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Comprehensive Approaches to Multiphase Flows in
Geophysics—Application to nonisothermal, nonhomogeneous,
unsteady, large-scale, turbulent dusty clouds

I. Hydrodynamic and Thermodynamic RANS and LES Models

Abstract

The objective of this manuscript is to fully derive a geophysical multiphase model
able to “accommodate” different multiphase turbulence approaches; viz., the Reynolds
Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANS-
LES. This manuscript is the first part of a larger geophysical multiphase project—Ilead by
LANL—that aims to develop comprehensive modeling tools for large-scale, atmospheric,
transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear “mushrooms,”
“supercell” forest fire plumes) and for boundary-dominated geophysical multiphase
gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in
street canyons). LES is a partially deterministic approach constructed on either a spatial-
or a temporal-separation between the large and small scales of the flow, whereas RANS
is an entirely probabilistic approach constructed on a statistical separation between an
ensemble-averaged mean and higher-order statistical moments (the so-called “fluctuating
parts”). Within this specific multiphase context, both turbulence approaches are built up
upon the same phasic binary-valued “function of presence.” This function of presence
formally describes the occurrence—or not—of any phase at a given position and time
and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either
the RANS or the LES frameworks. The only differences between these turbulence
frameworks are the closures for the various “turbulence” terms involving the unknown
variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the
hydrodynamic and thermodynamic models for RANS and LES have the same set of
Partial Differential Equations, the physical interpretations of these PDEs cannot be the
same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this
manuscript, we also demonstrate that this multiphase model fully fulfills the second law
of thermodynamics and fulfills the necessary requirements for a well-posed initial-value
problem. In the next manuscripts, we will further develop specific closures for multiphase

RANS, LES, and hybrid-LES.



“Big whorls have little whorls,

That feed on their velocity;

And little whorls have lesser whorls,
And so on to viscosity.”

Lewis Fry Richardson (1881-1953),
Summarizing the essence of his seminal paper “The supply of energy from and to atmospheric
eddies,” Proceedings of the Royal Society, A97, 354-373, 1920.

vi



1. Introduction

1.1. Scope and Objectives

Large-scale, atmospheric, transient-buoyancy dusty plumes and jets, such as plinian clouds (Figure
1 and Figure 2), nuclear “mushrooms” (Figure 3, Figure 4, and Figure 5), and “supercell” forest fire plumes
[Fromm and Servrankx 2003], potentially pose a major threat to human life, livestock, the environment,
and aircraft safety and, therefore, may disrupt nationwide social and economical activities [Dartevelle
et al., 2002]. These geophysical flows also present a great scientific and engineering interest because
their dynamic has this peculiarity of being mostly (if not solely) controlled by turbulence or by the
magnitude of “mixing” with the surrounding atmosphere. Hence, dusty geophysical plumes and jets
present the “ideal” multiphase flows for implementing and testing new geophysical turbulence and
numerical models. In addition, many of these large-scale plumes are well constrained by observations
and by remote-sensing data, allowing modelers to validate their numerical results and mathematical
models. Last but not least, this project can also be applied to boundary-dominated geophysical dusty
gravity currents such as base surge clouds generated by nuclear blasts (Figure 5) or surge flows
following, for instance, the collapse of the twin towers in New York City (Figure 6) or the collapse of
volcanic jets (Figure 7) [Wohletz 1998]. For these latter flows, the boundary (e.g., ground layer and the
atmospheric boundary layer) has an important effect upon the whole flow dynamic. Therefore,
multiphase gravity currents turn out to be ideal flows to further test hybrid approaches (i.e., hybrid-
LES) consisting of RANS at and nearby the boundary and LES further away in the boundary-free

atmosphere.

1.2. Definitions

The primary goal of this manuscript is to pave the way to a better understanding of geophysical
multiphase turbulence. By turbulence, we mean that the small-scale motions (generally unknown) have
a significant influence upon the large-scale motions (which are the scales of interests in geophysics).
By multiphase, we mean that the fluid system is made of different materials, each of them having their
own specific and distinct behavior over all scales [Kashiwa and Vanderheyden 2000]. By geophysical,
we mean that the flow event may last from microsecond to several hours over spatial scales from

centimeters to thousands of kilometers.



1.3. Methodologies and Organization

Because geophysical multiphase turbulence is still very much in its infancy [Dartevelle 2004;
Dartevelle et al., 2004], we must devise a model flexible enough to be compatible with different
approaches to turbulence (e.g., LES, RANS, or hybrid methods). Indeed, different geophysical flows
may require different multiphase turbulence methodologies, and/or the same geophysical flow may be
explored with different multiphase turbulence models. In other words, before getting to any specific
turbulence closures and models, we must set an appropriate mathematical framework able to “nest”
different turbulence models. Establishing this framework is what this manuscript wants to achieve.

This manuscript is organized as follows. First (§2), we systematically review the mathematical and
physical formalisms behind multiphase flow and turbulence. In particular (§2.3), we define the exact
chosen methodology of this manuscript (the function of presence) for setting a multiphase system fully
compatible with different approaches to turbulence; viz., the ensemble averaging process (RANS in
§2.5) and the filtering process (LES in §2.6). The specific mass and phasic-weighted Favre
decompositions are defined for both RANS and LES approaches in §2.7. With this theoretical
background reviewed, we introduce a general multiphase hydrodynamic model (§3) based upon the
derivations performed in Appendix 2 for the RANS approach and in Appendix 3 for the LES approach.
Next, we demonstrate that this “universal” hydrodynamic model satisfies the necessary requirement for
well-posed system as an initial value problem (§5) and is fully compliant with the second law
thermodynamics (§6). In §4, we define the exact relationships between the RANS and LES stress
tensors in order to rationally set hybrid turbulence models based upon both the RANS (e.g., near walls)
and the LES (e.g., away from walls) models.

All the symbols, constants, operator, tensors, invariants, SI units, and acronyms are thoroughly
defined in Appendix 7 and Appendix 8. The averaging and filtering mathematical rules are summarized
and reviewed in §2.4 and in Appendix 1. In particular, the averaging properties within RANS are
reviewed in §2.5.1 and §2.5.3, while the filtering properties within LES are reviewed in §2.6.1.

The sign convention for stress is such that it follows the same convention as Fick and Fourier laws
[Bird et al., 1977; Dartevelle 2004]. In other words, viscous stress is positive in the direction of
decreasing velocities. Hence, compressive stress, compressive strain, and their rates are positive.
Unless specified otherwise, vectors (e.g., q, y, u) and tensors (e.g., T, T) are denoted in bold, while

scalar functions (e.g., p, €, T, y) are noted in normal.
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Figure 1. Mt. Pinatubo volcanic plume, Philippines, June 12, 1991. Altitude: ~12 km.

Figure 2. Ascending eruption cloud from Redoubt Volcano. View is to the west from the Kenai Peninsula. Notice that
the main plume is offset from the vent. Altitude: ~10 km. (Photograph by J. Warren, April 21, 1990, USGS.)



Figure 3. Baneberry Test, Operation Emery, December 1970, Nevada (filed containment underground test in a
~280-m-deep shaft). Yield: 10 kt; Altitude: ~3 km. Because the explosive device was initially underground (and
supposed to be contained), the rising plume was highly enriched in dust causing local nuclide pollution.

George

Figure 4. George Test, Operation Greenhouse, May—June 1951, Ruby Island, Enewetak Atoll. Yield: 225 kt.



Figure 5. Grable Test, Operation Upshot-Knothole, May 1953, Nevada. Yield: 15 kt. Notice the dusty surge cloud
radially spreading around the main plume.

Figure 6. Dusty gravity currents following the collapse of the Twin Towers, World Trade Center, New York City,
September 11, 2001.



Figure 7. Pyroclastic flows and surges flowing the collapse of the plinian jet in Japan (exact location and time
unknown).



2.

The Making of a Multiphase Model

2.1. Turbulence Approaches

What would be the best turbulence model to properly capture geophysical multiphase jets, plumes,

and boundary-dominated geophysical multiphase gravity currents? The answer is far from obvious

because many multiphase turbulence models available in computational fluid dynamics (CFD) have not

been thoroughly tested in geophysics'. In addition, knowing the large span of temporal and spatial

scales covered by multiphase geophysical flows, we may reasonable expect that there would be no

universal and unique turbulence approach. Rather, we should aim a unique mathematical model able to

accommodate different approaches to turbulence.

Generally speaking, four major approaches are available to capture turbulence phenomenon:

1.

The most traditional approach in multiphase-CFD is the Reynolds Averaged Navier-Stokes
framework (RANS), which is an entirely statistical approach in that only a statistical mean
(e.g., by ensemble-average) of a given variable is computed, while all the higher-order
statistical moments are modeled. In other words, only the mean part of a quantity is
“simulated,” whereas the ‘“small-scale” effects from turbulent fluctuations must be
somehow modeled. Although RANS approaches have received considerable attention these
past decades, these models have led to disappointing results with computer costs being
higher and higher as the RANS models become more and more sophisticated [e.g., Sagaut et
al.,, 1997; Lakehal 2002]. RANS approaches have been quite extensively developed for
multiphase flows [e.g., Besnard et al, 1987, 1992; Simonin 1996; Kashiwa and
Vanderheyden 2000; Peirano et al., 2001]. However, to the best of our knowledge, these
multiphase models have never been applied to large-scale geophysical multiphase flows.

The Direct Numerical Simulations approach (DNS) is purely deterministic because it solves
all spatial and temporal scales of motions from the largest to the smallest ones. The smallest
scales may be related, for instance, to the Kolmogorov dissipation scales or any other
dissipation scales (e.g., boundary layer) [Lesieur 1997]. DNS therefore must require
extremely small time-steps and mesh size in order to fully capture the smallest dynamical
scales of the flow. In other words, DNS can only be achieved with a prohibitive
computational cost and, therefore, may never have been applicable (or not for long) for any

geophysical flows developing upon large spatial scales and over long times.

"It should be noted, however, that the LES framework of single-phase turbulence is the most common way to capture
turbulence effects in atmospherical sciences. It is also generally admitted in engineering literature (particularly in
aeronautics) that highly unsteady and nonuniform (large-scale) turbulence is better captured by LES than RANS models.
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3. LES is partially deterministic because it is constructed on a spatial or a temporal separation
between the large scales and the small scales within the subgrid. Typically, large scales are
strongly anisotropic and need to be directly simulated in a way similar to DNS, while small
(subgrid) scales of the flow are assumed to be much more isotropic and universal so that
simple scaling subgrid models can be used to model their effects. The separation between
simulated large scales and modeled subgrid scales is achieved using filter functions
(“kernels”). The filtered (“known”) variables will be solved with the Navier-Stokes
equations, and the effects from the unfiltered (“unknown”) subgrid scales will be somehow
modeled with supplementary source terms. At first glance, it may seem that LES should be
far superior to the RANS approach because RANS models all scales, while LES only
models the subgrid scales (the large scales are directly simulated). However, as we will
show in this manuscript, the mathematical development of all the LES subgrid terms is far
more complicated that in the RANS approach. Modeling all the LES terms is challenging?,
particularly within the multiphase framework. In addition, some further complications arise
with LES methods when dealing with nonisotropic and nonhomogenous grid.

4. In many engineering applications (e.g., aeronautic, naval engineering sciences), LES usually
has the favor as it better captures all the large-scale turbulent features of a given flow.
However, near a boundary wall, the spatial resolution must often be increased in order to
properly capture turbulent unsteadiness and instabilities near and at the wall. The spatial
resolution needed at the wall must be so high in highly turbulent flows that the wall-LES
model practically becomes a DNS model with prohibitive computer costs. Therefore, it may
be more practical (and less computer demanding) to use a RANS model at the wall and to
simulate the turbulent large-scale features with a LES approach far from the wall. These
hybrid-turbulent approaches (often named ‘“hybrid-LES”) are gaining in popularity in
aeronautic engineering sciences but present the challenge to properly “connect” averaged
values of a given variables (from RANS) with its filtered values (from LES).

Because LES and RANS are based upon different mathematical and physical methodologies, it is
necessary to systematically review these approaches first. Later, this manuscript devises a mathematical
approach to derive a multiphase Navier-Stokes model compatible with both the statistical (RANS) and

the filtering (LES) approaches. Specific turbulence closures will be developed in other manuscripts.

2 It is not rare to find LES models not very well set (e.g., non-Galilean invariant) because of a poor choice of
approximations [e.g., see discussion in Speziale 1985].
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2.2. Multiphase Formalism

Because the system is made up of a large number of particles, it is impractical to solve the motion
of each individual particle; hence, we have chosen Implicit Multi-Field formalism (IMF), which treats
all phases in the system as interpenetrating continua. Each instantaneous local point variable (mass,
velocity, temperature, pressure, and so forth) must be, by some means, “treated” to acknowledge the
fact that any given arbitrary volume can be co-shared by different phases at the same time. This
treatment may involve, for instance, an “averaging” or a “smoothing” process. The fact that we have
averaged out or smoothed out some details is not worrisome as we are mostly concerned with the bulk
flow behavior and as we rather want to know how the system works as a whole instead of knowing the
exact history of a particular grain within the flow [Kashiwa and Vanderheyden 2000; Dartevelle 2003;
Dartevelle 2004].

The process of deriving a single-phase Navier-Stokes system of equations into a multiphase
system is far from being an obvious task, and yet it is a critical one, particularly when multiphase
turbulence must be accounted for. Setting the multiphase Navier-Stokes equations alongside the
appropriate turbulence closures has two basic approaches: the “double-step” and the “single-step”
techniques’. This manuscript is only concerned with the single-step technique, which is by far the most
efficient and compatible technique with the different approaches to turbulence: LES, RANS, and
hybrid-LES.

1. The most common and somehow intuitive approach is the double-step technique. The first
step involves a volume-average of all instantaneous local point variables in order to
determine how much of a control volume (CV) is co-shared by all phases making up the
multiphase system. This volume-average step must be achieved over a region that is large
compared with the particle spacing but much smaller than the overall flow domain
[Anderson and Jackson 1967]. In carefully specifying the mass, momentum, and heat
transfer between phases alongside the jump conditions at their interfaces, it is easy to
deduce a full set of Navier-Stokes equations for each phase. The most common volume-
averaged approach for granular flows is from Anderson and Jackson [1967]. Afterwards, the
second step consists of making the turbulence terms explicit within the volume-averaged
equations by either averaging again (RANS framework) or filtering (LES framework). In

this second step, each volume-averaged variable is decomposed into mean and fluctuating

* It should be noted that many modelers do not worry that much about averaging/smoothing processes and directly deduce
the macroscopic equations. However, when it comes to the exact formulation of a multiphase turbulence model, many terms
may be “forgotten,” leading to unknown but critical assumptions regarding a given turbulence model, or even worse,
leading to not very well-posed problems.
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parts within the RANS framework or decomposed into filtered and subgrid parts within the
LES framework. The double-step method is widely used within the RANS framework [e.g.,
Besnard et al., 1987; Besnard and Harlow 1988; Besnard et al., 1992; Cao and Ahmadi
1995; Zhang and Reese 2001; Boulet and Moisette 2002] but somewhat uncommon within
LES because it becomes rather confusing to deal with both a volume-averaged and then a
filtered variable. The double-step method is also inconvenient because the algebra during
the second step is quite cumbersome.

2. The single-step technique relies on the phasic “function of presence” that formally describes
the space occupation within any CV by a given phase [Drew 1983; Lhuillier 1996; Enwald
et al., 1996; Lakehal et al., 2002]. The use of the function of presence saves us from the first
step (i.e., the volume-averaged step) and allows us to directly derive a set of Navier-Stokes
PDE:s either by ensemble averaging (RANS framework) or by filtering (LES framework).
This single-step method is clearly gaining in popularity [e.g., Simonin et al., 1995; Simonin
1996; Tran 1997; Kashiwa and VanderHeyden 2000; Milelli et al., 2001; Lakehal et al.,
2002] because it offers an easier, clearer, and “handier” set of Navier-Stokes equations,
which, in addition, are potentially compatible with different turbulence frameworks—
RANS, LES, and hybrid-LES.

Because we aim to set a mathematical model that offers enough versatility to be compatible with
different turbulence approaches, we are only concerned with the single-step technique, which is

systematically reviewed in the next sections.



2.3. The Phasic and Interfacial Function of Presence

In a multiphase flow system, more than one phase may coexist in any CV. Therefore, let the i"
phase function of presence, X;(x,t), at location x and at time t be [Drew 1983]

1 if location x is inside phase i at time t,
Xi(x,t)= (1)

otherwise

Hence, in a two-phase gas-solid flow, we must have X,=1-X,. In addition to being a unique
material identifier, X; has some important properties [Drew 1983; Lhuillier 1996; Drew and Passman

1999].

a. First Property

VX =-n;9,, )

1

where n; is a unit normal vector pointing outward to the i™ phase at the location x and time t. The
gradient of the phase function must be zero everywhere except exactly at the interface between phases.
This gradient vector points towards the direction of maximum increase that is towards phase i itself in a

direction opposite to mn;. Obviously, at location x and time t in a two-phase flow, we have

VX, =-VX,, or more generally, Z:VXi =0. In Eq. (2), O is Dirac delta function at the interface

i=1
location as it directly results from the step-like behavior of the interface as seen in Eq. (1). Hence, Oy
acts as a function of presence of the interface itself (it is zero at any location where there is no
interface).
The gradient in Eq. (2) can be used to sort out mass, molecular, and heat fluxes (and their
directions) at the interface between gas and solid phases. Indeed, let us use an “angular operator,” (),
which will be thoroughly defined in the next sections (within RANS, it will be an ensemble averaged

operator; within LES, it will be a filter operator). Ensemble-averaging or filtering Eq. (2), we have

(9%) = na)

=V(X )=Vg, ’ ©
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where ¢; is a “bulk” volumetric concentration of phase i (which will be thoroughly defined

hereafter—see RANS §2.5.2 and LES §2.6.4). Clearly, the product of any property ¢ with the gradient

of the phase function, e.g., <(1)i VX, > , must give a bulk contributory effect of fluxes of ¢ of phase i at its

“bulk” interface over the whole domain of integration. By definition, in a two-phase system at location

x and time t, we must have Vg, = -V, or more generally, Z Vg =0.

i=1
b. Second Property
The volumetric concentration of the interfacial area, A;, can be defined as the “angular operator”

upon the scalar product of n; and VX;:

A.=<—m-VX» . (4)

1

Again, the angular operator may be either an ensemble-averaged operator (RANS) or a filter
operator (LES). Clearly, in a system made of two phases (gas and solid) at location x and time t, we

have A=A,.

c. Third Property

oX
L tu,, VX, =0
ot

; 5
oX. )

ot

=Up, oIy 8lnt

where up, is the velocity of the interface between phases. Eq. (5) indicates that the material

i

(Lagrangian) derivative of X is always nil ( d = 0) no matter where it occurs. Indeed, being exactly

at the interface and moving with its local velocity (u), X; represents a constant jump, and Eq. (5) must
equal zero [Lhuillier 1996]. Being at any a location other than the interface, then either X;=1 (inside the
material) or X;=0 (outside the material), and therefore all the partial derivatives (time and space) must

vanish [Drew and Passman 1999]. This result, of course, justifies the second line of Eq. (5) because the

i

transient term of X ( ) must vanish at any location except when an interface crosses that specific

location.
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d. Fourth Property

In a multiphase flow made of two and only two phases, the interface is straightforward to define
(e.g., between the solid particles and the gas phase). In a mixture made of n phases (n>2), one must
distinguish n-1 interfaces separating each phase from each other. Let us write the function of presence
of interfaces in Eq. (2) between phase i and j as Oij Where i#j; then the function of presence of all

interfaces between all phases in the system is

n-1 n
8Int = Z Z 8Int,i,j . (6)
i=l j=i+l

And the function of presence of the interface between phase i only and all the other phases in the

system is

51nt,i = z Slnt,i,j . (7
=1

j#i
Hence each phase’s interface can be easily tracked without any confusion between different

interfaces of different phases. With these new definitions, up, in Eq. (5) would represent a “bulk mean”

interfacial velocity of all interfaces between all phases making up the multiphase system.

13



2.4. Core Properties of the Angular Operator ()

In order to properly manipulate the multiphase Navier-Stokes equations within different
turbulence frameworks (RANS and LES), we must define a mathematical operator that must own at
least the three following properties. The exact mathematical nature of () will be analyzed in the RANS
(§2.5) and in the LES sections (§2.6).

a. First Property:_conservation of constant

Let ¢ be a constant, then
<c> =c . (8)

b. Second Property:_linearity

Let a and 3 be scalars, vectors, or tensors, then

(w+B)=()+(B) - )

c. Third Property: commutativity with respect to derivations

Let ‘1’ be either a space (x) or time (t) variable. Let a be a scalar, vector, or tensor, then

[22)- 2t (10

o1 o1

As we will see hereafter, the commutativity property is guaranteed within the RANS framework
but required some discussions and further work within LES.

Generally speaking and unlike the RANS angular operator, a LES angular operator is not a
Reynolds operator. This is an important difference between LES and RANS, leading to a different
Navier-Stokes set of equations. Appendix 1 develops and demonstrates additional properties that will

be extensively used throughout this manuscript.
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2.5. Averaging Process — RANS Framework

2.5.1. Definition of the RANS operator ()

Let ¢(x,t) be an instantaneous local (microscopic) fluid property at some specific punctual position
X in space and at time t (¢ can be a scalar, vector, or tensor). Let us achieve N identical experiments
(replicas) with the same initial and boundary conditions. For each replica, we systematically measure at
the same location x and time t the property ¢(x,t). Of course, we may expect to measure slightly
different values of ¢(x,t) in each of these experiments. However, our prime interest is to capture a bulk
property of the system or an averaged value of ¢(x,t), which would be a “macroscopic” characteristic

value for the whole ensemble of experiments. This ensemble average over the N replicas is

N
lim Z¢ (x,0) P,

(6(x,00)= : (11)

[oex.0) aF(®)

where ¢y(x,t) is the n™ realization of ¢(x,t) with an observed probability P, (if each realization of ¢

is equiprobable’, then P, = %\I); dF(¢) is the element of probability of observing a given specific

realization of ¢ (F is the cumulative distribution function of ¢); and the integration takes over the whole
set of possible values of ¢. Both definitions (sum vs. integral) are strictly identical depending on
whether ¢(x.t) is seen as a continuous or discrete random function”.

Other averaging methods are possible, such as volume-averaged, which is performed around a
fixed point x at time t, or the time-averaged, which is performed at the location x in a time interval
around t. However, in many instances, time and volume average may be seen as a special case of the
ensemble average. For instance, if the flow is homogenous (on the average, the flow is uniform in all
directions) and stationary (on the average, the flow does not vary with time), time, volume, and

ensemble are just identical averages (this is the ergodicity hypothesis).

* Which is very likely the case because N tends to infinity.
> Ensemble average is a molecular dynamic concept, whereas, in classical statistics, Eq. (11) is named the expectation of a
random variable or random function.
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2.5.2. The RANS operator () upon the function of presence and density

The ensemble average of the function of presence of a given phase, X;, must give the probability

of presence of the i™ phase at x and t as it represents the averaged occurrence of phase i:

& ={X (x,1) =+in (x,t)dF(X,) (12)
(Xx0)= |

where ¢ is the volumetric concentration of the i™ phase’. We may now define the phasic bulk

density as

A

po=ep =(X, (x,0) p (x,1)) (13)

where the ensemble-averaged density of the it phase is weighted by the ensemble-averaged phasic

function of presence, i.e.,

X; (x, i (X, X; (x, i (X, T
5o (&tz: t()’; n) _xe tlp x0) _ L[ X 00 p (DR ), (14)

where p; is the microscopic density of the i phase (for the solid phase, it will be assumed to be
constant). Averaging processes have very important properties that are entirely demonstrated in
Appendix 1. These properties will be extensively used to set up the multiphase Navier-Stokes equation

system.

2.5.3. The RANS operator () as a Reynolds operator
Let a(x,t) and B(x,t) be two random variables, ¢ a constant, and () defined by Eq. (11). The

angular-operator acts as a Reynolds operator within the RANS framework if and only if all the

properties seen in §2.4 hold and if, in addition, we have

% Eq. (12) is not exactly the volume average or the volumetric concentration of the i phase. The only correct interpretation
of Eq. (12) is that it represents the “expected value” of the ratio of the volume occupied by phase i to the total control
volume, if the limit of the total volume approaches zero. If the spatial distribution of phase i is homogenous, then Eq. (12)
represents exactly a volume-averaged concentration [Drew and Passman 1999].
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<c a(x,t)>:c<a(x,t)> (15)

(o) B)=(at) (B). (16)

(17)

where o’ is the turbulent fluctuation or the deviation from the expectation of au(x.t) (i.e., <OL> ). For

more details on these properties, see Appendix 1.
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2.6. Filtering Process — LES framework

2.6.1. Definition of the LES operator ()

A key idea of LES is the separation of the simulated large-scale properties of the flow from the
modeled (subgrid, SG) small-scale properties. The limit’ between large scales and subgrid scales is
“supposed” to take place in the inertial subrange. This decomposition is obtained using a spatial filter
with a characteristic width, &, equal to (or of the order of) the computational mesh-size® or using a
temporal filter with a characteristic time, 1, equal to (or of the order of) the time interval.

As in §2.3, let ¢(x,t) be an instantaneous local (microscopic) fluid property at some specific

punctual position x in space and at time t. The LES space- and time-filtering process of ¢ is formally

defined as [Sagaut 1998]

(6(x,0)) =

§ =3
§ =8

J' J'G(g,r)q)(x',t') dt'dx’ | (18)

where the spatial integration is produced over the entire flow domain, Q (or any of its subdomains
of constant grid-size), at any time. Eq. (18) filters ¢(x,t) at a point x=x" (spatial filtering) and at a time
t=t” (time filtering) and weighted ¢(x,t) by G(&,t). In mathematics, this process is called the
“mollification” of ¢(x,t). Eq. (18) defines a “regulariser” or “mollifier” [Galdi 1994]. The filter kernel,
G(&,1), is defined by its spatial width &, E=x-x’, over which the smoothing process take place, and by its
time interval t, t=t-t’ during which the filtering process occurs. It can be seen that for the most
commonly used spatial filters (e.g., box, Gaussian, or spectral filters), G is centered in &, symmetric

. . .9
around &, and keeping the same shape in space as x’ varies’.

’ This limit is often named “cutoff.”

¥ Although it does not have to be, the width may even be totally independent of the grid size. However, for finite volume
codes, the most natural way is to relate & with the grid size.

? There are other filters that do not have these properties.
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2.6.2.  Properties of the LES operator ()

1. The filter kernel is normalized to preserve the constants (First Property in §2.4); hence, over

the whole domain, Q (or any of its subdomains), during the whole time under consideration,

2. The space and time filter kernel, G(&,7) in R*, is initially obtained by tensorizing two kernels

we must have G(&,7) dt'dx" =1

é!—.g
g =8
© Ly 8

in space, Gy(&) in R°>, and in time, Gy(t) in R [Sagaut 1998]
G(&, 1) =G, (§)G (1) (19)

3. At the limit of § and t going to zero, Eq. (18) becomes a Dirac delta sequence function [Weber
and Arfken 2004]

(6(x,0)) : d(x, 1)

so that, when the grid size and/or the time step becomes smaller and smaller, near x=x" and t=t’,

we must have <¢(x, t)> ~ d(x,t) as expected, wanted, and shown by Eq. (20).

2.6.3. Explicit spatial filters

In LES engineering and single-flow atmospherical literatures, it is by far more common to use a

spatial filter rather than a time filter'® because the time filter separates spatial scales (large vs. subgrid)

with an obvious ease. This is formally expressed as

limG, ()G, (1) =G, (§)8(7) . 1)

' We should, however, mention that time filtering has numerous advantages, particularly filtering within a nonuniform grid
domain and when applied to hybrid LES-RANS turbulence approaches.
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It should be kept in mind that whenever a spatial filtering is achieved, an implicit (and often
“forgotten”) time filtering is also achieved as well [Sagaut 1998], which imposes supplementary

conditions over the time step of any LES simulations.

Let us define a cutoff length, A, , in the xi™ direction (k=1,2,3 orx=X, Y, Z),

Ay =n Ax, 22)

where Axy is the mesh size in the X-, Y-, and Z-directions and ‘n’ is an integer usually taken
between 1 and 3 (i.e., the filter length is two to three times coarser than the grid size in any given
direction).

One of the most commonly used filters in space is the Gaussian spatial filter, e.g., in the x"

direction [Ferziger 1976; Piomelli et al., 1991],

2
3 Y&k

G(B)=—— | e &, 23)
Ax T

where 7 is a constant usually taken to be equal to 6 [Sagaut 1998; Pope 2000] and the filter width

in the xkth direction is &=xx-X .
Another filter often used in finite-volume methods is the box spatial filter, e.g., in the x," direction

[Deardorff 1970; Piomelli et al., 1991],

“

A

1 k
2 : (24)

Gx (B )=1 A,

0 otherwise

if e <

With the box filter, <(|)(x, t)> is the weighted-average of ¢(x,t) over an interval & smaller than half

of AX, AY, or AZ (Figure 8A).

Both filters are shown in Figure 8''.

" There are many other filters [see Pope 2000]. We will review them in the next manuscript on multiphase LES approaches
(under preparation).
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A. Box filter G

G=1/A

1

| [

| [

| [

i i

| [

| [

| [

| i x-x'

-Af2 A2
2 G
B. Gaussian filter
x-x'
Figure 8

Two possible and common spatial filters: A. the box filter and B. the Gaussian filter.
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2.6.4.  The LES operator ¢) upon the function of presence and density
Let us use the i" phase function of presence, Xi(x,t), as defined in Eq. (1) of §2.3. Then the spatial-

filtering of X; must give the filtered occurrence of phase i at the A -scale over the whole domain Q,

s =(Xx )= [[[e.@x e 25)

where &; is the volumetric concentration of the i phase [compare with Eq. (12)]. Hereafter in this
manuscript, we will not make any symbolic difference between the volumetric concentrations obtained

by an ensemble averaging (RANS) or by a filtering (LES) process. The filtered phasic bulk density is

A

pi=ep = (X () p(x,1) (26)

where the “bottom upside-down hat” is used to emphasize that the variable has been filtered
(instead of being averaged as in RANS). The filtered density of the it phase is weighted by the filtered

phasic function of presence,

Xi s i s Xi ’ i s
b - < (<;t()xpt())>< t)> _ < (x tlp (x t)> _ 81 ”’J‘G (é)(Xi (x',)p, (X,’t)) dx' . (27)

where pj is the microscopic density of the it phase.

2.6.5.  Anisotropic and nonhomogenous explicit spatial filters

In many engineering and geophysical applications, the grid size, Ax, (hence the spatial-filter width,
&) may not be homogenous over the whole computational domain (i.e., Ax varies in some directions)
and/or may not be isotropic (i.e., Ax; # AX; # Ax3). The latter is not a problem, but the former is quite a

matter of concern as it does pose a problem for the commutativity property with respect to space

derivation [Third Property of §2.4, Eq. (10)].
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The most common and classical way to deal with anisotropic filter width is the Deardorff [1970]
method, which takes the geometric mean of the grid length between the 3 directions of space (A) to

evaluate a “geometric-averaged” filter cutoff length,

3
A:nA=n3/HAxk : (28)
k=1

where ‘n’ is a constant (usually between 1 and 3) and Axy is the grid width in the thh direction of
space. Many modifications of Deardroftf’s original model [see Sagaut 1998] and other models have also
been proposed [e.g., Scotti et al., 1993, 1997]. Those will be reviewed in a future manuscript on
multiphase LES.

To deal with nonhomogenous filter characteristic length, i.e., A is nonconstant within the

computational domain, Q, let Q; and Q; be two subdomains of Q (Vi,jeNy (1 i#]), each
characterized by constant grid sizes (Axy) in any direction (hence constant filter cutoff lengths, i.c., A;
and&j); let 0€2;; be the boundary between these subdomains; and let G; and G; be the spatial-filter

kernels associated with Q; and Q;.
Let us examine first what happens to the filtering process with these nonhomogenous filters.
Because A is nonconstant, the space-filter kernel becomes a function of A itself, i.e., Gy (€, 5) over Q.

We note that differentiating ¢(x,t) with respect to space becomes

Vi) - v| [[J 6. @B oty ax
Q
=[[Jo.edviorx.v]ax + [[[v[6.@H o ax’ . 29)
Q Q
:<V¢(x,t)> + IIIV[GX(é,&)]q)(X"t) dx’
Q

The second term of Eq. (29) would have been zero over a strictly homogenous domain; therefore,

it represents a source of errors if not properly accounted for. This term can be further expanded into
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| i | %[Gx & A) [o(x, 1) dx' = “}%j)g_i+ ! i (6, @D o. ) [nx) ds (30)

where the first term on the RHS represents the error that is due to the spatial variation of the filter
length and the second term represents the error from the flux of <(|)(x, t)> through the surface of the
boundary 0Q);; between the subdomain Q; and Q;. In Eq. (30), n represents an unit vector normal to
0Q);; pointing in the positive direction of the flux of <¢(x, t)> .

As thoroughly seen in the next paragraph (§2.7), any instantaneous local fluid property at some

specific punctual position x and at time t, ¢(x,t), can be decomposed into a filtered (simulated and

known) part (e.g., (T): <¢>) and a subgrid (unfiltered and unknown) part (e.g., ¢") and this in each

subdomain i and j of Q (i.e., 2; and ;) as follows:

within €; . within Q;
T " T " : (31)
o= i + & = 0j + ¢

Because each domain has different spatial resolution (hence different filter characteristics and

filter length) but the same kernel function, we may define

@j :@_%
= [[[ai@roxio ax-[[[6iEpor.n ax' (32)
Q &

- ﬂj(Gi@i)‘GJ‘(éj))d)(x’, t) dx’
RN

where (T)i, j becomes a new complementary field allowing the transfer of information between €;

and Q; at 0Q2;;. The key information points that must now be tracked at all times are (1) the flux

directions of ¢(x,t) between the subdomains (if Q; — €2, then (T)j = §; —(T)i, j at 0Q;j or if Q; — Q)

then ¢; = &)j + (T)i, i at 0Q;;) and (2) the exact location of the boundaries between subdomains, 0€2;;.
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The method to achieve LES simulation with multiresolution subdomains will mostly depend on
the exact geometry configuration: either the finer grid subdomain is surrounded by a coarser subdomain
[Kravchenko et al., 1996; Sullivan et al., 1996; Boersma et al., 1997], or, in the more general case,
there is no specific geometric configuration between fine resolution and coarse resolution subdomains
[Sagaut 1998; Quemere et al., 2001]. In the former case, the solution is solved either first in each Q;
independently from the other subdomains (a separate time step for each €2;) and, afterwards, all
solutions are coupled between all subdomains at their respective boundaries [Sullivan et al., 1996;
Boersma et al., 1997], or the solution is solved within a unique time step over the whole () and all its
subdomains with appropriate subdomain coupling [Kravchenko et al., 1996]. In the latter and more
general case, the time integration must be achieved within a unique time step over the whole 2. We
should also mention the application of LES approaches to adaptative grids by Cook [2001] and Mitran
[2001]. All these methods will not be reviewed herewith—our main point was simply to show that
anisotropic, multigrid domains and adaptative grids can be dealt within the LES framework, even
though it raises the level of complexity in code development.

It can be seen that with a box-filter [Eq. (24)] the problem is rather simple as it reduces itself to a
simple factor multiplication of the variables at the boundary subdomain (rescaling ¢ through 8Qi,j)12.

Therefore, we assume hereafter that the 3™ Property of §2.4 [Eq.(10)] is fully valid within the LES

framework.

A
' For instance, let Q | be the fine grid subdomain and Q , the coarse grid domain, so that A; = f (each mesh length is
6

two times coarser in Q ; than in Q ). Hence, we have
;i and
Yo

from Q , (coarse) to Q ; (fine) flux at 0 Q | dN)l = %/g (T)z

from Q  (fine) to Q , (coarse) flux at 0Q | 5 d~>2 =
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2.7. RANS and LES Favre Decompositions

Within the RANS framework (§2.5), each time an idealized experiment is achieved, we may
measure deviations (fluctuations) between the calculated ensemble average over all the experiments
and the instantaneous local variable measured at position x and t. As we are mostly interested in the
bulk flow, the approach of taking the ensemble average of each variable in the system is fully justified.
However, the ensemble-averaged value of a given variable and its factual instantaneous local value
may greatly differ. Hence, it becomes critical to “properly” recover the lost information during the
averaging process that will be supplied by a RANS model. Each instantaneous local variable, ¢(x,t), is
broken into an ensemble-averaged part (¢ or ¢) and a fluctuating part (¢ or ¢") using two Favre
decompositions (density-weighted and volumetric concentration-weighted) [Favre 1965].

Within the LES framework (§2.6), a formal scale separation by means of filter functions is
achieved between the anisotropic large scales and the more isotropic small scales. The filtering process
between scales can be achieved either in space (spatial filter, the most common approach) or in time

(temporal filter). Each instantaneous local variable, ¢(x,t), is broken into a filtered (or resolved,

simulated) part @ or (1)) and an unresolved (or unfiltered within the subgrid) part ((l)' or (l)”) that needs

to be modeled. The same two Favre decompositions used in RANS—mass-weighted and phasic-
weighted [Favre 1965]—complete this decomposition. The unresolved part can be seen as all the

fluctuations caused by, for instance, turbulence within the subgrid. However, it should be kept in mind

that the unresolved part exists only because of the finite cutoff scale, A , of the filter'.

In this manuscript, and within the LES framework only, all Favre decompositions are noted by a

“bottom upside-down hat” under the variable (e.g., ¢, u,p, T, ..).

Favre phasic-weighted decompositions are shown below:

RANS framework LES framework

Il
(|

+
(e

o=+ (33)| 4 (34)

Within the RANS framework, the prime stands for the fluctuating part and the horizontal bar
stands for the mean part obtained from the Favre phasic-weighted ensemble averaging. Within the LES

framework, the horizontal bar stands for the resolved (the filtered field that is simulated), while the

'3 In other words, it is not mathematically correct to compare the fluctuating part obtained from RANS and the subgrid part
obtained from LES, even though both may be somehow connected to the small-scale (turbulent) flow fluctuations.
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prime stands for the unresolved subgrid (residual) field (that needs to be modeled). The phasic-

weighted ensemble-averaged and filtered decompositions are given by the following:

_ (Xxnaxn) (X 0é(xD)

RANS framework: | ¢, = = (35)
<Xi (x,t)> &
- (Xeoexy) (X 0é(xD)
LES framework: ¢ = = (36)
- <Xi (x,t)> g

The Favre mass-weighted decompositions are shown below

RANS framework

LES framework

=
Il
(o2

(37) +4 (38)

where the double prime stands for the fluctuating (or unresolved residual) part and the tilde stands

for the mean (or resolved) part. The Favre mass-weighted ensemble-averaged and filtered

decompositions are given by the following:

RANS framework:

; (X (0P (x4 (D) (X (xp (D¢ (x,1))

(X, (xp (D) 5 (39)

LES framework:

; (X (0P (D6 (x D) (X (0P (08 (x,1))
N (X (x,0p; (x,1)) P,

Unless it can be shown that the microscopic density of a given phase is strictly constant (which is

the case if the dispersed phase is made of solid grains), the mass-weighted values (a)i or a)i) are not

equal to the phasic-weighted values (5,- or $, ). Last but not least, it is worth mentioning that filtering

and averaging have two very distinct properties (see also Appendix 1):
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RANS framework LES framework
(Averaging) (Filtering)
Ei = 61 @ i@
(T)l = (T)i (1)1 * (l)i
% = =0 ¢ =4 #0

In other words, within the LES framework, filtering a variable twice does not give the same results
as the initial filtered variable, and filtering the unresolved subgrid (residual) field of the variable will
not necessarily give a nil result'®. The consequence is that modeling subgrid fields (stress, heat flux,
and so forth) will be more complicated than for the RANS approach [Ferziger 1997].

With all this in mind, it is now possible to derive in a “one-step ensemble-averaging process”
(RANS) or in a “one-step filtering process” (LES) a full set of Navier-Stokes equations for all the

phases in the system as demonstrated in Appendix 2, Appendix 3, and detailed in the next section (§3).

" It would be possible to define a filter Gy so that filtering the unresolved subgrid field leads to zero, but this is not that case
with a Gaussian and the box filters.
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3. RANS and LES Hydrodynamic and Thermodynamic Model

From the demonstrations in Appendix 2 (RANS) and Appendix 3 (LES), one can see that it is
possible to derive hydrodynamic and thermodynamic models that would be able to accommodate
both the Large-Eddy Simulation and Reynolds-Favre ensemble-averaged Navier-Stokes frameworks of
turbulence. Of course, the constitutive equations for turbulent or subgrid phenomena (stress,
dissipation, heat conduction, and so forth) and possibly the interfacial terms may differ.

In the following, we will not make any distinction between the LES and RANS symbols; however,
we will retain the symbols for phasic-weighted decomposition (¢ ), mass-weighted decomposition ()
variables, and their subsequent fluctuating or unfiltered parts, i.e., ¢' or ¢”, respectively.

The equations are written in terms of the ensemble-averaged or filtered variable for each phase,
where p, 1, and ¥ pertain to averaged or filtered macroscopic density, velocity vector, and mass

fraction. The indices ‘s’ and ‘g’ are for the solid and gas phase. Because each phase is modeled as a
continuum, they can be present at the same time in the same control volume, CV [Harlow and Amsden
1975]. Hence, we must distinguish the microscopic density of a particular material, p, from the

macroscopic bulk density, p, = ¢ p,, where € is the volumetric fraction of the phase under

consideration and p; is the phasic-averaged (§2.5.2) or filtered (§2.6.4) density. Within any CV, we

n m
must have Z g; =1 for all n phases, and for all m species of a given phase, Z yj =1 . The gas phase
i=1 j=1

needs an equation of state, which has be specified in a specific context', e.g.,
p, =fet (B, KT, (41)

where R is the ratio of the universal gas constant (R) and the molar mass of a gas mixture of m

species,

R=r) L (42)

-

where M; is the molar mass of the ™ gas species.

' The EOS issue is thoroughly discussed in the Method of Characteristics (MOC) section (see §5).
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3.1. Phasic and Species Continuity

From Appendix 2 and Appendix 3, we may write the phasic continuity equation valid within both

RANS and LES frameworks as

op; A~

; 43
P i (43)

where, for instance, i=1 for the gas phase and i>2 for the dispersed phases and R; is the mass

exchange flux between phases at their interfaces, with z R, =0.

i=l1
In the case where one of the phases would be made up of different species (e.g., for the gas phase,
dry air and water vapor), the species continuity for both RANS and LES framework (see Appendix 2
and Appendix 3) is

a, =—V-p, (yj+ “*”SGyj)Jrgir +C (44)

ithg

where §; is the averaged or filtered mass fraction of the i™ species; l:j is the averaged/filtered

mass source or sink rate because of chemical or physical processes between species; and C;; is the
interfacial species mass transfer rate and has two contributions—one from the mass transfer between
phases and one from the diffusion of the interface belonging to species j of the i phase. The latter

contribution is very often disregarded [Syamlal et al., 1993; Veynante and Poinsot 1997]; hence, in

most circumstances, C;; can be written as a simple function of mass transfer between phases:

(45)

@
Q
o
~

—.

with the mean jump condition between the m species of phase i and all other phases as

i=l =1
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In Eq. (44), the species mass fraction flux has two contributions: one from the averaged or filtered
flux (i.e., y;) and one from turbulence (RANS, "y;, 00Appendix 2: Favre-Averaged Navier-Stokes
Equations) or from the subgrid (LES, SGyj):

“”yj = ;ﬁl?' RANS framework (46)

Uy, :(ﬁ—ggi )+(§/F§'+}Z’§?)+(i@?) LES framework

where @ is the molecular diffusion coefficient of species j in the mixture. It can be recognized in
SGyj, from left to right between parenthesis, the LES Leonard-, Cross-, and Reynolds-terms.
Clearly, the turbulent contribution must be modeled within a specific context of turbulence (either

RANS or LES).

3.2. Momentum

From Appendix 2 and Appendix 3, we may write the phasic momentum equation within both

RANS and LES frameworks as

opu, Ao = -
PRV pi =V (T 0T 4G M, (47)

where M; is the interfacial momentum transfer rate between phases; (~}i represents a body force

(e.g., gravity); and T, and “"SOT; are respectively the phasic mean/averaged stress and the Reynolds

(RANS) or the subgrid (LES) stress tensors. As seen in Appendix 4, M; may be decomposed into a
contribution from mass transfer between phases and a contribution from the interfacial forces at the

interfaces (e.g., drag force, added mass forces, interfacial shear stress, and pressure),

M; =up,R; +1—)Int,ivgi + Tiei - VE M (48)

i

where M represents the contribution of drag forces between phase; uy,, is the averaged/filtered

bulk velocity of all interfaces (Appendix 4 discusses a few possibilities to model and simplify w,,,);
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and Pr; and 7y are the interfacial pressure and stress between phase 1 and all the other phases (see
Appendix 4). Eq. (48) can be simplified knowing that <TInt,i VX, >, which represents the interfacial
shear stress, is expected to be important only in separated phase flows; hence, for most geophysical-

atmospherical applications where all phases are well mixed, it can be safely neglected. So, Eq. (48) into

Eq. (47) yields the following:

8[;1:11 +Veopwu =-V-g (’fl + SO )—i—f)iéi + U Ry + Py Ve + M

S

aéaitﬁi +V-puu :_Vgiﬁ -V.g1 -V-g tur/SGTi +[31(~}i +u, R; -I—Em’iVSi +M§irag . (49
=

a%tﬁl +V-puy :(Ent,ivgi ~ Ve P, )—V'Si (?l + ey )+ﬁlntRi +M§lrag +p,G,

The first two terms on the RHS need to be developed in a specific phasic context. For instance, for

the gas phase, the pressure is simple to define, and it is clear that P=P,; hence,
Gas (carrier) phase: Vg P =Ve,P, =¢,VP, +P, Ve, . (50)

For the solid phase, defining the pressure is more complicated, but it is generally thought that there
must be a contribution from the carrier phase and, possibly, a contribution from the dispersed phase

itself. Because the concept of granular pressure in this manuscript is entirely defined from a specific

turbulence context (RANS vs. LES), we formally write Ve, P. as
Dusty (dispersed) phase: Vsil_’i = Vg, 13g + VSSE = SSVI_’g + 1_3gV8S + Vasﬁ . (51)

The first term, Vg ﬁg, represents three-dimensional buoyancy effects on the particle (the gas

pressure gradient exerts a buoyancy force on a population of grains), and the second term, Vssl_)s,
represents granular pressure effects that must be defined in a specific solid-phase turbulence and/or
rtheological model. Within the RANS framework, either ""P, represents the collisional part of the solid

pressure (while the kinetic granular pressure would represent the true turbulent motions of the grains),
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or “P, simply represents both the kinetic and the collisional pressures'®. A third more complete

approach [e.g., Dartevelle 2004] is to consider the effects from an averaged bulk frictional plastic
pressure, so that the total solid phase pressure would now read as Py = fPS + P, with fPS (or I_’S) being

a frictional pressure and ""P; being a pressure from a turbulence model (e.g., kinetic-collisional model
within RANS). Within LES, it is usually assumed that the granular subgrid pressure is negligible. In the

following, we will assume that it is always possible to define a filtered or an ensemble-averaged solid-

phase stress (i.e., P, and T,) from, for instance, a plastic rheology as achieved by Dartevelle [2004],

but other interpretations can be given to P, and T .

Rearranging Eq. (49) with Eq. (50) or Eq. (51) in a two-phase dusty cloud context, we

systematically have a term, (Ent,i —ﬁg )Vsi , that represents the pressure difference between the

interface and the carrier phase. In a well-mixed multiphase flow system, this term is negligible [Ishii

1975]. Therefore, we finally obtain, after simplification,

opgu Ao~ o~ o — ur ra — o
Pagtg +V-pguu, =-g,VP, -V g, (‘lrngt /SGTg)+Mg ® +u, R, +p,G,
o .(52)
apsus +V-5 0t _ Vl_) \V/ l_) \V/ = tur/SGT Mdrag TR ~ (N;
T " Ps U Ug =& g V&L =V & | T + s |+ Mg + U R +ps Gy

where ‘s’ represents any dispersed solid phase within the gas phase. Eq. (52) is valid for both the
LES and RANS frameworks. Within a specific turbulence framework, different constitutive equations
must be specified for the turbulence/subgrid stress tensor of the gas phase (t“r/ G
the solid phase (“"*“T), and the drag vector for all the phases (M;).

Within the RANS (Appendix 2) and LES (Appendix 3) frameworks, the stress tensors from

o), the stress tensor of

turbulence/subgrid can be defined as

'® Defining the stress tensor of the granular (dispersed) phase, T, is not difficult. Within the RANS framework, it is
common to qualify the “molecular” stress tensor (i.e., not due to turbulence) as “collisional,” while the “turbulence” stress
tensor would describe the kinetic behavior of the grains (possibly modified by the gas-phase turbulence). However, both
granular behaviors (collisional and kinetic) are clearly due to the fluctuating and chaotic motions of the grains within the
flow (whatever the reasons) [Dartevelle 2003; Dartevelle 2004; Dartevelle et al., 2004]. In this manuscript, within RANS,
we will define a turbulent granular stress as being the sum of the kinetic and collisional parts, T = kT, + °T,; hence, "T, is
a full kinetic and collisional viscous stress tensor as described, for instance, in Dartevelle [2004]. Within LES, SGT, will be
the sum of the Leonard-terms (strictly speaking the only true filtered part), the Cross-terms, and the Reynolds-term (strictly

speaking, the “true” unresolved part from the subgrid). The nonturbulent stress (T‘s , or E and 7T,) may be, for instance, due

to frictional interactions between grains, which can be described at high concentrations by a visco-plastic rheology
[Dartevelle 2004].
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turTi = p; “fi”\“/i" RANS framework

S — (53)
5G T = 51 (ﬁl ﬁi - ﬁi fli )+ (fll lli" + ﬁi lli” j + [lli" lli" j LES framework
Leonard Cross Re ynolds

It should be noted that the viscous stress tensor, T;, is not easy to calculate because it involves

unknowns in terms of Favre phasic-weighted viscosities (p; and bui ) and velocities (u; instead of u;)
both within the RANS and LES frameworks. As shown in Appendix 5, it is common to assume that T;

may be written as
2
T~ (Vﬁi +VﬁiT)+§uiV-ﬁiI— LR I (54)

where the viscosities acts as a constant with respect to the LES/RANS integral operators; hence,

Wi = =~y and bpi ~ bpi ~ bpi. Eq. (54) is, of course, a simplification that is nevertheless very

common, even for compressible turbulent flows [e.g., Gatski 1997].

3.3. Energy (Enthalpy)

From Appendix 2 and Appendix 3, we may write the phasic enthalpy equation within both RANS

and LES frameworks as

op; h; L _ P . -
L*‘V'Pihi“i ZSiW‘r,i_v'gi (qi—i—tur/Squ)-i-Sid—tl-f-piSi-l-hHi , (55)

ot

where "H; is the interfacial heat transfer between phases; S; represents any supplementary heat

sources (i.e., radiation); Wy; is the viscous dissipation; q; is the intraphase heat conduction flux; and

w36y is a supplementary heat flux induced by turbulence (RANS) or by the subgrid (LES). We have

neglected in Eq. (55) the supplementary dissipation from turbulence (“"W;;) or from the subgrid
(*“W.,), as it is universally assumed to be negligible with respect to all the other contributions in this
equation.

"H; can be approached by (see Appendix 4)
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"H zfliRi+iQJ~(Tj—Ti) , (56)
j=I1

j#l

where Qj represents the interfacial heat transfer coefficient, which is usually taken as a function of

the Nusselt, Reynolds numbers, and phasic heat conduction coefficients, and R; represents the total
contribution of mass transfer between 1 and all the other phases.

The heat fluxes are

e = Plh”“” =p; h/u/ RANS framework (57)
SG(L' = |:§1 Ei@i _Eilzligi:| [Pl h1“ + 91 hlﬂu :l |:Plh"u”:| LES framework

where k; is the molecular (not affected by turbulence) thermal conductivity coefficient of phase i

The following general definitions are used in Eq. (55) (see also Appendix 7 and Appendix 8):

:ui{—(Vﬁi+VﬁiT)+%(V.ﬁi)I}—bpiv.ﬁil , (58)

where p and “; are the shear and bulk viscosity of phase 1 and D; and D; are the rate-of-strain
tensor and its deviator.

In the two-phase dusty flow context without any phase change between the solid particles and the
gas phase, Eq. (55) may be further simplified into
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: : o : : dP,
where, in Eq. (59), for the solid phase, various interpretations can be given to?S and are

disregarded most of the time.
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4, Reynolds (RANS) and Subgrid (LES) Relationships

As we have mentioned throughout this manuscript, unlike the RANS framework, the subgrid stress
tensor in a multiphase system is not very well known. On the other hand, the RANS framework of
turbulence is not common in geophysical-atmospherical multiphase flow applications (yet highly
developed for small-scale flows as in chemical engineering). Therefore, one way or the other, it would
be interesting to know the exact relationships between the Reynolds stress tensor from the RANS
framework and the subgrid stress tensor from the LES framework. In addition, for the hybrid model of
turbulence, knowing the exact relationship between RANS and LES variables is essential.

We know that for any instantaneous and local variable of phase 1 (see §2.7):

RANS . LES

u = ﬁi + lli" = I:Ii + l};r

(60)

The stress tensor from turbulence (RANS, “'T;) and from the subgrid (LES, 5°T;) are defined by
Eq. (53). To avoid in the following any confusion between averaging and filtering operation, let us

rewrite Eq. (60) as

RANS . LES

u; = <ui >av +uf ’ 61)

= ﬁi + lli"

RANS LES

where, now, in this paragraph, the tilde denotes a Favre mass-weighted filtering process and the

angular operator with the subscript “av” indicates a Favre mass-weighted ensemble-averaging process.

As a reminder, the double prime indicates either the fluctuating part (RANS) or the subgrid part (LES)
of a variable. With this in mind, let us define the following Reynolds stress tensor, “'R;, from the

RANS framework and subsequently filter it with the definitions of Eq. (61)

turT =(p; ll‘" ll‘” _E' ll'" "
! ' "TIRANS 'IRANS v '\ "TIRANS 'IRANS v
62
ey , (62)
- tur Ri — _ 1
Pi
and
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tur Ri <

t
ur R; < u; +u1

RANS>

RANS

(ui +u

LES av
tur Ri : 1ll1 > + <lli > <ui > + lli" lli"
av av av LES av

LES
2 ui” LES >av <ui >av -2 <ﬁ1 >av <ui >av

av , (63)

/] j> (w >av : (64)

av

lli" + <lli >
RANS av

Eq. (64)a and Eq. (64)b into Eq. (63) yields the following:

HLEs >av ' (65)

Rearranging Eq. (65) yields the following:
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LES >av . (66)

IR, =< SOR >av () —m : (67)

where the LES subgrid stress tensor is as usual defined as

n uiﬂ
LES

"
1

LES (68)

SG = . . -~
Ri =(llilli —u; )+2ui lli"

LES

Eq. (67) shows the relationship between the RANS Reynolds stress tensor (“'R;) and the LES
subgrid stress tensor (*°R;). In other words, both models of turbulence (RANS vs. LES) can control
each other. Indeed, the LHS of Eq. (67) is the filtered Reynolds turbulence stress given by a specific
RANS model, whereas the first RHS term of Eq. (67) is the average of the subgrid stress model

supplied by a LES model. The two other RHS terms in Eq. (67), (u;u; and <ﬁi> <ﬁi >av ), are known

av
because they are modeled by the respective momentum equations (from either the LES or RANS
frameworks).

Needless to say, Eq. (67) turns out to be critical for the hybrid-LES model because it makes a
specific connection between the RANS subdomain (usually near a wall boundary) and LES subdomain

(usually far away from a wall boundary).
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5. Method of Characteristics

5.1. Introduction

We will now demonstrate that the hydrodynamic and thermodynamic model presented in §3 and
based upon the demonstrations in Appendix 2 and Appendix 3 meets the necessary condition for well-
posedness as an initial value problem [e.g., Sedney 1970; Lyczkowski 1978; Wendroff 1979;
Lyczkowski et al., 1982; Stewart and Wendroff 1984].

A mathematical problem is said to be well posed as an initial value or Cauchy problem (also called

a properly posed problem) if and only if

* There is a solution (“existence”),
* The solution is uniquely determined (“uniqueness”), and
* The solution smoothly and continuously depends on the initial (or previous time-step)

data (“stability”).

In typical time-dependent problems of this manuscript, it is necessary that all “characteristics” of a
set of partial differential equations are strictly real'’. If not (i.e., “complex characteristics”), any
perturbation introduced at the initial time would grow exponentially'®.

Let us define a characteristic function within the (t,x)-plane, xx=0, as “a discontinuity of a

919

solution which only occurs along the characteristics”” [Courant 1965]. In other words, a set of

variables U (density, velocities, energies, porosity, pressures, ...) 1S continuous across =0 [and

possibly everywhere else in the (t,x)-plane], but the normal derivatives of U, Z—U , taken on 7(x=0,
n

may present “jump” in that they may be undetermined®.

17 Real characteristics in themselves are not a sufficient condition to guarantee well-posedness, but a necessary condition to
be met The reason is that, for time-dependent problem, proper initial and boundary conditions must be also provided [e.g.,
Courant 1965; Lyczkowski et al., 1978]

'8 A time-dependent elliptical system seems to be physical nonsense because the variable “time” does not have the exact
meaning of time as it is understood in this part of the Universe. Theoretically, such a time-dependent elliptical system would
lead to solutions within the current time step that would depend as much as on the past data as on the future data. Because
time flows into one unbounded direction (from past to future), this is clearly not acceptable.

1% By discontinuity, we mean a “weak discontinuity” (i.e., not shock, which is a strong discontinuity) in which any variables
are perfectly continuous, but normal derivatives of these variables upon the characteristics’ function may be discontinuous
or undetermined [Sedney 1970; Garabedian 1986].

%% Because the normal derivative on the characteristic curve “goes out of the curve,” it is commonly named the “exterior
derivative,” whereas the tangential derivative that lies on the curve itself is often named “interior derivative” [Sedney 1970].
This “interior/exterior” nomenclature is after Courant [1965].
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A (1x)

Space, x
A

Time, t

Figure 9

Characteristic curve, 7, in the (t,x)-plane with the normal and tangential (n,s) coordinates on .

Knowing, U, the vector column formed of n dependent variables (i.e., the n components of U), the

set of PDEs (continuity, momentum, energy) seen in the previous paragraphs may be written as

LU)+DU)=0 (69)
where L(U) is a matrix operator that can be written in 1-D as the following:
ou ou ‘ (70)

L(U)=A, —+A, =
) Yoot ox

A and Ay are nxn square matrices, and D(U) is a vector function of U but not of any of its

derivatives.
In this one-dimensional demonstration, the characteristic functions are curves in the (t,x)-plane.

On these curves, let “s” be an arc length and “n” be a unit normal to the curve (see Figure 9). By the

chain rule, we have
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U _dU ds U on
ot s ot on ot

(71)
oU _0U o5 oU an
0x Os 0Ox On 0x
Let us cast Eq. (71) into Eq. (69), which yields the following after rearrangements:
A YA S B Y by =0 (72)
ot 0x ) On ot ox ) Os

In other words, we have just made a change of variables to rewrite the original time and space Eq.

(71) in terms of normal and tangential variables (see Figure 9). In order to have, across the
. i " o ou . .. .
characteristic curve, a “jump” of the normal derivative of U, T (i.e., a nontrivial solution), we must
n

have the following determinant as

Det| A, XA, Mo
ot ox

= , (73)
Det[A, —AA]=0

where A is the eigenvalues of the characteristics

on
__ ot __ &
A= on T (74)
0x

and Eq. (73) is a characteristic equation or characteristic condition. Every characteristic curve for
the system of equations, Eq. (69), is a solution of the Ordinary Differential Equation, Eq. (74), where A
is the root of the polynomial equation given by Eq. (73). A characteristic function, yx=0, 1s therefore

a privileged path of points of (weak) discontinuities moving along the direction x with time t at a
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velocity d_)t( Associated with each eigenvalue, A, Ay, ..., A,, it is possible to find at least one

eigenvector’’, u;
u (Ax =X A )=0 . (75)

These eigenvectors are, by definition, all linearly independent with each other. Hence, if n real and
distinct eigenvalues can be found, the system, Eq. (69), is totally hyperbolic. If all eigenvalues are real,
but not necessarily distinct (nonequilibrium flows), the system is simply referred as hyperbolic [Sedney
1970].

In Appendix 6, this preceding MOC technique is applied to a single-phase compressible flow for
the Euler and Navier-Stokes PDEs. Appendix 6 highlights the importance of viscous phenomena
(molecular and/or turbulent) because the Euler and Navier-Stokes do not have all their characteristics in
common. However, both single-phase models (inviscid vs. viscous) have real eigenvalues, hence
satisfy the necessary condition required for well-posed initial-value problems [Lyczkowski et al.,
1978].

In the following, we will demonstrate that the multiphase Navier-Stokes PDEs satisfy the
necessary condition for well-posed initial-value problems if and only if viscous phenomena are
included in the model. In other words, multiphase Euler PDEs are not a well-posed model as an initial

value problem™.

I Which happens to be the normal derivative of U.

22 We won’t demonstrate that result in this manuscript, but the demonstration is rather straightforward. This result has,
however, important implications because the turbulence phenomena become critical if not a necessity for the stability and
uniqueness of the mathematical model.

43



5.2. Necessary Requirement for Well-Posed RANS and LES Systems

Let us summarize our equations in 1-D, two phases™ (gas, g, and dispersed, s) with no phase

change within the RANS and LES frameworks:

Continuity
Og,p o
grg
+ €. p.u
ot ox ePelle
Os 0
;ps—'— 8SF)S]‘lS
ot 0x
Momentum
Og.p,u o OP ot o
ePe s + €,P, U, U, +&, £ +e, £ +Tg €,
ot ox ox ox 0x
dg,p,u, 0 oP, OP, or, 0
+ E.P, U U, +E + &, + &, + T, €,
ot ox 0x ox 0x O0x
Energy
oe,p,h o dP
ghrg g g
+ ep,uh —¢ +——¢
ot ox Pl T T g ox
Oe.p.h 0 dP 0
Sps : 85 pS uS hS _85 - + 85 qS
ot ox dt 15).4

= M-‘rSgngg

= _M+85pSGS

= ngT,g JregpgSg +Q

= 8S\K[‘I:,S +85pSSS _Q (76)

We have dropped out the symbol referring to LES and RANS because these equations are identical

in both frameworks. All terms on the RHS of Eq. (76) are scalar functions of the column vector U: M is

a momentum transfer function, Q is a heat exchange function between phases, G is a body force, S is a

heat source within a given phase, and W is a viscous dissipation function. On the LHS, all the stress

terms, T, 1, and P, may involve turbulence and/or subgrid dissipation with “molecular” viscous

dissipations. For instance, for the dispersed phase, the pressure, P, and the shear stress, 15, may include

plastic contribution and a contribution from RANS or from LES. The term q; represents the heat

transfer by conduction within a given phase and is generally given by a Fourier law. Let us further note

that in 1-D

2 Hereafter, “s” represents any dispersed phase—in some cases, it may be compressible, in other cases, fully

incompressible (it is then a true granular phase).
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g = lg Tl =g —Hg
; x| (77)
T,=P+7,=P—p, >
ox
where 1, and i are viscous functions, possibly functions of turbulence, and
dP, OP OP,
g _ Y% ru, g
dP, _ OP, u, 0P,

dt ot ox

Last but not least, it should be recalled that our multiphase model is entirely derived from the
phasic function of presence, Xj, which takes two values—1 or 0 (see §2.3). In addition, these unique
binary values for X; are ensured with the following property (written in 1-D):

X,

P oo 79
at uInt aX ( )

where uyy is the bulk velocity all the interface in the system. After averaging/filtering, Eq. (79)

becomes
0c Uy, Ocy =0 . (80)
ot 0x

The exact formulation of the ensemble-averaged or filtered up is not really needed for the
following demonstrations; nonetheless, Appendix 4 suggests different possibilities to approximate uy,
and shows that it can be written as a function of each bulk phasic velocity.

We will now demonstrate that the set of PDEs, Eq. (76), Eq. (77), and Eq. (80), meets the necessary
condition for well-posed initial-value problems (i.e., all eigenvalues on the characteristics are real) and
also that the characteristics are invariant to the chosen dependent variables’ vector and Equation of
State. The demonstration starts first with the most general case possible, i.e., all phase are
compressible. Afterwards, we redemonstrate with a more realistic case, i.e., the dispersed phase is

incompressible.
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5.2.1.

General case: all phases are compressible

We assume both phases are fully compressible with the following EOS for each phase:

Gas phase Dispersed phase
thhg(P ’pg) hg =hg (P, ps)
ch ch
dh, = g| dP, + g| dp, dh, = h, dP, + oh, dp,
an ‘p 5pg ‘P o, P o, P
= hgaP dPg +hg,P dpg = hs,p dPs +hs,P dps
Rearranging the set of Eq. (76), we now have the following:
Continuity:
op, os, op, 0s, ou,
€ + +¢e,u +p,u, ——+p, € =0
e o e Tor el gy Pele oy TPt Ty -
op 88g ou p 68g
l-¢ — —p, +(1-¢, |p, —+(1-¢, |u, ~— —p, U =0
(1= ) oo (s o e (s Ju e
Momentum:
du, OP, or, Og,
€,P, p +&, p +&, S +T, 5 =M+g,p,G,
t X X X
(82)
s Pg aPs a‘CS aag
(l—sg)ps +(1—8g) o +(1—sg) o +(1—8g) o -T o =—M+¢g,p,G,
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Oe.pihy 0 h dr =2 W., +£pS, +Q
ep.uh —¢& Qg =& . +¢&p.S.
at ax 1 pl 1 1 1 dt ax lql 1 T,1 lpl 1
=S
dh, dP, N O, W tepS +0 oq;
£ . —&. . =g . +¢&p0.S. —&.
1 pl dt 1 dt ql ax 1 T,1 1 pl 1 1 aX
&
h dr +h de dr + %, W, +¢pS, +Q &l
gp | h . —g, . =gW,, +£pS +Q—-g ——
1p1 i,p dt i,P dt i dt ql aX i 'V, 1p1 i i aX
&

dP dp; g, 0q,
_Si(l_pihi,p)T-i—gipihi,P +q; :Siwri+8ipisi+Q_8i

dt ox ’ ox
=
eW.; +&pS +Q—¢g %
MR o phe dp e e MTTERRTER a0 gy
Codt (l_pihi,p) dt (l_pihi,p) ox (l_pihi,p)

i

h
It can be shown (Appendix 6) that the ratio, _Pillie , 1s always nonzero and positive and may be

1_pihi,p
related to the square of the speed of sound. To facilitate the reading and the manipulations of the

following equations, let us labeled this ratio as C;>. The phasic energy equations can now be written as

oq,
dP, , dp, q Cz o, g, W, +¢,p,S, +Q—¢, o
_Sg + 83 pg Cg + =
« dt aphy, O l-p.h,, 84
dP* 2 dps qscf ng & s.i + &Py +Q_gs ox
_(I—Sg) ‘ +(1_8g)pscs — = — =
dt dt (1—gg)pshsﬂp ox I—p.h,,
It is now clear that the column vector of dependent variables must be
T
U:(Sg,pg,ps,ug,us,Pg,Ps,rg,Ts) : (85)

The 9 dependent variables with 9 PDEs are 2 continuities [Eq. (81)], 2 momentums [Eq. (82)], 2
energies [Eq. (84)], and 2 stress equations [Eq. (77)]; the ninth PDE is Eq. (80), which is only made of
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known variables, &, and uy,, where upy, the interfacial velocity, is a function of dependent variables,
1.e., U, Uy, €, Ps, and p, (see Appendix 4).
If our set of equations meets the necessary condition for well-posed initial-value problems, we must

show that this set of equations, A (Z—?+AX (Z—U+D(U) =0, has only real eigenvalues. In other
X

words, the roots of the characteristic polynomial, Det [[AX -NA; ]] =0, must all be real (i.e., L e R).

The 9x9 square matrices A; and Ay are respectively

P, &, 0 0 0 0 0 00
-p, 0 (1-%¢,) 0 0 0 0 00
0 0 0 £,p, 0 0 0 00
0 0 0 0 (1-g,)p, 0 0 00
A =] 0 &pC: 0 0 0 —¢, 0 00
0 0 (1-g,)pCI 0 0 0 —(1-g,) 0 0
0 0 0 0 0 0 00
0 0 0 0 0 00
1 0 0 0 0 00
and
p,u, g,u, 0 €,p, 0 0 0 0 0
-u,p, 0 (1-¢,)u 0 (1-¢,)p, 0 0 0 0
P+, 0 0 €,p,u, 0 g, 0 g, 0
P -1 0 0 0 (l—ag)psus (l—sg) (l—a) 0 (l—s)
%6, epC
A= n, p.C.u, 0 0 0 —gu, 0 0 0
_ql;cf 0 (1-¢,)pCu, 0 0 0 —(1-g)u, 0 0
0 0 0 -, 0 0 0 0o 0
0 0 0 0 -1, 0 0 0 0
0 0 0 0 0 0 0 0

The characteristic polynomial is as follows:
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det[A, -1 A ]=0
o : (86)

(ug —X)z (uS —7»)2 (uInt —7\,)82 (l—sg )3 Kty =0

All the “characteristic polynomial roots” are real: A — {ug,ug,us,us,ulnt}. Our mathematical

model in both the LES and RANS realms satisfies the necessary condition for well-posed initial-value

problems.

5.2.2. Dusty cloud case: the dispersed phase is incompressible

We now assume that only the gas phase is compressible with the following EOS:

Gas phase Dispersed phase
Pg = Pg(Py,Mg) ps = constant
op op
dpg :a_Pg dPg +a—g dT]g
g n ng P
= C:dPg +p, pdn,

where 1, and C, are the entropy and the speed of sound of the gas phase. We take note that there

is no granular pressure in this specific context; hence, from thermodynamics,

1
dh, =T, dn,+— dp, dh,  =Tdn,
Pel,
where the symbol ‘T’ refers to temperature and should not be confused, in the following
discussion, with the symbol for stress. Rearranging the set of Eq. (76) with this new EOS, we now have

the following:
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Continuity**:

op, Og, op, oe ou,
€y p + Py ot €4 Uy o + P Uy ——— + Py &, o =0
5 5 (87)
€ 0 €
- +(1—8g) i —u, — =0
ot 0x 0x
Momentum:
du, OP, o, 0g,
€4 Py o +&, o +g, o +(Pg +rg) . =M+¢g,p,G,
(88)
us an 617s agg
(1—8g)ps 1 +<1—sg) P™ +(1—8g) o - T, . =-M+¢,p,G
Energy:
dn, 0g, 0q,
€,P, T, m +d, o =g, W, t&,p,S, +Q—¢g, ™
5 (89)
dns Sg aqs
l-¢ T, - =g, W,; +ep,S, +Q—-¢
( g)ps S dt qS aX S S,1 SpS S Q S ax
With this set of PDEs, the column vector of dependent variables is
T
U:(sg,ng,ns,ug,us,Pg,rg,rs) . (90)

The 8 PDEs involved are 2 continuities [Eq. (87)], 2 momentums [Eq. (88)], 2 energies [Eq. (89)],
and 2 stress equations [Eq. (77)]. In this case, we do not use Eq. (80). The 8x8 square matrices A and

Ay are respectively:

** Interestingly enough, one can see that the void fraction (&) 1s propagating exactly with the dispersed solid-phase velocity
(us) and with a dissipation rate equal to the divergence of u, [Lyczkowski et al., 1982]. From Eq.(87),

d
(:tg :(l—sg)V~us
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Sg
Py €.Pgp 0 0 0 el 0 0
g
-1 0 0 0 0 00
0 0 £,P, 0 0 0 0
A=[0 0 0 0 (l-g)p, 0 0 0
0 &p,T, 0 0 0 0 00
0 0 (l-g)pT 0 0 0 0 0
0 0 0 0 0 00
0 0 0 0 0 00
and
Sg
P U, E.P,pY, 0 0 0 Fug 0 0
g
—u, 0 0 0 (1-¢,) 0o 0 0
P, +1, 0 0 €,P U, 0 €, €, 0
A =| -, 0 0 0 (l-g,)pu, (1-g,) 0 (1-¢,)
q, g,pu, T, 0 0 0 0 0 0
—q, 0 (1-g,)pu,T, 0 0 o 0 0
0 0 0 -, 0 o 0 0
0 0 0 0 -1, 0o 0 0

And the resulting characteristic polynomial is as follows:
det[A, -1 A ]=0

- . 1)

(ug —k)z (uS —7»)2 pgeg (l—sg )2 Pshs Mg Ty T, =0

All eigenvalues are real, A — {ug,ug,us,us}, and are nearly equivalent as in §5.2.1 with the

exception of uyyt.
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5.3. Characteristic Invariance

We now demonstrate that the characteristics found in §5.2.1 are invariant to the EOS used and
hence to the dependent variable vector. Again, taking the general case—both phases are

compressible—we may use this following EOS:

Gas phase Dispersed phase
pgng(Pang) Ps = ps (P, 1)
0 0 0 0
dp,  =—Pel gp +Pel gy dp. =L qp 1 P gy
opP, . on, , OP, , on |,
= ngdPg +pg,Pdng = C;zdPs +ps,Pdns

Rearranging the set of Eq. (76) with this new EOS, we now have the following:

Continuity:
e, dP dn de
O a ToPer g TP TP =0
g
92)
(1—8 )dp d de ou
g s s g
——+(1-¢ -p.—+|1-¢ ~=0
c (1= o T =P+ (18 o
Momentum:
du oP ot oe
€, P, dtg +g, 6; +g, 6; +(Pg+rg) 6>j =M+g,p,G,
an R T, 68g
(l—sg)pS +(1—83) o +(1—85) o (1—8[5) o —(R +1:s) o =-M+¢p,G,
(93)
Energy:
dn ot oq
Sgpng - +qg - zngg,i +8gpgSg +Q_8g -
dt ox O0X 94)
l-¢ sTs —— s ZSS\K]si-i_gs sSs+ — & -
( g)p dt B ox ’ P Q ox
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The column vector of dependent variables is [compare with Eq. (85)]

T
U=(sg,ng,ns,ug,uS,Pg,Ps,tg,ts) , (95)
which is used with 9 PDEs: 2 continuities [Eq. (92)], 2 momentums [Eq. (93)], 2 energies [Eq.

(94)], and 2 stress equations [Eq. (77)]. The ninth PDE is Eq. (80). The 9x9 square matrices A; and Ay

are respectively as follows:

€
Py EPyr 0 0 o = 0 00
5 Cg
I-¢
-, 0 (I-g)p, O 0 0 (ng) 0 0
0 0 0 ep, O 0O 0 00
A=l 0 0 0 0 (l-g)p, 0 0 00
0 ep,T, 0 0 0 O 0 00
0 0 (l-g)pT. 0 0 0 0 00
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
and
p,u, EUP,, 0 0 0 —u, 0 0 0
1-
-u_p 0 (l—ag)uspsp 0 (1—8 )p 0 ( jg)u 0 0
‘ C
P +1, 0 0 €,p,u, 0 g, 0 g, 0
A =|-P -1 0 0 0 (1-g)pu, (1-¢,) (1-¢,) 0 (1-¢)
q, g,p,u,T 0 0 0 0 0 0 0
—q. 0 (1-¢,)puT 0 0 0 0 0 0
0 0 0 1, 0 0 0 0 0
0 0 0 0 —u 0 0 0 0
u 0 0 0 0 0 0 0 0
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The characteristic polynomial is as follows:

det[A, -1 A ]=0

=

(96)
(ug —X)z (uS —X)2 (uInt —k)sng (l—ag )3 Ps Mg Mg Ty T, =0

Not only are all eigenvalues real, A — {ug,ug,us,us,uInt } , but they are exactly the same as in

§5.2.1. Hence, the characteristics of our model are invariant to the choice of EOS and to the desired
dependent variables.
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6. LES and RANS Entropy Constraints

The second law of ‘[hermodynamics25 states that the entropy change of a nonisolated system
cannot be less than the entropy exchanged with the surrounding world®® [Lhuillier 1996]. The entropy
can be seen as the amount of disorder of a system; its internal energy directly depends on the amount
of disorder, and its temperature quantifies this amount of disorder.”’” However, in a multiphase
system with enormous scale differences between the constituents of the multiphase system (gas
molecule sizes vs. grain-sizes), the notion of entropy is not obvious to define because the exact
meaning of microscale depends on the phase under consideration (gas or granular phase). Nevertheless,
the entropy condition can be used to somehow assess or, at least, shed some light on the physical
soundness of a multiphase model. Indeed, the Clausius-Duhem inequality can be used as a restriction
on the various constitutive laws making up the mathematical model [Ishii 1975; Arnold et al., 1990;
Lhuillier 1996] and also the constitutive laws (closures) of the turbulence models (RANS or LES).
From this particular perspective of closures and constitutive laws, the Clausius-Duhem inequality
should be rather seen as a macroscopic (or mesoscale) entropy condition [Drew and Passman 1999]
obtained either by statistical (RANS) or by filtering (LES) processes.

From Appendix 2 (RANS) and Appendix 3 (LES), the entropy condition in a multiphase system of

n phases (i=1,2,..,n) may be written as

ﬁiﬂz_v‘gi(&)i‘Ftur/SGq)i)+fsii+nHi , O7)

where, ®@;, the flux of entropy, has two sources: one Favre-phasic averaged/filtered (®; = (%J)

1

and one from the turbulence/subgrid [""*° ®;, see Eq. (All.44) for RANS or Eq. (AIIL.27) for LES];

the entropy source is defined by a Favre-mass weighted relationship: ¥; = (%j, and the mean rate of
i

n
interfacial entropy between phases, "H;, complies with the entropic jump condition, Z H, >0,
i=1

25 Or the Entropy law, or the Clausius-Duhem inequality.

26 If the system is isolated, then the entropy of this system cannot decrease.

27 This mental picture works well for the gas phase. At the molecular level, the disorder is captured by the temperature of
the gas phase: the hotter the gas, the more disorder and the higher the fluctuating kinetic energy of gas molecules. For an
Eulerian dispersed (solid) phase, this notion of disorder is less clear as we may have very hot grains in a perfectly idle
granular deposit. In other word, there is no clear relationship between internal energy, entropy, and amount of disorder at
the grain scale.
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which does not necessarily vanish because an entropy production may occur at the interface [Lhuillier
1996]. At this stage, we do not need to make any distinction between filtered (LES) or ensemble-
averaged (RANS) variables™. However, let us keep in mind that the exact definition and the meaning
of each variable (averaged vs. filtered) are, of course, not the same.

Because it is universally acknowledged within the multiphase flow realm [Ishii 1975; Arnold et
al., 1990; Drew and Passman 1999], we follow the main idea of Ishii [1975]. Let us assume that the
fluctuating part (RANS) or the subgrid part (LES) of any constitutive variables of the internal energy is
much smaller than the macroscopic change (averaged/filtered) of the variable under consideration®.
Such an assumption holds if we consider a time interval sufficiently short (At<<) and, in addition for
LES, a filter size sufficiently small (Axx<<). With this assumption in mind, let us define the phasic

internal energy as a function of the macroscopic phasic density (p;) and entropy (1 )0

L~T(%.p) . (98)
with
Tl o
on;
Boap o b
opi
1 P &2
d, ~Tdf -Pd—=TdRy +—dp <
Pi pi
di _ 5;11 dn; azi dpi d
dt 87]1 dt 8[:)1 dt

* We have dropped out the “bottom lower hat” for the LES variables.

* Hence, P, zf’l ~P; N =n;; and T zi ~T.

3% It could be shown that the internal energy is a much more complicated function [e.g., Bedford and Ingram 1971] if one
strictly follows “the principle of equipresence” that states that “a variable present as an independent variable in one

constitutive equation should be present in all constitutive equations” [Coleman and Mizel 1963]. Hence, Eq. (98) should be
rather written as [e.g., Bedford and Ingram 1971]:

Ii ~ Ii (pi=1,..,n s Vpi=l,“,n > Ui, Vui s Tl > VT1 > )

And, most certainly, the interfacial terms may need to be added as well. Hence, in a multiphase flow system, this principle
of equipresence turns out to be very quickly unmanageable and totally inappropriate [Drew and Passman 1999]. In the
following (simplified) discussion, we aim to reach an entropy condition as “usable” and “manageable” as possible within a
specific mathematical model (and computer code) [e.g., Arnold et al., 1990]. Therefore, we follow the “principle of
separation of components” [Drew 1971; Drew and Passman 1999] that states that “the constitutive equation of a variable of
a given component is a unique function of variables associated to that component only.” This principle of separation of
components is exactly applied in Eq. (98).
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Therefore, we may rewrite Eq. (97) as the following:

Pi (Tl ddrli JZ ~TV-g® +pS; +T "H; . (100)

We also note that the macroscopic internal energy is (see, for instance, the demonstration in

Appendix 2 with the appropriate simplifications of Appendix 5) as follows:

opi; _ N
PRy il = (W + SO )=V s (T 0 458+ T
<
. d; _ .
Pi dtl ~ g (W‘r,i + S0 )—SiPiV'ui —V-g (CIi + riSGg, )+Pisi +'H (101)
=
. dI; tur/SG By = _ | tur/SG R
Pi g, zSi(Wr,i + Wei | =&RV -0 =V g ((Ii+ qi |+ piS; + H;
where ™" SGqi is the heat flux contribution from turbulence or from the subgrid; the mean rate of

interfacial internal energy transfer between phases, 'H;, that fully complies with the jump condition

n

between all possible interfaces is Z 'H, =0. In Eq. (101), we further assume that the fluctuating

i=1

(RANS) or the subgrid (LES) velocity is divergenceless (V -uj =V -u; = 0) [Besnard et al., 1992].
Taking the material derivative of the equation of state, Eq. (99)c:

&b _gdn B dn

dt ' dt 52 dt
=
dli ~ dn B —o = dg

L R, —&p V- il —p; — 102
a g - P TEPV O P (102)
=

Eq. (101) and Eq. (102) into Eq. (100) gives the following:
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i dt
=
81 (WTI + tur/SGWT 1 )_v'gl (_1 + tur/SG 1)+ lHl - : Rl +P1 d81 2 _iv 81@1 + ~1 TlHl
’ Pi dt
< (103)
\2
sk (V . B
81(W1:1+tur/SGWTI)+ i I(T 1) _v_aitur/SGqI+(1Hi_T1nHl)_§Rl+Pid_8t120
i pPi

~ \2
Siki \Y i P _ .

1

which is the equation’s aim as it clearly imposes a condition to the whole set of various closures
laws. Reading from left to right, on the LHS of Eq. (103) are the following: (i) molecular shear-viscous
dissipation (W,;>0); (ii) the RANS turbulent energy (“"W.;>0) or LES subgrid energy (*“W.;>0)

dissipations®'; (iii) molecular heat conduction where k; is the phasic conduction of heat (k;>0); (iv) heat

SG

conduction within a given phase by turbulent means (—V - ; turqi ) or within the subgrid (-V -¢; 7 q;);

and finally, (v) between brackets, the interfacial Helmholtz free energy (‘Hi>0), the mass exchange rate

. ) . . _ de;
through the interface (—R;); and the phasic volumetric concentration variations, d—l , “seen” by the
t

) de;  Og;
material, where —- = —
dt ot

+l~li 'VSi.

In the most classical way to approach turbulence [Kashiwa 2001; Dartevelle 2004], the turbulent

heat flux term (—V - g; tur/Squ) is always positive with an eddy-viscosity model (RANS or LES):
17 tur/SG Pr Hi ! ’

tur/SG

where Cp; is the specific heat at constant pressure, Pr is the turbulent Prandtl number, and

WGy is the turbulent eddy-viscosity that must be provided by a RANS or a LES model. Therefore,

3! As a reminder, “"S°W
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one can see that, with maybe the exception of the bracket term, all the terms of Eq. (103) are always
positive.

Let us define, anywhere and anytime, the system as the mixture of all the phases in a CV.
Therefore, for the mixture system, we must sum all terms of Eq. (103) between all the n phases

[Kashiwa 2001]:

- \2
n gk (VT P _ de:
g W. i T+ tur/SGW i +11(~—1)—V'Si tur/Squ + f i —l_)—lRi +Pi dgl >0 (105)
- - T, d
Py i Pi t
- P, — dg
where the bracket term in Eq. (105), Z { f i ——R; +P d_tl} , 1, by definition, either positive
=1 i

n n n
or equal to zero because ZRi =0, Zsi =1, and Z in >0.

i=1 i=1 i=1

Hence, overall (for all phases), the mixture condition of Eq. (105) is fully satisfied as required by

the second law of thermodynamics.
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7. Summary and Conclusions

This manuscript has developed a multiphase flow hydrodynamic and thermodynamic model within
both the RANS and the LES frameworks. With the mathematical methodologies established in §2, it
has been demonstrated that the basic Navier-Stokes equations are essentially the same for RANS and
LES, even though the mathematical and physical meaning of these PDEs is radically different:
ensemble-averaged (RANS) vs. filtered (LES) fields. Yet, because the hydrodynamic and
thermodynamic PDEs share essentially the same basic “structure,” they may be discretized within the
same computer code with appropriate subroutines for turbulence/subgrid closures and for interfacial
closures. This manuscript also demonstrates that this model meets the necessary requirement for a well-
posed initial value problem and is fully consistent with the second law of thermodynamics.

The main asset of this model is its versatility with respect to the multiphase turbulence approaches;
therefore, it would be possible to apply this model to different multiphase flows as seen in §1.1: gravity
currents within the atmospheric boundary layer (near/at the ground) or “boundary-free” flows within
the atmosphere (e.g., dusty plumes and jets). This versatility makes possible using hybrid-RANS/LES
approaches to simulate dusty surges and associated buoyant co-ash clouds, or, possibly, to simulate
engineering multiphase flows (e.g., in nuclear reactor, aeronautical, and automotive industries; aerosol
dispersions; and atomization and sprays dynamics) with RANS near the wall-boundary and LES away
from the boundary.

In a next manuscript, we will develop specific RANS turbulence and LES subgrid closures to be
implemented within this current multiphase Navier-Stokes model. Afterwards, in a hopefully not too
far future, the main step will be to implement the code of the whole model as presented in this

manuscript with the appropriate turbulence, subgrid, and interfacial closures.
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Appendix 1: Averaging and Filtering Rules

In this manuscript,we have used

» the angular operator to signify an “ensemble-averaging or a filtering process,”

* ahorizontal bar for a “phasic-weighted process,”

« atilde for a “mass-weighted process,” and

*  an upside-down hat under a variable to indicate a “LES filtering process.”

Let a(x,t) and B(x,t) be some fluid property (scalar, vector, tensor) and let ¢ be a constant. X(x,t) is
the phase indicator function. The volumetric concentration and the bulk density of the it phase are

respectively:

[ X dFCxi o) a.

H G, (x-x") X, dx' b.
Q
i = &P, =<Xipi>= j _[ (Xipi) dF(X;,p;) C. (ALI)
éi :81@ :<Xipi>:” G, (X—X')(Xipi)dx' d.
Q
Favre phasic-weighted decomposition
Xi a‘l
&
Xi (x‘l
LES framework: o, = o, +0o,, where o, = <—> o <Xi o, > =g, (AL3)
2 T - N 2
Favre mass-weighted decomposition
Xipiay o
RANS framework: | o, =a, +a,, where a, = <A—> < <Xi Pi O > =P (AL4)
Pi
Xipiay .
LES framework: o =0, +o;, where o; = <A—> = <Xi P, 0L > =0 (AL5)
Pi -




Operation upon a constant

c=¢=c (AL6)

Average of the average (RANS only)

Qll
[l
QI
I
Q|

Qu
Il
Q
Il
(o}

[¢)]

. (AL7)
6, = [ @ ap(w)=a, [dp(a)-a,

—00

(Note that, in LES, (?i #0;.)

Average of the fluctuating part (RANS only)

ai/:aiﬂzo
e.g.,
, B (ALS)
O(,i :Oti —Oti
o' =o, —o;, =o; —o; =0

(Note that, in LES, g # (Z" #0.)

Operation upon time derivative (RANS and LES)

< oo, > _ o(o ) (AL9)

ot

bcause within RANS,



oo, T
< ;'> =j—§?amx¢)mxag

:%|:J‘ai (X,t) dP(al)] 5

—00

a<%>

ot

and within LES (spatial filter),

< o > -[[Jo. @ o0 ax

%M G, (&)t (x',1) dx’

8<oci>

ot

| E— |

Operation upon space derivative (gradient or divergence) is as follows:

< &*> - (o) (AL10)

0X; 0X;

1

because within RANS,

oo, B [ oa
() -l

1

%[J‘ o dP(a)] ,

! —0




and within LES (spatial filter)*?,

oo 0 ' !
<8Xi > =jj G (8) e (x'0) dx

=% [[[o.@a 0 ax

o{a)

(AL11)
(va.)=v/a)
From Eq. (AL9), Eq. (AL.10), and Eq. (AI.11), the following can be inferred by chain rules:
o{X ) =<X1 oo, >+<ocl oX, > (AL12)
ot ot 0
V<Xioci> =<X1V0ci>+<0ciVXi> ALL3)
V(X ) =(XV-a)+(a VX))
Operation upon a sum (linearity)>>
<oci +Bi> :<oci>+<Bi> (AL14)

32 Within the LES framework, it is essential that the spatial filter size, &, remain constant and that the cutoff length, A,
remain constant as well over the whole domain (or subdomains) of integration, Q. In other words, within any domain (or

subdomain) of integration, the grid size must be homogenous (see §2.6.5).
3 In statistics (RANS framework), this is one of the fundamental properties of the expectation of a random variable.
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Useful correlations (RANS only)

oo’ =ap =0

since,
ap’= [ap' dp(p’) =a [ B’ ap(p) (ALLS)
—ap’
=0
pia =0
&0 =0
e.g.,
<Xi &P OL-">
- _Ix iai”
P pr)
= inpiai"dP = I Xipioy dP - J‘ Xip;o; dP
:<Xipiai>_&i <Xipi>:<Xipiai>_&'i‘Si
n <Xipia1> . . (e~ 0
= Pi T_ai _pi(ai_ai)_ (AL16)
ap —aB+ap’
since,
~(a+a')(B+p') (AL17)
—ap+ap +o'B+a'p =ap+ap +a'B+a’p’
—ap+a'p’
o =’ +a” (AL18)



Relations for which any operation holds>

<aiBi>¢<ai><Bi> (AL19)
pia  #0
since, (AL20)
(5 - )| ol o)
& P

and more generally, Eq. (AL.20) can be written as

Bo” #0
_ (AL21)
=B (ai —Q )
For a compressible phase (both RANS and LES),
P # P
-~ 8 (AL.22)
u; # U

1 1

* Within RANS, in Eq. (AL19), the equality cannot hold because these two random functions are not stochastically
independent.
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Appendix 2: Favre-Averaged Navier-Stokes Equations

1. RANS Phasic Continuity

The continuity for a single-phase system (n=i=1):

op;
ot

Because we have more than one phase, we must modify Eq. (AIl.1) to account for all the possible
random occupations by the different phases in the system anywhere and anytime. Let us multiply Eq.

(AIL.1) by the phasic function of presence (X, §2.3):

Xi[ op; +V~piui}:0

ot
oX o 0X,
a—ltpl +V-Xipiu; =p; —+pu VX, . (AIL2)
oX; p; _
& T+V'Xipiui =P (uInt —U; )'nislnt

Let us average

oXipi
<—8tp +V-Xipilli> = <pi (ulm — U )'niBInt >

@@+v-<xipiui> =R,

(AIL3)

where R; is the mass-production or mass-destruction rate of the i phase and must be specified in a

specific context; O is the function of presence of all the interfaces. R; must follow the jump condition

DR =0 . (AIL4)
i=1



Knowing that that <Xi P, > =p, and that <Xi oW > =pu,, Eq. (AIL3) can be rewritten as the

following:

op; .~
P +V-pu; =R,
ot

(AILS)

2. RANS Species Continuity

If phase ‘i’ is made of different species, then the continuity equation for the j™ species is simply
written as the following [Besnard et al., 1992; Veynante and Poinsot 1997; Travis et al., 1998],

assuming one phase only (n=i=1):

oy iPi
ot

where y; is the mass fraction of the ™ species; @ is the molecular diffusion coefficient of species j
in the mixture; and I'; is the mass source or sink rate because chemical or physical processes between

species. Global conservation upon all m species of phase i imposes that Z y; =1.
j=l

Let us account for n phases in the system by multiplying Eq. (AIL6) by the phasic function of
presence (X, §2.3):

a}’jpi

5XinPi
6—+V-X1Yjpi u =-V-oX;p;Vy; + XTI
t
19),€
+L’jpi 51 +yipiu; - VX +@p; Vy; 'VXi} ‘ D
t
5XinPi
®6—+V-X1Yjpi u =-V-oX;p;Vy; + XTI
t

+|:Yjpi (uInt - )'ni61m —op; Vy; 'nialnt:|

Let us average Eq. (AIL7) as follows:



X, YiPi
ot

+<|:Yjpi (uInt - )'nislnt —wp; Vy; “1; Oy, }> (AILS)

f

8<Xinpi>

~ +V-<Xipiyj ui>=—V-<ininyj>+<X1Fj>+ci,j

The mean interfacial species mass transfer rate (Ci;) must be specified in a specific context.
However, it clearly has two contributions: one from the mass transfer between phases as described in
Eq. (AIL3) (i.e., R;) and one describing the “diffusion” of the interface belonging to species j of the it

phase:
C.,= <[yjpi (ulm -y )—winyj ]ni&m > : (AIL9)

Very often the molecular diffusion term is simply neglected [Symlal et al., 1993], and this neglect
is even more justified if the flow is at high Reynolds number [Veynante and Poinsot 1997].
C;; fully complies with the mean jump condition at the interfaces between species of a given phase

and all other phases:

n m

2. 2.Ci=0 . (AIL10)

i=1

=1

—

Let us take the Favre mass-weighted ensemble average of velocity and species mass fraction and

decompose these into mean and fluctuating parts:



M+V~<Xipi <§/j +yj")(iii +ui")> =—V'<mXiPiVYj >+<Xirj >+Ci,j

ot
&
aﬁlglj v.[X ~ ~ v.[X ~ " v.(X ~ " V.(X "_n
ot ARPY W )+ V(AP Yl )+ V(AP YW )+ V- X0 Yl
&
op; V. . .~ N —
patYJ +Vopiyju ==V -op;Vy; = V-p; yju + &1 +C
&
by . A -
altj +Veopyjw =-V-p (Yj+m Yj)+8irj+ci,j

where the species' mass fraction fluxes have two contributions: one from the averaged mean flux

tur,

(i.e., y;) and one from turbulence (i.e., " y;):

Y; =wVy,
t . (AIL12)
Yi =Yy
3. RANS Momentum
Let us start with the momentum equation of a single-phase (n=i=1),
op; u;
T+V~piuiui =-VP -V.1, +p,G, , (AIL13)

where P; is a thermodynamic isotropic pressure; T; is a viscous symmetric stress tensor (that can
be broken into a spherical and deviatoric parts); and G; represents the body force contribution (e.g.,

gravity). We have used the dyadic notation so that uju; is a second order tensor. Let us combine P; and

Ti-

T =PI+7 , (AIL14)
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where the viscous stress tensor 7; is defined in Appendix 7 (as a reminder, compression and its rate
are taken as positive). Let us account the presence of all n phases in the system in multiplying Eq.

(AII.13) by the phasic function of presence (X, §2.3):

op; u;
X | ——+V-puu, ==V T +p,G
ot
oX. p;u; oxX.
t t
oXipiy;
©T+V‘Xipi“i“i =-V- X, T +X;p;G; +|:piui (uInt - )‘niSIm - T 'nialnti|

Let us average Eq. (AIL.15):

OXi piu;
—+V-Xipuu )=(-V-XT +X;p;G; "{Pi“i (ulnt - )_Ti j|'ni81nt

ot

a<Xipiui>
@T+V-<Xipiuiui > =—V.<XiTi >+<XipiGi >+<|:piui (uInt —u; )_Ti ]niglm>
QWJFVKXJ%“HH > =—V'<X1Ti >+<XipiGi >—i—Mi

(AIL16)
The mean interfacial momentum transfer rate between phases (M;) must be specified in a specific
context. It has two contributions as expected: one from the mass transfer between phases as described

in Eq. (AIL3) (i.e., R;) and one from the interfacial forces at the interfaces (e.g., drag force, added mass

forces, ...):

M; =<[Pi“i (ulnt —U; )_T1 :|'ni81nt> . (AIL17)

M; fully complies with the mean jump condition derived from the local balance momentum at the

interfaces between phases,

ZMi =0 (AIL18)
i=1
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where we have neglected all surface tension effects between phases [Ishii 1975; Ishii and Mishima

1984; Lhuillier 1996].

Let us take Favre mass-weighted ensemble average of velocity, decompose it into a mean and

fluctuating part, and subsequently develop Eq. (AIL.16):

a‘Azfj—it'~’i+v-<xipi (ﬁi +ui”j(ﬁi +ui"j>:—v-<XiTi>+<XipiGi>+Mi

—6A.~. u.u ~ "oon — o~
%:’ll +V-<Xipiuiui>+2V-<Xipiuiui >+V-<Xipiui u; > =-V-¢T +p,G, + M,

8A-~- A =~ = A~ " " on - A X
_opitt +V-puuy +2V-pu u +V-<Xipiui u > =-V-&T +p,G; + M,

ot
aﬁi ﬁi A~ ~ —_ (/2] — Nt
ot +V-puu; + 0 + Vegpuw =-V-&T +p,G; + M,
6[31 ﬁl A~ o~ f— tur ~
ot +V piu;u; ==V & (’Il+ T:)+p1G1+M1
(AIL.19)
where the RANS Reynolds stress is clearly defined from Eq. (AIL.19) as
tur rI\l — 51 Ui” ui" (AII.zO)
See Appendix 5 for further discussions on the term T, .
4. RANS Energy
Let us write first the energy balance for a pure single phase (n=i=1) [Bird et al., 1960],
(AIL.21)

op; E;
pét L4Vepi B ==V (T u)-V-q +p; S +p G wy

where E; is the total energy per unit of mass; the first term on the RHS represents the total work

done by all the surface forces (viscous and pressure); q; is the heat conduction flux vector that follows a

classical Fourier law; p;S; represents a source contribution involving, for instance, radiation; and the

last term is the work done by the body forces (e.g., gravity). The total energy is defined as

12



2

E =1 +uTi , (AIL.22)

where [; is the internal energy per unit of mass of the phase under consideration; the second term of Eq.

(AIL.22) is the kinetic energy of phase i.

The total stress tensor, T; and the viscous stress tensor, T;, (see also Appendix 7) are

T=R I+

= 1
T, =2 Di- "pVou; 1 :2ui[Di+§(v-ui)l}—buiv-ui I , (AIL.23)

2
=L |:—(Vlli +VuiT)+§(V-ui)I}— b},liV'lli I
where p; and bui are the shear and volumetric viscosities; D; is the rate-of-strain tensor and ]_)i is
its deviator; and I is the unit tensor. From Eq. (AIl.23), we define rate-of-strain positive in
compression.
Let us account the presence of n different phases in the system (i=1,2,..., n) in multiplying Eq.

(AIL.21) by the phasic function of presence (X, §2.3):

op; Ei
X; 5 +V-p, E u :Xi[_v'(“i‘Ti)_v"Ii‘*‘PiSi"‘PiGi'“i]
t
=
oX.p; E.
%"‘V'Xipi 12 “iZ_V'Xi(“i'Ti)_v'XiQHLXipi S +Xipi G -y
t
P B —pE u VX +q VX +(u T)- VX | (AI1.24)
t
=
oX.p; E.
%"‘V'Xipi E; “iZ_V'Xi(“i'Ti)_v'XiQHLXipi S +Xipi G -y,
t

+[Pi E; (ulnt -y )'nislnt _(qi +u; - T )‘niglm]

This equation can be rearranged in terms of the internal energy, I;. To do so, let us “dot multiply”

the momentum equation, Eq. (AIL.13), by u; to obtain the equation of mechanical energy only as

follows:

13



op; ) 2
X; +V.p, ——u, =—u; -V-T +p,G; -y,
ot
=
2
U;
X p; 2
+V-Xipp —u; =-u; - V- X, T +X;p,G; -y
ot 2
ui2 0X; ui2
+| P + w T +p; u |-VX
2 ot 2
=
2
U;
X p; "
+V-Xip ——u; =—u; -V-X;T +X;p,G; -y
ot 2
2
U;
TP T(“lm -y )'ni Ot _(“i i )'ni Ot (AIL25)

And subtracting this Eq. (AIL.25) from Eq. (AIl.24), we obtain, after simplifications,

oXip; I

ot +V-Xip [ wy =X, Wy, =V -Xiq; + Xip; §; +[Pi L (ulm - )'niSIm —q; 'niSInt:|

, (AIL.26)
where Wr; (==T :Vu,) represents the reversible and irreversible work done by all the surface

forces upon the internal energy. Let us average Eq. (AIl.26) in the following:

oX.p. L
<% +V-Xip Ly > = <XiWT,i —-V-Xiq; +Xip; §; > + <|:Pi I; (“mt - )'nislnt —q; "n;Sy,, i|>
t
= (AIL.27)
0 <Xipi Ii> I
P v (k) = (X )X )+ (X 5 )
where IHi is the mean rate of interfacial heat transfer between phases and must be defined within a

specific context for a specific phase,

14



'H; = <|:pi I; (ulm - )_(Ii } : ni61nt> ) (AIL28)

where the first RHS term represents heat source or sink from mass transfer at the interfaces
between phases [see Eq. (AIL.3)]; the second term is the heat flux exchange at the interfaces between

phases. 'H; must fully comply with the jump condition between all possible interfaces,

n

S H =0 (AI1.29)

i=1

where we have neglected all interfacial energy source between phases [Ishii 1975; Ishii and

Mishima 1984; Lhuillier 1996].

Let us take the Favre phasic-weighted ensemble average and mass-weighted average of velocity.

Then, let us decompose these into a mean and fluctuating part and subsequently develop Eq. (AIl.27)

as follows:

a<XipiIi>

ot +V'<Xipiliui>=<XiWT,i>_V'<Xiqi>+<XipiS

)+ H,

+V-(Xp, (T+1) (8 +0)) =2 -T : Vu, - V-5 +pS + 'H,

a’\‘~' AT n.n Y ! ’ ’ — A S
%I'+V-piliﬁi +V-(Xplu) =2 (=T :VE -BV T -1 : Vo BV -w) -V -5 +5S + 'H,
t

(AIL30)

where the surface force works have ensemble-averaged and fluctuating (from turbulence)

contributions (see also demonstration in Appendix 5):

WT,i :_?i ZVﬁi —I_)IVHI (AH31)

tur
WT,i = —Ti, . Vui' — PI'V 'lli'
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Idem for the heat flux:

q; = _kiVTi

tur

—
nn__—n.n

q; = pliw; = p; L

1

: (AIL32)

where k; is the molecular (not affected by turbulence) thermal conductivity coefficient of phase i.
Eq. (AIL31) is particularly difficult because it involves two new unknowns in this system: the Favre

phasic-weighted averaged and fluctuating parts of the velocity (u; and u;) instead of the Favre mass-

weighted components [; and u; as in Eq. (AIL.19) and Eq. (AIL.20)]. For a detailed discussion on

W, and “"Wr; and possible approximations, see Appendix 5.

For many engineering purposes, it is much more practical to have the energy equations in terms of

the enthalpy instead of the internal energy. The enthalpy, h;, of a single phase i (n=i=1) is as follows:

h; =T, P (AIL33)
Pi

Let us take the material derivative of h;

dh, B dl; N d P.
dt dt dt P;
= . (AIL34)
dh dI d ] 1 dP
i _ i P Pi n i
dt dt dt p; dt

Using the continuity equation of a single phase, Eq. (AIL.1), we know that

dl
P __Lode g, (AIL35)
dt p; dt P

Let us recall that we have not yet averaged anything and we still only see one phase in the system.

From Eq. (AIL.26), we may deduce the equation of internal energy of only one phase in the system
(n=i=1),
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oo: I
kY =T Ve Vo 4

o , (AIL36)

dpili +piiV-u; =-T; : Vu; =V -q; +p;S;

dt

where —T, :Vu; =—P,V-u; —71; : Vu,. Substituting Eq. (AIL.35) into Eq. (AIl.34), multiplying
the latter by p; and applying the chain rules yields the following:
dp;h; dp, 1, dP.

= R (AIL37)
dt dt dt

Substituting Eq. (AIL.36) into Eq. (AIL.37) yields the following:

dp;h; dp
- =-p V- -T, : Vu; -V.-q; +p;§; +
dt
~
dp;h; P dP,
- ==p | hj——— V-4, =T :Vu; =V -q; +p;§; +
dt p; dt
= . (AIL38)
op;h; dP,
ot dt
f—
op;h; i
———+V-phjuy =-71,:Vu, -V-q, +p;S; +
ot dt

Let us account the presence of all n phases in the system in multiplying Eq. (AIL.38) by the phasic

function of presence (X;). After development and rearranging all the terms, we have
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e
o
=
=
~
Il

<—Xi1:i :Vui>—v'<XiQi>+<Xi (11}: >+<Xipisi>
+<|:pihi (ulnt — U )'niSIm —q; -m; 5y, J>

. (AIL39)

Opihi +V-<Xipi (fli Jrhi")(ﬁi +ui")>=<—XiT,» :V >_V'giai +g C:ilzl +p:S, + " H;

P -,
+p, S, + H,
dt

tur — tur
o T Wr,i)_v‘gi(‘h"‘ qi)+8i

where "H; is the mean rate of interfacial heat transfer between phases for the enthalpy equation and

must be defined within a specific context for a specific phase. As usual, "H; must comply with the jump

n
condition (i.e., Z hHi =0). The contributions of turbulence in the enthalpy equations from viscous
i=1

dissipation and heat transfer are respectively defined in Eq. (AIl.31) and Eq. (AIL.32).

5. RANS Entropy

Let us write the entropy condition for a pure single phase (n=i=1) [Aris 1962; Ishii 1975] as

opin; a4 PSS
L Voonmu 4V >0 AllL40
- pimy; + V-2 = (AIL40)

where m; is the specific entropy (entropy per unit of mass); q; is the heat conduction flux vector

that follows a classical Fourier law; S; represents various heat sources per unit of mass (e.g., radiation);
. , P NI

and p; and T; are the density and temperature of phase i. Hence, i s the entropy flux, and — is any

i i

source of entropy.

Let us account the presence of n different phases in the system (i=1,..., n) in multiplying Eq.

(AIL.40) by the phasic function of presence (X;):
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m_ M Xpmu, —pmnu; - VX > -V 0 Xiq; (11 VX, + XipiSi
ot ot T; T1 T;
=
oXipim; Xq XS | ax q
——+V-Xpimu; =2 -V-——+———+| pn —+pniy; - VX +—-VX; | . (AllL41
2t pim;u T T _pn el T ( )
=
#"‘VXI iMi W4 >-V. o + Lt + iMNi | Wit — Wi ‘nisn ——l'ni8n
o pim I T | (g —u; )-8y, T

Let us average Eq. (AIL.41)

9 ( Xipin; : S;
%+V <X1p11’]1ll1> -V. <X1 %>+<Xl prlr—11>+ nHi ,

where "H; is the mean rate of interfacial entropy between phases

"H; = <[pmi (“mt - )_%:|'ni61nt> )

(AIL42)

(AIL43)

which complies with the entropic jump condition between all phases in the system [Lhuillier

n
1996]—i.e., Z H; > 0 (it may be possible to have some entropy production at the interface).

i=1

Let us take the classical Favre decompositions of mean and fluctuating part in Eq. (AIl.42) and use

all the averaging rules of Appendix 1 in the following:

o (Xipim; .
Mw-@m(ﬁi+m")(“l+“l)> - <X (;> <Xipi %>+HH1
1

ot i

A.~. AN o~ o~ —”” A S'
9Py +Vopini; 2 -V g ((1], j+p1n1ul +Pi[?J+ H; ;
1 1

(AIL44)
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where the flux of entropy has two sources, one Favre-phasic averaged (®; = [%J) and one from
i

n_nmn

turbulence (tur(I)i = p;M;iy; ), whereas the entropy source is defined by a Favre mass-weighted-averaged

relationship: %; = [i—l] Eq. (All.44) may also be expressed as
i
~ dﬁl = tur A n
Pi dt >-V- g (q)l + (I)i )+ piZi + Hi . (AH45)
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Appendix 3: Favre Filtered Navier-Stokes Equations

1. LES Phasic Continuity
From Eq. (AIL.3) in Appendix 2, we know

8<Xipi>

~ +V-<Xipiui > =R, , (AIIL1)

where R; is the mass production or destruction rate of the i™ phase (source or sink) and must be

specified in a specific context (see §2.3),

R; = <pi (ulnt — U )'ni Ot > ) (AIIL2)

and R; must follow the jump condition between all n phases: Z R; =0.

i=1

Using the filtering definitions of §2.6 and §2.7, Eq. (AIIL.1) becomes

op;
ot

+ V . éi lji = Ri . (AIII.3)

2. LES Species Continuity
From Eq. (AIL.8) in Appendix 2,

a<Xinpi>

ot +V-<Xipi}’j lli>:—V-<ijiinyj>+<Xirj>+Ci’j , (AIIL4)

where y; is the species mass fraction; w;j is the molecular diffusion coefficient of species j in the
whole mixture; I'; is the mass source or sink rate because chemical or physical processes between
species; and C;; is the mean interfacial species mass transfer rate and has two contributions: one from
the mass transfer between phases [R; in Eq. (AIIl.2)] and one describing the “diffusion” of the interface

belonging to species j within the mixture
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C., = <[yjpi (e = )08 — w9, Vy; 13y, D . (AIILS5)

C;; must comply with the mean jump condition at the interfaces between species of a given phase

and all other phases:

n m

ZZQJ =0 . (ATIL6)

izl j=l

Of course, global conservation upon all m species of phase 1 imposes that Z y; =1. Using the
j=1

averaging-filtering definitions of §2.6, Eq. (Alll.4) becomes

8<Xinpi> ~ RYS )

=

aﬁlg’J o - " "~ "o
Va; +V'<XiPin‘},i>+v'<XiPin'}i>+v'<XiPinEi>+v'<XiPinL1i>
&

af’ig'i N TR ATy N e N T

vatv VR y W +Vepy; Wi+ Vep yiw +Vep yiw

Z—ijélvglj +8ifj +Ci,j

Let us decompose the first convective momentum flux term with the following LES “trick™:

|
|

V-0 =V.-p +V-0. R VAR (AIILS)

(>
(=t
(=1
(>
(=t
(=1
(>
(=<
(=1
(>
(<
(=1

And rewriting Eq. (AIIL.7) with Eq. (AIIL8), we have
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aﬁi Yi

VS VBT VBT VB By 4V v

= —ijﬁlvglj +8ifj +Ci,j

f—

82? TV iyl ==V wp VY tel; +C (AIILY)
<~

5%? +V~éi§1j1:11 =-V éi (yj + SGyJ )+8113- +C

where the species mass fraction fluxes has two contributions—one from the resolved large-scale
flux (i.e., y;) and one from the “subgrid” (i.e., SGyj)—

i =oVy;
SG ~ =~ o~ o~ ~ v n= T
yj = |:(Z’j U -V U; )+(Xj u'+yj )*(Xj u; )} , (AIIL10)
L C R
=y v+ Y;

where between brackets, it can be recognized three contributions from the Leonard terms (LYj), the
Cross-terms (Cyj), and the Reynolds (Ryj). Obviously, once a filter is specified, it is easy to calculate the
Leonard-term, while the Cross-term and Reynolds-term need to be modeled. Let us note that, strictly

speaking, Lyj is not from the subgrid as it entirely made of known and filtered large-scale quantities.

3. LES Momentum

From Eq. (AIL.16) in Appendix 2, we have

8<Xipiui>

T+v'<xipiuiui>:_V'<XiTi>+<XipiGi>+Mi > (AIIL11)

where Tj is the stress tensor; G; represents the body force contribution (e.g., gravity); and M; is the

interfacial momentum transfer rate between phases, which is defined as
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M, = <|:piui (ulnt - )_T1 :|'ni81nt > 5 (AIIL12)

complying with the jump condition between phases— M. =0 (all surface tension forces are
plying Jjump p i
i=1

assumed to be negligible).

Using the filtering definitions of §2.6 and §2.7, Eq. (AIIl.11) becomes

5<Xipi“i>

VY v Xpuu - Vv AXT )+ (X p.G )+ M,
at < lpl 1 l> < 1 l> < lpl l> 1
opiy; -

= — +V. Xipi (ui-l—ui )(ui+ui ) :_v'<Xi’I‘i>+<XipiGi>+Mi
o U +u; |\ +u
op;u; . . .

< ;3‘[ +V‘<X1Pilji'ji>+2V‘<XiPiEiEi >+V‘<Xiplljl u; > =—V'<XiTi>+<XiPiG'> M;
0p; U; . = e = .-

= ;’5 +V.p;uju; +2V-p,uju; +Vep; oy =-V.T +p,G; + M;

. pi U U p; U;u p; U; U L +pG
(ATIL13)

Let us decompose the first convective momentum flux term with the following LES “trick™:

—_— —

V-p, i =V-p, u +V"Siljilji _v'lsi@i@i . (AllL.14)

(=
(=

And rewriting Eq. (AIIl.13) with Eq. (AIIl.14), we have

op; U o ) A . A
< vatv +V-p; lEil:li +V-pil:lil:li -V pll:lllih +2V-p; l:llyln +V-p, lvll”lvll"
:—V'S'T +A‘(~}‘ + M.
o ., (AIIL15)
=N
opiu; o . .
o R T (T‘ " Il)JrPi@l +M;

where 9T} is the “subgrid” stress tensor

24



SG — T <= —_ ~ ~ - :—\: —_ :—\; —_ " "
T =[Pi uu; — ilji‘ji}+|:pi nu; +p; Uy }{Pi u; u; }
- - - - - (AIIL.16)

C R

= T + + T

=

These three tensors are known as the Leonard stress (“T;), Cross-term stress (“T;), and the subgrid
Reynolds stress (*T;). The Leonard stress terms are made only of filtered (hence known) components
and do not need to be modeled. Sensus stricto, the Leonard stress term does not result from the subgrid.
Although this decomposition is a natural result of the preceding demonstration, it is nevertheless rarely
done, as it is difficult to model these three terms separately. And usually a Smagorinsky approach is
used to model the whole term “°T;. in (implicitly) assuming that the only term that dominates is “T;

(for instance, in assuming that filtering would give similar results to ensemble averaging, it then

becomes that LTiJrCTizO). See Appendix 5 for a discussion on Tl .

4. LES Energy

From Eq. (AIL39) in Appendix 2, we have the conservation of the enthalpy of the i phase in a

system of n phases

o(X.ph;)
ot

+V-<Xipihiui>:<Xi (-7 :vu, )>—V-<Xiqi>+<Xi (LI: >+<Xipi S, )+ "H, . (AIIL17)

where "H; is the rate of interfacial heat transfer between phases encompassing all contribution

from mass flux exchange and heat flux exchange at the interfaces between phases. It is defined as

"H; = <[Pi h (g —u; )_qi:|'ni81nt> ; (AIIL18)

complying with the jump condition between all phases in the system—i.e., Z "H, =0. In Eq.

i=1
(AIIL.17), the first RHS term represents the irreversible work done by the surface forces (viscous
dissipation), T; is the viscous stress tensor, q; is the heat conduction flux vector (following a Fourier’s

law), and S; represents any enthalpy sources.

Using the filtering definitions of §2.6 and §2.7, Eq. (AIIl.17) becomes
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5<Xipihi>

o +V. < lpl(h +h )(gi+gi")>:<—Xi‘ri :Vui>—V-<Xiqi>+< ; (11}: >+<Xipisi>+hHi

=
ablﬁ T T < — A dE h
o +V. plhu +V. plhu +V. plhu +V. plhu =¢g-T; : Vuy V'gigi+8i§i+sia+ H;
(AIIL.19)
Knowing that
Vg hoa  =Vephoa-Vepha Ve hE (AII1.20)
Eq. (AIlL.20) in Eq. (AIIL.19) yields the following:
aﬁiﬁi N A T~ T
ét "‘V'Pi}}i‘:li"‘v'l)i}}i“ -V plhu +V- plh“ +V- plhﬁ +V- plhl u;
T = A dP
=&T .Vui \Y gigi+8i§i+8i dt + Hi , (AIIIZI)
=
op;h,

pil .o .. dP
ot +V- plhu :Si(wni+SGWr,i)—V'Si(qi+SG‘li)+Pi§i+€i(Tj:+hHi

where the viscous dissipation has a filtered and a “subgrid” contribution (see demonstration in
Appendix 5):

Wz i =-T VY

5G W‘l’,i :—{|:‘Ei :Vl}i _ii ZVl:li j|+[$i”IVl:li +i:vgi”:|+|:‘£i”:vgi”:|} . (AHIZZ)

- W oW+ fw

And, in the same vein, the heat flux is

G =-kVT

SG — T — T, = i —
qi =[QihiLli—Bihilli}r[gihiLliJFBihilji}r[eibil}i} ; (AIIL23)
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where k; is the molecular (not affected by turbulence) thermal conductivity coefficient of phase i.
In both Eq. (AIIl.22) and Eq. (AIIL.23), we can recognize a contribution from the Leonard-term, the
Cross-terms, and the Reynolds-terms. Unlike the Leonard-terms, the Cross-terms and the Reynolds-
terms are strictly speaking from the subgrid and therefore must be modeled.

As for the RANS case, Eq. (AIll.21) and Eq. (AIll.22) are particularly complicated because they
involve two new unknowns in this system: the Favre phasic-weighted filtered and fluctuating parts of

the velocity (w; and uj) instead of the Favre mass-weighted components [u; and u{ as in Eq.

(AIIL.15) and Eq. (AIIL.16)]. Therefore, ““W,; is very often neglected or seen as negligible relative to
the heat conduction, the convective transport of heat, and heat transfer between phase. For a detailed

discussion on W, ; and SSW..; and possible approximations, see Appendix 5.

S. LES Entropy

From Eq. (AIl.42) in Appendix 2, the entropy balance inequality of the it phase in a system of n

phases is

8 (Xipim - S
—< (l;t)ml> +V - (Xipmu; ) > —V-<Xi %>+<Xi p:r,SI >+ H; (AIIL.24)

1 1

where n); is the entropy; % is the entropy flux (q; is the heat conduction flux vector and Tj is the

1

S .
temperature); % is any source of entropy (S; represents some heat sources), and "H; is the mean rate
i

of interfacial entropy between phases,

"H, = <[pmi (g — )—i]ni&m> , (AIIL.25)
T
where uyy is the bulk velocity of all interfaces and wu; is the bulk velocity of phase i. "H; complies
n
with the jump condition between all phases in the system—i.e., Z H, > 0. Using the filtering
i=1

definitions of §2.6 and §2.7, Eq. (AIIl.24) becomes
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6<Xipini> N

ot v'<Xipi (ﬁl “‘Uiﬂ)(‘:li +Lli”)> 2 —V-<Xi %>+<Xi plTSl>+ "H;

1 1

<

opiM; — (i

]+ [5{%]+ H, (AIIL26)

1

V@tv +V'@i1ji‘:11 +V'éifli'!iﬂ+v'@ini"‘:1ii +V'éi1ji"‘li”2 —V-g T

= +Vopnn; 2 -V -g ((I)l + SG@i)"'ﬁig"' "H;

where the flux of entropy has two sources, one from the known filtered part (®; ) and one from the

subgrid (*9®,):
} T
SG — T X —~ ~ — =", = = — "o
= [Bi il — pif; i } + [gi i+ piniy; } + [Ei niu] } , (ATIL.27)

fo, + ‘o, + R

while the entropy source is simply defined by a filtered Favre mass-weighted-relationship:

- S; o o
2= (?‘] In Eq. (AIIL.27) we can recognize in the entropy flux a contribution from the Leonard-,

1

Cross-, and Reynolds-terms.

Eq. (AIIL.26) may also be expressed as

A dvi = SG A, M
Bi T > -V .¢g ((Pl + @i )-l- Bi gi + 'H; . (AIHzS)
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Appendix 4: RANS and LES Interfacial Closures

When averaging or filtering the Navier-Stokes equations from a single phase towards a multiphase
system, different supplementary terms arise describing mass, momentum, and energy transfers at the
interface between the phases. Those terms are highly important because they couple all the phases, and,
in the energy equations, if they are disregarded, the second law of thermodynamics may not be

fulfilled.

The mean interfacial terms between phases are

Rate of interfacial phasic mass transfer R; = <pi (ulm — U )-ni Ot >

Rate of interfacial species mass transfer G ;= <|:Yj Pi (“Int —u; )— @;p; Vy; } -1 Oy >

Rate of interfacial momentum transfer M; =

Rate of interfacial internal energy transfer 'H, = <[Pi I; (“Im — U )— q; } ;8 >
Rate of interfacial enthalpy transfer hHi = <

Rate of interfacial entropy transfer "H; = <{pmi (ulm -y ) - —} "8y >

where uy, is the velocity of all the interfaces between all phases making up the multiphase system

and u; is the bulk velocity of phase i. The jump condition imposes on any interfacial term between all n

n n

phases and between all m species that iRi = iMi = i 'H, = Z hHi =0, Z Zm: C,; =0, and

i=1 i=1 i=1 i=1 i=l  j=1

—

n

Z "H; >0. In other words, in a system of two phases (e.g., gas and solid) with no mass transfer
i=1

between species and phase, we must have

M, =-M,
'H, =-'H, . (AIV.1)
"H, =-"H,
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Usually, R; does not pose any major problems but must carefully be set in a specific situation
(condensation, sublimation, magmatic “fragmentation,” so forth). Most of the time, C;; is taken as

simply equal to ~ y;R; (the contribution of the “diffusion” of the species interface is assumed to be

unimportant, see Syamlal et al. [1993] and Veynante and Poinsot [1997]).

The momentum transfer, M;, has two parts; one comes from the mass transfer between phases,

which, for instance, between the i phase and all other phases, can be easily modeled as
<pi u; (ulm L )‘ni Ont > ~u, R, (AIV.2)
where uy,, is the bulk averaged/filtered velocity of all the interfaces in the system.

In a flow where all the phases are all well mixed *°, the bulk interfacial velocity can be approached
with either a center-of-mass velocity [Saurel and Abgrall 1999] or a center-of-volume velocity

[Delhaye and Boure 1982] as follows:

n

Z &p; U

— =l
u1nt ~ n a.

D ep . (AIV.3)

i=l

n
U = E & W b.
i=1

If, in addition to the previous assumption, there is an instantaneous microscopic velocity
equilibration between the interface and the phase itself, we may also assume that u;,, ~ u;, so that Eq.
(AIV.2) becomes u,, R, ¥u,R,. This second assumption, although more drastic, is certainly the most

common and by far the most practical in engineering literatures [e.g., Lee and Lyczkowski 2000] and
in code developments (e.g., MFIX codes, version of 2004). A variation of this approach is to
systematically make the bulk interfacial velocity equal to the velocity of the least compressible phase

[Baer and Nunziato 1986]—i.e., in a dusty cloud, this would be u,,, R, ~ u R;.

% In a strongly stratified and separate flow, it may be possible that some phases may never been in contact with each other;
if so, it may necessary instead to track each velocity interface separately (uy,;) instead of an unique bulk interfacial velocity
(upm). These stratified multiphase flows are not the objective of this manuscript.
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The second contribution in M, <—Ti -1 Opyy >, represents the phase interaction force induced by

the local perturbation (at the interface) of the fluid flow from the particle influence. This interfacial

force is clearly related to the drag. Following Drew and Passman [1999], let us rewrite the total stress

T; in M; as

<_Ti -niSIm> :<T1 'in>
:<PiVXi >+<Ti 'VX1> ’ (AIV.4)

where P; and 1; are the total (bulk) pressure and shear stress contributions of phase i. Among these

normal and shear stresses, there are specific stress contributions of the interface between phase i and

all the other phases

<R (VX -m, )>
P[nt,i =
A , (AIV.5)
<‘ri (VXi n, )>
Tint,i A

where A; can be interpreted as the volumetric concentration of interfacial area between phase 1 and
all other phases [see §2.3, Eq. (4)]. Pmti and T are the interfacial pressure and the interfacial shear
stress between phase i1 and all the other phases. Before developing any further, we must recall that the

angular brackets have two different meanings: ensemble averaging within the RANS framework and

filtering within the LES framework; hence,

RANS framework LES framework

<Plnt,i > = PInt,i <PInt,i > # PInt,i

<Tlnt,i > = TInt,i <Tlnt,i > * TInt,i

Because we aim to produce similar multiphase Navier-Stokes within RANS and LES frameworks,
we must proceed with some care and in a different manner than what is usually achieved in the

common literature [e.g., Drew and Passman 1999; van Wachem et al., 2001].
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In the total stress acting on a given phase [Eq. (AIV.4)], there must be a contribution of the stress

at the interface and the total stress minus the interfacial stress:

, (AIV.6)

where T is the stress tensor specifically associated to the drag between the phases where (Pi-
Pri) 1s named the “form drag” and (ti-ti;) the “skin drag” by Ishii [1975]. Usually, the whole term,
M, in Eq. (AIV.6), is written as a sum of all forces associated with drag force, added mass force, lift
(transverse) force, Basset (history) force, ... [Viollet et al., 1992; Enwald et al., 1996; Simonin 1996;
Drew and Passman 1999]. With appropriate integration (ensemble average or filtering), Eq. (AIV.6)

can be rewritten as

1

<1-vxi> = 4P, Ve + Ty, Ve + M (AIV.7)

If we assume that the particles are much heavier than the carrier phase (ps>>p,), M, can be
written as the drag force’s only contribution [Simonin 1996].

As examples in a two-phase flow (other forms are also possible),

Within the RANS framework only, in a two-phase flow system with a gaseous carrier phase, the
drag between the gas and the dispersed granular phases can be expressed as

Mdrag — _Mgrag ~ KAU

g

, (AIV.8)

AU = us - ug - udrift
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where AU is the mean relative velocity between the gas phase and the solid phase minus the drift
velocity (ugrin). In Eq. (AIV.8), we have neglected the influence of the drag function (K and Cg)
fluctuation along particle trajectories [Viollet et al., 1992].

Drag for dilute suspension (g; > 0.8) Drag for concentrated suspension (g < 0.8)

D u, —u
3 pg<lls—llg‘> 2,65 K=~¢ 1508_Su_g+lc < ’ g‘>
Kegol—g— = | e T T

S

S

24
€

Cd:

[1+0.15Reg‘687} for Re, < 1000

S

C, =0.44 for Re, > 1000 (AIV.9)
ﬁgds< >

where C4 and Reg are the mean drag coefficient and the mean particle Reynolds number [Peirano

u, —u,

Re, =

S

He

et al., 2001]; ds is the grain diameter; and p, is the molecular viscosity of the carrier phase. The drift
velocity accounts for the dispersion effect from the particle transport by the fluid turbulence; hence, it
represents the correlation between turbulence in the gas phase and the spatial distribution of the

particles. If we assume an homogenous isotropic turbulence of the gas phase,

inttsk l 1
Uy =~ = Ve, ——Ve, | (AIV.10)

where inttgs and ki, are respectively the fluid-particle turbulent characteristic time and the trace of

the covariance tensor between the turbulent velocity fluctuations of the two phases:
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turn
t

in g
t tgs _ 2
(u -u,)
1+6C, ———
ky
) (AIV.11)
kj, = <us”'ug”>
where,
turnt — 1 kl
g

B &

where "™, is the eddy turnover time; k; and ¢ are the turbulent kinetic energy of the gas phase

and its dissipation rate respectively. Cg and [3; are constants that may depend on the directions within

the flow (stream-wise or span-wise) [Fevrier and Simonin 2000].

In the previous equations, the quantity, <

u, —u, >, represents the local instantaneous relative

velocity between particles with velocity (us) and the surrounding carrier fluid velocity (ug) undisturbed
by the presence of the particles at that particle position but possibly “influenced” by turbulence
[Enwald and Almstedt 1999]:

<

where k, is the turbulent kinetic energy of the solid phase that is related to the granular

1 14 " _ 3
temperature, ©, by k, = > <uS U > =7 0.

u, —u, >z\/(AUi J 42 (k+k vk ) (AIV.12)

Within the LES two-interpenetrated fluids framework, interfacial closures are much less well
known. Naturally, the interfacial transfer closures must be expressed in terms of the resolved (filtered
and known) quantities. However, one would assume that there would be some contributions from the
unresolved subgrid scales, which are unknown both theoretically and experimentally. Therefore, a
simpler approach must be taken in which all subgrid contributions to the interfacial terms are assumed

to be negligible [we have in a way taken a similar approach in Eq. (AIV.8)].
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If we assume that the particles are much heavier than the carrier phase (ps>>py), M in Eq.
(AIV.6) can be simply written as a drag-force-only contribution [Simonin 1996]. In a two-phase flow

system with a gaseous carrier phase, the drag between the gas and the solid dispersed phase is

M, =-M;"™ ~KAU

g

o , (AIV.13)
AU=u, —u,
where K is a resolved (filtered) drag function given by
Drag for dilute suspension (g5 > 0.8) Drag for concentrated suspension (g; < 0.8)
3 P, l:ls—l:lg‘ e . g My 7 @s—@g‘
~ = N .l IS ~g 150 ——+—Cyp, ——
K 2 e,C, 0 g, e, KR d Py d
C, :£[1+0.15Reg‘687] for Re, < 1000
Re,
C,=0.44 for Re, > 1000 (AIV.14)
‘3 ds gs _l:l
Re, = g g ‘
He

where d; is the grain diameter; L, is the molecular viscosity of the carrier phase; and Cq and Re,

are the drag coefficient and the particle Reynolds number.

Finally, the internal energy/enthalpy flux exchange at the interface, -<qi 1Oy > , can be similarly

modeled with the following:

<—‘li 'nislnt> :+<‘Ii 'VX1>
- +<(q1m i — g )'VXi> : (AIV.15)

=+ VX (0 - a ) X )
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For the same reasons as the momentum interfacial terms, in a well-coupled phasic flow, we may
neglected the interfacial heat transfer (unless there is a strong interface between phases as in separated

and stratified flows):

(@ -V ) = (@~ ) VX;) (AIV.16)

In other words, the interfacial heat transfer can be simply expressed as the heat transfer between
phases at the interface between them. Hence, as an example, within the RANS and LES frameworks, in

a two-phase flow system with a gaseous carrier phase, Eq. (AIV.16) can be expressed as

"H; ~hR, +<(qi _qi,lnt)'vxi>z hR, +Q(Ts _Tg)

where,

6k,
Q~———Nu

7 | 7 | , AIV.17
Nuz(7—108g+Ss§)(1+lRe/°Pr4j+(1.33—2.4sg+1.2g§)Re/°Pr4 ( )
10
1)1.z Cpg“’g
k

g

k, ~418.3925x107"° (60054+1846 T, +2x10°° T;) [J/s.m.K]

where the mean Re number would be calculated by Eq. (AIV.9) within the RANS framework and
by Eq. (AIV.14) within the LES framework. As in the interfacial momentum transfer, we have
neglected any contributions from fluid characteristic fluctuation along particle trajectories or any

subgrid contribution to the filtered resolved Q, Nu, and Pr quantities.
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Appendix 5: RANS and LES Stress and Work

In the energy equations, the work of the surfaces forces, —<XiTi :Vu, > , and, in the momentum

equations, the acceleration from the surface forces, — <V X T, >, are problematic in the RANS and LES

frameworks of this manuscript. The problem is that these terms require the knowledge of two averaged

or two filtered velocities (i.e., u or u). Ideally, one would not want to have within the same

mathematical model a variable (u or P) from a Favre phasic-weighted decomposition (i.e., u, P) and,

at the same time, from a Favre mass-weighted decomposition (i.e., @, P ). Indeed, let us recall that, for

a fully compressible flow in both LES and RANS,

P-P#0 LES . (AV.1)

idem, u"=u-u=0

In the following, and in this entire manuscript, we assume that the shear viscosity (1) and bulk
viscosity (bu) act as constants with regard to the LES and RANS integration (filtering or ensemble

averaging)®:
N (AV.2)

Now, let us examine the acceleration resulting from the viscous forces and the work of the

surfaces forces:

—(V-X/T}) =—(VX;P)- (V-Xit;)
=—(VXP) —<Xipi (Vui +Vu;' )> — (X V - w )

, (AV.3)
~(XT:Vu)  =—(X;PV-u;)- (X7 : V)
:—<XiPiV'lli>—<XiV'Ti -ui>+<Xiui 'V'Ti>

3% This is a “universal” and reasonable assumption, which also applies to the specific heats (Cp or Cy), the species diffusion
coefficients (vj), and the thermal conductivity coefficients (k;).
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where ; and A; are the shear and the second coefficients of viscosity (see Appendix 8).

We must decompose P; and 7; into a fluctuating and an averaged part (RANS) or into a subgrid and
a filtered part (LES). It would make sense to use the Favre mass-weighted decomposition of velocities
(u; =1, +u;" ), because i@; is solved in the momentum equations in both the RANS and LES

frameworks. However, in Eq. (AV.3), the operator ( ) represents a Favre phasic-weighted averaging/

filtering (e.g., w; =w; +u; ; see §2.7). Therefore, one way or another, we have supplementary

unknowns depending on how we expand Eq. (AV.3), w, or u;, which would require further

assumptions and equations to solve these supplementary unknowns (possible within the RANS realm,
but, within the monophase- and multiphase-LES, no solution has ever been proposed). The task may be

considerably simplified in assuming [Gatski 1997] the following:

-(V-XiT,) =-VgT, z—VsiE—V-[sipi(Vﬁi+VﬁiT)}—V-[sikiV~ﬁiI] a.

(AV.4)

—<X1'T} :Vui>=—81- T1 ZVlli R —g;j EV'fli — & ‘i’i IVfli

z—SiPiV'fli—SiV“Ei'ﬁi-i-Siﬁi'V'{'i b.

These kinds of approximations are common in atmospherical science within both LES and RANS.

However, the justification is not exactly the same:

—Within the RANS realm, this assumption can be justified if u; ~ u,. In other words,

i, N .
(X xop(xOu ) (X (D)
(X (x,0)p (x, 1)) ) (X, (x.0)
(X (x.0)p, (x. O w; (x,1)) (X, (x. 0w, (x,1) (AV.5)
ep N
de.

1

= p; (x,1) = constant w.r.t. 1
t
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This means that such an assumption would hold if and only if the microscopic density of a given
phase acts as a constant or as a constant with respect to the phasic volumetric concentration variations.
Because we aim to model buoyant dusty plumes and clouds, this assumption seems reasonable. Indeed,
it has been shown [Dartevelle 2003; Dartevelle et al., 2004] that volumetric variations within the ash

plume can be fairly large (several orders of magnitude), which would indicate that the variations of p,

(because temperature and/or pressure changes) are unimportant with respect to € variations.

In developing Eq. (AV.4)b, we have also assumed that the contribution from the work of
“turbulent surface forces” (i.e., dissipation of turbulent kinetic energy) is negligible with respect to

Wr . For instance,

—<XiTi :Vui> =-g T :Vy

:—Si PiV'ui—SiV‘Ti'ui‘FSi ui-V-‘ri

== (EI-FPII)V(EI +lli,)—8i V(?l +Ti’)'(ﬁi +lli,)+8i (ﬁl +ui’)V-(?i +Ti’)

— o~ ’ ! — ’ ’
== BV-u - BV-uy - BV-u -gPV-y

p— p— — ’ ! —_ ! ’
—& T,:Vu, —¢ T, :Vu, —g T; :Vu, —¢ T; 1V

(AV.6)

This equation can be further simplified if we assume that the fluctuating velocity is divergenceless;

if V-u; ~ 0 [Besnard et al., 1992], Eq. (AV.6) becomes

—<XiTi :Vui> =-¢ T : Vu;
(AV.7)
R —gj PIV 'ﬁi — & ?i ZVﬁi — & Ti, :Vui'

Eq. (AV.7) is discussed in great detail by Besnard et al. [1992]. It can be noted that for simplifying

Eq. (AV.7) into Eq. (AV.4)b, we must not only consider that u; ~u, but also that the dissipation

process of turbulent viscous forces (—¢; 'ri' : Vui' ) is negligible for the macroscopic heat generation (or

at least is negligible with regard to the other form of heat generations: convection, pressure work, heat

conduction, heat generation from mass transfers, and so forth).
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—Of course, within the LES framework, the development of — <XiTi :Vui> 1s more complicated

because of the presence of the Leonard- and Cross-terms, which do not vanish during the filtering

Process:

—<XiTi :Vui> =-¢ T :Vu,

=—¢ PVou, - V-1, -0, +g, 0, - V-1,

= —g (E+B')V(ﬁl +yi,’)—8i V-(:Iji +$i”)~(lji +gi,’)+8i (ljll +gi")V~(ii + “i”) (AV.8)

’ - ’ "

=g Ev'l:i,i —§ Ev'gi" - PV.u - PV-u

where a phasic-weighted decomposition has been used for the pressure and a mass-weighted
decomposition for the velocity vector (and therefore for the tensor t)*’. Using the traditional LES

“trick,”

Vo =BV 4RV 8BV

(AV.9)
Ti:VUp =TV +7:0 Vi -7V
Eq. (AV.9) into Eq. (AV.8) yields the following:
_<XiTi :Vuy, > =—g T :Vu, =g (WT,i + SGWTJ ) , (AV.10)

with

3" The reason is obvious because filtering does not delete the Cross-terms and a filter variable is not constant with repect to

’

the filtering integral: E # E , li #zuwand PV.-u; # Ev.g{ #T; :Vgi' # ‘5' :Vu; # 0. Hence, the Favre phasic-weighted
decomposition is neither useful nor advisable.
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' T o (AV.11)
+ P'V-u +1:Vuy,

where the subscripts ‘L’, ‘C’, and ‘R’ pertain to Leonard-, Cross-, and Reynolds-terms, the
resolved (filtered) and the Leonard-terms are made of known quantities. It is interesting to note that so
far we have made no simplification at all for the resolved pressure work and viscous dissipation.
However, within the subgrid, the Leonard-, Cross-, and Reynolds-terms of the irreversible and
reversible works of the surface forces are universally ignored, “hoping” that subgrid dissipation
processes are unimportant and/or that once a variable has been filtered it will remain roughly constant

within the subgrid (it can be seen then that the Leonard- and Cross-terms must go to zero).
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Appendix 6: Method of Characteristics Applied to Single-Phase Flow

In order to highlight the results demonstrated in §5, we apply the same Method of Characteristics

(MOC) to a “traditional” compressible single-phase flow.

The 1-D Euler equations for constant flow area within a pipe [Lyczkowski et al., 1982] taken from

Bird et al. [1960] are

o _ ,9p . Ou
ot Oox ot

ou ou OP
o |+ S =G -F , AVL1
p(at uaxj 0x P ( )

oh ch oP OP oq
p| —+tu— |-| —+u— |=——+uF
ot 0x ot 0x 0x

where G is body forces; F is a wall friction force per unit of volume along the x-direction; and,
hence, uF represents dissipation along the wall. The equivalent 1-D Navier-Stokes (viscous) equations

would read

9P P L0
ot Oox ot

LY L ULI (AVL.2)
ot ox ) o0x 0x

oh ch OP OP oq ou
pl —+tu—|-| —H+u— |=———-1—
ot 0x ot 0x

where F and uF have been replace by a more comprehensive viscous model. In the momentum

. . ot . )
equation, F becomes the shear viscous force effects (- x ), and, in the energy equation, uF becomes
X

) ou ) .
the work of these viscous forces (—ra—). The viscous forces per unit of volume are defined as
X

follows:

L (AVL3)
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where p is some form of shear viscosity, possibly due to turbulence. Let us use the following EOS:

h = h(P,p); we therefore note that

dh=Lgp+ M gp

oP op , (AVL4)
=h, dP+hp dp

where h,, and hp are the enthalpy at constant density and pressure respectively. Let us transform the
enthalpy equations in the Euler set, Eq. (AVI.1), with w=uF or in the Navier-Stokes set, Eq. (AVI.2),

with w = —ra—u:
0x

oh oh OP OP oq
p| —+u— |- —+u— |[=——"+Ww
ot 0x ot 0x 0x

=
p(h dP+hP Q}_d_l)—_ﬁ_kw
=

Pt dt) dt ox
dpP dp oq
h, -1) —+php —=——
G Pt ox
=
_9aq
op, 6_1’) phy (@ ua_pj ox "
t ox (php—l) ot ox (php—l)
=
_0q,
{a_PJrua_PJ php  du_ " ox " : (AVLS)
t ox (l—php) Ox (php—l)
Before getting any further, we must understand the meaning of —( php ) . We note that this ratio
1-ph,

has the units of the square of a velocity or of specific energy [m”/s*]. From standard thermodynamics, it

is known that
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dhshde‘ +hpdp| =Tdn| +Lapl (AVL6)
o P P p
n

where h is the specific enthalpy [m*/s*]; ) is the specific entropy [m*/K s°]; h, is 2—? [m*/kg]; and

hp is oh [m’/kg s?]. Then,
op

h,dP + hpdp = Tdn +§dP

=

phpdp=pTdn+(1-phy JdP . (AVL7)
-

php _dP ~ pT dn

(l—php) dp (l—php) dp
As shown by Lyczkowski et al. [1982] in the isoentropic case (dn=0), we must have

h
Z_P __phe 2 (AVLS)
Py (l—p hP)
where C would be a constant material speed of sound. Of course, because of either the frictional
dissipation along the wall (Euler set) or the viscous dissipation within the flow (Navier-Stokes set), the
entropy and C cannot be constant (e.g., for an ideal gas, C would increase with the temperature).
php

(1-ph, )

mathematical reading, let us label this ratio as C*.

Nevertheless, the ratio, , 1s guaranteed to be nonzero and positive. To ease the following

Therefore, the equations of continuity, momentum and energy, and shear stress for the Navier-
Stokes model [Eq. (AVIL.3)] lead to the following dependent variable vectors and characteristic

analysis:
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Euler set Navier-Stokes set
U=(u,P, p)T U=(uP,p, ‘C)T
0 010
0 0 1
A=lp 0 0 AP V00
i ““lo 1 0 0
01 0
0 0 0O
p 0 u O
p 0 u ou 1 0 1
Ay=lpu 1 O Ay =]
) Cp u 0 0
Cp u 0
- 0 0 O
Det[A, —1A]=0 Det[A, —1A|=0
< o
2
p(u=2)|(u=2) - |=0 (u=2f uo0
Characteristics: Characteristics:
k—){u,uiC} X—){u,u}

All eigenvalues along the characteristic curves are real as required for well-posedness.
Interestingly enough, the full viscous Navier-Stokes model has a characteristic less than the Euler
model—it does not have the speed of sound in its characteristic values. Indeed, in a way, the viscous
phenomenon “damped out” instabilities propagation within the flow and explains why weak-
instabilities “just” travel with the flow velocity.

These results, although obvious from the previous demonstration, seem not have been

demonstrated before in the common literature.
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Appendix 7: Operators, Tensors, and Invariants

Operators

]

deviatoric part (traceless) of a symmetric tensor

spherical part (trace) of a symmetric tensor

mean (RANS) or filtered (LES) part of a variable obtained by
Favre mass-weighted decomposition

mean (RANS) or filtered (LES) part of a variable obtained by
Favre phasic-weighted decomposition

> obtained from or after a filtering process (LES framework)

: scalar product of two tensors
. scalar product of two vectors
I Euclidian norm of a tensor
O

ensemble-average (RANS) or filtering (LES) operator

tr trace operation of tensors

T transposed operation of matrices
\% 1/m gradient operator

\Z 1/m divergence operator

d o
—=—+u-V 1/s
dt ot

Tensors, invariants, and work terms
Rate-of-strain tensor:

(AVIL1) D=-%[Vu + VuT]

Deviator of the rate-of-strain:

(AVIL.2) l:)=D+éV -ul

First invariant of the rate-of-strain tensor:

3
(AVIL3) Ip =tr(D)=) D; =-V-u
i=1
Second invariant of the rate-of-strain tensor:
33
(AVIL4) Il =tr(D-D)=> Y DyDj; =Dy, + D3, + D33 +2Df, +2Df3 +2D3;
i=1 j=I
Second invariant of the deviator of the stress tensor:
2 2 2
(T =T ) +(To2 = Ts3) +(T33 =Ty )
6
Second invariant of the deviator of the rate-of-strain tensor:

(D), -Dy, )2 +(Dy, —Dy3 )2 +(D33 =Dy, )2
6

(AVIIS) IIdT = + T122 + T123 + T223

(AVIL6) Il = +D}, +D}; + D3,

Total stress tensor:

(AVIL7) T=P1+1=PI+2uD-p"V-ul

Viscous dissipation (irreversible work):

(AVILS) W, :—1':Vu:—(V-(T-u)—u-V-T):ZuIID B

Work of all surface forces:

(AVIL9) Wy =-T:Vu=—(PI:Vu+1:Vu)=-PV-u-V-(1-u)+u-V-1=PI, + W,

material (Lagrangian) time-derivative

1/s

1/s

1/s

1/s2

Pa’ (kg’/m’ s*)

1/

Pa (kg/m s%)
Jm’ s (kg/m s*)

Jm’ s (kg/m s*)
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Appendix 8: Notations, Units, Constants, and Acronyms

Latin

A 1/m (m*/m’) “volumetric concentration” of interfacial area of phase 1

Cq dimensionless drag coefficient

C m/s isoentropic speed of sound

Cij kg/m’ s rate of interfacial mass transfer between species j and all other
species within phase i

Cp J/kg K(m?/s* K) specific heat at constant pressure

Cv J/kg K (m%/s* K) specific heat at constant volume

d m particle diameter

D 1/s rate-of-strain tensor

E J/kg (m%/s?) total energy per unit of mass (internal + kinetic energy)

Ee m?/s> volume averaged granular fluctuating energy

G m/s> body force

G I/ms LES space- and time-filter (kernel) function in R*

Gy 1/m LES space-filter (kernel) function in R*

G, 1/s LES time-filter (kernel) function in R

g (0,0,-9.80665)  m/s’ gravity vector

H, J/s m® (kg/m s°) rate of interfacial Helmholtz free energy between phase i
and all other phases

'H; J/sm’® (kg/m s°) rate of interfacial internal energy between phase i and all other phases

"H, J/sm’® (kg/m s”) rate of interfacial enthalpy between phase i and all other phases

H; JK sm® (kg/K m s*) rate of interfacial entropy between phase i and all other phases

h J/kg (m?/s%) enthalpy per unit of mass

I J/kg (m?/s%) internal energy per unit of mass

I dimensionless unit tensor

k W/mK (kg m/K s*) thermal conductibility coefficient

K kg/m® s gas-solid momentum transfer (drag) function

k. 1/m wave number scale of the largest unresolved turbulent eddies

m kg mass of grain

M, 28.9644 kg/kmol molar weight of dry air

M; kg/kmol molar weight of any gas species

M; Pa/m (kg/m’ s%) rate of interfacial momentum transfer between phase i
and all other phases

M, 18.0152 kg/kmol molar weight of water

n 1/m’ number of grains per unit of volume

Nu dimensionless Nusselt number

P Pa (kg/m s%) pressure

Py Pa (kg/m s?) granular pressure (usually understood as a kinetic and collisional
within RANS)

molpy dimensionless “molecular” (not induced by turbulence) Prandtl number

“Pr 0.95 dimensionless turbulent Prandtl number

q kg/s® thermal-heat flux or granular-heat flux vector

r m position vector

Q W/m® K (kg/s® K) gas-solid heat transfer function

R 8314.56 J/kmol K (kg m*/s* kmol K) universal gas constant

R J/kg K (m%/s* K) mixture gas constant

Re dimensionless particle Reynolds number

R; kg/m’ s rate of interfacial mass transfer between phase i and all other phases

R Pa m*/kg (m%/s?) specific Reynolds stress tensor (RANS or LES framework)

S J/kg s (m?/s) rate of heat/energy supplementary source

t s time

T K temperature

T Pa (kg/m s?) total stress tensor

u m/s velocity vector

Upy m/s bulk velocity vector of all the interfaces
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X; lor0
y

P >0 @3 FF

A4 aMD

QLT g

)
@)

m/s

m/s

Jm’ s (kg/m s°)
Jm’ s (kg/m s°)
dimensionless
dimensionless

m

m
m
dimensionless
dimensionless
m?/s’

kg/K s’
dimensionless
k/s m’

sorm

Pa s (kg/ms)

Pa s (kg/ms)

Pa s (kg/ms)
J/kg K (m*/s* K)
J/kg (m’/s)
kg/m3

kg/m3

kg/m’

J/kg s K (mY/K s°)
Pa (kg/m s?)

S

m?/s

m

m

Subscripts-Superscripts

50 Qo o
-+

Int,i

50

mean mixture horizontal/radial-speed of all phases

mean mixture vertical-speed of all phases

total work done by all the surface forces

irreversible work done by the surface forces (viscous dissipation)
function of presence of the i phase

species mass fractions

3-D geometric mean of the computational grid-size

filter cutoff length

computational grid-size width in the k™ direction
phasic volumetric concentration

maximum solid volumetric concentration
turbulent energy cascade rate

entropy flux

constant in the Gaussian spatial-filter
source/sink of a given species

generic symbol for the time- or a space-variable

second coefficient of viscosity

shear viscosity

bulk viscosity

entropy per unit of mass
granular temperature
microscopic weight density
macroscopic weight density

mean mixture weight density between all phases
entropy source

viscous stress tensor

characteristic LES filter time interval

diffusion coefficient of species j in the whole mixture
characteristic LES filter width

characteristic LES filter width in the k™ direction
computational domain/subdomain
domain/subdomain boundary

fluctuating (RANS) or unresolved (LES) part of a variable obtained
by Favre phasic-weighted decomposition

fluctuating (RANS) or unresolved (LES) part of a variable obtained
by Favre mass-weighted decomposition

dry air

bulk viscosity

collisional

Cross-terms

gas phase

denotes an interface or all the interfaces

denotes the interface between phase i and all the other phases

kinetic

Leonard-terms

mixture



mol

tur
klh

Acronyms

CFDlib
cV
EOS
(G)MFIX
IMF
LANL
LES
LHS
MFIX
MOC
NETL
ODE
ORNL
PDE
RANS
RHS
SG
SGH
SGS

“molecular” (i.e., not induced by turbulence)
Reynolds terms

solid phase

relative to time

induced by turbulence

some X-, Y-, Z-directions

X-direction (radial or horizontal) or relative to space
Y-direction (vertical)

water vapor (steam)

computational fluid dynamic library code
control volume

equation of state

geophysical multiphase flow with interphase exchange
implicit multifield

Los Alamos National Laboratory

large eddy simulation

left-hand side

multiphase flow with interphase exchange
method of characteristics

National Energy Technology Laboratory
ordinary differential equation

Oak Ridge National Laboratory

partial differential equation

Reynolds Averaged Navier-Stokes
right-hand side

subgrid

subgrid heat (flux)

subgrid stress (flux)
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