
KAPL, Inc.
Knolls Atomic Po+rw Laboralow
Port Office Box 1072 Schenectady, N.Y. 12301-1072
Telephone (51 8) 395-4000 Facsimile (51 8) 395-4422

SPP-67610-0007
July 30, 2005
Page 1

The Manager
Schenectady Naval Reactors Office
United States Department of Energy
Schenectady, New York

L O C K H E E D M A R T I N -7t

Subject: Prometheus Reactor I&C Software Development Methodology, for Action

References: (a) JPL Document: Prometheus Project - Project Software Management Plan
(preliminary), 982-00046, Rev. 0

(b) Bettis Letter: Reformatted Software Engineering Policy, for NR Information,
B-REO(M)-CD-008, 311 7/05

(c) KAPL Letter: All Projects: NNPP Equipment: Software Qualification by
Criticality Level - Three-Prime Task Force Recommendation; For NR
Approval, ARP-68640-0196, 411 2102

(d) NAVSEA Letter: All Projects - Shipboard Software Qualification by Criticality
Level - Three-Prime Task Force Recommendation; Approval with Comment
and Request for Prime Contractor Action, Ser. 08W03-00484, 2/6/03

(e) KAPL Letter: All Projects: NNPP Standard for Software Qualification by
Criticality Level; For Concurrence, ARP-68640-0305, 9/2/04

(f) KAPL Letter: KAPL Comments and Concurrence to Proposed NNPP Standard
for Software Criticality Level, FSO-64K20-04-143, 12/21/04

(g) BPMl Letter: All Plants - NNPP Standard for Software Qualification by
Criticality Level; BPMl Concurrence, BPMI-ICS-PMP-00731, 311 1/05

Enclosures: (1) Space Electrical Systems Software Life Cycle, Methodology, and Language
Choice for Prometheus Reactor I&C Software Development

(2) NRPCT Reactor I&C Software Development Process Manual (NRPCT-RIC-
SDPM-001)

(3) NRPCT Reactor Module Software Development Plan (NRPCT-RM-SDP-001)

Dear Sir:

Purpose:
The purpose of this letter is to submit the Reactor Instrumentation and Control (I&C) software life
cycle, development methodology, and programming language selections and rationale for
project Prometheus to NR for approval. This letter also provides the draft Reactor I&C Software
Development Process Manual and Reactor Module Software Development Plan to NR for
information.

PRE-DECISIONAL - For Planning and Discussion Purposes Only
Knolls Afomrc Power I,aborarov
rs operoiid/ar the U.S. Depormeni afEnergv
by KAPL. Inc. a LockheedManin cornpuny

SPP-67610-0007
Page 2

Background:
As part of project Prometheus, the NRPCT has been working with other team members (JPL,
NGST, and Hamilton Sundstrand) to create a set of high level process requirements and
~ r i n c i ~ l e s for software develo~ment that would allow for better communication and commonalitv
betwien the various software'efforts within the Prometheus program. These process
reauirements have been qathered in preliminary form in the Reference (a), Project Software
~ a n a ~ e m e n t Plan (PSMP). The guidance pro;ided in the PSMP would'then be expanded for
each team organization in a local Software Development Plan (SDP), which would trace back to
the PSMP and any local organizational requirements.

As part of developing the Reactor I&C SDP, different software life cycles were examined to help
define the software development process. Different design methodologies and languages were
also examined for appropriateness. These comparisons lead to the selections provided in
Enclosure (1) and helped define the processes and development plan in Enclosures (2) and (3).

As part of the process for developing software for the Naval Nuclear Propulsion Program
(NNPP), the software Criticality Level (CL) must be defined for each deliverable. The
qualification of software by CL was originally proposed as part of a three-prime task force
recommendation to NR in Reference (c). NR approved the task force recommendations with
comment in Reference (d). The NR comments were incorporated into the NNPP Software
Qualification by Criticality Level (SQCL) document and distributed for three-prime concurrence
by Reference (e). KAPL and BPMl concurrence to the SQCL is documented in References (f)
and (g). Bettis concurrence to the SQCL is pending.

Discussion:

Enclosure (1) provides the options and rationale for the selection of a software life cycle, design
methodology, and programming language for NR approval. The selections consist of the
Incremental software life cycle, structured design methodology, and C programming language
for Prometheus reactor l&C software development. After a comparison of the major software life
cycles that have been defined for use with different software development activities, the NRPCT
has selected the lncremental life cycle for use with Prometheus Reactor l&C software
development. The lncremental life cycle provides for a series of software releases that provide
increasing functionality to afford earlier opportunities for integration with other software
components. This will allow performance of interface testing and help mitigate risk. The
selection of a Structured design methodology allows for a robust software architecture design
making use of top-down design, functional decomposition (hierarchical refinement of
functionality from a course level of detail to a fine level of detail), and structured programming.
This allows for strong modularity in the design while avoiding some of the inspection burden
associated with object-oriented design methodologies. The selection of the C programming
language complements the use of structured design. Additionally, the C language has been
used in many space applications and minimizes the inspection burden that may be associated
with languages such as C++.

Enclosure (2) provides the draft software development processes based on the lncremental
software lifecycle. These processes incorporate guidance from both the Reference (a) PSMP,
and the Reference (b) Naval Reactors Software Engineering Policy. The lncremental lifecycle is
defined in a series of tasks, starting with initial requirements and architecture development,
through increment planning. The development tasks applied within each increment include:

SPP-67610-0007
Page 3

detailed requirements development, detailed architecture development, module design, module
implementation, unit testing, integration, system test, release, and independent verification and
validation. Processes have been identified for each of the development tasks, and for wide-
ranging tasks such as configuration management and defect tracking.

Enclosure (3) provides the draft Prometheus Reactor Module Software Development Plan (SDP)
and is a subordinate document to the NRPCT Software Develo~ment Process Manual (SDPM).
The SDP provides mission specific definitions of project roles, deliverables, a documeniation '

hierarchy, organizational division of responsibilities, and a description of tools. The draft SDP is
a higherel&ei SDP that would then have deliverable specific subitier development plans tracing
up to it. It is envisioned that the flight software, ground software, and test beds would each have
a development plan that would trace up to the Reactor Module SDP. Below each subordinate
SDP would also be a work breakdown structure and schedule specific to each deliverable.
These subordinate deliverable specific SDPs will be developed and recommended in future
submittals.

It will also be necessary to define the software Criticality Level for each NRPCT deliverable. As
described in the Background, the SQCL is currently out for three-prime concurrence. Once the
mission has been fully defined for Prometheus, the Criticality Level for each NRPCT deliverable
will be assigned and justified. This will be provided to NR for approval via separate
correspondence.

Extensibility to Lunar Mission:

Enclosures (1) and (2) were developed to be mission independent and as such, the major
conclusions reached concerning the software development life cycle, software design
methodology, and the selection of a programming language are fully extensible to a lunar space
reactor system. Enclosure (3) was developed specifically for the Prometheus deep space
mission. As such, the detailed implementation described in Enclosure (3) is specific to a JIM0
type mission, for a lunar space reactor system a separate software development plan containing
the same format and kind of information would be developed.

Conclusion:

NR approval of Enclosure (1) for the selection of the Incremental software life cycle, structured
design methodology, and C programming language for NRPCT Prometheus Reactor l&C
software development is requested.

Enclosure (2) and Enclosure (3) for the draft NRPCT Software Development Process Manual
and Software Development Plan are provided to NR for information.

SPP-67610-0007
Page 4

Definition and justification for the NRPCT Reactor l&C software Criticality Level, as documented
In Reference (e), will be provided by separate correspondence. (0

This letter has been reviewed and concurred to by the Manager of KAPL SPP Space Electrical
Systems - Systems and Software Design (M. Ryan), and the Manager of Bettis Space
Instrumentation & Control Design (D. Robare).

Very truly yours.

Thomas A. Hamilton, Engineer
Space Electrical Systems - Systems and Software Design
Space Power Program

Enclosure (I) to
SPP-67610-0007

Page 1 of 19

Space Electrical Systems
Software Life Cycle, Methodology, and Language

Choice for Prometheus Reactor I&C
Software Development

Thomas A. Hamilton
David Schroeder
Brian Robinson

July 2005

PRE-DECISIONAL - For Planning and Discussion Purposes Only

Enclosure (I) to
SPP-67610-0007

Page 2 of 19

This page intentionally left blank.

Enclosure (1) to
SPP-67610-0007

Page3of 19
Table of Contents

1 Introduction

1.2 Acronyms .. 4
2 Methodologies ... 5

2.1 Software Life Cycle
2.1 . I Waterfall Life Cycle
2.1.2 Spiral Life
2.1.3 Increment
2.1.4 Evolutions
2.1.5 Unified Process
2.1.6 Life Cycle C

2.1.6.1 Life Cycle
2.1.6.2 Life Cycl

2.2 Design Methodolog
2.2.1 Object-Oriente
2.2.2 Structured Methodology 15

17
17
18
18
18

2.3.4 Othe 18
18

3 Conclusion 18

Enclosure (I) to
SPP-67610-0007

Page 4 of 19

1 INTRODUCTION
Software development in the NRPCT for the Prometheus project requires a high level of
quality in both software and documentation. Design, integration, and V&V (verification &
validation), processes and standards are defined and performed in order to provide this
high level of quality. Additionally, documentation of the rationale for the choices in the
software life cycle, methodology, and development language is necessary to provide the
basis for these decisions, and to help train new developers that may enter the project.
The software life cycle provides the framework and sequence for the requirements,
design, implementation, and testing activities performed as part of software
development. The methodology (object-oriented or structured) provides the approach to
requirements development and software implementation. Programming language
choice is influenced by many factors, including the chosen method and developer
experience.

The NRPCT has chosen the Incremental software life cycle for the development of the
Reactor Module Flight and Ground software. The structured design methodology has
been chosen for requirements and software implementation, and the C programming
language has been chosen for software implementation. The options considered and
justification for each of these choices is presented in the following sections.

1.1 ~efinitions'
Design Methodology -One of several techniques used to approach software design,
object-oriented design centers around coupling data with algorithms, structured design
centers around top-down design with modularity (function calllreturn).

Process Model - A model of the processes performed by a system; for example, a model
that represents the software development process as a sequence of phases. Process
models have a focus on management and support activities (program management,
configuration management, quality assurance, process definition, etc.)

Software Life Cycle - The period of time from the inception of a software project to the
retirement of that software, including requirements, design, implementation, testing,
deployment, and maintenance. The life cycle focuses on the technical activities needed
to analyze, design, and implement the desired system.

1.2 Acronvms
efinition

.. . -"'". -..", ,
I Modified ConditionlDecision Coveraoe

.

' Definitions taken, in part, from IEEE Std-610

Acronym
IEEE
JPL

3r Team I

D
Institute of Electrical and Electronic Engineel
NASA Jet Propulsion I ahnratnnt

MCIDC - . . .

NRPCT I Naval Reactors Prime Contract1
UP I Unified Process (Rational Unif~ed Process)

Enclosure (1) to
SPP-67610-0007

Page 5 of 19
I V&V 1 Verification and Validation

2 METHODOLOGIES

2.1 Software Life Cycle
Software development for project Prometheus is performed using a phased development
process with incremental builds. These incremental builds provide increasing levels of
functionality until the full functionality is provided in the final build. The Prometheus
incremental build plan consists of software from all modules (Spacecraft, Mission,
Reactor, and Ground). This creates the desire for the Reactor Module l&C software to
provide incremental builds to fit with the Prometheus overall incremental build plan as
developed in discussions with various other Prometheus software development
organizations. This implies that communication functionality should be present in early
increments to be able to interface with the other modules.

Although there is a need to provide software in various increments to the various
Prometheus team members, there is still a large degree of latitude for the NRPCT to
choose the ootimal software life cvcle to develo~ the Reactor Module software. Several
life cycles haie been analyzed including the waterfall, Spiral, Evolutionary, Rational
Unified Process (UP), and others. Each of these life cvcles are resented brieflv, with
the criteria weighted'and a final choice presented.

2.1.1 Waterfall Life Cycle
The waterfall life cycle is often considered the "traditional" model for software
development. The waterfall consists of a systematic flow from step to step. The various
steps are as follows:

1) Requirements elicitation and development -The functional
requirements for the system are developed. This includes gathering
user reauirements, analvzina and develo~ina the svstem reauirements . - . -
from the user requirements, and documenting these requirements.

2) Software design -Once the requirements have been established.
software design can be performed to lay out the system architecture,
define all of the software modules, and assign functionality to each
module. Either object-oriented or structured methodologies may be
used. The design is documented in an appropriate format (UML, Flow
Charts, etc.)

3) Software implementation - Once the design has been established and
the modules are defined, these modules are then coded.

4) Integration - All of the discrete software modules are combined
together to create the overall system. lntegration testing is performed
to ensure the validity of the combined modules.

5) Test -Testing is performed on the software system. Testing is
performed in several phases (Unit Test, System Test, and Acceptance
Test).

6) Operation -The system is released for use.
7) Maintenance -Any defects encountered are fixed. Functionality may

be refined.

Enclosure (I) to
SPP-67610-0007

Page 6 of 19

The waterfall model is one of the simplest to understand, but can be unrealistic since
errors encountered may force rework of earlier tasks, and often requirements are in a
state of flux and change late in the course of a project. The waterfall life cycle is most
strongly applicable in an environment where the requirements are well defined early in
the process and do not change. If requirements are in flux, this causes a great deal of
iteration and rework which the waterfall model is not well equipped to handle. The
documentation requirements for the waterfall method can be significant resource
investments.

2.1.2 Spiral Life Cycle
The spiral software development life cycle is so named due to a cyclic series of
development steps performed with increasing definition to the requirements each loop
around the spiral. One of the main distinguishing features of spiral development is the
institutionalized inclusion of risk analysis and risk management. Prototyping is also used
to help define the requirements and mitigate risk.

Each transit around the spiral touches on four major areas:
1) Determine objectives, alternatives, and constraints,
2) Risk analysis and prototyping,
3) Requirements development and design,
4) Planning for the next spiral.

The risk analysis is used to ensure that risk can be managed or that if at any point during
the development cycle, if the cost of risk mitigation is too great, the project can be
cancelled prior to a full commitment of resources. The final loop around the spiral is very
similar to the traditional waterfall. The prototype is discarded and a formal design is
developed for the software product, flowing into an integration and test program.

Spiral development is most useful for high risk developments to allow a full vetting of
risks prior to fully committing to design.

2.1.3 Incremental Life Cycle
In the incremental life cycle, the development work is focused on the construction of one
part (subsystem) of the final product at a time. Each subsystem is finalized and planned
for release in a specific version of the product. Each release is a functional version of the
aoolication containina more features of the final desired D ~ O ~ U C ~ than the orevious
increment. Within each increment, a waterfall deve~o~mknt process may 'be followed to
provide the requirements, design, and testing for that particular increment.

The project scope must be fully defined from the start. This allows the content of each
release to be based on priorities set by the project team. The order of feature
construction can be selected in different ways. For example, riskier functions may be
chosen for earlier increments. The fundamental system architecture and some important
requirements should also be implemented in earlier increments. The Incremental life
cycle provides the ability to integrate early and often. This helps to minimize the impact
of defects by finding them early in the life cycle.

2.1.4 Evolutionary Life Cycle

Enclosure (1) to
SPP-67610-0007

Page 7 of 19
The evolutionary model defines and develops one piece of a system at a time. This
allows the process to respond to change in the system requirements and add
functionality as new requirements come to light. Typically this is accomplished through
many short iterative development cycles. The basic functionality is developed first with
additional features and functionality being implemented or modified as the requirements
evolves. The evolutionary concept is incorporated in many of the other life cycle models.

While the evolutionary model is well adapted to handling changing requirements (since it
is only focused on one portion of functionality at a time), there is no firmly established
end goal. Because of the lack of a well defined end point, estimating costs and
schedules is difficult.

2.1.5 Unified ~rocess'
The Unified Process (UP) (developed by Rational) is an iterative incremental process
with portions of all life cycle stages being performed on each iteration (requirements,
implement, test, etc.). UP defines 4 phases of software development, with a milestone
at the end of each phase to decide when to proceed to the next phase. Workflows are
defined that extend across each phase. Workflows roughly correspond to the steps of
the waterfall life cycle. Within each phase, several iterations are performed with aspects
of all workflows performed in each. Each iteration is similar to a mini-waterfall, adding
functionality with advancing iterations. UP embraces the use of Use Cases for
requirements analysis.

The four phases are defined as follows:
1) Inception -The business case for the project is established. Initial use cases are

defined. A baseline project plan is developed showing phases and iterations.
Prototypes are developed.

2) Elaboration -The functional requirements are fleshed out. A baseline
architecture is established. User manual is started. Further prototypes are
developed.

3) Construction - A series of iterations adding functionality ending with the fully
developed product and user manual.

4) Transition - Beta testing, training, and marketing.

The workflows consist of:
1) Business modeling - Ensure the software development dovetails with the

business processes.
2) Requirements - Development of functional requirements of the system. Usually

performed through the development of use cases.
3) Analysis & Design -Analyze requirements and develop software architecture.
4) Implementation -Code the requirements into the modules defined by the

architecture. Integrate software modules into whole product.
5) Test - Ensure proper integration. Unit test modules. Ensure requirements are all

implemented.
6) Deployment - Packaging, distribution, all activities associated with formal release

of the product.

Based on information from "Rational Unified Process -Best Practices for Software
Development Teams" A Rational Software Corporation White Paper, O 1998, Rational Software
Cor~oration

Enclosure (1) to
SPP-67610-0007

Page 8 of 19
7) Project Management - Planning and resource management. Mitigate risk,

monitor progress.
8) Configuration & Change Management - Ensure consistent configuration of

product. Handle changes, defect reporting, multiple developers and
simultaneous changes.

9) Environment - Set up and manage software development environment (tools,
compilers, training, processes).

There are specific deliverables tied with each phase in the Unified Process, and each
phase also has a milestone set of objectives the must be met to go on to the next phase.

The Inception phase deliverables include a vision document, initial use cases,
initial risk assessment, a project plan, and several prototypes. The lnception
milestone is the Life Cycle Objectives which provides stakeholder concurrence
on scope and schedule estimates, requirements understanding, credibility of cost
and schedule estimates, depthlbreadth of prototype, and actual expenditures
versus planned expenditures.

The Elaboration phase deliverables include a more complete use case model,
any non-functional requirements have been captured, software architecture
description, and development plan showing iterations. The Elaboration milestone
is the Life Cycle Architecture which establishes if the project vision is stable, if
the architecture is stable, if the plan is accurate, does the prototype show how
major risks have been addressed, do the stakeholders agree with the vision, and
is the resource expenditure against the project plan acceptable.

The Construction phase deliverables include the software product integrated on
the required platforms, the user manuals, and a description of the current
release. The Construction milestone is the Initial Operational Capability which
establishes if the product release is stable and ready for deployment, if the
stakeholders are ready, and if the resource expenditure vs. plan is acceptable.

The Transition phase deliverables include achieving user self-supportability,
achieving stakeholder concurrence that all is complete and consistent with the
vision, and achieving the final product baseline. The final milestone is the
Product Release which establishes if the user is satisfied and if the resource
expenditure is acceptable.

The Unified Process is closely tied with UML and object-oriented design, so may not be
as directly applicable to structured approaches. Iterations and increments provide
flexibility to add smaller portions of functionality and over time build up the full system.
UP is well suited for management of change.

2.1.6 Life Cycle Choice
Each of the life cycles presented here have areas of strength, and areas of
weakness. It is important for the Prometheus NRPCT software development
effort to identify a software life cycle that provides the rigor necessary for safety
critical reactor software, but is well tailored for the problem domain and does not
invent steps merely for the sake of process.

Enclosure (I) to
SPP-67610-0007

Page 9 of 19

2.1.6.1 Life Cycle Evaluation
Each software life cycle has concepts that it embodies that are more or less applicable
to the development needs for the Space Reactor Module l&C system. The following
table provides an evaluation of each life cycle presented above:

Life cycle
Waterfall

Spiral

Incremental

Evolutionary

Unified Process

Positives
1. Well defined. ~ ~

2. Defined
documentation.
3. Simple.

1. Embodies risk
management.
2. Use of prototyping.

1. Allows for prioritized
development and
release of
functionality.
2. Supports risk
management to
choose functionality
developed per stage.
3. Promotes earlv
integration.
1. Reacts well to
change.
2. Use of prototyping.

1. Reacts well to
change.
2. Project
management and
metrics directly
supported.
2. Use of prototyping.

Negatives
1. Doesn't react well
to change.
2. Requirements
must be well
defined up front.
1. High level
understanding of all
reauirements
nekded up front.
1. Scope of
requirements must
be understood up
front.

1. Lack of well
defined end point.

1. Tends to be
biased to Use
Cases and object-
oriented
technologies.

Each life cycle identified above has valuable features necessary to the success of the
Space l&C software development task, but also contains detrimental features as well.
The incremental life cycle matches well with the Prometheus goals because many of the
requirements will be understood prior to increment planning. -

2.1.6.2 Life Cycle Choice - Incremental Life Cycle
The incremental software development life cycle was selected since it provides for the
ability to separate the development into smaller increments to match up with the
Prometheus integrated build schedule, it allows for the use of an iterative waterfall

Enclosure (I) to
SPP-67610-0007

Page 10 of 19
approach within each increment, and risk analysis can be performed up front to aid in
assigning functionality to each increment.

This life cycle uses an incremental development method (each increment is one pass
throuah the "waterfall"). A sinale ~roduct release will contain at least one increment. - .
~ow&er, the work necessary to generate a product release will normally be split into
multi~le, relativelv independent increments. Each official release has proaressivelv . -
more features anb capabilities than the previous release. These increments doveiail
well with the JPL and NGST software delivery processes.

Each increment may contain several iterations as testing identifies deficiencies which
may then drive changes to the requirements, design or source code. The iterations
continue until all requirements for the life cycle task have successfully passed all testing.
Based on lessons learned from the development and testing process, requirements may
be relocated to another stage or may be removed entirely.

Within each increment, the various phases are presented much like the waterfall
method, showing a flow from requirements, to implementation, to test. This allows for
documentation of the requirements and the design since these items are critical for the
Space l&C software development. Unit testing is shown prior to integration to reflect that
each individual module should be tested prior to effort being expended in integration.
The emphasis on team inspections and independent design reviews early in the life
cycle will result in fewer defects detected in testing, where the cost to fix the defects is
traditionally an order of magnitude greater. This also helps to minimize rework in later
stages. One of the strengths of this model is the explicit representation of defect
tracking and the ability to reenter earlier phases in response to defects. This may
involve several iterations within a increment.

Figure 1 provides an illustration of the overall life cycle. Notice that the initial software
requirements are split among the expected releases but that the final list of requirements
is usually modified as a result of work performed during the individual stages.

Figure 1 - Overall Incremental Software Development Life Cycle

Enclosure (1) to
SPP-67610-0007

Page 1 1 of 19

1. lnitial Requirements (include
quality attributes)

I

2. lnitial Software Architectur
ct & Design Review

1 Architecture

3. Risk Analysis

4. Plan Incremental Builds

lnitial Requirements - A high level survey of the functional requirements for planning
and architectural purposes. In this stage a risk analysis can be performed to help
determine which stage each requirement should be implemented in. These
requirements are inspected and design reviewed prior to NR submittal.

lnitial Architecture - An initial architecture is established at this stage to facilitate a
framework for the staged delivery of functionality through the various versions. The
architecture will be inspected and design reviewed.

Risk Analysis -The risk analysis step allows for evaluation of the requirements and
design to aid developing risk mitigation plans and assigning functionality to each
increment.

Plan Incremental Builds - Each increment is planned out and functionality is
apportioned to each build.

Increment - Within each Increment, the various steps of the software lifecycle are
performed from design through implementation and test to provide the release version
for that stage's functionality. A set of software, a requirements document of increasing
fidelity, and architecturelimplementation documentation are outputs of each design
phase. Additionally, if necessary, risk analysis can be performed afler each increment to
determine if the initial splitting of requirements is still valid or if functionality should be
shifted in following increments.

The following figure illustrates the process steps found in each increment

Figure 2 - A typical stage of the lncremental Life Cycle

Enclosure (1) to
SPP-67610-0007

Page 12 of 19

5.1 Detailed Incremental

5.10.b Defect
Disposition 5.5 Unit Test I

I

1
I

I
I

5.6 Integration , , I
I

5.7 System Testing 1' I I
Test Readiness Review

\ k
I

I
I

Release Readiness Review I
I
1

Requirements -This step includes a refinement of the functional requirements to be
implemented in this increment. The requirements to be implemented were allocated as
part of the initial requirements phase.

Analysis - During this step, the requirements are analyzed to ensure completeness and
testability.

Design -Architecture is refined (initial architecture was established as part of initial
requirements phase). Modules may be decomposed further. Architecture is
documented.

Implementation - Software is written. This software shall be peer reviewed by other
developers in the group to ensure consistent application of coding standards, or to get
alternate ideas for implementation strategies.

Enclosure (1) to
SPP-67610-0007

Page 13of 19
Unit Testing - Individual modules are unit tested to ensure functional com~leteness and
are also tested for MCIDC. These test cases are peer reviewed by other developers in
the group. This is accomplished prior to integration to allow for timely identification of
defects.

Integration -All modules are brought together and compiled to ensure the overall
system will work.

System Testing -The integrated system is tested to ensure it meets the overall
functional requirements.

Release - Once all previous steps have been completed and the software has reached
the appropriate level of quality, the system will be released. This includes both the
software, functional requirements document, and any design or implementation
documentation.

Independent Verification and Validation - Determine whether the products for the
increment fulfill the conditions imposed upon them. This includes the functional
requirements, architecture and design, implementation and coding, testing procedures,
and any associated documentation. May be conducted as an ongoing activity
throughout the incremental development process. Develop and perform tests to
determine whether the final software product fulfills the specific intended use.

Configuration Management - CM is applied to all stages of the process to ensure that
requirements, design, code, and test cases are controlled. This allows for traceability
and repeatability in the process. All artifacts subject to inspection, review, or test will be
placed under CM prior to the start of the verification activity.

Deficiency - Identify -All deficiencies noted in artifacts under CM will be recorded and
analyzed. This is applied at each step in the life cycle.

Deficiency - Disposition - Each deficiency must be evaluated to determine the proper
fix, and the necessary rework to ensure proper regression testing.

This life cycle provides a robust framework to provide incremental releases as
functionality is developed. It applies a rigorous process to ensure the high level of
quality that is required by the NR program.

2.2 Design Methodology
Once a software life cycle has been determined there are different development
methods that can be used to achieve the desired system functionality. Both the object-
oriented methodology and structured methodology were considered for NRPCT software
development. The structured methodology was selected as noted below.

Enclosure (1) to
SPP-67610-0007

Page 14 of 19
2.2.1 Object-Oriented Methodology
The object-oriented methodology embodies seven principles in its approach to software
design: abstraction, encapsulation, modularity, - . hierarchy (inheritance), typing (data
types), concurrency, and persistence.",'

Abstraction addresses complexity by considering only the properties of an object
necessary in a particular usage that distinguish it from other objects. This is done to
provide the most concise definition of the object that is possible. An abstraction of an
object can be referred to as a class of objects.

Encapsulation involves combining both data and the operations (functions) performed
on that data as tightly coupled. Through data hiding, an interface is defined for an object
that only exposes data or operations that are required by users of the object. This
allows a separation between the internal implementation of an object and the external
interface. This data hiding helps to make a concise design and prevent errors involved
with unintended changes.

Modularity involves breaking a problem into smaller self-contained chunks (modules),
and minimizing the interfaces between these modules. This allows for a logical view of
the system, and helps to promote modifiability since the scope of changes can be
minimized to the module level.

Hierarchy involves ordering classes of objects through inheritance. This allows sub-
classes of objects to inherit the interface and functionality of a parent class, while
refining or adding more specific functionality as part of the sub-class (child class). This
allows for class hierarchy trees with potentially many layers. Inheritance may be through
single inheritance, where a child class may have only one parent (base) class, or it may
be through multiple inheritance, where a child class may have several parent classes.
Single inheritance is the clearest to understand, while multiple inheritance may lead to
confusion and great care is needed to avoid errors.

Typing enforces the class of an object so that different objects may not be casually
interchanged. Strong typing ensures that objects can only be treated by their class,
weak typing allows for simple conversions between different classes, static typing is
bound at compile time, while dynamic typing is evaluated at run time. Related to typing
is the concept of polymorphism, or "many forms". An example of polymorphism is the
C++ virtual functions which allows a base class to define a virtual function which is then
implemented in two or more separate child classes. When the child class objects are
treated as a base class object, and the virtual function is called, the child class
implementation for that function is called.

Concurrency is the process of running several actions or processes at the same time

Persistence refers to the continued existence of an object after its creator has been
destroyed.

Information taken from Object-Oriented Analysis and Design, by Grady Booch, O 1994,
Addison-Wesley.

~ e t h o d o l o ~ ~ information from Object-Oriented Technology (OOT) In Civil Aviation Projects:
Certification Concerns (1999), by Leanna K. Rierson, FAA 1999

Enclosure (1) to
SPP-67610-0007

Page I 5 of 19
The Object-Oriented methodology includes several phases, Object-Oriented Analvsis.
object-oriented Design, object-oriented ~ r o ~ r a m m i n ~ , and object-oriented ~eriiication
and Test.

Object-Oriented Analysis involves defining all of the classes necessary to solve a
particular problem, and the behaviors and relationships of those classes. Several
models are used to identify all of these classes, including use cases, class-responsibility-
relationship (CRC) models, object-relationship models, and object-behavior models.
Use cases allow identification of requirements, CRC is used to identify the classes and
hierarchy, object-relationship helps to identify the relationships between various objects,
and the object-behavior helps to determine the necessary behaviors of each object.

Once the Analysis has been completed, Object-Oriented Design is used to translate the
identified classes into a software architecture. This is performed through four layers of
design. The subsystem design layer separates the system into various subsystems
necessary to achieve the functionality. The class and object design layer separates
each subsvstem into class hierarchies. The messaae desian laver defines the
communi&tions between objects. The re~~onsibi l i ies de ign layer deals with individual
algorithm design and data structure design for each object.

Object-Oriented Programming is used to implement the design using an object oriented
language such as C++ or Java.

Object-Oriented Verification and Test involves reviews, analysis, and testing of the
software. Testing has to be able to verify features of the object-oriented design, such as
encapsulation or any polymorphism used.

The Object-Oriented methodology embodies a view of system function and design that is
significantly different than the traditional structured approach. The use of classes and
inheritance provides valuable features, but also create new concerns for verification and
validation.

2.2.2 Structured Methodology
Originally developed in the 1970's the structured method sought to improve
programming techniques through the use of functional decomposition. The goal of
structured programming was to improve programmer effectiveness and decrease the
error rates over the traditional monolithic 'spaghetti code' style of programming. This is
accomplished primarily by decreasing the reliance on GOT0 statements by providing
conditional constructs. Structured programming has three central concepts: Top-down
development; Modular design; and he structure theorem

Top-down development seeks to break down the application into manageable pieces
using functional decomposition. This is done by outlining a general solution then
systematically breaking it down into detailed steps. This process is continued iteratively
until the details are fully flushed out.

Modular design is an extension to top-down development in which related tasks are
grouped together. By grouping similar functions together readability increases and it
becomes easier to understand the system. The increased understanding and modular
design make maintenance and the adaptation of new functionality easier.

Enclosure (I) to
SPP-67610-0007

Page l 6 o f 19

The Structure Theorem states:

"It is possible to write any computer program by using only three basic control
structures:

. sequence;

selection, or IF-THEN-ELSE; and

repetition, or DOWHILE (or simply WHILE)."

In pure structured programming it is recommended that each loop, and function, have
only one entry point and one exit point. There are certain cases where it is impractical to
follow this and it is typically not enforced at the compiler level. In the general case
however, this should be striven for in order to increase readability and reduce the
chances of going down an unintended code path.

In structured programming modularization is accomplished by decomposing program
algorithms into subalgorithms (typically called functions or procedures). These functions
can themselves be broken down further. Unlike object-oriented methodology there is no
fundamental relationship between data and behavior in the structured methodology. This
means that the association of data and its behavior must be controlled by the program
itself. Typically this is done by passing data to subprograms via arguments and
parameters.

In the analysis phase graphic models are typically used to specify context, process, and
control. The context deals with inputs, outputs, and their sources. Process focuses on
the functional behavior of the procedures, their interactions and relationships to the
inputs and outputs. Control addresses the issue of under what circumstances each of
the functions is performed.

In the design phase a graphic model of the system is created. This model is used to
identify tasks, define task interfaces, develop preliminary software architecture,
decompose tasks, and define the data dictionary elements.

Some of the graphic models typically used are:

Context Diagram - Shows external interfaces to the software/module/function

Data Flow Diagram (DFD) - Shows the major decomposition of functions and their
interfaces. Typically they are used to follow the path of the data as it moves through the
system.

Task Communication Graph (TCG) - Provides a visual representation of concurrent
task and their interfaces.

Software Architecture Diagram (SAD) - Identifies the grouping of tasks on the TCG

Structure Chart - Defines the partition of the elements shown in the SAD into a
hierarchy.

Enclosure (1) to
SPP-67610-0007

Page l 7 o f 19

@ Data Dictionary - While not strictly a graphic model, the data dictionary is used in
\ conjunction with the other diagrams to define the individual entities.

2.2.3 Method Choice - Structured
Both structured design and object-oriented design provide a disciplined method for
effectively designing a software implementation. Both methods are widely used in
industry for software development and have had systems successfully created based on
the method's embodied principles.

Structured design methodology has been chosen for the Prometheus project NRPCT
software development. The choice of structured programming over object-oriented
programming was driven by several factors: 1) Structured programming has been used
far more frequently in space embedded applications, 2) There are many aspects of
object-oriented design that must be avoided or closely monitored to ensure a robust real-
time embedded design (e.g. polymorphism (virtual functions)), 3) There is a larger body
of experience with structured design outside of the programming community, and this
experience can be leveraged to aid with design reviews and inspections.

Object-oriented (00) technology is very capable of providing robust software designs.
Manv of the fundamental orincioles of 00 such as encaosulation, hierarchv, and ,
modularity are very powe;ful techniques to manage complexity and help timinimize
interfaces between modules. These all help with maintainability of the software. The
downside of 00 for real-time embedded systems comes with dynamic memory
allocation, confusion that can arise with polymorphism, run-time type information
(typing), and certain aspects related to abstraction (templates). Many of these features
have proven themselves to be either error prone, or may make it complicated to prove
time response requirements can be met. It is possible to overcome these concerns with
coding standards and careful inspections.

Structured programming on the other hand, does not have the built-in support for data
hiding and class hierarchies like 0 0 , but a well thought out functional decomposition and
data flow diagrams can go a long way to mitigating these concerns. Similar to 0 0 ,
structured programming requires discipline and care when design and implementation
are performed. No method or programming language itself will render a perfect product,
but careful design along with appropriate review, inspections, and testing will maximize
the potential for a high quality product. The greater experience with structured
methodologies, and the reduced set of potential embedded programming pitfalls
combine to make structured programming the method of choice for NRPCT Reactor l&C
software development.

2.3 Language
Once a programming methodology has been chosen, and certain details are understood
about the software architecture, a programming language can be selected to meet the
needs of the software project. There are many different language choices available; all
have advantages and disadvantages depending on the application domain. Language
examples include C, C++, Assembly. FORTRAN, COBOL, Ada, BASIC, and others.

Enclosure (1) to
SPP-67610-0007

Page I 8 of 19 -
2.3.1 C
The C language is a third generation, or high level language that has been in use for - -
several dgcadks. C was developed for systems programming but is well suited for
general programming as well. C is designed for a structured representation of system . .
functionality, in that i i works by function call and return

The C++ language is an extension of the C language to embody the principles of object-
oriented programming. C++ allows the definition of classes, where both data structures
and the functions that use the data are bound together in one definition. Many of the
principles of object-oriented methodology are directly implemented in the language,
including hierarchy (inheritance), abstraction, encapsulation, and typing (modularity can
be achieved in either C or C++). While C++ directly supports object-oriented
programming, some features of C++ can be of concern for safety critical systems.
These features include dynamic memory allocation, multiple inheritance, polymorphism
(through virtual functions), templates, exception handling, and others.

2.3.3 Assembly
Assembly language is a second generation, or low level language. It is a mnemonic
representation of machine code with symbolic values for variables and address offsets.
Assembly language can be very powerful for fast execution and hardware access, but is
very platform dependent and so limits the portability of what is developed. Assembly
language may find its greatest use in various board support or hardware driver code.

2.3.4 Other
Java is similar to C++, but makes use of a virtual machine for interpretation. Java is not
a likely candidate due to inherent unpredictability with the garbage collection memory
management features. FORTRAN is a structured language that has found great use in
numeric intensive applications, but it is not well suited for embedded programming.
COBOL and BASIC are both languages that are used primarily for business oriented
applications, and BASIC is usually an interpreted language. Ada has found some use in
mace a~~l icat ions and also has a strona historv with embedded militam a~~lications: , . .
hbweve;,'many of the Prometheus software de;elopment organizations have stronger
experience with C and C++ and Ada does not have as large of a developer base.

2.3.5 Final Choice - C
With the choice of structured design, the C language becomes a natural choice for
software implementation. C is widely understood and recognized. C has been
standardized by ANSI and has been used for decades in both embedded and general
programming situations. Compilers are readily available for C, so the toolset is easy to
acquire. When necessary, it is easy to incorporate assembly level modules for
interfacing directly with the system hardware (registers, 110) with modules coded in the C
language.

3 CONCLUSION
After careful evaluation of life cycles, methodologies, and languages, the NRPCT has
chosen an incremental life cycle, a structured design methodology, and the C
programming language for Prometheus reactor l&C software development. It is felt that

Enclosure (1) to
SPP-67610-0007

Page 19 of 19
these decisions support not only the JIM0 type mission, but are also very extensible to
other reactor concepts, including potential lunar surface missions.

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 1 of 94

NRPCT Reactor I&C Software Development

Process Manual

(NRPCT-RIC-SDPM-001)

NRPCT Space Electrical I&C Software Team

July 2005

PRE-DECISIONAL - For Planning and Discussion Purposes Only

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 2 of 94

Revision History

Revision Author Date Change Synopsis Reason for Change
Draft Thomas 7/10/05 Original

Hamilton

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 3 of 94

Table of Contents
1 lntroductio 5

1 .I Identification 5
5

1.3 Basis and Stand 5
1.4 Document Hiera 5
1.5 Definitions 6
1.6 Acronyms 6
1.7 Referenc 7

2 Software Devel , . , , , , , , 7
2.1 Overview 7
2.2 Software Development Tasks 8

2.2.1 Task 1: Initial Requirements 8
2.2.2 Task 2: Initial Software Architecture 10
2.2.3 Task 3: Risk Analysis 10
2.2.4 Task 4: Plan lncreme 11
2.2.5 Task 5: Develop & Release Increments 12

2.2.5.1 Task 5.1: Detailed Incremental Requirements 12
2.2.5.2 Task 5.2: AnalysislDetailed ~rch i tedur 12
2.2.5.3 Task 5.3: Module Design 13
2.2.5.4 Task 5.4: Implementation 13
2.2.5.5 Task 5.5: Unit Test 13
2.2.5.6 Task 5.6: Integration 13
2.2.5.7 Task 5.7: System Testing 13
2.2.5.8 Task 5.8: Document & Release .. 14
2.2.5.9 Task 5.9: Independent VerificationNalidationlTesting (Bettis) 14 - .

2.2510 Task 5.10a. '~efect l~han~e Identification. 14
2.2.5.1 1 Task 5. lob: DefectlChange Disp~sit~on 14

2.3 Ancillary Activitie 15
2.3.1 Configuration Managem 15
2.3.2 Requirements Traceabil 15
2.3.3 Defect Tracking 16
2.3.4 Inspections 16
2.3.5 Design Re 16
2.3.6 Test Readines ... 16
2.3.7 Release Readiness Review ... I 7
2.3.8 Software Hazard Analysis, Software Fault Tree, and SFMECA [RESERVED]

17 . .

2.3.9 AuditinglSelf-Assessments .. 17
2.3.10 Software Criticality Level Selection

3 Roles and Responsibilities . .
3.1 Descr~pt~ons ..

3.1 . I Software Manager
3.1.2 System Engineer
3.1.3 Software System
3.1.4 Software Architect
3.1.5 Software Develo
3.1.6 Software Develo
3.1.7 Software Test Engineer ... 18
3.1.8 Software Build Enginee 18

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 4 of 94

3.1.9 Software Configuration Management Engineer 18
3.1 . I 0 Software Process Engineer 18
3.1 .I 1 Software System Administra 19
3.1 . I 2 Software Quality Assurance 19
3.1.13 Software Customer 19
3.1. 14 Software Line Orga 19

4 Development Processes .. 19
4.1 Process 1: Initial Software Requirements .. 19
4.2 Process 2: Initial Software Architecture ... 23
4.3 Process 3: Risk Analysis ... 26
4.4 Process 4: Plan Incremental Builds ... 29
4.5 Process 5: Develop and Release Incremental Build 32

4.5.1 Process 5.1 : Develop Detailed Requirements for Increment 35
4.5.2 Process 5.2: AnalyzelDevelop Detailed Architecture for lncrement 38
4.5.3 Process 5.3: Detailed Module Design for lncrement 41
4.5.4 Process 5.4: Module ImplementationlCoding for lncrement 44
4.5.5 Process 5.5: Unit Test of Modules for Increment 47
4.5.6 Process 5.6: Module Integration for lncrement
4.5.7 Process 5.7: System Testing for lncrement
4.5.8 Process 5.8: Document and Release lncre
4.5.9 Process 5.9: Independent VerificationNalidationllesting of Incremental
Build 59
4.5.10 Process 5.10a: DefectlChange Identification for Incremental Build 62
4.5.11 Process 5.10b: DefectlChange Disposition for Incremental Build 65

5 Ancillary Processes
5.1 Process A l : Configurat
5.2 Process A2: Requirements Traceab~ it
5.3 Process A3: Inspections
5.4 Process A4: Design Re
5.5 Process A5: Test Readiness Rev
5.6 Process A6: Release Readiness
5.7 Process A7: Software Hazard Analysis, SFTA, and SFMECA 88
5.8 Process A8: Auditing and Self-Assessments ... 91

6 Other processes [RESERVED] .. 94

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 5 of 94

1 INTRODUCTION

1.1 Identification
This is the NRPCT Software Development Process Manual (SDPM) for the Prometheus
project.

1.2 Purpose
The SDPM establishes the software development, and verification and validation
processes for the NRPCT Space l&C software development for project Prometheus.
This work includes but is not limited to the flight software, ground telemetry and analysis
software, test beds, and vendor developed sensor and actuator interface software.
These practices exist to ensure that the l&C software is of sufficient quality to meet the
Prometheus needs, particularly the paramount need of safety.

1.3 Basis and Standards
This document expands upon and traces to the Prometheus Software Management Plan
(PSMP), JPL document #982-00046. The PSMP defines the high level software
reauirements and Drocesses to be used throuahout ~roiect Prometheus. Althouah the
~e'morandum of understanding and the ~em;rand;m b f Agreement between NASA
and Naval Reactors do not give JPL approval authority over NRPCT software
develo~ment. the NRPCT desires to maintain as much commonalitv in software
proce&es as possible with the rest of the Prometheus team ~o l l ohng the principles
established in the PSMP helps to maintain commonalitv among software developed bv -
various Prometheus software development organizations.

This document incorporates guidance from the Prometheus Software Quality Assurance
Requirements (JPL Document #982-00038) to ensure that there is commonality with
software qualification across the Prometheus project.

This document incorporates guidance from several NRPCT standards and policies. The
SDPM incorporates auidance from the NR Software Engineering Policv (as documented
in Bettis ~e t ie r No. ~REO(M)CD-008, 3/16/05). The SDPM requires (hat the software
quality criticality level (SQCL) for the flight and ground software be determined per the
NNPP Standard for Software Qualification by Criticality Level (as issued for three prime
concurrence by KAPL Letter No. ARP-68640-0305, 9/2/04).

1.4 Document Hierarchy
The Software Development Process Manual provides the process definition to be used
for NRPCT Prometheus software development. The SDPM expands upon the guidance
of the PSMP. The SDPM is the highest level document in the NRPCT software
development documentation structure. Lower level documents tracing to the SDPM will
cover the definition of coding and design standards and checklists, document templates,
and mission specific Software Development Plans (SDPs) as follows:

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 6 of 94

The NRPCT Software Standards (NRPCT-SW-STDS-OOI), which provide
standards and checklists for requirements development, design documentation,
and coding standards.
The NRPCT Software Templates (NRPCT-SW-TMPL-OOI), which provide
documentation templates for requirements documents, test reports, test plans,
and other work products that have multiple instances to allow for a common look
and feel.
The NRPCT Software Development Plan (NRPCT-XX-SDP-001, where the 'XX'
vary from mission to mission as a unique identifier), which provides high level
definitions for various lower level mission specific software development plans.
The NRPCT SDP is mission specific, and defines the overall software
development plan for the specific mission. Following the NRPCT SDP are
subordinate SDPs, and under these subordinate SDPs are work breakdown
structures and schedules.

1.5 Definitions

Baseline - A set of items under configuration control such that each individual revision
level is captured and treated as a collection with its own unique identification. The
baseline for the collection can always be returned to even after changes and further
baselines have been created.

Context Diagram - Overall graphical representation of software modules to show
relationships to each other in a functional hierarchy.

Dataflow Diagram - Representation of the flow of data between software modules in a
software architecture, also identifies inputs and outputs.

View - From a software architectural standpoint, a view is a representation of a software
architecture used to communicate certain information about the architecture to a group
of stakeholders (e.g. a functional decomposition view would show developers the
software modules and the hierarchical relationships between them).

1.6 Acronyms
Table 1

Acronym
CTD
DSS
I&C
FRD
IEEE
JPL

MClDC
NRPCT
NSDP
PCAD
PSMP
PSR

Definition
Composite Test Device

Deep Space System
Instrumentation and Control

Functional Requirements Document
Institute of Electrical and Electronics Engineers

NASA Jet Propulsion Laboratory
Modified Condition I Decision Coverage
Naval Reactors Prime Contractor Team

NRPCT Software Development Plan (this document)
Power Control and Distribution

Project Software Management Plan
Project Software Requirements

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 7 of 94

SDPM Software Development Process Manual
SDVP Software Development and Verification Platform
SHA Software Hazard Analysis
SFTA Software Fault Tree Analysis

SFMECA Software Failure Modes, Effects and Criticality Analysis
UP Unified Process (Rational Unified Process)

V&V Verification and Validation

1.7 References
NIA

2 SOFTWARE DEVELOPMENT PROCESS
The software life cycle chosen for NRPCT Space l&C software development consists of
the incremental life cycle. This life cycle imposes a specific sequence of events on the
overall development of software. Each event has a process associated with it. Reviews
provide an important quality gate to transfer to from step to step. These processes with
the reviews, in addition to the ancillary processes are identified as follows:

2.1 Overview

1. Initial Requirements (include
quality attributes)

Requirements

/ 3. Risk Analysis I

4. Plan Incremental Builds

Figure 3: Software Development Process Layout

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 8 of 94

5.1 Detailed Incremental

5.7 System Testing I
I

I
I
I

I

5.8 Document & Releas
I

I
j

5.9 Independent Verification1
Validation1 Testing (Bettis)

Figure 4: Detail of Task 5 (Develop and Release Increments)

Figure 3 shows the detailed layout of the incremental life cycle. Figure 4 shows the
detail of the "Develop and Release Increments" step of the life cycle. Each increment is
developed as an iterative waterfall.

2.2 Software Development Tasks
Each software development task associated with the incremental life cycle has a
process associated with it, work products that are developed, and support processes
that are used concurrently with the task.

2.2.1 Task I : Initial Requirements
Before software requirements can be established, a high level overview of the system
architecture needs to have been established. This provides a framework for the

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 9 of 94

functional division of responsibility between hardware and software, and also the
allocation of functions between modules and tiers of instrumentation and control. This
information provides the basis for the software functional requirements. Software
requirements are initially derived from overall system requirements and any design
constraints placed on the system.

There are many other constraints and sources of requirements that need to be included
in the software functional requirements. Many of these items include quality attributes,
maintainability, reliability, availability, security, etc. Some of these requirements are
defined by JPL or NRPCT established guidelines. Collectively, these provide a source
of software requirements that both drive functionality (e.g. fault tolerance and reporting),
and software architecture (e.g. maintainability requirements). Interface requirements
imposed by other portions of the system shall also be considered in this phase, including
communications requirements and parameters.

The Prometheus project may require the development of separate (but similar) versions
of the Reactor l&C software to support the l&C systems, including several phases such
as test beds, or even prototype reactors. Development of subsequent versions will
make heavy use of functionality defined in the initial development cycle. Making use of
common functionality between the different software versions ensures continuity in the
various software designs. Identification of the commonality also allows changes to
requirements to be evaluated across all platforms in a more efficient manner.

As software requirements are developed, they are entered into a requirements
management database, which is under configuration control, allowing future traceability
to implementation and test. Placing the initial requirements in the requirements
management database establishes an upfront framework to allow for clear tracking and
review of the software functionality.

Once the initial software requirements have been captured, they are inspected to
validate the requirements to the intended functionality. This inspection is a formal
process involving members of NRPCT, but may involve other Prometheus team
members as appropriate. The initial software requirements are not expected to be
complete at this stage since this early in the development cycle there is a great deal of
uncertainty in the overall system architecture and system requirements. There is also
uncertainty as to the target hardware and sensor suite. These areas of uncertainty will
make it difficult to completely specify all of the software functionality; however, there are
many functions that have a high level of confidence. At the initial requirements phase,
as much detail should be captured as possible.

If there is sufficient confidence in the requirements at this point, the software
requirements will proceed to undergo a formal design review. The design review is a
formal process involving independent engineers not directly involved in the work product.
This review involves a broader spectrum of people than the inspections.

Once the requirements have been captured and inspected, any changes from the design
review are then rolled back into the requirements. Once this has been accomplished,
work can proceed to the next task.

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 10 of 94

2.2.2 Task 2: Initial Software Architecture
In order to successfully develop the initial software architecture, a fairly complete set of
initial requirements must exist. While the requirements may not be fully specified to the
lowest level of detail, the requirements should cover the overall scope of the system to
allow identification of all necessary software modules. The design methodology used for
Reactor l&C software is structured design with the associated top-down design
approach and functional decomposition.

As noted in the Initial Requirements development task, there is a great deal of common
functionality expected to be identified between the various versions of software that will
be developed as part of Prometheus. The development of these versions will be very
close in time, this requires a great deal of commonality in the software design and
implementation effort. Since there will be a common core of functionality, the software
architecture can be generalized to allow as much software reuse as possible between
platforms. Software reuse is imperative to ensure the aggressive Prometheus schedule
can be attained.

Structured development requires the use of a top-down development strategy. This
starts with considering the full system, and then splitting the functionality in a hierarchical
manner down to the module level. From a software architecture standpoint, there will
also be common functionality between l&C system components (MOL structure, fault
management, etc.). This common functionality shall be identified in the software
architecture to allow sharing of as much structure as possible between system tiers.

Once the functionality has been decomposed to the module level, the data structures
shall be defined, and the data flow identified. This establishes the interface between the
various software modules, and attention can be given to ensuring the integrity of the
data.

The initial architecture is documented in a manner to allow clear communication of the
design for the developers, for peer reviewers, and for the Customer. Attention also
needs to be given to traceability to ensure that the requirements will be traceable to the
implementation. Often software architectures are documented through several views,
where each view highlights different aspects of the architecture. For example, context
diagrams show how the modules are functionally related to each other, state diagrams
show the transitions between various states in a state machine, and data flow diagrams
show the run-time flow of data through the system with the operations performed on the
data.

Once the initial architecture has been developed, an inspection shall be performed on
the architecture to determine its suitability for the various requirements. Similar to the
software requirements, the software architecture shall also undergo a formal design
review to ensure a strong foundation has been laid for the various l&C software
components.

2.2.3 Task 3: Risk Analysis
Upon completion of a set of initial functional requirements and an initial software
architecture, the requirements and the architectural elements shall be evaluated from a
risk standpoint. There are many different types of risk involved in the Prometheus

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 11 of 94

project, from risks that may cause system failure, to technical unknowns that may
constitute a schedule risk.

Risks for the requirements and architecture shall be identified. Once the risks have
been identified, the level for each risk shall be assigned, and mitigation strategies shall
be determined to aid in eliminating or minimizing the risk. Once the risks have been
identified, they shall be formally documented to ensure that the risks can be referred to
later in the project. The stakeholders involved in identifying and evaluating the risks
shall include the software developer, system engineer, and others as appropriate. Once
the risks have been identified and mitigation strategies established, these shall be
monitored through the lifecycle to ensure proper closure of the risks according to plan.

A Software Hazard Analysis (SHA), Software Fault Tree Analysis (SFTA), and a
Software Failure Modes, Effects, and Criticality Analysis (SFMECA) shall also be
performed to further examine the requirements and architecture. These are tools that
help to provide a different point of view to further examine potential weaknesses for
addressing.

2.2.4 Task 4: Plan Incremental Builds
Incremental development is ingrained in the overall Prometheus software development
process. The logic behind incremental development is to allow compiling, inspection,
testing, and delivery of portions of the overall system functionality in phases to develop
confidence in the project and to build upon past successes. In this manner, risk can be
spread over several increments and managed better than having one large system
release.

Planning the increments consists of determining what system functionality and which
software modules will be delivered in each increment. Also it involves ensuring that later
increments build upon the functionality of earlier increments.

Certain essential functionality must be developed to allow the design of a workable set of
code. This includes setting up the Main Operating Loop (MOL) and basic system
interface components. Functions with identified risks should also be addressed in the
early increments to provide more time to test the requirement to ensure that the
requirement is fully understood and the implementation is satisfactory. Later increments
can contain basic control functions, leading up to full autonomous control with full fault
management and telemetry.

As part of the increment planning task, a Work Breakdown Structure (WBS) shall be
developed (or at least enhanced since one should already exist to help guide the initial
steps) based on the initial architecture software module definitions. As functions are
then allocated to each increment, the WBS task items corresponding to software
modules naturally follow this incremental allocation. Schedules shall then be laid out
with the delivery dates for each increment aligned as closely as possible with higher
level project need dates. The schedules shall then have developers identified to perform
each task, as much as is practical. The basic development schedule for each increment
shall follow the iterative waterfall defined for the life cycle, allowing margin for some
iteration as defects are identified. If larger defects are discovered that significantly upset
the architecture or require a great deal of rework, the plan will need to be reevaluated to

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 12 of 94

ensure that the schedule is realistic and can be achieved. Determination of the
incremental release target dates and number of increments may be driven by overall
Prometheus proiect needs, and additional increments may also be released to facilitate
lndependent've;ification and Validation.

2.2.5 Task 5: Develop 81 Release Increments
This task is repeated as necessary for each increment defined in Task 4. This task is
made up of several steps defining the waterfall portion of the life cycle. Each step has
quality activities associated with it. Verification and validation activities are also part of
the tasks, including code inspections, unit testing, integration, and system testing. The
increment plan and risk mitigation plan shall be evaluated by the development team
through the performance of this task for update if strategies change, or defects
encountered change the basic assumptions for task sequence or duration.

2.2.5.1 Task 5.1: Detailed Incremental Requirements
This step focuses on the functional requirements allocated to modules to be
implemented in the current increment. The requirements are refined to a sufficient level
of detail that they are able to be implemented and tested. As requirements are refined.
any emergent information on the system shall be taken into account and the software
requirements must be fully reconciled with the system requirements and any other self
imposed or derived requirements. If information is available to correct or refine the
requirements not included in this increment, the requirements may also be refined. It is
important that the whole set of software requirements be self-consistent, and not have
portions that are incorrect.

A Communication Specification (Interface Control Documentllnterface Requirements
Document) shall be developed (or updated) at this time to define the parameters,
ranges, defaults, and communication pathways for the system. Focus should be on
functionality necessary for this increment, but care should be given to establish inter-
module interfaces early in the project.

Once refined, the requirements shall be inspected, design reviewed - if not already
design reviewed prior to increment planning -then submitted to NR for approval. If the
refined requirements affect interfaces outside of the Reactor I&C, then concurrence shall
be sought from the affected stakeholders. NR approval is not required to begin working
on the following steps, but is required prior to release of the increment software.

2.2.5.2 Task 5.2: AnalysislDetailed Architecture
Once the requirements have been refined, they shall be analyzed to see if there are any
architectural updates necessary in the light of new information that may come from the
updated requirements. Architectural updates in later increments should be very carefully
considered since there is a potential to impact already developed and tested software.
Late architecture changes come with a high price tag in rework and requalification.
Changes to the architecture can have effects on both software reuse, and various fault
tolerance and risk mitigation strategies that have been built into the architecture.

For the focus areas of the current increment, there may be a need to add further detail to
the overall architecture. These architectural updates shall be inspected to ensure that
no incompatibilities are introduced in areas where the architecture supports multiple

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 13 of 94

systems or platforms. If a design review has not yet been performed prior to increment
planning, a design review shall be performed prior to entering into module design.

2.2.5.3 Task 5.3: Module Design
At this point, it is necessary to lay out the internal functionality of the individual module.
There shall be traceability between the module and the functional requirements
implemented within the module. Internal functions and data types shall be defined,
along with how the data is used. Fine detail shall be provided for functions that are used
by other modules. An inspection shall then be performed on the module design.

2.2.5.4 Task 5.4: lmplementationlCoding
Source code is developed for the module following proper coding standards. The source
code shall be inspected by other software developers to ensure that the system
functionality has been achieved and that the module adheres to the accepted coding
standards. There shall be traceability established from the source code back to the
functional requirements in a traceability matrix. Code must be compiled and may be
desk checked (run with simple test cases informally), and any available static analysis
tools shall be em~loved to helo minimize the number of defects that mav Dass through to
later inspections and testing. his ensures that the code meets minimum'standardsfor
usage so that it may be unit tested. Code shall be placed under configuration control to
ensire work is not iost prior to inspections and unit'testing.

2.2.5.5 Task 5.5: Unit Test
The cognizant software developer shall write unit test cases for the module(s) he or she
developed. The unit test cases shall cover both requirements based testing (black box)
and structural testing with modified conditionldecision coverage (MCIDC) coverage
(white box testing). The unit test cases shall be peer reviewed by a different developer
to ensure coverage and adequacy. The test cases shall be run against the module, and
any failures shall be corrected prior to releasing the module to integration. The unit test
cases and test results shall be archived along with the source code and any associated
test code (test harness) in configuration control. A unit testing report shall be issued to
document the results of testing along with defects and other appropriate metrics.

2.2.5.6 Task 5.6: Integration
Once all of the modules for an increment have been developed, the various modules
shall be integrated together and run on the target hardware. Any test cases developed
to verify the integration shall be placed in configuration control and reviewed. This is a
necessary step to releasing the final software, and also may catch incompatibilities
between modules. Any defects detected during integration shall be placed in the defect
tracking system for disposition. The generated object code and final linked executable
shall be placed under configuration control, baselined, and released to system testing.

2.2.5.7 Task 5.7: System Testing
System testing is performed on the integrated software on the target hardware. System
testing is performed with the aid of a Composite Test Device (CTD) that simulates
reactor and plant behavior to allow testing of the control algorithms and telemetry
feedback. System testing covers both functional testing, and also structural testing with
MClDC coverage for as much code as can be reached when fully integrated. Some

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 14 of 94

code may not be reachable at the system level without destructive testing, such as some
fault detection routines. Unreachable code shall be inspected for suitability and removed
if not necessary; it also should have been 100% unit tested. Any defects detected
during system testing are placed in the defect tracking system for disposition. System
test cases should be automated to the greatest extent possible to allow for rapid
regression testing when iterating through the waterfall once defects are corrected.
system test cases and results shall beblaced under configuration control and be
traceable back to the software module and functional requirement. A Test Readiness
Review is conducted prior to system testing to ensure that the configuration of both the
test setup and the software is correct, and that the software and test cases are ready for
testing.

2.2.5.8 Task 5.8: Document & Release
Once all software inspections, unit testing, and system testing have been satisfactorily
completed, the functional requirements have been approved by NR, and the software
and executable have been placed in configuration control and identified with version
numbers the baselined software may be released. All source code, object code, and
executables shall have a revision list provided showing the version of code for each
source file present in the build. Changes shall be identified from the previous released
baseline. All traceability matrices should be complete. All identified defects should have
been resolved or documented and provided to be fixed in next release if appropriate
(every effort should be made to resolve defects prior to release of the iteration). The
Release Readiness Review is performed to ensure that all of these necessary tasks
have been completed. Once the work products have been approved, they are released
with the appropriate documentation and archiving.

2.2.5.9 Task 5.9: Independent VerificationNalidationlTesting (Bettis)
Once the software has been released for the increment, it is sent to Bettis for
independent verification, validation, and testing. All of the qualification documentation is
made available for review, but Bettis will also independently develop test cases for
qualification of the software based on software and system requirements. Any defect
detected by Bettis will be entered into the defect tracking database for disposition. Test
cases and test harness used by Bettis will be placed under configuration control at
Bettis.

2.2.5.10 Task 5.10a: DefectlChange ldentification
Once a defect or change has been detected in any phase of the process, it shall be
logged into the defect tracking database. This database may also be used to document
change requests not directly tied to defects. ldentification of a defect needs to clearly
describe relevant information, such as the inputs, system state, and effects of the defect.
The identifier should make an effort to reproduce the defect and note the sequence of
events necessary for duplication. All of this information is critical to being able to
correctly analyze the defect and create a proper disposition.

2.2.5.11 Task 5.10b: DefectlChange Disposition
Once the defect has been entered into the defect tracking database, it is necessary for
the developer to evaluate the defect and come up with a recommended resolution.
Correction of the defect is dependent upon the phase of the project. If the increment is

For defects discovered in early phases up to and including integration, the integrator and
developers are the prime stakeholders. For defects involving functional requirements,
NR becomes a stakeholder since they are the approval body for any requirements
changes. For defects discovered in system testing, the testers become additional
stakeholders, and for software that has been formally released, NR, other members of
the NRPCT, and even other Prometheus organizations may be stakeholders. The CCB
determines the final disposition of a defect and when it will be corrected in the software
release. Once a defect has been identified and corrected, it must be successfully
retested to close out the defect report. Change disposition is subject to a similar process
and requires CCB approval to be incorporated into the software.

Some defects may have a larger scope than a simple code fix. It may be necessary to
change the software architecture, or even the functional requirements. Functional
reauirement chanaes would reauire a resubmittal of the reauirements to NR.

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 15 of 94

in the coding phase, the developer may simply fix the module and close out the defect
report. Later stages require higher levels of approval to fix and appropriate retesting to
ensure the fix is complete and has not affected other functionality.

~e~u i remen t traceability will failitate determining which mbdules must change and what
test cases would need to be updated and rerun on the affected modules.

2.3 Ancillary Activities
These processes apply across multiple tasks and provide the support structure for the
overall software development life cycle.

2.3.1 Configuration Management
Configuration management combines aspects of both configuration control and change
management. Configuration control ensures that a particular version of a work product
at any given time is known, and previous versions can be recovered if necessary.
Configuration control also coordinates simultaneous update of software products and
multiple active versions of software products. Change management ensures that
changes to the various work products are reviewed and managed to ensure the needs of
the project are achieved. Various work products may have different methods for
configuration control. Functional requirements are controlled through a requirements
database (e.g. Cradle). This provides a framework for controlled checkin/checkout,
baselining, and auditing. It also provides facilities for requirements traceability. Source
code, executables, test cases, test results, and relevant design and analysis
documentation are stored in a configuration management database as well. This
database may not be the same database used for managing functional requirements.
The same requirements for controlled checkinlcheckout, baselining, and auditing exist
for these work products. Configuration management is closely tied with the defect
disposition process in that the Configuration Control Board is the governing body that
determines when to modify a software item. The Configuration Control Board (CCB) is
comprised of various stakeholders in the software development process, and expands in
scope as the number of stakeholders grows.

2.3.2 Requirements Traceability
Bidirectional requirements traceability is critical to the success of Prometheus software
development. Bidirectional traceability means that each requirement must be traced to

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 16 of 94

the design and a source code module implementing it, but it must also be possible to
take a source module and identify which requirements it implements as appropriate for
the identified software criticality level. Additionally, test cases must be traced to the
module and requirements. This allows for full through-process evaluation of changes to
ensure the full impact may be understood. There are many tools that facilitate
traceability.

2.3.3 Defect Tracking
Defects shall be placed into the defect tracking system at the various stages of the life
cycle. Each defect shall be reviewed and a disposition assigned for proper closeout of
the defect. This may include revision of a software item, requirement, or the
architecture. Once an item has been revised, all of the affected quality steps must be
repeated for the scope of the change. Refer to life cycle tasks 5.10a and 5.10b for
further discussion on defect tracking.

2.3.4 Inspections
lnspections are formal reviews performed by a group of the developer's peers and will
be performed as defined by IEEE Std-1028. An inspection ensures correctness and
proper direction prior to more formal stages of testing and review. For requirement
reviews, the peers consist of other developers and system engineers. For software
architecture reviews, peers consist of developers or system engineers knowledgeable of
both software and the system design. For code inspections, the peers consist of other
software developers. The general results of a peer review shall be documented in a
letter to the software manager. Engineers from other portions of the NRPCT or other
Prometheus development organizations may be included in the inspections as
appropriate.

2.3.5 Design Review
Design reviews are formal reviews performed in accordance with the KAPL Quality
Assurance manual (KQA-lo), and make use of a group of independent reviewers
outside of the immediate group. These reviewers may consist of engineers from KAPL,
BPMI, Bettis, and members from other Prometheus development organizations. The
design review ensures the adequacy of the work product. Design reviews are required
for functional requirements documents prior to submittal to NR, and for the software
architecture once it has been refined to a sufficient level of detail.

2.3.6 Test Readiness Review
The Test Readiness Review is used to ensure that all of the previous quality activities for
software have been completed and that the test plan is adequate for the components
under test. This requires the configuration for both the software and the test
environment to be known. There may be several readiness reviews during the full
course of system testing as different aspects are tested to ensure the scope of the
review is manageable. This also requires the development of adequate test cases to
qualify the software. Members of the Test Readiness Review include the software
developers, testers, system engineers, and lead engineers.

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007

2.3.7 Release Readiness Review
Page 17 of 94

The Release Readiness Review is used to ensure that all of the quality activities have
been completed prior to releasing the software for use by Bettis for Independent V&V, or
by other Prometheus development organizations. Members of the Release Readiness
Review include the developers, testers, system engineers, managers, and NR. The
Release Readiness Review Report will identify all qualification activities and dates and
document the exact configuration of the release.

2.3.8 Software Hazard Analysis, Software Fault Tree, and SFMECA
[RESERVED]

A software hazard analysis, software fault tree analysis, and a software failure mode
effects and criticality analysis shall be performed on the software for each version. Any
defects identified in these analyses shall be placed in the defect tracking database.

Self-assessments shall be periodically performed to ensure compliance to the processes
established by the SDP. Audits shall be performed by the KAPL SQA group to provide
an independent verification of compliance to the SDP.

2.3.10 Software Criticality Level Selection
Once the various software deliverables have been identified, the criticality level shall be
identified per the NR software quality criticality level process (SQCL) (ARP-68640-0305,
9/2/04). The software shall also have the JPL criticality level identified per the PSMP.

3 ROLES AND RESPONSIBILITIES
The PSMP calls out various roles that must be defined for the scope of the software
development effort. These roles are identified here and are mapped into the NRPCT
software development organization.

3.1 Descriptions

3.1.1 Software Manager
The software manager role as identified in the PSMP is performed by the manager of the
KAPL Space l&C software group. The software manager is responsible for the delivery
of software for the reactor KC. Thus the software manager is responsible for
requirements, design, implementation, testing at KAPL, and for coordinating with Bettis
for the qualification testing.

3.1.2 System, Engineer
The software system engineer role as identified in the PSMP is performed by the KAPL
Space l&C group, and is cognizant of the overall l&C system. The system engineer is
responsible for reviewing software requirements, software designs, and software
implementations as part of the inspection process. This ensures that a proper level of
system overview is present in the software development process.

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 18 of 94

3.1.3 Software System Engineer
The software system engineer role as identified in the PSMP is performed by the KAPL
Space I&C Software group. The software system engineer role is responsible for
defining the software requirements, and apportioning them between system
components, and managing the interface between various software modules.

3.1.4 Software Architect
The software architect role as identified in the PSMP is performed by the KAPL Space
I&C Software Lead. The software architect is responsible for defining the apportionment
of software functionality between modules, and ensuring as much commonality as
possible is maintained between the software versions.

3.1.5 Software Development Lead Engineer
The software development lead engineer role as identified in the PSMP is performed by
the KAPL Space I&C Software developer assigned to specific modules. The software
development lead engineer is responsible for defining the lower level design of individual
software modules assigned and defining the unit test cases for these software modules.

3.1.6 Software Development Engineer
The software development engineer role as identified in the PSMP is performed by the
KAPL Space I&C Software group. The software development engineer is responsible
for helping to define the low level design of software modules, implementation of these
software modules, and unit testing these software modules.

3.1.7 Software Test Engineer
The software test engineer role as identified in the PSMP is performed by the KAPL
Space I&C Software group and the Bettis Space I&C Software test group. The KAPL
software group is responsible for integration and test of the software modules. The
Bettis software test group is responsible for final software system qualification testing.

3.1.8 Software Build Engineer
The software build engineer role as identified in the PSMP is performed by the KAPL
Space I&C Software group. The software build engineer is responsible for the final
integration and release of the software products.

3.1.9 Software Configuration Management Engineer
The software configuration management engineer role as identified in the PSMP is
performed by the KAPL Space I&C Software group for the l&C software deliverables.
The Bettis Space I&C Software test group will perform the configuration management
functions for the independent Test Bed software models and tools.

3.1.10 Software Process Engineer
The software process engineer role as identified in the PSMP is performed by the KAPL
Space I&C Software group. The software process engineer is responsible for
developing these processes to maintain commonality with the Prometheus software
development processes as much as is practicable.

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 19 of 94

3.1.11 Software System Administrator
The software system administrator role as identified in the PSMP is performed by the
KAPL Space I&C Software group for the KAPL space l&C lab, also for the CTD in this
lab. This role is performed by KAPL TIS for networked PC's.

The Software System Administrator role for the CTD development is performed by the
Bettis Space I&C Soflware test group. This role is performed by Bettis network
personnel for networked PC's.

3.1.12 Software Quality Assurance Engineer
The quality assurance engineer role as identified in the PSMP is performed by the KAPL
QAE group for the Space l&C software deliverables. And will perform process
compliance oversight and audits as appropriate. Bettis quality assurance will perform
these functions for the Bettis CTD development effort.

3.1.13 Software Customer
The software customer role as identified in the PSMP is performed by NR. The software
customer has ultimate approval over all software requirements and approval over final
release of software products.

3.1.14 Software Line Organization
The software line organization role as defined in the PSMP is performed by the NRPCT.
The software line organization performs the software development activities necessary
to create high quality software deliverables for Prometheus Reactor I&C.

4 DEVELOPMENT PROCESSES
The detailed development processes are described in this section. This provides the
inputs and outputs and specific process steps necessary to perform the tasks discussed
in Section 3 for the development life cycle.

4.1 Process I : Initial Software Requirements

I ID: SIC-1 /Rev: 0 I Title: Initial Software Requirements I

I Overview: Develo~ initial software functional requirements for Prometheus Reactor I&C I

Effective Date: August 1, 2005 Supersedes: N/A

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 20 of 94

I Entry Criteria / Exit Criteria
Preliminary or complete system FRD is
available

Preliminary or complete system
architecture is available

s Requirements traceability process defined

Requirements management process
defined

Requirements document Inspected

Requirements document design reviewed

Requirements submitted and approved by 1 NR

(Requirements include interfaceltelemetry
requirements between various modules)

s Requirements management tool available

Inputs
System FRD (may be preliminary)

s System architecture (may be preliminary)

s Previous platform software FRDs if
available

s Functionality differences between
platforms

s Quality Attributes (Reliability, Fault
Management, etc.)

lnterface to Soacecraft ModulelPCAD

Outputs
s Inspection report

Design review report

s Software FRD Submittal Letter

Approved software FRD

Approved requirements in Requirements
Management Tool

L

Tasks
(a) Identify system FRD requirements allocated to software.

Use previous software FRDs as baseline if available

(b) Allocate software requirements between system tiers

(c) Refine definition of functional differences between platforms

(d) Define Interface Requirements, communication parameters

(e) Refine definition of Quality Attributes (Fault management, self-tests)

(f) Develop software requirements for target platform

(g) Place software requirements in requirements management tool

(h) Inspect software requirements

(i) Design review software requirements

(j) Submit software requirements to NR

(k) Incorporate NR comments and issue approved software FRD

I Process FIOW I
See following Initial Software Requirements Process Chart

Measures
1. Time to perform tasks

2. Number of comments from inspections
and design reviews

3. Time to resolve comments

4. Number of comments from NR
approval.

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 21 of 94

References
A. Local instruction of usage of

Requirements Management tool

B. Requirements Management Process

C. Inspection Process

D. Design Review Process

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 23 of 94

4.2 Process 2: Initial Software Architecture

I ID: SIC-2/Rev: 0 I Title: Initial Software Architecture I

Overview: Develop initial software architecture for Prometheus Reactor I&C

Entry Criteria / Exit Criteria

Effective Date: August 1, 2005

0 Preliminary or complete system FRD is
available

Supersedes: N/A

Preliminary or complete system
architecture is available

0 Software architecture inspected

Software architecture design reviewed

Software architecture documented with all
relevant views

Inputs
System FRD (may be preliminary)

System architecture (may be preliminary)

Functionality differences between
platforms

0 Quality Attributes (Reliability, Fault
Management, etc.)

Interface to other systems

Software architecture from previous
platform

0 Software FRD (may be preliminary)

Outputs
Inspection report

Design review report

0 Documented software architecture

Tasks
a. Using software FRD, perform a Top-Down functional decomposition

If previous platform architecture is available, this should be the baseline for current
architecture with minimal deviations

b. Develop structure for MOL and fault management using Quality Attributes

c. Use functional decomposition to modularize all software functions

d. Develop Data Flow Diagrams to show flow of data between modules

e. Develop modularity for as much similarity between platforms as possible (isolate platform
s~ecific functions to a module)

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 24 of 94

f. Document software architecture

g. Inspect software architecture

h. Design review software architecture

i. Provide software architecture to NR for information

Process Flow

I See following Initial Software Architecture Process Chart

1. Time to perform tasks

2. Number of comments from inspections
and design reviews

3. Time to resolve comments

4. Number of comments from NR
approval

5. Number of modules.

I
-

A. Local instruction on structured design
architecture development

B. Inspection Process

C. Design Review Process

I Measures References

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 26 of 94

4.3 Process 3: Risk Analvsis

1 ID: SIC-3 / Rev: 0 I Title: Risk Analysis I
--

--rsedes: N/A
I

Ef fect ive Date: August 1, 2005

Overview: Perform risk analysis on Reactor l&C software requirements and architecture

Entry Criteria

Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

Exit Criteria

Risks identified and documented

Risk mitigation strategies identified and
documented

Risk impact and likelihood evaluated

Inputs
Software FRD (may be preliminary)

Software architecture (may be preliminary)

Outputs
Risks with evaluation and mitigation plans
documented

SHA, SFTA, SFMECA

Tasks
a. Examine software requirements and software architectures to identify possible risks to

cosffschedule due to complexity, uncertainty, or other criteria

b. Perform Software Hazard Analysis, Software Fault Tree analysis, and Software Fault Mode
Effects and Criticality Analysis (SIC-A7)

c. Identify the severity of each risk, and the likelihood of each risk

d. Classify risks as highest for those likely to occur with severe impact, and low for those with
low probability of occurrence and low impact

e. Develop mitigation plan for each risk

f. Document risks and mitiaation ~ l a n s J
Process Flow

See following Risk Analysis Process Chart

Measures
1. Number and severity or risks

2. Time to complete task

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 27 of 94

References
A. Software Hazard Analysis, Fault Tree

Analysis, and Failure Modes and
Criticality Analysis process (SIC-A7)

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 29 of 94

4.4 Process 4: Plan Incremental Builds

/ ID: SIC-4 /Rev: 0 I Title: Plan Incremental Builds I

Overview: Plan lncremental Builds for Reactor I&C Software for current platform

Effective Date: August 1, 2005

Entry Criteria
Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

0 Risk Analysis document completed

Supersedes: N/A

Exit Criteria

One or more lncremental Build scheduled
and resource loaded

lncremental Build Schedule sent to NR for
information

I Inputs 1 outputs 1

I . Risk Analysis document I I

0 Software FRD (may be preliminary)

Software architecture (may be preliminary)

Tasks
a. Define number of lncremental Builds

b. Use architecture and risk analysis to allocate software functionality to the various builds

c. Define schedule to complete all modules (requirements through testing) for each
lncremental Build

d. Resource Load schedule and ensure fit with overall project schedule and external program
organizational needs

e. Provide lncremental Build Schedule to NR for information

Integrated Build schedule resource
loaded with all requirements allocated
between builds

Process Flow

See following Plan lncremental Builds Process Chart

1. Time to complete task

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 30 of 94

References
A, Integrated Master Schedule

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 32 of 94

4.5 Process 5: Develop and Release lncremental Build

ID: SIC-5 / Rev: 0 Title: Develop and Release Incremental Builds

Effective Date: August 1, 2005 Supersedes: N/A

/ Overview: Develoo and Release Incremental Builds 1
Entry Criteria

Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

Risk Analysis document completed

lncremental Build Schedule Complete

Configuration Management Tool and
Process available

Software Development Environment
available

Test Environment available

Defect Tracking Tool available

Software under configuration control
available (if not first iteration)

Inputs
Software FRD (may be preliminary)

I Software architecture (may be preliminary)

Risk Analysis document

lncremental Build Schedule

Exit Criteria

Source Code and Executable Complete in
Configuration Management

KAPL Software V&V complete

Release Readiness Review complete

Outputs
Source code and Executable released

Inspection report issued

Unit Test report issued

Test Readiness Review Report issued

0 System Test report issued

Release Readiness Review Report
issued

/ Tasks

/ a. Develop Detailed Requirements for lncrement and lnspect (5.1) I
b. Analyze and develop Detailed architecture for lncrement and lnspect (5.2)

c. Design software Modules for lncrement and lnspect (5.3)

d. Implement Module in source code, write unit test cases, lnspect code (5.4)

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 33 of 94

e. Unit Test Module implementation (5.5)

f. Integrate software modules on hardware (5.6)

g. Hold Test Readiness Review, perform system testing on SDVE (5.7)

h. Document and Release executable software, hold Release Readiness Review (5.8)

i. Bettis performs Independent Verification, Validation, and Testing (5.9)

j. Any defects encountered are entered into Defect Tracking database (5.10.a)

k. All defects are evaluated to determine proper disposition. Process repeated at earlier task
as appropriate to correct defect. (5.1 O.b)

Process Flow

1. Time to complete task

2. Number of defects per stage

3. Time to correct defects

4. Code development productivity

5. Code inspection productivity

A. None

See following Develop and Release Incremental Build Process Chart

Measures I References

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 35 of 94

I Effective Date: August 1, 2005 I Supersedes: N/A 1

4.5.1 Process 5.1: Develop Detailed Requirements for Increment

1 Overview: Develop detailed functional requirements for functions contained in the current increment

ID: SIC-5.1 /Rev: 0

Entry Criteria

Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

List of functions allocated to increment

Requirements Management Tool and
Process available

Software Development Environment
available

Defect Tracking Tool available

Title: Develop Detailed Requirements for Increment

Exit Criteria

Detailed Incremental Requirements
l nspected

Requirements submitted to NR if changed
from initial requirements

Requirements placed in Requirements
Management tool

Tasks
a. Examine system FRD for new or changed information on software requirements contained

in this increment

b. Determine if any refinement of software requirements is necessary and update

c. Ensure changes to software FRD are in Requirements Management tool

d. Inspect software FRD changes

e. lncorporated inspection findings

f. Design review may be performed if there is a large change from last design review

g. lncorporated design review findings if performed

h. Submit software FRD changes to NR

i. Incorporate NR comments into software FRD and issue

j. Baseline software FRD in Requirements Management tool

Inputs

System FRD (may be preliminary)

Software FRD (may be preliminary)

Software architecture (may be preliminary)

List of functions contained in increment

Incremental Build Schedule

Outputs

Updated software FRD

Inspection report issued

Design review report issued (if performed)

NR submittal letter issued

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 36 of 94

Process Flow

I

References

See following Develop Detailed Requirements for Increment Process Chart I

1. Time to perform tasks

2. Number of comments from inspections
and design reviews

3. Time to resolve comments

4. Number of comments from NR
approval

Measures
A. None

-

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 38 of 94

4.5.2 Process 5.2: Analvze lDevelo~ Detailed Architecture for lncrement

I ID: SIC-5.2/Rev: 0 I Title: Analyze/Develop Detailed Architecture for Increment /
Effective Date: August 1, 2005 Supersedes: N/A

Overview: AnalyzeIDevelop detailed software architecture based on detailed functional requirements I
I for functions contained in the current increment I

Entry Criteria

Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

List of functions allocated to increment

Configuration Management Tool and
Process available

Software Development Environment
available

Defect Tracking Tool available

Exit Criteria
Detailed software architecture Inspected

Revised architecture sent to NR for
information

Inputs Outputs
System FRD (may be preliminary) Updated software architecture document

Software FRD (may be preliminary) Inspection report issued

Software architecture (may be preliminary) Design review report issued (if performed)

List of functions contained in increment

Tasks
a. Examine system FRD for new or changed information on software requirements contained

in this increment

b. Determine if any refinement of software architecture is necessary and update (be mindful of
effect on other platforms)

c. Document changes to software architecture

d. Inspect software architecture changes

e. lncorporate inspection findings

f. Design review may be performed if there is a large change from last design review

g. lncorporate design review findings if performed

h. Provide revised architecture to NR for information

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 39 of 94

'recess Flow

See following AnalyzeIDevelop Detailed Architecture for Increment for Increment Process
:hart 1 . . .

I

Vleasures I References
1. Time to perform tasks I A. None

2. Number of comments from inspections
and design reviews

3. Time to resolve comments

NRPCT-RIC-SDP - 1 d
Enclosure (2) to

SPP-67610-0007
Page 40 of 94

SIC-5.2 AnalyzelDevelop Detailed Architecture for Increment Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 41 of 94

4.5.3 Process 5.3: Detailed Module Design for lncrement

ID: SIC-5.3/Rev: 0 Title: Detailed Module Design for Increment

Effective Date: August 1, 2005 Supersedes: N/A

Overview: Develop detailed design for each module allocated to the current increment including data
flow and internal structure.

Entry Criteria
Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

List of functions allocated to increment

Exit Criteria
Detailed module design inspected

Module design documented

Configuration Management Tool and
Process available I
Software Development Environment
available

Defect Tracking Tool available

Inputs
System FRD (may be preliminary)

Software FRD (may be preliminary)

Software architecture (may be preliminary)

List of functions contained in increment

Outputs
Detailed Module design documented

Inspection report issued

I

Tasks
a. Determine detailed design of modules allocated to increment based on requirements,

architecture, and any interface requirements.

b. Document module design

c. Inspect module design

d. Incorporate inspection findings

Process Flow

See following Detailed Module Design for lncrement Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 42 of 94

Measures (References
1. Time to perform tasks

2. Number of comments from inspections

3. Time to resolve comments

A. None

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 44 of 94

4.5.4 Process 5.4: Module ImplementationlCoding for lncrement

ID: SIC-5.4 / Rev: 0 Title: Module Implementation/Coding for Increment
- ~

Effective Date: August 1, 2005 1 Supersedes: N/A

Overview: Implement modules for increment, write unit test cases, inspect source code, and desk
check module implementation.

Entry Criteria
Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

List of functions allocated to increment

Detailed Module design

Configuration Management Tool and
Process available

Software Development Environment
available

Correction of defects found from prior
testing

Defect Tracking Tool available

Exit Criteria
Inspected Module implementation source
code

Module Unit Test cases developed

a Source Code in Configuration
Management tool

Inputs Outputs
System FRD (may be preliminary) Module source code

Software FRD (may be preliminary) Code inspection report issued

Software architecture (may be preliminary) Unit test cases developed

I Detailed Module design I I I . List of functions contained in increment I I
Unit Test report (if correcting findings)

Tasks
a. Evaluate unit test findings (if any) and determine module changes necessary

b. Write or update source code for each module

c. Write unit test cases for complete MClDC coverage of module

d. Inspect source code

e. Incorporate inspection findings, if inspection finding will not be incorporated at this time, it is
to be entered into the Defect Tracking tool

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-6761 0-0007
Page 45 of 94

f. Desk check module implementation (compile source code and run with stubs)

Process Flow

See following Module ImplementationlCoding for Increment Process Chart -
Measures References

1. Time to perform tasks A. Coding Standard

2. Number of comments from inspections

3. Time to resolve comments

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 47 of 94

4.5.5 Process 5.5: Unit Test of Modules for Increment

ID: SIC-5.5 / Rev: 0 I Title: Unit Test of Modules for Increment

/ Effective Date: August 1, 2005 I Supersedes: N/A I
I Ove~iew: Review and run unit test cases for modules, if defects found, correct defects via SIC-5.4

Entry Criteria
Source Code for modules available

Unit Test cases for modules available

List of functions allocated to increment

Configuration Management Tool and
Process available

Software Development Environment
available

Test Environment available

Defect Tracking Tool and Process
available

Software baselined and under
configuration control

Inputs
Module Source Code

Module Unit Test Cases

Software architecture (may be preliminary)

Detailed Module design

List of functions contained in increment

Exit Criteria
All increment modules unit tested

Unit test cases reviewed

Source Code in Configuration
Management tool

Test cases and results in configuration
management

Reviewed Unit Test cases

Unit Test report issued

Tasks
a. Review unit test cases for completeness (reviewer must be independent of author)

b. Update unit test cases based on review

c. Perform unit testing, ensure complete MClDC coverage

d. Archive results and unit tests in configuration management tool

e. Issue unit test report with findings

f. If defects are found, re-enter process SIC-5.4 to correct module implementation

If defect can not be resolved at this time, enter into Defect Tracking database

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 48 of 94

Process Flow

I See following Unit Test of Modules for Increment Process Chart I
L - I

Measures I References
1. Time to perform tasks A. None

2. Number of findings from unit testing

3. Time to resolve comments

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 50 of 94

4.5.6 Process 5.6: Module lntegration for Increment

ID: SIC-5.6/Rev: 0 Title: Module Integration for Increment

I Effective Date: August 1, 2005 1 Supersedes: N/A

/ Overview: Integrate modules together and create executables. Run on hardware for preliminary
checkout

Entry Criteria
Source Code for modules available

Modules Unit Tested

Configuration Management Tool and
Process available

Software Development Environment
available

Test Environment available

Defect Tracking Tool and process
available

Software baselined and under
confiauration control

Exit Criteria

Executables placed in Configuration
Management tool

lntegration findings entered into Defect
Tracking tool

All integration findings corrected

Module Source Code

Target Platform

Compiled executables under
configuration management

I Defects entered in tool and corrected I
Tasks
a. Compile module source code and link together into executable 1
b. Enter compile or link errors into defect tracking tool

If any errors are encountered, develop disposition, and repeat previous process to
correct errors before proceeding further

c. If compilellink is successful, download executable onto target platform and perform basic
checkout

d. If any defects are detected during basic checkout, enter into defect tracking tool, develop
disposition, and repeat previous processes to correct errors before proceeding further

e. If basic checkout is successful, place executables under configuration control

Process Flow

See following Module lntegration for Increment Process Chart

2. Number of findings from integration

3. Time to resolve comments

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 51 of 94

Measures References
1. Time to perform tasks A. None

SIC-5.6 Module Integration for Increment Process Chart

NRPCT-RIC-SDP a - 1
Enclosure (2) to

SPP-67610-0007
Page 52 of 94

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 53 of 94

4.5.7 Process 5.7: System Testing for lncrement

I Overview: Perform system testing of software executables for increment on SDVE I

ID: SIC-5.7/Rev: 0

Effective Date: August 1, 2005

Entry Criteria

System and software FRDs available

Software executables available

Configuration Management Tool and
Process available

Software Development Environment
available

Test Environment available

Defect Tracking Tool and Process
available

Software baselined and under
configuration control

Title: System Testing for Increment

Supersedes: N/A

Exit Criteria
System Test Cases and results placed in
configuration control

System Test findings entered into Defect
Tracking tool

All System Test findings corrected

Inputs Outputs
Executable code Test Readiness Review report issued

Systemlsoftware FRDs System Test report issued

Target Platform System Test Cases and results

I Defects entered in tool and corrected

Tasks
a. Develop system test cases based on system and software FRDs

b. Review system test cases

c. Prepare Test Plan and hold Test Readiness Review

d. If review confirms test plan, platform, and executables are ready, perform system testing,
otherwise correct

e. Archive Test Cases and results in Configuration Management tool

f. Place defects in defect tracking tool

g. Issue System Test report

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 54 of 94

Process Flow

See following System Testing for Increment Process Chart

Measures I References
1. Time to perform tasks

2. Number of defects from Testing

3. Time to resolve defects

A. None

SIC-5.7 System Testing for Increment Process Chart

NRPCT-RIC-SDP a - 1
Enclosure (2) to

SPP-67610-0007
Page 55 of 94

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 56 of 94

4.5.8 Process 5.8: Document and Release lncremental Build

ID: SIC-5.8 / Rev: 0

Overview: Document and ensure all quality and configuration management tasks have been completed
to release software executables for aenerai use.

Title: Document and Release Incremental Build

Effective Date: August 1, 2005

Entry Criteria
Approved system and software FRDs
available

Software source code and executables
baselined and under configuration control

Code inspections, Unit Testing, and
System Testing complete with reports
issued

Defect reports reviewed and dispositioned

Software baselined and under
configuration control

Supersedes: N/A

Inputs
Executable code and source code

Approved system/software FRDs.

Inspection, Unit Test, and System
reports

Complete Traceability Matrix

Testing

Exit Criteria
Approval from Release Readiness
Review through Configuration Control
Board

Source Code, Executables, Configuration
reports, and other documentation
exported to Media for issuing to outside
organizations

Release Readiness Review Report
issued

Outputs
Configuration Documentation issued

Source Code and Executables issued

Release Readiness Review Report
issued

Tasks
a. Ensure test program completed and test report issued.

b. Prepare release notes for source code and executables

c. Ensure source code and executables are properly baselined and documented per
configuration management process

d. Review Traceability Matrix for complete coverage

e. Perform Release Readiness Review with NR and other stakeholders to ensure maturity of
product for release (also review defectslopen items)

f. Document review meeting in meeting minutes, address all open issues

g. Issue source code and executables with relevant documentation

e I Process Flow

See followina Document and Release Incremental Build Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007

a Page 57 of 94
I Measures I References

/ 1. Time to perform tasks

I 2. Comments at Review

A. None

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007

a Page 59 of 94

4.5.9 Process 5.9: lndependent VerificationNalidationlTesting of
Incremental ~ u i l d

-

I ID: SIC-5.9/Rev: 0 I Title: lnde~endent VerificationNalidation/7estinq of Incremental 1 -
Build

Overview: An independent inspection and test program is performed at Bettis after release of an
incremental build

Effective Date: August 1, 2005 Supersedes: N/A

Tasks
a. Receive release materials for incremental build from KAPL

b. Prepare test cases from FRDs.

c. Perform software inspections based on NRPCT coding standard

d. Perform system testing based on FRD functionality

e. Document any inspection or system test findings

f. Issue test and inspection reports

Entry Criteria
Approved system and software FRDs
available

Software source code and executables
baselined and under configuration control

Code inspections, Unit Testing, and
System Testing complete with reports
issued

Release Readiness Review completed

Inputs
Executable code and source code

Approved systemlsoftware FRDs

Process Flow

See following lndependent VerificationNalidation/Testing of Incremental Build Process Chart

Exit Criteria

Completion and documentation of all
relevant Bettis testing and inspections

Documentation of any defects identified
by Bettis

Outputs
Bettis inspection and test reports issued

Bettis Test Cases and results placed
under configuration control

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 60 of 94

Measures I References
1. Time to perform tasks

2. Number of defects from testing

3. Number of findings from inspection

A. None

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 62 of 94

4.5.10 Process 5.10a: DefecUChange ldenti f icat ion for Incremental Build

I ID: SIC-5. IOa /Rev: 0 I Title: DefecKhange Identification for Incremental Build I
I Effective Date: August 1, 2005 I Supersedes: N/A I

Overview: For Integration, System Testing, or lndependent V&V, defects are identified and placed into
defect tracking tool.

1 Entry Criteria I Exit Criteria

Defect Tracking Tool available

Defect found in project step

Tasks
a. Defect is identified during inspection, Unit Test, Integration, System Test, or Independent

V&V; if applicable, tester should attempt to replicate defect as this will help to narrow down
possible defect source

Finding discussed with cognizant
engineer and placed in Defect Tracking
Tool

J

b. Defect is discussed with module cognizant engineer to ensure defect is properly
characterized

Inputs
Defect identified in source code or
executable

c. Defect is entered into Defect Tracking Tool with at least:

.
Outputs

Defect Documented in Defect Tracking
Tool

Date of defect, brief description, affected module, test script, test case, inputs, expected
and actual outputs, detailed description of defect

d. Cognizant engineer shall concur to defect description in tool

e. Notify stakeholders of defect

Process Flow

See following Defect ldentification for Incremental Build Process Chart

@ I Measures
1. Number of defects

2. Time to enter defect and obtain
cognizant engineers concurrence

NRPCT-RIC-SDPM-001
Enclosure (2) to

Page 63 of 94
References
A. None

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 65 of 94

4.5.11 Process 5.10b: DefectlChange Disposition for lncremental Build

ID: SIC-5. lob / Rev: 0 I Title: DefecffChange Disposition for Incremental Build

I Effective Date: August 1, 2005 I Supersedes: N/A I
Overview: Any defects that have been identified must be evaluated and proper corrective action
assigned and performed.

into the tool

Entry Criteria
Defect Tracking Tool available

Undis~osed defects identified and entered

I Inputs / Outputs

Exit Criteria
Corrective action identified, implemented,
and verified

Undisposed identified defects Defects have corrective action
implemented and verified

Defect closed out in tool

Tasks
a. Each defect identified in tool is evaluated by Configuration Control Board, including tester

and developer

b. Once source of defect is identified, it is documented in tool

c. Possible corrective actions are identified in tool

Corrective actions may include reimplementation, design change, or requirements
changes

d. Corrective action authorized by CCB, developer performs corrective action

CCB scope is determined by scope of corrective action. For a simple local
implementation change, a smaller scope CCB may be required, but for an architecture or
requirements change, NR may have to be involved as well

e. Once software has been successfullv retested, defect is closed out in tool
--

Process Flow

See following Defect Disposition for lncremental Build Process Chart -

0 Measures I 1. Number of defects

2. Time to provide solution for defect and
successfully retest

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007

References
A. None

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 68 of 94

5 ANCILLARY PROCESSES

5.1 Process A 1: Configuration Management

I ID: SIC-A 1 /Rev: 0 I Title: Configuration Management 1

Overview: Requirements, design, source code, executables, test cases, and results require
configuration control and change management

Entry Criteria / Exit Criteria

Effective Date: August I, 2005

Configuration Management tool available Article place in configuration control,
change history updated, article version

Requirements Management tool available appropriately identified, and collection of

Supersedes: N/A

I . Document archive tool available I configuration items properly baselined

0 Changes approved by CCB, changes
verified once made

0 Article created that must be placed in CM All articles "checked in" with proper
system labeling and revision history .

Tasks
a. Type of article identified to determine configuration management system to be used:

1. Requirements - requirements management system

2. Design (architecture) - issued as letter and placed in document archive tool
(ADSARS)

3. Source code, executables - Configuration management system

4. Test cases, test results - Configuration management system

5. Inspection, design review, and Test reports - issued as letter and placed in
document archive tool (ADSARS)

b. Requirements are placed in Requirements Management tool:

1. User rights: Author has full change access, other users only have read access,
administrator has full access to set user access

2. On creation, requirements placed in tool and edited in tool

3. Requirements are inspected and changes placed in tool

Revision history and number identified 0 CCB meeting minutes issued for
authorized changes to configuration items

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 69 of 94

4. Requirements are design reviewed and changes placed in tool

5. Requirements are baselined as "Proposed" and a revision number is assigned (start
at 0, e.g. "Proposed Revision 0.0")

Revision has major and minor number X.Y, major incremented for large
changes, minor incremented for smaller changes (as determined by CCB)

6. Requirements are exported from the tool into a document for sending to NR for
approval, submittal letter is placed in document archive tool (ADSARS).

7. Once NR approval has been received, and NR comments have been incorporated
into the tool, requirements are rebaselined, and the "Proposed" designation is
removed

8. Approved requirements are exported from tool into a document and issued for
information, issuing letter is placed in document archive tool (ADSARS)

9. Any requirements change identified from Defect Disposition or other sources must
be evaluated by CCB, and if accepted, changes must repeat steps b.3 through b.8.

:. Software design and architecture:

1. Software design and architecture must be inspected and design reviewed

2. Software design and architecture are captured in a document

3. Document is issued via letter and placed in document archive tool (ADSARS)

4. Any design or architecture change identified from Defect Disposition or other
sources must be evaluated by the CCB, and if accepted, change shall be inspected
(and design reviewed if large in scope), then reissued via letter and placed in the
document archive tool (ADSARS)

. Source Code and Executables

1. User rights: Author has full change access, other users only have read access,
administrator has full access to set user access

2 . Each source code file or executable is created and placed in the Configuration
Management tool

3. Files are checked in and out by the author for implementation

4. Once implementation is complete, the files are baselined as "Revision 0.0" (X.Y
where X is the branch (thread) and Y is the file revision, the first (and main) branch
is 0, but it is envisioned that the files will be shared across platforms, and may need
platform specific changes, thus necessitating a new branch to track the same file in
multiple branches) and code inspected

5. Code inspection comments are incorporated into the files which are then
rebaselined with revision history (date, author, brief description of changes) added
and the revision number is incremented

6. Once unit testing is completed, findings are incorporated, and the files are
rebaselined with updated revision history and revision numbers, an application
version number is applied to all files that make up an executable (e.g. Version 1.0)
At this point, CCB approval is necessary to further change files

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 70 of 94

7. Once integration is performed any integration findings must be approved by the
CCB to make changes to the source files. Any files to be changed must have
revision history and revision numbers updated, and once all integration changes are
complete, the collection is rebaselined and a new version number is assigned (e.g.
Version 1.1). The generated executable is then updated with a new version
number.

8. System testing is performed on the compiled executable, and any changes
identified by system testing must be approved by the CCB, then the product must
have source file revision history and revision numbers updated, the collection must
be rebaselined with the application version number updated (along with change
history for the application), the source files proceed through integration to create a
new executable, and this executable is labeled with an updated version number.

9. Later increments repeat steps 2 through 8

3. Test cases and results:

1. Unit test cases and system test cases are placed in the configuration management
tool once generated

2. Once the test cases have been reviewed, the cases are baselined as "Revision 0.0"
(X.Y where X is the branch (thread) and Y is the file revision, the first (and main)
branch is 0, but it is envisioned that the files will be shared across platforms, and
may need platform specific changes, thus necessitating a new branch to track the
same file in multiple branches).

3. Once the test cases have been run, the results are archived in the configuration
management tool until needed for issuing the test report

. Inspection reports, design review reports, test result reports:

I. The various reports are prepared in letter format and placed through the standard
letter review process (primary design check, management review, administrative
review, issue)

2. Once the letter is issued, it is archived in the document archive tool (ADSARS)

X B - Configuration Control Board: Used to review potential changes to items under
:onfiguration control, and then accept or reject change requests

1. The CCB consists of stakeholders relevant to the scope of changes being requested.
Members consist of : NR, Manager Space I&C Systems & Software (Chairman of
CCB), Cognizant software developer (requesting change), System Cognizant
engineers, Test Engineers, Bettis Space I&C Engineers (when change may impact
CTD software or delivery dates of releases to Bettis), BPMl Engineers (when change
may effect program vendors of final delivery of Incremental Build), Other Prometheus
program organizations as appropriate

2. Change request must be submitted to CCB prior to meeting. Change request must
contain affected modules, scope of change, estimated scope of retest, estimated
schedule for completion of change and follow-up qualification, and defects being
addressed

3. CCB meeting must be scheduled, and items are to be reviewed at the meeting, a

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 71 of 94

disposition for each requested change is determined, and meeting minutes are issued

Jrocess Flow

See following Configuration Management Process Chart

Measures
1. None

References
A. None

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007

5.2 Process A2: Reauirernents Traceabilitv

Page 73 of 94

I ID: SIC-A2/Rev: 0 I Title: Requirements Traceability 1
Effective Date: August 1, 2005 / Supersedes: N/A

Overview: Clear traceability must be established between the requirements, implementation, and test
cases. This traceability must be bidirectional to be able to verify complete implementation and
coverage.

I Entry Criteria I Exit Criteria

Configuration Management tool available Traceability matrix established for
bidirectional traceability between all

Requirements Management tool available artifacts

Outputs 1 ?Pz:proved software and system FRD Bidirectional traceability matrix between -

Software architecture and design
Documents

Source Code

Unit and system test cases

source code and requirements (and
design)

Bidirectional traceability matrix between
requirements, test cases, and results.

Tasks
a. Once FRD has been established and software architectureldesign is created, a traceability

matrix shall be created to identify which requirements are satisfied in each module, and
which modules satisfy each requirement (bi-directional)

b. Once source code is created, a bi-directional traceability matrix shall be created between
the requirements and the code.

c. Once Unit and system test cases have been created a bidirectional traceability matrix shall
be created between the test cases and the source code.

d. Any time one of the inputs is updated, the traceability matrix shall be examined to
determine if updates are necessary, and then updated.

e. The traceability matrix shall be provided as part of the release documentation for a build

Requirement Management tool may support linking for traceability matrix

Process FIOW I
See following Requirements Traceability Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 74 of 94

Measures References
1. None A. None

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 76 of 94

5.3 Process A3: lnspections

1 ID: SIC-A3/Rev: 0 1 Title: Inspections I
Effective Date: August 1, 2005 I Supersedes: N/A

Inputs
Software and system FRD

Software architecture and design
documents

Source code

Unit and system test cases

Overview: lnspections are performed on work products to catch defects early and help improve the
product

Outputs
lnspection report issued

' Entry Criteria

Configuration Management tool available

Requirements Management tool available

0 Applicable standards available

Applicable checklists available

lnspection work product baselined and
under configuration control

Findings placed in defect tracking tool if
appropriate

Exit Criteria

Inspection report with comments issued

Tasks
a. An inspection group, independent of work product author, is established of nominally 3 to 5

engineers, a chairmanlscribe, and the author (to present). The members may be NRPCT
or from other Prometheus project organizations (assuming clearance and NTK can be
established).

b. Requirements, architecture, design, code, and test case inspections:

1. Kickoff meeting held with author and all inspectors, author presents requirements
and walks inspectors through document

2. Requirements are baselined, and distributed 3 weeks prior to the review meeting to
all members along with any applicable standards and checklists

3. Inspectors review requirements and provide comments to chairperson 1 week prior
to review meeting, chairman provides comments to author for preliminary
disposition

4. Review meeting walks through inspector comments and author preliminary
responses, and any new comments are documented at meeting

5. All comments are provided to author via formal meeting minutes, author then

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 77 of 94

formallv re~l ies with res~onse/closeout of comments. Alternatelv, comments could 1

I
. .

be discussed prior to issue of meeting minutes and meeting minbtes could
document both comments and resolutions I

I 6. Any unresolved comments are placed in Defect Tracking tool for later disposition 1 1 c lnspection report shall provide summary information related to number and types of
comments I

Process Flow

See following lnspection Process Chart

Measures References
1. Number of comments A. Requirements standard

1 2. Time to resolve comments I B. Design standard

1 C. Coding standard

D. IEEE Std. 1028

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 79 of 94

5.4 Process A4: Design Reviews

ID: SIC-A4 / Rev: 0 Title: Design Reviews

I Effective Date: August 1, 2005 I Supercedes: N/A I
/ Overview: Formal review performed on requirements and software architecture per KQA-10.

Entry Criteria Exit Criteria

Configuration Management tool available Design review report issued

Requirements Management tool available Design review closeout issued

Applicable standards available

Applicable checklists available

Inputs Outputs
Software and system FRD Design review report issued

Software architecture and design Design review closeout issued

Findings placed in defect tracking tool if
aoorooriate

Tasks
a. A design review group, independent of work product author, is established of nominally 5 to

8 engineers, a chairmanlscribe, and the author (to present). The members may be NRPCT
or from other Prometheus project organizations (assuming clearance and NTK can be
established). Members are chosen to be outside of Space l&C group with independence
but expertise in the area of review

b. Requirements, architecture, design review (per KQA-10):

1. Design review Chairperson selected and a design review is formally requested with
a design review number assigned by SQA

2. Kickoff meeting held with author and all reviewers, author presents requirements or
architecture and walks reviewers through document

3. Requirements or architecture is baselined, and distributed 3 weeks prior to the
review meeting to all members along with any applicable standards and checklists

4. Reviewers review requirements or architecture and provide comments to
chairperson one week prior to review meeting, chairman provides comments to
author for preliminary disposition

5. Review meeting walks through design review comments and author preliminary
responses, and any new comments are documented at meeting.

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 80 of 94

I 6. All comments are categorized as either Findings (which require formal response) or
Observations (which do not require formal response)

7. All comments are provided to author via formal meeting minutes, author then
formally replies with responselcloseout of comments. Alternately, comments could
be discussed prior to issue of meeting minutes and meeting minutes could
document both comments and resolutions.

I 8. Any unresolved comments are placed in Defect Tracking tool for later disposition

c. Design review report shall provide summary information related to number and types of / comments (findings and observationsi.
J

Process Flow

I See following Inspection Process Chart I

1. Number of comments

2. Time to resolve comments

A. Requirements standard

B. Design standard

C. Coding standard

D. KQA-10

References 0

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 82 of 94

5.5 Process AS: Test Readiness Reviews

I ID: SIC-A5/Rev: 0 I Title: Test Readiness Reviews I

Overview: Review to ensure test platform, software, test cases, and the test plan are ready to
commence a test Droaram.

Effective Date: August 1, 2005 Supercedes: N/A

Inputs
Test plan

Test environment

Test cases

Executable software

Entry Criteria
Test plan available

Executables ready for testing

Test environment ready

Outputs

Test Readiness Review minutes issued

Exit Criteria

Test Readiness Review meeting minutes
issued

All review comments and concerns have
been addressed

Tasks
a. Ensure test plan is complete, test bed configuration is documented, executable

configuration is documented, and test cases are reviewed

b. Schedule Test Readiness Review; include Tester, Cognizant developer, Manager Space
I&C Systems and Software, Test director, System cognizant engineer, and others as
appropriate

c. At Readiness Review, test plan shall be walked through, and there should be confirmation
of configuration of Test environment, Test cases, and executable software

d. Any comments identified at the Readiness Review shall be documented in the meeting
minutes and resolved before testing can commence

e. Test Readiness Review meeting minutes are issued

Process Flow

See following Test Readiness Review Process Chart

2. Time to resolve comments

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 83 of 94

Measures
1. Number of comments

References
A. Test Plan template

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 85 of 94

-
5.6 Process A6: Release Readiness Reviews

/ ID: SIC-AG/Rev: 0 I Title: Release Readiness Reviews 1
Effective Date: August 1, 2005 Supercedes: N/A

Overview: Review to ensure executable has completed all necessary quality steps for general release.

I Entry Criteria I Exit Criteria
Executable successfully completed all Release Readiness Review Report
inspections, unit testing, and system issued 1
testing

Source code, executables, and all
Executable configuration documentation is associated documentation are available
complete for general use

All defects have been satisfactorily
disposed and closed out

Inputs
Code inspection report

Approved software FRD

Unit Test report

System Test report

Release Notes1 Chanae List

Outputs

Release Readiness Review Report
issued

Source CodeIExecutablesl
Documentation available for general use

--

/ Tasks

I a. Ensure necessary inputs are all available I
b. Schedule Release Readiness Review, include CCB members, including NR, the Cognizant

developer, System cognizant engineer, Tester, Manager Space I&C Systems and
Software, Test Director, Bettis Space l&C personnel, and representatives from other
Prometheus organizations as appropriate

c. At Release Readiness Review, the configuration documentation for the source code and
executables shall be examined, inspection report, Unit Test report, and System Test report
should have been issued, software FRD shall have been approved and issued, and all
defects shall have been dispositioned and closed.

/ d. The Release Readiness Review Report shall be issued I
e. If accepted by the CCB, the source code and executables are made available for general

use

Process Flow

I See following Release Readiness Review Process Chart 1

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 86 of 94 I Measures / References

I I 1. Number of comments I A. None

! 2. Time to resolve comments

SIC-A6 Release Readiness Review Process Chart

NRPCT-RIC-SDP 1 - 1
Enclosure (2) to

SPP-67610-0007
Page 87 of 94

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 88 of 94

5.7 Process A 7: Software Hazard Analysis, SFTA, and SFMECA

1 ID: SIC-A7/ Rev: 0 I Title: Soffware Hazard Analysis, SFTA, and SFMECA I
Effective Date: August 1, 2005 Supercedes: N/A

Ovewiew: Review of requirements and design to ensure faults and hazards are understood and
mitigated to the maximum extent practical

Entry Criteria
Software FRD available

Software architecture available

Inputs

Software FRD

0 System FRD

Software architecture

Exit Criteria

Report prepared on Software Hazard
Analysis. Fault Tree Analysis, and Failure
Mode Effects and Criticality Analysis

Outputs
Software Hazard Analysis

Software Fault Tree Analysis

Software Failure Modes, Effects and
Criticality Analysis

f. Perform Software Hazard Analysis:

1. [RESERVED]

g. Perform Software Fault Tree Analysis:

1. [RESERVED]

h. Perform Software Failure Modes, Effects and Criticality Analysis:

1. [RESERVED]

Tasks

Process Flow

(See following Software Hazard Analysis, SFTA, and SFMECA Process Chart 1

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 89 of 94

Measures I References
1. Number of comments

2. Time to resolve comments

A. None

SIC-A7 Software Hazard Analysis, SFTA, and SFMECA Process Chart

NRPCT-RIC-SDP d - 1
Enclosure (2) to

SPP-67610-0007
Page 90 of 94

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007
Page 91 of 94

I Effective Date: August 1, 2005 I Supercedes: N/A I

5.8 Process A8: Auditing and Self-Assessments

/ Overview: Performance of auditing and self-assessments to ensure compliance to processes.

ID: SIC-A8/ Rev: 0 Title: Auditing and Self-Assessments 1

Entry Criteria

Periodic self-assessment period

SQA audit

Spot check

Tasks
a. Process or work product to be audited is chosen

b. Audit performed to ensure compliance to written process, or to ensure work product
satisfies intended function (e.g. audit of defect resolution)

c. Once audit or self-assessment is complete, results are documented and issued

d. Response is generated to perform corrective actions including retraining, or process
im~rovement

Exit Criteria

Process audited, results documented,
and any defects corrected along with any
training or process improvement needs
addressed

Inputs
Software Development Plan

Work Products

Process Flow

See following Auditing and Self-Assessments Process Chart

Outputs
Audit or internal review report

0 Audit or internal review response

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007 - - - -

Page 92 of 94
kleasures 1 References

1. Number of comments

2. Time to resolve comments

A. None

NRPCT-RM-SDPM-001

Page 94 of 94

Processes identified here are identified in the PSMP and will be provided as ancillary
processes when further definition has been completed.

Software Classification
The PMSP defines classification levels for software to identify which software requires
greater verification and validation based on the criticality of the software (consequence
of software failure). This will be performed using the NNPP SQCL.

Risk Management
Risk management includes the identification of risks, the determination of mitigation
strategies for risk, and the active review and application of those strategies throughout
the life of the product.

Process Modification
As processes and used throughout the life of the project, improvements will be identified
and have to be incorporated into the process documents.

Supplier Agreement Management
N/A

Metrics
Measures of performance used to help gauge project status and improve future
planning.
Project Status, Risk, Defects, Earned Value, Schedule, Cost, Staffing, Functionality,
Requirements, & others per PSMP.

Acceptance and Deployment
Process of certifying testing and releasing the software.

Operations and Maintenance
Process for maintaining software once released.

Corrective Actions
Tasks performed in response to problem reports

Lessons Learned
Collecting information on unplanned events that can be applied to improve the process
in the future.

Process Improvements
See process modification.

Acquisition
Process used to procure hardware and software development tools.

Causal Analysis and Resolution
Determining the root cause of a problem and fixing the both the problem and the
process.

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 1 of 24

NRPCT Reactor Module
Software Development Plan

(NRPCT-RM-SDP-001)

NRPCT I&C Software Team

July 2005

PRE-DECISIONAL - For Planning and Discussion Purposes Only

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 2 of 24

This page intentionally left blank.

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 3 of 24

Revision History

Revision Author Date Change Synopsis
Draft T. Hamilton 6130105 Original

D. Schroeder

Reason for Change

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 4 of 24

Table of Contents

Introduction .. 3 . . .
1 . I ldent~f~cat~on .. 3

1.3 Basis and Standa
1.4 Division of Respo

1.6 Document Hierarch
1.7 Definitions
1.8 Acronyms
1.9 Reference

2.2 Project Phases ... : 3
2.3 Software Life Cycle, Methodology, and Language ... 3

2.3.1 Incremental Life Cycle ... 3
2.3.2 Software Design Methodology
2.3.3 Language Choice

3 Work Products
Software Development Plan

Controlled/Quality

Software Component . 3
Software Unit 3
Software ClasslElemen

Flight Parameters

Review Materials ... 3 . . Tralnmg Record ... 3
3
3
3
3
3
3
3
3

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 5 of 24

3.31 Interface Control Document (ICD)
3.32 Schedule Task
3.33 Schedule
3.34 Budget
3.35 Resources
3.36 Work Breakdo
3.37 Work Break

4 Tools 3
4.1 Requirements Management ... 3
4.2 Configuration C 3
4.3 Problem Report

4.5.3 Unit Test

. .
....................... .. 7.2 SS473 Traceabhty 3

7.3 NR Software Engineering Policy Traceability 3
7.4 KAPL Software Engineering Manual Traceability 3

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 6 of 24

I INTRODUCTION

1.1 Identification
This is the NRPCT Reactor Module Software Development Plan (SDP) for the
Prometheus project.

1.2 Purpose
The SDP establishes the mission specific management, development, verification and
validation processes for the reactor module l&C software of project Prometheus. Each
mission has its own specific SDP detailing how the processes specified in the NRPCT
Reactor I&C Software Development Process Manual (SDPM) are to be implemented for
that mission. The mission for the Reactor Module SDP is based on a Nuclear Electric
Propulsion (NEP) spacecraft. This work includes but is not limited to the flight software,
ground telemetry and analysis software, test beds, and vendor developed sensor and
actuator interface software. These practices ensure that the reactor module l&C
software is of sufficient quality to meet the Prometheus needs, particularly the
paramount need of safety in the spacecraft. This document implements the processes
identified in the NRPCT Reactor I&C Software Development Process Manual (SDPM).

1.3 Basis and Standards
This document expands upon and traces to the Prometheus Software Management Plan
(PSMP), JPL document #982-00046. The PSMP defines the high level software
requirements and processes to be used throughout project Prometheus. Although the
Memorandum of Understanding and the Memorandum of Agreement between NASA
and Naval Reactors does not give JPL approval authority over Reactor Module software
development, the NRPCT desires to maintain as much commonality in software
processes as possible. Following the principles established in the PSMP helps to
maintain commonality among software developed for the Reactor Module, Spaceship
Module, Mission Module, and Ground System software.

This document incorporates guidance from the Prometheus Software Quality Assurance
Requirements (JPL Document #982-00038) to ensure that there is commonality with
software qualification across the Prometheus project.

This document incorporates guidance from several NRPCT standards and policies. The
SDP incorporates guidance from the NR Software Enaineerina Policv (as documented in
Bettis ~e t te r No. B-REO(M)CD-008. 3/16/05). The SDP will determinethe software
quality criticality level (SQCL) for the flight and ground software per the NNPP Standard
for Software Qualification by Criticality Level (as issued for three prime concurrence by
KAPL Letter No. ARP-68640-0305, 9/2/04).

1.4 Division of Responsibilities
The Prometheus project has several organizations involved in software development;
these include JPL (Mission Module and Ground Data System), the spacecraft contractor
(Spacecraft Module), and the NRPCT (Reactor Module). The spacecraft contractor has
further split the SM work between themselves (Control and Data Handling) and Hamilton

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 7 of 24

Sundstrand (PCAD). The NRPCT has split the Reactor Module software development
work between:

1 KAPL - RM Flight and Ground System software development and integration)
2 Bettis - (CTD development and Independent Verification and Validation of RM

Flight and Ground software, also sensor interface software development
(requirements and verification, implementation by vendors)),

3 BPMl - (contract out sensor development work to vendors for fabrication, and
sensor software development at vendors).

In the above role, KAPL develops and integrates the RM flight and ground software,
Bettis performs independent V&V of the RM flight and ground software. Bettis also
develops the CTDs for both its independent V&V, and for delivery to KAPL as part of the
KAPL integration and test process. BPMl takes part in various software inspections and
design reviews, and also is the contracting agency responsible for handling vendor
development of sensors and sensor interface card hardware and software. Bettis will
also perform independent V&V upon vendor developed sensor software. Once
incremental builds are developed and released, they are handed off to JPL and the
s~acecraft contractor for intearation within the S ~ a c e Vehicle Test Beds for testina with
the other developed system< Models for the C&DH Flight Computer Assembly &d the
PCAD will be provided by the spacecraft contractor for integration with the KAPL and
Bettis CTDs to allow compositetesting with the RM l&C ha;dware and software.

1.5 Notation & Terminology
The NRPCT SDP follows the same Notation & Terminology of the PSMP

1.6 Document Hierarchy
As with any project, there are many documents that govern the flow of work performed
for that project. A document hierarchy provides a roadmap to aid in understanding of the
layout and structure for documents important to Prometheus software development. The
highest level document used for Reactor Module software development is the Project
Software Management Plan (PSMP), which lays out process requirements that the
NRPCT has agreed to work with to achieve more commonality with the other
Prometheus software development organizations. Under the PSMP is the NRPCT
Reactor I&C Software Development Process Manual (SDPM). This document provides
the NRPCT specific implementation and customization of the guidance from the PSMP
for processes based on an incremental software life cycle. The implementation of these
processes for a specific mission is then handled in the Software Development Plan

The RM SDP (NRPCT-RM-SDP-001) provides mission specific definition for the
software lifecycle, methodology, and implementation language for the RM flight software.
The SDP also provides definition for the Roles and Work Products defined by the PSMP
and the SDPM. The appendices for the SDP provide traceability to the PSMP, SQCL,
NNPP SEP, and other influencing documents.

A series of documents provide further definition for items identified in the PSMP and are
subordinate to the SDP. These documents include:

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 8 of 24

1 The KAPL RM Flight Software Development Plan (KAPL-RM-FSW-SDP-001)
which defines the resources and specific tasks for the RM flight software.

o KAPL Flight Software Work Breakdown Structure (KAPL-RM-FSW-WBS-
OOI), which defines the tasks necessary to complete software
development for all of the deliverables used for the Prometheus RM Flight
Software.

o The KAPL Flight Software Schedule (KAPL-RM-FSW-SCHD-OOI), which
provides the schedule for all of the items identified in the WBS.

2 The KAPL RM Ground Software Development Plan (KAPL-RM-GSW-SDP-001)
which defines the resources and specific tasks for the RM ground software.

o KAPL Ground Software Work Breakdown Structure (KAPL-RM-GSW-
WBS-001), which defines the tasks necessary to complete software
development for all of the deliverables used for the Prometheus RM
Ground Software.

o The KAPL Ground Software Schedule (KAPL-RM-GSW-SCHD-OOI),
which provides the schedule for all of the items identified in the WBS.

3 The Bettis Test Bed Development Plan (BETTIS-RM-TB-DP-OOI), which
provides CTD specific development tasks, layout, and goals.

o The Bettis RM Test Bed Work Breakdown Structure (BETTIS-RM-TB-
WBS-OOI), which defines all of the tasks necessary for CTD
development, vendor sensor card development, and independent V&V of
the RM software.

o The Bettis RM Software Schedule (BETTE-RM-TB-SCHD-OOI), which
defines the schedule for all of the items identified in the WBS.

4 The Vendor Sensor Interface Software Development Plan [RESERVED]

1.7 Definitions
NIA

1.8 Acronyms
Table 1
Acronym Definition
CL Criticality Level
CTD Composite Test Device
DSS Deep Space System

, I&C Instrumentation and Control
FRD Functional Requirements Document
IEEE Institute of Electrical and Electronics Engineers
JPL Jet Propulsion Laboratory
MM Mission Module
NRPCT Naval Reactors Prime Contractor Team
PCAD Power Conditioning and Distribution
PSMP Prometheus Project Software Management Plan
PSR Project Software Requirements
RM Reactor Module
SDVP Software Development and Verification Platform
SFTA Software Fault Tree Analysis

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007

SHA Software Hazard Analysis
SIC Space I&C
SM Spacecraft Module
SQCL Software Quality Criticality Level
V&V Verification and Validation

Page 9 of 24
Acronym Definition
SFMECA Software Failure Modes, Effects and Criticality Analysis

1.9 References
NIA

2 OVERVIEW

2.1 Description
The Prometheus Deep Space System (DSS) is composed of the Reactor Module and
the Spacecraft Module (SM). The DSS is the reusable portion of the Prometheus project;
subsequent missions will tailor the DSS, develop a mission specific set of science
instruments and deliver the science instruments as part of a Mission Module (MM).
These Reactor and Spacecraft modules, as well as the Mission Module, are developed
by different organizations and the baseline assumption is that there will be software
associated with all of these modules. NRPCT has responsibility for the Reactor Module.

The Prometheus Reactor Module (RM) includes the nuclear reactor, reactor
instrumentation and control. reentw shield and radiation shieldina. The reactor control
and the Spacecraft ~ o d u l e ' ~ o w e r conversion segment are tightl; coupled and thus
close coordination between the Reactor and Spacecraft Module teams is required. The
Reactor Module Instrumentation and Control team produces the software and hardware
required to control the reactor.

The Reactor Module notional l&C architecture utilizes a two tiered system design. The
top layer is the supervisory system, which contains one "hot" supervisor plus "warm" and
"cold" backup supervisors. The supervisor is responsible for communicating with the
spacecraft computer (in the SM), both to accept commands, and to relay telemetry. The
hot supervisor is determined through a hardware arbitrator system also known as the
Fault Management Assembly (FMA). The supervisor then communicates with the
controller tier in the l&C system. There are four reactor controllers, each one
responsible for monitoring plant sensors, and performing control and protective functions
through reactivity control. The reactor controllers also receive feedback from and send
commands to the PCAD system to react to changes in the power conversion and heat
rejection systems. Output from the reactor controllers is directed through a coincidence
system prior to commanding a change in the reactivity control devices. Both the
supervisor and the controllers contain software. There is also a Ground system that
displays data from the Reactor Module as relayed through the Spacecraft computer.
The system is displayed in Figure 1.

The NRPCT is developing the software for the Reactor Supervisor, the Reactor
Controller, and the portion of the Ground System that is responsible for communicating
with the Reactor Module. NRPCT is responsible for defining the requirements for the

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 10 of 24

sensor interface software; sub tier vendors will implement the sensor interface software,
and NRPCT will qualify the sensor interface software. Other groups are responsible for
developing the Spacecraft Module software (spacecraft contractor), the PCAD software
(Hamilton Sundstrand), and the Mission Module software (JPL). The NRPCT will also
be developing test fixtures and software models for simulating the reactor dynamics, and
emulating sensors and l&C channels. These collectively are known as the Composite
Test Device (CTD) software.

Spacecrafi
Computer

FMA
Supervisor

PCAD

I 1 Controller / / Controller 1 / controller 1 I Controller I

Actuators 'a
Figure 1: System Architecture

2.2 Project Phases
The overall system for Prometheus must be tested before the spaceship is launched.
This testing is performed in several phases, with l&C systems developed to meet the
needs of each test phase. The following development phases have been designated for
the Reactor Module that corresponds to the applicable test phases:

1) Engineering Model (EM): This consists of an engineering model of the l&C
System linked together with the PCAD and SM Flight computer systems. This is
then connected to a non-nuclear test loop with heaters to simulate the reactor
heat. This enables an end-to-end testing of the various interfaces along with
input from actual system sensors. This will most likely consist of a single channel
of supervisor and a single controller.

2) Qualification Model (QM): This consists of an end-to-end test of the various DSS
module interfaces with the most prototypical representation of the flight unit

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Paoe 11 of 74 . -=- ' ' - ' - '

reactor. This will also be a non-nuclear test with heaters simulating the reactor.
Commands will be issued through a simulated link with ground.

3) Ground Test Reactor 1 (GTRI): This consists of a ground based prototype
reactor connected with a Brayton unit. The l&C for this prototype will not be
identical to the flight software since GTRI must accommodate many up and
down power maneuvers, manual operation, and be capable of full shutdown.
There will most likely be some form of an operator interface panel for manual
control of the reactor.

4) Ground Test Reactor 2 (GTR2): This consists of a second ground based
prototype much closer to the flight unit. This will require the option of manual
control and full shutdown, but will have sensors and control algorithms very close
to the final form for flight. There also may be an interface between the Ground
System software and the Reactor Module.

5) Prometheus 1 (PI): This consists of the first Prometheus spacecraft, and will
most likely be an inner solar system mission, possibly to the Moon or the asteroid
belt. This would consist of the final flight software.

6) Prometheus 2 (P2): This consists of the second Prometheus spacecraft, and will
most likely be an outer solar system mission, perhaps to Jupiter. Ideally, the
software will be identical between P I and P2, but if necessary, any changes
required due to further test experience or experience gained in P I would be
incorporated into the P2 software.

The NRPCT is responsible for the products listed below in Table 2. Each of the products
for EM, QM, GTRI, GTR2, P I , and P2 consist of the Reactor Supervisory computer
software, the Reactor Controller computer software, sensor interface software, and the

I I I I I
The PMSP Product class has level 'B' as mission critical, level 'C' as mission support,
and level 'A' is human rated.
The SQCL has Criticality Level 'A' as safety critical.

Reactor Ground Mission/Operations software.
Table 2: Software Deliverables and Classification

Table 3 Deliverables Matrix

System Module SDE Product Type PSMP
Baseline
Product
Class

NNPP
Software
Quality

Criticality
Level ISQCL)

SDPM
Process Step
4.1: SIC-1 -
Initial
Requirements

4.2: SIC-2
Initial
Architecture

4.3: SIC-3
Risk Analysis

4.4: SIC-4
Plan
Incremental
Builds
4.5: SIC-5
Develop 8
Release
Incremental
Build
4.5.1: SIC-5.1
Develop

Process
Deliverable
Inspection
Report
Design Review

Letter
Approved FRD

in' ~e~u i rements
Management
Tool
Inspection
Report
Design Review
Report
Software
Architecture

Modes and
Effects
Criticality
Analysis
Findings
Entered into
Defect Tracking

See below

Approved
lssued Updated
FRD

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007

See below See below See below

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007

SDPM

Requirements

Develop
Detailed
Architecture

Detailed
Module Design

4.5.4: SIC-5.4
Module
Implementation

4.5.5: SIC-5.5
Unit Testing

4.5.6: SIC-5.6
Integration

4.5.7: SIC-5.7
System
Testing

Process

software
Architecture
Document
Inspection

Detailed Module
Design
Documentation
lnspection
Report
Module Source
Code
lnspection
Report
Unit Test Cases
and Results in
CM
Reviewed Unit
Test Cases
Unit Test Report
Executables in
CM
Subsystem Test
Cases and
Results in CM
Defects Entered
and

~ H s e s and
Results in CM
System Test
Report
Defects
Disposed

Flight
Software
X

X (if
performed)
X

X

x (if
performed)
X

Ground
Software
X

X (if
performed)
X

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007

SDPM
Process Step
4.5.8: SIC-5.8
Document &
Release

4.5.9: SIC-5.9
Independent
V8V

4.5.10: SIC-
5.10a
Defect
Identification
4.5.11: SIC-
5.10b
Defect
Disposition

5.1: A1
Configuration
Management
[RESERVED]

5.2: A2
Requirements
Traceability
[RESERVED]

5.3: A3
Inspections
[RESERVED]

Process I Flight
Deliverable 1 ;&are
Configuration
Documentation
Source Code

Executables
Release
Readiness
Review Report I
Bettis I X

Report
Bettis Test I X
Report
Bettis Test I X
Cases and
Results in CM
Defects X
Documented in
Defect Tracking
Tool
Defect X
corrective
actions
implemented,
verified, and
closed out.
Configuration I X
Items in
management
tool checked in
with revision
history
CCB Meeting X
Minutes Issued
Traceability X
matrix between
requirements,
design, and
code
Traceability X
matrix between
requirements,
test cases, and
test results
Inspection
Report
Findings

Ground
Software
X

Page 14 of 24
Test Bed

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007

SDPM
Process Step

5.4: A4
Design
Reviews
[RESERVED]
5.5: A5
Test Readiness
Review
[RESERVED]
5.6: A6
Release
Readiness
Review
[RESERVED]

5.7: A7
Software HA,
SFTA, SFMECA
[RESERVED]

5.8: A8
AuditinglSelf-
Assessments
[RESERVED]
Other
ProcesseslDeli
verables
[RESERVED]

Paoe 15 of 24 . - - . . - -

Process Flight Ground Test Bed
Deliverable Software Software
entered into
Defect Tracking -
Tool
Desian Review I
~ e ~ &
Desian Review I
C I O ~ ~ O U ~

Test Readiness I
Review Meeting
Minutes

Release
Readiness
Review Meeting
Minutes
Code,
Executables,
Documentation
released for use
Software
Hazard Analysis
Software Fault
Tree Analysis
Software
FMECA
Findings
entered into
Defect Tracking -
Tool
Audit Report X X
Audit Response X X

2.3 Software Life Cycle, Methodology, and Language
Software development for project Prometheus is performed using a phased development
process with incremental builds. These incremental builds provide increasing levels of
functionality until the complete functionality is provided in the final build. The
incremental builds for JPL consist of software from all modules (Spacecraft, Mission,
Reactor, and Ground). This creates the desire for the Reactor Module l&C software to
provide incremental builds to fit with the JPL overall incremental builds.

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 16 of 24

2.3.1 Incremental Life Cycle
The incremental life cycle has been selected for NRPCT Prometheus Reactor I&C
software development. This allows an incremental delivery of functionality as required
by other Prometheus team members. The incremental life cycle is detailed in the
SDPM.

2.3.2 Software Design Methodology
Once a software life cycle has been established, it becomes necessary to choose the
approach to software design and implementation. Two major design paradigms were
considered for this project: object-oriented design, and structured design.

Object-oriented analysis and design takes a view of the system that data and functions
are intimately tied as a collection of objects, with each object having attributes and
methods that may be invoked. Object-oriented design seeks to incorporate the
principles of data abstraction, encapsulation, modularity, hierarchy, typing, concurrency,
and persistence. These principles were fostered in an attempt to overcome what was
seen by some as limitations in more structured designs (global data, tight coupling
between modules). The design process consists of identifying the objects for a system,
establishing the attributes and methods for these objects, abstracting the objects to
define the classes, and establishing the relationships between these classes. Once that
has been completed, the software architecture can be developed, and then
implemented, tested, and delivered.

Structured design is a more traditional approach to software development. Structured
design begins by performing a functional top-down decomposition. This top-down
development then apportions system functionality to various modules as laid out in the
decomposition. Each module is then designed such that ideally there is only one start
and end point. The functionality is then achieved through sequence, selection, and
repetition structures. The system architecture is communicated through structure charts,
data flow diagrams, flow charts, state diagrams, and other artifacts.

Both structured design and object-oriented design are capable of being used to capture
and implement the functionality required of the Reactor Module. Structured design has
been chosen as the method of choice since it has widespread experience and use in
safety critical real-time embedded systems applications, has the most developed formal
testing methods for verification, and has a very straight forward approach to design.
Object-oriented design does have advantages with modularity and data-hiding, but has
some disadvantages as well. Object-oriented designs need to avoid several concepts
and coding constructs when being used in a real-time embedded application to ensure
time response can be met and to avoid any software inspection burdens. Additionally,
there is not a great deal of experience with object-oriented approaches when applied to
safety critical real-time embedded software applications. These concerns made
structured programming a more desirable approach for the extreme environment
involved in the Prometheus Reactor Module.

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 17 of 24

2.3.3 Language Choice
A natural outgrowth of choosing a structured design methodology is the use of a
structured programming language to complement the design methodology. The
language chosen for use is ANSI C. This is a very mature and well understood
programming language that is widely supported by compiler vendors. The C language
has also been adopted by other organizations within the Prometheus team.

Other languages such as Java and C++ have a great deal of object-oriented features
that must be avoided (and Java requires a virtual machine). Ada has been used by
many embedded projects, but does not have as large of a developer base as C.
FORTRAN has great power for applications heavy in numerical computation, but is not
as well suited for embedded applications. The C language is a high level language that
allows for very low level functionality when necessary.

3 WORK PRODUCTS
There are many work products defined by the PSMP. These products are enumerated
here and related to s~ecific Reactor Module software deliverables, or related deliverable
items.

3.1 Software Development Plan
The software development plan represents the project specific embodiment of the
principles and processes laid out in the PSMP. This document also lays out the
schedule for software delivery for the various work products.

3.2 Requirements
Requirements are maintained in a requirements management database and issued as
various versions of a Functional Requirements Document. Appropriate levels of control
and traceability are applied at the database and document level.

3.3 Risk
As risks are identified they are documented and evaluated.

3.4 Risk Mitigation
Risk mitigation is identified in the same document that includes the risk.

3.5 Configuration Item
Configuration Items refer to any work item that is placed under configuration control.
This includes requirements and requirements documents, source code, executables, test
cases, and test results. The configuration management process identifies the system or
systems used to control each configuration item.

3.6 ControlledlQuality Records
Controlled records or quality records refers to items that document specific things that do
not change, or capture a moment in time, thus do not require configuration control
because once created they do not change. These items include software inspection

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67620-0007
Page 18 of 24

reports, software testing reports, and the results from auditslself assessments. Once
issued, these items are captured and retained through tools like ADSARS.

3.7 Software ItemlExecutable
The software executable is the final compiled and linked image that is uploaded to the
supervisor or controller, it also refers to the Reactor Module Ground software.
Executables may also consist of tools generated to support software development by the
NRPCT.

3.8 Software Component
A software component consists of a collection of software modules that combine to
achieve a specific goal. From a software architecture standpoint, an example might be
the modules that combine to create the fault management system for an executable.

3.9 Software Unit
A software unit refers to a software module or compilation unit. This can be thought of
as a source file with its associated header files. A module has been defined at the
architectural level as providing a set of common data structures and functions to achieve
a specific goal.

3.10 Software ClasslElement
For object-oriented designs, a software class is simply the definition of a class, but for
structured methods, the element refers more to a specific function or data structure.

3.1 1 Software ClasslElement Instance
In object-oriented designs, the class instance refers to specific instantiation of objects.
For structured methods, this is the creation of arrays, linked lists, or other data structures
from the definitions provided by the software elements.

3.12 Software Item Delivery Record
The software item delivery record consists of the documentation provided with a
software delivery that identifies versions and all source code and tools used to generate
a specific version of the software.

3.13 Design View
The design view includes structure charts, flow charts, context diagrams, state diagrams,
and other items necessary to convey the software architecture in a meaningful manner.

3.14 Design Document
The design document provides the overall software architecture, as well as details for
each module to provide information necessaw to understand the imolementation of the
software requirements.

3.15 Source Code
The source code is written to define each of the software modules laid out according to
the software architecture.

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 19 of 24

3.16 Users Guide
The users guide provides the information necessary to be able to control the software.
The guide would define all of the features supported by the Ground software to be able
to communicate and send commands to the Reactor Module

3.17 Command Dictionary
The command dictionary provides the list of hardware or software commands that can
be sent to the Reactor Module. For example, the command to start up the reactor would
be listed in the command dictionary.

3.18 Telemetry Dictionary
The telemetry dictionary provides a listing of all of the telemetry that will be provided
from the Reactor Module.

3.19 Flight Parameters
Flight parameters include various constants that might be set for the flight.

3.20 Flight Rules
Flight rules are any restrictions or guidance that the Reactor Module must obey. For
example, not allowing a reactor startup while in the launch sequence of the mission
would constitute a flight rule.

3.21 Review Materials
The review materials are the materials generated by the various design reviews that the
software must undergo to achieve the necessary quality goals.

3.22 Training Record
The training record is a record of the training each person undergoes while learning to
perform a specific role.

3.23 Test Procedure
A test procedure provides a step-by-step repeatable sequence necessary for a particular
test.

3.24 Test Report
The test report is the documentation of the results of performing one or more test
procedures.

3.25 Test Environment
The test environment is the hardware and software configuration, along with the
configuration of any test tools used while performing testing. This is documented to be
able to reproduce tests results.

3.26 Test Plan
The test plan is the overall plan used to qualify the Reactor Module software, and
identifies the strategy and sequence of events to run the various test procedures.

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 20 of 24

3.27 Change Request
The change request is the means used to control changes to the software. Change
requests go through a formal review process to determined when and how a change
should be allowed.

3.28 Problem Report
A problem report documents the discovery of a defect (bug) in the software. Problem
reports are reviewed in a manner similar to change requests to determine when and how
to change the software to correct the defect.

3.29 Requirements Document
The requirements document provides all of the software requirements as a particular
baseline. The requirements can be traced bi-directionally to the software
implementation.

3.30 lnterface Requirements Document (IRD)
The interface requirements document specifies the requirements on the interface
between the Reactor Module and the Spacecraft Module.

3.31 Interface Control Document (ICD)
The ICD defines the data and commands that are transmitted over the interface.

3.32 Schedule Task
A schedule task is a specific task listed in the project schedule

3.33 Schedule
A schedule is a listing of all of the various tasks, along with start and end dates for each
task, and a relationship between the various tasks.

3.34 Budget
The budget identifies both manpower and funds necessary to develop the software

3.35 Resources
Resources are the equipment, time, people, and money necessary to develop the
software.

3.36 Work Breakdown Structure (WBS) Element
An item in the WBS, may be high level, or may be a low level item contained in a higher
level item.

3.37 Work Breakdown Structure
The work breakdown structure is the relationship between all of the identified tasks
necessary to develop the software. The WBS provides the relational framework for
developing the budge and schedule.

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 21 of 24

4 TOOLS
There are many tools that are necessary to develop software for the SNPP. These run
the gambit from requirements tools, to compilers, to test tools, to configuration
management tools. Many factors affect the decision to use one set of tools over
another. These factors include ease of use, overall availability, consistency with other
software development efforts in the Prometheus project, and developer familiarity with
the tools.

4.1 Requirements Management
Requirements management tools are a series of interfaces to a database that allow the
developer to quickly document requirements, show how hiaher lever requirements are
broken' down,trac; requirements to the code implementat& and to the'testing which
validates them. Because this tool will play a large roll throughout the development
process, its choice is particularly important. Within the Prometheus project there is also a
desire to standardize on certain tools, because of the interrelated requirements with JPL
and the spacecraft contractor using a standardized requirements tracking tool will be
particularly important.

4.2 Configuration Control
Configuration control tools provide controlled access to a data repository. This controlled
access allows for procedures such as approvals (CCB) and reviews to be completed
prior to code submission. Another benefit is that multiple developers working on the
same code cannot overwrite each others work. Conflict detection and merging is
handled by the configuration control tool. The configuration control tool provides a
historical record of all documentslcode under its control. Ideally any document at any
point in its history can be retrieved with little effort.

4.3 Problem Reporting
A problem reportingldefect tracking tool maintains a database of defects found either
internally or externally. This tool allows testers to submit and track defects and allows
cognizant developers to monitor these items. Ideally the tool will tie into the configuration
management tool in order to tie fixes in the defect tracking tool to specific code
submissions.

4.4 Compilerllntegrated Development Environment
The integrated development environment (IDE) provides a common interface to code
development tools, debugging tools, compilers, and other tools. The IDE will typically
include a code aware editor which provides color coding and automatic formatting
functions. The common interface can significantly improve developer productivity.

4.5 Test Tools
A number of test tools will be used during different phases of development. These tools
range from tools used by developers while writing code to full integration testing.

4.5.1 Debugger

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 22 of 24

The debugger is used examine the internal state of a running program. This allows a
developer to quickly find and understand defects in the code. Debuggers are a
significant factor in the productivity of developers and the quality of the code. Because of
this, the functionality of the debugger is a driving factor in the IDE selection.

4.5.2 Code Coverage
Code coverage tools are used in testing to verify that all code paths are executed. There
are several levels of code coverage ranging from simple statement coverage up to
Modified Condition I Decision Coverage (MCIDC). For the Prometheus project MCIDC
will be required. MCIDC requires that every point of entry and exit in the program be
invoked at least once, every condition in each decision in the program be taken all
possible outcomes at least once, and each condition has been shown to affect the
decision outcome independently.

4.5.3 Unit Test
Unit testing tools provide a framework for developing efficient and repeatable unit tests
This often includes code generation support and automated test run facilities. By
maintaining a database of previous test runs and results regression testing can be
accomplished with a minimum of effort.

4.6 Other
The above list is not intended to be all inclusive. There is a wide variety of tools
available that are designed to facilitate software development. Due to the desire among
the Prometheus team members for commonality many of the tools will be selected
through the Software Infrastructure Working Group. This should not rule out the
selection of additional tools to meet the specific needs of the NRPCT.

5 REVIEWS
There are many NASNJPL reviews related to the overall Prometheus project. There are
also NRPCT internal reviews. These are identified here.

NASAIJPL reviews:
Project Mission System Review (PMSR)
Project Preliminary Design Review (PDR)
Project Critical Design Review (CDR)

There may also be a PDR and CDR on a Module basis.

NRPCT reviews:
Software Requirements Design Review
Software Architecture Design Review
Software Code Inspections
Software Test Case Reviews

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 23 of 24

NRPCT Software Development Plan

Appendix A - Traceability

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
Page 24 of 24

6 APPENDIX A-TRACEABILITY [RESERVED]

6.1 PSMP Traceability

PSMP Requirement Number I NSMP Section Number
R-1 .I .5-1 each SMP shall include a reference I
to the SDE's WBS
R-1.1.5-la Each SMP shall include a
reference to a dictionary of the SDE's WBS
elements.
R-1.1.5-1 b Each SDE's WBS shall be
consistent with the software products'
architectural 'imp~ementatio~ view'.
R-1.1.5-2 Each SDE's WBS shall be
consistent with the WBS for the SDE's I I
parent organization.
R-1.1.5-3 Each SDE shall maintain I
consistency of the WBS throughout the
lifetime of the SDE.

6.2 SS473 Traceability

6.3 NR Software Engineering Policy Traceability

6.4 KAPL Software Engineering Manual Traceability

CONCURRENCEIDESIGN CHECK FORM FOR DOCUMENT NO. SPP-67610-0007 Date: 7130105

DOCUMENT TITLE: NRPCT Prometheus Reactor IBC Software Development Life Cycle, Design Methodology, and
Programming Language Selection for Approval, and Draftsoftware Development Process and Plan m for Information -

REFERENCES a) JPL Document: Prometheus Project - Project Software ENCLOSURE5 1. Space Electrical Systems Software Life
Management Plan (preliminaly), 982-00046, Rev. 0 Cycle, Methodology, and Language Choice

b) Bettis Letter: 6-REO(M)-CD-008, 3/17/05 for Prometheus Reactor IBC Software
c) KAPL Letter: ARP-686404196, 4/12/02 Development
d) NAVSEA Letter: Ser. 081<103-00484,2/6/03 2. NRPCT Reactor IBC Software Development
e) KAPL Letter: ARP-68640-0305,9/2104 Process Manual
f) KAPL Letter: FSO-64K20-04-143, 12/21/04 3. NRPCT Reactor Module Software
g) BPMl Letter: BPMI-ICS-PMP-00731, 3/11/05 Development Plan

1. ADSARS: PERMANENT RECORD: Yes X No - Repository MFLIB Corporate Author: - KAPL NR PROGRAM K

Key Words: Prometheus. Software, Life Cycle. Software Development Plan. ISC, NRPCT
Need to Know Categories REP
Available Sites:
Design File Location(s)

2. DESIGN CHECK
Tune of Check

C. Checked calculations made

D. Checked computer input andlor output

E. Computer Programs approvedlqualified

F. Performed independent audit

G. Spot checked significant points
H. Reviewed methods used

I. Reviewed results for reasonableness

J. Comparison with test data
K. Reviewed vs. drawings

L. Verified procedures

M. Technical content reviewed

N. Manaaement verification of adequate

3. CONCURRENCE REQUIREMENTS:
SPPMANAGER
NUCLEAR ENGINEERING
REACTOR THlMECH DESIGN
REACTOR EQUIPMENT

SPP MECHANICAL
SPP ELECTRICAL

Comments: (Including Reference to Check Document If Appropriate)

-
Indicate signatures required by X: -

ADVANCED CONCEPTS FLUID DYNAM
SHIELDING STRUC. ENGR
REACTOR SAFETY DRAFTING
TO X TAH for M. Katzer QA

per telewn
RSO OTHER
FSO X TAH for D. Robare BETTIS

per telemn
BPMl

X bfi ADMlN REVIEL

5. RELATED SUBJECTS: Commitment Made (YIN) N Commitment Complete (Y/N) N
UTRS Implication (Y/N) N Design Basis Info. (YIN) - UTRS Doc. # N/A

-
N

N Safety Council Review (Y/N) - Design Review (YIN) N

PRE-DECISIONAL - For Planning and Discussion Purposes Only
Knolls Atomic Power Laborumw
is operarod/or rhr US. Depanmenr o/Energy
by KAPL, Inc., u LockheodMomn company

Page 6
6. Distribution:

NR -
TH Beckett, 08B
S. Bell, 081
DI Curtis, 08s
DE Dei, 08A
AJ Demella, 08H
JE Eimes, 08F
RA Glas, 08H
MW Henneberger, 08K
SR Kauffman, 082
JM Kling, 08Y
JM Mckenzie, 08U
TJ Mueller, 08R
JP Mosquera, 08C
JW Moy, 08M
MD Natale, 081
WJ Pollock, 08T
TN Rodeheaver, 081
SJ Rodgers, 08E
CH Oosterman, 08C
SJ Trautman, 08V
RA Woodberry, 08G

KAPL -
JM Ashcroft. 132
CF Dempsey, 111
KC Loomis, 132
DF McCoy, 111
H. Schwartzman, 132
SA Simonson, 081
MJ Wollman, 111
M Ryan, 132
T Hamilton, 132
D Schroeder, 132
B Robinson, 132

~6

DJ Potts
GM Millis
D. Clapper
W. Leahy
S. Cramer

3ettis
:W Clark, OlC/SE
:D Eshelman,
36E/SE
)P Hagerty, 38D/SE
IC Jewart, OlC/SE
)R Riley, 05P/MT
:A White, COBl/QMA
1J Zika, OlC/SE
)J Robare, 43T/SE
:S Blazeck, 43T/SE

3PMI-P
;D Gazarik
IF Hanson

'NR
c ~ n d e s
<J Argenta
JF Koury
;. White

3PMI-S
F. Barilla

