skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The big and little of fifty years of Moessbauer spectroscopy at Argonne.

Technical Report ·
DOI:https://doi.org/10.2172/881585· OSTI ID:881585

Using radioactive materials obtained by chance, a turntable employing gears from Heidelberg's mechanical toy shops, and other minimal equipment available in post World War II Germany, in 1959 Rudolf Moessbauer confirmed his suspicion that his graduate research had yielded ground-breaking results. He published his conclusion: an atomic nucleus in a crystal undergoes negligible recoil when it emits a low energy gamma ray and provides the entire energy to the gamma ray. In the beginning Moessbauer's news might have been dismissed. As Argonne nuclear physicist Gilbert Perlow noted: ''Everybody knew that nuclei were supposed to recoil when emitting gamma rays--people made those measurements every day''. If any such effect existed, why had no one noticed it before? The notion that some nuclei would not recoil was ''completely crazy'', in the words of the eminent University of Illinois condensed matter physicist Frederich Seitz. Intrigued, however, nuclear physicists as well as condensed matter (or solid state) physicists in various locations--but particularly at the Atomic Energy Research Establishment at Harwell in Britain and at Argonne and Los Alamos in the U.S.--found themselves pondering the Moessbauer spectra with its nuclear and solid state properties starting in late 1959. After an exciting year during which Moessbauer's ideas were confirmed and extended, the physics community concluded that Moessbauer was right. Moessbauer won the Nobel Prize for his work in 1961. In the 1960s and 1970s Argonne physicists produced an increasingly clear picture of the properties of matter using the spectroscopy ushered in by Moessbauer. The scale of this traditional Moessbauer spectroscopy, which required a radioactive source and other simple equipment, began quite modestly by Argonne standards. For example Argonne hosted traditional Moessbauer spectroscopy research using mostly existing equipment in the early days and equipment that cost $100,000 by the 1970s alongside work at the $50 million Zero Gradient Synchrotron (ZGS) and the $30 million Experimental Breeder Reactor (EBR) II. Starting in the mid-1990s, Argonne physicists expanded their exploration of the properties of matter by employing a new type of Moessbauer spectroscopy--this time using synchrotron light sources such as Argonne's Advanced Photon Source (APS), which at $1 billion was the most expensive U.S. accelerator project of its time. Traditional Moessbauer spectroscopy looks superficially like prototypical ''Little Science'' and Moessbauer spectroscopy using synchrotrons looks like prototypical ''Big Science''. In addition, the growth from small to larger scale research seems to follow the pattern familiar from high energy physics even though the wide range of science performed using Moessbauer spectroscopy did not include high energy physics. But is the story of Moessbauer spectroscopy really like the tale told by high energy physicists and often echoed by historians? What do U.S. national laboratories, the ''Home'' of Big Science, have to offer small-scale research? And what does the story of the 50-year development of Moessbauer spectroscopy at Argonne tell us about how knowledge is produced at large laboratories? In a recent analysis of the development of relativistic heavy ion science at Lawrence Berkeley Laboratory I questioned whether it was wise for historians to speak in terms of ''Big Science'', pointing out at that Lawrence Berkeley Laboratory hosted large-scale projects at three scales, the grand scale of the Bevatron, the modest scale of the HILAC, and the mezzo scale of the combined machine, the Bevalac. I argue that using the term ''Big Science'', which was coined by participants, leads to a misleading preoccupation with the largest projects and the tendency to see the history of physics as the history of high energy physics. My aim here is to provide an additional corrective to such views as well as further information about the web of connections that allows national laboratory scientists working at a variety of scales to produce both technological and scientific innovations. I shall pursue this theme by looking first at the circuitous path that led to the discovery and understanding of the Moessbauer effect, then outlining the spread of Moessbauer spectroscopy, and finally describing episodes that highlight three generations of Moessbauer spectroscopy at Argonne.

Research Organization:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Organization:
USDOE
DOE Contract Number:
W-31-109-ENG-38
OSTI ID:
881585
Report Number(s):
ANL/HIST-3; TRN: US0602933
Country of Publication:
United States
Language:
ENGLISH