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Construction of Superconvergent Discretizations with  
Differential-Difference Invariants 

 
by 

 
Roy A. Axford∗ 

 
 

ABSTRACT 
 

To incorporate symmetry properties of second-order differential equations into 
finite difference equations, the concept of differential-difference invariants is 
introduced. This concept is applied to discretizing homogeneous eigenvalue 
problems and inhomogeneous two-point boundary value problems with various 
combinations of Dirichlet, Neumann, and Robin boundary conditions. It is 
demonstrated that discretizations constructed with differential-difference 
invariants yield exact results for eigenvalue spectra and superconvergent results 
for numerical solutions of differential equations. 

 
___________________ 

 
 
1.  INTRODUCTION 
 
This study introduces the concept of differential-difference invariants that is applied to the 
construction of group invariant discretizations of Sturm-Liouville equations. A differential-
difference invariant is defined to be a linear combination of a derivative and the grid-point values 
of a discretized dependent variable. This combination is constructed so that it admits a subgroup 
of the group of transformations that is admitted by a differential equation being discretized to 
obtain numerical solutions. 
 
Finite difference equations that are constructed on the basis of the concept of differential-
difference invariants exhibit the property of being exact. This property means that the exact 
solutions of the difference equations yield the exact solutions of the differential equations at the 
grid points. Exact finite difference equations yield exact grid-point values for any arbitrarily 
selected grid-point spacing. This fact leads to a simplified algorithm for solving the system of 
algebraic equations that is produced in the discretization process. 
 
Approximation methods, such as the Rayleigh-Ritz and Galerkin techniques, sometime yield the 
exact solutions of differential equations. When this fact occurs, the results are said to be 
superconvergent. Finite difference discretizations constructed with the concept of differential-
difference invariants for the two-point boundary value problems have been found to produce 
superconvergent results. This fact appears to be a consequence of building a symmetry property 
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of the differential equation, and thereby its solution into the discretization method from the 
beginning. 
 
2.  CONSTRUCTION OF DIFFERENTIAL-DIFFERENCE INVARIANTS 
 
First and second order differential-difference invariants are needed to construct invariant 
discretizations used to obtain numerical solutions of two-point boundary value problems. These 
problems involve homogeneous and inhomogeneous second order differential equations with 
various combinations of Dirichlet, Neumann, and Robin (or mixed) boundary conditions at the 
two end points. Let 
 

 ˆ U = η(x)
∂

∂y(x)
 (1) 

 
be the symbol of the infinitesimal transformation of a group of point transformations admitted by 
a second order differential equation, 
 
 ˆ L y(x) + S(x) = 0   , (2) 
 
where ˆ L  is a linear second order differential operator. The extension of this group to first order 
derivatives, second order derivatives, and grid-point values of the dependent variable has the 
infinitesimal transformation with the symbol, 
 
 

 

  

ˆ U (G ) = η x( ) ∂
∂y x( )

+ ′ η x( ) ∂
∂ ′ y x( )

+ ′ ′ η x( ) ∂
∂ ′ ′ y x( )

+η x + h( ) ∂
∂y x + h( )

+ η x − h( ) ∂
∂y x − h( )

+ η x + 2h( ) ∂
∂y x + 2h( )

+η x − 2h( ) ∂
∂y x − 2h( )

+LL

 (3) 

 
A first order differential-difference invariant is a linear function of the first order derivative and 
grid-point values such that 
 

   
ˆ U (G ) f y(x), ′ y (1),y x + h( ),y x − h( ),K[ ] = 0   . (4) 

 
A second order differential-difference invariant is a linear function of the second order derivative 
and grid-point values such that 
 

 ˆ U (G )F y(x), ′ ′ y x( ),y x + h( ),y x − h( ),y x + 2h( ),y x − 2h( ),K[ ] = 0   . (5) 

 
The forms of the functions f and F above for the first and second order differential-difference 
invariants are not unique because their fine-grid limits are used to motivate the linear 
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combinations of the grid-point values taken. Fine-grid limits of differential-difference invariants 
can correspond to central difference approximations, forward difference approximations, or 
backward difference approximations of first and second order derivatives. However, finite 
difference equations constructed with differential-differential invariants have been found to be 
superconvergent, that is, capable of producing exact solutions. This ability is in contrast to finite 
difference equations constructed with standard difference approximations for derivatives that are 
not superconvergent. 
 
Five first order differential-difference invariants constructed with the group generator 
 

 ˆ U = η x( ) ∂
∂y x( )

 (6) 

 
are as follows: 
 

 ′ y x( ) =
′ η x( )

η x + h( ) −η x − h( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ y x + h( ) − y x − h( )[ ]   , (7) 

 

 ′ y x( ) =
′ η x( )

η x + h( ) −η x( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ y x + h( ) − y x( )[ ]   , (8) 

 

 ′ y x( ) =
′ η x( )

η x( ) −η x − h( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ y x( ) − y x − h( )[ ]   , (9) 

 

 ′ y x( ) =
′ η x( )

η x + 2h( ) + η x + h( ) − 2η x( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ y x + 2h( ) + y x + h( ) − 2y x( )[ ]   , (10) 

 
and 
 

 ′ y x( ) =
′ η x( )

2η x( ) −η x − h( ) −η x − 2h( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 2y x( ) − y x − h( ) − y x − 2h( )[ ]   . (11) 

 
The fine-grid spacings of these five first order differential-difference invariants yield, 
respectively, the following approximations for first order derivatives: 
 

(1) two-point central difference, 
(2) two-point forward difference, 
(3) two-point backward difference, 
(4) three-point forward difference, and 
(5) three-point backward difference. 
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Three second order differential-difference invariants constructed with the above group generator 
are as follows: 
 

 ′ ′ y x( ) =
′ ′ η x( )

η x + h( ) + η x − h( ) − 2η x( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ y x + h( ) + y x − h( ) − 2y x( )[ ]   , (12) 

 

 ′ ′ y x( ) =
′ ′ η x( )

η x + 2h( ) − 2η x + h( ) + η x( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ y x + 2h( ) − 2y x + h( ) + y x( )[ ]   , (13) 

and 

 
′ ′ y x( ) =

′ ′ η x( )
η x + h( ) + η x − h( ) + η x + 2h( ) + η x − 2h( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

y x + h( ) + y x − h( ) + y x + 2h( ) + y x − 2h( )[ ]   .

 (14) 

 
The fine-grid spacings of these three second order differential-difference invariants yield the 
following approximations for second order derivatives: 
 

(1) three-point central difference, 
(2) three-point forward difference, and 
(3) four-point central difference. 

 
The fine-grid spacing limits for the first and second order differential-difference invariants given 
above all follow directly from the Taylor series expansions of the group generator coordinate 
function η x( ) evaluated at the various grid points. 
 
Even though differential-difference invariants are constructed so as to have anticipated fine-grid 
spacing limits, the group invariant discretizations that are obtained with the concept of 
differential-difference invariants provide exact solutions of differential equations at grid points 
set up for any arbitrarily chosen grid spacing. Because second order differential equations are 
invariant under multi-parameter groups of transformations, different subgroups can be used to 
construct a differential-difference invariant, which is an additional reason differential-difference 
invariants are not unique for a given differential equation. The choice of a subgroup can be 
motivated by the boundary conditions to be satisfied by the differential equation. 
 
3. GROUP INVARIANT DISCRETIZATIONS FOR TWO-POINT EIGENVALUE 
PROBLEMS 
 
Finite difference equations constructed by applying the differential-difference invariant concept 
to two-point eigenvalue problems involving the scalar Helmholtz operator and Dirichlet, 
Neumann, and Robin (mixed) boundary conditions have been found to yield exact results for the 
eigenvalue spectra. Examples drawn from quantum mechanics and neutronic criticality analysis 
are given in this section. 
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3.1 Energy Eigenvalues for a Particle in a Square Well 
 
The potential energy for a particle in a square well is given by 
 

 U x( ) =

U0  ,  − ∞ < x < −
L

2
  ,

  0  ,  −
L

2
< x <

L

2
  ,

U0  ,  
L

2
< x < ∞   ,

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

 (15) 

 
for a well with width equal to L. Because this potential energy is an even function, energy 
eigenstates with both even and odd parity exist, and it is necessary to consider only the interval 
0 ≤ x < ∞ . The time-independent Schroedinger equation is 
 

 ′ ′ ψ 1 x( ) + γ 2ψ1 x( ) = 0   ,   for   0 ≤ x ≤
L

2
  , (16) 

and 

 ′ ′ ψ 2 x( ) −α 2ψ2 x( ) = 0   ,   for   
L

2
≤ x ≤ ∞   , (17) 

where 

 γ 2 = 2mE /h2   ,  (18) 
and 

   α
2 = 2m U0 − E( ) /h2   , (19) 

 
with m the particle mass and E, the energy. The wave function and its derivative are both 
continuous at x = L /2. 
 
Let EL  be the ground state energy of a particle in a box with width L. This energy is given by 
 

   EL = h2π 2 /2mL2   . (20) 
 
If energy for the particle in the square well is measured in units of EL , then 
 

 γ 2 =
π 2E

L2EL

  , (21) 

and 

 α 2 =
π 2

L2

U0

EL

−
E

EL

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟   . (22) 

 
For even parity solutions the analytic solutions of the Schroedinger equation are 
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 ψ1 x( ) = A1 cos γx( )   ,   0 ≤ x ≤
L

2
  , (23) 

and 

 ψ2 x( ) = A2e−αx   ,   
L

2
≤ x ≤ ∞   . (24) 

 
For odd parity solutions the analytic solutions are 
 

 ψ1 x( ) = A3 sin γx( )   ,   0 ≤ x ≤
L

2
  , (25) 

and 

 ψ2 x( ) = A4e−αx   ,   
L

2
≤ x ≤ ∞   . (26) 

 
In both cases a transcendental equation is obtained for the allowed energies by making the wave 
function and its derivative continuous at x = L /2. The allowed energies for the even parity states 
are roots of the transcendental equation, 
 

 
E

EL

tan
π
2

E

EL

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ =

U0

EL

−
E

EL

  . (27) 

 
The allowed energies for the odd parity states are roots of  

 
E

EL

cot
π
2

E

EL

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ = −

U0

EL

−
E

EL

  . (28) 

 
With the definitions, 
 

 X 2 =
E

EL

  , (29) 

and 

 W =
U0

EL

  , (30) 

 
these transcendental equations can be written as 
 

 X sin πX /2( ) − cos πX /2( ) W − X 2 = 0  (31) 
 
for even parity states, and for odd parity states 
 

 X cos πX /2( ) + sin πX /2( ) W − X 2 = 0   . (32) 
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When W =16 = U0 / EL , there are five allowed energies for three even parity states and two odd 
parity states. The roots of these transcendental equations that come out of the exact analytic 
solutions of the Schroedinger equation are given in the third column of Table I. 
 
It will now be shown that this eigenvalue spectrum can be obtained from finite difference 
equations constructed by applying the differential-difference invariant concept. In the discretized 
method of solution we solve the Schroedinger equation 
 

 ′ ′ ψ 1 x( ) + γ 2ψ1 x( ) = 0   ,   0 ≤ x ≤
L

2
  , (33) 

 
subject to the Robin boundary condition 
 

 αψ1
L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ′ ψ 1

L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0   , (34) 

 
which comes out of the continuity of the wave function and its derivative at x = L /2. To 
discretize the differential equation, we use either the group with the generator 
 

 ˆ U = cos γx( ) ∂
∂y

 (35) 

 
for even parity states, or the group with the generator 
 

 ˆ U = sin γx( ) ∂
∂y

 (36) 

 
for odd parity states. In both cases a second order differential-difference invariant is found to be 
given by 
 

 ′ ′ ψ 1 x( ) =
γ 2

4 sin2 γh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ψ1 x + h( ) +ψ1 x − h( ) − 2ψ1 x( )[ ]   . (37) 

 
Hence, the discretized form of the Schroedinger equations for both even and odd parity state 
solutions is 
 

 ψ1 x + h( ) +ψ1 x − h( ) − 2 − 4sin2 γh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ1 x( ) = 0 (38) 

 
for a grid spacing equal to h. 
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The discretization of the Robin boundary condition at x = L /2 is different for even parity and 
odd parity eigenstates. For even parity states a first order differential-difference invariant to use 
in the Robin boundary condition is given by 
 

 ′ ψ 1 x( ) =
γ sin γx( )

cos γ x − h( )[ ] − cos γx( )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ ψ1 x( ) −ψ1 x − h( )[ ]   , (39) 

or 

 ′ ψ 1 x( ) =
γ sin γx( ) ψ1 x( ) −ψ1 x − h( )[ ]

2sin γ x −
h

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ sin γ

h

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 

  . (40) 

 
For odd parity states a first order differential-difference invariant is given by 
 

 ′ ψ 1 x( ) =
γ cos γx( ) ψ1 x( ) −ψ1 x − h( )[ ]

2cos γ x −
h

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ sin

γh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  . (41) 

 
Hence, the Robin boundary condition at x = L /2, namely, 
 

 αψ1
L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + ′ ψ 1

L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0 (42) 

 
takes one of the two following forms. For even parity states this boundary condition is 
 

 −γ sin
γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ1

L

2
− h

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +ψ1

L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 2α sin γ

L

2
−

h

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ sin

γh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + γ sin

γh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0   . (43) 

 
For odd parity states the Robin boundary condition is 
 

 −γ cos
γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ1

L

2
− h

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +ψ1

L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 2α cos γ

L

2
−

h

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ sin

γh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + γ cos

γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= 0   . (44) 

 
To determine the allowed energies for the even and odd parity eigenstates from the difference 
equations obtained in the discretized method of solution, we set up systems of homogeneous 
algebraic equations from the discretized forms of the Schroedinger equation and the Robin 
boundary condition. A system of homogeneous algebraic equations has a nontrivial solution, 
provided that the determinant of the coefficient matrix vanishes. This requirement yields the 
eigenvalue spectrum for the allowed energies. For even parity eigenstates we set up a system of 
three algebraic equations, and for the odd parity eigenstates, two algebraic equations. 
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In the case of the even parity eigenstates we can take the wave function evaluated a x = 0, 
x = L /4 , and x = L /2 as three unknowns. The corresponding grid spacing is h = L /4 . We 
evaluate the discretized Schroedinger equation at x = 0 to obtain 
 

 2ψ1
L

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2 − 4sin2 γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ1 0( ) = 0   , (45) 

 
and at x = L /4  to obtain 
 

 ψ1
L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +ψ1 0( ) − 2 − 4sin2 γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ1

L

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0   . (46) 

 
Evaluating the Robin boundary condition at x = L /2 for even parity states yields 
 

 −γ sin
γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ1

L

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +ψ1

L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 2α sin

3γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin

γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + γ sin

γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0   . (47) 

 
The determinant of the coefficient matrix for these last three algebraic equations is 
 

 

4 sin2 γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2 2 0

1 4 sin2 γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2 1

0 − γL( )sin
γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 2 αL( )sin

3γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin

γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + γL( )sin

γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  , 

where 
 γL = πX   , (48) 
 

 αL = π W − X 2   , (49) 
 

 X 2 =
E

EL

  , (50) 

and 

 W =
U0

EL

  . (51) 

 
For a specified value of the well depth W, the values of X that make the above determinant equal 
to zero give the allowed energies for the even parity eigenstates. 
 
For the odd parity states we take the values of the wave function at x = L /4  and x = L /2 as two 
unknowns, since ψ1 0( ) = 0 in the odd parity case. The discretized form of the Schroedinger 
equation with x = L /4  and h = L /4  gives 
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 ψ1
L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2 − 4sin2 γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ1

L

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = 0   . (52) 

 
The discretized form of the Robin boundary condition for the odd parity case becomes 
 

 − γL( )cos
γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ1

L

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ +ψ1

L

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 2 αL( )cos

3γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin

γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + γL( )cos

γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0   . (53) 

 
The determinant of the coefficient matrix for these two algebraic equations is given by 
 

 
4 sin2 γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2 1

− γL( )cos
γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 2 αL( )cos

3γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin

γL

8

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + γL( )cos

γL

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  .  

 
For a specified value of the well depth W, the values of X that make this determinant vanish yield 
the allowed values for the energies of the odd parity eigenstates. 
 
When W =16, there are five allowed energy levels, three with even parity and two with odd 
parity. For this value of W, the allowed energies for the five eigenstates computed with the above 
two determinants are given in the fourth column of Table 1. The allowed energies computed as 
the roots of the two transcendental equations obtained with the exact solutions of the 
Schroedinger equation for even and odd parity states as computed from Eqs. (31) and (32), 
respectively, are given in the third column of Table 1. Comparison of the third and fourth 
columns of Table 1 shows that the discretization of the Schoedinger equation and the Robin 
boundary condition constructed with the concept of differential-difference invariants produces 
exact results for the allowed energies or eigenvalue spectrum. Numerical results computed with 
the discretization method for W = 3 and W =10 are also exact values of the allowed energies. 
 

TABLE 1. Even and Odd Parity State Energies for a Square Well with 
Well Depth W=16. 

 
State 

 
Parity of State 

Exact Solution 
State Energy X 

Discretized Solution 
State Energy X 

1 Even 0.861762 0.861762 

2 Odd 1.71747 1.71747 

3 Even 2.55823 2.55823 

4 Odd 3.36395 3.36395 

5 Even 4.0 4.0 
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3.2 Material Buckling Eigenvalue Spectra in the Diffusion Approximation 
 
For a two-region core with material buckling distribution given by 
 

 Bm
2 =

 0   ,   for   0 ≤ x ≤ b   ,
B2  ,   for   b ≤ x ≤ a   ,

⎧ 
⎨ 
⎩ 

 (54) 

 
and for a reflector with thickness T and inverse diffusion length αR , the three region neutron 
diffusion equations are 
 
 ′ ′ ψ 1 x( ) = 0   ,   for   0 ≤ x ≤ b   , (55) 
 

 ′ ′ ψ 2 x( ) + B2ψ2 x( ) = 0   ,   for   b ≤ x ≤ a   , (56) 
and 

 ′ ′ ψ 3 x( ) −αR
2ψ3 x( ) = 0   ,   for   a ≤ x ≤ a + T   . (57) 

 
In one-group modeling, a vanishing material buckling in the center of the core produces a central 
region in which the fission rate is spatially uniform so the power density is a constant. The 
nonzero material buckling in the outer zone of the core has an eigenvalue spectrum where the 
fundamental mode corresponds to the just critical state. The higher modes are needed for 
transient calculations.  
 
The eigenvalue problem for the material buckling in the outer region of the core is composed of 
the solution of the differential equation for the flux ψ2 x( )  for  b ≤ x ≤ a , subject to the Nuemann 
boundary condition at x = b , namely 
 
 ′ ψ 2 b( ) = ′ ψ 1 b( ) = 0   , (58) 
 
where ψ1 x( ) = G = constant , and to the Robin boundary condition at x = a, namely 
 
 Ba( )sin Ba( ) − Rcos Ba( ) = 0   , (59) 
 
where b = 0, and where 
 

 R =
D3

D2

a

T

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ αRT( )coth αRT( )   , (60) 

 
and the diffusion coefficient is given by 
 

 D x( ) =
D2   ,   for   b ≤ x ≤ a   ,
D3   ,   for   a ≤ x ≤ a + T   .

⎧ 
⎨ 
⎩ 

 (61) 

 
This Robin boundary condition at x = a is a consequence of the continuity of the neutron flux 
and net current at x = a. When b ≠ 0, the Robin boundary condition at x = a is given by 
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 Ba( )sin Ba 1−
b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − Rcos Ba 1−

b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ = 0   . (62) 

 
The solutions of the diffusion equations (56) and (57) from which the Robin boundary conditions 
(59) and (62) are derived are 
 
 ψ2 x( ) = C2 cos Bx( )   ,   if  b = 0   , (63) 
 
 ψ2 x( ) = C2 cos B x − b( )[ ]   ,   if  b ≠ 0   , (64) 

and 
 ψ3 x( ) = C3 sinh αR a + T − x( )[ ]   ,    (65) 

 
where C2 and C3 are constants, and the Dirichlet boundary condition, 
 
 ψ3 a + T( ) = 0 (66) 
 
is satisfied. 
 
Material buckling eigenvalues computed from the transcendental equations, (59) for b = 0 and 
(62) for b /a = 0.60, are given in the second and third columns of Table 2, respectively, for the 
parameter values, 
 

 
a

T
= 6   , (67) 

 

 
αR

T
= 3  , (68) 

and 
 D3 = 1⋅ 2( )D2   . (69) 
 
The first six or seven eigenvalues out of an infinite spectrum are given. 
 
The material buckling eigenvalue spectra given in Table 2 were found with the exact solutions of 
the differential equations. We will now show that the same results for these eigenvalues are 
obtained by discretizing the differential equation for ψ2 x( )  and the Robin boundary condition at 
x = a with the second and first order differential-difference invariants. That is, we construct 
invariant discretizations of 
 

 ′ ′ ψ 2 x( ) + B2ψ2 x( ) = 0   ,   for  b ≤ x ≤ a (70) 
and 

 ψ2 a( ) +
D2

D3

sinh αRT( )
αR cosh αRT( )

ψ2
1 a( ) = 0   . (71) 
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TABLE 2. Exact Solution Material Buckling 

Eigenvalues for 
a
T

= 6 , α RT = 3, and D3 = 1⋅ 2D2 . 

Mode Ba for b=0 Ba for b/a=0.60 

1 1.50173 3.52458 

2 4.50764 10.6415 

3 7.52047 17.9103 

4 10.5434 25.3331 

5 13.5782 32.8749 

6 16.6252 40.5000 

7 19.6838  

 
 
To construct the second and first order differential-difference invariants, we use the group 
generator 
 

 ˆ U = η x( ) ∂
∂ψ2 x( )

  . (72) 

 
A second order differential difference invariant is given by 
 

 ′ ′ ψ 2 x( ) =
′ ′ η x( )

η x + h( ) + η x − h( ) − 2η x( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ2 x + h( ) +ψ2 x − h( ) − 2ψ2 x( )[ ]   , (73) 

where 
 η x( ) = cos Bx( )   ,   for   b = 0   , (74) 
and 
 η x( ) = cosB x − b( )   ,   for   b ≠ 0   . (75) 
For each of these two cases, b = 0 and b ≠ 0, the second order differential-difference invariant in 
Eq. (73) reduces to 
 

 ′ ′ ψ 2 x( ) =
B2

4 sin2 Bh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

ψ2 x + h( ) +ψ2 x − h( ) − 2ψ2 x( )[ ]   . (76) 
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Accordingly, the invariant discretization of the diffusion equation (70) is given by 
 

 ψ2 x + h( ) +ψ2 x + h( ) + 4sin2 Bh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ2 x( ) = 0 (77) 

 
for both the b = 0 and b ≠ 0 cases. A first order differential-difference invariant to discretize the 
Robin boundary condition of Eq. (71) is given by 
 

 ′ ψ 2(x) =
′ η x( )

η x( ) −η x − h( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ ψ2 x( ) −ψ2 x − h( )[ ]   , (78) 

 
where η x( ) is given by Eq. (74) for b = 0 and by Eq. (75) for b ≠ 0. When b = 0, we find in 
Eqs. (74) and (78) that the first order differential-difference invariant, when evaluated at x = a, 
becomes 
 

 ′ ψ 2 a( ) =
Bsin Ba( ) ψ2 a( ) −ψ2 a − h( )[ ]

2sin
Bh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin Ba −

Bh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  . (79) 

 
When b ≠ 0, with Eqs (75) and (78), the first order differential-difference invariant reduces to 
 

 ′ ψ 2 a( ) =
Bsin B a − b( )[ ] ψ2 a( ) −ψ2 a − h( )[ ]

2sin
Bh

2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin B a − b( ) −

Bh

2

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 

   (80) 

 
at x = a. 
 
The Robin boundary condition of Eq. (71) can be discretized for the two cases, b = 0 and b ≠ 0, 
with the first order differential-difference invariants found in Eqs. (79) and (80). With h = a /2 
and b = 0, the discretized Robin boundary condition at x = a becomes 
 

 2Rsin
Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin

3Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Ba( )sin Ba( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ2 a( ) − Ba( )sin Ba( )ψ2 a − h( ) = 0   . (81) 

 
With 2h = b − a  and b ≠ 0, the discretized Robin boundary condition at x = a reduces to 
 

 
2Rsin

B

4
a − b( )

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ sin
3

4
B a − b( )

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ + Ba( )sin B a − b( )[ ]
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
ψ2 a( )

− Ba( )sin B a − b( )[ ]ψ2 a − h( ) = 0   .

 (82) 

 
In both Eqs. (81) and (82) the parameters R, which contain the reflector properties, is given in 
Eq. (60). 
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The material buckling eigenvalue spectra can be computed for the b = 0 case by setting up three 
homogeneous algebraic equations with the discretized form of the differential equation in 
Eq. (77), and the discretized form of the Robin boundary condition in Eq. (81). In the b ≠ 0 case 
three homogeneous algebraic equations are set up again with Eq. (77) and the discretized form of 
the Robin boundary condition found in Eq. (82). 
 
When b = 0 we take as three unknowns ψ2 0( ) , ψ2 h( ) , and ψ2 a( ) with 2h = a. Evaluating 
Eq. (77) at x = 0 yields 
 

 2ψ2 h( ) + 4sin2 Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ2 0( ) = 0   . (83) 

 
Evaluating Eq. (77) at x = h = a /2 yields 
 

 ψ2 a( ) +ψ2 0( ) + 4sin2 Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ2 h( ) = 0   . (84) 

 
The discretized Robin boundary condition in Eq. (81) becomes 
 

 
2Rsin

Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin

3Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Ba( )sin Ba( )

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ψ2 a( )

− Ba( )sin Ba( )ψ2 h( ) = 0   .

 (85) 

 
The three homogeneous algebraic equations (83), (84), and (85) have a nontrivial solution when 
the determinant of their coefficient matrix vanishes. This determinant is 
 

 

 4 sin2 Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2 2 0

1 4sin2 Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ − 2 1

0 −Ba sin Ba( ) M33  

  ,  

where 

 M33 = 2Rsin
Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sin

3Ba

4

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ + Ba( )sin Ba( )   . 

 
The zeros of this determinant yield the material buckling eigenvalues for the b = 0 case. 
Computing the first seven of these zeros for the parameter values a /T = b, αRT = 3, and 
D3 =1.2D2, yields the same results given in the second column of Table 2 that were computed 
with the exact solution of the differential equation. The invariant discretization of the differential 
equation and Robin boundary condition with the concept of first and second order differential-



 16

difference invariants is a discretization that produces exact results for the material buckling 
eigenvalues in the b = 0 case. 
 
The same is true also for the b ≠ 0 case. When b ≠ 0, we take 2h = b − a  and derive three 
homogeneous algebraic equations for the unknowns ψ2 b( ) , ψ2 b + h( ) , and ψ2 a( ). Evaluating 
Eq. (77) at x = b  gives 
 

 2ψ2 b + h( ) + 4sin2 Ba

4
1−

b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − 2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
ψ2 b( ) = 0   . (86) 

 
Evaluating Eq. (77) at x = b + h  gives 
 

 ψ2 a( ) +ψ2 b( ) + 4sin2 Ba

4
1−

b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − 2

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
ψ2 b + h( ) = 0   . (87) 

 
The discretized Robin boundary condition in Eq. (82) for the b ≠ 0 case becomes 
 

 
2Rsin

B

4
a − b( )

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ sin
3B

4
a − b( )

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ + Ba( )sin B a − b( )[ ]
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 
ψ2 a( )

− Ba( )sin B a − b( )[ ]ψ2 b + h( ) = 0   .

 (88) 

 
The determinant of the coefficient matrix of the three homogeneous algebraic equations (86), 
(87), and (88) is 
 

 

 4 sin2 Ba

4
1−

b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ − 2 2 0

1 4sin2 Ba

4
1−

b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 1

0 −Ba sin Ba 1−
b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ N33  

  , 

where 
 

 N33 = 2Rsin
Ba

4
1−

b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ sin

3Ba

4
1−

b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ + Ba( )sin Ba 1−

b

a

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   . 

 
Computing the first six zeros of this determinant with the parameter values a /T = b, αRT = 3, 
D3 =1.2D2, and b /a = 0.60 yields the same results for the material buckling eigenvalues that are 
shown in the third column of Table 2 for the b ≠ 0 case. 
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4. GROUP INVARIANT DISCRETIZATIONS FOR TWO-POINT INHOMOGENEOUS 
BOUNDARY VALUE PROBLEMS 
 
The inhomogeneous second order differential equation 
 

 
d

dx
x4 +1( ) dy

dx

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ + e−x = 0   , (89) 

 
subject to the boundary conditions y 0( ) = 0 and y 1( ) = 0, has no closed form analytic solution. 
However, the solution does have an integral representation from which numerical results can be 
obtained. This differential equation can also be discretized by using the concepts of first and 
second order differential-difference invariants to obtain numerical result for the solution. These 
two approaches for obtaining numerical results are compared below and found to yield the same 
answers. 
 
The integral representation of the solution of Eq. (89) is given by 
 
 y x( ) = φ p x( ) + Cη x( )   , (90) 

where 
 

 η x( ) =
dξ

ξ 4 +10

x

∫   , (91) 

and 
 

 φ p x( ) =
e−ξ dξ

ξ 4 +10

x

∫   . (92) 

 
The constant C in Eq. (90) is given by  
 
 C = −1( )φ p 1( ) /η 1( ) = −0.659797   . (93) 

 
The alternative form of Eq. (89), with which its discretized form can be constructed, is 
 

 x4 +1( ) ′ ′ y + 4x3 ′ y + e−x = 0   . (94) 

 
This equation is invariant under the group of point transformations with the generator 
 

 ˆ U = η x( ) ∂
∂y

  , (95) 

 
where the coordinate function η x( ) is given by Eq. (91). A first order differential-difference 
invariant of this group is 
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 ′ y x( ) =
′ η x( ) y x + h( ) − y x − h( )[ ]

η x + h( ) −η x − h( )
  , (96) 

 
and a second order differential-difference invariant is 
 

 ′ ′ y x( ) =
′ ′ η x( ) y x + h( ) + y x − h( ) − 2y x( )[ ]

η x + h( ) + η x − h( ) − 2η x( )
  . (97) 

 
The discretized form of Eq. (94) is  
 
 ˆ Ω y x( ) + Q x( ) = 0   , (98) 
 
where the discretized inhomogeneous term is given by 
 
 Q x( ) = −1( ) ˆ Ω φ p x( ) (99) 

 
with the particular integral of Eq. (92). The difference operator in Eqs. (98) and (99) is  
 

 ˆ Ω =
x4 +1( ) ′ ′ η x( ) ˆ S + + ˆ S − − 2[ ]

η x + h( ) + η x − h( ) − 2η(x)
+

4x3 ′ η x( ) ˆ S + − ˆ S −[ ]
η x + h( ) −η x − h( )

 (100) 

or, as 

 ′ η x( ) =
1

x4 +1
  , (101) 

and 

 ′ ′ η x( ) =
−4x3

x4 +1( )
2   , (102) 

we have 

 ˆ Ω =
−4 x3 ˆ S + + ˆ S − − 2[ ]

x4 +1( ) η x + h( ) + η x − h( ) − 2η x( )[ ]
+

4x3 ˆ S + + ˆ S −[ ]
x4 +1( ) η x + h( ) −η x − h( )[ ]

  . (103) 

 
In Eqs. (101) and (103) ˆ S +  is the shift operator to the right, and ˆ S − is the shift operator to the 
left. With the Eqs. (103) and (99) the difference equation (98) becomes 
 

 

y x + h( ) − y x − h( )
η x + h( ) −η x − h( )

−
y x + h( ) + y x − h( ) − 2y x( )
η x + h( ) + η x − h( ) − 2y x( )

=
φ p x + h( ) − φ p x − h( )

η x + h( ) + η x − h( )

−
φ p x + h( ) + φ p x − h( ) − 2φ p x( )

η x + h( ) + η x − h( ) − 2η x( )
  .

 (104) 
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This can be rearranged to give 
 

 
η x − h( ) −η x( )[ ]y x + h( ) + η x( ) −η x + h( )[ ]y x − h( ) + η x + h( ) −η x − h( )[ ]y x( ) =

φ p x + h( ) η x − h( ) −η x( )[ ] + φ p x − h( ) η x( ) −η x + h( )[ ] + φ p x( ) η x + h( ) −η x − h( )[ ]   .
 (105) 

 
Numerical results for the solution of the differential equation (89) are given in Table 3. Solutions 
are computed with the integral representation (90) in the second column of Table 3 and the 
invariant difference equation (105) in the third column. The numerical results computed by these 
two methods are in exact agreement. 
 
 

TABLE 3. Numerical Solution of (x4+1)y″+4x3y′+e–x=0. 

 
x 

Integral Representation 
Numerical Results 

Invariant Difference 
Equation Results 

0 0 0 

1/4 0.056220 0.056220 

1/2 0.063560 0.063560 

3/4 0.037537 0.037537 

1 0 0 

 
 
When the numerical results were computed with the invariant difference equation (105), it was 
not necessary to write out a system of the algebraic equations to solve simultaneously for y 1/4( ) , 
y 1/2( ) , and y 3/4( ) . These values can be determined sequentially as follows: 
 

(1) Set h=1/2 and x=1/2 in Eq. (105) and solve for y(1/2). 
(2) Set h=1/4 and x=1/4 in Eq. (105) and solve for y(1/4) knowing y(1/2) from the 

previous step. 
(3) Set h=1/4 and x=3/4 in Eq. (105) and solve for y(3/4) knowing y(1/2). 
 

If values at further grid points are wanted, we can set h 1/8( ) , and then calculate y 1/8( ) , y 3/8( ) , 
y 5 /8( ) , and y 7 /8( ) sequentially. Repeated halving of the grid spacing h yields additional results 
at more grid points. A large order algebraic system is not required to compute the solution at a 
large number of grid points. 
 
An approximate solution of the differential equation (89) can be calculated with the Rayleigh-
Ritz variational technique. Equation (89) is a variational principle Euler-Lagrange equation of 
the functional 
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 J = dx x4 +1( ) ′ y ( )2 − 2e−x y[ ]   .
0

1

∫  (106) 

Let  

 y x( ) = e−x ax 1− x( ) + bx 1− x( )2[ ]  (107) 

 
be a trial function in which the constants a and b are to be determined. The two algebraic 
equations for these two constants are found from the conditions 
 

 
dJ

da
a,b( ) = 0   , (108) 

and 

 
dJ

db
a,b( ) = 0   . (109) 

 
These two algebraic equations are 
 

 28 7e2 − 51( )a + 4025 − 543e2( )b = 8   , (110) 

and 

 4025 − 543e2( )a + 2 1119e2 − 8263( )b = 2 e2 − 5( )   . (111) 

 
The solutions are 
 
 a = 0.454514  (112) 
and 
 b = −0.094657   . (113) 
 
With these values of the constants, the approximate solution in Eq. (107) gives 
 
 y 1/4( ) = 0.056004   , (114) 
 y(1/2) = 0.061743  , (115) 
and 
 y 3/4( ) = 0.038160   . (116) 
 
These Rayleigh-Ritz method approximate results are all quite close to the exact results given in 
Table 3. 
 
For comparison purposes the differential equation (94) has also been solved approximately 
numerically by constructing a finite difference equation in a conventional way. The difference 
equation 
 

 x4 +1+ 2hx3( )y x + h( ) + x4 +1− 2hx3( )y x − h( ) − 2 x4 +1( )y x( ) + h2e−x = 0  (117) 
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with the grid spacing h approximates Eq. (94) when the second order derivative is approximated 
by 
 

 ′ ′ y x( ) =
1

h2 y x + h( ) + y x − h( ) − 2y x( )[ ]   , (118) 

 
and the first order derivative by 
 

 ′ y x( ) =
1

2h
y x + h( ) − y x − h( )[ ]   . (119) 

 
These are standard two-point and three-point central difference formulae. When the grid spacing 
is h =1/8, Eq. (117) becomes a set of seven algebraic equations for y 1/8( ) , y 1/4( ) , y 3/8( ) , 
y 1/2( ) , y 5 /8( ) , y 3/4( ) , and y 7 /8( ). The numerical solution of this set of seven algebraic 
equations is given in the third column of Table 4. The second column of Table 4 gives the 
integral representation solution from Eq. (90), which is also obtained from the invariant 
difference equation (105). The fourth column of Table 4 gives the results computed with the 
Rayleigh-Ritz method, that is, from Eq. (107). The results given in Table 4 computed with the 
standard difference equation (117) required solving a system of seven algebraic equations. The 
Rayleigh-Ritz method of Eq. (107) required solving two algebraic equations, but the results are 
sensitive to the form chosen for the trial function. Because the invariant difference equation 
(105) holds exactly for any arbitrary grid spacing, the results at the grid points can be computed 
sequentially, not simultaneously, without an algebraic system with Eq. (105). 
 
 

TABLE 4. Comparison of Numerical Solutions of (x4+1)y″+4x3y′+e–x=0. 

x y(x) With Invariant 
Difference  

Equation (105) 

y(x) With Standard 
Difference 

Equation (117) 

y(x) With Rayleigh-
Ritz Variational 

Method (107) 

0 0 0 0 

1/8 0.035027 0.035117 0.035877 

1/4 0.056220 0.056420 0.056004 

3/8 0.065180 0.065484 0.063685 

1/2 0.063560 0.063920 0.061743 

5/8 0.053446 0.053781 0.052567 

3/4 0.037537 0.037771 0.038160 

7/8 0.018841 0.018944 0.020184 

1 0 0 0 
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5.  CONCLUSION 
 
The concept of differential-difference invariants allows one to incorporate invariance properties 
of second-order differential equations into discretized simulations of two-point boundary value 
problems. Group invariant discritizations have been shown to yield exact results for two-point 
eignvalue problems and superconvergent numerical results for two-point inhomogeneous 
boundary value problems. 
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