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ABSTRACT 

Experimental, numerical, and analytical work has shown that the response of a 

shell to a distributed force wave possesses unique characteristics which are dependent on 

the nature of structure attached to the shell. Specific characteristics which influence the 

response are the distribution of the discontinuities around the circumference (periodic/a-

periodic), the impedance of the discontinuities relative to that of the shell, and the type of 

impedance (mass or stiffness).  Traditional shell theory predicts low frequency, radial- 

dominated structural mode shapes of a shell with a sinusoidal distribution of 

displacement amplitudes.  Due to the orthogonal nature of these mode shapes, the 

response of the structure to a traveling radial force wave with sinusoidal content at a 

given harmonic is due solely to the response of the mode shape with harmonic content of 

the same order.  

Introduction of impedance discontinuities to a shell yield complex mode shapes, 

which may be characterized by the summation of several harmonic components.  These 

modes are no longer orthogonal in the presence of discontinuities, yielding harmonic 

content across various modal orders.  As a result, a purely sinusoidal forcing function can 

excite several modes of the structure.  Structural scattering as discussed in this paper 

refers to the phenomena in which a force wave at a given harmonic scatters into the 

response of modes with different harmonics.   An experimental investigation into the 

harmonic scattering behavior of a shell due to mass discontinuities is presented in this 

paper.  Knowledge of the key structural characteristics which influence scattering and 
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their behavior will allow for a diagnostic tool when assessing the structural response of 

more complex cylindrical structures. 

Experimentally obtained data presented in this paper demonstrates some expected 

scattering characteristics of a cylindrical shell in the presence of periodically and a-

periodically distributed masses.  Some unique characteristics of the response of a shell in 

the presence of periodically distributed masses are discussed.  Additionally, the data 

demonstrates that scattering characteristics may exist in even the simplest cylindrical 

structures due to non-idealities in the structure or its boundary conditions. 
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Chapter 1 
 

Introduction 

Experimental, numerical, and analytical work has shown that the response of a 

shell to a distributed force wave possesses unique characteristics which are dependent on 

the nature of structure attached to the shell. Specific characteristics which influence the 

response are the distribution of the discontinuities around the circumference (periodic/a-

periodic), the impedance of the discontinuities relative to that of the shell, and the type of 

impedance (mass or stiffness).  Traditional shell theory predicts low frequency, radial- 

dominated structural mode shapes of a shell with a sinusoidal distribution of 

displacement amplitudes.  Due to the orthogonal nature of these mode shapes, the 

response of the structure to a traveling radial force wave with sinusoidal content at a 

given harmonic is due solely to the response of the mode shape with harmonic content of 

the same order.  

Introduction of impedance discontinuities to a shell yield complex mode shapes, 

which may be characterized by the summation of several harmonic components.  These 

modes are no longer orthogonal in the presence of discontinuities, yielding harmonic 

content across various modal orders.  As a result, a purely sinusoidal forcing function can 

excite several modes of the structure.  Structural scattering as discussed in this paper 

refers to the phenomena in which a force wave at a given harmonic scatters into the 

response of modes with different harmonics.   An experimental investigation into the 

harmonic scattering behavior of a shell due to mass discontinuities is presented in this 
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paper.  Knowledge of the key structural characteristics which influence scattering and 

their behavior will allow for a diagnostic tool when assessing the structural response of 

more complex cylindrical structures. 

1.1 Basic Theory on the Vibration of Shells 

The continuous nature of the circumferential dimension of cylindrical shells 

facilitates the analysis of these structures on a spatial harmonic basis.  To demonstrate 

this, the derivation of the mode shapes of a cylindrical shell is discussed below.  Several 

forms of the equations of motion for cylindrical shells have been proposed in literature.  

Reference [3] reviews the differences between these formulations.  The experiments 

presented in this paper focus of the deviations in the forced response of a shell from the 

theoretical formulations on a harmonic basis.  The differences in equations of motion 

primarily affect the computation of the natural frequencies of the modes, not the mode 

shapes.  Therefore, a simplified derivation of the mode shapes of a cylindrical shell will 

be described in this paper.  This derivation is a summary of that found in Reference [4]. 

In deriving the basic equations of motion for a cylindrical shell, the following 

assumptions were listed: 

1. The thickness of the shell is small relative to the radius (i.e. h/a < 0.1) 

2. The displacement is small relative to the shell thickness 

3. The transverse normal stress acting on planes parallel to the shell middle 

surface is negligible 
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4. The middle surface of the shell is not subject to elongation during shell 

deformation  (Bending strain energy >> Membrane strain energy) 

A cylindrical coordinate system for a shell is shown in Figure 1-1. Donnell’s 

formulation for the equations of motion of a shell in this coordinate system is: 
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where u, v, and w correspond to the axial, radial, and circumferential components of the 

displacement, z and θ correspond to the axial and angular coordinates of the shell, υ is 

Poisson’s ratio of the shell material, E is the modulus of elasticity of the shell, a is the 

inner radius of the shell, h is the thickness of the shell, cp is the speed of sound in the 

shell material, and pa represents loading normal to the surface of the shell. For a shell 

with free-free boundary conditions, it has been shown that inextensional theory yields 

accurate results.  If it is assumed that the radial and circumferential components of the 

displacement are independent of the axial coordinate, a solution to the equations of 

motion is assumed:  
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where Vn and Wn represent the amplitudes of the radial and circumferential components 

of the shell deflection, n is the harmonic order of the mode, ω is the circular frequency, 

and t represents time.  The angular dependence of the modal deflection in Equation 1.2 

may be expressed in complex exponential notation as: 
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This alternative expression of the solution to the equations of motion demonstrates the 

equality between a standing wave field and the summation of positive and negative 

traveling waves.  Figure 1-1 shows the shape of the nr = 4 mode. 

 
 

 
Figure 1-1:  Cylindrical Shell Coordinate System, Deformation Directions, and nr = 4
Mode Shape 
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The equations of motion for the free vibration (i.e. pa = 0) of the shell may be 

rewritten as 

( ) 0422
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where the frequency is represented in non-dimensional form as Ω = ωa/cp.  The forced 

response of the shell may be found by replacing the right hand side of Equation 1.4 with 

the radial force distribution as shown: 
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where fn is the harmonic component n of the force input wave.  When the force input 

wave has a spatially sinusoidal shape (sin(nθ)), only the mode with harmonic order n is 

excited.  Moreover, the radial displacement of the shell in response to a traveling wave 

force excitation at harmonic order n will be a wave at the same harmonic and traveling in 

the same direction as the force input.  This characteristic allows for the analysis of test 

data on a spatial Fourier harmonic basis, where each Fourier component closely 

represents a single mode shape of the shell.   

1.2 Theory on the Effects of Periodic Discontinuities 

Early analytical work shown in Reference [3] attempted to account for the effect 

of periodic stiffeners around the circumference by distributing the added stiffness evenly 

around the shell.  These approximations helped to show the effect that added impedance 

has on the natural frequency of the shell modes, but fails to account for the complexities 
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added to the actual deformation of the structure due to the added impedances.  However, 

analyses by Schnell and Heinricshbauer, summarized in Reference [3], showed that two 

different types of modes are possible when internal stiffeners are evenly distributed 

around a shell.  In one of the two modes, the stiffeners see little radial motion, and only 

twist with shell deflection.  In this case, the impedance discontinuities are at the nodes of 

the radial deflection.  In the second type of mode, the stiffeners see significant radial 

deflection, and therefore influence the natural frequency of the mode by changing the 

modal impedance.  In this case, the impedance discontinuities are at the anti-nodes of the 

deflection.  This mode-splitting phenomenon and the effects of complex mode shapes due 

to added impedance are explored experimentally later in this paper.  

When periodic impedances are added to a structure, the naturally sinusoidal mode 

shape is transformed into a more complex mode shape, characterized by several Fourier 

harmonic components.  As a result, when the structure with these complex mode shapes 

is excited by a force wave at a single harmonic, the response may consist of multiple 

harmonic orders.  Literature on this subject is often found in two areas.  First, the effect 

of the introduction of impedance discontinuities is often described in terms of the 

changes in the mode shape, as demonstrated in Reference [5].  The response of periodic 

structures to traveling waves is often discussed in terms of rotating structures, as 

demonstrated in References [6] and [7].  The concepts demonstrated in these two 

categories may be applied to a stationary shell with periodic impedance discontinuities, 

subjected to a traveling force wave.  Reference [2] presents a finite element analysis of a 

shell with attached structure.  The results of this study demonstrate that the response 
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harmonics nr, excited by a force at harmonic nf will be related to the number of 

periodically attached impedance discontinuities according to the following equation:  

kZfnrn ±= , (1.6)

where nr is the harmonic order of the response wave, nf is the harmonic order of the force 

wave, Z is the number of periodic impedance discontinuities, and k = [1,2,3,…].  

Experimental results confirm the presence of this phenomenon as shown in Chapter 3. 

1.3 Paper Overview 

The remainder of this paper presents an experiment in which the scattering 

characteristics of a cylindrical shell are measured.  Chapter 2 of this paper describes the 

experimental methods used to measure the scattering phenomena.  The mathematical 

formulations used to post process the measured data into an intuitive form are also shown 

in this chapter.  Chapter 3 discusses experimental results.  This chapter discusses the 

measured characteristics of the basic shell response and the measured change in 

scattering characteristics when masses are attached to the outer circumference of the 

shell.  The results for both periodically and a-periodically attached masses are presented.  

In Chapter 4, potential investigations for similar work in the future are presented. 

 Experimentally obtained data presented in this paper demonstrates some expected 

scattering characteristics of a cylindrical shell in the presence of periodically and a-

periodically distributed masses.  Some unique characteristics of the response of a shell in 

the presence of periodically distributed masses are discussed.  Additionally, the data 
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demonstrates that scattering characteristics may exist in even the simplest cylindrical 

structures due to non-idealities in the structure or its boundary conditions. 



 

Chapter 2 
 

Measurement Procedures 

2.1 Experimental Setup 

The goal of the experiment presented in this paper is to demonstrate the changes 

in the response characteristics of an ideal cylindrical shell when impedance 

discontinuities are added.  To accomplish this, the test was designed to be easily 

reconfigured while maintaining the integrity of the basic shell.  Figure 2-1 shows a 

picture of the test setup where a pipe section is mounted vertically by resting on four 

pressurized rubber air springs.  A description of this test setup including shell properties, 

boundary conditions, instrumentation, and data acquisition is discussed in this chapter. 

 

Figure 2-1: Picture of Test Setup 

Pipe Section 

Radial 
Accelerometers 

g 
Air Sprin
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2.1.1 Shell Properties 

A section of commercially available pipe was used for all of the experiments 

described in this paper.  The pipe section used was a 24” (0.61m) long, 30” (0.76m) 

nominal O.D., 1” (0.025m) nominal wall thickness welded carbon steel pipe.  To 

minimize the scattering effects of the weld seam, the pipe was machined to ensure a 

constant wall thickness and circular inner and outer diameters.  After the machining 

process, the pipe was measured to have a 0.786in (0.0200m) wall thickness and an outer 

radius of 29.838in (0.75789m).  The pipe size was chosen for several reasons.  The 

natural frequency of the breathing (i.e. n=0) mode is reduced relative to the bending 

modes (e.g. n=2,3,4…) when the diameter of the pipe is increased.  To increase the 

potential for measurable scattering between the low order circumferential modes and the 

breathing mode, a large diameter pipe was desired.  A larger diameter pipe section also 

reduces the relative size of the accelerometer footprint relative to the pipe circumference.  

Additionally, the larger circumference allows more space for instrumentation, attachment 

of impedance discontinuities, and the use of an impact hammer to apply the excitation 

force to the inner circumference of the pipe. 

2.1.2 Boundary Conditions 

Measured response characteristics presented in this paper are compared to those 

of an ideal cylindrical shell, with free-free boundary conditions.  To minimize the effects 

of the mounting configuration on the measured scattering characteristics, the shell was 

supported with its axial dimension vertical by four pressurized rubber air springs, 
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positioned at the 45°, 135°, 225°, and 315° angular locations.  This arrangement was 

chosen so that there are no added stiffness discontinuities in the measurement plane.  The 

four rubber mounts were inflated with air to approximately 20psi (138kPa).  At this 

pressure, the rigid body response of the shell resonates below 10Hz. As demonstrated in 

later sections, it was found that the mounting of the shell in this manner may have caused 

some unintended structural scattering in the control (“clean shell”) and other test cases. 

2.1.3 Instrumentation 

The primary focus of the experiments presented in this paper is on the response of 

low-order shell modes.  The responses of the modes of interest are dominated by the 

radial component of the shell wall motion.  Therefore, an array of radially oriented 

accelerometers was placed around the circumference of the shell, halfway along the axial 

length.  The accelerometers were equally spaced in increments of 10°, resulting in an 

array of 36 radially-oriented accelerometers.  The test was designed to allow for 

observation of the scattering behavior between low and high order harmonics.  The 

sensor array chosen may resolve un-aliased response from nr = -17 to nr = +18.  The 

number of accelerometers used was limited by the ability to attach test masses between 

sensors while maintaining a uniform sensor distribution. 

Accelerometers were located by first measuring the outer circumference of the 

shell with a pi tape to an accuracy of 1x10-3 in.  A section of magnet was then measured 

and cut to the necessary accelerometer spacing.  The accuracy of the sensor placement is 

estimated to be within ±0.005 in (1.27x10-4m).  Table 2-1 lists the test equipment used in 
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this experiment.  A PC was connected to an Agilent Technologies VXI mainframe with 

E1432 data acquisition boards and a fire wire connection.  Accelerometers were powered 

in ICP mode by the data acquisition boards.  The excitation force was generated with an 

electronic instrumented hammer.  

Table 2-1: Test Equipment 

Quantity Manufacturer 
 

Model 
Number 

Description 

1 
 

Dell  Personal Computer 
 
 

1 MTS I-DEAS Version 10 
 

Data Acquisition and Analysis Software 
 
 

1 Agilent Technologies
 

E8408A Data Acquisition Mainframe 
 
 

1 Agilent Technologies E8491B 
 

IEEE 1394 (Fire wire) Interface Card 
 
 

2 Agilent Technologies
 

E1432 16 Channel Data acquisition/  
DSP Board 

 
1 PCB Piezotronics 

 
086C09 Electronic Instrumented Hammer 

 
 

36 PCB Piezotronics 
 

352C66 Voltage Mode Accelerometers 
(100 mV/g) 

 
4 Goodyear 1B5-500 

 
Super-Cushion Air Spring 
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2.1.4 Data Acquisition 

At each of the 36 angular locations where an accelerometer was located, a 

corresponding force input location was established on the inner circumference of the 

shell.  Test data was acquired in the frequency domain for impacts at each of the angular 

locations.  The FRFs between the impact force and all accelerometers were acquired by 

the data acquisition system for 15 impacts at each location.  The FRFs from the 15 

impacts were averaged by the data acquisition software, yielding 36 averaged FRFs for 

each impact location. The FRFs were computed with:  

( )
( ) ( )

( ) ( )ffFffF

ffFfrA
frfH

θθ

θθ
θθ ⋅∗

⋅∗

=, , (2.1)

where  is the frequency response function of the acceleration at θ( )frfH θθ , r due to a 

force input at θf,  is acceleration spectrum, ( )frAθ ( )ffFθ  is the force spectrum, and (*) 

denotes the complex conjugate of a function. 

Preliminary data were taken to determine the appropriate acquisition parameters 

for the test.  The shell was found to be very lightly damped.  To accommodate the long 

ring-down time associated with this lightly damped structure, data from each impact was 

recorded for 2 seconds.  This yields a data frequency resolution of 0.5Hz.  The maximum 

frequency was chosen to be 3200Hz.  This frequency range was chosen to ensure that the 

response characteristics of the low order bending modes and the breathing mode were 

adequately captured.  Data acquisition was triggered by a rising slope on the input force 

signal.  A pre-trigger delay was used to ensure that the entire force impulse was captured.  
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FRF data were acquired and stored in I-DEAS data acquisition software.  The data were 

later exported to MATLAB for post processing, as discussed in the next section. 

2.2 Data Processing 

Data processing methods were developed to present frequency response data in an 

intuitive format.  The goal in the development of the data processing methods presented 

in this chapter is to transform the test data from the response of individual transducers to 

forces at individual force locations into an inference of the response at various spatial 

harmonics to a force wave at a given spatial harmonic.  After applying the data 

processing methods described in this chapter to the raw test data, data can be viewed as a 

function of the spatial characteristics of both the input force wave and of the resulting 

structural response wave.   

Shell deflection may be expressed as the summation of type types of series.  In the 

first case, the expansion is in terms of the modes of a clean shell.  These modes may be 

represented by sinusoidal harmonics.  These basic modes are acted upon by the addition 

of discontinuities.  When the response of a complex cylindrical structure is expressed in 

terms of these basic shell modes, several response harmonics may be seen when forced 

by a single sinusoidal harmonic.  Alternatively, the deflection could be expressed in 

terms of the normal mode shapes of the complex shell.  In this case, the effects of the 

discontinuities are embedded in the mode shapes and are not expressed as simple sine or 

cosine functions.  In this paper, force and response data is analyzed in terms of the first 

type of expansion.  This expansion may be analyzed in terms of standing wave or 
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traveling wave components of the clean shell response.  Although these two methods are 

mathematically equivalent, analysis of data in both domains allows for a full 

characterization of the structural response of the shell. 

2.2.1 Data Format 

FRF data as described in Equation 2.1 were assembled into a three-dimensional 

matrix in the form: 

( )[ ]
( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

fHfHfH

fHfHfH
fHfHfH

fH rf

3636236136

3622212

3612111

,,,

,,,

,,,

,,

θθθθθθ

θθθθθθ

θθθθθθ

θθ

L

MOMM

L

L

, (2.2)

where [H(f,θf,θr)] is the matrix of frequency response functions of the acceleration at θr 

due to a force input at θf.   The data in this array are a function of frequency, spatial 

location of the response, and spatial location of the force input.  Fourier analysis was 

applied to the two spatial dimensions of the matrix to yield a data set as a function of 

frequency, the spatial harmonic of the response, and the spatial harmonic of the force 

input. 

2.2.2 Traveling Wave Transformation 

The response of the shell may be expressed as either the sum of a series of 

propagating waves traveling in opposite directions, or as the sum of a series orthogonal 
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standing waves.  The derivation of the traveling wave domain data processing methods is 

presented in this section.   

The response data expressed in traveling wave form is: 

( ) ( ) ].,
0

,[)( rr
r

rr
rr

jnenfA
N

n

jnenfAfA θθ
ϑ

+⋅−+∑
=

−⋅=  (2.3)

Equation 2.3 may be expressed in matrix form as: 

( )[ ] ( )[ ] [ ]twrr TnfAfA ⋅= ,,θ , (2.4)

Where [A(f,θr)] is a matrix of acceleration measurements as a function of response 

location, [A(f,nr)] is a matrix of accelerations measurements as a function of the spatial 

harmonics, and [Ttw] is the traveling wave transformation matrix: 

[ ]

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣
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⋅+⋅+⋅+

⋅−+⋅−+⋅−+

⋅−−−−−−

⋅−−⋅−−⋅−−

3621
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3621
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)1()1()1(

θθθ

θθθ

θθθ

θθθ
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NjNjNj
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eee
eee

eee
eee

T

L

L

MOMM

L

L

. (2.5)

In this equation, N represents the maximum resolvable spatial harmonic (N=# sensors/2). 

The response of the shell as a function of frequency and traveling wave harmonic may be 

found by applying the inverse of Ttw to both sides of Equation 2.4 as shown:  

( )[ ] ( )[ ] [ ] 1,, −
⋅= twrr TfAnfA θ . (2.6)
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To obtain the data processing method for transforming test data from the response spatial 

domain to the response traveling wave domain, it is first noted that the FRF in 

Equation 2.1 s approximately equivalent to the ratio of the acceleration at sensor θr to the 

force input at θf: 

( )
)(
)(

, fF
fA

fH
f

r
rf

θ

θ
θθ ≈  (2.7)

The traveling wave transformation matrix may be applied to the numerator of the transfer 

function at each force input location to create a matrix of FRFs as a function of response 

harmonic referenced to each force input location: 

( )[ ] [ ] [ ] 1),,(,, −
⋅= twrfrf TfHnfH θθθ . (2.8)

Although the test data was acquired at each force input location individually, the resulting 

data may be used to infer what the structural response would have been had a traveling 

wave been used as the excitation force.  Using superposition, the response of each 

traveling wave harmonic to a force wave at a given harmonic may be found by summing 

the product of the transfer function and the desired force input at each force input 

location. The response of harmonic nr to a force input at nf is expressed as: 

( ) ( ) if

rf

jn
N

i
rfnn enfH

N
fA θθ −

=

⋅⋅= ∑
2

1
, ,,

2
1 , (2.9)

where Anf,,nr(f) is the acceleration of harmonic nr to a force input at harmonic nf. The 

response was calculated for one unit of force input at harmonic nf.   
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The expression may therefore be rewritten as a transfer function.  Equation 2.9 arranged 

in matrix form, and re-expressed as a transfer function is: 

( )[ ] [ ] ( )[ ]rf
tw

rf nfH
N

T
nnfH ,,

2
,, θ⋅= . (2.10)

This result may be combined with Equation 2.8 to find the final expression for converting 

the raw test data matrix from spatial coordinates to the traveling wave domain: 

( )[ ] [ ] ( )[ ] [ ] 1,,
2

,, −⋅⋅= twrf
tw

rf TfH
N

TnnfH θθ . (2.11)

2.2.3 Standing Wave Transformation 

In the above derivation, test data was transformed to express the shell response 

characteristics in terms of traveling wave harmonics.  Alternatively, the response of the 

shell may be expressed as a sum of orthogonal standing wave functions as:  

( ) ( ) ( ) ( ) ( )( )∑
=

⋅+⋅=
N

n
rrrfcrrrfs

r

rf
nnfAnnfAfA

0
, cos,,sin,, θθθθθθ , (2.12)

where As is the sine component of the standing wave response and Ac is the cosine 

component of the standing wave response.   
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This equation may be rearranged in matrix form as:  

( )[ ] ( ) ( )[ ] [ ]swrcrsr TnfAnfAfA ⋅= ,,,θ , (2.13)

where [Tsw] is the standing wave transformation matrix given below:  

[ ]
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L

MOMM

L
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. (2.14)

In Equation 2.13 and Equation 2.14 , nr corresponds to the harmonic number of the 

response component as before.  However, in these equations, there are two components to 

the response, the sine and cosine component.  The values of nr in this form range from 0 

to N.   The standing wave transformation matrix may be applied to test data as follows: 

[ ] ( ) [ ] 1

,,

,, ,,
2),,(),,(

),,(),,( −
⋅⋅=⎥

⎦

⎤
⎢
⎣

⎡
swrf

sw

rfccrfcs

rfscrfss TfH
N

T
nnfHnnfH
nnfHnnfH

θθ . (2.15)

The resulting frequency response function matrix is divided into 4 sub matrices.  The first 

index of each sub-matrix corresponds to the standing wave component of the response.  

The second corresponds to the standing wave component of the force input.  For 

example, Hs,c corresponds to the set of FRFs in which the sine component of the response 

is caused by a cosine component of the force. 

2.2.4 Alternative Transformations 

In addition to the traveling wave and standing wave transformations presented above, two 

other data transformations are possible by using the two transformation matrices in 
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Equation 2.5 and Equation 2.14.  The response of the standing wave components due to 

traveling wave force fields may be computed: 

( ) ( )[ ] [ ] ( ) [ ] 1
,, ,,

2
,,,, −

⋅⋅= swrf
tw

rftwcrftws TfH
N

T
nnfHnnfH θθ . (2.16)

In this equation, Hs,tw represents the set of FRFs in which the sine component of the 

response harmonic nr is caused by a traveling wave force at harmonic nf.  In this 

representation, nf  ranges from –N+1 to N, while nr ranges from 0 to N.  Similarly, the 

traveling wave response due to standing wave force fields may be computed: 

( )
( )

[ ] ( ) [ ] 1

,

, ,,
2,,

,, −
⋅⋅=
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T
nnfH

nnfH
θθ . (2.17)



 

Chapter 3 
 

Experimental Results 

3.1 Basic Shell Response Characteristics 

All data presented in this paper was acquired using a traditional impact hammer 

and accelerometers.  Basic shell response characteristics such as those found with 

traditional modal analysis techniques are presented in this section.  An understanding of 

the basic response characteristics such as the modal natural frequencies, damping, and 

mode shape will help with subsequent analysis of the harmonic scattering characteristics 

of the shell.  The natural frequencies found for the shell are compared to those predicted 

by basic shell theory.  Additionally, the response characteristics of the un-modified shell 

to traveling wave forces are characterized. 

3.1.1 Shell Natural Frequencies and Damping 

Figure 3-1 shows the measured frequency response function for frequencies 

ranging from 0 to 1000 Hz between a force input and acceleration response at 0 degrees.  

Data presented in this figure shows that clean test data above approximately 70 Hz was 

acquired.  The resonant modes shown in this plot demonstrate large frequency separation, 

as predicted by analytical models.  The amplitude of the FRF at each of the resonance 

frequencies demonstrates that the structure is lightly damped.  The natural frequencies of 

each of the modes shown were identified by examining a modal indicator function.  Since 
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the magnitude of a frequency response function is dominated by the amplitude of the 

imaginary component at resonance, an estimate of the natural frequencies of the shell for 

each test case were found as follows: 

{ }∑
=

=
36

1

2),,(Im),(
r

rff fHfMIF θθθ . (3.1)

Peaks in this function correspond to the frequencies of the major resonances in the 

structure. Figure 3-2 shows the use of this modal indicator function for the test case in 

which the shell was not modified by any impedance discontinuities (“Clean Shell”). 
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Figure 3-1:  Frequency Response Function for Force Input and Acceleration Response at
0 degrees 
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Figure 3-2:  Modal Indicator Function for Impact at 0 Degrees to the Clean Shell 

 Modal analysis was performed on the shell data using I-DEAs software.  The 

polyreference technique was used to identify the major system resonance frequencies and 

corresponding damping.  Table 3-1 lists the results of this analysis.  The damping values 

show that for response harmonics 2, 3, and 4, the structure is lightly damped.  The 

damping in the mode corresponding to a response harmonic of 5 appears to be more 

damped than the lower order modes.  The data was acquired such that a frequency 

resolution of 0.5 Hz was achievable.  Since the structure is lightly damped, the accuracy 

of the damping values may be limited by the ability to capture the peak of a resonance at 

the center of a frequency bin. 
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Table 3-1: Resonance Frequencies, and Damping for Measured Shell Modes 

Frequency, Hz Damping (%) 
( n =2)    107.94 0.035 
( n =3)    303.20 0.047 

  ( n =4)    578.20 0.088 
( n =5)    928.91 0.428 

1285.67 0.567 
1362.98 0.146 
1487.90 0.157 
1688.02 0.045 
1860.67 1.8 
2093.65 0.227 
2221.41 0.081 
2338.80 0.394 
2426.38 0.059 
2811.24 0.093 
2829.57 0.209  

 

3.1.2 Mode Shapes 

Although the data processing methods presented in Chapter 2 will allow for an 

inference of the harmonic content of the low order, radial dominated modes, the mode 

shape for the low order modes was observed to ensure data quality.  Figure 3-3 shows an 

estimate of the mode shape for the mode with a resonance frequency occurring at 108 Hz.  

As expected, the shape of the mode is dominated by a sinusoid with a periodicity of 2.  A 

cosine function was also included in the Figure for comparison.  To achieve overlap 

between the cosine function and the test data, the cosine function had to be spatially 

shifted.  As will be discussed in later sections, this may indicate the presence of a 

standing wave pattern with a preferred orientation relative to the coordinate system of the 

shell. 
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Figure 3-3: Comparison of Spatial Response at n=2 Resonance and a Cosine Function 

3.1.3 Direct Traveling Wave Response (nf = nr) 

To better demonstrate the fundamental response characteristics of the clean shell, 

the data processing methods described in Chapter 2 were applied to the test data.  

Figure 3-4 shows the FRF magnitude of the direct traveling wave terms for the shell 

without added mass discontinuities.  Direct terms are defined as the response of a 

traveling wave at a given harmonic to a force input at the same harmonic (i.e. nf = nr).  In 

this figure, it is seen that the modal density of the structure increases significantly above 

1000 Hz.  The harmonic components shown in Figure 3-4 demonstrate a “clean” response 

as a function of frequency.  This shows that the data processing methodology was 

successful in filtering both the force and response dimensions of the test data into its 
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spatial components.  The responses of the nr = 4 and 5 modes appear to increase at a rate 

of 40 dB per decade at frequencies below the first resonance.  This is consistent with the 

expected behavior of a single degree of freedom system in the stiffness dominated region 

of its response.  The responses of lower order modes do not demonstrate this same trend.  

Difficulties in acquiring low frequency data due to the lightly damped nature of the 

structure may have yielded non-physical response data at low frequencies for these 

modes.  Additionally, scattered energy from the rigid body responses below 10 Hz may 

contribute to the deviation from expected response at low frequencies. 

 
 

Figure 3-4: Direct Traveling Wave Response FRFs for Excitation and Response
Harmonics 2 through 5 

10
1

10
2

10
3

-20

0

20

40

60

80

100

120

Frequency, Hz

M
ag

ni
tu

de
 o

f F
R

F,
 d

B
 re

 1
µg

/N

nr = nf = +2

nr = nf = +3

nr = nf = +4

nr = nf = +5

10
1

10
2

10
3

-20

0

20

40

60

80

100

120

Frequency, Hz

M
ag

ni
tu

de
 o

f F
R

F,
 d

B
 re

 1
µg

/N

nr = nf = +2

nr = nf = +3

nr = nf = +4

nr = nf = +5



27 

3.1.4 Comparison to an Analytical Model 

A simple analytical model of the direct term response was created for comparison 

to test data.  The natural frequencies of shell modes with uniform axial distribution were 

predicted by inextensional vibration theory in Reference [1], according to the equation: 

( )
( ) ( )

2
1

2
1

2
1 22

2

2

2

0, 1121

1
⎥
⎦

⎤
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−⋅
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⎠

⎞
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⎛
⋅

⋅+

−⋅
=

νµ
ω E

a
h

an

nn
n , (3.2)

where ωn,0 is the natural frequency of a mode with a circumferential harmonic n and no 

axial variation. For the purposes of this analysis, it was assumed that the shell had free-

free boundary conditions.  The natural frequencies for modes with non-uniform axial 

distribution (ωmn) were predicted using the general solution presented in Reference [1].  

Figure 3-5 compares the measured natural frequencies to those predicted by the analytical 

model.  In general, the characteristics of the predicted and measured frequencies are in 

good agreement.   
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Figure 3-5:  Comparison of Measured and Predicted Natural Frequencies 
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3.1.5 Scattering Characteristics in the Clean Shell 

In an ideal cylinder, the response to a force at a given harmonic contains 

harmonic content only at the harmonic equal to that of the force.  Although attempts were 

made to minimize the scattering in the clean shell, measured response characteristics 

appear to deviate from that expected of an ideal cylinder.  In order to understand the 

effect of adding impedance discontinuities on the scattering characteristics, the scattering 

characteristics of the unmodified shell must first be analyzed.  Figure 3-6 shows the 

positive and negative traveling wave components of response harmonics 1 through 5 to a 

force at nf = +2.  As expected, the response is dominated over the majority of the 

frequency range by the direct term, nr = +2.  Over the majority of the frequency range, 
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the scattered response (nr ≠ +2) is at least 30dB lower than the direct response.  However, 

at the resonance frequency of each of the harmonics shown, the response of that 

harmonic is greater than the direct response.  Additionally, it is noted that the response of 

the nr = -2 harmonic is nearly equal in amplitude to the positive traveling direct term.  

This indicates that the response of the shell at the resonance frequency is dominated by a 

standing wave response.  At frequencies away from the resonance frequency, the 

response of the negative traveling wave is less than the direct term, indicating that a 

traveling wave dominates the response.  
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Figure 3-6: Primary and Scattered Response Amplitudes for a Force Input at nf = +2 
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 Figure 3-7 is a three dimensional plot showing the magnitude of the FRFs for all 

response harmonics from -15 to +15 to a force input at nf = +2.  In this type of plot, the 

ideal cylinder response would appear as a single line at nr = +2 across the frequency 

range.  Responses at other harmonics would not be present.  A threshold of 20dB was 

used to generate the plot in Figure 3-7 so that only responses above the noise floor are 

shown.  The white squares correspond to the response of scattered harmonics at their 

resonance frequencies. 
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Figure 3-7:  Frequency Response Magnitude of the Clean Shell for a Force Input at nf = +2 
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The unexpected response characteristics suggest that there are characteristics of 

the clean shell that cause energy to be scattered from the primary forcing harmonic into 
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other harmonics.  Two potential characteristics of the clean shell that may yield structural 

scattering are the weld seam and the boundary conditions.  Evidence confirming these as 

potential scattering mechanisms will be discussed in later sections, after demonstrating 

the effects of added impedance on the scattering characteristics.  In addition to the 

physical characteristics of the clean shell that may yield scattering, inaccuracies in the 

measurement process could also increase the scattering present in the clean shell case.  

Errors in the accelerometer calibrations (amplitude and phase) could increase the amount 

of apparent scattering.  Additionally, variation in the spacing of either accelerometers or 

force impacts could increase the measured level of scattering. 

3.2 The Effect of Periodically Attached Masses 

To assess the effect of attaching masses periodically to the cylindrical structure, 3 

masses were attached around the outer circumference of the shell at the 55°, 175°, and 

295° locations (120° apart).  The total weight of each of the masses was 17.6±0.2lbs 

(7.7±0.09kg).  The masses were attached as shown in Figure 3-8 and Figure 3-9 with 

loctite glue and nylon straps.  Each of the attached masses consisted of two parts.  The 

first was a 5.5lb (2.5kg) steel block. As shown in Figure 3-8, this steel block was oriented 

such that a minimal percentage of the circumference of the shell was occupied by the 

footprint of the attached structure.  By attaching the structure in this manner, the added 

impedance in the circumferential direction is expected to be dominated by the mass of the 

attached structure.  However a consequence of this attachment method is that the attached 

structure may increase the stiffness of the shell in the axial direction.  Data presented in 
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this section demonstrates the effect of adding periodically attached masses to the 

structure.  The sensitivity of these scattering characteristics to a change in the mass of the 

attached structure is also demonstrated. 

 

 
Figure 3-8:  Diagram Demonstrating the Attachment of Masses to the Shell 

 
 

 
 

Figure 3-9:  Picture of one Mass Attached to the Shell 

Attached Mass 
at 295◦
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3.2.1 Direct Response Characteristics 

The response of an ideal shell may be characterized by two orthogonal modes at 

the same frequency.  These modes have no preferred orientation relative to the angular 

coordinate of the shell.  The response of these modes will be positioned with the same 

orientation as the input force wave.  Therefore, the response of an ideal shell to a 

traveling wave is a traveling wave of the same harmonic.  When periodic masses were 

added to the structure, it was found that the mode at the response harmonic equal to the 

number of attached masses was split into two distinct modes at different frequencies.  

Figure 3-10 compares the direct response of the nr = +3 mode for the test case in which 

no masses were attached and for the case in which 3 periodic masses were attached.  This 

figure demonstrates the mode-splitting effect that the addition of periodic massed has on 

the mode at the harmonic equal to the number of masses.  Prior to adding masses, the first 

n=3 bending mode occurred at 303Hz.  After adding the three 17.6lb (7.7kg) masses, two 

n=3 bending modes are seen at 306Hz and 279.5Hz.  The distance between the resonance 

frequencies of the split mode appears to be related to the amount of mass added to the 

structure. Assuming constant modal stiffness, the square of the ratio of the frequencies is 

inversely proportional to the ratio of the modal masses:  
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where f1 and f2 are the resonance frequencies before and after the addition of masses, k1 

and k2 represent modal stiffness before and after the addition of mass, and m1 and m2 

represent the modal mass before and after the addition of masses.  The estimated mass 
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ratio (m2/m1) is 1.24, while the square of the frequency ratio is approximately 1.20.  A 

similar phenomena may be present for other integer multiples of the number of masses 

(e.g. nr = 6, 9,…) however, the effect was difficult to measure since the cut-on frequency 

of these modes occurs above the cut-on frequency of some m=1 modes, yielding a high 

modal density in the frequency region of the resonances. 

 

0 200 400 600 800 1000
0

20

40

60

80

100

120

Frequency, Hz

FR
F 

M
ag

ni
tu

de
, d

B
 re

 1
µ
g/

N

No Attached Mass
3 Masses Attached

Figure 3-10:  Traveling Wave Frequency Response of the nr = +3 Harmonic to a Force at 
nf = +3 for the Clean Shell and 3 Periodic Mass Test Cases 

The test data suggests that when periodic masses are attached to the structure, the 

mode splitting occurs at the response harmonic equal to the number of masses because 

the masses participate in the motion of one of the two modes, while they are located at 

the nodes of the other mode.  Therefore, the modal mass of the two modes at that 
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response harmonic are different.  This behavior occurs when the response modes take on 

a preferred orientation relative to the angular coordinate system of the shell.  The 

tendency of the mode to take preferred orientations is demonstrated in Figure 3-11.  In 

this figure, the same data used to generate Figure 3-10 was used.  However, the sine and 

cosine components of the response were inferred for a traveling wave at nr = +3.  The 

standing wave transformation applied to the response dimension of the data was rotated 

until two distinct modes were observed.  This occurred at an orientation of 5 degrees.  As 

seen in Figure 3-11, each of the two resonance frequencies of the split mode appear to be 

due to two standing wave modes at slightly different frequencies.  The single degree of 

freedom nature of each of these curves suggests that the two peaks are due to two 

separate modes. 
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Figure 3-11:  Standing Wave Frequency Response of the nr = 3 Harmonic to a Force at 
nf = +3 for the Clean Shell and 3 Periodic Mass Test Cases 
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 Figure 3-12 shows the orientation of the sine and cosine standing wave shapes 

relative to the shell angular coordinate system.  Also shown in the figure are lines 

corresponding to the locations where the masses were attached.  The two modes appear to 

align such that the masses are at the anti-nodes of the cosine node, while the masses are at 

a node of the sine mode.  This demonstrates that the addition of the masses influences the 

mode at the same harmonic in two ways.  First, the mode is split into two distinct modes.  

Second, these two modes have a preferred orientation relative to the orientation of the 

masses.  This is consistent with data presented in Figure 3-11 since the low frequency 

mode, the cosine mode, is the mode in which the masses participate in the response of the 
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mode.  The additional mass due to the attached masses causes the frequency of the cosine 

mode to decrease relative to that of the sine mode. 
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Figure 3-12: Orientations of the sine and cosine Mode Shapes for nr = 3 
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The unique characteristics of the direct response due to the addition of periodic 

discontinuities may be used as an indicator of the presence of periodic discontinuities in 

test data measured from cylindrical structures. Figure 3-13 shows the direct (i.e. nr = nf) 

and the backscattered (i.e. nr = -nf) responses for harmonics 2 through 5 for the clean 

shell.  As seen in this figure, the backscattered response appears to increase at the 

resonance frequencies.  This behavior may be caused by the presence of a weld seam.  

Since the seam has a periodicity of 1, all harmonics could be affected.  However, the 

difference between the direct and backscattered responses at nr = 4 is much lower than 

for the other modes shown.  This may indicate the presence of another physical 

characteristic in the clean shell that causes scattering.  Figure 3-14 and Figure 3-15 show 

the response of the nr = ±4 harmonics to a force wave at nf = +4 for the clean shell test 

case.  At frequencies away from the resonance frequency, the response is dominated by a 
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traveling wave at the same harmonic as the force input wave.  However, the response of 

the negative traveling wave is nearly equal to the positive traveling wave at the resonance 

frequency.  Figure 3-15 also shows that the nr = 4 mode is split into two separate 

resonance frequencies.  The similarity between the direct response characteristics of the 

clean shell to a nf  = +4 force and the shell with three periodically attached masses to a nf 

=+3 force suggests that a periodic impedance with a multiplicity of 4 may be present in 

the clean shell.  The most likely cause of these characteristics is the presence of the four 

mounts, which may add some stiffness in the radial direction at on end of the shell. 
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igure 3-13:  Direct (i.e. nr = nf) and Backscattered (i.e. nr = -nf) Responses for 
armonics +2 through +5 
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Figure 3-14:  Traveling Wave Frequency Response of the nr = ±4 Harmonics to a Force 
at nf = +4 for the Clean Shell 
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Figure 3-15:  Traveling Wave Characteristics at the n = 4 Resonance Frequency to a 
Force at nf = +4 for the Clean Shell 

3.2.2 Scattering Characteristics 

As shown in Chapter 4, some degree of structural scattering existed in the in clean 

shell prior to the attachment of the masses.  Data for cases in which masses were added 

contains scattering due to both the scattering characteristics of the clean shell and the 

characteristics due to the addition of the masses.  Data for the attached mass cases are 

therefore compared to data for the clean shell case to infer the changes caused by the 

addition of the masses.  The most notable effect of adding masses to the shell is 

demonstrated in Figure 3-16.  In this figure, the response to a traveling force wave a nf = 
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+2 was averaged over the entire data acquisition frequency range (0-3200Hz).  Although 

the response in most harmonic appeared to increase when the periodic masses were 

attached, there was a significantly greater increase in response for harmonics that are 

related to the number of attached masses and the forcing harmonic according to the 

relationship: 

kZfnrn ±= ,    where k = 1,2,3,… (3.4)

This result is consistent with the FEA analysis presented in Reference [2]. 
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Figure 3-16:  Comparison of the Average Frequency Response Magnitude (0-3200 Hz) 
Between the Clean Shell and Periodic Mass Test Cases 

Although Figure 3-16 provides a good view of the overall trend in the data when 

masses are added, unique characteristics in the response may be missed if the frequency 

dependant nature of the scattering effects is not analyzed.  Figure 3-17 shows the 

response of the positive and negative traveling wave components to a force at nf = +2 for 

the first 5 harmonics. When compared to Figure 3-6, it is seen that the response of the 
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indirect terms (scattered response) appears to increase for all harmonics across the 

frequency range.  However greater increase in response is observed in harmonics that 

follow the relationship in Equation 3.4.  The response of the shell for all harmonics from 

-15 to 15 to the same traveling force wave at nf = +2 are shown in Figure 3-18.   
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Figure 3-17:  Frequency Response Spectra from nr = ±1 through ±5 Due to a Force Input 
at nf = +2 for the 3 Periodic Mass Test Case 
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Figure 3-18:  Frequency Response Magnitude Due to a Force at nf = +2 for the 3 Periodic 
Mass Test Case 
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When the spatial harmonic of the forcing function is equal to the number of 

periodically attached structure, energy is scattered into the radial breathing mode (i.e. n  = 

0).  Figure

r

 3-19 shows the change in the scattered response of the breathing mode to a 

forcing function at nr = +3 when 3 periodic masses are added to the structure.  In this 

figure, it is shown that the response of the breathing mode appears to increase across the 

entire frequency range.  Below the resonance frequency of the n = 3 mode, significant 

change was not measured. 
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Figure 3-19: Change in Response of the Breathing Mode (n  = 0) to a Force at nr f = +3 
When 3 Periodic Masses are Attached 

3.2.3 Change in Scattering Characteristics 

It is difficult to infer scattering characteristics unique to the addition of the 

periodic masses in Figures3-17 and 3-18.  To better demonstrate the change in scattering 

characteristics due to the addition of the periodic masses, the change in scattering from 

the clean shell test case is computed as: 

( ) ( ) ( )fSfSfnnS fr 21,, −=∆  (3.5)
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where S1(f) and S2(f) represent the scattering from the direct to indirect terms for the clean 

shell and shell with masses, respectively.  The value of S1 is computed as:  

( ) ( )
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 Figure 3-20 demonstrates the values of S1 and S2 graphically. 
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Figure 3-20:  Demonstration of the Computation of the Change in Scattering 

S2 S1 

∆S

  Figure 3-21 plots the change in scattering between the clean shell and the shell 

with three periodic masses for a force input at nf = +2.  The vertical yellow lines in this 

figure indicate the response harmonics where increased scattering is expected due to the 

added masses.  The effect of adding the masses on the scattering characteristics of the 

shell may be more clearly seen in this figure than in Figure 3-18.  Across the frequency 

range, the most significant change in scattering is found at the expected response 

harmonics.  Increases at unexpected harmonics appear to occur at the low order shell 

mode resonance frequencies.  This may be an artifact of the noise floor on the data.  In 
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reality, scattering into all modes is likely present to some level due to variability in 

instrumentation placement, instrumentation sensitivities, mass placement, etc.  The 

scattered response in these modes may be immeasurable except at the resonance 

frequencies where the scattered response is increased above the level of the noise floor. 
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Figure 3-21:  Change in Scattering from the Clean Shell to the Shell with 3 Periodically
Attached Masses with a Force Input at nf  = +2 
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 Figure 3-21 shows that the greatest change in scattered response appears to occur 

in the modes with the highest mobility.  This also may be a limitation due to the noise 

floor in the data.  Higher order modes may still respond in the frequency range presented.  

Figure 3-22 shows the change in scattering for a force at nf = -4.  As shown for the nf = 
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+2 case, the greatest change in scattering characteristics is seen at response harmonics 

separated by the number of masses added, consistent with Equation 3.4. 
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Figure 3-22:  Change in Scattering from the Clean Shell to the Shell with 3 Periodically
Attached Masses with a Force Input at nf  = -4 
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3.2.4 Frequency Dependent Characteristics 

Depending on the type of impedance discontinuity attached to the structure, the 

spectral shape of the response may vary.  Figure 3-23 shows the scattered response of the 

dominant response harmonics found in Figure 3-21.  At frequencies where a response 

was measured above the noise floor, the scattered response appeared to follow a 
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40*log10(f) trend until peaking at a resonance frequency.  This trend is similar to that of 

the response of a mode in a stiffness dominated region.  This indicates that there is little 

frequency dependency of the energy scattered into each of the harmonics.  In other 

words, the scattered response of each harmonic appears to have a shape similar to the 

mode at that harmonic.  If the energy scattered into the mode was not constant with 

frequency, the scattered response may take on a different shape. 
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Figure 3-23:  Dominant Scattered Response Harmonics for a Force input at nf = +2 

The responses of the structure at harmonics other than those that follow 

Equation 3.4 do not appear to exhibit the same frequency dependent trend.  Instead, the 

scattered response appears to increase rapidly near resonance frequencies.  This behavior 

is shown in Figure 3-24, where the changes in scattered response for harmonics -8 

through +8 are shown. The dominant harmonics previously shown in Figure 3-23 are 

shown in color, while responses at other harmonics are shown in grey.  The scattered 
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response at these harmonics appears to increase at a greater slope than the dominant 

harmonics. 
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Figure 3-24:  Change in Scattering from the Clean Shell to the Shell with 3 Periodically
Attached Masses with a Force Input at nf  = +2 

3.2.5 Sensitivity to Mass of Attached Structure 

A test was conducted in which the each of the periodically attached masses was 

5.5 lbs, rather than the 17.7 lbs presented in the majority of this paper.  Figure 3-25 

shows a comparison of the frequency responses of the nr = +2 harmonic for an input force 

applied at the nf = -4 for the test cases with the two different masses.  The data shown in 

this figure demonstrates that as the mass of the attached structure is increased, the amount 

of energy scattered into the indirect response harmonics increases.  This sensitivity to 
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mass only appears to occur at frequencies below approximately 1000 Hz.  Above this 

frequency, any differences in the two plots appear to be due to the shift in natural 

frequency of the response modes due to the increased impedance.  The reason for the lack 

of change in scattered energy at the higher frequencies may be explained by the inability 

to attach structure whose impedance is dominated by its mass.  Based on the orientation 

of the attached structure, it is likely that significantly more stiffness was added along the 

axial dimension than in the circumferential.  The modes above 1000 Hz are predicted to 

have higher order axial content, while the modes below 1000 Hz are predicted to have a 

uniform axial response (m = 0).  The scattering characteristics at higher frequencies may 

therefore be dominated by the added axial stiffness than by the mass.  Since the footprint 

of the attached structure did not change with added mass, the stiffness of the attached 

structure may not have changed significantly between the two test cases. 
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Figure 3-25:  Frequency Response of the nr = +2 Harmonic Due to a Force at nf = -4 for 
Two Different Periodic Structure Masses 
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Figure 3-26 compares the transfer functions of the two attached mass cases for a response 

at the nr = +5 harmonic to a force input at the nf = +2 harmonic.  Similar trends in the 

data are seen.  Below approximately 1000 Hz, the amount of scattered energy increases 

with increased attached mass.  Above 1000 Hz, the amount of scattered energy appears to 

change only due to the change in modal frequency with the addition of more mass.  

Comparison of the two Figures also reveals that the amplitude of the response at the 

resonance frequency of the nr = 3 and nr = 4 modes increases with added mass.  However, 

the scattered response at the nr = 2 and nr = 5 modes does not appear to change 

significantly.  The lack of change in scattered response at these frequencies may indicated 

that the scattering characteristics are dominated by other characteristics of the system 

than the periodically attached masses.  Due to the shift in resonance frequencies and 



52 

variability in test data, an exact measure of the change in scattering due to the mass 

increase was not measured.  Additionally, only two data points were obtained.  However, 

it is observed that the scattered energy at the expected harmonics increases between 5 and 

10 dB when 12.2 lbs. are added. 
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Figure 3-26:  Frequency Response of the nr = +5 Harmonic Due to a Force at nf = +2 for 
Two Different Periodic Structure Masses 
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3.3 The Effect of A-Periodically Attached Masses 

Data presented in the previous chapter dealt with a special case in which the 

structure attached to a cylindrical shell is periodic in nature.  Often attached structure is 

found in non-periodic configurations.  Two masses were added to the structure to allow 

for a comparison of the change in response characteristics for a-periodically attached 

structure relative to periodically attached structure. 
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Two 17.6lb (7.7kg) masses were attached to the shell and were positioned at the 

215° and 295° angular locations.  These masses were attached in the same manner as the 

masses were for the periodic test cases.  Figure 3-27 compares the average frequency 

response function amplitude across the entire measurement range for the clean shell and 

the a-periodically distributed mass test cases.  The force harmonic for both of these plots 

is nf = +2.  The direct response, at nr = +2 is approximately equal for both cases.  A 

sensor failed during the a-periodic test, so the measurement resolution of the array was 

decreased by ½ to maintain a uniform distribution.  Comparison of the scattered 

harmonics between the two cases shows that increased energy is seen across all 

harmonics for the a-periodic case.  Unlike the periodic test case where specific harmonics 

are excited, energy appears to be spread to all harmonics in the presence of a-periodic 

structure.  Although an increase in response was seen at all harmonics, the response of 

the nr = 0 and nr = -4 did not appear to increase as much as the others.  The reason for this 

was not discovered.  However, it is noted that the response at these harmonics is lower 

relative to others in the clean shell test case as well. 
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Figure 3-27:  Average Frequency Response Magnitude (from 0-3200 Hz) to a Force Input 
at nf = +2 for the clean shell (left), and a-periodically attached mass (right) test cases. 

 Figure 3-28 show the frequency dependant nature of the response to the nf = +2 

force for harmonics from nr = -8 to +8.  This plot shows that energy is spread across both 

the frequency range and spatial harmonic range of the measurement. 
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Figure 3-28:  Frequency Response Magnitude for a Traveling Force Wave at nf = +2 with 
2 A-periodically Attached Masses 
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The change in scattering between the clean shell and a-periodically attached mass 

test cases was measured.  Figure 3-29 shows the frequency and spatial harmonic 

dependency of this change in scattering.  In the periodic test case, the change in scattering 

occurred at discrete spatial harmonics.  In the a-periodic test case, the change in 

scattering appears to be spread more evenly across the spatial harmonics.  Less change in 

scattering is noted relative to the periodic test case.  Additionally, the change in scattering 

due to the addition of a-periodic masses appears to occur at discrete frequencies.  This is 

contrary to the effect seen with a-periodic masses, in which a change in scattering was 

seen across a broad frequency range. 
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Figure 3-29:  Change in Scattering Due to the Addition of 2 A-Periodically Attached 
Masses for a Traveling Force Wave at nf = +2 
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 Figure 3-30 plots the response of harmonics nr = +3 through +7 for a force input 

at nf = +2 for the a-periodic mass test case.  A similar plot was created for the dominant 

response harmonics for the periodic test case (Figure 3-23).  In contrast to the 

periodically distributed masses, the scattered response of none of the harmonics appears 

to follow the stiffness line of a mode.  Instead, the scattered responses appear to increase 

rapidly near structural resonances.  This behavior explains the discrete frequencies shown 

in Figure 3-29.  The higher mobility (lower harmonic) modes appear to have more 

scattered energy in this frequency range than the higher order modes. 
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Figure 3-30: Scattered Response Harmonics to a Force Input at nf = +2 

 



 

Chapter 4 
 

Summary and Conclusions 

4.1 Summary 

Ideal cylindrical structures with no discontinuities behave in a well defined 

manner and may be predicted with basic equations of motion.  In practice, most 

cylindrical structures deviate from the behavior of the ideal structures due to the presence 

of impedance discontinuities.  The experiment presented in this paper was designed to 

infer the changes in the response of the shell when masses were attached both 

periodically and a-periodically.  Test data was taken by assembling a matrix of point 

responses to point forces.  A data processing methodology was devised to allow for 

analysis of the structural response in terms of spatial harmonics of both t+he input force 

and response acceleration.  The spatial harmonics were viewed in terms of both traveling 

wave and standing wave components. 

Measurements performed on the clean shell (no added mass) demonstrated 

scattering characteristics.  If the shell was truly uniform and had ideal boundary 

conditions, no scattering would be expected.  Measured scattering in the clean shell is 

attributed to the weld seam in the pipe section, non-ideal boundary conditions, and 

potential errors in instrumentation calibration and placement. 

The direct response characteristics (i.e. the response of harmonic nr to a force at 

harmonic nf, where nr = nf) were seen to change when periodically distributed masses 
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were attached to the structure.  Specifically, the direct response at the harmonic equal to 

the number of attached masses was changed. Before adding masses, the direct response a 

traveling wave response of a mode with a single resonance frequency.  After periodic 

masses were added, the direct response was split into two modes with separate resonance 

frequencies.  These two modes responded as standing waves at resonance.  The scattered 

response was found to increase at specific spatial harmonics related to the input force 

harmonic and the number of periodically attached masses.  The scattered response at 

these harmonics appeared to follow a characteristic stiffness line in the stiffness 

dominated frequency range. 

The amount of scattered energy was found to increase when the mass of the 

periodically attached structure was increased.  The phenomena was observed only below 

the cut-on frequency of the m=1 modes (non-uniform axial variation). 

When masses were attached to the structure in an a-periodic distribution, it was 

found that energy was scattered across a broad range of spatial harmonics.  Unlike the 

periodic case, scattering appeared to occur primarily near resonance frequencies of the 

structure. 

Observations on the scattering characteristics in cylindrical structures shown in 

this paper will help confirm behavior modeled in analytical and numerical models.  The 

unexpected scattering shown in all test cases demonstrates that some scattering is likely 

present in most real cylindrical structures. 
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4.2 Future Work 

The experiment presented in this paper identifies some of the basic scattering 

characteristics that may be present on real cylindrical structures.  The experiment also 

demonstrates the ability to infer the forced response on a spatial harmonic basis with only 

point forces applied.  This work could serve as a foundation for a more detailed 

exploration of scattering characteristics.  Potential studies that could be performed are: 

o The change in scattering characteristics to periodic and a-periodic stiffness 

discontinuities 

o The change in scattering characteristics to periodically distributed 

structure of unequal mass or stiffness 

o The combined scattering characteristics of two different types of 

discontinuities (e.g. periodic masses +  aperiodic) 

If these studies or others are performed experimentally, the author recommends 

changing the experimental setup from that presented in this paper.  Since the weld seam 

is suspected to have caused undesired scattering, it is recommended that a continuous 

structure be used.  Additionally, the support of the shell could be modified to decrease its 

effect on the scattering characteristics.  Although this experiment focused only on the 

input and output relationship in the radial direction, the coupling of forces and responses 

in all three directions would be informative. 

Finally, it is suggested that any test program be supplemented by sensitivity 

studies with computer models.  The experimental procedure outlined in this paper 

requires a large amount of time input for a single set of data.  Therefore, this test is more 
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appropriately suited as a confirmation of sensitivity studies performed numerically than 

as a primary sensitivity study test platform.
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Appendix A 
 

Sensitivity to Structural Damping 

With the three periodic masses (17.7 lbs) attached to the shell, damping material 

was added to the structure.  The damping was added by attaching rubber pads to the 

exterior circumference of the shell.  Loosely fit nylon straps were used to hold the rubber 

pads in place. Figure A-1 compares the scattered response at the nr =  +2 harmonic to a 

force at the nf = -4 harmonic for test cases with and without added damping.  Figure A-2 

also compares the scattered response for test cases with and without added damping.  

However, Figure A-2 shows the scattered response at the nr = +5 harmonic to a force at 

the nf  = +2 harmonic.  In both of these figures, the scattered response does not appear to 

change significantly away from resonance frequencies when damping is added to the 

structure.  The scattered response decreases significantly at the resonance frequencies of 

the shell.  The behavior is expected since the addition of damping to a system tends to 

reduce the magnitude of the response at resonance.  The amount that the scattered 

response decreased with added damping at the resonance frequencies did not appear to 

occur in a predicable manner.  Table A-1 compares the decrease in response of the direct 

terms (nr = nf) at each of the resonant frequencies to the decrease in response of scattered 

terms at the same frequencies.  In some instances, the scattered response at a resonance 

frequency decreased significantly more than the direct response.  This variability suggests 

that the addition of damping to a structure may not only decrease the responsiveness of a 

structure at its resonant frequencies, but influences the scattered response characteristics.   
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Figure A-1:  Frequency Response of the nr = +2 Harmonic Due to a Force at nf = -4  With 
and Without the Structural Damping 
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Figure A-2:  Frequency Response of the nr = +5 Harmonic Due to a Force at nf = +2 With 
and Without the Structural Damping 
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Table A-1: Sensitivity of Scattering at Resonance to Added Damping 

 Decrease  in Response at Resonance, dB re 1µg/N 
Harmonic Frequency nf  =  nr  nf  = 2, 

 nr  = -1 
nf  = 2, 
 nr  = 5 

nf  = -4, 
 nr  = -1 

nf  = -4, 
 nr  = 2 

nf  = -4, 
 nr  = -7 

2 103 10.8 9.7 6.84 30.49 29.27  
3 277 4 2.1 15.86 10.24 15.74 22.456 
3a 305 12.81 4.73 3.9 9.24 4.84  
4 552 9.02 11.47 14.26 9.05 9.26 7.93 
5 878 12.81 19.26  6.85   
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