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Construction of Superconvergent Discretizations with
Differential-Difference Invariants

by

Roy A. Axford*

ABSTRACT

To incorporate symmetry properties of second-order differential equations into
finite difference equations, the concept of differential-difference invariants is
introduced. This concept is applied to discretizing homogeneous eigenvalue
problems and inhomogeneous two-point boundary value problems with various
combinations of Dirichlet, Neumann, and Robin boundary conditions. It is
demonstrated that discretizations constructed with differential-difference
invariants yield exact results for eigenvalue spectra and superconvergent results
for numerical solutions of differential equations.

1. INTRODUCTION

This study introduces the concept of differential-difference invariants that is applied to the
construction of group invariant discretizations of Sturm-Liouville equations. A differential-
difference invariant is defined to be a linear combination of a derivative and the grid-point values
of a discretized dependent variable. This combination is constructed so that it admits a subgroup
of the group of transformations that is admitted by a differential equation being discretized to
obtain numerical solutions.

Finite difference equations that are constructed on the basis of the concept of differential-
difference invariants exhibit the property of being exact. This property means that the exact
solutions of the difference equations yield the exact solutions of the differential equations at the
grid points. Exact finite difference equations yield exact grid-point values for any arbitrarily
selected grid-point spacing. This fact leads to a simplified algorithm for solving the system of
algebraic equations that is produced in the discretization process.

Approximation methods, such as the Rayleigh-Ritz and Galerkin techniques, sometime yield the
exact solutions of differential equations. When this fact occurs, the results are said to be
superconvergent. Finite difference discretizations constructed with the concept of differential-
difference invariants for the two-point boundary value problems have been found to produce
superconvergent results. This fact appears to be a consequence of building a symmetry property

* Consultant at Los Alamos: Department of Nuclear, Plasma, and Radiological Enginering,
University of Illinois at Urbana-Champaign, 103 S. Goodwin, Urbana, Illinois 61801.



of the differential equation, and thereby its solution into the discretization method from the
beginning.

2. CONSTRUCTION OF DIFFERENTIAL-DIFFERENCE INVARIANTS

First and second order differential-difference invariants are needed to construct invariant
discretizations used to obtain numerical solutions of two-point boundary value problems. These
problems involve homogeneous and inhomogeneous second order differential equations with
various combinations of Dirichlet, Neumann, and Robin (or mixed) boundary conditions at the
two end points. Let

d

b
1

ey

be the symbol of the infinitesimal transformation of a group of point transformations admitted by
a second order differential equation,

Ly(x)+S(x)=0 , (2)

where L is a linear second order differential operator. The extension of this group to first order
derivatives, second order derivatives, and grid-point values of the dependent variable has the
infinitesimal transformation with the symbol,

0@ =no) 5l s )

J J J
+17(x+h)m+n(x—h)m+n(x+2h)m (3)
- Zh)m .

A first order differential-difference invariant is a linear function of the first order derivative and
grid-point values such that

U@ fy(x),y' M, y(x +h).y(x~h)...]=0 . (4)

A second order differential-difference invariant is a linear function of the second order derivative
and grid-point values such that

U(G)F[y(x),y”(x),y(x +h),y(x = h),y(x +2h),y(x - 2h)... ] =0 . (5)

The forms of the functions fand F above for the first and second order differential-difference
invariants are not unique because their fine-grid limits are used to motivate the linear



combinations of the grid-point values taken. Fine-grid limits of differential-difference invariants
can correspond to central difference approximations, forward difference approximations, or
backward difference approximations of first and second order derivatives. However, finite
difference equations constructed with differential-differential invariants have been found to be
superconvergent, that is, capable of producing exact solutions. This ability is in contrast to finite
difference equations constructed with standard difference approximations for derivatives that are
not superconvergent.

Five first order differential-difference invariants constructed with the group generator

0 =n(x) &y‘(?x) (©6)
are as follows:
(x)= () x+h)-y(x-
YO = e P == ™
(x)= n’(x) x+h)-y(x
V(x) = e B o) [y(x+n)-y(x)] ®)
(x)= () x)—y(x-
YO = o) [y(x)=y(x-n)] ©)
(x)= () x+2h)+ y(x+h)-2y(x
y(x)_(n(x+2h)+n(x+h)—2n(x) [+ 20+ 5(x 1) =25(x)] (19
and
(x)= () x)=y(x=h)-y(x-
0 [l 28] an

The fine-grid spacings of these five first order differential-difference invariants yield,
respectively, the following approximations for first order derivatives:

(1) two-point central difference,

(2) two-point forward difference,

(3) two-point backward difference,

(4) three-point forward difference, and
(5) three-point backward difference.



Three second order differential-difference invariants constructed with the above group generator
are as follows:

"(x) = n'(x) x+h)+y(x—h)-2y(x
V0= L e =)= )

") = n'(x) x+2h)-2y(x+h)+ y(x
Y (x)_(n(x+2h)—2n(x+h)+1’)(x) [y( 2h)=2y(x+ )+ )] ’ (13)

and
14 — n/’(x)
Y (x)_(n(x+h)+n(x—h)+77(x+2h)+77(x_2h) (14)

[y(x + h)+ y(x - h) + y(x + 2h) + y(x —2h)]

The fine-grid spacings of these three second order differential-difference invariants yield the
following approximations for second order derivatives:

(1) three-point central difference,
(2) three-point forward difference, and
(3) four-point central difference.

The fine-grid spacing limits for the first and second order differential-difference invariants given
above all follow directly from the Taylor series expansions of the group generator coordinate
function n(x) evaluated at the various grid points.

Even though differential-difference invariants are constructed so as to have anticipated fine-grid
spacing limits, the group invariant discretizations that are obtained with the concept of
differential-difference invariants provide exact solutions of differential equations at grid points
set up for any arbitrarily chosen grid spacing. Because second order differential equations are
invariant under multi-parameter groups of transformations, different subgroups can be used to
construct a differential-difference invariant, which is an additional reason differential-difference
invariants are not unique for a given differential equation. The choice of a subgroup can be
motivated by the boundary conditions to be satisfied by the differential equation.

3. GROUP INVARIANT DISCRETIZATIONS FOR TWO-POINT EIGENVALUE
PROBLEMS

Finite difference equations constructed by applying the differential-difference invariant concept
to two-point eigenvalue problems involving the scalar Helmholtz operator and Dirichlet,
Neumann, and Robin (mixed) boundary conditions have been found to yield exact results for the
eigenvalue spectra. Examples drawn from quantum mechanics and neutronic criticality analysis
are given in this section.



3.1 Energy Eigenvalues for a Particle in a Square Well

The potential energy for a particle in a square well is given by

U(x)= o,-5<x<§ : (15)

for a well with width equal to L. Because this potential energy is an even function, energy
eigenstates with both even and odd parity exist, and it is necessary to consider only the interval
0 = x <. The time-independent Schroedinger equation is

Wi’(x)+y2wl(x)=0 , for Osxs% , (16)
and
wg(x)—azlpz(x)=0 , for %sxsoo , (17)
where
v? =2mE/h* | (18)
and
a’ =2m(Uy - E)/h* | (19)

with m the particle mass and E, the energy. The wave function and its derivative are both
continuous at x = L/2.

Let E; be the ground state energy of a particle in a box with width L. This energy is given by
E; =h*m*12mL* . (20)

If energy for the particle in the square well is measured in units of E;, then

2
n°E
==, (1)
I’E,
and
2
2=”_2 Uy E (22)
*\E, E,

For even parity solutions the analytic solutions of the Schroedinger equation are



(23)

Y, (x)=A cos(yx) , O=x s% ,
and
—ax L
wz(x) =Aye , 5 sSxX=<® 24)
For odd parity solutions the analytic solutions are
. L
P, (x)=Agsin(px) , O=<x=< 5 (25)
and
—ax L
wz(x) = Aye , 5 sxX=<® (26)

In both cases a transcendental equation is obtained for the allowed energies by making the wave
function and its derivative continuous at x = L/2. The allowed energies for the even parity states

are roots of the transcendental equation,

Eo7 [E). [T E o7
The allowed energies for the odd parity states are roots of
E oo ® | E | |Yo_ E (28)
With the definitions,
xt-E (29)
EL
and
U
w==0 (30)
Ep

these transcendental equations can be written as

X sin(7X /2) - cos(mX /2)VW - X* =0

for even parity states, and for odd parity states

X cos(7X /2) + sin(aX /2VW - X* =0

&1y

(32)



When W=16 =U,/E,, there are five allowed energies for three even parity states and two odd

parity states. The roots of these transcendental equations that come out of the exact analytic
solutions of the Schroedinger equation are given in the third column of Table I.

It will now be shown that this eigenvalue spectrum can be obtained from finite difference
equations constructed by applying the differential-difference invariant concept. In the discretized
method of solution we solve the Schroedinger equation

n L
W(x)+ry () =0, 0sx==, (33)
subject to the Robin boundary condition
L L
oy, | =|+y|=|=0 , 34
%( 2) ”’1( 2) oY
which comes out of the continuity of the wave function and its derivative at x = L/2. To
discretize the differential equation, we use either the group with the generator
U= cos(}/x)i (35)
ay
for even parity states, or the group with the generator
U= sin(yx)i (36)
ay

for odd parity states. In both cases a second order differential-difference invariant is found to be
given by

)’2 h)[qpl(x+h)+1p1(x—h)—2w1(x)] . (37)

Pi(x)= ———~
4sin2(”
2

Hence, the discretized form of the Schroedinger equations for both even and odd parity state
solutions is

v (x+ h)+1/)1(x—h)—l2—4sin2(%)llpl(x) =0 (38)

for a grid spacing equal to A.



The discretization of the Robin boundary condition at x = L/2 is different for even parity and
odd parity eigenstates. For even parity states a first order differential-difference invariant to use

in the Robin boundary condition is given by

w;<x>=( peinz) )][%(x)—wl(x—h)],

cos[y(x - h)] - cos(yx

ysin(y)[wy (x) —yy (x = h)]
o

For odd parity states a first order differential-difference invariant is given by

wi(x)=

2sin

(e n) - (=)
el

Hence, the Robin boundary condition at x = L/2, namely,

L (L
350

takes one of the two following forms. For even parity states this boundary condition is

SR B R e R R

For odd parity states the Robin boundary condition is

ol Sl roft]

(39)

(40)

(41)

(42)

(43)

(44)

To determine the allowed energies for the even and odd parity eigenstates from the difference

equations obtained in the discretized method of solution, we set up systems of homogeneous
algebraic equations from the discretized forms of the Schroedinger equation and the Robin

boundary condition. A system of homogeneous algebraic equations has a nontrivial solution,
provided that the determinant of the coefficient matrix vanishes. This requirement yields the

eigenvalue spectrum for the allowed energies. For even parity eigenstates we set up a system of

three algebraic equations, and for the odd parity eigenstates, two algebraic equations.



In the case of the even parity eigenstates we can take the wave function evaluated a x =0,
x=L/4,and x = L/2 as three unknowns. The corresponding grid spacing is h=L/4. We
evaluate the discretized Schroedinger equation at x =0 to obtain

2, (%) - [2 —4 sinz(%)]@ul (0)=0 |, (45)
and at x = L/4 to obtain
L . 2 YL L
—|+y(0)-[2-4 — —|=0 . 46
w‘(z) (%) [ Sm(s)}w‘(zt) o
Evaluating the Robin boundary condition at x = L/2 for even parity states yields

[l el

The determinant of the coefficient matrix for these last three algebraic equations is

4 sinZ(E) -2 2 0
8
1 4sin ()/ ) 2 1 ,
0 yL sm( ) 2 aL sm( L)sin(%) + (yL)sin(%)
where
yL=nX (48)
al = m\W - X* (49)
X (50)
Ep
and
w=o (51)
Ep

For a specified value of the well depth W, the values of X that make the above determinant equal
to zero give the allowed energies for the even parity eigenstates.

For the odd parity states we take the values of the wave function at x = L/4 and x = L/2 as two
unknowns, since v, (O) =0 in the odd parity case. The discretized form of the Schroedinger

equation with x =L/4 and h=L/4 gives



o) st

The discretized form of the Robin boundary condition for the odd parity case becomes

IRt S RO SR

The determinant of the coefficient matrix for these two algebraic equations is given by
4 sinz(E) -2 1
8
~(yL) cos(%) 2(aL)cos(38LL) sin(%) +(yL) cos(%)

For a specified value of the well depth W, the values of X that make this determinant vanish yield
the allowed values for the energies of the odd parity eigenstates.

When W =16, there are five allowed energy levels, three with even parity and two with odd
parity. For this value of W, the allowed energies for the five eigenstates computed with the above
two determinants are given in the fourth column of Table 1. The allowed energies computed as
the roots of the two transcendental equations obtained with the exact solutions of the
Schroedinger equation for even and odd parity states as computed from Eqgs. (31) and (32),
respectively, are given in the third column of Table 1. Comparison of the third and fourth
columns of Table 1 shows that the discretization of the Schoedinger equation and the Robin
boundary condition constructed with the concept of differential-difference invariants produces
exact results for the allowed energies or eigenvalue spectrum. Numerical results computed with
the discretization method for W =3 and W =10 are also exact values of the allowed energies.

TABLE 1. Even and Odd Parity State Energies for a Square Well with
Well Depth W=16.
Exact Solution Discretized Solution
State Parity of State State Energy X State Energy X

1 Even 0.861762 0.861762

2 Odd 1.71747 1.71747

3 Even 2.55823 2.55823

4 Odd 3.36395 3.36395

5 Even 4.0 4.0

10



3.2 Material Buckling Eigenvalue Spectra in the Diffusion Approximation

For a two-region core with material buckling distribution given by

(54)

B2 _ 0, for Osx=<b ,
m =1 B> , for bsx=<a ,

and for a reflector with thickness 7 and inverse diffusion length ap, the three region neutron
diffusion equations are

Pi(x)=0 , for Osxs<b , (55)
W5(x)+ BAp,(x)=0 , for b=x=a , (56)

and
wg(x)—alzew3(x)=0 , for asx<a+T . (57)

In one-group modeling, a vanishing material buckling in the center of the core produces a central
region in which the fission rate is spatially uniform so the power density is a constant. The
nonzero material buckling in the outer zone of the core has an eigenvalue spectrum where the
fundamental mode corresponds to the just critical state. The higher modes are needed for
transient calculations.

The eigenvalue problem for the material buckling in the outer region of the core is composed of
the solution of the differential equation for the flux y,(x) for b =< x < a, subject to the Nuemann

boundary condition at x = b, namely
w5(b) =wi(b) =0 (58)

where wl(x) = G = constant, and to the Robin boundary condition at x = a, namely

(Ba)sin(Ba) - Rcos(Ba) =0 , (59)
where b =0, and where
D
R= D—z(%)(a T)coth(agT) (60)

and the diffusion coefficient is given by

D, , for bsx=a ,
D(x)={D3 , for asx<a+T . (61)

This Robin boundary condition at x = a is a consequence of the continuity of the neutron flux
and net current at X = a. When b = 0, the Robin boundary condition at x = a is given by

11



B .
( a) Sin a

X

The solutions of the diffusion equations (56) and (57) from which the Robin boundary conditions
(59) and (62) are derived are

- Rcos[Ba(l - é)} =0 . (62)

P,(x)=C,cos(Bx) , if b=0 , (63)
y,(x)=Cycos[B(x-b)] ., if b=0 , (64)

and
y3(x) = Cysinh[ag(a+T-x)] , (65)

where C, and Cj5 are constants, and the Dirichlet boundary condition,

3(a+T)=0 (66)
is satisfied.
Material buckling eigenvalues computed from the transcendental equations, (59) for b =0 and

(62) for b/a=0.60, are given in the second and third columns of Table 2, respectively, for the
parameter values,

a
—=6 , 67
T (67)
ap
=3 68
T (68)
and

The first six or seven eigenvalues out of an infinite spectrum are given.

The material buckling eigenvalue spectra given in Table 2 were found with the exact solutions of
the differential equations. We will now show that the same results for these eigenvalues are
obtained by discretizing the differential equation for wz(x) and the Robin boundary condition at
x = a with the second and first order differential-difference invariants. That is, we construct
invariant discretizations of

W5(x)+ BAp,(x)=0 , for b=x=a (70)
and
inh(ot,T
& Sin (OtR ) wl(a)=0 ) (71)

vala)+ D; ap cosh(aRT) 2

12



TABLE 2. Exact Solution Material Buckling
Eigenvalues for % =6, apT=3,and D; =1-2D,.
Mode Ba for b=0 Ba for b/a=0.60

1 1.50173 3.52458

2 4.50764 10.6415

3 7.52047 17.9103

4 10.5434 25.3331

5 13.5782 32.8749

6 16.6252 40.5000

7 19.6838

To construct the second and first order differential-difference invariants, we use the group
generator

A J
U=n(x (72)
( )0"1/’2(’5)
A second order differential difference invariant is given by
W5(x) = n'(x) [, (5 + B) + 4, (x = h) = 2, (x)] (73)
n(x+ h)+n(x-h)-2n(x)
where
n(x)=cos(Bx) , for b=0 , (74)
and
n(x)=cosB(x-b) , for b=0 . (75)

For each of these two cases, b=0 and b =0, the second order differential-difference invariant in
Eq. (73) reduces to

wg(x)=—Bh)[wz()ﬁh)+w2(x—h)—2w2(x)] . (76)

4sin2(
2

13



Accordingly, the invariant discretization of the diffusion equation (70) is given by

4 sinz(B—h) )
2

for both the b=0 and b =0 cases. A first order differential-difference invariant to discretize the
Robin boundary condition of Eq. (71) is given by

Yy (x+h)+y,(x+h)+ 1, (x)=0 (77)

TR R

where 7(x) is given by Eq. (74) for b =0 and by Eq. (75) for 5=0. When b =0, we find in
Eqgs. (74) and (78) that the first order differential-difference invariant, when evaluated at x = a,
becomes

() )[wz(x)—wz(x—h)] , 8)

Bl 5]

(79)

When b =0, with Egs (75) and (78), the first order differential-difference invariant reduces to

B Bsin[B(a - b)][wz(a) ~y,(a- h)]

vi(a)= 2sin(32h) sinl B(a—b) - Bzh}

(80)

at x =a.

The Robin boundary condition of Eq. (71) can be discretized for the two cases, b=0 and b =0,
with the first order differential-difference invariants found in Eqgs. (79) and (80). With h =a/2
and b =0, the discretized Robin boundary condition at x = a becomes

[zR sm(% sm(%) + (Ba) sin(Ba)lwz(a) — (Ba)sin(Bajyy(a-h) =0 . 81)

With 2h =b-a and b =0, the discretized Robin boundary condition at x = a reduces to

sinE B(a-b)

{msmE(a_b) . (Ba)sin[B(a—b)]}wz(a)

—(Ba) sin[B(a - b)]lpz(a - h) =0 .

(82)

In both Egs. (81) and (82) the parameters R, which contain the reflector properties, is given in
Eq. (60).

14



The material buckling eigenvalue spectra can be computed for the b =0 case by setting up three
homogeneous algebraic equations with the discretized form of the differential equation in
Eq. (77), and the discretized form of the Robin boundary condition in Eq. (81). In the b =0 case
three homogeneous algebraic equations are set up again with Eq. (77) and the discretized form of
the Robin boundary condition found in Eq. (82).
When b =0 we take as three unknowns ,(0), ,(%), and y,(a) with 24 = a. Evaluating
Eq. (77) at x =0 yields
. o Ba
2y () + [4 sin (T) _ 2lw2(o) 0 . (83)
Evaluating Eq. (77) at x = h = a/2 yields
. 2o Ba
lpz(a)+w2(0)+ 4sin e —21p2(h)=0 . (84)

The discretized Robin boundary condition in Eq. (81) becomes

zzem(%) sin(%) + (Ba) sin(Ba)lwz(a)

~(Ba)sin(Ba)yp,(h) =0

(85)

The three homogeneous algebraic equations (83), (84), and (85) have a nontrivial solution when
the determinant of their coefficient matrix vanishes. This determinant is

4 sinz(%) ) 2 0
1 4 sinz(&) -2 1|,
4
0 —Ba sin(Ba) M,

where

Ms;=2R sin(%) sin(%) + (Ba) sin(Ba)

The zeros of this determinant yield the material buckling eigenvalues for the b =0 case.
Computing the first seven of these zeros for the parameter values a/T =b, agpT =3, and

D; =1.2D,, yields the same results given in the second column of Table 2 that were computed

with the exact solution of the differential equation. The invariant discretization of the differential
equation and Robin boundary condition with the concept of first and second order differential-

15



difference invariants is a discretization that produces exact results for the material buckling
eigenvalues in the b =0 case.

The same is true also for the b =0 case. When b =0, we take 2h = b — a and derive three

homogeneous algebraic equations for the unknowns 1, (b), Y, (b + h), and wz(a). Evaluating
Eq. (77) at x =b gives

2, (b +h)+ {49&[%(1-%)]-2}%(;7) =0 . (86)

Evaluating Eq. (77) at x =b+ h gives

W, (a)+,(b) + {4 sinz[%(l—g)] -2}1/;2(1” h)=0 . (87)

The discretized Robin boundary condition in Eq. (82) for the b = 0 case becomes

{m sinE(a _b) sinﬁTB(a _ )|+ (Ba)sin[ B(a - b)]}%(a)

—(Ba) sin[B(a - b)]l/)z(b + h) =0 .

(88)

The determinant of the coefficient matrix of the three homogeneous algebraic equations (86),
(87), and (88) is

4sin2[%(l—é)l—2 2 0
a
1 4sin2[@(1—é)l 1|,
4 a
. b
0 —Basin|Ba|1-— N33
a

where

-2

Computing the first six zeros of this determinant with the parameter values a/T =b, oxT =3,
D; =1.2D,, and b/a =0.60 yields the same results for the material buckling eigenvalues that are
shown in the third column of Table 2 for the b = 0 case.

+ (Ba)sinlBa(l - é)] .

a

16



4. GROUP INVARIANT DISCRETIZATIONS FOR TWO-POINT INHOMOGENEOUS
BOUNDARY VALUE PROBLEMS

The inhomogeneous second order differential equation

d 4 dy -X _
E[(X +1)E]+e =0 , (89)

subject to the boundary conditions y(O) =0 and y(l) =0, has no closed form analytic solution.
However, the solution does have an integral representation from which numerical results can be
obtained. This differential equation can also be discretized by using the concepts of first and
second order differential-difference invariants to obtain numerical result for the solution. These
two approaches for obtaining numerical results are compared below and found to yield the same
answers.

The integral representation of the solution of Eq. (89) is given by

y(x)=9,(x)+Cn(x) , (90)
where
X d
n(x)= [ g‘*i : (o1)
and
xe_gd?j
000=f e ©2)

The constant C in Eq. (90) is given by

C=(-1)¢,(1)/n(1) =-0.659797 . (93)
The alternative form of Eq. (89), with which its discretized form can be constructed, is
(x4 +1)y"+4x3y'+e"‘ —0 . (94)
This equation is invariant under the group of point transformations with the generator

U=n(x)=, (95)

where the coordinate function n(x) is given by Eq. (91). A first order differential-difference
invariant of this group is

17



oy )+ k)= y(x-h)]
()= n(x +h)-n(x-h)

2

and a second order differential-difference invariant is

n”(x)[y(x +h)+y(x-h)- 2y(x)]
n(x+h)+n(x-h)-2n(x)

y'(x) =

The discretized form of Eq. (94) is

A

Qy(x)+Q(x)=0 .

where the discretized inhomogeneous term is given by

A

O(x) =(-1)Q¢, (x)
with the particular integral of Eq. (92). The difference operator in Egs. (98) and (99) is

(x4 + 1)11”(x)[§+ +8” —2] 4x317’(x)[§+ - 5‘]

Q= +
n(x+h)+n(x-h)-2n(x) n(x+h)-n(x-h)
or, as
n(x) = —— .
xt ¥l
and
y 43
n (x) = 4 7
(x +1)
we have
. 4x3 8+ 8§ -2 4538+ 8
o [ ] [37+57]

(x4 + 1)[17(x +h)+n(x-h)- 211(x)] ' (x4 + 1)[n(x +h)-n(x- h)] .

(96)

97)

(98)

(99)

(100)

(101)

(102)

(103)

In Egs. (101) and (103) S§+* is the shift operator to the right, and S~ is the shift operator to the

left. With the Egs. (103) and (99) the difference equation (98) becomes

¢p(x+ h)—¢p(x—h)
n(x+h)+n(x-h)

y(x+h)—y(x—h) ~ y(x+h)+y(x—h)—2y(x
n(x+h)-n(x-h) n(x+h)+n(x-h)-2y(x
¢p(x+h)+ ¢p(x—h)—2 p(x)

n(x+h)+n(x-h)-2n(x)

) _
)
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This can be rearranged to give

[T](x - h) - n(x)]y(x + h) + [n(x) - n(x + h)]y(x - h) + [n(x + h) - n(x - h)]y(x) =

(105)

¢, (x+ h)[n(x -h)- n(x)] +¢,(x- h)[n(x) -n(x+h ] + (pp(x)[n(x +h)-n(x- h)] .
Numerical results for the solution of the differential equation (89) are given in Table 3. Solutions
are computed with the integral representation (90) in the second column of Table 3 and the
invariant difference equation (105) in the third column. The numerical results computed by these
two methods are in exact agreement.

TABLE 3. Numerical Solution of (x*+1)y” +4x’y’ +e™=0.
Integral Representation | Invariant Difference

x Numerical Results Equation Results
0 0 0

1/4 0.056220 0.056220

172 0.063560 0.063560

3/4 0.037537 0.037537
1 0 0

When the numerical results were computed with the invariant difference equation (105), it was
not necessary to write out a system of the algebraic equations to solve simultaneously for y(l/ 4),

¥(1/2), and y(3/4). These values can be determined sequentially as follows:

(D) Set h=1/2 and x=1/2 in Eq. (105) and solve for y(1/2).

) Set h=1/4 and x=1/4 in Eq. (105) and solve for y(1/4) knowing y(1/2) from the
previous step.

3) Set h=1/4 and x=3/4 in Eq. (105) and solve for y(3/4) knowing y(1/2).

If values at further grid points are wanted, we can set h(1/8), and then calculate y(1/8), y(3/8),
y(5 / 8), and y(7/ 8) sequentially. Repeated halving of the grid spacing 4 yields additional results

at more grid points. A large order algebraic system is not required to compute the solution at a
large number of grid points.

An approximate solution of the differential equation (89) can be calculated with the Rayleigh-

Ritz variational technique. Equation (89) is a variational principle Euler-Lagrange equation of
the functional

19



J= foldx[(x4 + 1)(y’)2 -~ 2e_xy:| .

y(x) = ax(1-x)+ bx(1- )|

Let

be a trial function in which the constants a and b are to be determined. The two algebraic
equations for these two constants are found from the conditions

dJ

da

(a,b) =0 ,
and

—(a,b)=0 .
db(a )

These two algebraic equations are

28(7e2 - 51)a + (4025 - 54362)19 -8,
and
(4025 - 543e2)a + 2(1 119¢2 - 8263)b - 2(e2 - 5) .

The solutions are

a=0.454514
and
b =-0.094657

With these values of the constants, the approximate solution in Eq. (107) gives

¥(1/4) =0.056004
¥(1/2)=0.061743

and
y(3/4) =0.038160 .

(106)

(107)

(108)

(109)

(110)

(111)

(112)

(113)

(114)
(115)

(116)

These Rayleigh-Ritz method approximate results are all quite close to the exact results given in

Table 3.

For comparison purposes the differential equation (94) has also been solved approximately

numerically by constructing a finite difference equation in a conventional way. The difference

equation

(1 200y )+ (x4 1= 200y = ) =2 x* +1)y(x) + %67 =0

20
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with the grid spacing h approximates Eq. (94) when the second order derivative is approximated
by

14 1
y (X)=?[y(X+h)+y(x—h)—Zy(x)] : (118)
and the first order derivative by
, 1
y(x) = [ n)=y(x=m)] (119)

These are standard two-point and three-point central difference formulae. When the grid spacing
is h=1/8, Eq. (117) becomes a set of seven algebraic equations for y(1/8), y(1/4), y(3/8),
¥(1/2), y(5/8), y(3/4), and y(7/8). The numerical solution of this set of seven algebraic
equations is given in the third column of Table 4. The second column of Table 4 gives the
integral representation solution from Eq. (90), which is also obtained from the invariant
difference equation (105). The fourth column of Table 4 gives the results computed with the
Rayleigh-Ritz method, that is, from Eq. (107). The results given in Table 4 computed with the
standard difference equation (117) required solving a system of seven algebraic equations. The
Rayleigh-Ritz method of Eq. (107) required solving two algebraic equations, but the results are
sensitive to the form chosen for the trial function. Because the invariant difference equation
(105) holds exactly for any arbitrary grid spacing, the results at the grid points can be computed
sequentially, not simultaneously, without an algebraic system with Eq. (105).

TABLE 4. Comparison of Numerical Solutions of (x*+1)y” +4x’y’ +e™=0.
X y(x) With Invariant | y(x) With Standard | y(x) With Rayleigh-
Difference Difference Ritz Variational
Equation (105) Equation (117) Method (107)

0 0 0 0

1/8 0.035027 0.035117 0.035877

1/4 0.056220 0.056420 0.056004

3/8 0.065180 0.065484 0.063685

172 0.063560 0.063920 0.061743

5/8 0.053446 0.053781 0.052567

3/4 0.037537 0.037771 0.038160

7/8 0.018841 0.018944 0.020184
1 0 0 0

21



S. CONCLUSION

The concept of differential-difference invariants allows one to incorporate invariance properties
of second-order differential equations into discretized simulations of two-point boundary value
problems. Group invariant discritizations have been shown to yield exact results for two-point
eignvalue problems and superconvergent numerical results for two-point inhomogeneous
boundary value problems.
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