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ABSTRACT

Experimental, numerical, and analytical work has shown that the response of a
shell to a distributed force wave possesses unique characteristics which are dependent on
the nature of structure attached to the shell. Specific characteristics which influence the
response are the distribution of the discontinuities around the circumference (periodic/a-
periodic), the impedance of the discontinuities relative to that of the shell, and the type of
impedance (mass or stiffness). Traditional shell theory predicts low frequency, radial-
dominated structural mode shapes of a shell with a sinusoidal distribution of
displacement amplitudes. Due to the orthogonal nature of these mode shapes, the
response of the structure to a traveling radial force wave with sinusoidal content at a
given harmonic is due solely to the response of the mode shape with harmonic content of
the same order.

Introduction of impedance discontinuities to a shell yield complex mode shapes,
which may be characterized by the summation of several harmonic components. These
modes are no longer orthogonal in the presence of discontinuities, yielding harmonic
content across various modal orders. As a result, a purely sinusoidal forcing function can
excite several modes of the structure. Structural scattering as discussed in this paper
refers to the phenomena in which a force wave at a given harmonic scatters into the
response of modes with different harmonics. An experimental investigation into the
harmonic scattering behavior of a shell due to mass discontinuities is presented in this

paper. Knowledge of the key structural characteristics which influence scattering and



v
their behavior will allow for a diagnostic tool when assessing the structural response of
more complex cylindrical structures.

Experimentally obtained data presented in this paper demonstrates some expected
scattering characteristics of a cylindrical shell in the presence of periodically and a-
periodically distributed masses. Some unique characteristics of the response of a shell in
the presence of periodically distributed masses are discussed. Additionally, the data
demonstrates that scattering characteristics may exist in even the simplest cylindrical

structures due to non-idealities in the structure or its boundary conditions.
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Chapter 1

Introduction

Experimental, numerical, and analytical work has shown that the response of a
shell to a distributed force wave possesses unique characteristics which are dependent on
the nature of structure attached to the shell. Specific characteristics which influence the
response are the distribution of the discontinuities around the circumference (periodic/a-
periodic), the impedance of the discontinuities relative to that of the shell, and the type of
impedance (mass or stiffness). Traditional shell theory predicts low frequency, radial-
dominated structural mode shapes of a shell with a sinusoidal distribution of
displacement amplitudes. Due to the orthogonal nature of these mode shapes, the
response of the structure to a traveling radial force wave with sinusoidal content at a
given harmonic is due solely to the response of the mode shape with harmonic content of
the same order.

Introduction of impedance discontinuities to a shell yield complex mode shapes,
which may be characterized by the summation of several harmonic components. These
modes are no longer orthogonal in the presence of discontinuities, yielding harmonic
content across various modal orders. As a result, a purely sinusoidal forcing function can
excite several modes of the structure. Structural scattering as discussed in this paper
refers to the phenomena in which a force wave at a given harmonic scatters into the
response of modes with different harmonics. An experimental investigation into the

harmonic scattering behavior of a shell due to mass discontinuities is presented in this



paper. Knowledge of the key structural characteristics which influence scattering and
their behavior will allow for a diagnostic tool when assessing the structural response of

more complex cylindrical structures.

1.1 Basic Theory on the Vibration of Shells

The continuous nature of the circumferential dimension of cylindrical shells
facilitates the analysis of these structures on a spatial harmonic basis. To demonstrate
this, the derivation of the mode shapes of a cylindrical shell is discussed below. Several
forms of the equations of motion for cylindrical shells have been proposed in literature.
Reference [3] reviews the differences between these formulations. The experiments
presented in this paper focus of the deviations in the forced response of a shell from the
theoretical formulations on a harmonic basis. The differences in equations of motion
primarily affect the computation of the natural frequencies of the modes, not the mode
shapes. Therefore, a simplified derivation of the mode shapes of a cylindrical shell will
be described in this paper. This derivation is a summary of that found in Reference [4].
In deriving the basic equations of motion for a cylindrical shell, the following
assumptions were listed:

1. The thickness of the shell is small relative to the radius (i.e. h/a <0.1)
2. The displacement is small relative to the shell thickness
3. The transverse normal stress acting on planes parallel to the shell middle

surface is negligible



4. The middle surface of the shell is not subject to elongation during shell
deformation (Bending strain energy >> Membrane strain energy)
A cylindrical coordinate system for a shell is shown in Figure 1-1. Donnell’s

formulation for the equations of motion of a shell in this coordinate system is:

o'u l1-v d*u 1+v 0%v K@_i_o

+ +
00> 24’ 060° 2a 0z00 a oz cf,

l+v 0*’u 1-vo*>v 1 0 1 ow

+ +— =
2a 0z00 2 dz* a4’ 906* a4’ oo cf,
(1.1)

2

4 4 4 .. -2
2o 1o ey S 10,8 ),
a0z a 00 a Oz 0z°00°~ a” 00 c, Eh
h2
2_
ﬁ'_ua”

where u, v, and w correspond to the axial, radial, and circumferential components of the
displacement, z and € correspond to the axial and angular coordinates of the shell, v is
Poisson’s ratio of the shell material, E is the modulus of elasticity of the shell, a is the
inner radius of the shell, / is the thickness of the shell, ¢, is the speed of sound in the
shell material, and p, represents loading normal to the surface of the shell. For a shell
with free-free boundary conditions, it has been shown that inextensional theory yields
accurate results. If it is assumed that the radial and circumferential components of the
displacement are independent of the axial coordinate, a solution to the equations of
motion is assumed:

u=0,
v=V,sin(n@)e, (1.2)

w =W, cos(n@)e™,



where V, and W, represent the amplitudes of the radial and circumferential components
of the shell deflection, # is the harmonic order of the mode, w is the circular frequency,
and ¢ represents time. The angular dependence of the modal deflection in Equation 1.2

may be expressed in complex exponential notation as:

u=0,

V /. . .
v= 2; (em9 _ein? )e—w)t’ . (13
W= I/Zn (eme 4o n? )e—ia)t,

This alternative expression of the solution to the equations of motion demonstrates the
equality between a standing wave field and the summation of positive and negative

traveling waves. Figure 1-1 shows the shape of the n, = 4 mode.

Figure 1-1: Cylindrical Shell Coordinate System, Deformation Directions, and n, = 4
Mode Shape




The equations of motion for the free vibration (i.e. p, = 0) of the shell may be

rewritten as

n* —Q? n {V,,}_O
" _02 —(ﬂ2n4) W, - (1.4)

where the frequency is represented in non-dimensional form as Q = wa/c,. The forced
response of the shell may be found by replacing the right hand side of Equation 1.4 with
the radial force distribution as shown:

nt—-Q? n V 20 )
n_ 1— , .
n -0’ —(ﬁ2n4):|{W } B 1.4 Igfh ’ ) (12

n

where £, is the harmonic component 7z of the force input wave. When the force input
wave has a spatially sinusoidal shape (sin(n6)), only the mode with harmonic order 7 is
excited. Moreover, the radial displacement of the shell in response to a traveling wave
force excitation at harmonic order » will be a wave at the same harmonic and traveling in
the same direction as the force input. This characteristic allows for the analysis of test
data on a spatial Fourier harmonic basis, where each Fourier component closely

represents a single mode shape of the shell.

1.2 Theory on the Effects of Periodic Discontinuities

Early analytical work shown in Reference [3] attempted to account for the effect
of periodic stiffeners around the circumference by distributing the added stiffness evenly
around the shell. These approximations helped to show the effect that added impedance

has on the natural frequency of the shell modes, but fails to account for the complexities
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added to the actual deformation of the structure due to the added impedances. However,
analyses by Schnell and Heinricshbauer, summarized in Reference [3], showed that two
different types of modes are possible when internal stiffeners are evenly distributed
around a shell. In one of the two modes, the stiffeners see little radial motion, and only
twist with shell deflection. In this case, the impedance discontinuities are at the nodes of
the radial deflection. In the second type of mode, the stiffeners see significant radial
deflection, and therefore influence the natural frequency of the mode by changing the
modal impedance. In this case, the impedance discontinuities are at the anti-nodes of the
deflection. This mode-splitting phenomenon and the effects of complex mode shapes due
to added impedance are explored experimentally later in this paper.

When periodic impedances are added to a structure, the naturally sinusoidal mode
shape is transformed into a more complex mode shape, characterized by several Fourier
harmonic components. As a result, when the structure with these complex mode shapes
is excited by a force wave at a single harmonic, the response may consist of multiple
harmonic orders. Literature on this subject is often found in two areas. First, the effect
of the introduction of impedance discontinuities is often described in terms of the
changes in the mode shape, as demonstrated in Reference [5]. The response of periodic
structures to traveling waves is often discussed in terms of rotating structures, as
demonstrated in References [6] and [7]. The concepts demonstrated in these two
categories may be applied to a stationary shell with periodic impedance discontinuities,
subjected to a traveling force wave. Reference [2] presents a finite element analysis of a

shell with attached structure. The results of this study demonstrate that the response



harmonics n,, excited by a force at harmonic n, will be related to the number of

periodically attached impedance discontinuities according to the following equation:

n_=n,+kZ, (1.6)

where n, is the harmonic order of the response wave, n,1s the harmonic order of the force
wave, Z is the number of periodic impedance discontinuities, and k = [7,2,3,...].

Experimental results confirm the presence of this phenomenon as shown in Chapter 3.

1.3 Paper Overview

The remainder of this paper presents an experiment in which the scattering
characteristics of a cylindrical shell are measured. Chapter 2 of this paper describes the
experimental methods used to measure the scattering phenomena. The mathematical
formulations used to post process the measured data into an intuitive form are also shown
in this chapter. Chapter 3 discusses experimental results. This chapter discusses the
measured characteristics of the basic shell response and the measured change in
scattering characteristics when masses are attached to the outer circumference of the
shell. The results for both periodically and a-periodically attached masses are presented.
In Chapter 4, potential investigations for similar work in the future are presented.

Experimentally obtained data presented in this paper demonstrates some expected
scattering characteristics of a cylindrical shell in the presence of periodically and a-
periodically distributed masses. Some unique characteristics of the response of a shell in

the presence of periodically distributed masses are discussed. Additionally, the data



demonstrates that scattering characteristics may exist in even the simplest cylindrical

structures due to non-idealities in the structure or its boundary conditions.



Chapter 2

Measurement Procedures

2.1 Experimental Setup

The goal of the experiment presented in this paper is to demonstrate the changes
in the response characteristics of an ideal cylindrical shell when impedance
discontinuities are added. To accomplish this, the test was designed to be easily
reconfigured while maintaining the integrity of the basic shell. Figure 2-1 shows a
picture of the test setup where a pipe section is mounted vertically by resting on four
pressurized rubber air springs. A description of this test setup including shell properties,

boundary conditions, instrumentation, and data acquisition is discussed in this chapter.

Pipe Section

Radial
Accelerometers

' II_--'.' —
Figure 2-1: Picture of Test Setup
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2.1.1 Shell Properties

A section of commercially available pipe was used for all of the experiments
described in this paper. The pipe section used was a 24” (0.61m) long, 30” (0.76m)
nominal O.D., 1’ (0.025m) nominal wall thickness welded carbon steel pipe. To
minimize the scattering effects of the weld seam, the pipe was machined to ensure a
constant wall thickness and circular inner and outer diameters. After the machining
process, the pipe was measured to have a 0.786in (0.0200m) wall thickness and an outer
radius of 29.838in (0.75789m). The pipe size was chosen for several reasons. The
natural frequency of the breathing (i.e. n=0) mode is reduced relative to the bending
modes (e.g. n=2,3,4...) when the diameter of the pipe is increased. To increase the
potential for measurable scattering between the low order circumferential modes and the
breathing mode, a large diameter pipe was desired. A larger diameter pipe section also
reduces the relative size of the accelerometer footprint relative to the pipe circumference.
Additionally, the larger circumference allows more space for instrumentation, attachment
of impedance discontinuities, and the use of an impact hammer to apply the excitation

force to the inner circumference of the pipe.

2.1.2 Boundary Conditions

Measured response characteristics presented in this paper are compared to those
of an ideal cylindrical shell, with free-free boundary conditions. To minimize the effects
of the mounting configuration on the measured scattering characteristics, the shell was

supported with its axial dimension vertical by four pressurized rubber air springs,
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positioned at the 45°, 135°, 225°, and 315° angular locations. This arrangement was
chosen so that there are no added stiffness discontinuities in the measurement plane. The
four rubber mounts were inflated with air to approximately 20psi (138kPa). At this
pressure, the rigid body response of the shell resonates below 10Hz. As demonstrated in
later sections, it was found that the mounting of the shell in this manner may have caused

some unintended structural scattering in the control (“clean shell””) and other test cases.

2.1.3 Instrumentation

The primary focus of the experiments presented in this paper is on the response of
low-order shell modes. The responses of the modes of interest are dominated by the
radial component of the shell wall motion. Therefore, an array of radially oriented
accelerometers was placed around the circumference of the shell, halfway along the axial
length. The accelerometers were equally spaced in increments of 10°, resulting in an
array of 36 radially-oriented accelerometers. The test was designed to allow for
observation of the scattering behavior between low and high order harmonics. The
sensor array chosen may resolve un-aliased response from n, =-17 to n, = +18. The
number of accelerometers used was limited by the ability to attach test masses between
sensors while maintaining a uniform sensor distribution.

Accelerometers were located by first measuring the outer circumference of the
shell with a pi tape to an accuracy of 1x10™ in. A section of magnet was then measured
and cut to the necessary accelerometer spacing. The accuracy of the sensor placement is

estimated to be within £0.005 in (1.27x10™*m). Table 2-1 lists the test equipment used in
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this experiment. A PC was connected to an Agilent Technologies VXI mainframe with

E1432 data acquisition boards and a fire wire connection. Accelerometers were powered

in ICP mode by the data acquisition boards. The excitation force was generated with an

electronic instrumented hammer.

Table 2-1: Test Equipment

Quantity

1

36

Manufacturer

Dell

MTS I-DEAS

Agilent Technologies

Agilent Technologies

Agilent Technologies

PCB Piezotronics

PCB Piezotronics

Goodyear

Model
Number

Version 10

E8408A

E8491B

E1432

086C09

352C66

1B5-500

Description

Personal Computer
Data Acquisition and Analysis Software
Data Acquisition Mainframe
IEEE 1394 (Fire wire) Interface Card
16 Channel Data acquisition/
DSP Board
Electronic Instrumented Hammer
Voltage Mode Accelerometers

(100 mV/g)

Super-Cushion Air Spring
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2.1.4 Data Acquisition

At each of the 36 angular locations where an accelerometer was located, a
corresponding force input location was established on the inner circumference of the
shell. Test data was acquired in the frequency domain for impacts at each of the angular
locations. The FRFs between the impact force and all accelerometers were acquired by
the data acquisition system for 15 impacts at each location. The FRFs from the 15
impacts were averaged by the data acquisition software, yielding 36 averaged FRFs for

each impact location. The FRFs were computed with:

Hp g.(f)= 2.1)
o ,or * ’
F -F
o) e (f)
where H o (9r( f) is the frequency response function of the acceleration at 6, due to a

force input at 6, 4 o ( f ) is acceleration spectrum, F ( f ) is the force spectrum, and (*)

o

denotes the complex conjugate of a function.

Preliminary data were taken to determine the appropriate acquisition parameters
for the test. The shell was found to be very lightly damped. To accommodate the long
ring-down time associated with this lightly damped structure, data from each impact was
recorded for 2 seconds. This yields a data frequency resolution of 0.5Hz. The maximum
frequency was chosen to be 3200Hz. This frequency range was chosen to ensure that the
response characteristics of the low order bending modes and the breathing mode were
adequately captured. Data acquisition was triggered by a rising slope on the input force

signal. A pre-trigger delay was used to ensure that the entire force impulse was captured.
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FRF data were acquired and stored in I-DEAS data acquisition software. The data were

later exported to MATLAB for post processing, as discussed in the next section.

2.2 Data Processing

Data processing methods were developed to present frequency response data in an
intuitive format. The goal in the development of the data processing methods presented
in this chapter is to transform the test data from the response of individual transducers to
forces at individual force locations into an inference of the response at various spatial
harmonics to a force wave at a given spatial harmonic. After applying the data
processing methods described in this chapter to the raw test data, data can be viewed as a
function of the spatial characteristics of both the input force wave and of the resulting
structural response wave.

Shell deflection may be expressed as the summation of type types of series. In the
first case, the expansion is in terms of the modes of a clean shell. These modes may be
represented by sinusoidal harmonics. These basic modes are acted upon by the addition
of discontinuities. When the response of a complex cylindrical structure is expressed in
terms of these basic shell modes, several response harmonics may be seen when forced
by a single sinusoidal harmonic. Alternatively, the deflection could be expressed in
terms of the normal mode shapes of the complex shell. In this case, the effects of the
discontinuities are embedded in the mode shapes and are not expressed as simple sine or
cosine functions. In this paper, force and response data is analyzed in terms of the first

type of expansion. This expansion may be analyzed in terms of standing wave or
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traveling wave components of the clean shell response. Although these two methods are
mathematically equivalent, analysis of data in both domains allows for a full

characterization of the structural response of the shell.

2.2.1 Data Format

FRF data as described in Equation 2.1 were assembled into a three-dimensional

matrix in the form:

Hel,el (f) Hel,e (f) Hel,em (f)
H H

Haz,..g, (f) 92,4?2 (f) 62,6-36 (f)

[#(1.6,.0,)|= , 2.2)

H936,9, (f) H936,32 (f) H936,036 (f)
where [H(f,0;0,)] is the matrix of frequency response functions of the acceleration at 6,
due to a force input at 6. The data in this array are a function of frequency, spatial
location of the response, and spatial location of the force input. Fourier analysis was
applied to the two spatial dimensions of the matrix to yield a data set as a function of
frequency, the spatial harmonic of the response, and the spatial harmonic of the force

input.

2.2.2 Traveling Wave Transformation

The response of the shell may be expressed as either the sum of a series of

propagating waves traveling in opposite directions, or as the sum of a series orthogonal



16

standing waves. The derivation of the traveling wave domain data processing methods is

presented in this section.

The response data expressed in traveling wave form is:

N . )
Ay ()= SLA(fon)-e M0 a(f,-n))-et 0 (2.3)
n=0

Equation 2.3 may be expressed in matrix form as:
[4(7.6,)]=[4(7.n, ) [7,,], (2.4)

Where [A4(f,6,)] is a matrix of acceleration measurements as a function of response
location, [A(f,n,)] is a matrix of accelerations measurements as a function of the spatial

harmonics, and [7},] is the traveling wave transformation matrix:

[ N-DO = i(N-DO =Ny ]
o T NDO (N2 f(N=2)0y
7.]1=] P L (2.5)
N0t (N0, (N1
e+jN~0l e+jN~92 . e+jN-H36

In this equation, N represents the maximum resolvable spatial harmonic (N=# sensors/2).
The response of the shell as a function of frequency and traveling wave harmonic may be

found by applying the inverse of 7}, to both sides of Equation 2.4 as shown:

[4(f.n, )= [4(r.6,)) [, ] (2.6)
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To obtain the data processing method for transforming test data from the response spatial
domain to the response traveling wave domain, it is first noted that the FRF in
Equation 2.1 s approximately equivalent to the ratio of the acceleration at sensor 6, to the

force input at Oy

4. (f)

Fy (f)

He/',er (f) ~ (2.7)

The traveling wave transformation matrix may be applied to the numerator of the transfer
function at each force input location to create a matrix of FRFs as a function of response

harmonic referenced to each force input location:

[ (r.0,.n)=[H(s.0,.0)} 1, ]" (2.8)

Although the test data was acquired at each force input location individually, the resulting
data may be used to infer what the structural response would have been had a traveling
wave been used as the excitation force. Using superposition, the response of each
traveling wave harmonic to a force wave at a given harmonic may be found by summing
the product of the transfer function and the desired force input at each force input

location. The response of harmonic 7, to a force input at n,is expressed as:

1 2N

A )= 2 H (£.6,.m,)- " 2.9)
i=1

where A4, ,+(f) 1s the acceleration of harmonic 7, to a force input at harmonic n;. The

response was calculated for one unit of force input at harmonic #.
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The expression may therefore be rewritten as a transfer function. Equation 2.9 arranged

in matrix form, and re-expressed as a transfer function is:

[H(f,nf,nr)]:[zT_x]

{a(r.6,.n.)]. (2.10)
This result may be combined with Equation 2.8 to find the final expression for converting

the raw test data matrix from spatial coordinates to the traveling wave domain:

[11(r. nf,n,)]=[2T—’;V']~[H(f, 0,.0)[1,]". 2.11)

2.2.3 Standing Wave Transformation

In the above derivation, test data was transformed to express the shell response
characteristics in terms of traveling wave harmonics. Alternatively, the response of the

shell may be expressed as a sum of orthogonal standing wave functions as:

N

Ae,,y, (f): Z(As (faefa”r)'Sin(nrer)+ A, (f,efanr)'cos(nrer ))a (2.12)

n,=0
where A, is the sine component of the standing wave response and 4. is the cosine

component of the standing wave response.
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This equation may be rearranged in matrix form as:
[A(f’er)]:[As(f’nr) Ac(f’nr)]'[z;w]’ (213)

where [7},] is the standing wave transformation matrix given below:

sin{(N -1)-6,} sin{(N-1)-0,} - sin{(N-1)-0,}]
sin{(N -2)-6,} sin{(N-2)-60,} --- sin{(NV-2)-6,}

7,.]= : : : L 214)
cos{(N-1)-6,} cos{(N-1)-60,} --- cos{(N-1)-6,}
L cos{(N)- 6, } cos{(N)-0,} -+ cos{(N)- 6y} ]

In Equation 2.13 and Equation 2.14 , n, corresponds to the harmonic number of the
response component as before. However, in these equations, there are two components to
the response, the sine and cosine component. The values of #, in this form range from 0

to N. The standing wave transformation matrix may be applied to test data as follows:

H (fonyon) Ho(fongn))_[1,]
Hs,c (f’nf7nr) Hc,c (f’nf)nr) 2N

H(r.o,.0) . @

The resulting frequency response function matrix is divided into 4 sub matrices. The first
index of each sub-matrix corresponds to the standing wave component of the response.
The second corresponds to the standing wave component of the force input. For
example, H; . corresponds to the set of FRFs in which the sine component of the response

is caused by a cosine component of the force.

2.2.4 Alternative Transformations

In addition to the traveling wave and standing wave transformations presented above, two

other data transformations are possible by using the two transformation matrices in
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Equation 2.5 and Equation 2.14. The response of the standing wave components due to

traveling wave force fields may be computed:

]

[Hs,tW(f’nf’nr) Hc,zw(fﬂnfanr)]zﬁ H(fsefaer)'[Tsw]il- (216)

In this equation, Hj,, represents the set of FRFs in which the sine component of the
response harmonic 7, is caused by a traveling wave force at harmonic n,. In this
representation, n, ranges from —N+/ to N, while n, ranges from 0 to N. Similarly, the

traveling wave response due to standing wave force fields may be computed:

[Hw (f,n_,v,n,)}

_1.] '
H,w,c(f,nf,nr) _—'H(f’a/w@r)'[Tm] : (2.17)

2N



Chapter 3

Experimental Results

3.1 Basic Shell Response Characteristics

All data presented in this paper was acquired using a traditional impact hammer
and accelerometers. Basic shell response characteristics such as those found with
traditional modal analysis techniques are presented in this section. An understanding of
the basic response characteristics such as the modal natural frequencies, damping, and
mode shape will help with subsequent analysis of the harmonic scattering characteristics
of the shell. The natural frequencies found for the shell are compared to those predicted
by basic shell theory. Additionally, the response characteristics of the un-modified shell

to traveling wave forces are characterized.

3.1.1 Shell Natural Frequencies and Damping

Figure 3-1 shows the measured frequency response function for frequencies
ranging from 0 to 1000 Hz between a force input and acceleration response at 0 degrees.
Data presented in this figure shows that clean test data above approximately 70 Hz was
acquired. The resonant modes shown in this plot demonstrate large frequency separation,
as predicted by analytical models. The amplitude of the FRF at each of the resonance
frequencies demonstrates that the structure is lightly damped. The natural frequencies of

each of the modes shown were identified by examining a modal indicator function. Since
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the magnitude of a frequency response function is dominated by the amplitude of the
imaginary component at resonance, an estimate of the natural frequencies of the shell for

each test case were found as follows:
36 )
MIF(,.f)=> 1m{H(0,.0,./)f . (3.1)
r=1

Peaks in this function correspond to the frequencies of the major resonances in the
structure. Figure 3-2 shows the use of this modal indicator function for the test case in

which the shell was not modified by any impedance discontinuities (““Clean Shell”).

FRF Magnitude, dB re 1pug/N

| |

| |

1 1

100 200 300 400 500 600 700 800 900 1000
Frequency, Hz

Figure 3-1: Frequency Response Function for Force Input and Acceleration Response at
0 degrees
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Figure 3-2: Modal Indicator Function for Impact at 0 Degrees to the Clean Shell

Modal analysis was performed on the shell data using I-DEAs software. The
polyreference technique was used to identify the major system resonance frequencies and
corresponding damping. Table 3-1 lists the results of this analysis. The damping values
show that for response harmonics 2, 3, and 4, the structure is lightly damped. The
damping in the mode corresponding to a response harmonic of 5 appears to be more
damped than the lower order modes. The data was acquired such that a frequency
resolution of 0.5 Hz was achievable. Since the structure is lightly damped, the accuracy
of the damping values may be limited by the ability to capture the peak of a resonance at

the center of a frequency bin.
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Table 3-1: Resonance Frequencies, and Damping for Measured Shell Modes

Frequency, Hz Damping (%
(n=2) 107.94 0.035
(n=3) 303.20 0.047
(n=4) 578.20 0.088
(n=5) 92891 0.428

1285.67 0.567
1362.98 0.146
1487.90 0.157
1688.02 0.045
1860.67 18
2093.65 0.227
2221.41 0.081
2338.80 0.394
2426.38 0.059
2811.24 0.093
2829.57 0.209

3.1.2 Mode Shapes

Although the data processing methods presented in Chapter 2 will allow for an
inference of the harmonic content of the low order, radial dominated modes, the mode
shape for the low order modes was observed to ensure data quality. Figure 3-3 shows an
estimate of the mode shape for the mode with a resonance frequency occurring at 108 Hz.
As expected, the shape of the mode is dominated by a sinusoid with a periodicity of 2. A
cosine function was also included in the Figure for comparison. To achieve overlap
between the cosine function and the test data, the cosine function had to be spatially
shifted. As will be discussed in later sections, this may indicate the presence of a
standing wave pattern with a preferred orientation relative to the coordinate system of the

shell.
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Figure 3-3: Comparison of Spatial Response at n=2 Resonance and a Cosine Function

3.1.3 Direct Traveling Wave Response (ns = ny)

To better demonstrate the fundamental response characteristics of the clean shell,
the data processing methods described in Chapter 2 were applied to the test data.
Figure 3-4 shows the FRF magnitude of the direct traveling wave terms for the shell
without added mass discontinuities. Direct terms are defined as the response of a
traveling wave at a given harmonic to a force input at the same harmonic (i.e. ny=n,). In
this figure, it is seen that the modal density of the structure increases significantly above
1000 Hz. The harmonic components shown in Figure 3-4 demonstrate a “clean” response
as a function of frequency. This shows that the data processing methodology was

successful in filtering both the force and response dimensions of the test data into its
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spatial components. The responses of the n, = 4 and 5 modes appear to increase at a rate
of 40 dB per decade at frequencies below the first resonance. This is consistent with the
expected behavior of a single degree of freedom system in the stiffness dominated region
of its response. The responses of lower order modes do not demonstrate this same trend.
Difficulties in acquiring low frequency data due to the lightly damped nature of the
structure may have yielded non-physical response data at low frequencies for these
modes. Additionally, scattered energy from the rigid body responses below 10 Hz may

contribute to the deviation from expected response at low frequencies.
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Figure 3-4: Direct Traveling Wave Response FRFs for Excitation and Response
Harmonics 2 through 5
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3.1.4 Comparison to an Analytical Model

A simple analytical model of the direct term response was created for comparison
to test data. The natural frequencies of shell modes with uniform axial distribution were

predicted by inextensional vibration theory in Reference [1], according to the equation:

o 1) [ Ui j/{ £ T 52)
" (n2 +1y .a \12a° m

where w,, is the natural frequency of a mode with a circumferential harmonic » and no
axial variation. For the purposes of this analysis, it was assumed that the shell had free-
free boundary conditions. The natural frequencies for modes with non-uniform axial
distribution (®,,,) were predicted using the general solution presented in Reference [1].
Figure 3-5 compares the measured natural frequencies to those predicted by the analytical
model. In general, the characteristics of the predicted and measured frequencies are in

good agreement.
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Figure 3-5:

Shell Natural Frequencies Below 10 KHz
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3.1.5 Scattering Characteristics in the Clean Shell

In an ideal cylinder, the response to a force at a given harmonic contains

harmonic content only at the harmonic equal to that of the force. Although attempts were

made to minimize the scattering in the clean shell, measured response characteristics

appear to deviate from that expected of an ideal cylinder. In order to understand the

effect of adding impedance discontinuities on the scattering characteristics, the scattering

characteristics of the unmodified shell must first be analyzed. Figure 3-6 shows the

positive and negative traveling wave components of response harmonics 1 through 5 to a

force at ny=+2. As expected, the response is dominated over the majority of the

frequency range by the direct term, n, = +2. Over the majority of the frequency range,
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the scattered response (n, # +2) is at least 30dB lower than the direct response. However,
at the resonance frequency of each of the harmonics shown, the response of that
harmonic is greater than the direct response. Additionally, it is noted that the response of
the n, = -2 harmonic is nearly equal in amplitude to the positive traveling direct term.
This indicates that the response of the shell at the resonance frequency is dominated by a
standing wave response. At frequencies away from the resonance frequency, the
response of the negative traveling wave is less than the direct term, indicating that a

traveling wave dominates the response.

120
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40/
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Figure 3-6: Primary and Scattered Response Amplitudes for a Force Input at ny=+2
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Figure 3-7 is a three dimensional plot showing the magnitude of the FRFs for all
response harmonics from -15 to +15 to a force input at ny = +2. In this type of plot, the
ideal cylinder response would appear as a single line at n, = +2 across the frequency
range. Responses at other harmonics would not be present. A threshold of 20dB was
used to generate the plot in Figure 3-7 so that only responses above the noise floor are
shown. The white squares correspond to the response of scattered harmonics at their

resonance frequencies.

1000
900 170
800 165
z
700 o o
—
N o
T 600 155 -
> o]
S 500 leo @
g S
8 400 s £
L I
300 40 =
g
LL

200

100

0
-15 -10 -5 0 5 10 15
Response Harmonic, n,

Figure 3-7: Frequency Response Magnitude of the Clean Shell for a Force Input at ny = +2

The unexpected response characteristics suggest that there are characteristics of

the clean shell that cause energy to be scattered from the primary forcing harmonic into
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other harmonics. Two potential characteristics of the clean shell that may yield structural
scattering are the weld seam and the boundary conditions. Evidence confirming these as
potential scattering mechanisms will be discussed in later sections, after demonstrating
the effects of added impedance on the scattering characteristics. In addition to the
physical characteristics of the clean shell that may yield scattering, inaccuracies in the
measurement process could also increase the scattering present in the clean shell case.
Errors in the accelerometer calibrations (amplitude and phase) could increase the amount
of apparent scattering. Additionally, variation in the spacing of either accelerometers or

force impacts could increase the measured level of scattering.

3.2 The Effect of Periodically Attached Masses

To assess the effect of attaching masses periodically to the cylindrical structure, 3
masses were attached around the outer circumference of the shell at the 55°, 175°, and
295° locations (120° apart). The total weight of each of the masses was 17.6+0.21bs
(7.7£0.09kg). The masses were attached as shown in Figure 3-8 and Figure 3-9 with
loctite glue and nylon straps. Each of the attached masses consisted of two parts. The
first was a 5.51b (2.5kg) steel block. As shown in Figure 3-8, this steel block was oriented
such that a minimal percentage of the circumference of the shell was occupied by the
footprint of the attached structure. By attaching the structure in this manner, the added
impedance in the circumferential direction is expected to be dominated by the mass of the
attached structure. However a consequence of this attachment method is that the attached

structure may increase the stiffness of the shell in the axial direction. Data presented in
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this section demonstrates the effect of adding periodically attached masses to the
structure. The sensitivity of these scattering characteristics to a change in the mass of the

attached structure is also demonstrated.

Figure 3-8: Diagram Demonstrating the Attachment of Masses to the Shell

Attached Mass
at 295°

Figure 3-9: Picture of one Mass Attached to the Shell
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3.2.1 Direct Response Characteristics

The response of an ideal shell may be characterized by two orthogonal modes at
the same frequency. These modes have no preferred orientation relative to the angular
coordinate of the shell. The response of these modes will be positioned with the same
orientation as the input force wave. Therefore, the response of an ideal shell to a
traveling wave is a traveling wave of the same harmonic. When periodic masses were
added to the structure, it was found that the mode at the response harmonic equal to the
number of attached masses was split into two distinct modes at different frequencies.
Figure 3-10 compares the direct response of the n, = +3 mode for the test case in which
no masses were attached and for the case in which 3 periodic masses were attached. This
figure demonstrates the mode-splitting effect that the addition of periodic massed has on
the mode at the harmonic equal to the number of masses. Prior to adding masses, the first
n=3 bending mode occurred at 303Hz. After adding the three 17.61b (7.7kg) masses, two
n=3 bending modes are seen at 306Hz and 279.5Hz. The distance between the resonance
frequencies of the split mode appears to be related to the amount of mass added to the
structure. Assuming constant modal stiffness, the square of the ratio of the frequencies is

inversely proportional to the ratio of the modal masses:

(3.3)

: ’V
[L) _ S _my
g
where f; and f> are the resonance frequencies before and after the addition of masses, 4;

and k, represent modal stiffness before and after the addition of mass, and m; and m,

represent the modal mass before and after the addition of masses. The estimated mass
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ratio (my/m;) is 1.24, while the square of the frequency ratio is approximately 1.20. A
similar phenomena may be present for other integer multiples of the number of masses
(e.g. n,=6,9,...) however, the effect was difficult to measure since the cut-on frequency
of these modes occurs above the cut-on frequency of some m=1 modes, yielding a high

modal density in the frequency region of the resonances.
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Figure 3-10: Traveling Wave Frequency Response of the n,. = +3 Harmonic to a Force at
ny=+3 for the Clean Shell and 3 Periodic Mass Test Cases

The test data suggests that when periodic masses are attached to the structure, the
mode splitting occurs at the response harmonic equal to the number of masses because
the masses participate in the motion of one of the two modes, while they are located at

the nodes of the other mode. Therefore, the modal mass of the two modes at that
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response harmonic are different. This behavior occurs when the response modes take on
a preferred orientation relative to the angular coordinate system of the shell. The
tendency of the mode to take preferred orientations is demonstrated in Figure 3-11. In
this figure, the same data used to generate Figure 3-10 was used. However, the sine and
cosine components of the response were inferred for a traveling wave at n, = +3. The
standing wave transformation applied to the response dimension of the data was rotated
until two distinct modes were observed. This occurred at an orientation of 5 degrees. As
seen in Figure 3-11, each of the two resonance frequencies of the split mode appear to be
due to two standing wave modes at slightly different frequencies. The single degree of
freedom nature of each of these curves suggests that the two peaks are due to two

separate modes.
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Figure 3-11: Standing Wave Frequency Response of the #n, = 3 Harmonic to a Force at
ny=+3 for the Clean Shell and 3 Periodic Mass Test Cases

Figure 3-12 shows the orientation of the sine and cosine standing wave shapes
relative to the shell angular coordinate system. Also shown in the figure are lines
corresponding to the locations where the masses were attached. The two modes appear to
align such that the masses are at the anti-nodes of the cosine node, while the masses are at
a node of the sine mode. This demonstrates that the addition of the masses influences the
mode at the same harmonic in two ways. First, the mode is split into two distinct modes.
Second, these two modes have a preferred orientation relative to the orientation of the
masses. This is consistent with data presented in Figure 3-11 since the low frequency

mode, the cosine mode, is the mode in which the masses participate in the response of the
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mode. The additional mass due to the attached masses causes the frequency of the cosine

mode to decrease relative to that of the sine mode.

. — cos(3(6+5))
. — sin(3(6+5))

Figure 3-12: Orientations of the sine and cosine Mode Shapes for n, = 3

The unique characteristics of the direct response due to the addition of periodic
discontinuities may be used as an indicator of the presence of periodic discontinuities in
test data measured from cylindrical structures. Figure 3-13 shows the direct (i.e. n, = ny)
and the backscattered (i.e. n,. = -ny) responses for harmonics 2 through 5 for the clean
shell. As seen in this figure, the backscattered response appears to increase at the
resonance frequencies. This behavior may be caused by the presence of a weld seam.
Since the seam has a periodicity of 1, all harmonics could be affected. However, the
difference between the direct and backscattered responses at n, = 4 is much lower than
for the other modes shown. This may indicate the presence of another physical
characteristic in the clean shell that causes scattering. Figure 3-14 and Figure 3-15 show
the response of the n, = =4 harmonics to a force wave at ny= +4 for the clean shell test

case. At frequencies away from the resonance frequency, the response is dominated by a
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traveling wave at the same harmonic as the force input wave. However, the response of

the negative traveling wave is nearly equal to the positive traveling wave at the resonance

frequency. Figure 3-15 also shows that the n, = 4 mode is split into two separate

resonance frequencies. The similarity between the direct response characteristics of the

clean shell to a ny = +4 force and the shell with three periodically attached masses to a ny

=+3 force suggests that a periodic impedance with a multiplicity of 4 may be present in

the clean shell. The most likely cause of these characteristics is the presence of the four

mounts, which may add some stiffness in the radial direction at on end of the shell.
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Figure 3-13:  Direct (i.e. n, = ny and Backscattered (i.e. n, = -ny) Responses for

Harmonics +2 through +5
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Figure 3-15: Traveling Wave Characteristics at the n = 4 Resonance Frequency to a
Force at ny= +4 for the Clean Shell

3.2.2 Scattering Characteristics

As shown in Chapter 4, some degree of structural scattering existed in the in clean
shell prior to the attachment of the masses. Data for cases in which masses were added
contains scattering due to both the scattering characteristics of the clean shell and the
characteristics due to the addition of the masses. Data for the attached mass cases are
therefore compared to data for the clean shell case to infer the changes caused by the
addition of the masses. The most notable effect of adding masses to the shell is

demonstrated in Figure 3-16. In this figure, the response to a traveling force wave a ny=
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+2 was averaged over the entire data acquisition frequency range (0-3200Hz). Although
the response in most harmonic appeared to increase when the periodic masses were
attached, there was a significantly greater increase in response for harmonics that are
related to the number of attached masses and the forcing harmonic according to the

relationship:

n +kZ, wherek=123,.. (3.4)

r:nf

This result is consistent with the FEA analysis presented in Reference [2].
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Figure 3-16:  Comparison of the Average Frequency Response Magnitude (0-3200 Hz)
Between the Clean Shell and Periodic Mass Test Cases

Although Figure 3-16 provides a good view of the overall trend in the data when
masses are added, unique characteristics in the response may be missed if the frequency
dependant nature of the scattering effects is not analyzed. Figure 3-17 shows the
response of the positive and negative traveling wave components to a force at ny=+2 for

the first 5 harmonics. When compared to Figure 3-6, it is seen that the response of the
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indirect terms (scattered response) appears to increase for all harmonics across the
frequency range. However greater increase in response is observed in harmonics that
follow the relationship in Equation 3.4. The response of the shell for all harmonics from

-15 to 15 to the same traveling force wave at ny=+2 are shown in Figure 3-18.
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Figure 3-17: Frequency Response Spectra from n, = +1 through +5 Due to a Force Input
at ny= +2 for the 3 Periodic Mass Test Case
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Figure 3-18: Frequency Response Magnitude Due to a Force at ny= +2 for the 3 Periodic
Mass Test Case

When the spatial harmonic of the forcing function is equal to the number of
periodically attached structure, energy is scattered into the radial breathing mode (i.e. n, =
0). Figure 3-19 shows the change in the scattered response of the breathing mode to a
forcing function at n, = +3 when 3 periodic masses are added to the structure. In this
figure, it is shown that the response of the breathing mode appears to increase across the
entire frequency range. Below the resonance frequency of the n = 3 mode, significant

change was not measured.
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Figure 3-19: Change in Response of the Breathing Mode (n, = 0) to a Force at ny = +3
When 3 Periodic Masses are Attached

3.2.3 Change in Scattering Characteristics

It is difficult to infer scattering characteristics unique to the addition of the
periodic masses in Figures3-17 and 3-18. To better demonstrate the change in scattering
characteristics due to the addition of the periodic masses, the change in scattering from

the clean shell test case is computed as:

AS(nr’nf’f)ZSl(f)_Sz(f) (3.5)
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where S;(f) and Sx(f) represent the scattering from the direct to indirect terms for the clean

shell and shell with masses, respectively. The value of S; is computed as:

S, = 20-10g10£H1(IZ’—W]—20 - 1oglO[HZ(”f—’"”)j. (3.6)

ref dBref

Figure 3-20 demonstrates the values of S; and S, graphically.
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Figure 3-20: Demonstration of the Computation of the Change in Scattering

Figure 3-21 plots the change in scattering between the clean shell and the shell
with three periodic masses for a force input at n,=+2. The vertical yellow lines in this
figure indicate the response harmonics where increased scattering is expected due to the
added masses. The effect of adding the masses on the scattering characteristics of the
shell may be more clearly seen in this figure than in Figure 3-18. Across the frequency
range, the most significant change in scattering is found at the expected response
harmonics. Increases at unexpected harmonics appear to occur at the low order shell

mode resonance frequencies. This may be an artifact of the noise floor on the data. In
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reality, scattering into all modes is likely present to some level due to variability in
instrumentation placement, instrumentation sensitivities, mass placement, etc. The
scattered response in these modes may be immeasurable except at the resonance

frequencies where the scattered response is increased above the level of the noise floor.
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Figure 3-21: Change in Scattering from the Clean Shell to the Shell with 3 Periodically
Attached Masses with a Force Input at ny = +2

Figure 3-21 shows that the greatest change in scattered response appears to occur
in the modes with the highest mobility. This also may be a limitation due to the noise
floor in the data. Higher order modes may still respond in the frequency range presented.

Figure 3-22 shows the change in scattering for a force at ny=-4. As shown for the ny=
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+2 case, the greatest change in scattering characteristics is seen at response harmonics

separated by the number of masses added, consistent with Equation 3.4.
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Figure 3-22: Change in Scattering from the Clean Shell to the Shell with 3 Periodically
Attached Masses with a Force Input at ny = -4

3.2.4 Frequency Dependent Characteristics

Depending on the type of impedance discontinuity attached to the structure, the
spectral shape of the response may vary. Figure 3-23 shows the scattered response of the
dominant response harmonics found in Figure 3-21. At frequencies where a response

was measured above the noise floor, the scattered response appeared to follow a
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40*1og;o(f) trend until peaking at a resonance frequency. This trend is similar to that of
the response of a mode in a stiffness dominated region. This indicates that there is little
frequency dependency of the energy scattered into each of the harmonics. In other
words, the scattered response of each harmonic appears to have a shape similar to the
mode at that harmonic. If the energy scattered into the mode was not constant with

frequency, the scattered response may take on a different shape.
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Figure 3-23: Dominant Scattered Response Harmonics for a Force input at n,=+2

The responses of the structure at harmonics other than those that follow
Equation 3.4 do not appear to exhibit the same frequency dependent trend. Instead, the
scattered response appears to increase rapidly near resonance frequencies. This behavior
is shown in Figure 3-24, where the changes in scattered response for harmonics -8
through +8 are shown. The dominant harmonics previously shown in Figure 3-23 are

shown in color, while responses at other harmonics are shown in grey. The scattered
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response at these harmonics appears to increase at a greater slope than the dominant

harmonics.
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Figure 3-24: Change in Scattering from the Clean Shell to the Shell with 3 Periodically
Attached Masses with a Force Input at ny = +2

3.2.5 Sensitivity to Mass of Attached Structure

A test was conducted in which the each of the periodically attached masses was
5.5 lbs, rather than the 17.7 Ibs presented in the majority of this paper. Figure 3-25
shows a comparison of the frequency responses of the 7, = +2 harmonic for an input force
applied at the ny= -4 for the test cases with the two different masses. The data shown in
this figure demonstrates that as the mass of the attached structure is increased, the amount

of energy scattered into the indirect response harmonics increases. This sensitivity to
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mass only appears to occur at frequencies below approximately 1000 Hz. Above this
frequency, any differences in the two plots appear to be due to the shift in natural
frequency of the response modes due to the increased impedance. The reason for the lack
of change in scattered energy at the higher frequencies may be explained by the inability
to attach structure whose impedance is dominated by its mass. Based on the orientation
of the attached structure, it is likely that significantly more stiffness was added along the
axial dimension than in the circumferential. The modes above 1000 Hz are predicted to
have higher order axial content, while the modes below 1000 Hz are predicted to have a
uniform axial response (m = 0). The scattering characteristics at higher frequencies may
therefore be dominated by the added axial stiffness than by the mass. Since the footprint
of the attached structure did not change with added mass, the stiffness of the attached

structure may not have changed significantly between the two test cases.
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Figure 3-25: Frequency Response of the n,. = +2 Harmonic Due to a Force at ny= -4 for
Two Different Periodic Structure Masses

Figure 3-26 compares the transfer functions of the two attached mass cases for a response
at the n,. = +5 harmonic to a force input at the n,=+2 harmonic. Similar trends in the
data are seen. Below approximately 1000 Hz, the amount of scattered energy increases
with increased attached mass. Above 1000 Hz, the amount of scattered energy appears to
change only due to the change in modal frequency with the addition of more mass.
Comparison of the two Figures also reveals that the amplitude of the response at the
resonance frequency of the n, = 3 and n, = 4 modes increases with added mass. However,
the scattered response at the n, =2 and n, = 5 modes does not appear to change
significantly. The lack of change in scattered response at these frequencies may indicated
that the scattering characteristics are dominated by other characteristics of the system

than the periodically attached masses. Due to the shift in resonance frequencies and
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variability in test data, an exact measure of the change in scattering due to the mass
increase was not measured. Additionally, only two data points were obtained. However,

it is observed that the scattered energy at the expected harmonics increases between 5 and

10 dB when 12.2 1bs. are added.
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Figure 3-26: Frequency Response of the n, = +5 Harmonic Due to a Force at ny= +2 for
Two Different Periodic Structure Masses

3.3 The Effect of A-Periodically Attached Masses

Data presented in the previous chapter dealt with a special case in which the
structure attached to a cylindrical shell is periodic in nature. Often attached structure is
found in non-periodic configurations. Two masses were added to the structure to allow
for a comparison of the change in response characteristics for a-periodically attached

structure relative to periodically attached structure.
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Two 17.61b (7.7kg) masses were attached to the shell and were positioned at the
215° and 295° angular locations. These masses were attached in the same manner as the
masses were for the periodic test cases. Figure 3-27 compares the average frequency
response function amplitude across the entire measurement range for the clean shell and
the a-periodically distributed mass test cases. The force harmonic for both of these plots
is ny=+2. The direct response, at n, = +2 is approximately equal for both cases. A
sensor failed during the a-periodic test, so the measurement resolution of the array was
decreased by 2 to maintain a uniform distribution. Comparison of the scattered
harmonics between the two cases shows that increased energy is seen across all
harmonics for the a-periodic case. Unlike the periodic test case where specific harmonics
are excited, energy appears to be spread to all harmonics in the presence of a-periodic
structure. Although an increase in response was seen at all harmonics, the response of
the n, = 0 and n, = -4 did not appear to increase as much as the others. The reason for this
was not discovered. However, it is noted that the response at these harmonics is lower

relative to others in the clean shell test case as well.
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Figure 3-27: Average Frequency Response Magnitude (from 0-3200 Hz) to a Force Input
at ny= +2 for the clean shell (/ef?), and a-periodically attached mass (right) test cases.

Figure 3-28 show the frequency dependant nature of the response to the ny=+2
force for harmonics from n, = -8 to +8. This plot shows that energy is spread across both

the frequency range and spatial harmonic range of the measurement.
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Figure 3-28: Frequency Response Magnitude for a Traveling Force Wave at ny = +2 with
2 A-periodically Attached Masses

The change in scattering between the clean shell and a-periodically attached mass
test cases was measured. Figure 3-29 shows the frequency and spatial harmonic
dependency of this change in scattering. In the periodic test case, the change in scattering
occurred at discrete spatial harmonics. In the a-periodic test case, the change in
scattering appears to be spread more evenly across the spatial harmonics. Less change in
scattering is noted relative to the periodic test case. Additionally, the change in scattering
due to the addition of a-periodic masses appears to occur at discrete frequencies. This is
contrary to the effect seen with a-periodic masses, in which a change in scattering was

seen across a broad frequency range.
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Figure 3-29: Change in Scattering Due to the Addition of 2 A-Periodically Attached
Masses for a Traveling Force Wave at ny=+2

Figure 3-30 plots the response of harmonics n, = +3 through +7 for a force input
at ny=+2 for the a-periodic mass test case. A similar plot was created for the dominant
response harmonics for the periodic test case (Figure 3-23). In contrast to the
periodically distributed masses, the scattered response of none of the harmonics appears
to follow the stiffness line of a mode. Instead, the scattered responses appear to increase
rapidly near structural resonances. This behavior explains the discrete frequencies shown
in Figure 3-29. The higher mobility (lower harmonic) modes appear to have more

scattered energy in this frequency range than the higher order modes.
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Chapter 4

Summary and Conclusions

4.1 Summary

Ideal cylindrical structures with no discontinuities behave in a well defined
manner and may be predicted with basic equations of motion. In practice, most
cylindrical structures deviate from the behavior of the ideal structures due to the presence
of impedance discontinuities. The experiment presented in this paper was designed to
infer the changes in the response of the shell when masses were attached both
periodically and a-periodically. Test data was taken by assembling a matrix of point
responses to point forces. A data processing methodology was devised to allow for
analysis of the structural response in terms of spatial harmonics of both t+he input force
and response acceleration. The spatial harmonics were viewed in terms of both traveling
wave and standing wave components.

Measurements performed on the clean shell (no added mass) demonstrated
scattering characteristics. If the shell was truly uniform and had ideal boundary
conditions, no scattering would be expected. Measured scattering in the clean shell is
attributed to the weld seam in the pipe section, non-ideal boundary conditions, and
potential errors in instrumentation calibration and placement.

The direct response characteristics (i.e. the response of harmonic #, to a force at

harmonic ny; where n, = ny) were seen to change when periodically distributed masses
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were attached to the structure. Specifically, the direct response at the harmonic equal to
the number of attached masses was changed. Before adding masses, the direct response a
traveling wave response of a mode with a single resonance frequency. After periodic
masses were added, the direct response was split into two modes with separate resonance
frequencies. These two modes responded as standing waves at resonance. The scattered
response was found to increase at specific spatial harmonics related to the input force
harmonic and the number of periodically attached masses. The scattered response at
these harmonics appeared to follow a characteristic stiffness line in the stiftness
dominated frequency range.

The amount of scattered energy was found to increase when the mass of the
periodically attached structure was increased. The phenomena was observed only below
the cut-on frequency of the m=1 modes (non-uniform axial variation).

When masses were attached to the structure in an a-periodic distribution, it was
found that energy was scattered across a broad range of spatial harmonics. Unlike the
periodic case, scattering appeared to occur primarily near resonance frequencies of the
structure.

Observations on the scattering characteristics in cylindrical structures shown in
this paper will help confirm behavior modeled in analytical and numerical models. The
unexpected scattering shown in all test cases demonstrates that some scattering is likely

present in most real cylindrical structures.
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4.2 Future Work

The experiment presented in this paper identifies some of the basic scattering
characteristics that may be present on real cylindrical structures. The experiment also
demonstrates the ability to infer the forced response on a spatial harmonic basis with only
point forces applied. This work could serve as a foundation for a more detailed
exploration of scattering characteristics. Potential studies that could be performed are:

0 The change in scattering characteristics to periodic and a-periodic stiffness
discontinuities

0 The change in scattering characteristics to periodically distributed
structure of unequal mass or stiffness

0 The combined scattering characteristics of two different types of
discontinuities (e.g. periodic masses + aperiodic)

If these studies or others are performed experimentally, the author recommends
changing the experimental setup from that presented in this paper. Since the weld seam
is suspected to have caused undesired scattering, it is recommended that a continuous
structure be used. Additionally, the support of the shell could be modified to decrease its
effect on the scattering characteristics. Although this experiment focused only on the
input and output relationship in the radial direction, the coupling of forces and responses
in all three directions would be informative.

Finally, it is suggested that any test program be supplemented by sensitivity
studies with computer models. The experimental procedure outlined in this paper

requires a large amount of time input for a single set of data. Therefore, this test is more
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appropriately suited as a confirmation of sensitivity studies performed numerically than

as a primary sensitivity study test platform.



1)

2)

3)

4)

5)

6)

7)

Bibliography

Blevins, R. 1995. Formulas for Natural Frequency and Mode Shape. Malabar,
FL: Krieger Publishing Company.

Pray, C.M., and S.A. Hambric., “Finite Element Study of Harmonic Forcing
Function Scattering Mechanisms for Cylindrical Structures.” Proceedings
of IMECE2002, November 2002.

Leissa, Arthur W. 1973. “Vibration of Shells” NASA SP-288, Washington D.C.

Feit, David, and M.C. Junger. 1993. Sound Structures and their Interaction,
Acoustical Society of America.

Allaei, D., W. Soedel, and T.Y. Yang. 1987. “Eigenvalues of Rings with Radial
Spring Attachments.” Journal of Sound and Vibration 121(3), 547-561.

Wildheim, J. 1981. “Excitation of Rotating Circumferentially Periodic
Structures.” Journal of Sound and Vibration 75(3), 397-416.

Chang, J.Y and J.A. Wickert. 2001. “Response of Modulated Doublet Modes to
Traveling Wave Excitation.” Journal of Sound and Vibration 242(1), 69-
83.



Appendix A

Sensitivity to Structural Damping

With the three periodic masses (17.7 lbs) attached to the shell, damping material
was added to the structure. The damping was added by attaching rubber pads to the
exterior circumference of the shell. Loosely fit nylon straps were used to hold the rubber
pads in place. Figure A-1 compares the scattered response at the n, = +2 harmonic to a
force at the ny= -4 harmonic for test cases with and without added damping. Figure A-2
also compares the scattered response for test cases with and without added damping.
However, Figure A-2 shows the scattered response at the n, = +5 harmonic to a force at
the ny = +2 harmonic. In both of these figures, the scattered response does not appear to
change significantly away from resonance frequencies when damping is added to the
structure. The scattered response decreases significantly at the resonance frequencies of
the shell. The behavior is expected since the addition of damping to a system tends to
reduce the magnitude of the response at resonance. The amount that the scattered
response decreased with added damping at the resonance frequencies did not appear to
occur in a predicable manner. Table A-1 compares the decrease in response of the direct
terms (n, = ny) at each of the resonant frequencies to the decrease in response of scattered
terms at the same frequencies. In some instances, the scattered response at a resonance
frequency decreased significantly more than the direct response. This variability suggests
that the addition of damping to a structure may not only decrease the responsiveness of a

structure at its resonant frequencies, but influences the scattered response characteristics.
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Table A-1: Sensitivity of Scattering at Resonance to Added Damping

Decrease in Response at Resonance, dB re 1ug/N

Harmonic | Frequency | nf = n; [nf =2, | ng =2, | ng =-4, | nf =-4, | ng = -4,
nn=-1{n=5/|n=-1|\n=21|n =-7

2 103 10.8 9.7 6.84 30.49 | 29.27

3 277 4 2.1 15.86 10.24 | 15.74 22.456

3a 305 12.81 4.73 3.9 9.24 | 4.84

4 552 9.02 11.47 14.26 9.0519.26 7.93

5 878 12.81 19.26 6.85
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