o

KAPL, Inc.

Knalls Atomic Power Laboratory
Post Office Box 1072 Schenectady, N.Y. 12301-1072
Telephone (518) 395-4000 Facsimile (518) 395-4422

A
LOCKHNEED MAR‘I’J%V

SPP-67610-0007

July 30, 2005

Page 1

The Manager

Schenectady Naval Reactors Office
United States Department of Energy
Schenectady, New York

Subject:

References:

Enclosures:

Dear Sir:

Purpose:

Prometheus Reactor I&C Software Development Methodology, for Action

(a) JPL Document: Prometheus Project — Project Software Management Plan
(preliminary), 982-00046, Rev. O

(b) Bettis Letter: Reformatted Software Engineering Policy, for NR Information,
B-REQ(M)-CD-008, 3/17/05

(c) KAPL Letter: All Projects: NNPP Equipment: Software Qualification by
Criticality Level — Three-Prime Task Force Recommendation; For NR
Approval, ARP-68640-01986, 4/12/02

(d) NAVSEA Letter: All Projects — Shipboard Software Qualification by Criticality
Level — Three-Prime Task Force Recommendation; Approval with Comment
and Request for Prime Contractor Action, Ser. 08K/03-00484, 2/6/03

(e) KAPL Letter: All Projects: NNPP Standard for Software Qualification by
Criticality Level; For Concurrence, ARP-68640-0305, 8/2/04

(f) KAPL Letter: KAPL Comments and Concurrence to Proposed NNPP Standard
for Software Criticality Level, FSO-64K20-04-143, 12/21/04

(g) BPMI Letter: All Plants — NNPP Standard for Software Qualification by
Criticality Level; BPMI Concurrence, BPMI-ICS-PMP-00731, 3/11/05

(1) Space Electrical Systems Software Life Cycle, Methodology, and Language
Choice for Prometheus Reactor |1&C Software Development

(2) NRPCT Reactor 1&C Software Development Process Manual (NRPCT-RIC-
SDPM-001)

(3) NRPCT Reactor Module Software Development Plan (NRPCT-RM-SDP-001)

The purpose of this letter is to submit the Reactor instrumentation and Control (1&C) software life
cycle, development methodology, and programming language selections and rationale for
project Prometheus to NR for approval. This letter also provides the draft Reactor I&C Software
Development Process Manual and Reactor Module Software Development Plan to NR for

information.

PRE-DECISIONAL ~ For Planning and Discussion Purposes Only

Knolls Atamic Power Laboratory
ts operated for the U.S. Depariment of Energy
by KAPL, Inc., a Lockheed Martin company

SPP-67610-0007
Page 2

Background:

As part of project Prometheus, the NRPCT has been working with other team members (JPL,
NGST, and Hamilton Sundstrand) to create a set of high level process requirements and
principles for software development that would allow for better communication and commonality
between the various software efforts within the Prometheus program. These process
requirements have been gathered in preliminary form in the Reference {(a), Project Software
Management Plan (PSMP). The guidance provided in the PSMP would then be expanded for
each team organization in a local Software Development Plan (SDP), which would trace back to
the PSMP and any local organizational requirements.

As part of developing the Reactor I1&C SDP, different software life cycles were examined to help
define the software development process. Different design methodologies and languages were
also examined for appropriateness. These comparisons lead to the selections provided in

Enclosure (1) and helped define the processes and development plan in Enclosures (2) and (3).

As part of the process for developing software for the Naval Nuclear Propulsion Program
{NNPP), the software Criticality L.evel (CL) must be defined for each deliverable. The
qualification of software by CL was originally proposed as part of a three-prime task force
recommendation to NR in Reference (c). NR approved the task force recommendations with
comment in Reference (d). The NR comments were incorporated into the NNPP Software
Qualification by Criticality Level (SQCL) document and distributed for three-prime concurrence
by Reference (e). KAPL and BPMI concurrence to the SQCL is documented in References (f)
and (g). Bettis concurrence to the SQCL is pending.

Discussion:

Enclosure (1) provides the options and rationale for the selection of a software life cycle, design
methodology, and programming language for NR approval. The selections consist of the
Incremental software life cycle, structured design methodology, and C programming language
for Prometheus reactor I&C software development. After a comparison of the major software life
cycles that have been defined for use with different software development activities, the NRPCT
has selected the Incremental life cycle for use with Prometheus Reactor 1&C software
development. The Incremental life cycle provides for a series of software releases that provide
increasing functionality to afford earlier opportunities for integration with other software
components. This will allow performance of interface testing and help mitigate risk. The
selection of a Structured design methodology allows for a robust software architecture design
making use of top-down design, functional decomposition (hierarchical refinement of
functionality from a course level of detail to a fine level of detail), and structured programming.
This allows for strong modularity in the design while avoiding some of the inspection burden
associated with object-oriented design methodologies. The selection of the C programming
language complements the use of structured design. Additionally, the C language has been
used in many space applications and minimizes the inspection burden that may be associated
with languages such as C++,

Enclosure (2) provides the draft software development processes based on the Incremental
software lifecycle. These processes incorporate guidance from both the Reference (a) PSMP,
and the Reference (b) Naval Reactors Software Engineering Policy. The Incremental lifecycle is
defined in a series of tasks, starting with initial requirements and architecture development,
through increment planning. The development tasks applied within each increment include:

SPP-67610-0007
Page 3

detailed requirements development, detailed architecture development, module design, module
implementation, unit testing, integration, system test, release, and independent verification and
validation. Processes have been identified for each of the development tasks, and for wide-
ranging tasks such as configuration management and defect tracking.

Enclosure (3) provides the draft Prometheus Reactor Module Software Development Plan (SDP)
and is a subordinate document to the NRPCT Software Development Process Manual (SDPM).
The SDP provides mission specific definitions of project roles, deliverables, a documentation
hierarchy, organizational division of responsibilities, and a description of tools. The draft SDP is
a higher level SDP that would then have deliverable specific sub-tier development plans tracing
up to it. It is envisioned that the flight software, ground software, and test beds would each have
a development plan that would trace up to the Reactor Module SDP. Below each subordinate
SDP would also be a work breakdown structure and schedule specific to each deliverable.
These subordinate deliverable specific SDPs will be developed and recommended in future
submittals.

It will also be necessary to define the software Criticality Level for each NRPCT deliverable. As
described in the Background, the SQCL is currently out for three-prime concurrence. Once the
mission has been fully defined for Prometheus, the Criticality Level for each NRPCT deliverable
will be assigned and justified. This will be provided to NR for approval via separate
correspondence.

Extensibility to Lunar Mission:

Enclosures (1) and (2) were developed to be mission independent and as such, the major
conclusions reached concerning the software development life cycle, software design
methodology, and the selection of a programming language are fully extensible to a lunar space
reactor system. Enclosure (3) was developed specifically for the Prometheus deep space
mission. As such, the detailed implementation described in Enclosure (3) is specific to a JIMO
type mission, for a lunar space reactor system a separate software development plan containing
the same format and kind of information would be developed.

Conclusion:

NR approval of Enclosure (1) for the selection of the Incremental software life cycle, structured
design methodology, and C programming language for NRPCT Prometheus Reactor |1&C
software development is requested.

Enclosure {2) and Enclosure (3) for the draft NRPCT Software Development Process Manual
and Software Development Plan are provided to NR for information.

@

SPP-67610-0007
Page 4

Definition and justification for the NRPCT Reactor 1&C software Criticality Level, as documented
in Reference (e), will be provided by separate correspondence.

This letter has been reviewed and concurred to by the Manager of KAPL SPP Space Electrical
Systems — Systems and Software Design (M. Ryan), and the Manager of Bettis Space
Instrumentation & Control Design (D. Robare).

Very truly yours,

e (e

Thomas A. Hamilton, Engineer
Space Electrical Systems — Systems and Software Design
Space Power Program

\.‘

Enclosure (1) to
SPP-67610-0007
Page 1 of 19

Space Electrical Systems
Software Life Cycle, Methodology, and Language
Choice for Prometheus Reactor 1&C
Software Development

Thomas A. Hamilton
David Schroeder
Brian Robinson

July 2005

PRE-DECISIONAL — For Planning and Discussion Purposes Only

L

This page intentionally left blank.

Enclosure (1) to
SPP-67610-0007
Page 2 of 19

1

2

Enclosure (1) to

SPP-67610-0007
Page 3 of 19

Table of Contents
INEFOQUCTION ... e e e e 4
1.1 DEfiNIIONS ... e 4
1.2 BCTONYINIS L e e e e e e e e e 4
MELhOAOIOGIES.ot 5
2.1 Software Life CyCle ... 5
2.1.1 Waterfall Life CYCle.......oooiiiiieiee et 5
2.1.2 Spiral Life CYCle. ... 6
2.1.3 Incremental Life CyCle ... 6
214 Evolutionary Life Cycle ... 6
21.5 UNified ProCESS ..o e 7
216 Life Cycle ChoiCe...........ocoii i 8
2.1.6.1 Life Cycle Evaluationccccoiiviniiic e . 9
2.1.6.2 Life Cycle Choice - Incremental Life Cycle................ccoooiiiiiiiinninne, 9
2.2 Design Methodology. e 13
221 Object-Oriented Methodologyoooooiiiiii e 14
2.2.2 Structured Methodology...........oooiiiiii e 15
223 Method Choice - Structured ... 17
2.3 - g o [E =T T U PPE 17
2.3.1 O T S SO U U RO O OO U TP S U U U ST TOTPUPIUUTPRRPUROTONY 18
2.3.2 o e a e 18
2.3.3 ASSBIMDBIY ... e 18
234 ONET e e 18
2.3.5 FInal ChoiCe - C ..o 18
1000 oot [V T3 o o TP TSR 18

Enclosure (1} to
SPP-67610-0007
Page 4 of 19

1 INTRODUCTION

Software development in the NRPCT for the Prometheus project requires a high level of
quality in both software and documentation. Design, integration, and V&V (verification &
validation), processes and standards are defined and performed in order to provide this
high level of quality. Additionally, documentation of the rationale for the choices in the
software life cycle, methodology, and development language is necessary to provide the
basis for these decisions, and to help train new developers that may enter the project.
The software life cycle provides the framework and sequence for the requirements,
design, implementation, and testing activities performed as part of software
development. The methodology (object-oriented or structured) provides the approach to
requirements development and software implementation. Programming language
choice is influenced by many factors, including the chosen method and developer
experience.

The NRPCT has chosen the Incremental software life cycle for the development of the
Reacter Module Flight and Ground software. The structured design methodology has
been chosen for requirements and software implementation, and the C programming
language has been chosen for software implementation. The options considered and
justification for each of these choices is presented in the following sections.

1.4 Definitions'

Design Methodology — One of several techniques used to approach software design,
object-oriented design centers around coupling data with algorithms, structured design
centers around top-down design with modularity (function call/return).

Process Model - A model of the processes performed by a system; for example, a model
that represents the software development process as a sequence of phases. Process
models have a focus on management and support activities (program management,
configuration management, quality assurance, process definition, etc.)

Software Life Cycle — The period of time from the inception of a software project to the
retirement of that software, including requirements, design, implementation, testing,
deployment, and maintenance. The life cycle focuses on the technical activities needed
to analyze, design, and implement the desired system.

1.2 Acronyms

Acronym Definition

IEEE Institute of Electrical and Electronic Engineers
JPL NASA Jet Propulsion Laboratory

MC/DC Modified Condition/Decision Coverage
NRPCT Naval Reactors Prime Contractor Team

UpP Unified Process (Rational Unified Process)

! Definitions taken, in part, from IEEE Std-610

Enclosure (1) to
SPP-67610-0007
Page 5 of 19

. [V&V I Verification and Validation |

2 METHODOLOGIES

2.1 Software Life Cycle

Software development for project Prometheus is performed using a phased development
process with incremental builds. These incremental builds provide increasing levels of
functionality until the full functionality is provided in the final build. The Prometheus
incremental build plan consists of software from all modules (Spacecraft, Mission,
Reactor, and Ground). This creates the desire for the Reactor Module 1&C software to
provide incremental builds to fit with the Prometheus overall incremental build plan as
developed in discussions with various other Prometheus software development
organizations. This implies that communication functionality should be present in early
increments to be able to interface with the other modules.

Although there is a need to provide software in various increments to the various
Prometheus team members, there is still a large degree of latitude for the NRPCT to
choose the optimal software life cycle to develop the Reactor Module software. Several
life cycles have been analyzed including the Waterfall, Spiral, Evolutionary, Rational
Unified Process (UP), and others. Each of these life cycles are presented briefly, with
the criteria weighted and a final choice presented.

. 2.1.1 Waterfall Life Cycle

The waterfall life cycle is often considered the “traditional” model for software
development. The waterfall consists of a systematic flow from step to step. The various
steps are as follows:

1) Requirements elicitation and development — The functional
requirements for the system are developed. This includes gathering
user requirements, analyzing and developing the system requirements
from the user requirements, and documenting these requirements.

2) Software design - Once the requirements have been established,
software design can be performed to lay out the system architecture,
define all of the software modules, and assign functionality to each
module. Either object-oriented or structured methodologies may be
used. The design is documented in an appropriate format (UML, Flow

Charts, etc.)

3) Software implementation - Once the design has been established and
the modules are defined, these modules are then coded.

4) Integration - All of the discrete software modules are combined

together to create the overall system. Integration testing is performed
to ensure the validity of the combined modules.

5) Test - Testing is performed on the software system. Testing is
performed in several phases (Unit Test, System Test, and Acceptance
Test).

6) Operation — The system is released for use.

. 7) Maintenance — Any defects encountered are fixed. Functionality may
be refined.

Enclosure (1) to
SPP-67610-0007
Page 6 of 19

The waterfall model is one of the simplest to understand, but can be unrealistic since
errors encountered may force rework of earlier tasks, and often requirements are in a
state of flux and change late in the course of a project. The waterfall life cycle is most
strongly applicable in an environment where the requirements are well defined early in
the process and do not change. If requirements are in flux, this causes a great deal of
iteration and rework which the waterfall model is not well equipped to handle. The
documentation requirements for the waterfall method can be significant resource
investments.

2.1.2 Spiral Life Cycle

The spiral software development life cycle is so named due to a cyclic series of
development steps performed with increasing definition to the requirements each loop
around the spiral. One of the main distinguishing features of spiral development is the
institutionalized inclusion of risk analysis and risk management. Prototyping is also used
to help define the requirements and mitigate risk.

Each transit around the spiral touches on four major areas:
1) Determine cobjectives, alternatives, and constraints,

2) Risk analysis and prototyping,

3) Requirements development and design,

4) Planning for the next spiral.

The risk analysis is used to ensure that risk can be managed or that if at any point during
the development cycle, if the cost of risk mitigation is too great, the project can be
cancelled prior to a full commitment of resources. The final loop around the spiral is very
similar to the traditional waterfall. The prototype is discarded and a formal design is
developed for the software product, flowing into an integration and test program.

Spiral development is most useful for high risk developments to allow a full vetting of
risks prior to fully committing to design.

2.1.3 Incremental Life Cycle

In the incremental life cycle, the development work is focused on the construction of one
part (subsystem) of the final product at a time. Each subsystem is finalized and planned
for release in a specific version of the product. Each release is a functional version of the
application containing more features of the final desired product than the previous
increment. Within each increment, a waterfall development process may be followed to
provide the requirements, design, and testing for that particular increment.

The project scope must be fully defined from the start. This allows the content of each
release to be based on priorities set by the project team. The order of feature
construction can be selected in different ways. For example, riskier functions may be
chosen for earlier increments. The fundamental system architecture and some important
requirements should also be implemented in earlier increments. The Incremental life
cycle provides the ability to integrate early and often. This helps to minimize the impact
of defects by finding them early in the life cycle.

2.1.4 Evolutionary Life Cycle

Enclosure (1) to
SPP-67610-0007
Page 7 of 19
The evolutionary model defines and develops one piece of a system at a time. This
allows the process to respond to change in the system requirements and add
functionality as new requirements come to light. Typically this is accomplished through
many short iterative development cycles. The basic functionality is developed first with
additional features and functionality being implemented or modified as the requirements
evolves. The evolutionary concept is incorporated in many of the other life cycle models.

While the evolutionary model is well adapted to handling changing requirements (since it
is only focused on one portion of functionality at a time), there is no firmly established
end goal. Because of the lack of a well defined end point, estimating costs and
schedules is difficult.

2.1.5 Unified Process?

The Unified Process (UP) (developed by Rational) is an iterative incremental process
with portions of all life cycle stages being performed on each iteration (requirements,
implement, test, etc.). UP defines 4 phases of software development, with a milestone
at the end of each phase to decide when to proceed to the next phase. Workflows are
defined that extend across each phase. Workflows roughly correspond to the steps of
the waterfall life cycle. Within each phase, several iterations are performed with aspects
of all workflows performed in each. Each iteration is similar to a mini-waterfall, adding
functionality with advancing iterations. UP embraces the use of Use Cases for
requirements analysis.

The four phases are defined as follows:

1) Inception — The business case for the project is established. Initial use cases are
defined. A baseline project plan is developed showing phases and iterations.
Prototypes are developed.

2) Elaboration — The functional requirements are fleshed out. A baseline
architecture is established. User manual is started. Further prototypes are
developed.

3) Construction — A series of iterations adding functionality ending with the fully

- developed product and user manual.

4) Transition — Beta testing, training, and marketing.

The workflows consist of

1) Business modeling — Ensure the software development dovetails with the
business processes.

2) Requirements - Development of functional requirements of the system. Usually
performed through the development of use cases.

3} Analysis & Design — Analyze requirements and develop software architecture.

4) Implementation — Code the requirements into the modules defined by the
architecture. Integrate software modules into whole product.

5) Test - Ensure proper integration. Unit test modules. Ensure requirements are all
implemented.

6) Deployment — Packaging, distribution, all activities associated with formal release
of the product.

2 Based on information from “Rational Unified Process — Best Practices for Software
Development Teams” A Rational Software Corporation White Paper, © 1998, Rational Software
Corporation

7)

8)

9)

Enclosure (1) to
SPP-67610-0007
Page 8 of 19
Project Management - Planning and resource management. Mitigate risk,
monitor progress.
Configuration & Change Management — Ensure consistent configuration of
product. Handle changes, defect reporting, multiple developers and
simultaneous changes.
Environment — Set up and manage software development environment (tools,
compilers, training, processes).

There are specific deliverables tied with each phase in the Unified Process, and each
phase also has a milestone set of objectives the must be met to go on to the next phase.

The Inception phase deliverables include a vision document, initial use cases,
initial risk assessment, a project plan, and several prototypes. The Inception
milestone is the Life Cycle Objectives which provides stakeholder concurrence
on scope and schedule estimates, requirements understanding, credibility of cost
and schedule estimates, depth/breadth of prototype, and actual expenditures
versus planned expenditures.

The Elaboration phase deliverables include a more complete use case model,
any non-functional requirements have been captured, software architecture
description, and development plan showing iterations. The Elaboration milestone
is the Life Cycle Architecture which establishes if the project vision is stable, if
the architecture is stable, if the plan is accurate, does the prototype show how
major risks have been addressed, do the stakeholders agree with the vision, and
is the resource expenditure against the project plan acceptable.

The Construction phase deliverables include the software product integrated on
the required platforms, the user manuals, and a description of the current
release. The Construction milestone is the Initial Operational Capability which
establishes if the product release is stable and ready for deployment, if the
stakeholders are ready, and if the resource expenditure vs. plan is acceptable.

The Transition phase deliverables include achieving user self-supportability,
achieving stakeholder concurrence that all is complete and consistent with the
vision, and achieving the final product baseline. The final milestone is the
Product Release which establishes if the user is satisfied and if the resource
expenditure is acceptable.

The Unified Process is closely tied with UML and object-oriented design, so may not be
as directly applicable to structured approaches. Iterations and increments provide
flexibility to add smaller portions of functionality and over time build up the full system.
UP is well suited for management of change.

2.1.6

Life Cycle Choice

Each of the life cycles presented here have areas of strength, and areas of
weakness. It is important for the Prometheus NRPCT software development
effort to identify a software life cycle that provides the rigor necessary for safety
critical reactor software, but is well tailored for the problem domain and does not
invent steps merely for the sake of process.

Enclosure (1) to
SPP-67610-0007
Page 9 of 19

2.1.6.1 Life Cycle Evaluation

Each software life cycle has concepts that it embodies that are more or less applicable
to the development needs for the Space Reactor Module 1&C system. The following
table provides an evaluation of each life cycle presented above:

Life cycle Positives Negatives
Waterfall 1. Well defined. 1. Doesn’t react well
2. Defined to change.
documentation. 2. Requirements
3. Simple. must be well
defined up front.
Spiral 1. Embodies risk 1. High level
management. understanding of ali

2. Use of prototyping. | requirements
needed up front.

Incremental 1. Allows for prioritized | 1. Scope of
development and requirements must
release of be understood up
functionality. front.

2. Supports risk
management to
choose functionality
developed per stage.
3. Promotes early

integration.
Evolutionary 1. Reacts well to 1. Lack of well
change. defined end point.

2. Use of prototyping.

Unified Process 1. Reacts well to 1. Tends to be
change. biased to Use
2. Project Cases and object-
management and oriented
metrics directly technologies.
supported.

2. Use of prototyping.

Each life cycle identified above has valuable features necessary to the success of the
Space 1&C software development task, but also contains detrimental features as well.
The incremental life cycle matches well with the Prometheus goals because many of the
requirements will be understood prior to increment planning.

2.1.6.2 Life Cycle Choice - Incremental Life Cycle

The incremental software development life cycle was selected since it provides for the
ability to separate the development into smaller increments to match up with the
Prometheus integrated build schedule, it allows for the use of an iterative waterfall

Enclosure (1) to
SPP-67610-0007
Page 10 of 19
approach within each increment, and risk analysis can be performed up front to aid in
assigning functionality to each increment.

This life cycle uses an incremental development method {each increment is one pass
through the "waterfall”). A single product release will contain at least one increment.
However, the work necessary to generate a product release will normally be split into
multiple, relatively independent increments. Each official release has progressively
more features and capabilities than the previous release. These increments dovetail
well with the JPL and NGST software delivery processes.

Each increment may contain several iterations as testing identifies deficiencies which
may then drive changes to the requirements, design or source code. The iterations
continue until all requirements for the life cycle task have successfully passed all testing.
Based on lessons learned from the development and testing process, requirements may
be relocated to another stage or may be removed entirely.

Within each increment, the various phases are presented much like the waterfall
method, showing a flow from requirements, to implementation, to test. This allows for
documentation of the requirements and the design since these items are critical for the
Space 1&C software development. Unit testing is shown prior to integration to reflect that
each individual module should be tested prior to effort being expended in integration.
The emphasis on team inspections and independent design reviews early in the life
cycle will result in fewer defects detected in testing, where the cost to fix the defects is
traditionally an order of magnitude greater. This also helps to minimize rework in later
stages. One of the strengths of this model is the explicit representation of defect
tracking and the ability to reenter earlier phases in response to defects. This may
involve several iterations within a increment.

Figure 1 provides an illustration of the overall life cycle. Notice that the initial software

requirements are split among the expected releases but that the final list of requirements
is usually modified as a result of work performed during the individual stages.

Figure 1 — Overall Incremental Software Development Life Cycle

Enclosure {1) to
SPP-67610-0007
Page 11 of 19

1. Initial Requirements (include
quality aftributes)

Inspect & Design Review

h 4

2. Initial Software Architecture . -
nspect & Design Review
J' Architecture

3. Risk Analysis

v

4, Plan Incremental Builds

5. Develop and Release
Increment (several increments)

Initial Requirements — A high level survey of the functional requirements for planning
and architectural purposes. In this stage a risk analysis can be performed to help
determine which stage each requirement should be implemented in. These
requirements are inspected and design reviewed prior to NR submittal.

Initial Architecture — An initial architecture is established at this stage to facilitate a
framework for the staged delivery of functionality through the various versions. The
architecture will be inspected and design reviewed.

Risk Analysis — The risk analysis step allows for evaluation of the requirements and
design to aid developing risk mitigation plans and assigning functionality to each
increment.

Plan Incremental Builds — Each increment is planned out and functionality is
apportioned to each build.

Increment — Within each Increment, the various steps of the software lifecycle are
performed from design through implementation and test to provide the release version
for that stage’s functionality. A set of software, a requirements document of increasing
fidelity, and architecture/implementation documentation are outputs of each design
phase. Additionally, if necessary, risk analysis can be performed after each increment to
determine if the initial splitting of requirements is still valid or if functionality should be
shifted in following increments.

The following figure illustrates the process steps found in each increment.

Figure 2 — A typical stage of the Incremental Life Cycle

Inspect Requirements

5.1 Detailed Incremental
4 Requirements

/| 52 Analysis/Detailed
' A Architecture

’ " 5.3 Module Design

". g . \

5.10.b Defect
Dispaosition 5.5 Unit Test

5.6 Integration

X

L
|' a‘ »* ‘
F ,
[.
"‘ ‘.' " . ___-"'"——
..... Y- 5.4 Implementation/Codin = -
i Code Inspections e P el
- S i
e -7 // f
- // - I
-~ ra l

fe .*
AP L L
e, .-

5.7 System Testing

\

Test Readiness Review
|

Enclosure (1) to
SPP-67610-0007
Page 12 of 19

5.10.a Defect
Identification

Release Readiness Review

5.8 Document & Release

5.9 Independent Verification/
Validation/ Testing (Bettis)

Requirements — This step includes a refinement of the functional requirements to be
implemented in this increment. The requirements to be implemented were allocated as

part of the initial requirements phase.

Analysis - During this step, the requirements are analyzed to ensure completeness and

testability.
Design — Architecture is refined (initial architecture was established as part of initial
requirements phase). Modules may be decomposed further. Architecture is

documented.
Implementation — Software is written. This software shall be peer reviewed by other
developers in the group to ensure consistent application of coding standards, or to get

alternate ideas for implementation strategies.

Enclosure (1) to
SPP-67610-0007
Page 13 of 19
Unit Testing - Individual modules are unit tested to ensure functional completeness and
are also tested for MC/DC. These test cases are peer reviewed by other developers in
the group. This is accomplished prior to integration to allow for timely identification of
defects.

Integration — All modules are brought together and compiled to ensure the overall
system will work.

System Testing — The integrated system is tested to ensure it meets the overall
functional requirements.

Release — Once all previous steps have been completed and the software has reached
the appropriate level of quality, the system will be released. This includes both the
software, functional requirements document, and any design or implementation
documentation.

Independent Verification and Validation — Determine whether the products for the
increment fulfill the conditions imposed upon them. This includes the functional
requirements, architecture and design, implementation and coding, testing procedures,
and any associated documentation. May be conducted as an ongoing activity
throughout the incremental development process. Develop and perform tests to
determine whether the final software product fulfills the specific intended use.

Configuration Management - CM is applied to all stages of the process to ensure that
requirements, design, code, and test cases are controlled. This allows for traceability
and repeatability in the process. All artifacts subject to inspection, review, or test will be
placed under CM prior to the start of the verification activity.

Deficiency - ldentify - All deficiencies noted in artifacts under CM will be recorded and
analyzed. This is applied at each step in the life cycle.

Deficiency — Disposition — Each deficiency must be evaluated to determine the proper
fix, and the necessary rework to ensure proper regression testing.

This life cycle provides a robust framework to provide incremental releases as
functionality is developed. It applies a rigorous process to ensure the high level of
quality that is required by the NR program.

2.2 Design Methodology

Once a software life cycle has been determined there are different development
methods that can be used to achieve the desired system functionality. Both the object-
oriented methodology and structured methodology were considered for NRPCT software
development. The structured methodology was selected as noted below.

Enclosure (1) to
SPP-67610-0007
Page 14 of 19

2.2.1 Object-Oriented Methodology

The object-oriented methodology embodies seven principles in its approach to software
design: abstraction, encapsulation, medularity, hierarchy {inheritance), typing (data
types), concurrency, and persistence.**

Abstraction addresses complexity by considering only the properties of an object
necessary in a particular usage that distinguish it from other objects. This is done to
provide the most concise definition of the object that is possible. An abstraction of an
object can be referred to as a class of objects.

Encapsulation involves combining both data and the operations (functions) performed
on that data as tightly coupled. Through data hiding, an interface is defined for an object
that only exposes data or operations that are required by users of the object. This
allows a separation between the internal implementation of an object and the external
interface. This data hiding helps to make a concise design and prevent errors involved
with unintended changes.

Modularity involves breaking a problem into smaller self-contained chunks (modules),
and minimizing the interfaces between these modules. This allows for a logical view of
the system, and helps to promote modifiability since the scope of changes can be
minimized to the module level.

Hierarchy involves ordering classes of objects through inheritance. This allows sub-
classes of objects to inherit the interface and functionality of a parent class, while
refining or adding more specific functionality as part of the sub-class (child class). This
allows for class hierarchy trees with potentially many layers. Inheritance may be through
single inheritance, where a child class may have only one parent (base) class, or it may
be through multiple inheritance, where a child class may have several parent classes.
Single inheritance is the clearest to understand, while multiple inheritance may lead to
confusion and great care is needed to avoid errors.

Typing enforces the class of an object so that different objects may not be casually
interchanged. Strong typing ensures that objects can only be treated by their class,
weak typing allows for simple conversions between different classes, static typing is
bound at compile time, while dynamic typing is evaluated at run time. Related to typing
is the concept of polymorphism, or “many forms”. An example of polymorphism is the
C++ virtual functions which allows a base class to define a virtual function which is then
implemented in two or more separate child classes. When the child class objects are
treated as a base class object, and the virtual function is called, the child class
implementation for that function is called.

Concurrency is the process of running several actions or processes at the same time.

Persistence refers to the continued existence of an object after its creator has been
destroyed.

¥ Information taken from Object-Oriented Analysis and Design, by Grady Booch, © 1994,
Addison-Wesley.

* Methodology information from Object-Oriented Technology (QOT) In Civil Aviation Projects:
Certification Concerns (1999), by Leanna K. Rierson, FAA 1999

Enclosure (1) to
SPP-67610-0007
Page 15 of 19
The Object-Oriented methodology includes several phases, Object-Oriented Analysis,
Object-Oriented Design, Object-Oriented Programming, and Object-Oriented Verification
and Test.

Object-Oriented Analysis involves defining ali of the classes necessary to solve a
particular problem, and the behaviors and relationships of those classes. Several
models are used to identify all of these classes, including use cases, class-responsibility-
relationship (CRC) models, object-relationship models, and object-behavior models.

Use cases allow identification of requirements, CRC is used to identify the classes and
hierarchy, object-relationship helps to identify the relationships between various objects,
and the object-behavior helps to determine the necessary behaviors of each object.

Once the Analysis has been completed, Object-Oriented Design is used to translate the
identified classes into a software architecture. This is performed through four fayers of
design. The subsystem design layer separates the system into various subsystems
necessary to achieve the functionality. The class and object design layer separates
each subsystem into class hierarchies. The message design layer defines the
communications between objects. The responsibilities design layer deals with individual
algorithm design and data structure design for each object.

Object-Oriented Programming is used to implement the design using an object oriented
language such as C++ or Java.

Object-Oriented Verification and Test involves reviews, analysis, and testing of the
software. Testing has to be able to verify features of the object-oriented design, such as
encapsulation or any polymorphism used.

The Object-Oriented methodology embodies a view of system function and design that is
significantly different than the traditional structured approach. The use of classes and
inheritance provides valuable features, but also create new concerns for verification and
validation.

2.2.2 Structured Methodology

Originally developed in the 1970’s the structured method sought to improve
programming techniques through the use of functional decomposition. The goal of
structured programming was to improve programmer effectiveness and decrease the
error rates over the traditional monolithic ‘spaghefti code’ styie of programming. This is
accomplished primarily by decreasing the reliance on GOTO statements by providing
conditional constructs. Structured programming has three central concepts: Top-down
development; Modular design; and The Structure theorem.

Top-down development seeks to break down the application into manageable pieces
using functional decomposition. This is done by outlining a general solution then
systematically breaking it down into detailed steps. This process is continued iteratively
until the details are fully flushed out.

Modular design is an extension to top-down development in which related tasks are
grouped together. By grouping similar functions together readability increases and it
becomes easier to understand the system. The increased understanding and modular
design make maintenance and the adaptation of new functionality easier.

@

Enclosure (1) to
SPP-67610-0007
Page 16 of 19

The Structure Theorem states:

"It is possible to write any computer program by using only three basic control
structures:

s sequence;
+ selection, or IF-THEN-ELSE; and
o repetition, or DOWHILE (or simply WHILE)."

In pure structured programming it is recommended that each loop, and function, have
only one entry point and one exit point. There are certain cases where it is impractical to
follow this and it is typically not enforced at the compiler level. In the general case
however, this should be striven for in order to increase readability and reduce the
chances of going down an unintended code path.

In structured programming modularization is accomplished by decomposing program
algorithms into subalgorithms (typically called functions or procedures). These functions
can themselves be broken down further. Unlike object-oriented methodology there is no
fundamental relationship between data and behavior in the structured methodology. This
means that the association of data and its behavior must be controlled by the program
itself. Typically this is done by passing data to subprograms via arguments and
parameters,

in the analysis phase graphic models are typicaily used to specify context, process, and
control. The context deals with inputs, outputs, and their sources. Process focuses on
the functional behavior of the procedures, their interactions and relationships to the
inputs and outputs. Control addresses the issue of under what circumstances each of
the functions is performed.

In the design phase a graphic model of the system is created. This model is used to
identify tasks, define task interfaces, develop preliminary software architecture,
decompose tasks, and define the data dictionary elements.

Some of the graphic models typically used are;
Context Diagram — Shows external interfaces to the software/module/function

Data Flow Diagram (DFD) — Shows the major decomposition of functions and their
interfaces. Typically they are used to follow the path of the data as it moves through the
system.

Task Communication Graph (TCG) — Provides a visual representation of concurrent
task and their interfaces.

Software Architecture Diagram (SAD) - Identifies the grouping of tasks on the TCG.

Structure Chart — Defines the partition of the elements shown in the SAD into a
hierarchy.

®

Enclosure (1) to
SPP-67610-0007
Page 17 of 19
Data Dictionary — While not strictly a graphic model, the data dictionary is used in
conjunction with the other diagrams to define the individual entities.

2.2.3 Method Choice - Structured

Both structured design and object-oriented design provide a disciplined method for
effectively designing a software implementation. Both methods are widely used in
industry for software development and have had systems successfully created based on
the method’'s embodied principles.

Structured design methodology has been chosen for the Prometheus project NRPCT
software development. The choice of structured programming over object-oriented
programming was driven by several factors: 1) Structured programming has been used
far more frequently in space embedded applications, 2) There are many aspects of
object-oriented design that must be avoided or closely monitored to ensure a robust real-
time embedded design (e.g. polymerphism (virtual functions)), 3} There is a larger body
of experience with structured design outside of the programming community, and this
experience can be leveraged to aid with design reviews and inspections.

Object-oriented (OO) technology is very capable of providing robust software designs.
Many of the fundamental principles of OO such as encapsulation, hierarchy, and
modularity are very powerful techniques to manage complexity and help to minimize
interfaces between modules. These all help with maintainability of the software. The
downside of QO for real-time embedded systems comes with dynamic memory
aliocation, confusion that can arise with polymorphism, run-time type information
(typing), and certain aspects related to abstraction (templates). Many of these features
have proven themselves to be either error prone, or may make it complicated to prove
time response requirements can be met. It is possible to overcome these concerns with
coding standards and careful inspections.

Structured programming on the other hand, does not have the built-in support for data
hiding and class hierarchies like OO, but a well thought out functional decomposition and
data flow diagrams can go a long way to mitigating these concerns. Similar to OO,
structured programming requires discipline and care when design and implementation
are performed. No method or programming language itself will render a perfect product,
but careful design along with appropriate review, inspections, and testing will maximize
the potential for a high quality product. The greater experience with structured
methodologies, and the reduced set of potential embedded programming pitfalls
combine to make structured programming the method of choice for NRPCT Reactor 1&C
software development.

2.3 Language

Once a programming methodology has been chosen, and certain details are understood
about the software architecture, a programming language can be selected to meet the
needs of the software project. There are many different language choices available; all
have advantages and disadvantages depending on the application domain. Language
examples include C, C++, Assembly, FORTRAN, COBOL, Ada, BASIC, and others.

@

Enclosure (1) to
SPP-67610-0007
Page 18 of 19

231 C

The C language is a third generation, or high level language that has been in use for
several decades. C was developed for systems programming but is well suited for
general programming as well. C is designed for a structured representation of system
functionality, in that it works by function call and return.

2.3.2 C++

The C++ language is an extension of the C language to embody the principles of object-
oriented programming. C++ allows the definition of classes, where both data structures
and the functions that use the data are bound together in one definition. Many of the
principles of object-oriented methodology are directly implemented in the language,
including hierarchy (inheritance), abstraction, encapsulation, and typing (modularity can
be achieved in either C or C++). While C++ directly supports object-oriented
programming, some features of C++ can be of concern for safety critical systems.
These features include dynamic memory allocation, multiple inheritance, polymorphism
(through virtual functions), templates, exception handling, and others.

2.3.3 Assembly

Assembly language is a second generation, or low level language. It is 2 mnemonic
representation of machine code with symbolic values for variables and address offsets.
Assembly language can be very powerful for fast execution and hardware access, but is
very platform dependent and so limits the portability of what is developed. Assembly
language may find its greatest use in various board support or hardware driver code.

2.3.4 Other

Java is similar to C++, but makes use of a virtual machine for interpretation. Java is not
a likely candidate due to inherent unpredictability with the garbage collection memory
management features. FORTRAN is a structured language that has found great use in
numeric intensive applications, but it is not well suited for embedded programming.
COBOL and BASIC are both languages that are used primarily for business oriented
applications, and BASIC is usually an interpreted language. Ada has found some use in
space applications and also has a strong history with embedded military applications;
however, many of the Prometheus software development organizations have stronger
experience with C and C++ and Ada does not have as large of a developer base.

2.3.5 Final Choice -C

With the choice of structured design, the C language becomes a natural choice for
software implementation. C is widely understood and recognized. C has been
standardized by ANSI and has been used for decades in both embedded and general
programming situations. Compilers are readily available for C, so the toolset is easy to
acquire. When necessary, it is easy to incorporate assembly level modules for
interfacing directly with the system hardware (registers, I/0) with modules coded in the C
language.

3 CONCLUSION

After careful evaluation of life cycles, methodologies, and languages, the NRPCT has
chosen an incremental life cycle, a structured design methodology, and the C
programming language for Prometheus reactor |&C software development. It is felt that

Enclosure (1) to
SPP-67610-0007
Page 19 of 19
. these decisions support not only the JIMO type mission, but are also very extensible to
\ other reactor concepts, including potential lunar surface missions.

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 1 of 94

NRPCT Reactor 1&C Software Development
Process Manual

(NRPCT-RIC-SDPM-001)

NRPCT Space Electrical I&C Software Team

July 2005

PRE-DECISIONAL — For Planning and Discussion Purposes Only

NRPCT-RIC-SDPM-001
Enclosure (2} to
SPP-67610-0007

Page 2 of 94
Revision History

Revision Author Date
Draft Thomas 7/10/05
Hamilton

Change Synopsis Reason for Change
Original

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 3 of 94
Table of Contents '

T INEFOAUCHION ...ttt a e 5
1.1 lENtifICAION ... e e 5
1.2 (VT o To =TT O O O TSSO VPO 5
1.3 Basis and Standards ... e 5
1.4 Document HIerarChy ... e 5
1.5 D i OIS < oo e 6
16 AACTONYIMIS ..ottt e ettt a e e e e e e e e e e e 6
1.7 R IO S ... i e 7

2 Software Development PrOCESS. ... 7
2.1 DV BIVIEBW ... oot e e e e e e e et e et e e ceaes 7
2.2 Software Development Tasks. ... 8

2.2.1 Task 1: Initial ReqQUITEMENESooeeciee e 8
2.2.2 Task 2: Initial Software Architecture ... 10
2.2.3 Task 3:Risk Analysis ... 10
2.2.4 Task 4: Plan Incremental Buildsccocoviiiiiiin i 11
2.25 Task 5: Develop & Release Increments...............ooii 12
2.251 Task 5.1: Detailed incremental Requirementscccccoiies 12
2.25.2 Task 5.2: Analysis/Detailed Architecture...................ccccoociiiiiininnns 12
2253 Task5.3: Module Designoocooiiiiiiiiiiiiiiii e 13
2.254 Task 5.4: Implementation/Codingooviiiiinriiciiii 13
2255 Task 5.5 UNETest. ..o 13
2256 Task 5.6: INtegrationcccceeeveiii i 13
2257 Task5.7:System Testingccoociviiiiiiii 13
2258 Task 58 Document & Releaseiiiii e 14
2259 Task 5.9 Independent Verification/Validation/Testing (Bettis)............ 14
2.2.510 Task 5.10a: Defect/Change Identification...................coinn, 14
2.2.511 Task 5.10b: Defect/Change Dispositionccocccvivniverinininnn, 14
2.3 AnGHIary ACHVIHIES. ..o 15
2.3.1 Configuration Managementcc.cooo i 15
2.3.2 Requirements Traceabilityc.ocooii 15
2.33 Defect Tracking ..o i e e 16
2.34 INSPECHIONS ..oeiiiiieiit ettt ettt 16
2.35 DeSIQNREVIEWoooiiiiiii e 16
236 TestReadiness REVIBW.............oviiiiiiiiiiee e, 16
2.37 Release Readiness REVIEWcccieiviviiiiviiei e 17
2.3.8 Software Hazard Analysis, Software Fault Tree, and SFMECA [RESERVED)]

17

2.3.9 Auditing/Self-ASSeSSMENtS...........coiviiieiiii e, 17
2.3.10 Software Criticality Level Selection.......ccccoeeocooici 17

3 Roles and Responsibilities.............ccccc e 17

3.1 DESCIIPIONS ©oeeiee ettt et 17
311 Software Manager ... 17
3.1.2 System ENgGiNeer ..., 17
3.1.3 Software System ENGINEer...........cccoiiriiiiiiiicc e 18
3.1.4 Software Architect ... 18
3.1.5 Software Development Lead Engineer ... 18
3.1.6 Software Development ENGINEEr.............covvvveiviciicie e 18
3.1.7 Software Test ENgiN@er ... 18
3.1.8 Software BUild ENGINGEr................ooiiiii 18

NRPCT-RIC-SDPM-001
Enclosure (2) to

SPP-67610-0007

Page 4 of 94

3.1.9 Software Configuration Management Engineer ..., 18
3.1.10 Software Process ENginger ..o 18
3.1.11 Software System Administrator..............c.coviii 19
3.1.12 Software Quality Assurance Engineer ... 19
3113 Software CUSOMEr ... 19
3.1.14 Software Line Organization............c.coo oo 19

4 Development PrOCESSES ...t 19
4.1 Process 1: Initial Software Requirementsccocooiecinin, 19
4.2 Process 2: Initial Software Architectureccooccii 23
4.3 Process 3: Risk ANalYSiScoooiii e, 26
4.4 Process 4: Plan Incremental Buildsccocovimn, 29
45 Process 5: Develop and Release Incremental Build 32
451 Process 5.1: Develop Detailed Requirements for Increment..................... 35
452 Process 5.2: Analyze/Develop Detailed Architecture for Increment 38
453 Process 5.3 Detailed Module Design for Increment ... 41
454 Process 5.4: Module Implementation/Coding for Increment....................... 44
455 Process 5.5: Unit Test of Modules for Increment ... 47
456 Process 5.6: Module Integration for Increment ... 50
457 Process 5.7: System Testing for Increment ... 53
458 Process 5.8 Document and Release Incremental Build 56

459 Process 5.9: Independent Verification/Validation/Testing of Incremental
Build &9

4510 Process 5.10a: Defect/Change Identification for Incremental Build 62
4.5.11 Process 5.10b; Defect/Change Disposition for Incremental Build 65

5 ANCHIAIY PrOCESSES ...ooiiiiiiieiiririeitie ettt e e et b 68
5.1 Process A1: Configuration Managementcooooi i, 68
52 Process A2: Requirements Traceability ..o, 73
53 Process A3: INSPECHIONScovviviiieriee e 76
54 Process Ad: Design ReVIEWSccceiiiiiiiiiini s 79
55 Process AS5: Test Readiness REBVIEWS ..., 82
5.6 Process AB: Release Readiness REVIEWScccooiiiiiiiic i, 85
57 Process A7: Software Hazard Analysis, SFTA, and SFMECA 88
5.8 Process A8: Auditing and Self-Assessments............ccccoceeiii . 91
Other processes [RESERVED]..........cccccioviiiiiiii i 94

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 5 of 94

1 INTRODUCTION

1.1 Identification

This is the NRPCT Software Development Process Manual (SDPM) for the Prometheus
project.

1.2 Purpose

The SDPM establishes the software development, and verification and validation
processes for the NRPCT Space 1&C software development for project Prometheus.
This work includes but is not limited to the flight software, ground telemetry and analysis
software, test beds, and vendor developed sensor and actuator interface software.,
These practices exist to ensure that the 1&C software is of sufficient quality to meet the
Prometheus needs, particularly the paramount need of safety.

1.3 Basis and Standards

This document expands upon and traces to the Prometheus Software Management Plan
(PSMP), JPL document #982-00046. The PSMP defines the high level software
requirements and processes to be used throughout project Prometheus. Although the
Memerandum of Understanding and the Memorandum of Agreement between NASA
and Naval Reactors do not give JPL approval authority over NRPCT software
development, the NRPCT desires to maintain as much commonality in software
processes as possible with the rest of the Prometheus team. Following the principles
established in the PSMP helps to maintain commonality among software developed by
various Prometheus software development organizations.

This document incorporates guidance from the Prometheus Software Quality Assurance
Requirements (JPL Document #982-00038) to ensure that there is commonality with
software qualification across the Prometheus project.

This document incorporates guidance from several NRPCT standards and policies. The
SDPM incorporates guidance from the NR Software Engineering Policy (as documented
in Bettis Letter No. B-REO(M)CD-008, 3/16/05). The SDPM requires that the software
quality criticality level (SQCL) for the flight and ground software be determined per the
NNPP Standard for Software Qualification by Criticality Level (as issued for three prime
concurrence by KAPL Letter No. ARP-68640-0305, 9/2/04).

1.4 Document Hierarchy

The Software Development Process Manual provides the process definition to be used
for NRPCT Prometheus software development. The SDPM expands upon the guidance
of the PSMP. The SDPM is the highest level document in the NRPCT software
development documentation structure. Lower level documents tracing to the SDPM will
cover the definition of coding and design standards and checklists, document templates,
and mission specific Software Development Plans (SDPs) as follows:

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 6 of 94

e The NRPCT Software Standards (NRPCT-SW-STDS-001), which provide
standards and checklists for requirements development, design documentation,
and coding standards.

e The NRPCT Software Templates (NRPCT-SW-TMPL-001), which provide
documentation tempiates for requirements documents, test reports, test pians,
and other work products that have multiple instances to allow for a common look
and feel.

e The NRPCT Software Development Plan {(NRPCT-XX-SDP-001, where the ‘XX’
vary from mission to mission as a unigue identifier), which provides high level
definitions for various lower level mission specific software development plans.
The NRPCT SDP is mission specific, and defines the overall software
development plan for the specific mission. Following the NRPCT SDP are
subordinate SDPs, and under these subordinate SDPs are work breakdown
structures and schedules.

1.5 Definitions

Baseline — A set of items under configuration control such that each individual revision
level is captured and treated as a collection with its own unigue identification. The
baseline for the collection can always be returned to even after changes and further
baselines have been created.

Context Diagram — Overali graphical representation of software modules to show
relationships to each other in a functional hierarchy.

Dataflow Diagram — Representation of the flow of data between software modules in a
software architecture, also identifies inputs and outputs.

View — From a software architectural standpoint, a view is a representation of a software
architecture used to communicate certain information about the architecture to a group
of stakeholders (e.g. a functional decomposition view would show developers the
software modules and the hierarchical relationships between them).

1.6 Acronyms

Table 1
Acronym Definition
CTD Composite Test Device
DSS Deep Space System
1&C Instrumentation and Control
FRD Functional Requirements Document
IEEE Institute of Electrical and Electronics Engineers
JPL NASA Jet Propulsion Laboratory
MC/DC Modified Condition / Decision Coverage
NRPCT Naval Reactors Prime Contractor Team
NSDP NRPCT Software Development Plan (this document)
PCAD Power Control and Distribution
PSMP Project Software Management Plan

PSR Project Software Requirements

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 7 of 94

SDPM Software Development Process Manual

SDVP Software Development and Verification Platform

SHA Software Hazard Analysis

SFTA Software Fault Tree Analysis

SFMECA Software Failure Modes, Effects and Criticality Analysis
upP Unified Process (Rational Unified Process)
V&V Verification and Validation

1.7 References
N/A

2 SOFTWARE DEVELOPMENT PROCESS

The software life cycle chosen for NRPCT Space |&C software development consists of
the incremental life cycle. This life cycle imposes a specific sequence of events on the
overall development of software. Each event has a process associated with it. Reviews
provide an important quality gate to transfer to from step to step. These processes with
the reviews, in addition to the ancillary processes are identified as follows:

2.1 Overview

1. Initial Requirements (include
quality attributes)

Inspect & Design Review
l Requirements

2. Initial Software Architecture Aspect & Design Review
¢ Architecture

3. Risk Analysis

v

4. Plan Incremental Builds

v

5. lnin_and Relaase |
In B. Devalnn and Raleaca |

Ing 5. Develop and Release
Increment (several increments)

Figure 3: Software Development Process Layout

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 8 of 94

5.1 Detailed Incremental
' Inspect Requiremenis

Requirements

/ 4 5.2 Analysis/Detailed

I
s Architecture
Ll
’ N
\
r &
’ 4 .
;L v 5.3 Module Design 510a
fA Defect /
L4 "
LA P Change
& rl . .
L ___ -7 Identification
o e ..--J| 5.4 Implementation/Codin =7 -
& - . -
N aeemmnt Code Inspections P A
- - - Vs i
- - - 4
5.10.b Defect/ \ e P /
Change 5.5 Unit Test LT :
Disposition ’ o0 !
-~ !
\ d g - g f
- - s ’ i
- Vs I
. e e {
5.6 Integration ¢ P |
// !
/ i
rd
\ ,
i
e ,
5.7 System Testing /
Test Readiness Review /
{
P |
{
!
!

Release Readiness Review

5.9 Independent Verification/

5.8 Document & Release
Validation/ Testing (Bedtis)

Figure 4: Detail of Task § (Develop and Release Increments)

Figure 3 shows the detailed layout of the incremental life cycle. Figure 4 shows the
detail of the “Develop and Release Increments” step of the life cycle. Each increment is

developed as an iterative waterfall.

2.2 Software Development Tasks
Each software development task associated with the incremental life cycle has a

process associated with it, work products that are developed, and support processes

that are used concurrently with the task.

2.2.1 Task 1: Initial Requirements
Before software requirements can be established, a high level overview of the system

architecture needs to have been established. This provides a framework for the

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 9 of 94
functional division of responsibility hetween hardware and software, and also the
allocation of functions between modules and tiers of instrumentation and control. This
information provides the basis for the software functional requirements. Software
requirements are initially derived from overall system requirements and any design
constraints placed on the system.

There are many other constraints and sources of requirements that need to be included
in the software functional requirements. Many of these items include quality attributes,
maintainability, reliability, availability, security, etc. Some of these requirements are
defined by JPL or NRPCT established guidelines. Coliectively, these provide a source
of software requirements that both drive functionality (e.g. fault tolerance and reporting),
and software architecture (e.g. maintainability requirements). Interface requirements
imposed by other portions of the system shall also be considered in this phase, including
communications requirements and parameters.

The Prometheus project may require the development of separate (but similar} versions
of the Reactor |1&C software to support the |I&C systems, including several phases such
as test beds, or even prototype reactors. Development of subsequent versions will
make heavy use of functionality defined in the initial development cycle. Making use of
common functionality between the different software versions ensures continuity in the
various software designs. |dentification of the commonality also allows changes to
requirements to be evaluated across all platforms in a more efficient manner.

As software requirements are developed, they are entered into a requirements
management database, which is under configuration control, allowing future traceability
to implementation and test. Placing the initial requirements in the requirements
management database establishes an upfront framework to allow for clear tracking and
review of the software functionality.

Once the initial software requirements have been captured, they are inspected to
validate the requirements to the intended functionality. This inspection is a formal
process involving members of NRPCT, but may involve other Prometheus team
members as appropriate. The initial software requirements are not expected to be
complete at this stage since this early in the development cycle there is a great deal of
uncertainty in the overall system architecture and system requirements. There is also
uncertainty as to the target hardware and sensor suite. These areas of uncertainty will
make it difficult to completely specify all of the software functionality; however, there are
many functions that have a high level of confidence. At the initial requirements phase,
as much detail should be captured as possible.

If there is sufficient confidence in the requirements at this point, the software
requirements will proceed to undergo a formal design review. The design review is a
formal process involving independent engineers not directly involved in the work product.
This review involves a broader spectrum of people than the inspections.

Once the requirements have been captured and inspected, any changes from the design
review are then rolled back into the requirements. Once this has been accomplished,
work can proceed to the next task.

NRPCT-RIC-SDPM-001
Enclosure {2) to
SPP-67610-0007
Page 10 of 94
2.2.2 Task 2: Injtial Software Architecture

In order to successfully develop the initial software architecture, a fairly complete set of
initial requirements must exist. While the requirements may not be fully specified to the
lowest level of detalil, the requirements should cover the overall scope of the system to
allow identification of all necessary software modules. The design methodology used for
Reactor 1&C software is structured design with the associated top-down design
approach and functional decomposition.

As noted in the Initial Reguirements development task, there is a great deal of common
functionality expected to be identified between the various versions of software that will
be developed as part of Prometheus. The development of these versions will be very
close in time, this requires a great deal of commonality in the software design and
implementation effort. Since there will be a common core of functionality, the software
architecture can be generalized to allow as much software reuse as possible between
platforms. Software reuse is imperative to ensure the aggressive Prometheus schedule
can be attained.

Structured development requires the use of a top-down development strategy. This
starts with considering the full system, and then splitting the functionality in a hierarchical
manner down to the module level. From a software architecture standpoint, there will
also be common functionality between I1&C system components (MOL structure, fault
management, etc.). This common functionality shall be identified in the software
architecture to allow sharing of as much structure as possible between system tiers.

Once the functionality has been decomposed to the module level, the data structures
shall be defined, and the data flow identified. This establishes the interface between the
various software modules, and attention can be given to ensuring the integrity of the
data.

The initial architecture is documented in a manner to allow clear communication of the
design for the developers, for peer reviewers, and for the Customer. Attention also
needs to be given to traceability to ensure that the requirements will be traceable to the
implementation. Often software architectures are documented through several views,
where each view highlights different aspects of the architecture. For example, context
diagrams show how the modules are functionally related to each other, state diagrams
show the transitions between various states in a state machine, and data flow diagrams
show the run-time flow of data through the system with the operations performed on the
data.

Once the initial architecture has been developed, an inspection shall be performed on
the architecture to determine its suitability for the various requirements. Similar to the
software requirements, the software architecture shall also undergo a formal design
review to ensure a strong foundation has been laid for the various 1&C software
components.

2.2.3 Task 3: Risk Analysis

Upon completion of a set of initial functional requirements and an initial software
architecture, the requirements and the architectural elements shall be evaluated from a
risk standpoint. There are many different types of risk involved in the Prometheus

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 11 of 94
project, from risks that may cause system failure, to technical unknowns that may
constitute a schedule risk.

Risks for the requirements and architecture shall be identified. Once the risks have
been identified, the level for each risk shall be assigned, and mitigation strategies shall
be determined to aid in eliminating or minimizing the risk. Once the risks have been
identified, they shall be formally documented to ensure that the risks can be referred to
later in the project. The stakeholders involved in identifying and evaluating the risks
shall include the software developer, system engineer, and others as appropriate. Once
the risks have been identified and mitigation strategies established, these shall be
monitored through the lifecycle to ensure proper closure of the risks according to plan.

A Software Hazard Analysis (SHA), Software Fault Tree Analysis (SFTA), and a
Software Failure Modes, Effects, and Criticality Analysis (SFMECA) shall also be
performed to further examine the requirements and architecture. These are tools that
help to provide a different point of view to further examine potential weaknesses for
addressing.

2.2.4 Task 4: Plan Incremental Builds

Incremental development is ingrained in the overall Prometheus software development
process. The logic behind incremental development is to allow compiling, inspection,
testing, and delivery of portions of the overall system functionality in phases to develop
confidence in the project and {o build upon past successes. In this manner, risk can be
spread over several increments and managed better than having one large system
release.

Planning the increments consists of determining what system functionality and which
software modules will be delivered in each increment. Also it involves ensuring that later
increments build upon the functionality of earlier increments.

Certain essential functionality must be developed to allow the design of a2 workable set of
code. This includes setting up the Main Operating Loop (MOL) and basic system
interface components. Functions with identified risks should also be addressed in the
early increments to provide more time to test the requirement to ensure that the
requirement is fully understood and the implementation is satisfactory. Later increments
¢an contain basic control functions, leading up to full autonomous control with full fault
management and telemetry.

As part of the increment planning task, a Work Breakdown Structure (WBS) shall be
developed (or at least enhanced since one should already exist to help guide the initial
steps) based on the initial architecture software module definitions. As functions are
then allocated to each increment, the WBS task items corresponding to software
modules naturally follow this incremental aliocation. Schedules shall then be laid out
with the delivery dates for each increment aligned as closely as possible with higher
level project need dates. The schedules shall then have developers identified to perform
each task, as much as is practical. The basic development schedule for each increment
shall follow the iterative waterfall defined for the life cycle, allowing margin for some
iteration as defects are identified. If larger defects are discovered that significantly upset
the architecture or require a great deal of rework, the plan will need to be reevaluated to

NRPCT-RIC-SDPM-001
Enclosure (2} to
SPP-67610-0007
Page 12 of 94
ensure that the schedule is realistic and can be achieved. Determination of the
incremental release target dates and number of increments may be driven by overall
Prometheus project needs, and additional increments may also be released to facilitate
Independent Verification and Validation.

2.2.5 Task 5: Develop & Release Increments

This task is repeated as necessary for each increment defined in Task 4. This task is
made up of several steps defining the waterfall portion of the life cycle. Each step has
quality activities associated with it. Verification and validation activities are also part of
the tasks, including code inspections, unit testing, integration, and system testing. The
increment plan and risk mitigation plan shall be evaluated by the development team
through the performance of this task for update if strategies change, or defects
encountered change the basic assumptions for task sequence or duration.

2.2.5.1 Task 5.1: Detailed Incremental Requirements

This step focuses on the functional requirements allocated to modules to be
implemented in the current increment. The requirements are refined to a sufficient level
of detail that they are able to be implemented and tested. As requirements are refined,
any emergent information on the system shall be taken into account and the software
requirements must be fully reconciled with the system requirements and any other self
imposed or derived requirements. If information is available to correct or refine the
requirements not included in this increment, the requirements may also be refined. ltis
important that the whole set of software requirements be self-consistent, and not have
portions that are incorrect.

A Communication Specification (Interface Control Document/Interface Requirements
Document) shall be developed (or updated) at this time to define the parameters,
ranges, defaults, and communication pathways for the system. Focus should be on
functionality necessary for this increment, but care should be given to establish inter-
module interfaces early in the project.

Once refined, the requirements shall be inspected, design reviewed - if not already
design reviewed prior to increment planning - then submitted to NR for approval. If the
refined requirements affect interfaces outside of the Reactor |&C, then concurrence shall
be sought from the affected stakeholders. NR approval is not required to begin working
on the following steps, but is required prior to release of the increment software.

2.2.5.2 Task 5.2: Analysis/Detailed Architecture

Once the requirements have been refined, they shall be analyzed to see if there are any
architectural updates necessary in the light of new information that may come from the
updated requirements. Architectural updates in later increments should be very carefully
considered since there is a potential to impact already developed and tested software.
Late architecture changes come with a high price tag in rework and requalification.
Changes to the architecture can have effects on both software reuse, and various fault
tolerance and risk mitigation strategies that have been built into the architecture.

For the focus areas of the current increment, there may be a need to add further detail to
the overall architecture. These architectural updates shall be inspected to ensure that
no incompatibilities are introduced in areas where the architecture supports multiple

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 13 of 94
systems or platforms. If a2 design review has not yet been performed prior to increment
planning, a design review shall be performed prior to entering into module design.

2.2,5.3 Task 5.3: Module Design

At this point, it is necessary to lay out the internal functionality of the individual module.
There shall be traceability between the module and the functional requirements
implemented within the module. Internal functions and data types shall be defined,
along with how the data is used. Fine detail shall be provided for functions that are used
by other modules. An inspection shall then be performed on the module design.

2.2.5.4 Task 5.4: Implementation/Coding

Source code is developed for the module following proper coding standards. The source
code shall be inspected by other software developers to ensure that the system
functionality has been achieved and that the module adheres to the accepted coding
standards. There shall be traceability established from the source code back te the
functional requirements in a traceability matrix. Code must be compiled and may be
desk checked (run with simple test cases informally), and any available static analysis
tools shall be employed to help minimize the number of defects that may pass through to
later inspections and testing. This ensures that the code meets minimum standards for
usage so that it may be unit tested. Code shall be placed under configuration control to
ensure work is not lost prior to inspections and unit testing.

2.2.5.5 Task 5.5: Unit Test

The cognizant software developer shall write unit test cases for the module(s) he or she
developed. The unit test cases shall cover both requirements based testing (black box)
and structural testing with modified condition/decision coverage (MC/DC) coverage
(white box testing). The unit test cases shall be peer reviewed by a different developer
to ensure coverage and adequacy. The test cases shall be run against the module, and
any failures shall be corrected prior to releasing the module to integration. The unit test
cases and test results shalf be archived along with the source code and any associated
test code (test harness) in configuration control. A unit testing report shall be issued to
document the results of testing along with defects and other appropriate metrics.

2.2.5.6 Task 5.6: Integration

Once all of the modules for an increment have been developed, the various modules
shall be integrated together and run on the target hardware. Any test cases developed
to verify the integration shall be placed in configuration control and reviewed. Thisis a
necessary step to releasing the final software, and also may catch incompatibilities
between modules. Any defects detected during integration shall be placed in the defect
tracking system for disposition. The generated object code and final linked executable
shall be placed under configuration control, baselined, and released to system testing.

2.2.5.7 Task 5.7: System Testing

System testing is performed on the integrated software on the target hardware. System
testing is performed with the aid of a Composite Test Device (CTD) that simulates
reactor and plant behavior to allow testing of the control algorithms and telemetry
feedback. System testing covers both functional testing, and also structural testing with
MC/DC coverage for as much code as can be reached when fully integrated. Some

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 14 of 94
code may not be reachable at the system level without destructive testing, such as some
fault detection routines. Unreachable code shall be inspected for suitability and removed
if not necessary,; it also should have been 100% unit tested. Any defects detected
during system testing are placed in the defect tracking system for disposition. System
test cases should be automated to the greatest extent possible to allow for rapid
regression testing when iterating through the waterfall once defects are corrected.
System test cases and results shall be placed under configuration control and be
traceable back to the software module and functional requirement. A Test Readiness
Review is conducted prior to system testing to ensure that the configuration of both the
test setup and the software is correct, and that the software and test cases are ready for
testing.

2.2.5.8 Task 5.8: Document & Release

Once all software inspections, unit testing, and system testing have been satisfactorily
completed, the functional requirements have been approved by NR, and the software
and executable have been placed in configuration control and identified with version
numbers the baselined software may be released. All source code, object code, and
executables shall have a revision list provided showing the version of code for each
source file present in the build. Changes shall be identified from the previous released
baseline. All traceability matrices should be complete. All identified defects should have
been resolved or documented and provided to be fixed in next release if appropriate
(every effort should be made to resolve defects prior to release of the iteration). The
Release Readiness Review is performed to ensure that all of these necessary tasks
have been completed. Once the work products have been approved, they are released
with the appropriate documentation and archiving.

2.2.5.9 Task 5.9: Independent Verification/Validation/Testing (Bettis)

Once the software has been released for the increment, it is sent to Bettis for
independent verification, validation, and testing. All of the qualification documentation is
made available for review, but Bettis will also independently develop test cases for
qualification of the software based on software and system requirements. Any defect
detected by Bettis will be entered into the defect tracking database for disposition. Test
cases and test harness used by Bettis will be placed under configuration control at
Bettis.

2.2.5.10 Task 5.10a: Defect/Change Identification

Once a defect or change has been detected in any phase of the process, it shall be
logged into the defect tracking database. This database may also be used to document
change requests not directly tied to defects. ldentification of a defect needs to clearly
describe relevant information, such as the inputs, system state, and effects of the defect.
The identifier should make an effort to reproduce the defect and note the sequence of
events necessary for duplication. All of this information is critical to being able to
correctly analyze the defect and create a proper disposition.

22511 Task 5.10b: Defect/Change Disposition

Once the defect has been entered into the defect tracking database, it is necessary for
the developer to evaluate the defect and come up with a recommended resolution.
Correction of the defect is dependent upon the phase of the project. If the increment is

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 15 of 94
in the coding phase, the developer may simply fix the module and close out the defect
report. Later stages require higher levels of approval to fix and appropriate retesting to
ensure the fix is complete and has not affected other functionality.

For defects discovered in early phases up to and including integration, the integrator and
developers are the prime stakeholders. For defects invoiving functional requirements,
NR becomes a stakeholder since they are the approval body for any requirements
changes. For defects discovered in system testing, the testers become additional
stakeholders, and for software that has been formally released, NR, other members of
the NRPCT, and even other Prometheus organizations may be stakeholders. The CCB
determines the final disposition of a defect and when it will be corrected in the software
release. Once a defect has been identified and corrected, it must be successfully
retested to close out the defect report. Change disposition is subject to a similar process
and requires CCB approval to be incorporated into the software.

Some defects may have a larger scope than a simple code fix. It may be necessary to
change the software architecture, or even the functional requirements. Functional
requirement changes would require a resubmittal of the requirements to NR.
Requirement traceability will facilitate determining which modules must change and what
test cases would need to be updated and rerun on the affected modules.

2.3 Ancillary Activities

These processes apply across multiple tasks and provide the support structure for the
overall software development life cycle.

2.3.1 Configuration Management

Configuration management combines aspects of both configuration control and change
management. Configuration control ensures that a particular version of a work product
at any given time is known, and previous versions can be recovered if necessary.
Configuration control also coordinates simultaneous update of software products and
multiple active versions of software products. Change management ensures that
changes to the various work products are reviewed and managed to ensure the needs of
the project are achieved. Various work products may have different methods for
configuration control. Functional requirements are controlled through a requirements
database (e.g. Cradle). This provides a framework for controlled checkin/checkout,
baselining, and auditing. It also provides facilities for requirements traceability. Source
code, executables, test cases, test results, and relevant design and analysis
documentation are stored in a configuration management database as well. This
database may not be the same database used for managing functional requirements.
The same requirements for controlled checkin/checkout, baselining, and auditing exist
for these work products. Configuration management is closely tied with the defect
disposition process in that the Configuration Control Board is the governing body that
determines when to modify a software item. The Configuration Control Board (CCB) is
comprised of various stakeholders in the software development process, and expands in
scope as the number of stakeholders grows.

2.3.2 Requirements Traceability

Bidirectional requirements traceability is critical to the success of Prometheus software
development. Bidirectional traceability means that each requirement must be traced to

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 16 of 94
the design and a source code module implementing it, but it must also be possible to
take a source module and identify which requirements it implements as appropriate for
the identified software criticality level. Additionally, test cases must be traced to the
module and requirements. This allows for full through-process evaluation of changes to
ensure the full impact may be understood. There are many tools that facilitate
traceability.

2.3.3 Defect Tracking

Defects shall be placed into the defect tracking system at the various stages of the life
cycle. Each defect shall be reviewed and a disposition assigned for proper closeout of
the defect. This may include revision of a software item, requirement, or the
architecture. Once an item has been revised, all of the affected quality steps must be
repeated for the scope of the change. Refer to life cycle tasks 5.10a and 5.10b for
further discussion on defect tracking.

2.3.4 Inspections

Inspections are formal reviews performed by a group of the developer's peers and will
be performed as defined by IEEE Std-1028. An inspection ensures correctness and
proper direction prior to more formal stages of testing and review. For requirement
reviews, the peers consist of other developers and system engineers. For software
architecture reviews, peers consist of developers or system engineers knowledgeable of
both software and the system design. For code inspections, the peers consist of other
software developers. The general results of a peer review shall be documented in a
letter to the software manager. Engineers from other portions of the NRPCT or other
Prometheus development organizations may be included in the inspections as
appropriate.

2.3.5 Design Review

Design reviews are formal reviews performed in accordance with the KAPL Quality
Assurance manual (KQA-10), and make use of a group of independent reviewers
outside of the immediate group. These reviewers may consist of engineers from KAPL,
BPMI, Bettis, and members from other Prometheus development organizations. The
design review ensures the adequacy of the work product. Design reviews are required
for functional requirements documents prior to submittal to NR, and for the sofiware
architecture once it has been refined to a sufficient level of detail.

2.3.6 Test Readiness Review

The Test Readiness Review is used to ensure that all of the previous quality activities for
software have been completed and that the test plan is adequate for the components
under test. This requires the configuration for both the software and the test
environment to be known. There may be several readiness reviews during the full
course of system testing as different aspects are tested to ensure the scope of the
review is manageable. This also requires the development of adequate test cases to
qualify the software. Members of the Test Readiness Review include the software
developers, testers, system engineers, and lead engineers.

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 17 of 94

2.3.7 Release Readiness Review

The Release Readiness Review is used to ensure that all of the quality activities have
been completed pricr to releasing the software for use by Bettis for Independent V&V, or
by other Prometheus development organizations. Members of the Release Readiness
Review include the developers, testers, system engineers, managers, and NR. The
Release Readiness Review Report will identify all qualification activities and dates and
document the exact configuration of the release.

2.3.8 Software Hazard Analysis, Software Fault Tree, and SFMECA
[RESERVED]

A software hazard analysis, software fault tree analysis, and a software failure mode
effects and criticality analysis shall he performed on the software for each version. Any
defects identified in these analyses shall be placed in the defect tracking database.

2.3.9 Auditing/Self-Assessments

Self-assessments shall be periodically performed to ensure compliance to the processes
established by the SDP. Audits shall be performed by the KAPL SQA group to provide
an independent verification of compliance to the SDP.

2.3.10 Software Criticality Level Selection

Once the various software deliverables have been identified, the criticality leve! shall be
identified per the NR software quality criticality level process (SQCL) (ARP-68640-0305,
9/2/04). The software shall also have the JPL criticality level identified per the PSMP.

3 ROLES AND RESPONSIBILITIES

The PSMP calls out various roles that must be defined for the scope of the software
development effort. These roles are identified here and are mapped into the NRPCT
software development organization.

3.1 Descriptions

3.1.1 Software Manager

The software manager role as identified in the PSMP is performed by the manager of the
KAPL Space 1&C software group. The software manager is responsible for the delivery
of software for the reactor I&C. Thus the software manager is responsible for
requirements, design, implementation, testing at KAPL, and for coordinating with Bettis
for the qualification testing.

3.1.2 System Engineer

The software system engineer role as identified in the PSMP is performed by the KAPL
Space 1&C group, and is cognizant of the overall I&C system. The system engineer is
responsible for reviewing software requirements, software designs, and software
implementations as part of the inspection process. This ensures that a proper level of
system overview is present in the software development process.

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 18 of 94

3.1.3 Software System Engineer

The software system engineer role as identified in the PSMP is performed by the KAPL
Space |&C Software group. The software system engineer role is responsible for
defining the software requirements, and apportioning them between system
components, and managing the interface between various software modules.

3.1.4 Software Architect

The software architect role as identified in the PSMP is performed by the KAPL Space
|1&C Software Lead. The software architect is responsible for defining the apportionment
of software functionality between modules, and ensuring as much commonality as
possible is maintained between the software versions.

3.1.5 Software Development [Lead Engineer

The software development lead engineer role as identified in the PSMP is performed by
the KAPL Space |1&C Software developer assigned to specific modules. The software
development lead engineer is responsible for defining the lower level design of individual
software modules assigned and defining the unit test cases for these software modules.

3.1.6 Software Development Engineer

The software development engineer role as identified in the PSMP is performed by the
KAPL Space 1&C Software group. The software development engineer is responsible
for helping to define the low level design of software modules, implementation of these
software modules, and unit testing these software modules.

3.1.7 Software Test Engineer

The software test engineer role as identified in the PSMP is performed by the KAPL
Space 1&C Software group and the Bettis Space I1&C Software test group. The KAPL
software group is responsible for integration and test of the software modules. The
Bettis software test group is responsible for final software system qualification testing.

3.1.8 Software Build Engineer

The software build engineer role as identified in the PSMP is performed by the KAPL
Space 1&C Software group. The software build engineer is responsible for the final
integration and release of the software products.

3.1.9 Software Configuration Management Engineer

The software configuration management engineer role as identified in the PSMP is
performed by the KAPL Space |&C Software group for the |&C software deliverables.
The Bettis Space I&C Software test group will perform the configuration management
functions for the independent Test Bed software models and tools.

3.1.10 Software Process Engineer

The software process engineer role as identified in the PSMP is performed by the KAPL
Space |&C Software group. The software process engineer is responsible for
developing these processes to maintain commonality with the Prometheus software
development processes as much as is practicable.

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 19 of 94
3.1.11 Software System Administrator

The software system administrator role as identified in the PSMP is performed by the
KAPL Space I&C Software group for the KAPL space I&C lab, also for the CTD in this
lab. This role is performed by KAPL TIS for networked PC's,

The Software System Administrator role for the CTD development is performed by the
Bettis Space I&C Software test group. This role is performed by Bettis network
personnel for networked PC’s.

3.1.12 Software Quality Assurance Engineer

The quality assurance engineer role as identified in the PSMP is performed by the KAPL
QAE group for the Space 1&C software deliverables. And will perform process
compliance oversight and audits as appropriate. Bettis quality assurance will perform
these functions for the Bettis CTD development effort.

3.1.13 Software Customer

The software customer role as identified in the PSMP is performed by NR. The software
customer has ultimate approval over all software requirements and approval over final
release of software products.

3.1.14 Software Line Organization

The software line organization role as defined in the PSMP is performed by the NRPCT.
The software line organization performs the software development activities hecessary
to create high quality software deliverables for Prometheus Reactor |&C.

4 DEVELOPMENT PROCESSES

The detailed development processes are described in this section. This provides the
inputs and outputs and specific process steps necessary to perform the tasks discussed
in Section 3 for the development life cycle.

4.1 Process 1: Initial Software Requirements

ID: SIC-1/Rev: 0 Title: /initial Software Requirements

Effective Date: August 1, 2005 Supersedes: N/A

Overview: Develop initial software functional requirements for Prometheus Reactor 1&C

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 20 of 94
Entry Criteria Exit Criteria
e Preliminary or complete system FRD is e Requirements document Inspected
available

» Requirements document design reviewed
e Preliminary or complete system

architecture is available » Requirements submitted and approved by

NR
* Requirements traceability process defined (Requirements include interfaceftelemetry
* Reguirements management process requirements between various modules)
defined
* Requirements management too! available
Inputs Outputs
e System FRD (may be preliminary) » Inspection report

+ System architecture (may be preliminary) o Design review report

¢ Previous platform software FRDs if » Software FRD Submittal Letter

available e Approved software FRD

+ Functicnality differences between
platforms

» Quality Attributes (Reliability, Fault
Management, etc.)

¢ Interface to Spacecraft Module/PCAD

o Approved requirements in Requirements
Management Tool

Tasks
(a) Identify system FRD requirements allocated to software.

Use previous software FRDs as baseline if available
(b) Allocate software requirements between system tiers
(c) Refine definition of functional differences between platforms
(d) Define Interface Requirements, communication parameters
(e) Refine definition of Quality Attributes (Fault management, self-tests)
() Develop software requirements for target platform
(g) Place software requirements in requirements management tool
(h) Inspect software requirements
(i) Design review software requirements
(i) Submit software requirements to NR
(k) Incorporate NR comments and issue approved software FRD

Process Flow
See following Initial Software Requirements Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 21 of 94

Measures
1. Time to perform tasks

2. Number of comments from inspections
and design reviews

3. Time to resolve comments

Number of comments from NR
approval.

References

A. Local instruction of usage of
Requirements Management tool

B. Requirements Management Process

O

Inspection Process

D. Design Review Process

MeYD SS9904d SJudWaiinbay aremyos [eniv| L-JIS

6 Jo ZZ abey

£000-019/9-ddS
0} (2) ainsopul

1QEENJAS-01d-10ddN
) ® ®

4.2 Process 2: Initial Software Architecture

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 23 of 94

ID: SIC-2/Rev: 0

Title: /nitial Software Architecture

Effective Date:

August 1, 2005

Supersedes: N/A

Overview: Develop initial software architecture for Prometheus Reactor [&C

Entry Criteria

Preliminary or complete system FRD is
available

Preliminary or complete system
architecture is available

Initial or complete software FRD is
available

Exit Criteria

Software architecture inspected
Software architecture design reviewed

Software architecture documented with all
relevant views

Software architecture provided to NR for
information

Inputs

System FRD (may be preliminary)
System architecture {may be preliminary)

Functionality differences between
platforms

Quality Attributes (Reliability, Fault
Management, etc.)

Interface to other systems

Software architecture from previous
platform

Software FRD (may be preliminary)

Outputs

Inspection report
Design review report

Documented software architecture

Tasks
a. Using software FRD, perform a Top-Down functional decomposition

b.

c
d.
e

If previous platform architecture is available, this should be the baseline for current
architecture with minimal deviations

Develop structure for MOL and fault management using Quality Attributes

Use functional decomposition to modularize all software functions

Develop Data Flow Diagrams to show flow of data between modules

Develop modularity for as much similarity between platforms as possible (isolate platform

specific functions to a module)

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 24 of 94

Document software architecture
Inspect software architecture

> a -

Design review software architecture

Provide software architecture to NR for information

Process Flow

See following Initial Software Architecture Process Chart

Measures
1. Time to perform tasks

2. Number of comments from inspections
and design reviews

3. Time to resolve comments

4, Number of comments from NR
approval

5. Number of modules.

References

A. Local instruction on structured design
architecture development

B. Inspection Process

C. Design Review Process

6 40 Gz abed

£000-019.9-ddS
0} (Z) ainso|oug

_‘in_n_w-u_m-hoamz

HEYD SS3D04d 2INJOPYIIY IeMPOS [BR| Z-DIS

4.3 Process 3: Risk Analysis

NRPCT-RIC-SDPM-001
Enclosure (2} to
SPP-67610-0007

Page 26 of 94

ID: SIC-3/Rev: 0

Title: Risk Analysis

Effective Date: August 1, 2005

Supersedes: N/A

Overview: Perform risk analysis on Reactor 1&C software requirements and architecture

Entry Criteria

* Preliminary or complete software FRD is
available

e Preliminary or complete software
architecture is available

Exit Criteria
» Risks identified and documented

» Risk mitigation strategies identified and
documented

o Risk impact and likelihood evaluated

Inputs
e Software FRD (may be preliminary)

e Software architecture (may be preliminary)

Outputs

¢ Risks with evaluation and mitigation plans
documented

e SHA, SFTA, SFMECA

Tasks

a. Examine software requirements and software architectures to identify possible risks fo
cost/schedule due to complexity, uncertainty, or other criteria

b. Perform Software Hazard Analysis, Software Fault Tree analysis, and Software Fault Mode

Effects and Criticality Analysis (SIC-A7)

Identify the severity of each risk, and the likelihood of each risk

Classify risks as highest for those likely to occur with severe impact, and low for those with

low probability of occurrence and low impact

e. Develop mitigation plan for each risk
f. Document risks and mitigation plans

Process Flow
See following Risk Analysis Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 27 of 94
Measures References
1. Number and severity or risks A. Software Hazard Analysis, Fault Tree
2. Time to complete task Analysis, and Failure Modes and

Criticality Analysis process (SIC-A7)

v6 40 g2 abed
L000-01929-ddS
0} (Z) ainsopugy

Ff.“,_n_n_w-o_m-._.oamz

Heyy ssadold sishjeuy sy £-01S

4.4 Process 4: Plan Incremental Builds

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 29 of 94

ID: SIC-4/Rev: 0

Title: Plan Incremental Builds

Effective Date: August 1, 2005

Supersedes: N/A

Overview: Plan Incremental Builds for Reactor 1&C Software for current platform

Entry Criteria

e Preliminary or complete software FRD is
available

e Preliminary or complete software

Exit Criteria

e One or more Incremental Build scheduled
and resource loaded

o |ncremental Build Schedule sent to NR for

architecture is available information
¢ Risk Analysis document completed
Inputs Outputs

s+ Software FRD (may be preliminary)
o Software architecture (may be preliminary)

s Risk Analysis document

¢ Integrated Build schedule resource
loaded with all requirements allocated
between builds

Tasks
a. Define number of Incrementa! Builds

b. Use architecture and risk analysis to allocate software functionality to the various builds

c. Define schedule to complete all modules (requirements through testing) for each

Incremental Build

d. Resource lLoad schedule and ensure fit with overall project schedule and external program

organizational needs

e. Provide Incremental Build Schedule to NR for information

Process Flow

See following Plan Incremental Builds Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 30 of 94
Measures

References
1. Time to complete task A. Integrated Master Schedule

Mey) ssed0id Spjing |ejuawaiou) uejd $-JIS

6 jo L& abed

2000-01929-ddS
0} (2} aunsopugy

l dAS-21d-10d4N
& @ ®

NRPCT-RIC-SDPM-001
Enclosure {2} to
SPP-67610-0007

Page 32 of 94

4.5 Process 5: Develop and Release Incremental Build

ID: SIC-5/Rev: 0

Title: Develop and Release incremental Builds

Effective Date:

August 1, 2005

Supersedes: N/A

Overview: Develop and Release incremental Builds

Entry Criteria

Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

Risk Analysis document completed
Incremental Build Schedule Complete

Configuration Management Tool and
Process available

Software Development Enviranment
available

Test Environment available
Defect Tracking Tool available

Software under configuration control
available (if not first iteration)

Exit Criteria

Source Code and Executable Complete in
Configuration Management

KAPL Software V&V complete
Release Readiness Review complete

Inputs

Software FRD {may be preliminary)
Software architecture (may be preliminary)
Risk Analysis document

Incremental Build Schedule

Qutputs

Source code and Executable released
Inspection report issued

Unit Test report issued

Test Readiness Review Report issued
System Test report issued

Release Readiness Review Report
issued

b
C.
d

Tasks
a.

Develop Detailed Requirements for Increment and Inspect (5.1)

. Analyze and develop Detailed architecture for Increment and Inspect (5.2)

Design software Modules for Increment and Inspect (5.3)

Implement Module in source code, write unit test cases, [nspect code (5.4)

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 33 of 94

Unit Test Module implementation (5.5)
Integrate software modules on hardware (5.6)
Hold Test Readiness Review, perform system testing on SDVE (5.7)

T @ ™ o

Document and Release executable software, hold Release Readiness Review (5.8)

Bettis performs Independent Verification, Validation, and Testing (5.9)
j. Any defects encountered are entered into Defect Tracking database (5.10.a)

k. Al defects are evaluated to determine proper disposition. Process repeated at earlier task
as appropriate to correct defect. (5.10.b})

Process Flow
See following Develop and Release Incremental Build Process Chart

Measures References
1. Time to complete task A. None
2. Number of defects per stage
3. Time to correct defects
4. Code development productivity
5. Code inspection productivity

MeyD $S2201d pPng |ejuawlioug asealoy pue dogaag s-0IS

6 10 y¢ obed
£000-01949-ddS
0} (¢) ainsopuz

1QRENCAS-OIH-LOdaN
¢’ ® ®

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 35 of 94

4.5.1 Process 5.1: Develop Detailed Requirements for Increment

ID: S/IC-5.1/Rev: 0 Title: Develop Detaited Requirements for Increment

Effective Date: August 1, 2005 Supersedes: AN/A

Overview: Develop detailed functional requirements for functions contained in the current increment

Entry Criteria Exit Criteria

e Preliminary or complete software FRD is ¢ Detailed Incremental Requirements
available Inspected

e Preliminary or complete software ¢ Requirements submitted to NR if changed
architecture is available from initial requirements

o List of functions allocated to increment ¢« Requirements placed in Requirements

¢ Requirements Management Tool and Management tool

Process available

» Software Development Environment
available

¢ Defect Tracking Tool available

Inputs Outputs
¢ System FRD (may be preliminary) ¢ Updated software FRD
¢ Software FRD (may be preliminary) e Inspection report issued

¢ Software architecture {(may be preliminary) | o Design review report issued {if performed)

e List of functions contained in increment ¢ NR submittal letter issued

¢ Incremental Build Schedule

Tasks

a. Examine system FRD for new or changed information on software requirements contained
in this increment

Determine if any refinement of software requirements is necessary and update
Ensure changes to software FRD are in Requirements Management tool

Inspect software FRD changes

Incorperated inspection findings

Design review may be performed if there is a large change from last design review
Incorporated design review findings if performed

@ o o o0 U

Submit software FRD changes to NR

Incorporate NR comments into software FRD and issue
j. Baseline software FRD in Requirements Management tool

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 36 of 94

Process Flow
See following Develop Detailed Requirements for Increment Process Chart

Measures References
1. Time to perform tasks A. None

2. Number of comments from inspections
and design reviews

3. Time to resolve comments

4. Number of comments from NR
approval

ey 53201 JudLaldu] 10} sjudwaainbay pajrejaq dojarsqg 1'5-0IS

¥6 Jo /¢ abed

£000-01949-ddS
0} (g} ainsopug

_‘ﬁan_ow-o_m-._bn_mz . .

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 38 of 94

4.5.2 Process 5.2: Analyze/Develop Detailed Architecture for Increment

ID: SIC-5.2/Rev: 0 Title: Analyze/Develop Detailed Architecture for increment

Effective Date: August 1, 2005 Supersedes: N/A

Overview: Analyze/Develop detailed software architecture based on detailed functional requirements
for functions contained in the current increment

Entry Criteria Exit Criteria

e Preliminary or complete software FRD is ¢ Detailed software architecture Inspected

available ¢ Revised architecture sent to NR for

¢ Preliminary or complete software information
architecture is available

e List of functions allocated to increment

o Configuration Management Tool and
Process available

o Software Development Environment
available

» Defect Tracking Tool available

Inputs Outputs
e System FRD (may be preliminary) o Updated software architecture document
¢ Software FRD {may be preliminary) e Inspecticn report issued

¢ Software architecture {(may be preliminary) : e Design review report issued (if performed)
e List of functions contained in increment

Tasks

a. Examine system FRD for new or changed information on software requirements contained
in this increment

b. Determine if any refinement of software architecture is necessary and update (be mindful of
effect on other platforms)

Document changes to software architecture

Inspect software architecture changes

Incorporate inspection findings

Design review may be performed if there is a large change from last design review
Incorporate design review findings if performed

S@ =~ o oo

Provide revised architecture to NR for information

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 39 of 94

Process Flow

See following Analyze/Develop Detailed Architecture for Increment for Increment Process
Chart

Measures References
1. Time to perform tasks A. None

2. Number of comments from inspections
and design reviews

3. Time to resolve comments

. . NRPCT-RIC-SDPM1

Enclosure (2) to
SPP-67610-0007

Page 40 of 94
SIC-5.2 Analyze/Develop Detailed Architecture for Increment Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2} to
SPP-67610-0007

Page 41 of 94

4.5.3 Process 5.3: Detailed Module Design for Increment

ID: SIC-5.3/Rev: 0

Title: Detailed Module Design for Increment

Effective Date:

August 1, 2005

Supersedes: N/A

Overview: Develop detailed design for each module allocated to the current increment including data
flow and internal structure,

Entry Criteria

Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

List of functions allocated to increment

Configuration Management Tool and
Process available

Software Development Envircnment
available

Defect Tracking Tool available

Exit Criteria
o Detailed module design inspected.

e Module design documented

Inputs

System FRD {may be preliminary)
Software FRD (may be preliminary)
Software architecture (may be preliminary)

List of functions contained in increment

Outputs
e Detailed Module design documented

o Inspection report issued

Tasks
Determine detailed design of modules allocated to increment based on requirements,

a.

architecture, and any interface requirements.

Document module design
Inspect module design
Incorporate inspection findings

Process Flow

See following Detailed Module Design for Increment Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 42 of 94
Measures

References
1. Time to perform tasks A. None

2. Number of comments from inspections

3. Time to resolve comments

HEYD $S5920.4d Juswalouj 1o ubisaq ainpoly pae1aq £'5-2IS

6 J0 e abed
£000-01949-ddS
0} (g) ainsoppug

| QEaNAOS-O1Y-10d4N
¢ ® ®

NRPCT-RIC-SDPM-001
Enclosure (2} to
SPP-87610-0007

Page 44 of 94

4.5.4 Process 5.4: Module Implementation/Coding for Increment

ID: SIC-54/Rev: 0

Title: Module Implementation/Coding for Increment

Effective Date:

August 1, 2005

Supersedes: NV/A

Overview: Implement moduies for increment, write unit test cases, inspect source code, and desk
check module implementation.

Entry Criteria

Preliminary or complete software FRD is
available

Preliminary or complete software
architecture is available

List of functions allocated to increment
Detailed Module design

Configuration Management Tool and
Process available

Software Development Environment
available

Correction of defects found from prior
testing

Defect Tracking Tool available

Exit Criteria
o Inspected Module implementation source
code

o Module Unit Test cases developed

» Source Code in Configuration
Management tool

Inputs

System FRD (may be preliminary)
Software FRD {may be preliminary})
Software architecture (may be preliminary)
Detailed Module design

List of functions contained in increment

Unit Test report (if correcting findings)

Qutputs
¢ Module source code

o Code inspection report issued

» Unit test cases developed

Tasks
Evaluate unit test findings (if any) and determine module changes necessary

a.

o o 0 o

Write or update source code for each module

Write unit test cases for complete MC/DC coverage of module

Inspect source code

Incorporate inspection findings, if inspection finding will not be incorporated at this time, it is

to be entered into the Defect Tracking too!

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 45 of 84

f. Desk check module implementation (compile source code and run with stubs)

Process Flow

See following Module Implementation/Coding for Increment Process Chart

Measures References
1. Time to perform tasks A. Coding Standard

2. Number of comments from inspections

3. Time to resolve comments

Jey) $$9204d Juswalsu) 1o) Buiponuonejuswajdiu] sainpow #5-21S

76 0 9 abed
£000-019.9-ddS
0} (z) ainsojpoug

Ft,_n_om,o_m#on_mz . . .

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 47 of 94

4.5.5 Process 5.5: Unit Test of Modules for Increment

ID: SIC-5.5/Rev: 0

Title: Unit Test of Modules for Increment

Effective Date:

August 1, 2005

Supersedes: N/A

Overview: Review and run unit test cases for modul

es, if defects found, correct defects via SIC-5.4

Entry Criteria

Source Code for modules available
Unit Test cases for modules available
List of functions allocated to increment

Configuration Management Tool and
Process available

Software Development Environment
available

Test Environment available

Defect Tracking Tool and Process
available

Software baselined and under
configuration control

Exit Criteria
¢ Allincrement modules unit tested

e Unit test cases reviewed

e Source Code in Configuration
Management tool

o Test cases and results in configuration
management

Inputs

Module Source Code

Module Unit Test Cases

Software architecture (may be preliminary)
Detailed Module design

List of functions contained in increment

Outputs
¢ Reviewed Unit Test cases

¢ Unit Test report issued

Tasks
Review unit test cases for completeness (reviewer must be independent of author)

a
b
C.
d.
e
f.

Update unit test cases based on review

Perform unit testing, ensure complete MC/DC coverage

Archive results and unit tests in configuration management tool

Issue unit test report with findings

If defects are found, re-enter process SIC-5.4 to correct module implementation

If defect can not be resolved at this time, enter into Defect Tracking database

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 48 of 94

Process Flow

See following Unit Test of Modules for Increment Process Chart

[Measures
1. Time to perform tasks

2. Number of findings from unit testing
3. Time to resolve comments

References
A. None

6 J0 6 9bed

£000-019.9-ddS
0} (2) ainsojoug

_‘izaam-o_m-._bn_mz

HEY) SS890.d JUBWIIOU| 10} SBINPOIN JO }S3] JIuN $'S-IIS

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 50 of 94

4.5.6 Process 5.6: Module Integration for Increment

ID: SIC-5.6/Rev: 0

Title: Module Integration for Increment

Effective Date:

August 1, 2005

Supersedes: N/A

Overview: Integrate modules together and create executables. Run on hardware for preliminary
checkout

Entry Criteria

Source Code for modules available
Modules Unit Tested

Configuration Management Tool and
Process available

Software Development Environment
available

Test Environment available

Defect Tracking Tool and process
available

Software baselined and under
configuration control

Exit Criteria

Executables placed in Configuration
Management tool

Integration findings entered into Defect
Tracking tool

All integration findings corrected

Inputs

Module Source Code

Target Platform

Outputs

Compiled executables under
configuration management

Defects entered in tool and corrected

Tasks
a. Compile module source code and link together into executable

b. Enter compile or link errors into defect tracking tool

C.

d.

If any errors are encountered, develop disposition, and repeat previous process to
correct errors before proceeding further

If compile/link is successful, download executable onto target platform and perform basic

checkout

If any defects are detected during basic checkout, enter into defect tracking tool, develop
disposition, and repeat previous processes to correct errors before proceeding further

If basic checkout is successful, place executables under configuration control

Process Flow

See following Module Integration for Increment Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 51 of 94
Measures

References
1. Time to perform tasks A. None

2. Number of findings from integration
3. Time to resolve comments

. . NRPCT-RIC- SDPIVQ1

Enclosure (2) to
SPP-67610-0007

Page 52 of 94
SIC-5.6 Module Integration for Increment Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 53 of 94

4.5.7 Process 5.7: System Testing for Increment

ID: SIC-5.7 /Rev: 0

Title: System Testing for Increment

Effective Date: August 1, 2005

Supersedes: N/A

Overview: Perform system testing of software executables for increment on SDVE

Entry Criteria

System and software FRDs available
Software executables available

Configuration Management Tool and
Process available

Software Development Environment
available

Test Environment available

Defect Tracking Tool and Process
available

Software baselined and under
configuration control

Exit Criteria

System Test Cases and results placed in
configuration control

System Test findings entered into Defect
Tracking tool

All System Test findings corrected

Inputs

Executable code
System/software FRDs
Target Platform

Outputs

Test Readiness Review report issued
System Test report issued
System Test Cases and results

Defects entered in tool and corrected

Tasks
Develop system test cases based on system and software FRDs

a.

b
C.
d

@

Review system test cases

Prepare Test Plan and hold Test Readiness Review

If review confirms test pian, platform, and executables are ready, perform system testing,

otherwise correct

Archive Test Cases and results in Configuration Management tool

Place defects in defect tracking tool
Issue System Test report

Process Flow

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 54 of 94

See following System Testing for Increment Process Chart

Measures

1. Time to perform tasks
2. Number of defects from Testing
3. Time to resolve defects

References
A. None

. . NRPCT-RIC-SDPI\&1

Enclosure (2) to
SPP-67610-0007
Page 55 of 94

SIC-5.7 System Testing for Increment Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 56 of 94

4.5.8 Process 5.8: Document and Release Incremental Build

ID: SIC-5.8/Rev: 0

Title: Document and Release incremental Build

Effective Date: August 1, 2005

Supersedes: N/A

Overview: Document and ensure all quality and configuration management tasks have been completed

to release software executables for general use.

Entry Criteria
¢ Approved system and software FRDs
available

o Software source code and executables
baselined and under configuration contro!

e Code inspections, Unit Testing, and
System Testing complete with reports
issued

e Defect reports reviewed and dispositioned

Exit Criteria

e Approval from Release Readiness
Review through Configuration Control
Board

e Source Code, Executables, Configuration
reports, and other documentation
exported to Media for issuing to outside
crganizations

e Release Readiness Review Report

issued
o Software baselined and under
configuration control
Inputs Outputs

e Executable code and source code
¢ Approved system/software FRDs.

¢ Inspection, Unit Test, and System Testing
reponts

o Complete Traceability Matrix

e Configuration Documentation issued
e Source Code and Executables issued

¢ Release Readiness Review Report
issued

Tasks

a. Ensure test program completed and test report issued.

b. Prepare release notes for source code and executables

¢. Ensure source code and executables are properly baselined and documented per

configuration management process

d. Review Traceability Matrix for complete coverage

e. Perform Release Readiness Review with NR and other stakeholders to ensure maturity of
product for release (also review defects/open items)

f. Document review meeting in meeting minutes, address all open issues

g. Issue source code and executables with relevant documentation

Process Flow
See following Document and Release Incremental Build Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 57 of 94
Measures

References

1. Time to perform tasks A. None

2. Comments at Review

HEYD SS8204d pPling |EJUSWAIOU} 2SE|aY pue Juswndog §'G-JIS

6 J0 g5 abeyd

£000-019.9-ddS
0} () amnsojpug

_‘i,_n_ow-o_m-._bn_mz . .

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 59 of 94

459 Process 5.9: Independent Verification/Validation/Testing of

Incremental Build

ID: SIC-5.9/Rev: 0
Build

Title: Independent Verification/Validation/Testing of Incremental

Effective Date: August 1, 2005

Supersedes: NV/A

Overview: An independent inspection and test program is performed at Bettis after release of an

incremental build

Entry Criteria
e Approved system and software FRDs
available

o Software source code and executables
baselined and under configuration control

¢ Code inspections, Unit Testing, and
System Testing complete with reports
issued

¢ Release Readiness Review completed

Exit Criteria

Completion and documentation of all
relevant Bettis testing and inspections

Documentation of any defects identified
by Bettis

Inputs
e Executable code and source code

e Approved system/software FRDs

Outputs

Bettis inspection and test reports issued

Bettis Test Cases and results placed
under configuration control

Tasks

Receive release materials for incremental build from KAPL

Prepare test cases from FRDs.

Perform system testing based on FRD functionality

Document any inspection or system test findings

a
b
c. Perform software inspections based on NRPCT coding standard
d
e
f

Issue test and inspection reports

Process Flow

See following Independent Verification/Validation/Testing of Incremental Build Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 60 of 94

Measures
1. Time to perform tasks
2. Number of defects from testing

3. Number of findings from inspection

References
A. None

Heyd ssad0ud pling |ejuawaisu] 10} Bupss | juoneplieA/uonesylIaA JUspUSdapY] 6'6-01S
6 40 Lg abed

£000-019/9-ddS
0} (Z) einsojouzy

wﬁaom-o_mﬂroamz . .

NRPCT-RIC-SDPM-001
Enciosure (2 to
SPP-67610-0007

Page 62 of 94

4.5.10 Process 5.10a: Defect/Change ldentification for Incremental Build

ID: SIC-5.10a/Rev: 0

Title: Defect/Change Identification for Incremental Build

Effective Date: August 1, 2005

Supersedes: N/A

Overview: For Integration, System Testing, or Independent V&V, defects are identified and placed into

defect tracking tool.

Entry Criteria
e Defect Tracking Tool available

o Defect found in project step

Exit Criteria

* Finding discussed with cognizant
engineer and placed in Defect Tracking
Tool

inputs

o Defect identified in source code or
executable

Outputs

o Defect Documented in Defect Tracking
Tool

Tasks

a. Defect is identified during inspection, Unit Test, Integration, System Test, or Independent
V&YV, if applicable, tester should attempt to replicate defect as this will help to narrow down

possible defect source

b. Defect is discussed with module cognizant engineer to ensure defect is properly

characterized

c. Defect is entered into Defect Tracking Tool with at least;

Date of defect, brief description, affected module, test script, test case, inputs, expected

and actual outputs, detailed description of defect

d. Cognizant engineer shali concur to defect description in tool

e. Notify stakeholders of defect

Process Flow

See foliowing Defect Identification for Incremental Build Process Chart

NRPCT-RIC-SDPM-001
Enclosure {2) to
SPP-67610-0007

Page 63 of 94
Measures References

1. Number of defects A. None

2. Time to enter defect and obtain
cognizant engineers concurrence

6 Jo 9 abeg
£000-019.9-ddS
03 (2) aunsojoug

wt,_n_n_w-o_m-._.ommz

Heyy ssadoid pling [ejuswialou] 1oj uonesyijuspl Jo9jeg eoL 's-IIS

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 65 of 94

4.5.11 Process 5.10b: Defect/Change Disposition for Incrementa! Build

ID: SIC-5.10b/Rev: 0 Title: Defect/Change Disposition for Incremental Build

Effective Date: August 1, 2005 Supersedes: N/A

Overview: Any defects that have been identified must be evaluated and proper corrective action
assigned and performed.

Entry Criteria Exit Criteria
o Defect Tracking Tool available o Corrective action identified, implemented,
¢ Undisposed defects identified and entered and verified
into the tool
Inputs Outputs
e Undisposed identified defects o Defects have corrective action
implemented and verified
¢ Defect closed out in tool
Tasks

a. Each defect identified in tool is evaluated by Configuration Control Board, including tester
and developer

b. Once source of defect is identified, it is documented in tool
c. Possible corrective actions are identified in tool

Corrective actions may include reimplementation, design change, or requirements
changes

d. Corrective action authorized by CCB, developer performs corrective action

CCB scope is determined by scope of corrective action. For a simple local
implementation change, a smaller scope CCB may be required, but for an architecture or
requirements change, NR may have to be involved as well

e. Once software has been successfully retested, defect is closed out in tool

Process Flow
See following Defect Disposition for Incremental Build Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
: Page 66 of 94
Measures

References
1. Number of defects A. None

2. Time to provide solution for defect and
successfully retest

v6 40 /9 abed
2000-019.9-ddS
0} (z) @insoppug

thn_n_wlo_m_-.roamz

HeyoH ssed04d pling [ejuawiaidu] o) uonisodsiqg 309jea q0L's-0IS

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

. Page 68 of 94

5 ANCILLARY PROCESSES

5.1 Process A1: Configuration Management

ID: S/IC-A1/Rev: 0 Title: Configuration Management

Effective Date: August 1, 2005 Supersedes: N/A

Overview: Requirements, design, source code, executables, test cases, and results require
configuration control and change management

Entry Criteria Exit Criteria

¢ Configuration Management tool available e Article place in configuration control,
change history updated, article version
appropriately identified, and collection of
* Document archive tool available configuration items properly baselined

¢ Requirements Management tool available

» Changes approved by CCB, changes
verified once made

. Inputs Outputs
o Article created that must be placed in CM e All articles "checked in” with proper
system labeling and revision history -
» Revision history and number identified e CCB meeting minutes issued for

authorized changes to configuration items

Tasks
a. Type of article identified to determine configuration management system to be used:

1. Requirements — requirements management system

2. Design (architecture) — issued as letter and placed in document archive tool
(ADSARS)

3. Source code, executables — Configuration management system
Test cases, test results — Configuration management system

Inspection, design review, and Test reports — issued as letter and placed in
document archive tool (ADSARS)

b. Requirements are placed in Requirements Management tool:

1. User rights: Author has full change access, other users only have read access,
administrator has full access to set user access

. 2. On creation, requirements placed in tool and edited in tool

Requirements are inspected and changes placed in tool

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 69 of 94

4.
5.

Requirements are design reviewed and changes placed in tool

Requirements are baselined as “Proposed” and a revision number is assigned (start
at 0, e.g. “Proposed Revision 0.0%)

Revision has major and minor number X.Y, major incremented for large

changes, minor incremented for smaller changes (as determined by CCB)

6.

7.

8.

9.

Requirements are exported from the tool into a document for sending to NR for
approval, submittal letter is placed in document archive tool (ADSARS).

Once NR approval has been received, and NR comments have been incorporated
into the tool, requirements are rebaselined, and the “Proposed” designation is
removed

Approved requirements are exported from tool into a document and issued for
information, issuing letter is placed in document archive tool (ADSARS)

Any requirements change identified from Defect Disposition or other sources must
be evaluated by CCB, and if accepted, changes must repeat steps b.3 through b.8.

c. Software design and architecture:

1.

Software design and architecture must be inspected and design reviewed

2. Software design and architecture are captured in a document
3.
4. Any design or architecture change identified from Defect Disposition or other

Document is issued via letter and placed in document archive tool (ADSARS)

sources must be evaluated by the CCB, and if accepted, change shall be inspecied
(and design reviewed if large in scope), then reissued via letter and placed in the
document archive tool (ADSARS)

d. Source Code and Executables

1.

User rights: Author has full change access, other users only have read access,
administrator has full access to set user access

Each source code file or executable is created and placed in the Configuration
Management tool

Files are checked in and out by the author for implementation

4. Once implementation is complete, the files are baselined as “Revision 0.0" (XY

where X is the branch (thread) and Y is the file revision, the first (and main) branch
is 0, but it is envisioned that the files will be shared across platforms, and may need
platform specific changes, thus necessitating a new branch to track the same file in
muitiple branches) and code inspected

Code inspection comments are incorporated into the files which are then
rebaselined with revision history (date, author, brief description of changes) added
and the revision number is incremented

Once unit testing is completed, findings are incorporated, and the files are
rebaselined with updated revision history and revision numbers, an application
version number is applied to all files that make up an executable (e.g. Version 1.0)
At this point, CCB approval is necessary to further change files

NRPCT-RIC-SDPM-C01
Enclosure (2) to
SPP-67610-0007

Page 70 of 94

7. Once integration is performed any integration findings must be approved by the
CCB to make changes to the source files. Any files to be changed must have
revision history and revision numbers updated, and once all integration changes are
complete, the collection is rebaselined and a new version number is assigned (e.g.
Version 1.1). The generated executable is then updated with a new version
number.

8. System testing is performed on the compiled executable, and any changes
identified by system testing must be approved by the CCB, then the product must
have source file revision history and revision numbers updated, the collection must
be rebaselined with the application version number updated (along with change
history for the application), the source files proceed through integration to create a
new executable, and this executable is labeled with an updated version number.

9. Later increments repeat steps 2 through 8
e. Test cases and results:

1. Unit test cases and system test cases are placed in the configuration management
tool once generated

2. Once the test cases have been reviewed, the cases are baselined as “Revision 0.0"
(X.Y where X is the branch (thread)} and Y is the file revision, the first (and main)
branch is 0, but it is envisioned that the files will be shared across platforms, and
may need platform specific changes, thus necessitating a new branch to track the
same file in multiple branches).

3. Once the test cases have been run, the results are archived in the configuration
management tool until needed for issuing the test report

f. Inspection reports, design review reports, test result reports:

1. The various reports are prepared in letter format and placed through the standard
letter review process (primary design check, management review, administrative
review, issue)

2. Once the letter is issued, it is archived in the document archive tool (ADSARS)

CCB - Configuration Control Board: Used to review potential changes to items under
configuration control, and then accept or reject change requests -

1. The CCB consists of stakeholders relevant to the scope of changes being requested.
Members consist of : NR, Manager Space |&C Systems & Software (Chairman of
CCBY), Cognizant software developer (requesting change), System Cognizant
engineers, Test Engineers, Bettis Space |&C Engineers (when change may impact
CTD software or delivery dates of releases to Bettis), BPMI Engineers (when change
may effect program vendors of final delivery of Incremental Build), Other Prometheus
program organizations as appropriate

2. Change request must be submitted to CCB prior to meeting. Change request must
contain affected modules, scope of change, estimated scope of retest, estimated
schedule for completion of change and follow-up qualification, and defects being
addressed

3. CCB meeting must be scheduled, and items are to be reviewed at the meeting, a

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 71 of 94

disposition for each requested change is determined, and meeting minutes are issued

Process Flow
See following Configuration Management Process Chart

Measures References
1. None A. None

Meyo ssas0.d Juswabeueyy uoneanbyuon Lv-oIs

¥6 10 g/ 9bed

£000-019/9-4dS
0} (2) @insojpug

dds-0i{d-10d4N
(] o o

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 73 of 94

5.2 Process A2: Requirements Traceability

ID: SIC-A2/Rev: 0

Title: Requirements Traceability

Effective Date: August 1, 2005

Supersedes: N/A

Overview: Clear traceability must be established between the requirements, implementation, and test
cases. This traceability must be bidirectional to be able to verify complete implementation and

coverage.

Entry Criteria
¢ Configuration Management tool available

¢ Requirements Management tool available

Exit Criteria

o Traceability matrix established for
bidirectional traceability between all
artifacts

Inputs
* Approved software and system FRD

e Scoftware architecture and design
Documents

e Source Code

¢ Unit and system test cases

Outputs

¢ Bidirectional traceability matrix between
source code and requirements (and
design)

¢ Bidirectional traceability matrix between
requirements, test cases, and results.

Tasks

a. Once FRD has been established and software architecture/design is created, a traceability
matrix shall be created to identify which requirements are satisfied in each module, and
which modules satisfy each requirement {bi-directional)

b. Once source code is created, a bi-directional traceability matrix shall be created between

the requirements and the code.

c. Once Unit and system test cases have been created a bidirectional traceability matrix shall
be created between the test cases and the source code.

d. Any time one of the inputs is updated, the traceability matrix shall be examined to
determine if updates are necessary, and then updated.

e. The traceability matrix shall be provided as part of the release documentation for a build

Requirement Management tool may support linking for traceability matrix

Process Flow

See following Requirements Traceability Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 74 of 84
Measures

References

1. None A None

Heyn ssa00.d Anjigessel | sjuswannbay 2v-0IS

¥6 J0 G/ abed

£000-019.9-ddS
01 (Z) ainsojoug

_.ﬁzn_ow-o_m-._bn_w_z . .

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 76 of 94

5.3 Process A3: Inspections

1D: SIC-A3/Rev: 0 Title: Inspections

Effective Date: August 1, 2005 Supersedes: N/A

Overview: Inspections are performed on work products to catch defects early and help improve the
product. ' '

Entry Criteria Exit Criteria
¢ Configuration Management tool available o Inspection report with comments issued

* Requirements Management tool available
¢ Applicable standards available
¢ Applicable checklists availabie

¢ Inspection work product baselined and
under configuration control

Inputs Outputs

e Software and system FRD ¢ Inspection report issued

e Software architecture and design e Findings placed in defect tracking tool if
documents appropriate

¢ Source code

* Unit and system test cases

Tasks

a. An inspection group, independent of work product author, is established of nominally 3to 5
engineers, a chairman/scribe, and the author (to present). The members may be NRPCT
or from other Prometheus project organizations {(assuming clearance and NTK can be
established).

b. Requirements, architecture, design, code, and test case inspections:

1. Kickoff meeting held with author and all inspectors, author presents requirements
and walks inspectors through document

2. Requirements are baselined, and distributed 3 weeks prior to the review meeting to
all members along with any applicable standards and checklists

3. Inspectors review requirements and provide comments to chairperson 1 week prior
to review meeting, chairman provides comments to author for preliminary
disposition

4. Review meeting walks through inspector comments and author preliminary
responses, and any new comments are documented at meeting

5. All comments are provided to author via formal meeting minutes, author then

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 77 of 94

formally replies with response/closeout of comments. Alternately, comments could
be discussed prior to issue of meeting minutes and meeting minutes could
document both comments and resolutions

6. Any unresolved comments are placed in Defect Tracking tool for later disposition

c. Inspection report shall provide summary information related to number and types of
comments

Process Flow
See following inspection Process Chart

Measures References
1. Number of comments A. Reguirements standard

2. Time to resolve comments B. Design standard
C. Coding standard
D

. IEEE Std. 1028

Hey9 ss9901g uonoadsu] gy-9is

6 J0 g/ abed
2000-019/9-ddS

0} (2) @insojougy
rtg. ddS-OI4-10d4N . .

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 79 of 84

5.4 Process A4: Design Reviews

ID: SIC-A4/Rev: 0 Title: Design Reviews

Effective Date: August 1, 2005 Supercedes: N/A

Overview: Formal review performed on requirements and software architecture per KQA-10.

Entry Criteria Exit Criteria
e Configuration Management tool available o Design review report issued

¢ Requirements Management tool available | Design review closeout issued
e Applicable standards available
e Applicable checklists available

Inputs Outputs
¢ Software and system FRD e Design review report issued
e Software architecture and design ¢ Design review closeout issued

+ Findings placed in defect tracking tool if
appropriate

Tasks

a. A design review group, independent of work product author, is established of nominally 5 to
8 engineers, a chairman/scribe, and the author (to present). The members may be NRPCT
or from other Prometheus project organizations (assuming clearance and NTK can be
established). Members are chosen to be outside of Space I1&C group with independence
but expertise in the area of review

b. Requirements, architecture, design review (per KQA-10):

1. Design review Chairperson selected and a design review is formally requested with
a design review number assigned by SQA

2. Kickoff meeting held with author and all reviewers, author presents requirements or
architecture and walks reviewers through document

3. Requirements or architecture is baselined, and distributed 3 weeks prior to the
review meeting to all members along with any applicable standards and checklists

4. Reviewers review requirements or architecture and provide comments to
chairperson one week prior to review meeting, chairman provides comments to
author for preliminary disposition

5. Review meeting walks through design review comments and author preliminary
responses, and any new comments are documented at meeting.

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 80 of 94
@

6. All comments are categorized as either Findings (which require formal response) or
Observations (which do not require formal response)

7. All comments are provided to author via formal meeting minutes, author then
formally replies with response/closecut of comments. Alternately, comments could
be discussed prior to issue of meeting minutes and meeting minutes could
document both comments and resolutions.

8. Any unresolved comments are placed in Defect Tracking tool for later disposition.

c. Design review report shall provide summary information related to number and types of
comments (findings and observations).

Process Flow
See following Inspection Process Chart

Measures References

1. Number of comments A. Requirements standard
2. Time to resolve comments B. Design standard
C. Coding standard
D

. KQA-10

MBeYD SS820id malaay ubiseq vv-2IS

6 j0 |8 abed
£000-019.9-ddS
0} (z) ainsoppus

wizn_ow Old-10d4N . .

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 82 of 94

5.5 Process A5: Test Readiness Reviews

ID: SIC-A5/Rev: 0

Title: Test Readiness Reviews

Effective Date: August 1, 2005

Supercedes: N/A

Overview: Review to ensure test platform, software, test cases, and the test plan are ready to

commence a test program.

Entry Criteria
e Test plan available

¢ Executables ready for testing

e Test environment ready

Exit Criteria
o Test Readiness Review meeting minutes
issued

* All review comments and concerns have
been addressed

Inputs
e Testplan

s Test environment
e Test cases

¢ Executable software

Outputs
e Test Readiness Review minutes issued

Tasks

a. Ensure test plan is complete, test bed configuration is documented, executable
configuration is documented, and test cases are reviewed

b. Schedule Test Readiness Review, include Tester, Cognizant developer, Manager Space
I1&C Systems and Software, Test director, System cognizant engineer, and others as

appropriate

c. At Readiness Review, test plan shall be walked through, and there should be confirmation
of configuration of Test environment, Test cases, and executable software

d. Any comments identified at the Readiness Review shall be documented in the meeting
minutes and resolved before testing can commence

e. Test Readiness Review meeting minutes are issued

Process Flow

See following Test Readiness Review Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 83 of 94

Measures
1. Number of comments

References
A. Test Plan template

2. Time to resolve comments

HEYD SS300.d MOIADY SSoUIpedy 1S3 SY-IIS

¥6 40 ¥ abed

£060-019.9-ddS
0} (g) ainsopug

_‘iﬁn_owuo_w_-._bn_mz .

NRPCT-RIC-SDPM-001
Enclosure (2} to
SPP-67610-0007

Page 85 of 94

5.6 Process A6: Release Readiness Reviews

ID: SIC-A6/Rev: 0 Title: Release Readiness Reviews

Effective Date: August 1, 2005 Supercedes: N/A

Overview: Review to ensure executable has completed all necessary quality steps for general release.

Entry Criteria Exit Criteria

e Executable successfully completed all * Release Readiness Review Report
inspections, unit testing, and system issued
testing » Source code, executables, and all

e Executable configuration documentation is associated documentation are available
complete for general use

All defects have been satisfactorily
disposed and closed out

Inputs Outputs
o Code inspection report o Release Readiness Review Report
issued

Approved software FRD
Unit Test report e Source Code/Executables/
P Documentation available for general use

System Test report

Release Notes/ Change List

Tasks

a.
b.

Ensure necessary inputs are all available

Schedule Release Readiness Review, include CCB members, including NR, the Cognizant
developer, System cognizant engineer, Tester, Manager Space 1&C Systems and
Software, Test Director, Bettis Space I&C personnel, and representatives from other
Prometheus organizations as appropriate

At Release Readiness Review, the configuration documentation for the source code and
executables shall be examined, inspection report, Unit Test report, and System Test report
should have been issued, software FRD shall have been approved and issued, and all
defects shall have been dispositioned and closed.

The Release Readiness Review Report shall be issued

If accepted by the CCB, the source code and executables are made available for general
use

Process Flow

See following Release Readiness Review Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 86 of 94
Measures

References
1. Number of comments A. None

2. Time to resolve comments

. . NRPCT-RIC-SDPI\&1

Enclosure (2) to
SPP-67610-0007

Page 87 of 94
SIC-A6 Release Readiness Review Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 88 of 94

5.7 Process A7: Software Hazard Analysis, SFTA, and SFMECA

ID: SIC-A7 /Rev: 0

Title: Software Hazard Analysis, SFTA, and SFMECA J

Effective Date: August 1, 2005

Supercedes: N/A J

Overview: Review of requirements and design to ensure faults and hazards are understood and

mitigated to the maximum extent practical

Entry Criteria
e Software FRD available

s Software architecture available

Exit Criteria

¢ Report prepared on Software Hazard
Analysis, Fault Tree Analysis, and Failure
Mode Effects and Criticality Analysis

Inputs
e Software FRD

¢ System FRD
¢ Software architecture

Outputs
» Software Hazard Analysis

o Software Fault Tree Analysis

e Software Failure Modes, Effects and
Criticality Analysis

Tasks
f. Perform Software Hazard Analysis;

1. [RESERVED]
g. Perform Software Fault Tree Analysis:
1. [RESERVED]

h. Perform Software Failure Modes, Effects and Criticality Analysis:

1. [RESERVED]

Process Flow

See following Software Hazard Analysis, SFTA, and SFMECA Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 89 of 94
Measures

References
1. Number of comments A. None

2. Time to resolve comments

NRPCT-RIC-SDPI\&‘I
Enclosure (2) to
SPP-67610-0007
Page 90 of 94

SIC-A7 Software Hazard Analysis, SFTA, and SFMECA Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007

Page 91 of 94

5.8 Process A8: Auditing and Self-Assessments

ID: SIC-A8/Rev: 0

Title: Auditing and Self-Assessments

Effective Date: August 1, 2005

Supercedes: N/A

Overview: Performance of auditing and self-assessments to ensure compliance to processes,

Entry Criteria
e« Periodic self-assessment period

e SQA audit
e Spot check

Exit Criteria

» Process audited, results documented,
and any defects corrected along with any
training or process improvement needs
addressed

inputs
» Software Development Plan

+ Work Products

Outputs
e Audit or internal review report

« Audit or internal review response

Tasks

a. Process or work product to be audited is chosen

b. Audit performed to ensure compliance to written process, or to ensure work product
satisfies intended function {e.9. audit of defect resolution)

Once audit or seif-assessment is complete, results are documented and issued

Response is generated to perform corrective actions including retraining, or process

improvement

Process Flow

See following Auditing and Self-Assessments Process Chart

NRPCT-RIC-SDPM-001
Enclosure (2) to
SPP-67610-0007
Page 92 of 94
Measures

References
1. Number of comments A. None

2. Time to resolve comments

Meyo ssa201d SJUDWISSISSY-}19S pue Bunipny gy-01s

6 Jo £6 abed
£000-019.9-ddS
0} (g) sunsopug

LOGRINAOS- O -1 DduN
3 ® ®

®

NRPCT-RM-SDPM-001

Page 94 of 94

6 OTHER PROCESSES [RESERVED]

Processes identified here are identified in the PSMP and will be provided as ancillary
processes when further definition has been completed.

Software Classification

The PMSP defines classification levels for software to identify which software requires
greater verification and validation based on the criticality of the software (consequences
of software failure). This will be performed using the NNPP SQCL.

Risk Management

Risk management includes the identification of risks, the determination of mitigation
strategies for risk, and the active review and application of those strategies throughout
the life of the product.

Process Modification
As processes and used throughout the life of the project, improvements will be identified
and have to be incorporated into the process documents.

Supplier Agreement Management
N/A

Metrics

Measures of performance used to help gauge project status and improve future
planning.

Project Status, Risk, Defects, Earned Value, Schedule, Cost, Staffing, Functionality,
Requirements, & others per PSMP.

Acceptance and Deployment
Process of certifying testing and releasing the software.

Operations and Maintenance
Process for maintaining software once released.

Corrective Actions
Tasks performed in response to problem reports.

Lessons Learned
Collecting information on unplanned events that can be applied to improve the process
in the future.

Process Improvements
See process modification.

Acquisition
Process used to procure hardware and software development tools.

Causal Analysis and Resolution
Determining the root cause of a problem and fixing the both the problem and the
process.

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 1 of 24

NRPCT Reactor Module
Software Development Plan
(NRPCT-RM-SDP-001)

NRPCT I&C Software Team

July 2005

PRE-DECISIONAL - For Planning and Discussion Purposes Only

This page intentionally left blank.

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 2 of 24

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
\ Page 3 of 24
. Revision History
Revision Author Date Change Synopsis Reason for Change
Draft T. Hamilton 6/30/05 Original

D. Schroeder

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007
. Page 4 of 24
Table of Contents
T INEOAUCHION. o e e e 3
1.1 Identification 3
1.2 P DO . . et 3
13 Basis and Standardscocoioi e 3
1.4 Division of ReSponsibilitiscccooeiiiiiri e 3
1.5 Notation & Terminology 3
1.6 Document HIBIarChy........coociriiieii e 3
1.7 D iNItIONS ..ot e aba s 3
1.8 F o141 1 - O O PRSP SPPOTPPPRE 3
1.9 RETEIENCES . .. o e 3
2 OVEIVIBW ..ot e e et a e 3
2.1 DS Gt ON .. ot 3
2.2 ProjeCt Phases 3
2.3 Software Life Cycle, Methodology, and Language..................ccoooiii 3
2.3.1 Incremental Life CyCle ... 3
2.3.2 Software Design Methodologyc.c.oviiiireiiie e, 3
2.3.3 Language ChoiCeot 3
3 OWOTK ProdUCES ... e 3
3.1 Software Development Plan ... 3
32 REQUITEMENL. ... e e e e e 3
33 RIS K ettt e ettt e e e e e ee e e et e 3
34 RISK MItIGation ... e e e 3
. 3.5 Configuration HeIM ... oo 3
3.6 Controlled/Quality RECOMS ... 3
3.7 Software ltem/Executable.................... 3
3.8 Software ComMPONENt. ... e 3
39 Software UNit. 3
310 Software Class/Elementooovri e 3
3.11 Software Class/Element INStance...................coooiiiiiiiiiiiiiee e, 3
3.12 Software ltem Delivery Record (SRCR)........c..ooiiiii e 3
313 DESIgN VIBW .o e 3
314 Design DOCUMENE... ..o ettt e e 3
318 SOUICE COU it e e e 3
A6 USEIS GUIdR ..ottt 3
3.17 Command Dictionary........... e e a e 3
3.18 Telemetry DICtiONaryttt e e 3
319 Flight Parameterso e 3
3.20 FHGht RUIES ..ottt 3
3.21 Review MaterialS...........cooooiiiii e 3
3.22 Training RECOM... ...ttt e et e et e e e e e e e 3
323 Test Procedure.......cc.eveiioiiiei e 3
3.24 TESEREPOM ..ot ittt e e 3
3.25 Test ENVIrONMENtt 3
326 TSt PlaAN ...t 3
3.27 Change ReqUESE ..o 3
3.28 Problem RePOIt 3
. 3.29 Requirements DOCUMENT............c.ooiiiiiiiiii e 3
3.30 Interface Requirements Document (IRD)..............coccoc s 3

NRPCT-RM-SDP-001
Enclosure (3) to

SPP-67610-0007

Page 5 of 24

3.31 Interface Control Document (ICD) ... 3
3.32 Schedule Task ... 3
333 SCREAUIE .. e 3
334 BUGEL. ...ttt et et a e e e n e 3
TG 1< T (=T o 11 | o= USROS PRP PP PRSP 3
3.36 Work Breakdown Structure (WBS) Element ... 3
3.37 Work Breakdown StruCture..............oooiviieiiri e 3

T S Ko T -2 OO RSPV OP U PPRPPRPPRROR 3
4.1 Requirements Management ... 3
4.2 Configuration Control 3
43 Problem Reporting ... 3
4.4 Compiler/integrated Development Environmentc.c.cooeviiieiiiiiiicne e 3
45 TESE TOOIS .o 3
451 DEDUGIET ..o 3
452 CoU8 COVEIATE ..ovviiiiieie e 3
453 UNIt TSt 3

4.6 L0 o1 ST PO UV ST RPTRRRTPRR 3

D R BVIBWS . ..o 3
5 S O U USSP URRPPUPR 3
7 Appendix A =Traceabilityccoir e 3
7.1 PSMP Traceability.........ooooiiri i e 3
7.2 SS473 Traceabilityccooiii e 3
7.3 NR Software Engineering Policy Traceability...................ccooooeiei 3
7.4 KAPL Software Engineering Manual Traceabilitycccoocoeiiiinns 3

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 6 of 24

1 INTRODUCTION

1.1 ldentification

This is the NRPCT Reactor Module Software Development Plan (SDP) for the
Prometheus project.

1.2 Purpose

The SDP establishes the mission specific management, development, verification and
validation processes for the reactor module 1&C software of project Prometheus. Each
mission has its own specific SDP detailing how the processes specified in the NRPCT
Reactor 1&C Software Development Process Manual (SDPM) are to be implemented for
that mission. The mission for the Reactor Module SDP is based on a Nuclear Electric
Propulsion (NEP) spacecraft. This work includes but is not limited to the flight software,
ground telemetry and analysis software, test beds, and vendor developed sensor and
actuator interface software. These practices ensure that the reactor module I&C
software is of sufficient quality to meet the Prometheus needs, particularly the
paramount need of safety in the spacecraft. This document implements the processes
identified in the NRPCT Reactor |1&C Software Development Process Manual (SDPM).

1.3 Basis and Standards

This document expands upon and traces to the Prometheus Software Management Plan
(PSMP), JPL document #982-00048. The PSMP defines the high level software
requirements and processes to be used throughout project Prometheus. Although the
Memorandum of Understanding and the Memorandum of Agreement between NASA
and Naval Reactors does not give JPL approval authority over Reactor Module software
development, the NRPCT desires to maintain as much commonality in software
processes as possible. Following the principles established in the PSMP helps to
maintain commonality among software developed for the Reactor Module, Spaceship
Meodule, Mission Module, and Ground System software.

This document incorporates guidance from the Prometheus Software Quality Assurance
Requirements (JPL Document #982-00038) to ensure that there is commonality with
software qualification across the Prometheus project.

This document incorporates guidance from several NRPCT standards and policies. The
SDP incorporates guidance from the NR Software Engineering Policy (as documented in
Bettis Letter No. B-REO(M)CD-008, 3/16/05). The SDP will determine the software
quality criticality level (SQCL) for the flight and ground software per the NNPP Standard
for Software Qualification by Criticality Level (as issued for three prime concurrence by
KAPL Letter No. ARP-68640-0305, 9/2/04).

1.4 Division of Responsibilities

The Prometheus project has several organizations involved in software development;

these include JPL (Mission Module and Ground Data System), the spacecraft contractor
(Spacecraft Module), and the NRPCT (Reactor Module). The spacecraft contractor has
further split the SM work between themselves (Control and Data Handling) and Hamilton

NRPCT-RM-SDP-001
Enclosure (3} to
SPP-67610-0007
Page 7 of 24
Sundstrand (PCAD). The NRPCT has split the Reactor Module software development
work between:

1 KAPL - RM Flight and Ground System software development and integration)

2 Bettis - (CTD development and Independent Verification and Validation of RM
Flight and Ground software, also sensor interface software development
(requirements and verification, implementation by vendors)),

3 BPMI - (contract out sensor development work to vendors for fabrication, and
sensor software development at vendors).

In the above role, KAPL develops and integrates the RM flight and ground software,
Bettis performs independent V&V of the RM flight and ground software. Bettis also
develops the CTDs for both its independent V&V, and for delivery to KAPL as part of the
KAPL integration and test process. BPMI takes part in various software inspections and
design reviews, and also is the contracting agency responsible for handling vendor
development of sensors and sensor interface card hardware and software. Bettis will
also perform independent V&V upon vendor developed sensor software. Once
incremental builds are developed and released, they are handed off to JPL and the
spacecraft contractor for integration within the Space Vehicle Test Beds for testing with
the other developed systems. Models for the C&DH Flight Computer Assembly and the
PCAD will be provided by the spacecraft contractor for integration with the KAPL and
Bettis CTDs to allow composite testing with the RM 1&C hardware and software.

1.5 Notation & Terminology
The NRPCT SDP follows the same Notation & Terminology of the PSMP.

1.6 Document Hierarchy

As with any project, there are many documents that govern the flow of work performed
for that project. A document hierarchy provides a roadmap to aid in understanding of the
layout and structure for documents important to Prometheus software development. The
highest level document used for Reactor Module software development is the Project
Software Management Plan (PSMP), which lays out process requirements that the
NRPCT has agreed to work with to achieve more commeonality with the other
Prometheus software development organizations. Under the PSMP is the NRPCT
Reactor I&C Software Development Process Manual (SDPM). This document provides
the NRPCT specific implementation and customization of the guidance from the PSMP
for processes based on an incremental software life cycle. The implementation of these
processes for a specific mission is then handled in the Software Development Plan

The RM SDP (NRPCT-RM-SDP-001) provides mission specific definition for the
software lifecycle, methodology, and implementation language for the RM flight software.
The SDP also provides definition for the Roles and Work Products defined by the PSMP
and the SDPM. The appendices for the SDP provide traceability to the PSMP, SQCL,
NNPP SEP, and other influencing documents.

A series of documents provide further definition for items identified in the PSMP and are
subordinate to the SDP. These documents include:

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007

. Page 8 of 24
1 The KAPL RM Flight Software Development Plan (KAPL-RM-FSW-SDP-001)
which defines the resources and specific tasks for the RM flight software.
o KAPL Flight Software Work Breakdown Structure (KAPL-RM-FSW-WBS-
001), which defines the tasks necessary to complete software
development for all of the deliverables used for the Prometheus RM Flight
Software.
o The KAPL Flight Software Schedule (KAPL-RM-FSW-SCHD-001), which
provides the schedule for all of the items identified in the WBS.
2 The KAPL RM Ground Software Development Plan (KAPL-RM-GSW-SDP-001)
which defines the resources and specific tasks for the RM ground software.
o KAPL Ground Software Work Breakdown Structure (KAPL-RM-GSW-
WBS-001), which defines the tasks necessary to complete software
development for all of the deliverables used for the Prometheus RM
Ground Software.
o The KAPL Ground Software Schedule (KAPL-RM-GSW-SCHD-001},
which provides the schedule for all of the items identified in the WBS.
3 The Bettis Test Bed Development Plan (BETTIS-RM-TB-DP-001), which
provides CTD specific development tasks, layout, and goals.
o The Bettis RM Test Bed Work Breakdown Structure (BETTIS-RM-TB-
WBS-001), which defines all of the tasks necessary for CTD
development, vendor sensor card development, and independent V&V of
the RM software.
c The Bettis RM Software Schedule (BETTIS-RM-TB-SCHD-001), which
defines the schedule for all of the items identified in the WBS.
. 4 The Vendor Sensor Interface Software Development Plan [RESERVED)]

1.7 Definitions
N/A

1.8 Acronyms

Table 1
Acronym Definition
CL Criticality Level
CTD Composite Test Device
DSS Deep Space System
1&C Instrumentation and Control
FRD Functional Requirements Document
IEEE Institute of Electrical and Electronics Engineers
JPL Jet Propulsion Laboratory
MM Mission Module
NRPCT Naval Reactors Prime Contractor Team
PCAD Power Conditioning and Distribution
PSMP Prometheus Project Software Management Plan
PSR Project Software Requirements
RM Reactor Module
‘ SDVP Software Development and Verification Platform

SFTA Software Fault Tree Analysis

NRPCT-RM-SDP-001
Enclosure (3} to
SPP-67610-0007

Page 9 of 24
Acronym Definition
SFMECA Software Failure Modes, Effects and Criticality Analysis
SHA Software Hazard Analysis
SIC Space 1&C
SM Spacecraft Module
SQCL Software Quality Criticality Level
V&V Verification and Validation

1.9 References
N/A

2 OVERVIEW

2.1 Description

The Prometheus Deep Space System (DSS) is composed of the Reactor Module and
the Spacecraft Module (SM). The DSS is the reusable portion of the Prometheus project;
subsequent missions will tailor the DSS, develop a mission specific set of science
instruments and deliver the science instruments as part of a Mission Module (MM).
These Reactor and Spacecraft modules, as well as the Mission Module, are developed
by different organizations and the baseline assumption is that there will be software
associated with all of these modules. NRPCT has responsibility for the Reactor Module.

The Prometheus Reactor Module (RM) includes the nuclear reactor, reactor
instrumentation and control, reentry shield and radiation shielding. The reactor control
and the Spacecraft Module power conversion segment are tightly coupled and thus
close coordination between the Reactor and Spacecraft Module teams is required. The
Reactor Module Instrumentation and Control team produces the software and hardware
required to control the reactor.

The Reactor Module notional I&C architecture utilizes a two tiered system design. The
top layer is the supervisory system, which contains one “hot” supervisor plus “warm” and
“cold” backup supervisors. The supervisor is responsible for communicating with the
spacecraft computer (in the SM), both to accept commands, and to relay telemetry. The
hot supervisor is determined through a hardware arbitrator system also known as the
Fault Management Assembly (FMA). The supervisor then communicates with the
controller tier in the I&C system. There are four reactor controllers, each one
responsible for monitoring plant sensors, and performing control and protective functions
through reactivity control. The reactor controllers also receive feedback from and send
commands to the PCAD system to react to changes in the power conversion and heat
rejection systems. Output from the reactor controllers is directed through a coincidence
system prior to commanding a change in the reactivity control devices, Both the
supervisor and the controllers contain software. There is also a Ground system that
displays data from the Reactor Module as relayed through the Spacecraft computer.
The system is displayed in Figure 1.

The NRPCT is developing the software for the Reactor Supervisor, the Reactor
Controller, and the portion of the Ground System that is responsible for communicating
with the Reactor Module. NRPCT is responsible for defining the requirements for the

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 10 of 24
sensor interface software; sub tier vendors will implement the sensor interface software,
and NRPCT will qualify the sensor interface software. Other groups are responsible for
developing the Spacecraft Module software (spacecraft contractor), the PCAD software
(Hamilton Sundstrand), and the Mission Module software (JPL). The NRPCT will also
be developing test fixtures and software models for simulating the reactor dynamics, and
emulating sensors and I&C channels. These collectively are known as the Composite
Test Device (CTD) software.

Spacecraft 1
Computer ‘\Q _ - %’ FMA
Supervisor

PCAD

Controller Controller Controller Controller
Iy A f | l! L
raf ™,
(semsors fN—
YY vy
@’rs/ Coincidence
@ Actuators

Figure 1: System Architecture

2.2 Project Phases

The overall system for Prometheus must be tested before the spaceship is launched.
This testing is performed in several phases, with I&C systems developed to meet the
needs of each test phase. The following development phases have been designated for
the Reactor Module that corresponds to the applicable test phases:

1) Engineering Model (EM): This consists of an engineering model of the I&C
System linked together with the PCAD and SM Flight computer systems. This is
then connected to a non-nuclear test loop with heaters to simulate the reactor
heat. This enables an end-to-end testing of the various interfaces along with
input from actual system sensors. This will most likely consist of a single channel
of supervisor and a single controller.

2) Qualification Model (QM). This consists of an end-to-end test of the various DSS
module interfaces with the most prototypical representation of the flight unit

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 11 of 24
reactor. This will also be a non-nuclear test with heaters simulating the reactor.
Commands will be issued through a simulated link with ground.
Ground Test Reactor 1 (GTR1): This consists of a ground based prototype
reactor connected with a Brayton unit. The I&C for this prototype will not be
identical to the flight software since GTR1 must accommodate many up and
down power maneuvers, manual operation, and be capable of full shutdown.
There will most likely be some form of an operator interface panel for manual
control of the reactor.
Ground Test Reactor 2 (GTR2): This consists of a second ground based
prototype much closer to the flight unit. This will require the option of manual
control and full shutdown, but will have sensors and control algorithms very close
to the final form for flight. There also may be an interface between the Ground
System software and the Reactor Module.
Prometheus 1 (P1): This consists of the first Prometheus spacecraft, and will
most likely be an inner solar system mission, possibly to the Moon or the asteroid
belt. This would consist of the final flight software.
Prometheus 2 (P2): This consists of the second Prometheus spacecraft, and will
most likely be an outer solar system mission, perhaps to Jupiter. Ideally, the
software will be identical between P1 and P2, but if necessary, any changes
required due to further test experience or experience gained in P1 would be
incorporated into the P2 software.

The NRPCT is responsible for the products listed below in Table 2. Each of the products

for EM,

QM, GTR1, GTR2, P1, and P2 consist of the Reactor Supervisory computer

software, the Reactor Controller computer software, sensor interface software, and the
Reactor Ground Mission/Operations software.

Table 2: Software Deliverables and Classification

System | Module SDE Product Type PSMP NNPP
Baseline Software
Product Quality
Class Criticality
Level (SQCL)
<preliminary>
DSS | Reactor | NRPCT | RM Flight Software for EM

NRPCT | RM Flight Software for QM

NRPCT | RM Flight Software for GTR1

NRPCT | RM Flight software for GTR2

NRPCT | RM Flight Software for P1

NRPCT | RM Flight Software for P2

Q|| m| m
0| 2 2 2=

NRPCT | RM Test Bed Software TBD

The PMSP Product class has level ‘B' as mission critical, level ‘C’ as mission support,
and level ‘A’ is human rated.
The SQCL has Criticality Level ‘A’ as safety critical.

Table 3 Deliverables Matrix

NRPCT-RM-SDP-001

Enclosure (3) to

SPP-67610-0007

Page 12 of 24

SDPM Process Flight Ground Test Bed
Process Step Deliverable Software Software
4.1: SIC1 - Inspection X X
Initial Report
Requirements | Design Review | X X
Report
FRD Submittal | X X X
Letter
Approved FRD | X X X
Issue Letter
Approved FRD | X X X
in Requirements
Management
Tool
4.2: SIC-2 nspection X X
Initial Report
Architecture Design Review | X X
Report
Software X X X
Architecture
Documentation
4.3: SIC-3 Risk Evaluation | X X X
Risk Analysis | Documentation
Software X X
Hazard Analysis
Software Fault | X X
Tree analysis
Software Failure | X X
Modes and
Effects
Criticality
Analysis
Findings X X
Entered into
Defect Tracking
Tool
4.4: 8iC-4 Integrated Build |} X X X
Plan Schedule
Incremental
Builds
4.5: SIC-5 See below See below See below See bhelow
Develop &
Release
Incremental
Build
4.5.1: SIC-5.1 Approved X X X
Develop Issued Updated

FRD

NRPCT-RM-SDP-001

Enclosure (3) to
SPP-67610-0007
Page 13 of 24

SDPM
Process Step

Process
Deliverable

Flight
Software

Ground
Software

Test Bed

Detailed
Requirements

Inspection
Report

X

X

Design Review
Report

X (if
performed)

X (i
‘performed)

FRD Submittal
Letter

X

X

4.5.2: SIC-5.2
Develop
Detailed
Architecture

Updated
Software
Architecture
Document

X

X

Inspection
Report

X

Design Review
Report

X (if
performed)

4.5.3: SIC-5.3
Detailed
Module Design

Detailed Module
Design
Documentation

X

Inspection
Report

4.5.4: SIC-5.4
Module
Implementation

Module Source
Code

Inspection
Report

Unit Test Cases
and Results in
CM

> X x| X

4.5.5: SIC-5.5
Unit Testing

Reviewed Unit
Test Cases

Unit Test Report

4.5.6: SIC-5.6
Integration

Executables in
CM

Subsystem Test
Cases and
Results in CM

x| XX >

x| XX X

BPefects Entered
and
Dispositioned

4.5.7: SIC-5.7
System
Testing

Test Readiness
Review Report

System Test
Cases and
Results in CM

System Test
Report

Defects
Disposed

NRPCT-RM-SDP-001

Enclosure (3) to

SPP-67610-0007

Page 14 of 24

SDPM Process Flight Ground Test Bed
Process Step Deliverable Software Software
4.5.8: SIC-5.8 Configuration X X X
Document & Documentation
Release Source Code X X X
and
Executables
Release X X X
Readiness '
Review Report
4.5.9: SIC-5.9 Bettis X X
Independent Inspection
V&V Report
Bettis Test X X
Report
Bettis Test X X
Cases and
Results in CM
4.5.10: SIC- Defects X X X
5.10a Documented in
Defect Defect Tracking
Identification Tool
4.5.11: SIC- Defect X X X
5.10h corrective
Defect actions
Disposition implemented,
verified, and
closed out.
51: A1 Configuration X X X
Configuration | ltemsin
Management management
[RESERVED] tool checked in
with revision
history
CCB Meeting X X X
Minutes Issued
5.2: A2 Traceability X X
Requirements | matrix between
Traceability requirements,
[RESERVED] design, and
code
Traceability X X
matrix between
requirements,
test cases, and
test results
5.3: A3 Inspection
Inspections Report
[RESERVED] Findings

NRPCT-RM-SDP-001

Enclosure (3) to
SPP-67610-0007
Page 15 of 24

SDPM Process Flight Ground Test Bed
Process Step Deliverable Software Software
entered into
Defect Tracking
Tool
5.4: Ad Design Review
Design Report
Reviews Design Review
[RESERVED] Closeout
5.5: A5 Test Readiness
Test Readiness | Review Meeting
Review Minutes
[RESERVED]
5.6: A6 Release
Release Readiness
Readiness Review Meeting
Review Minutes
[RESERVED] Code,
Executables,
Documentation
released for use
5.7: A7 Software
Software HA, Hazard Analysis
SFTA, SFMECA | Software Fault
[RESERVED] Tree Analysis
Software
FMECA
Findings
entered into
Defect Tracking
Tool
5.8: A8 Audit Report X X
Auditing/Self- | Audit Response | X X
Assessments
[RESERVED]
Other
Processes/Deli
verables
[RESERVED]

2.3 Software Life Cycle, Methodology, and Language

Software development for project Prometheus is performed using a phased development
process with incremental builds. These incremental builds provide increasing levels of
functionality until the complete functionality is provided in the final build. The
incremental builds for JPL consist of software from all modules (Spacecraft, Mission,
Reactor, and Ground). This creates the desire for the Reactor Module 1&C software to

provide incremental builds to fit with the JPL overall incremental builds.

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 16 of 24

2.3.1 Incremental Life Cycle

The incremental life cycle has been selected for NRPCT Prometheus Reactor 1&C
software development. This allows an incremental delivery of functionality as required
by other Prometheus team members. The incremental life cycle is detailed in the
SDPM.

2.3.2 Software Design Methodology

Once a software life cycle has been established, it becomes necessary to choose the
approach to software design and implementation. Two major design paradigms were
considered for this project: object-oriented design, and structured design.

Object-oriented analysis and design takes a view of the system that data and functions
are intimately tied as a collection of objects, with each object having attributes and
methods that may be invoked. Object-oriented desigh seeks to incorporate the
principles of data abstraction, encapsulation, modularity, hierarchy, typing, concurrency,
and persistence. These principles were fostered in an attempt to overcome what was
seen by some as limitations in more structured designs (global data, tight coupling
between modules). The design process consists of identifying the objects for a system,
establishing the attributes and methods for these objects, abstracting the objects to
define the classes, and establishing the relationships between these classes. Once that
has been completed, the software architecture can be developed, and then
implemented, tested, and delivered.

Structured design is @ more traditional approach to software development. Structured
design begins by performing a functional top-down decomposition. This top-down
development then apportions system functionality to various modules as laid out in the
decomposition. Each module is then designed such that ideally there is only one start
and end point. The functionality is then achieved through sequence, selection, and
repetition structures. The system architecture is communicated through structure charts,
data flow diagrams, flow charts, state diagrams, and other artifacts.

Both structured design and object-oriented design are capable of being used to capture
and implement the functionality required of the Reactor Module. Structured design has
been chosen as the method of choice since it has widespread experience and use in
safety critical real-time embedded systems applications, has the most developed formal
testing methods for verification, and has a very straight forward approach to design.
Object-oriented design does have advantages with modularity and data-hiding, but has
some disadvantages as well. Object-oriented designs need to avoid several concepts
and coding constructs when being used in a real-time embedded application to ensure
time response can be met and to avoid any software inspection burdens. Additionally,
there is not a great deal of experience with object-oriented approaches when applied to
safety critical real-time embedded software applications. These concerns made
structured programming a more desirable approach for the extreme environment
involved in the Prometheus Reactor Module.

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 17 of 24
2.3.3 Language Choice

A natural outgrowth of choosing a structured design methodology is the use of a
structured programming language to complement the design methodology. The
language chosen for use is ANSI C. This is a very mature and well understood
programming language that is widely supported by compiler vendors. The C language
has also been adopted by other organizations within the Prometheus team.

Other languages such as Java and C++ have a great deal of object-oriented features
that must be avoided (and Java requires a virtual machine). Ada has been used by
many embedded projects, but does not have as large of a developer base as C.
FORTRAN has great power for applications heavy in numerical computation, but is not
as well suited for embedded applications. The C language is a high level language that
allows for very low level functionality when necessary.

3 WORK PRODUCTS

There are many work products defined by the PSMP. These products are enumerated
here and related to specific Reactor Module software deliverables, or related deliverable
items.

3.1 Software Development Plan

The software development plan represents the project specific embodiment of the
principles and processes laid out in the PSMP. This document aiso lays out the
schedule for software delivery for the various work products.

3.2 Requirements

Requirements are maintained in a requirements management database and issued as
various versions of a Functional Requirements Document. Appropriate levels of control
and traceability are applied at the database and document level.

3.3 Risk
As risks are identified they are documented and evaluated.

3.4 Risk Mitigation
Risk mitigation is identified in the same document that includes the risk.

3.5 Configuration ltem

Configuration Items refer to any work item that is placed under configuration control.
This includes requirements and requirements documents, source code, executables, test
cases, and test results. The configuration management process identifies the system or
systems used to control each configuration item.

3.6 Controlled/Quality Records

Controlled records or quality records refers to items that document specific things that do
not change, or capture a moment in time, thus do not require configuration control
because once created they do not change. These items include software inspection

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-6761Q-0007
Page 18 of 24
reports, software testing reports, and the results from audits/self assessments. Once
issued, these items are captured and retained through tools like ADSARS.

3.7 Software Item/Executable

The software executable is the final compiled and linked image that is uploaded to the
supervisor or controller, it also refers to the Reactor Module Ground software.
Executables may also consist of tools generated to suppert software development by the
NRPCT.

3.8 Software Component

A software component consists of a coliection of software modules that combine to
achieve a specific goal. From a software architecture standpoint, an example might be
the modules that combine to create the fault management system for an executable.

3.9 Software Unit

A software unit refers to a software module or compilation unit. This can be thought of
as a source file with its associated header files. A module has been defined at the
architectural level as providing a set of common data structures and functions to achieve
a specific goal.

3.10 Software Class/Element

For object-oriented designs, a software class is simply the definition of a class, but for
structured methods, the element refers more to a specific function or data structure.

3.11 Software Class/Element Instance

In object-oriented designs, the class instance refers to specific instantiation of objects.
For structured methods, this is the creation of arrays, linked lists, or other data structures
from the definitions provided by the software elements.

3.12 Software Item Delivery Record

The software item delivery record consists of the documentation provided with a
software delivery that identifies versions and all source code and tools used to generate
a specific version of the software.

3.13 Design View

The design view includes structure charts, flow charts, context diagrams, state diagrams,
and other items necessary to convey the software architecture in a meaningful manner.

3.14 Design Document

The design document provides the overall software architecture, as well as details for
each module to provide information necessary to understand the implementation of the
software requirements.

3.15 Source Code

The source code is written to define each of the software modules laid out according to
the software architecture.

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 19 of 24
3.16 Users Guide

The users guide provides the information necessary to be able to control the software.
The guide would define all of the features supported by the Ground software to be able
to communicate and send commands to the Reactor Module

3.17 Command Dictionary

The command dictionary provides the list of hardware or software commands that can
be sent to the Reactor Module. For example, the command to start up the reactor would
be listed in the command dictionary.

3.18 Telemetry Dictionary

The telemetry dictionary provides a listing of all of the telemetry that will be provided
from the Reactor Module.

3.19 Flight Parameters
Flight parameters include various constants that might be set for the flight.

3.20 Flight Rules

Flight rules are any restrictions or guidance that the Reactor Module must obey. For
example, not allowing a reactor startup while in the launch sequence of the mission
would constitute a flight rule.

3.21 Review Materials

The review materials are the materials generated by the various design reviews that the
software must undergo to achieve the necessary quality goals.

3.22 Training Record

The training record is a record of the training each person undergoes while learning to
perform a specific role.

3.23 Test Procedure

A test procedure provides a step-by-step repeatable sequence necessary for a particular
test.

3.24 Test Report

The test report is the documentation of the results of performing one or more test
procedures.

3.25 Test Environment

The test environment is the hardware and software configuration, along with the
configuration of any test tools used while performing testing. This is documented to be
able to reproduce tests results.

3.26 TestPlan

The test plan is the overall plan used to qualify the Reactor Module software, and
identifies the strategy and sequence of events to run the various test procedures,

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 20 of 24
3.27 Change Request

The change request is the means used to control changes to the software. Change
requests go through a formal review process to determined when and how a change
should be allowed.

3.28 Problem Report

A problem report documents the discovery of a defect (bug) in the software. Problem
reports are reviewed in a manner similar to change requests to determine when and how
to change the software to correct the defect.

3.29 Requirements Document

The requirements document provides all of the software requirements as a particular
baseline. The requirements can be traced bi-directionally to the software
implementation.

3.30 Interface Requirements Document (IRD)

The interface requirements document specifies the requirements on the interface
between the Reactor Module and the Spacecraft Module.

3.31 Interface Control Document (ICD)
The ICD defines the data and commands that are transmitted over the interface.

3.32 Schedule Task
A schedule task is a specific task listed in the project schedule.

3.33 Schedule

A schedule is a listing of all of the various tasks, along with start and end dates for each
task, and a relationship between the various tasks.

3.34 Budget
The budget identifies both manpower and funds necessary to develop the software.

3.35 Resources

Resources are the equipment, time, people, and money necessary {o develop the
software.

3.36 Work Breakdown Structure (WBS) Element

An item in the WBS, may be high level, or may be a low level item contained in a higher
level item.

3.37 Work Breakdown Structure

The work breakdown structure is the relationship between all of the identified tasks
necessary to develop the software. The WBS provides the relational framework for
developing the budge and schedule.

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 21 of 24

4 TOOLS

There are many tools that are necessary to develop software for the SNPP. These run
the gambit from reguirements tools, to compilers, to test tools, to configuration
management tools. Many factors affect the decision to use one set of tools over
another. These factors include ease of use, overall availability, consistency with other
software development efforts in the Prometheus project, and developer familiarity with
the tools.

41 Requirements Management

Requirements management tools are a series of interfaces to a database that allow the
developer to quickly document requirements, show how higher lever requirements are
broken down, trace requirements to the code implementation and to the testing which
validates them. Because this tool will play a large roll throughout the development
process, its choice is particularly important. Within the Prometheus project there is also a
desire to standardize on ¢ertain tools, because of the interrelated requirements with JPL
and the spacecraft contractor using a standardized requirements tracking tool will be
particularly important.

4.2 Configuration Control

Configuration control tools provide controlled access to a data repository. This controlled
access allows for procedures such as approvals (CCB) and reviews to be completed
prior to code submission. Another benefit is that muitiple developers working on the
same code cannot overwrite each others work. Conflict detection and merging is
handled by the configuration control tool. The configuration control tool provides a
historical record of all documents/code under its control. Ideally any document at any
point in its history can be retrieved with little effort.

4.3 Problem Reporting

A problem reporting/defect tracking tool maintains a database of defects found either
internally or externally. This tool allows testers to submit and track defects and allows
cognizant developers to monitor these items. Ideally the tool will tie into the configuration
management tool in order to tie fixes in the defect tracking tool to specific code
submissions.

4.4 Compiler/integrated Development Environment

The integrated development environment (IDE) provides a common interface to code
development tools, debugging tools, compilers, and other tools. The IDE will typically
include a code aware editor which provides color coding and automatic formatting
functions. The common interface can significantly improve developer productivity.

4.5 TestTools

A number of test toals will be used during different phases of development. These tools
range from tools used by developers while writing code to full integration testing.

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 22 of 24
4.5.1 Debugger

The debugger is used examine the internal state of a running program. This allows a
developer to quickly find and understand defects in the code. Debuggers are a
significant factor in the productivity of developers and the quality of the code. Because of
this, the functionality of the debugger is a driving factor in the IDE selection.

4.5.2 Code Coverage

Code coverage tools are used in testing to verify that all code paths are executed. There
are several levels of code coverage ranging from simple statement coverage up to
Modified Condition / Decision Coverage (MC/DC). For the Prometheus project MC/DC
will be required. MC/DC requires that every point of entry and exit in the program be
invoked at least once, every condition in each decision in the program be taken all
possible outcomes at least once, and each condition has been shown to affect the
decision outcome independently.

4.5.3 Unit Test

Unit testing tools provide a framework for developing efficient and repeatable unit tests.
This often includes code generation support and automated test run facilities. By
maintaining a database of previous test runs and results regression testing can be
accomplished with a minimum of effort.

4.6 Other

The above list is not intended to be all inclusive. There is a wide variety of tools
available that are designed to facilitate software development. Due to the desire among
the Prometheus team members for commeonality many of the tools will be selected
through the Software Infrastructure Working Group. This should not rule out the
selection of additicnal tools to meet the specific needs of the NRPCT.

5 REVIEWS

There are many NASA/JPL reviews related to the overall Prometheus project. There are
also NRPCT internal reviews. These are identified here.

NASA/JPL reviews:

Project Mission System Review (PMSR)
Project Preliminary Design Review (PDR)
Project Critical Design Review (CDR)

There may also be a PDR and CDR on a Module basis.

NRPCT reviews:

Software Requirements Design Review
Software Architecture Design Review
Software Code Inspections

Software Test Case Reviews

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007
Page 23 of 24

NRPCT Software Development Plan

Appendix A — Traceability

NRPCT-RM-SDP-001
Enclosure (3) to
SPP-67610-0007

‘ Page 24 of 24

6 APPENDIX A -TRACEABILITY [RESERVED]

6.1 PSMP Traceability

PSMP Requirement Number NSMP Section Number

R-1.1.5-1 each SMP shall inciude a reference
to the SDE’s WBS

R-1.1.5-1a Each SMP shall include a
reference to a dictionary of the SDE’s WBS
elements.

R-1.1.5-1b Each SDE’s WBS shall be
consistent with the software products’
architectural ‘implementation view'.

R-1.1.5-2 Each SDE’s WBS shall he
consistent with the WBS for the SDE's
parent organization.

R-1.1.5-3 Each SDE shall maintain
consistency of the WBS throughout the
lifetime of the SDE.

. 6.2 SS473 Traceability
6.3 NR Software Engineering Policy Traceability

6.4 KAPL Software Engineering Manual Traceability

CONCURRENCE/DESIGN CHECK FORM FOR DOCUMENT NO.

SPP-67610-0007

Date: 7/30/05

DOCUMENT TITLE: NRPCT Prometheus Reactor |1&C Software

Development Life Cycle, Design Methodology, and

Programming Language Selection for Approval, and Draft Software Development Process and Plan

for Information

REFERENCES a) JPL Document: Prometheus Project - Project Software
Management Plan {preliminary}, 982-00046, Rev. 0
b) Bettis Letter. B-REO(M)-CD-008, 3/17/05
c) KAPL Letter: ARP-68640-0196, 4/12/02
d) NAVSEA Letter: Ser. 08K/03-00484, 2/6/03
e) KAPL Letter: ARP-68640-0305, 9/2/04
f) KAPL Letter: FSO-64K20-04-143, 12/21/04
g) BPMI Letter: BPMI-ICS-PMP-00731, 3/11/05

1. ADSARS: PERMANENT RECORD: Yes X No

Key Words:

Repository MFLIB Ceorporate Author:

Prometheus, Software, Life Cycle, Software Development Plan,

ENCLOSURES 1. Space Electrical Systems Software Life

Cycle, Methodology, and Language Choice
for Prometheus Reactor 1&C Software
Development

2. NRPCT Reactor |1&C Software Development
Process Manual

3. NRPCT Reactor Module Software
Development Plan

KAPL NRPROGRAM K

1&C, NRPCT

Need to Know Categories REP

Beik

Available Sites: PRNR

Design File Location(s)

2. DESIGN CHECK

Type of Check Signature(s)

Comments: (Including Reference to Check Document If Appropriate)

No check considered necessary

Check vs. previous resultsfissues

. Checked calculations made

. Checked computer input and/or cutput

Computer Programs approved/qualified

Performed independent audit

. Spot checked significant points

. Reviewed methods used

Reviewed results for reasonableness

Comparison with test data

Reviewed vs. drawings

Verified procedures

. Technical content reviewed

zlz|rix|=|~|z|o|m|m|ojo]|=l>

Management verification of adequate
review by others

. Performed Lessons Learned Search

Used Measurement Uncertainty Methods

o|m|o

. Other Checks {Describe)

3. CONCURRENCE REQUIREMENTS:

Indicate signatures required by X:

SPP MANAGER ADVANCED CONCEPTS FLUID DYNAM
NUCLEAR ENGINEERING SHIELDING STRUC. ENGR
REACTOR THIMECH DESIGN REACTOR SAFETY DRAFTING
REACTOR EQUIPMENT TO X TAH for M. Katzer QA
per telecon
SPP MECHANICAL RSO OTHER
SPP ELECTRICAL FSO X TAH for D. Robare BETTIS
per telecon
FINANCE MDO BPMI
PROJECT OFFICE ARP X IS@ ADMIN REVIEV
ENERGY CONVE%
Cognizant Manager / / :
(MustBe Subsection or Higher for External Letters)
4. AUTHORIZED CLASSIFIER: Reviewed By: /4’ CLASSIFICATION: YL LEASS/67¢-)
-
5. RELATED SUBJECTS: Commitment Made (Y/N) N Commitment Complete (Y/N) N
UTRS Implication (Y/N) N Design Basis Info. (Y/N) N UTRS Dog. # N/A
Safety Council Review (Y/N) N Design Review (Y/N) N

PRE-DECISIONAL - For Planning and Discussion Purposes Only

Knolls Atomic Pewer Laboratory
is operated for the U.S. Department of Energy
by KAPL, Inc., a Lockheed Martin company

6. Distribution:

SPP-67610-0007
Page 6

NR

TH Beckett, 08B
S. Bell, 08I

DI Curtis, 085S

DE Dei, 08A

AJ Demella, 08H
JE Eimes, 08F

RA Glas, 08H

MW Henneberger, 08K
SR Kauffman, 08%Z
JM Kling, 08Y

JM Mckenzie, 08U
TJ Mueller, O08R
JP Mosquera, 08C
JW Moy, 0B8M

MD Natale, 08I

WJ Pollock, 08T
TN Rodeheaver, 08I
SJ Rodgers, O08E
CH Ocsterman, 08C
5J Trautman, 08V
RA Woodberry, 0BG

KAPL

JM Ashcroft, 132
CF Dempsey, 111
KC Leoomis, 132

DF McCoy, 111

E. Schwartzman, 132
SA Simonson, 081
Wollman, 111
Ryan, 132
Hamilton, 132
Schroeder, 132
Robinson, 132

B

SNR

moH9R =
o

DJ Potts
GM Millis
D. Clapper
W. Leahy
S. Cramer

Bettis

CW Clark, 01C/SE
CD Eshelman,
36E/SE

DP Hagerty, 38D/SE
RC Jewart, 01C/SE
DR Riley, O5P/MT
CA White, COBl/QMA
MJ zika, 01C/SE

DJ Robare, 43T/SE
TS Blazeck, 43T/SE

BPMI-P
SD Gazarik
RF Hanson

PNR

J. Andes
RJ Argenta
JE Koury
G. White

BEPMI-S
F. Barilla

