skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Geobotanical Remote Sensing Applied to Targeting New Geothermal Resource Locations in the U.S. Basin and Range with a Focus on Dixie Meadows, NV

Journal Article ·
OSTI ID:882060

This paper presents an overview of the work our collaboration is doing to increase the detailed mapped resource base for geothermal exploration in the Western US. We are imaging several large areas in the western US with high resolution airborne hyperspectral and satellite multispectral sensors. We have now entered the phase where the remote sensing techniques and tools we are developing are mature enough to be combined with other geothermal exploration techniques such as aeromagnetic, seismic, well logging and coring data. The imaging sensors and analysis techniques we have developed have the ability to map visible faults, surface effluents, altered minerals, subtle hidden faults. Large regions are being imaged at reasonable costs. The technique of geobotanical remote sensing for geothermal signatures is based on recent successes in mapping hidden faults, high temperature altered mineralization, clays, hot and cold springs and CO2 effluents the Long Valley Caldera and Mammoth Mountain in California. The areas that have been imaged include Mammoth Mountain and the Long Valley Caldera, Dixie Meadows NV, Fish Lake Valley NV, and Brady Hot Springs. Areas that are being imaged in the summer of 2003 are the south moat of the Long Valley Caldera, Mammoth Mountain western Pickles, Nash, Kasameyer, Foxall, Martini, Cocks, Kennedy-Bowdoin, McKnight, Silver, Potts, flanks, Mono Inyo chain north of Mammoth Mountain in CA, and the Humboldt Block in NV. This paper focuses on presenting the overview of the high-resolution airborne hyperspectral image acquisition that was done at Dixie Meadows NV in August 2002. This new imagery is currently being analyzed and combined with other field data by all of the authors on this paper. Results of their work up until the time of the conference will be presented in papers in the remote sensing session.

Research Organization:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-7405-Eng-48
OSTI ID:
882060
Report Number(s):
UCRL-JC-153443; TRN: US200613%%561
Country of Publication:
United States
Language:
English