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Summary

We report  progress and participation in the SciDAC project,  Center for Extended 
MHD Modeling.  The primary activity was participation in theory milestones regarding 
the large scale numerical simulation of edge localized modes, or ELMs.  These activities 
have been detailed in quarterly progress reports to the Office of Fusion Energy Science. 
For completeness, they are attached and serve as the body of this Final Report.
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Executive summary

This  document  reports  the  successful  completion  of  the  OFES  Theory  Milestone  for 
FY2005, namely,  Perform parametric studies to better understand the edge physics regimes of  
laboratory experiments.  Simulate at increased resolution (up to 20 toroidal modes), with density  
evolution, late into the nonlinear phase and compare results from different types of edge modes.  
Simulate a single case including a study of heat deposition on nearby material walls.

The linear stability properties and nonlinear evolution of Edge Localized Modes (ELMs) in 
tokamak plasmas are investigated through numerical computation.  Data from the DIII-D device 
at General Atomics (http://fusion.gat.com/diii-d/) is used for the magnetohydrodynamic (MHD) 
equilibria, but edge parameters are varied to reveal important physical effects.  The equilibrium 
with very low magnetic shear produces an unstable spectrum that is  somewhat insensitive to  
dissipation  coefficient  values.   Here,  linear  growth  rates  from the  non-ideal  NIMROD code 
(http://nimrodteam.org) agree reasonably well  with ideal,  i.e.  non-dissipative,  results  from the  
GATO global linear stability code at low toroidal mode number (n) and with ideal results from the 
ELITE edge linear stability code at moderate to high toroidal mode number.  Linear studies with a 
more realistic sequence of MHD equilibria (based on DIII-D discharge 86166) produce more 
significant discrepancies between the ideal and non-ideal calculations.  The maximum growth 
rate for the ideal computations occurs at toroidal mode index n=10, whereas growth rates in the 
non-ideal computations continue to increase with n unless strong anisotropic thermal conduction 
is included.  Recent modeling advances allow drift effects associated with the Hall electric field  
and gyroviscosity  to  be  considered.   A stabilizing  effect  can  be  observed in  the  preliminary 
results, but while the distortion in mode structure is readily apparent at n=40, the growth rate is 
only 13% less than the non-ideal MHD result.  Computations performed with a non-local kinetic 
closure  for  parallel  electron  thermal  conduction  that  is  valid  over  all  collisionality  regimes 
identify thermal diffusivity ratios of  87

|| 1010~/   as appropriate when using collisional 
heat flux modeling for these modes.  Adding significant parallel viscosity proves to have little  
effect.

Nonlinear  ELM  computations  solve  the  resistive  MHD  model  with  toroidal  resolution 
0n21, including anisotropic thermal conduction, temperature-dependent resistivity, and number 
density  evolution.   The computations  are  based on a realistic  equilibrium with high pedestal  
temperature from the linear study.  When the simulated ELM grows to appreciable amplitude, 
ribbon-like thermal structures extend from the separatrix to the wall as the spectrum broadens 
about  a  peak  at  n=13.   Analysis  of  the  results  finds  the  heat  flux  on  the  wall  to  be  very 
nonuniform with greatest intensity occurring in spots on the top and bottom of the chamber.  Net  
thermal energy loss occurs on a time-scale of 100 s, and the instantaneous loss rate exceeds 1 
GW.
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1.0 Introduction
With  recent  advances  in  computer  hardware  and  numerical  algorithm  efficiency, 

large-scale computational modeling can play an important role in the design and analysis 
of  fusion  devices.   Among the  nations  engaged in  developing  magnetic  confinement 
fusion,  the  US  remains  the  world  leader  in  plasma  simulation.   An  example  of  an 
important  fusion  problem that  is  being  addressed  by  this  approach  is  the  onset  and 
nonlinear  evolution  of  Edge  Localized  Modes  (ELMs)  and  their  effect  on  global 
confinement and first wall performance [1].  These modes shed thermal energy from the 
edge of the confinement region and, in their most virulent form, release enough energy to 
be of concern for plasma-facing components of future burning plasma experiments.  They 
may also affect the core plasma through nonlinear mode coupling.  During FY2005, the 
NIMROD  Team  (http://nimrodteam.org)  has  begun  a  numerical  study  of  the  global 
dynamics  of  ELMs  in  tokamaks.   The  unique  capabilities  of  our  advanced 
extended-MHD model [2] allow us to simulate ELMs farther into the nonlinear regime 
than what has been previously achieved.

Previous  studies  have  found  the  underlying  character  of  ELMs  to  be  an  MHD 
instability  described  as  “peeling-ballooning”  [3-5].   The  “peeling”  component  of  the 
instability  is  the  free-energy  drive  due  to  the  current  density  gradient,  and  the 
“ballooning” component is the free-energy drive due to the pressure gradient.  At the edge 
of the confinement region of tokamaks, poloidal flows reduce energy transport and allow 
a  steep  pressure  gradient  to  develop.   Through  bootstrap-current  effects,  the  strong 
pressure gradient drives highly localized charge-current density.  The pressure and current 
gradients are also coupled through the MHD equilibrium force-balance, but they effect 
distinct  characteristics  in the linearly unstable  modes that  are  excited.   An individual 
ELM will typically display a combination of both sets of characteristics, however.

Our linear stability analysis of a set of tokamak equilibria having varying degrees of 
peeling  and  ballooning  drive  is  outlined  in  Section  2.   A  sequence  of  nonlinear 
simulations follow a spectrum of ELMs from the linear stage to finite amplitude, where 
they become coupled and transport heat beyond the confinement zone and to the wall. 
These results are presented in Section 3.  A brief summary and discussion is presented in 
Section 4.

2.0 Linear Stability

2.1  Ballooning-component-dominant equilibria

A model  tokamak  equilibrium configuration  has  been constructed  to  be  robustly 
unstable, due to low magnetic shear and poloidal shaping, while remaining in the global 
parameter space of typical DIII-D discharges.  The localized edge current density and 
pressure gradient described in Section 1.0 are clearly evident in the profiles shown in 
Figure 1.  This ballooning-dominant configuration is relatively easy to resolve radially. 
Consistent with the MHD theory of ballooning modes, the resistive MHD computations 
find that growth rates increase monotonically with n.  The unfortunate implication is that 
toroidal  resolution  in  a  nonlinear  resistive  MHD  simulation  cannot  be  achieved. 
Nonetheless, this equilibrium provides a suitable benchmark case for comparing linear 
results obtained with different numerical approaches.

The linear results of NIMROD compare favorably with results from the ELITE and 
GATO [4] codes with eigenfunctions and growth rates that are in reasonable agreement. 
The growth rates computed by NIMROD with non-ideal MHD depend on the resistivity 
and viscosity in the vicinity of the mode, as discussed below, but the variation of growth 
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rate with n agrees qualitatively with the GATO and ELITE results, as shown in Figure 2. 
Varying the electrical resistivity shaping parameter by three orders of magnitude affects 
the growth rate values (by less than a factor of 2), but it does not change the spectrum 
qualitatively.  Here, the magnetic Prandtl number (Pm, the ratio of kinematic viscosity to 
electrical diffusivity) is held fixed while both the core and surrounding resistivity values 
are varied.  In obtaining the results for this equilibrium, the linear behavior of 22 toroidal 
modes  have  been  determined  with  3  values  of  resistivity  and  3  values  of  thermal 
conductivity,  for a total  of 198 numerical  calculations.   The results represent the first 
linear ELM studies to include collisionality and separatrix effects.

Figure 1.  Safety factor (q), parallel charge-current density (jb/b2), and pressure profiles for the low-shear 
equilibrium discussed  in  Section  2.1.   The  computational  mesh  of  finite  elements  used  for  the  linear 
computations is also shown.
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Figure  2.  Linear  growth  rates  for  a  range  of  n-values  with  confinement-region  resistivity  (core)  and 
surrounding  layer  resistivity  (vac)  varied  show good agreement  with ideal  MHD codes.   Because  the 
eigenfunctions extend into the open-field line region, the growth rates depend on the “vacuum” resistivity, 
but the changes are less than a factor of 2.

2.2. Realistic equilibria

Equilibria  reconstructed  with  data  from  a  high-pressure  DIII-D  discharge  that 
produced ELMs provide  the  basis  of  this  investigation.   The poloidal  magnetic  field 
configuration  has  a  single  null  below the  confinement  region.   The  non-dimensional 
geometric and profile properties are also similar to high performance tokamak operation 
(“H-mode”)  in  Alcator  C-mod  (http://www.psfc.mit.edu)  and  advanced  scenarios  for 
ITER (http://www.iter.org).   The  parallel  current  density,  magnetic  winding  ratio  (or 
‘safety factor,’ q), and pressure profiles for three of the equilibria are shown in Figure 3. 
They are parameterized by their edge pedestal temperatures (Tped) with the 100 eV, 400 
eV, and 700 eV profiles shown in the figure.  The q-value is above 1 across each profile, 
which  stabilizes  the  internal  ideal  kink  mode  and  allows  our  study  to  focus  on 
edge-localized  modes.   The  equilibrium  with      



   does  not  have  any 
significant gradients in the edge.

The linear stability  properties of this  set of equilibria  have been studied with the 
NIMROD code with the Lundquist  number (S) set  to 2107.   The linear  growth rate 
spectrum with respect  to  toroidal  mode number is  shown in Figure 4 for two of the 
equilibria. All modes for the Tped = 400 eV and 700 eV cases are found to be unstable, and 
the growth rates of the unstable modes increase with increasing  n.  The    



Tped = 700 eV  
computation  produces  large  linear  growth  rates  ( 36.0 ,  where  A is  the  global 
Alfvén propagation time) at low Pm-values with the non-ideal model.  This indicates that 
the  respective  equilibrium  is  well  above  the  threshold  for  ideal  linear  instability,  a 
condition that is unlikely to occur in the actual experiment. The Tped = 100 eV equilibrium 
is near the stability boundary.
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Figure 3.  MHD equilibria representative of DIII-D with successively decreasing pedestal temperature but 
similar cross sectional shape.  The top figure shows the parallel current profiles, the middle figure shows  
the q-profiles, and the bottom figure shows the temperature.

Resistive MHD produces growth rates that increase with n for ballooning-dominant 
equilibria, but high-n ELM fluctuations are not detected in experiments.  Conventional 
wisdom holds that two-fluid effects are stabilizing at large n-values, and this is often cited 
to  explain  the  observations.   We  have  applied  extended  MHD  modeling  [6]  to  the 
equilibria shown in Figure 3 (also see Ref. [5]), and preliminary results for the Tped = 400 
eV equilibrium are summarized in Figure 5.  Here we plot the linear growth rate as a 
function of the toroidal mode number for three different models (MHD, Hall-MHD, and 

Hall-MHD  with  gyroviscosity)  with  and  without  anisotropic  (



 || /χ ⊥ =107
)  thermal 

diffusivity.   The  strongest  stabilizing  effect  is  provided  by  the  anisotropic  thermal 
diffusivity,  where  the  ratio  of  diffusivity  coefficients  has  been  determined  by 
computations  performed with a  non-local  kinetic  closure for parallel  electron thermal 
conduction that is valid over all collisionality regimes [7].  A linear computation for the 
Tped  = 700 eV equilibrium without  anisotropic  thermal  conduction  finds  only  a  13% 
reduction in growth rate when Hall and gyroviscous effects are included at n=40.
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Figure  4.  Linear  growth rates  as  a  function of  toroidal  mode index  n for  the equilibria  with pedestal 
temperatures of 400 eV (blue trace) and 700 eV (red trace).  The 100eV equilibrium is near the stability 
threshold.

Figure  5.  Linear growth rate  as a function of toroidal  mode number for the case of 400 eV pedestal 
temperature, S = 3.7107, Pm = 10-3.
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3.0 Nonlinear Resistive MHD

Nonlinear, resistive MHD simulations with anisotropic heat conduction have been 
performed  with  several  of  the  equilibria  discussed  above.   Here,  we  present  a 
computation that  is  based on the  Tped=700 eV equilibrium shown in Figure 3.   Small 
amplitude  perturbations  in  the  initial  conditions  excite  unstable  ELMs,  and  the 
computation  follows  their  evolution  well  into  the  nonlinear  phase.   The  electrical 
resistivity is temperature-dependent (Spitzer resistivity, based on the evolving toroidally 
averaged temperature).  The viscous diffusivity and perpendicular thermal diffusivity are 
25 m2/s, and the parallel thermal diffusivity is 105 times larger.  The spatial domain is 
represented by an appropriately packed 4072 mesh of biquartic finite elements for the 
poloidal plane and Fourier components 0n21 for the toroidal direction.

The temporal evolution of the kinetic energy associated with each of the toroidal 
Fourier components is shown in Figure 6.  There is a linear growth phase for 0.05 ms < t 
< 0.1 ms, followed by nonlinear saturation.  Only modes in the range     



    exhibit 
linear growth, as shown in Figure 7.  In contrast to the results shown in Figure 4, the 
growth  rate  spectrum is  peaked  around      



 .   This  is  attributed  to  the  anisotropic 
thermal  conduction  (see Figure 5),  viscous dissipation,  and the large  current-gradient 
(peeling  component)  at  the  edge  of  the  confinement  region  in  this  equilibrium. 
Numerical convergence tests indicate that while greater resolution is needed to achieve 
quantitative accuracy, the peaked linear spectrum is qualitatively correct.  Other modes 
may  be  linearly  unstable  but  grow  too  slowly  to  show  independent  activity  before 
nonlinear coupling becomes significant.  Of particular importance is that the nonlinear 
coupling drives low n-fluctuations (including n=1), in addition to high-n fluctuations, and 
low-n activity in the edge may excite resonant effects in the core plasma.

Figure 6.  The evolution of kinetic fluctuation energy (on a logarithmic scale) of each toroidal harmonic 
shows that the broad linear mode spectrum nonlinearly drives the linearly stable n=0 and n=1 components. 
They have the largest energies at the end of the simulation.
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Figure 7.  Linear growth rates measured from the early phase of the nonlinear simulation shows a broad 
spectrum peaked at n=13.  The equilibrium is the same as the Tped=700 eV profile of Figure 3.

The character of the non-linear behavior of the edge modes in this discharge is 
summarized in Figures 8-10, which show several properties of the discharge at selected 
times during the evolution.  The upper right hand section of each of these figures shows 
color contours of the pressure in the   



    toroidal plane.  The blue region represents the 
cold plasma outside the confinement region.  The black overlaid contour is a surface at 
which the normal component of the convective heat flux ( nTqV Vn  � ) is computed. 
(This simulation has a computational  domain that extends “self-similarly” beyond the 
confinement region.  The surface at which the heat flux is measured also conforms to the 
boundary, and the outboard midplane location corresponding to the position of the DIII-D 
wall.)  The lower right hand section contains a Poincaré plot of the magnetic field-line 
punctures in the    



    toroidal plane.  The lower left hand section shows perspective 
views of pressure contours at four toroidal planes equally spaced around the torus.  This 
displays the three-dimensional structure of the dynamics.  The upper left hand section 
shows color contours of the convective heat flux at the surface indicated by the black 
contour shown in the upper right hand section.  This contour has been “unwrapped” into 
the poloidal-toroidal plane.  Arrows show the relationships between the poloidal locations 
in this plot and the black contour in the figure to the right.  Only the convective heat flux 
is shown because its contribution to the heat loss is greater than that of the conductive 
heat  loss,  in  contrast  to  NIMROD simulation  results  on plasma disruption due  to  an 
internal mode [8].
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Figure 8.  Convective heat flux as a function of  poloidal arc length and toroidal angle is shown, at t=0.115 
ms.  Arrows indicate location of the measures of poloidal arc length.  The three dimensional structure can 
be seen by the pressure contours in the lower left corner.

Figure 8 shows that configuration at t = 0.115 ms, the start of the nonlinear phase.  
Small corrugations are visible in the pressure contours, but the magnetic field-lines trace 
out nested flux surfaces, and there is no significant loss of heat.  Figure 9 shows the 
configuration at t=0.144 ms, the time of peak amplitude of convective heat flux.  Ribbons 
of plasma pressure now extend beyond the black boundary contour and have eroded a 
significant portion of the plasma core.  The field in the edge has become stochastic, 
contributing to heat loss.  The convective heat flux appears as bright spots on the 
boundary surface, primarily near the top and bottom of the chamber.  An overall striation 
pattern in the heat flux deposition is evident.  The striation pattern differs in the four 
major regions: outboard, top, bottom (separatrix), and inboard.  The maximum heat flux 
is localized in the top and bottom regions with greatest concentration in the top region, 
where the triangularity of the equilibrium is not as strong.  Figure 10 shows conditions at 
the end of the calculation, when the ribbons are retreating back toward the plasma.  The 
mode structure increases in poloidal extent, and the heat flux structure shows little 
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difference between the top region and the upper inboard region.  The differences between 
the upper inboard region and lower inboard region are due to the lower single null 
configuration of this plasma.  These preliminary results suggest that high triangularity 
would be effective in preventing heat flux from reaching the inboard side.  The magnetic 
field remains stochastic over much of the outer portion of the discharge. 

The evolution is more dynamic than what is evident from still figures.  An animation 
of  the  evolution  represented  by  Figures  8-10  can  be  found  at 
http://fusion.txcorp.com/~kruger/elma10n_images/elma10n.gif.

Figure 9.  At t=0.144 ms, the heat load on the wall is at its peak.  The three-dimensional load structure 
shows complicated structure that has penetrated toward the interior of the plasma.
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Figure 10.  Near the end of the simulation, the poloidal extent of the mode has increased and the field is 
almost completely stochastic.  The n=1 structure can be seen within the high harmonic structure.

The nonlinear evolution of this mode drives a rapid loss of internal energy with 
approximately 70 kJ (~10%) of the internal energy being lost within 60 s, as shown in 
Figure 11.   Laboratory measurements  indicate  15-20% energy loss during large ELM 
events in DIII-D [1], and we note that the numerical simulation has not completed the 
ELM cycle.  The internal energy is still decreasing at the end of the simulation while 
pressure is lost over the entire pedestal region.  The computation finds that the primary 
loss channel is convective (nTV) rather than conductive (q), which is not inconsistent 
with laboratory measurements [1].
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Figure 11. As a result of the nonlinear evolution of the ELM activity, approximately 10% of the internal 
energy is lost within 60 s.

4.0.  Discussion and Summary

Because of the deleterious effects of ELMs on plasma performance and operation, 
it is important to understand both their onset and the manner in which they deposit heat 
on the wall.  A better understanding of onset will lead to operations and control 
techniques that avoid the most harmful form of ELMs.  Knowledge of heat transport can 
be used to engineer configurations that are robust to ELM activity.  

The linear studies in this report represent the first significant parameter scan to 
consider the effects of a separatrix and collisionality on ELMs.  At present, the results 
must  be considered preliminary,  since more numerical  convergence  testing is  needed. 
The  results  are  sufficiently  mature,  however,  to  provide  a  useful  guide  for  the 
requirements of nonlinear simulations.  The nonlinear simulation presented here is the 
first to show significant plasma-wall interactions as a result of an ELM instability over a 
global  computational  domain.   While  the  nonlinear  simulation  is  also  preliminary  in 
many ways, it appears to reproduce some important experimental observations such as 
the energy loss time-scale and the heat loss mechanism.  This suggests that nonlinear 
fluid simulations have potential to provide insight into how ELMs evolve and deposit 
heat onto the wall.   Further refinements of the simulations will include more accurate 
geometry,  improved  boundary  conditions,  and  more  refined  physics  models,  such  as 
non-linear two-fluid and gyro-viscous effects.
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Quarterly Fusion Theory Milestone Report for 2006 Quarter 1
12/31/05

S.E. Kruger and D.D. Schnack

I. Executive Summary
In this report, we present the successful completion of the 2006 Q1 milestone, namely: an  
n=0  steady-state  near  the  2005  700  eV equilibria  was  found.  Because  the  H-mode  
equilbria  used  in  the  ELM studies  are  the  most  challenging  equilibria  ever  used  by  
nonlinear initial-value, extended MHD codes, details on the numerical challenges are  
presented. This quarterly milestone motivated new development of the NIMROD code:  
namely  more  flexibility  in  source  specification  and  run  time  operation.   These  
development will allow NIMROD more flexibility in meeting the challenges of subsequent  
milestones.

II. Statement of Problem
At the conclusion of the 2005 ELM milestone, the NIMROD code successfully ran an 
ELM simulation far into the nonlinear regime allowing for the study of heat flux on the 
wall.   Even  in  those  successful  simulations,  numerical  difficulties  occurring  at  the 
separatrix occurred well beyond where a “separatrix” could be clearly defined.  Because 
of NIMROD’s “separation of equilibrium variables” (to be discussed in Section III.B.), 
these problems were believed to be associated with how the n = 0 steady-state fields are 
initialized.   The  M3D  code  observed  similar  numerical  problems  when  using  the 
equilibrium  as  given.   Because  of  these  problems,  the  first  quarterly  milestone  was 
chosen to investigate the n = 0 solutions and determine a more appropriate initialization – 
one that would prevent numerical issues.  The ability to have an appropriate n = 0 state as 
the initial  condition will prepare the codes for the more challenging milestones in the 
coming year.

III. Technical Background
A. Equilibrium Definition
In tokamaks, the plasmas are often quiescent with very little non-symmetric components 
of  the  fields.   It  is  the  low-frequency,  long-wavelength  deviations  away  from  this 
symmetry that is studied with nonlinear, initial-value, extend MHD codes.  To study the 
deviations, extended MHD simulations of large tokamaks generally start with symmetric 
fields  coming  from  a  Grad-Shafranov  equilibrium.   As  discussed  below,  the 
Grad-Shafranov equilibrium is a subset of the steady-state MHD equations.  Considerable 
effort  has  gone into  experimentally  reconstructing  the  symmetric  fields  based on the 
Grad-Shafranov model.  The most widely-used code for performing this reconstruction is 
the EFIT code from General Atomics.  Because we are interested in nonlinear simulations 
of ELMs, the equilibrium code used to initialize the code must include the separatrix; i.e., 
it must be a free-boundary GS solver.  Beyond EFIT, a widely-used code for this purpose 
is the TEQ code from LLNL. 

To place the initial conditions of the nonlinear initial-value codes in context, we 
briefly review the extended MHD equations.  The extended MHD equations that we are 
solving are:

Continuity: 
      






       (1a)
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Momentum: 



Mn
dV
dt

= −∇p + J × B −∇ ⋅Πvisc −∇ ⋅Πgv −∇ ⋅Π||    , (1b)

Gen. Ohm’s Law: 



E = −V × B +
1
ne

J × B −∇pe −∇ ⋅Πe[ ] + ηJ     . (1c)

Energy: 



nα

∂Tα

∂t
+ Vα • ∇Tα

 ⎛
 ⎝
 ⎜

 ⎞
 ⎠
 ⎟= γ −1( ) ∇ • qα + ...[ ]. (1d)

where  J is  the  plasma  current  density,  and  p is  the  plasma  pressure  (total  unless 
subscripted for the species). To form the complete set of evolution equations, we use the 
“pre-Maxwell equations”; i.e., Maxwell’s equations without the displacement current.

Div(B): 



  B = 0    , (2a)

Ampere’s Law: 



  B = μ 0J    , (2b)

Faraday’s Law 



B
∂t

=∇ × E    , (2c)

The lack  of  displacement  current  (and concomitant  disregard  of  Gauss’s  Law) is  the 
“quasineutrality” approximation, which is 



| qe | ne = qini. This approximation is valid for 
the low frequencies (2 << c2k2) studied in extended MHD. 

The  form of  the  generalized  Ohm’s  law (Eq.  1.c)  generally  distinguishes  the 
commonly  used extended  MHD.  In  this  document,  we will  make reference  to  three 
models: ideal MHD, resistive MHD, and extended MHD.  These are:

Ideal MHD: 



E = −V × B (3a)

Resistive MHD:     



        (3b)

Extended MHD: 



E = −V × B +
1
ne

J × B −∇pe −∇ ⋅Πe[ ] + ηJ     . (3c)

In addition to neglecting the resistivity,  ideal MHD ignores all other dissipative terms 
(i.e., no viscosity and all terms on right-side of Eq. 1.d. are neglected).  Resistive MHD 
traditionally has neglected all terms on right-side of Eq. 1.d. although there is no standard 
nomenclature in the literature.

To  derive  the  “steady-state”  solutions  of  the  extended  MHD  equations,  two 
assumptions are usually made: (1) the diffusive terms operate on time-scales much longer 
than  the  “steady-state”  and  can  be  neglected,  and  (2)  we  consider  n = 0.   The  first 
assumption allows the definition of “steady-state” to be the transport time scale, which is 
generally much slower than the time scales of the instabilities we wish to study.  This is 
discussed further in Section III.B. Using these assumptions, the relevant equations are:

Continuity: 



 n0V0 = 0    , (4a)

Momentum: 



mn0V0 • ∇ 0V0 = −∇p0 + J0 × B0  ,(4b)

Gen. Ohm’s Law: 



E0 + V0 × B0 =
1

n0e
J0 × B0 −∇pe 0 −∇ ⋅Πe 0[ ]    . (4c)

Energy: 



nα 0 Vα 0 • ∇Tα 0( ) + γnα 0Tα 0∇ • Vα 0 = 0 (4d)
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In addition to the two assumptions above, two other assumptions are commonly made: 1) 
No equilibrium flow, and 2) Neglect the two-fluid terms (right side of Eq. 4c); i.e., only 
consider ideal MHD.

The first assumption allows the momentum equation (Eq. 4b) to decouple from all 
other  equations.   The  momentum equation  can  then  be  written  in  a  form called  the 
Grad-Shafranov Equation.  All linear MHD codes use this as their input.  Note that in this 
case,  the Ohm’s law can be solved independently  of  the Grad-Shafranov equation to 
determine  the  current  sources.   Separate  codes  are  usually  used  to  determine  what 
fraction of the current comes from Ohmic drive, bootstrap current (from the stress tensor 
term in Eq. 4c), Pfirsch-Schluter currents, and current drive.

Removing the first assumption, but keeping the second, allows the derivation of a 
modified  Grad-Shafranov  equation  [Hameiri81].   For  purely  toroidal  flow,  the 
modifications are rather trivial and implemented by several codes.  While more accurate, 
these modifications are generally not included in equilibrium reconstructions because the 
characteristic flows in experiment are generally a quarter of the Mach speed, which gives 
corrections  that  are  small  compared  to  other  uncertainties  in  the  equilibrium 
reconstruction.  It is hoped that as diagnostic improve, especially in determining the flow 
profiles, the inclusion of this term will become more routine.  For flows that are both 
poloidal and toroidal, the modified Grad-Shafranov equation includes a singularity when 
the polodial flow reaches the poloidal Alfven Mach number.  Because of poloidal flow 
damping, poloidal flows are generally unimportant, although they may be significant near 
the edge.  With the exception of a recent code written by a student of Betti, [need ref], no 
code includes poloidal flow.

Removing all  assumptions regarding equilibrium solutions has been done only 
recently.   Inclusion of the two-fluid terms automatically  requires  the inclusion of the 
inertia term in the momentum equation to have the proper treatment of the drift flows. 
No code currently solves for the two-fluid equilibrium equations, nor are any initial value 
codes prepared to accept two-fluid equilibria.  In the future, including this capability may 
be important for the extended MHD codes.

B. Separation of Variables and Diffusive Sources
For the technical discussion below, we will discuss two separate modes of operation for 
the  NIMROD code:  “separated  equilibrium mode”  and  “n = 0  mode”.    The  general 
prescription for deriving the form of the equations solved in NIMROD is to separate the 
quantities  into  a  “steady-state  component”  and  a  dynamic  component: 



Q(r,t) = Qss(r) + ˜ Q (r,t) .   In all  subsequent equations,  the terms that  contain purely 
steady-state factors are not explicitly included;  rather,  they are assumed to satisfy the 
constraints given by Eq. 4 and hence do not appear in the dynamical equations.  The 
dynamical component thus represents the deviation from the steady state solution given  
in  Eq.  4;  it  does  not represent  the  total  plasma state.   This  has  implications  on  the 
interpretation of the equations.  To understand this, we consider this prescription for a 
purely diffusive pressure equation:



p
∂t

= χ∇ 2 p (5)

20





where  we  assume  a  constant  diffusivity.   With  homogeneous  Dirichlet  boundary 
conditions, the steady-state solution of this is p=0.  Separating into dynamic and stready 
state solutions, the dynamic equation is:



˜ p 
∂t

= χ∇ 2 ˜ p  (6)

The steady state solution is 



˜ p = 0.  The total pressure is 



p = pss + ˜ p = pss .  Note that here 

  



 is assumed to exist and be maintained by some external mechanism.  The implication 
is that a source has implicitly been added to the equation.   This has been the default 
manner in which NIMROD has run – in particular, the successful ELM milestone was 
performed using this method.

To understand the implications better, we want to rewrite our equation with an 
explicit source:



p
∂t

= χ∇ 2 p + Sp (7)

To derive Eq. (7), the cancellation is 



Sp = −χ∇ 2 pss; that is,  



p
∂t

= χ∇ 2 p − χ∇ 2 pss (8)

so that     



    when   



  .  We term this type of source a “diffusive source” and it 
is can be present in all of the equations that have a diffusive term.  The physical effect of 
the source is to maintain the equilibrium profiles.  (This assumes the diffusivity is fixed. 
Temperature-dependent  diffusivities  will  have  slightly  different  behavior).   The 
advantage of using the sources is that for tokamak runs they approximate the real sources 
within a tokamak for the time-scales under consideration.

The point is that Eq. (6) (for the “dynamical” component) and Eq. (8) (for the 
“total” component) are mathematically equivalent.  The default way for NIMROD to run 
tokamak simulations has been to use Eq. (6).  We can solve Equation (5), which is the 
equivalent of Eq. (8) (informally called the “transfer eq mode” on the NIMROD team) 
without the sources.  The M3D team uses the equivalent of Eq. (8).  

IV.  Technical Approach
A.  Characterization of the Equilibrium
In this work, we only investigate the “Pedestal Te=700 eV” equilibrium because it was 
the case used in the 2005 Milestone case.  The results and implications of this study are 
generic to H-mode equilibria in general.
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The equilibrium is shown in Fig. 1.  As shown, the current density is localized 
near the separatrix.  Although the equilibrium was constructed such that the flux surface 
average of parallel gradient (<J.B/B2> ) is zero, there are large local poloidal variations in 
the  poloidal  current.   The toroidal  gradient  is  defined to  be exactly  zero beyond the 
separatrix.  Although the experiment has some finite current in the scrape-off-layer (SOL) 
region, at this time there is no satisfactory method to obtain those currents in such a way 
that the equilibrium conditions are exactly satisfied.

Figure  6.   The equilibrium used in  the  2005 Milestone  report  has  a  large  localized 
toroidal current gradient near the separatrix, and a strong poloidal variation in the current, 
despite the fact that the flux surface average of the parallel current is constant.

The effect of the sharp current gradient can be seen in the cylindrical components of the 
poloidal magnetic field shown in Figure 2.  The sharp discontinuities at the separatrix are 
readily apparent.  Also apparent are the rapid variations of magnetic field on the inboard 
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side.  This is caused by the existence of the poloidal magnetic field coils on the inboard 
side.  The equilibrium codes numerically handle the coil fields using a Greene’s function 
technique which allows them to avoid the difficulties of the fields near the coils.  

Figure  7.   The  cylindrical  components  of  the  magnetic  field  show  the  sharp 
discontinuities due to the sharp current gradients as well as the effect of poloidal field 
coils on the inboard side of the plasma.

As discussed in Section II.B., the 2005 Milestone simulations were run with “implicit 
sources”. i.e., the form given by Eq. 6.  Because we had no equilibrium flow, there were 
no momentum sources.  Because we evolved only the total temperature, there was no 
electron  pressure source.   The sources were thus are  a current  source and a pressure 
source.  As the equilibrium parameter plots of Figure 1 suggests, these implicit sources 
are highly localized.  In addition to the large, localized gradients, the temperatures are 
low leading  to  large  diffusivity  parameters  (when  using  Braginskii  coefficients).   In 
Figure 3, the source for the resistive Ohm’s law and temperature equation are shown 
when  Braginskii  coefficients  are  used  (for  the  2005  Milestone  case,  the  Braginskii 
resistivity was used for the resistive Ohm’s law.).  Clearly these fixed sources play an 
important role in the ensuing dynamics

The NIMROD runs to date have used these sources in the “separated equilibrium 
mode” (



Q(r,t) = Qss(r) + ˜ Q (r,t) ) and have generally been successful.  The simulations 
are difficult,  and in this work we will investigate the extent to which the sources can 
cause problems.  The M3D code has performed their initial simulations by reaching a 
nearby steady-state using the code itself, i.e, solving Eq. 8.  Our goal is to reach a similar  
state. 
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Figure 8.  The diffusive sources in H-mode equilibria are very large near the separatrix 
when using Spitzer values.  The low temperatures lead to large diffusivity values and 
H-mode equilibria have sharp edge pressure and current gradients.

B.  Comparison of  NIMROD modes of operation at low diffusivity 
We are ready to discuss the  n = 0 behavior of the ELM equilibria.  We wish to study 
investigate the n = 0 behavior of the 2005 Milestone case with parameters similar to the 
results presented in the final report.  The case has 36x40 cells with polynomial degree of 
3.  The temperature-dependent resistivity is evolved with a realistic S = 1x108.   The peak 
resistivity is constrained to be 243 times the lowest resistivity.  The viscosity is constant 
throughout the domain with a Prandtl number in the core of 6,250, and a Prandtl number 
in  the  vacuum  region  of  26.   The  viscous  diffusivity  and  perpendicular 
thermal diffusivity are 25 m2/s, and the parallel thermal diffusivity is 
105 times larger.

We present two types of simulations: a “separated equilibrium” simulation that 
has implicit diffusive sources (i.e., Eq. (6)), and a “transferred equilibrium” simulation 
that has no source to maintain the fields (i.e.,  Eq. (5); in this  case the “steady state” 
component of the solution appears only as an initial condition) .  The time histories of the 
kinetic energy of the two runs are shown in Figure 4.  As shown, after one microsecond,  
the energies differ by more than 13 orders of magnitude.  Since we do not believe the 
n = 0 mode is inherently unstable, we conclude that the initial “steady state” solution, as  
given  by  the  Grad-Shafranov  reconstruction  from  the  experimental  data,  is  not  in  
sufficient force balance. 
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Figure  9.  A comparison  of  two  modes  of  NIMROD  operation  show  a  dramatic 
difference in behavior.  The top assumes that the steady state is in exact force balance. 
The bottom uses the steady state as initial conditions.  In one microsecond, the resultant 
kinetic energies differ by 13 orders of magnitude.

To explore the cause of the difficulties in the transferred equilibrium simulation 
(with the steady state used as initial conditions), we examine the behavior early in the 
time history.  In Figure 5, we show plots of the radial (using major radius of the tokamak) 
of the velocity (because it is the largest component), and the toroidal current density (not 
the contravariant component).  After the first time step, the current density has significant 
inboard current fluctuations.  The reason for this is that the “equilibrium current” in this 
case  is  computed  from using  Faraday’s  law (Equation  2(b))  using  the  finite-element 
representation of the magnetic field shown in Figure 2.  Because of the transfer of fields 
from  one  discretization  scheme  (in  this  case  finite  difference  and  spectral  Greene’s 
functions)  to  another  (a finite-element  mesh),  the errors manifest  themselves  as large 
toroidal current fluctuations.  These toroidal current fluctuations then act to drive large 
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flows.  This is because the reconstructed solution is not in steady state on a sufficiently 
long time scale when transport effects are taken into account.

Figure 10.   On the first time step, the toroidal component of the current density shows 
significant  fluctuations  on  the  inboard  side  near  the  poloidal  flux  coils.   These 
fluctuations drive large flows on the inboard side within the first time step.

The same quantities are shown in Figure 6 after 90 time steps later (tsim=9.4 x 10-7 

sec).  At this time, one can see that the induced numerical noise is beginning to broaden, 
and is  not dominant  at  the edge.   From both Figures 5 and 6 we note the separatrix 
location  is  clearly identified.   Two sources of difficulties  can be seen in these initial 
studies:  1) the equilibrium fields on the inboard midplane are difficult  to numerically 
simulate because the rapidly varying magnetic fields there, and 2) the separatrix presents 
its own source of difficulties.
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Figure 11.  The velocity field begins to broaden although the difficulties with the current 
density still remain.

C.  Development of an n = 0 steady-state solution 
The  typical  method  for  developing  an  n = 0  steady-state  solution  for  subsequent 
initialization  is  to  add  large  diffusivities  to  the  equations  and  just  evolve  the  n = 0 
solution to a time assymnptotoc steady state (referred to as “equilibrium relaxation”). 
This method is used by the M3D code, the TSC transport code, and the HINT code for 
three-dimensional equilibria.  The advantage of this approach is that it is a robust method 
for finding suitable equilibria for subsequent simulation.  The disadvantage is that it can 
complicate the analysis of the simulations when the parameters depend sensitively on the 
equilibria used.  (The equilibria obtained from “relaxation” may differ in local detail from 
the original Grad-Shafranov equilibrium.)

The NIMROD code has not extensively performed simulations of this type (i.e., 
“relaxation”) for tokamak equilibria.  The goal of this work is to not only perform these 
types  of  simulations,  but  take  advantage  of  NIMROD’s  separated  equilibrium 
functionality and investigate its role in the development of a steady-state solution; i.e., 
why do separated equilibria work so well?  The discussion of Section III.B suggests that 
it  is  because  the  toroidal  current,  which  is  inconsistent  with  the  magnetic  field 
representation  in  the  equilibrium  reconstruction,  is  more  accurate  on  the  inboard 
midplane.   However,  the  difficulties  at  the  separatrix  also  point  to  the  existence  of 
problems there.  Do the implicit diffusive sources help in these cases?
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To answer these questions, the NIMROD code was programmed to add to new 
capabilities: running in the transferred equilibrium mode with diffusive source (i.e., Eq. 
(8)), and  running with the separated equilibrium mode with no sources.  This gives us 4 
cases to compare: with and without separated equilibrium, and with and without sources. 
Because of the difficulties with the current discussed above, the simulations are run at 
S = 1.354E+03 in the core, to be able to have the transferred equilibrium cases run and 
allow accurate  comparisons.   The viscosities  are  run at  values  of 25,  250, 2500, and 
25000 m2/s.  The thermal diffusivities are held to the same values as the cases discussed 
in  Section  III.B.   Although  anisotropic  thermal  conduction  is  generally  considered 
unimportant, it was included in the simulations to ensure a proper equilibration of the 
n = 0 steady-state.

Figure  12.  Time  history  plots  for  the  transferred  equilibrium case  with  sources  for 
kinematic viscosities of 25, 250, 2500, and 25,000 m2/s.

We first discuss the transferred equilibrium cases.  The time history plots for the 
cases with and without sources are quantitatively similar.  For simplicity, only the time 
history plots for the case with sources is shown.  The peak kinetic energy and decay time 
corresponds to the magnitude of the viscosity as one would expect.  The two highest 
cases have clearly reached an n = 0 steady-state as shown.

The types  of  steady state  reached are  different.   Considering  only  the  largest 
viscosity for simplicity, we compare the toroidal current and magnetic field in Figure 8. 
As  expected,  the  case  that  has  a  source  acting  to  maintain  the  equilibrium  has  a 
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steady-state  that  is  closer  to  the  original  equilibrium.   The case  without  sources  has 
smoother fields.

Figure  13.  A comparison of the transferred equilibrium cases with sources (top) and 
without sources (bottom).  The magnetic field for the case with sources looks similar to 
the magnetic field shown in Fig. 2 unlike the case without sources.

The separated equilibria cases have much different behavior.  We first consider 
the typical NIMROD run which has the implicit diffusive sources.  All of the cases with 
the various viscosities have a similar time history plots with the kinetic energy never 
rising above 10-10 Joules.  With such small changes, there is essentially no discernible 
differences in the equilibria from what has been shown in Figures 1 and 2, so they will  
not be shown.

The  case  of  separated  equilibria  with  no  sources  shows  some  interesting 
differences  from the equilibrium cases.   As one would expect,  the plasma evolves  to 
move away from the having the sharp gradients, with the time scale corresponding to the 
viscosity  time  scale.   The  time history  plots  of  the  kinetic  energy is  shown for  two 
viscosity  cases  in  Figure  9. After  relatively  fast  transients,  the  plasma evolves  on  a 
transport time scale as expected.  For the highest viscosity case shown in Figure 10, the 
current density peak is slightly broader than previous cases as one would expect.  The 
overall  magnetic  field  differs  a  little  from  the  equilibrium  magnetic  field,  but  not 
significantly.  
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Figure 14.  The time history plots of the kinetic energy for the separated equilibrium case 
with no sources for the viscosities of 250 (left) and 25,000 (right).  

Figure  15.   The  torodial  current  density  and  magnetic  field  are  very  similar  to  the 
equilibria, but slightly broader.  The current extends into the open field region slightly.
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V.  Conclusions
Nearby,  n = 0  steady  state  solutions  have  been  found  using  two  different  numerical 
methods  under  two  different  simulation  conditions:  with  and  without  sources.   The 
quality  of the “separated equilibrium mode” greatly  surpasses that  of the “transferred 
equilibrium mode”, and in the near term is likely to be the preferred method of running 
NIMROD.  The development of the code to allow for each mode of operation to include 
or neglect the sources is beneficial to performing these types of studies and has greatly 
increased the flexibility of the code.

In this work, we have focused on creating an n = 0 steady-state that can be used to 
create a well-posed initial condition for the nonlinear simulations.  The larger question is 
what  is  the  right  initial  condition  for  studying  the  physics  we  want.   To  date,  the 
equilibria have primarily been chosen based on its linear MHD stability properties.  As 
we move forward, we will need more information from transport codes so that all of the 
profiles  can  simultaneously  satisfy  the  steady-state  condition.   As  shown  above, 
understanding the sources is very important, and will only increase in importance as we 
move to two-fluid studies.  

Although we state transport code information is needed, we note in passing that 
the ability to work with high-quality free-boundary equilibria is crucial.    To date, we 
have been getting our free-boundary equilibria from the EFIT and TEQ codes without 
much regard for the transport properties.  An identification of the transport codes that can 
help us needs to be made, and interfaces from those codes to those of NIMROD will need 
to be defined.  We also note that the preliminary transport studies have shown current 
extending  beyond  the  separatrix.   Allowance  for  current  on  the  open  fieldline  could 
potentially help by allowing for more continuous gradients on our meshes.

31



ELM Milestone Progress Report
Second Quarter FY06

March 31, 2006

Q2 (March 31, 2006): Perform extended, linear perturbation studies to investigate the 
role of plasma edge density gradients. The density profiles will be used in spatially 
varying diffisivity coefficients, and they will be incorporated in extended-MHD effects. 
The shaping of the computational domain will also be improved to more accurately 
represent the DIII-D wall.

1.0 DIII-D Equilibria

Several equilibria based on DIII-D experimental shots 113207 and 113317 have been 
produced.  Shot 113207 has higher density, pressure, and magnetic field that shot 113317. 
A comparison of the density and pressure profiles for the two shots is shown in Figures 
1a,b.  A cross-section of the equilibrium for shot 113317 is shown in Figure 2.

Figure 1a.  Equilibrium density profiles for reconstructions of DIII-D shots 113207 (red) 
and 113317 (green).
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Figure 1b.   Equilibrium pressure  profiles for  reconstructions of DIII-D shots 113207 
(red) and 113317 (green).
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Figure 2. Poloidal cross section and parameters for shot 113317.

2.0 Linear and Non-linear Resistive MHD Studies 

The linear stability and non-linear evolution of ELMs in these equilibria has been 
studied using the resistive MHD model in the NIMROD code.  The time evolution of the 
kinetic energy in toroidal modes 1 through 43 is shown in Figure 3.  The growth rate as a 
function of toroidal mode number  n for this case is shown in Figure 4.  The primary 
linearly unstable modes are in the range 5 < n < 25, with exact details depending on the 
equilibrium (see Figure 4).   Other modes are driven non-linearly,  some by two wave 
interaction and some by three wave interaction  (see Figure 4).   The evolution of the 
temperature is shown in Figure 5.
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Figure 3. Kinetic energy in toroidal modes versus time for the non-linear evolution of 
shot 113207 using the resistive MHD model.
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Figure 4. Growth rate versus toroidal mode number from the resistive MHD model for 
the two DIII-D equilibria under consideration.  Linearly growing and non-linearly driven 
modes are identified.

Figure 5.  Evolution of the temperature during the non-linear evolution of an ELM in 
shot 113207.

3.0 Verification of the 2-fluid Model in NIMROD

The 2-fluid implementation in NIMROD has been validated against the ideal g-mode 
in a slab [K. V. Roberts and J. B. Taylor,  Phys. Rev. Letters  8,  197 (1962)].  Theory 
predicts  two-fluid  stabilization  will  occur  when  * > 2γ MHD ,  where  *  is  the  drift 
frequency and  MHD  is the MHD growth rate.  Results from the NIMROD code are in 
excellent  agreement  with  this  prediction,  as  seen  in  Figure  6.   Verification  of  the 
gyro-viscosity on this problem is underway.
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Figure 6.  Growth rate of g-mode versus * / γ MHD with 2-fluid effects in the NIMROD 
code.  

4.0 Stability of Model Equilibria with Edge Density Gradients

Model equilibria with paramaterized edge density gradients have been constructed. 
The density gradient can be shaped to match the equilibrium pressure profile according to 
neq (R,          .  For the resistive MHD model, the growth rate 
has been determined for the  n = 13 mode with the NIMROD code as functions of the 
pedestal particle density (normalized to peak density), and the parameter nt .  The results 
are shown in Figures 7a,b.

   
Figure 7.  Linear growth rate for the  n = 13 mode in the resistive MHD model for the 
generic equilibrium a) versus normalized pedestal density, and b) versus pedestal height.

Linear stability calculations have also been run for these equilibria using the 2-fluid 
model  in NIMROD.  These are shown in Figure 8.  Note that  the linear growth rate 
actually increases compared with the resistive MHD case (see Figure 7.)
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Figure 8.  Linear growth rate for the  n = 13 mode in the 2-fluid MHD model for the 
generic equilibrium a) versus normalized pedestal density, and b) versus pedestal height. 
The growth rate has increased compared with the resistive MHD result (see Figure 7.)
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