skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 2nd Generation PFBC Systems R&D Phase 2 and Phase 3

Technical Report ·
DOI:https://doi.org/10.2172/882020· OSTI ID:882020

No work was performed; the two remaining Multi Annular Swirl Burner test campaigns are on hold pending selection of a new test facility (replacement for the shut down UTSI burner test facility) and identification of associated testing costs. The Second-Generation PFB Combustion Plant conceptual design prepared in 1987 is being updated to reflect the benefit of pilot plant test data and the latest advances in gas turbine technology. The updated plant is being designed to operate with 95 percent sulfur capture and a single Siemens Westinghouse (SW) 501G gas turbine. Using carbonizer and gas turbine data generated by Foster Wheeler (FW) and SW respectively, Parsons Energy and Chemicals Group prepared preliminary plant heat and materials based on carbonizer operating temperatures of 1700 and 1800 F and found the former to yield the higher plant efficiency. As a result, 1700 F has been selected as the preferred operating condition for the carbonizer. The previous first cut plant heat and material balance was refined and it predicts a 47.7% plant efficiency (HHV) with a net power output of 421.1 MWe. The latter includes a plant auxiliary load estimated to be 23.5 MWe or 5.26% of the gross plant power and a transformer loss of 1.5 MWe. Coal drying is through natural gas combustion, and the thermal energy input of the natural gas has also been included in the heat rate calculation. Figure 1 presents the plant preliminary full load heat and material balance. In this arrangement, evaporation and primary steam superheating tube surfaces are placed in both the pressurized circulating fluidized bed boiler (PCFB) and the gas turbine heat recovery steam generator (HRSG). The superheated steam from these units is mixed and then heated to 1050 F in the PCFB finishing superheater. With regard to steam reheating, the primary stage is located at the front of the HRSG and the final stage is located in the PCFB. Although this circuitry arrangement appears workable at full load, minimum load must be checked next to see if rearrangement is needed. Plant start up and load following discussions indicated that below about 15 percent gas turbine load, the latter would transition from steam to air cooling.

Research Organization:
Foster Wheeler Development Corporation
Sponsoring Organization:
USDOE
DOE Contract Number:
AC21-86MC21023
OSTI ID:
882020
Country of Publication:
United States
Language:
English