i)

! narea=idcel(elkloc(i,x+startnum(i),2),
' - elkloc(i,x+startnum(i),1))

! write(40,*)" Ani=",int(x),"Cell=",int(narea)," X, Y=",
I int(elkloc(i,x+startnum(i), 1)),

Io- int(elkloc(i,x+startnum(i),2)),

S "Cell Pop=",int(hpop(i,narea))

! end do

! write(40,*)"Total Pop=",sum(hpop)," Max Cell Pop",
I MaxVal(hpop)," in cell",MaxLoc(hpop)

! close(40)

¢ forced movements may be scheduled
c find if different map now based on date and if so, read in new map
¢ nfmap(nscn) is the map index currently in use for species nscn
¢ nfmapt(nscn) is the total number of maps for the species
c only do at beginning of month
if((ihdfc.eq.1.and.ntim.le.1).or.idistrd.eq.1)then
nmap=0
do n=1,nfmapt(nscn)
if(nyear.ge.nyrfrc(1,n,nscn).and.
- nyear.le.nyrfrc(2,n,nscn).and.
- monfrc(month,n,nscn).eq.1)then
nmap=n
end if
end do
if(nmap.eq.0.and.nfmapt(nscn).gt.0)then
write(*,*)'Warning - no force map found for current time'
write(*,*)'year/month',nyear,month,' herd/species ',nscn
end if
if(nmap.ne.0.and.nmap.ne.nfmap(nscn).and.nfmapt(nscn).ne.0)
- then
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nfmap(nscn)=nmap
if(iomsg.eq.1)write(*,*)'Opening force map ',nmap,
- 'herd ',nscn ,fremap(nmap,nscn)

call mapread(frcmap(nmap,nscn))
¢ check force map values
nn=1
10k=0
do narea=1,nareat
nn=nn-+rarray(narea)

c allow non-data codes of -99 etc to be non-force (0)
rarray(narea)=amax I (rarray(narea),0.)
force(nscn,narea)=int(rarray(narea))
if(force(nscn,narea).gt.0)iok=1

end do
if(iok.eq.0.and.hpopt(nscn).gt..001.and.ifrcprb(nscn).ne.1)
- then
ifrcprb(nscn)=1
write(*,*)
write(*,*)'Warning'
write(*,*)' No cells within specified force map for'
- ,'animal population',nscn
write(*,*)' - yet population size is >0 '
write(*,*)' Results will be spurious (CI will not change'
- ,', intake will =0, etc.)'
write(*,*)
end if
end if

end if

c assess forage level in preferred area (eg. wet season concentration area)
¢ to include green leaves and stems of herbs and CAG of woodies only
if(ihdpr.eq.1)then

prthbg(nscn)=0.

nprarea=0

do narea=1,nareat

if(nstp(1,narea).gt.0)then
if(prefar(narea).eq.1)then
if(ihdfc.eq.0.or.(ihdfc.eq.1.and.
- force(nscn,narea).gt.0))then
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nprarea=nprarea+1
do nsp=1,nspmx
nspt=nspec(nsp,nf)
if(nspt.gt.0)then
if(prfsp(nspt,nscn).gt.0.)then
if(nwdysp(nspt).eq.0)then
do nsub=1,nsubar
do nfac=1,nfacet
prfthbg(nscn)=prthbg(nscn)+gbiom(nsp,nf)+
- wood(nsp,nf)
end do
end do
else
do nsub=1,nsubar
do nfac=1,nfacet
prfhbg(nscn)=prthbg(nscn)+cagw(nsp,nf)
end do
end do
end if
end if
end if
end do
end if
end if
end if
end do
if(nprarea.gt.0)then
prthbg(nscn)=prthbg(nscn)/float(nprarea)
end if

end if
ndrow=nfrow
ndcol=nfcol-1

c calculate preference value for each cell

hsit=0.
hsitw=0.
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do 3 narea=1,nareat

hsi(nscn,narea)=0

¢ for image output - row and column, zero arrays or fill with miss value code
if((imgcon.ne.0.and.imgmon(month).eq.1).or.
- (idistrd.eq.1.and.nscn.eq.1))then

ndcol=ndcol+1

if(ndcol.gt.nlcol)then
ndcol=nfcol
ndrow=ndrow+1

end if

if(nstp(1,narea).eq.0)i=-999
if(nstp(1,narea).ne.0)i=0
if(nscn.eq.1)then

do nvar=1,nv_not con3

ldat3(nvar,ndcol)=i

end do
end if
ldat3(nscn+nv_not con3,ndcol)=i
ldat3(nscn+nspcon+nv_not con3,ndcol)=i

end if

c assess shade and thicket cover one time per month
¢ do for whole area, unless want to determine what is in the ranges of all species (need
for image3.img)

if(nscn.eq.1.and.ihdwc.eq.1.and.ntim.le.1.
- and.idistrd.ne.1)then
if(nstp(1,narea).ne.0)then

thcv=1.e-6

trcv=1.e-6

do nsub=1,nsubar

if(subcvr(nsub,narea).gt.0.)then
do nfac=1,nfacet
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nf=nfpnt(nfac,nsub,narea)

do nsp=1,nspmx
nspt=nspec(nsp,nf)
if(nspt.ne.0.and.nwdysp(nspt).gt.0)then

c could use species ht here, but then would only save spp. 1
c thcv and shev to image3 (which is used by distrib-only runs)
don=1,6

if(tnum(nsp,n,nf).gt.0.)then
nsiz=npsize(n,nsp,nfac,nsub)
plsiz=wdsize(nsp,n,nf)*1.e6/tnum(nsp,n,nf)
if(nsiz.eq.1)then
canar=xyinter(plsiz,0.,sbsize(nsiz,nspt),
- 0.,wcarea(nsiz,nspt))
else
canar=xyinter(plsiz,sbsize(nsiz-1,nspt),
- sbsize(nsiz,nspt),wcarea(nsiz-1,nspt),
- wcarea(nsiz,nspt))
end if

c m2 area/m2 ground = trees/km2 * 1.e-6km2/m2 * m2 area/tree

cancvr=tnum(nsp,n,nf)*1.e-6*canar
if(canbot(nsiz,nspt).gt.2.)then
trev=trcv+tcancvr
else
thcv=thcv+cancvr
end if
end if

end do
end if
end do
end do
end if
shadecvr(narea)=trcv*100
thickcvr(narea)=thcv*100
end do
else
if(idistrd.ne.1)then
shadecvr(narea)=0
thickcvr(narea)=0
end if
end if
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end if

¢ branch around if masked
if(nstp(1,narea).eq.0)go to 330

¢ herbaceous green and dead biomass
if(ihgreen.eq.1.or.ihdead.eq.1)then
if(idistrd.ne.1)then
hbgrn=1.e-6
hbded=1.e-6
do nsub=1,nsubar
if(subcvr(nsub,narea).gt.0.)Then
cvrsub=subcvr(nsub,narea)
do nfac=1,nfacet
nf=nfpnt(nfac,nsub,narea)
do nsp=1,nspmx
nspt=nspec(nsp,nf)
if(nspt.gt.0)then
if(nwdysp(nspt).eq.0)then
hbgrn=hbgrn+(gbiom(nsp,nf)+wood(nsp,nf))*cvrsub
hbded=hbded+dedb(nsp,nf)*cvrsub
end if
end if
end do
end do
end if
end do
c distrib run -
else if(idistrd.eq.1)then

c gbiom(1,) will have live leaf+stem all herbs stored in it
c dedb(1,) will have dead of all herbs stored in it
c both will have been scaled up to grid-cell already

hbgrn=gbiom(1,narea)
hbded=dedb(1,narea)
end if
end if

if(ihgreen.eq.1)then
pgrnhb=alint(hbgrn,pgreenhb(1,1,nscn),2)
else
pgrnhb=1.
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end if

if(ihdead.eq.1)then
pdedhb=alint(hbded,pdeadhb(1,1,nscn),2)
else
pdedhb=1
end if

¢ branch around if not in use areca
if(ihdfc.eq.1.and.force(nscn,narea).eq.0)go to 330

¢ branch around if not known
if(irangeexp(nscn).eq. 1 )then
if(know(nscn,narea).ne.2)go to 330
end if

¢ forced movements due to threat, fencing, rotation, fixed migration etc.
¢ frc can be scaled any way (0 or 1, 0-100) since it is multiplicative on hsi
if(ihdfc.eq.1.and.nfmapt(nscn).gt.0)then
frc=float(force(nscn,narea))
else
fre=1.
end if

¢ zone map
if(ihdzone.eq.1)then
n=nzone(narea)
if(n.gt.0)then
zonewt=wtzone(nzone(narea),nscn)
else
zonewt=1.
end if
else
zonewt=1.

end if

c preferred area
if(ihdpr.eq.1)then
c if forage is good in the preferred area (prthb > prfgmn)
if(prthbg(nscn).gt.prfgmn(nscn))then
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if(prefar(narea).eq.1)parea=prefam(1,nscn)
if(prefar(narea).ne.1)parea=prefam(2,nscn)
else
parea=1.
end if
else
parea=1.
end if

c forage -
if(ihdfd.eq.1)then
for=alint(tforage(nscn,narea),pforage(1,1,nscn),3)
c tforage computed differently for thdfd=2,3 in dietpatc
elseif(ihdfd.eq.2)then
for=tforage(nscn,narea)
elseif(ihdfd.eq.3)then
for=tforage(nscn,narea)
elseif(ihdfd.eq.4)then
call logistic(0,nscn,narea,ntim,for)
else
for=1.
end if
for=amax1(for,.001)

¢ metabolic energy intake - convert KJ/kg/d to MJ/kg/d
¢ note, this has implicitly the effects of forage biomass, digestible energy,
¢ and snow in it, so could actually use this in place of all the others
¢ furthermore, because shrubs may have forage available despite snow
c depth, it may be a better way to represent snow effect
if(ihdme.ge.1)then
tmetin=float(metabintk(nscn,narea))/1000.
eme=alint(tmetin,emetintk(1,1,nscn),2)
else
eme=1.
end if
eme=amax1(eme,.001)
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c slope
if(ihdsl.eq.1)then
sl=alinti2(slope(narea),pslope(1,1,nscn),3)
else
sl=1.
end if

¢ woody cover - shade trees vs. thicket, based on height of canopy bottom
if(ihdwc.eq.1)then

if(idistrd.ne.1)then
shcvrx=float(shadecvr(narea))/100.
thevrx=float(thickcvr(narea))/100.

else if(idistrd.eq.1)then
shevrx=wdcvr(1,narea)
thcvrx=shcvr(1,narea)

end if

sh=alint(shcvrx,pshcv(1,1,nscn),2)
th=alint(thcvrx,pthcv(1,1,nscn),2)
else
sh=1.
th=1.
end if

c elevation

if(ihdel.eq.1)then
pelev(2,1,nscn)=pelevmn(month,nscn)
pelev(2,2,nscn)=pelevmx(month,nscn)
el=alinti2(elev(narea),pelev(1,1,nscn),4)

else
el=1.

end if

c snow - depth is in cm
if(ihsnw.eq.1)then
sd=float(snwdp(narea))
snw=alint(sd,psnow(1,1,nscn),3)
else
snw=1.
end if
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¢ temperature
if(ihtemp.eq.1)then
t=float(meantemp(narea))
tmp=alint(t,ptemper(1,1,nscn),4)
else
tmp=1.
end if

¢ Cost Impedance Surface Map (Includes any modifiers)
if(ihdcost.eq.1)then
cost=elkcost(narea)
if (cost.eq.-9999) cost=1
else
cost=1.
end if

c total habitat suitability/preference wt

! sl=slope

! el=elevation

! sh=shrub cover

! th=thicket cover

! (Law of the minimum on above- only use the lowest)
! frc=force

! SNW=SNOwW

! tmp=termperature

! zonewt=zone weight

! cost=cost impedance
phys=aminl(sl,el,sh,th)*frc*snw*tmp*zonewt*cost

¢ the final HSI

! for=forage

! eme=metabolic energy

! phys=physical factors (listed above)

! pwat=distance to water

! parea=preferred area

! pgrnhb=preference for green biomass

! pdedhb=preference for dead biomass
hsi(nscn,narea)=for*eme*phys*parea*pgrnhb*pdedhb

! write(40,*)"for=",for

! write(40,*)"eme=",eme

! write(40,*)"parea=",parea
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write(40,*)"pgrnhb=",pgrnhb
write(40,*)"pdedhb=",pdedhb
write(40,*)"HSI=",hsi(nscn,narea), "narea=",narea
write(40,%)" "

c using a power<1 will dampen effect of multiplying many fractions together
if(ihpower.ne.0)then
hsi(nscn,narea)=hsi(nscn,narea)**hsipower
end if

hsit=hsit+hsi(nscn,narea)
hsitw=hsitw-+hsi(nscn,narea)

¢ branch here if cell is masked out or not in use area
330 continue

¢ save temporally varying habitat factors for image output -
¢ and for use in driving the distrib model by itself
¢ set imgcon=0 for no output
¢ non-varying factors elev,slope can be obtained from GIS data
¢ force and prefar can also seen in GIS data
if(nimgsv.ne.0.and.imgmon(month).eq.1.and.imgcon.ne.0)then
if(nstp(1,narea).gt.0)then
if(nscn.eq.1)then
ldat3(1,ndcol)=shadecvr(narea)
ldat3(2,ndcol)=thickcvr(narea)
ldat3(3,ndcol)=snwdp(narea)
ldat3(4,ndcol)=ncrust(narea)
l1dat3(5,ndcol)=hbgrn
ldat3(6,ndcol)=hbded
ldat3(7,ndcol)=meantemp(narea)
else

end if

if(force(nscn,narea).eq.0.)then
ldat3(nscn+nv_not con3,ndcol)=0
ldat3(nscn+nspcon+nv_not con3,ndcol) =0

else
ldat3(nscn+nv_not_con3,ndcol)=tforage(nscn,narea)*10
ldat3(nscn+nspcon+nv_not con3,ndcol)=
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- metabintk(nscn,narea)
end if
c ldat3(nscn+nspcon+nv_not con3,ndcol)=know(nscn,narea)

else
if(nscn.eq.1)then
do nvar=1,nv_not con3
ldat3(nvar,ndcol)=i
end do
end if
ldat3(nscn+nv_not con3,ndcol)=i
ldat3(nscn+nspcon+nv_not con3,ndcol)=1
end if

¢ write row of image output if on last cell in the row
if(ndcol.eq.nlcol)then
¢ write out variables which do not vary by animal species - once
if(nscn.eq.1)then
call imagesv3(ndrow,1,nv_not con3)
end if
¢ write out variables that do vary by animal species - for each species
n=nscn+nv_not con3
call imagesv3(ndrow,n,n)
n=nscn-+nspcon+nv_not con3
call imagesv3(ndrow,n,n)
end if

end if
3 continue

! close(40)
! Use HSIMax to Normalize on highest HSI Value, or hsit to normalize on total HSI
hsimax=MaxVal(hsi(nscn,:))

¢ normalize hsi
do narea=1,nareat
if(nstp(1,narea).gt.0)then
if(ihdfc.eq.0.or.(ihdfc.eq.1.and.
- force(nscn,narea).gt.0))then
c if hsimax is 0, probably no habitat here, out of force range
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if(hsimax.eq.0.)then
hsi(nscn,narea)=0
else
if(hsi(nscn,narea).gt.0.)then
hsi(nscn,narea)=hsi(nscn,narea)/hsimax
else
hsi(nscn,narea)=1.e-30
end if
end if
end if
end if
end do

! Move Elk across landscape based on HSI as modified by snow/memory
! write(fname,*) "elkmove",nscn,"-",ntim," .txt"

! open(40,file=fhame)

! write(*,*)"Ani-1",ElkLoc(nscn,1)

! write(*,*)"Ani-6",ElkLoc(nscn,6)

888 do day=1,7 'Loop through seven days/one week
do Times=1,daystep(nscn)  !Loop through the max elk daily step
tzent=0

do iter=1,hpopt(nscn)  !'Loop through entire elk population
! Reset and Increment Variables
! (ChoiceLocs: (Col,Row) Index of cells 1-9)
! (Choices: Desirability of cells 1-9)
Choices=0
ChoiceLocs=0
narea=elkloc(nscn,iter)
x=mod((narea-1),ncol)+1
y=nrow-(int(narea-1)/334)
MigFlag=.False.
t=0
writedata=.false.

! Special modifiers can be applied to a cell-

!'1) If there is snow in a cell, apply a force inversely proportional to the result
! of the alint function for that depth of snow, or

! 2) If there is no snow in the cell, and we aren't in our Summering Range then
! apply memory as a directional force to return to home range.

415



Table E.9. (cont.)

! In this section we also calculate the distance to summer/winter ranges from

our
! current location
1f(ihdmig.eq.1)then
sd=float(snwdp(narea))
! We will be migrating, either to Winter Range or to Summer Range, so set
flag true

MigFlag=.True.
! Set the first pair of lint to be the (X,y) coordinates of our current location
lint(1,2)=x
lint(2,2)=y
if(sd.gt.0)then
! sd=sd*2
! Since it is snowing in our cell, we head to the Winter Range
! We need to decide how much force to exert toward the Winter Range
! The amount of force is based on the inverse of the linear interpolation
function which
! controls how elk respond to snow- the more snow, the more force we
apply toward Winter Range
ForceExert=(1-alint(sd,psnow(1,1,nscn),3))
lint(1:2,1)=WinRange(nscn,1:2)
! cNow is the distance from where we are now, to the Winter Range
! We have to set cNow, because we compare against it later to figure out
where to go!
cNow=EucDist(lint)
RadDist=0
writedata=.true.
write(*,*)" "
write(*,*)" X, Y=",x,y
write(*,*)"Snow=",sd,"Force=",ForceExert
else
I Since it isn't snowing in our cell, we head back to the Summer Range
! cNow is the distance from where we are now, to the Summer Range
! We have to set cNow, because we compare against it later to figure out
where to go!
lint(1:2,1)=SumRange(nscn,1:2)
cNow=EucDist(lint)
!' If we leave lint(1:2,2) set to the Summer Range coordinates, we
effectively have no boundary,
I'and Elk are forced, albeit a gradually declining force, all the way to the
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Summer Range

! If we set lint(1:2,2) to a coordinate other than the Summer Range
coordinates,

! force will not be applied once Elk come within a distance to the Summer
Range equal to or less

! than the distance between the Summer Range and the boundary
coordinate
! lint(1:2,2)=SumRange(nscn,1:2)

lint(1:2,2)=Radius(nscn,1:2)

RadDist=EucDist(lint)

! Set up Linear Interpolation Function to determine how much force to
apply to elk movements

! First Pair- lint(1:2,1)= The distance from SumRange where force should
no longer be applied

!' Lint(1,1)=RadDist=The distance the radius/boundary is from Summer

Range

!' Lint(2,1)=0=No force applied if within this distance of Summer Range

! If no boundary, this should be (0,0), otherwise it should be (radius,0),

! where radius is the euclidian distance of the boundary from the Summer
Range.

lint(1,1)=RadDist

lint(2,1)=0.0

! Second Pair- lint(1:2,2)= The force to be applied at the maxium distance
(Summer Range to Winter Range)

!' Lint(1,2)=TopDist(nscn)=The distance from SumRange to WinRange

!' Lint(2,2)=Maximum force to be applied at this distance [Currently Max
Force=.1]

lint(1,2)=TopDist(nscn)

lint(2,2)=MigForce

! We are currently located somewhere along the continum between
Summer and Winter Ranges

! Find the force (currently between 0 and .1) related to the distance we
are from the Summer Range

ForceExert=alint

- (float(cNow),Lint,2)

! Use the following two lines for a force related to Temperature
! ForceExert=alint(float(meantemp(narea)),
I ptemper(1,1,nscn),4)
! write(*,*)"Force=",ForceExert

! We need to leave the first pair set up for use later, when we apply the
force determined in the step above
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Table E.9. (cont.)

!' In this case, lint(1:2,1) is the X,Y coordinate pair of the Summer Range
(Where we are headed)

lint(1:2,1)=SumRange(nscn,1:2)
! write(*,*)"cNow,RadDist, TopDist,ForceExert=",
Io- cNow,RadDist, TopDist(nscn),ForceExert
! pause

! If we are exerting no force, it is pointless to do any migration, so simply
clear the migration flag

if(ForceExert.le.0)MigFlag=.False.

endif
endif

if(iomsg.ge.6)write(*,*) "Day=",day," Animal=",iter
if(ilomsg.ge.6)write(*,*) " From (X,Y)=",x,y,
- " narea=",narea," pop=",int(hpop(nscn,narea))

! Need to take elk out of old cell
hpop(nscn,narea)=hpop(nscn,narea)-1
if(hpop(nscn,narea).lt.0)then
write(*,*)"PROBLEM-- ELK POP is NEGATIVE"
write(*,*)"Elk="iter," x,y=",X,y," narea=",narea,
- " pop=",int(hpop(nscn,narea))
pause
stop
endif

! Each time through this loop is one cell move
do x1=x-1,x+1
do yl=y-1,y+1
! Convert (x,y) to narea
narea=((nrow-y1)*ncol)+x1

! Increment Choice Index
t=t+1

! Set ChoiceLocs to correspond to coordinates of cell we are evaluating
ChoiceLocs(t,1)=x1

ChoiceLocs(t,2)=y1

! Informative

if(iomsg.ge.6)write(*,*) " Evaluating (X,Y)=",
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- x1,yl," narea=",narea

! Make sure narea is within the map

! If not in-bounds set desirability to zero

if (narea.lt.1.or.narea.gt.nareat) then
Choices(t)=0
if(iomsg.ge.6)write(*,*)

- "Cell out of bounds/narea."

cycle

end if

! Check to make sure Column is in-bounds high/low
! Under most circumstances narea check is not enough
! If not in-bounds set desirability to zero
if ((x1 > ncolx) .or. (x1 < 1)) then
Choices(t)=0
if(ilomsg.ge.6)write(*,*)"Cell out of bounds/X"
cycle
end if

! Check to make sure Row is in-bounds high/low
! Under most circumstances narea check is not enough
! If not in-bounds set desirability to zero
if ((y1 > nrowx) .or. (y1 < 1)) then
Choices(t)=0
if(ilomsg.ge.6)write(*,*)"Cell out of bounds/Y"
cycle
end if

I Check to make sure cell isn't masked on soil type map
if (nstp(1,narea).eq.0) then
Choices(t)=0
if(ilomsg.ge.6) then
write(*,*)"Cell mask/Soiltype"
write(*,*)"Cell Vegtype=",
- vegtype(1,narea)
end if
cycle
end if

! Check to make sure cell isn't masked on cost impedance map
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if (ihdcost.eq.1) then
if(elkcost(narea).eq.0) then
Choices(t)=0
if(iomsg.ge.6)then
write(*,*)"Cell masked/Cost Impedance map"
write(*,*)"Cell Vegtype=",vegtype(1,narea)
endif
cycle
end if
end if

! Check to make sure cell isn't masked on force map
if (ihdfc.eq.1) then
if(force(nscn,narea).eq.0) then
Choices(t)=0
if(iomsg.ge.6)write(*,*)"Cell mask/force map"
cycle
end if
end if

! Check to make sure we don't already have too many elk in this cell
if (ihden.gt.0) then
if(hpop(nscn,narea).gt.ihden) then
Choices(t)=0
cycle
end if
end if

! If none of the special cases above apply,
! read the desirability of this cell from the Map
Choices(t)=hsi(nscn,narea)

! if(iomsg.ge.6)

! write(*,*)"Cell(",t,") HSI=",Choices(t)

! Even if cell has a desirability of zero, it still has a statistical
! chance of being selected, so increase desirability to value set in parm file.
if (Choices(t)==0) then
Choices(t)=stoch
if(iomsg.ge.2)write(*,*)"+Stochastic=",stoch
else
! write(*,*)"Non-zero",narea,x 1,y 1,hsi(nscn,narea)
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endif

! Special modifiers applied to a cell if migrating
! ForceExert is determined above, as is the migration direction
! (Winter or Summer) in the xMig,yMig variable
if (MigFlag) then
! Here we want to see if this prospective cell (x1,y1) is closer to our goal
! (either Winter Range or Summer Range, decided above) than where we
currently are
! ornot. lint(1:2,1) contains Winter/Summer Range, lint(1:2,2) our
possible location (x1,y1)
! The distance of this prospective cell from the Winter/Summer Range will
be compared to the
! distance of our current cell from the Winter/Summer Range. If this
prospective cell is
I' closer than our current cell, we will make it more attractive by a force
determined above.
lint(1,2)=x1
lint(2,2)=y1
! If this cell is closer to where we want to go, then we want to make it
more attractive
! and more likely to be selected. We will increase its desirability by
memory and the
I force calculated above.
if (EucDist(lint)<cNow) then
! if(writedata)then
! write(*,*)"X/Y=",x1,y1,
Po- "Choice(",t,")=",
I Choices(t),"Force=",ForceExert
! write(*,*)"Dist to Range=",EucDist(lint),
'o- "Current to Range=",cNow
! endif
total=ForceExert
if(cNow.1t.RadDist)
- total=total/1.25
Choices(t)=(Choices(t)*total)+Choices(t)
! if(writedata)then
! write(*,*)"PostForce=",Choices(t),
- "Force=",total
! pause
! endif

421



Table E.9. (cont.)

number

subscript

endif
endif
end do !(Y1 Loop)
end do (X1 Loop)

! Normalize choices
r=SUM(Choices,Mask=Choices.gt.0)
if(ilomsg.ge.6)write(*,*)"Total of positive choices=",r,
"Total of ALL choices=",SUM(Choices),"Choices=",Choices

Where (Choices > 0) Choices=Choices/r
if(iomsg.ge.6)write(*,*)"Normalized Choices=",Choices
if(r.eq.0)then

write(*,*)"Error in IBM- no valid locations,"

//'" so elk can't move..."

write(*,*)"In Cell (x,y)=",x,y

pause

stop
end if

! Pick a cell at random based on the desirability of all avail cells
! Call random number generator

Call Random Number(r)

if (iomsg.ge.6) write(*,*)"My Random number is: ",r

! See which cell matches the random number (It will be in 't')
! We subtract each successive choice from the random number we generated
! When the number becomes less than or equal to zero, that is our choice
do t=1,9
if(Choices(t).gt.0)r=r-Choices(t)
if (r<=0) exit
end do

!' It is possible that we ran through the loop above, and because of REAL
! problems we completed the loop, which would leave t=10, and cause

! problems. So, if 9, reset it to 9.
if (t>9) t=9

if (iomsg.ge.6) write(*,'(A,11,3(A,14))")
"I selected choice ",t," which is location: ("
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- ,ChoiceLocs(t,1),",",ChoiceLocs(t,2),")"

! Update population map
x=ChoiceLocs(t,1)

y=ChoiceLocs(t,2)
narea=((nrow-y)*ncol)+x
hpop(nscn,narea)=hpop(nscn,narea)+1

! Update my Elk Location Array
elkloc(nscn,iter)=narea

! write(40,*) " To (X,Y)=",x,y,

I " narea=",narea," pop=",int(hpop(nscn,narea))

! Write selection to output file

ibmout=ibmout+1

write(96,rec=ibmout)int(narea)
! write(97,%)int(narea)

end do !(Population Loop)
end do !(Daystep Loop)
end do !(Day Loop)

t=nint(sum(hpop))

write(*,*) " Population=",int(t)
! write(40,*)"POP=",t," MaxCellPop=",MaxVal(HPOP)," at cell.",
' - MaxLoc(HPOP)
I close(40)

elkpop=hpop

¢ end of big species loop
1 continue

c override everything except force map, to get a uniform distribution
c or one affected by force values only
¢ (for experiments or debugging)
if(iuniform.eq.1)then
do nscn=1,nspcon
tot=0
do narea=1,nareat
if(nstp(1,narea).gt.0)then
if(ihdfc.eq.1)then
if(force(nscn,narea).gt.0)then
frc=float(force(nscn,narea))
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hsi(nscn,narea)=frc
tot=tot+hsi(nscn,narea)
end if
else
hsi(nscn,narea)=1.
tot=tot+1.
end if
end if
end do
do narea=1,nareat
if(nstp(1,narea).gt.0)then
if(tot.gt.0.)then
hpop(nscn,narea)=hpopt(nscn)*hsi(nscn,narea)/tot
else
hpop(nscn,narea)=0
end if
end if
end do
end do
end if

c total grazing pressure array - once a month
if(ntim.eq.ndtmn)then
do narea=1,nareat
if(nstp(1,narea).gt.0)then
tot=0.
do nscn=1,nspcon
if(itgrzsp(nscn).eq.1)then
if(ihdfc.eq.0.or.(ihdfc.eq.1.and.
- force(nscn,narea).gt.0))then
tot=tot+hpop(nscn,narea)*anunit(nscn)
end if
end if
end do
¢ convert to animal units per km2 * 10
tot=tot/cellsz * 10.
if(iauacc.eq.1)then
tgpress(narea)=tgpress(narea)+tot
else
tgpress(narea)=tot
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end if
end if
end do
end if

¢ an output file of animal numbers within a set of cells
if(ioutanmask.ge.1)then
if(ntim.gt.0)then
totanmsk=0
do narea=1,nareat
if(outanmsk(narea).ge.1)then
n=outanmsk(narea)
do nscn=1,nspcon
totanmsk(nscn,n)=totanmsk(nscn,n)+hpop(nscn,narea)
end do
end if
end do
¢ output monthly
if(idtanmask.eq.1)then
if(ntim.eq.ndtmn)then
write(88,880)month,nyear,(totanmsk(nmskpop(ncat),
- nmskarea(ncat)), ncat=1,nanmskcats)

880 format(i2,','",i4,",',50(f7.1,","))
end if
end if
¢ output weekly
if(idtanmask.eq.2)then

xmon=float(month)-1.+(float(ntim)/4.)
write(88,881)xmon,nyear,(totanmsk(nmskpop(ncat),
- nmskarea(ncat)), ncat=1,nanmskcats)
881 format(f5.2,',',14,".",50(f7.1,")"))
end if
end if
end if

! Put Elk Population in an array that won't get lost
' elkpop=hpop

c close image output file

if(imgcon.gt.0)close(20)
write(*,*) "Finish Elk IBM"
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return
end

Function EucDist(data)
dimension data(2,2)
write(*,*)"x=",data(1,1)
write(*,*)"y=",data(2,1)
write(*,*)"x1=",data(1,2)
write(*,*)"y1=",data(2,2)
a=(data(1,1)-data(1,2))**2
b=(data(2,1)-data(2,2))**2
EucDist=SQRT(atb)
! write(*,*)"Funct Val=",eucdist
return
end
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Table E.10. Associated parameter file for the individual-based model (IBM.f — Table E.9). The parameter file allows for the
inclusion/exclusion of maps and other variables that go into the calculation of habitat suitability index (HSI) values (Code
copyright 2005, Acorp Computers, Paul Rupp — owner).

1
0

/nsp - Number of parameter blocks (usually species) on this file (herds/species are defined on consume.prm)
/stoch - Random possibility to enter zero value cells

Valid2 /IBM Output Datafile name

0
2

OO = =t =k = O = OO O ke = OO0 = -

/iuniform - if 1=flag to impose a uniform distribution, overriding everything (for experimental or debugging purposes)
/ihdfd -flag to use 1-forage biomass and pforage function, 2 -pref weight times biomass index (2),
/ 3 - snow-free forage or 4 -logistic in Determining Herbivore Distribution
/ihdme - flag to use metabolic energy intake rate

/ihdwc - flag to use woody cover (tree and thicket)

/ihdsl - flag to use slope

/ihdel - flag to use elevation

/ihdcost - flag to use cost impedance map

/ihdroad - flag to use road map

/ihdbuild - flag to use buildings map

/ihdfence - flag to use fence map

/ihdmem - flag to use memory map

/ihdfc - flag to use force maps

/ihdzone - flag to use zones

/ihdpr - flag to use preferred area

/ihdmig - flag to use migration force

/ihden - flag to use density (0 not used, other number = maximum elk population density in any give cell)
/ihdsnw - flag to use snow

/ihgreen - flag to use herbaceous green biomass

/ihdead - flag to use herbaceous dead biomass

/ihtemp - flag to use mean daily temperature

/ihrngexp - flag to use range expansion

/ihemmigr - flag to use emmigration
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0 /hsipower - take this power of the resultant hsi, or set to 0 to not use it,
/<1 will spread animals out, >1 will compress them

1
1
1
1
1
0,1,200,1,300,1

0,1,.25,1
0,1,1,1
7,1,1,1

15,1,30,.7,45,0
1000,5000

12*1

12*1

0

0
0,1,10,.3,30,.001
5,.01,100,10
0,1,100,1
0,.001,7,1,15,1,30,.001
65.,0.,75.,.17
0.,0.,1.,.17

1.

1

219,157

/itgrzsp - flags to include herds/populations in total grazing pressure maps on imagel
/anunit - conversion factors for including in total herbivore map (eg to convert to AUMs)
/iauacc - flag 1=output cumulative grazing pressure AUM/km2, 2- output total grazing pressure for timestep

/ELK //nherd - number of herds of this species

/indices of herds for this species

/pforage -- if ithdfd=2 is not used - if ihdfd=1 or 3 is foraging Efficiency vs. Forage Biomass
/ (X-Y Pairs)(g/m**2 vs. index)

/emetintk - effect of ME intake rate on HSI, 0-1 index vs. MJ/kg/d

/pshcv -- Habitat Preference Index vs. Cover Fraction of trees with canbot>.8*reachht
/pthcv -- Habitat Preference Index vs Cover Fraction of thicket-forming bush/trees

/ with canbot <.8*reachht —

/pslope -- Habitat Preference Index vs. Slope (X-Y Pairs)(% vs. index)

/elevmn,elevmx - elevations at the min and max pref indices

/pelevmn - value of pref index at elevmn, by month

/pelevmx - value of pref index at elevmx, by month

/prfgmn -- Critical Herbaceous Amount to Utilize Preferred Areas (on map PREFAR)(g/m**2)
/prefam -- Preferred Area Habitat Preference Index Multiplier (? Why 2)()

/psnow -- Effect of Snow Depth on HSI (cm for Snow Depth)

/pgreenhb -- Effect of Herbaceous Green biomass on habitat Suitability(index vs. g/m2)
/pdeadhb -- Effect of herbaceous dead biomass on HSI (0-1 vs. g/m2)

/ptemper -- Effect of mean daily temperature on HSI (0-1 vs. deg. C)

/esnowemmig (from Coughenour 5/18/2005 email - YNP)

/ecrustemmig based on 34% in 88/89 (from Coughenour 5/18/2005 email - YNP)

/VCStart (Decimal Percentage of elk to start randomly on V.C. 1=100%, .2 = 20%, etc.)
/StartNum/StartLocs: Number of elk to start in a particular cell and corresponding (x,y) pairs
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1,1
93,113
86
334,286
1,1

20,1

0.4
999

/Upper Left coordinate of start area [ulstartx,ulstarty]

/Lower Right coordinate of start area [lrstartx,Irstarty]

/DayStep: Number of cells an elk can move through in a day

/WinRange: (X,Y) pair defining an approximate winter range

/SumRange: (X,Y) pair approximate center point of summer range

/Radius: (X,Y) pair defining a boundary from Summer Range within which to reduce migration force

/Force: Amount of force to apply when migrating toward Summer Range [MigForce]
/end of file mark
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