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I. Hydrodynamic and Thermodynamic RANS and LES Models

 

                                            Abstract 
 

The objective of this manuscript is to fully derive a geophysical multiphase model 

able to “accommodate” different multiphase turbulence approaches; viz., the Reynolds 

Averaged Navier-Stokes (RANS), the Large Eddy Simulation (LES), or hybrid RANS-

LES. This manuscript is the first part of a larger geophysical multiphase project—lead by 

LANL—that aims to develop comprehensive modeling tools for large-scale, atmospheric, 

transient-buoyancy dusty jets and plume (e.g., plinian clouds, nuclear “mushrooms,” 

“supercell” forest fire plumes) and for boundary-dominated geophysical multiphase 

gravity currents (e.g., dusty surges, diluted pyroclastic flows, dusty gravity currents in 

street canyons). LES is a partially deterministic approach constructed on either a spatial- 

or a temporal-separation between the large and small scales of the flow, whereas RANS 

is an entirely probabilistic approach constructed on a statistical separation between an 

ensemble-averaged mean and higher-order statistical moments (the so-called “fluctuating 

parts”). Within this specific multiphase context, both turbulence approaches are built up 

upon the same phasic binary-valued “function of presence.” This function of presence 

formally describes the occurrence—or not—of any phase at a given position and time 

and, therefore, allows to derive the same basic multiphase Navier-Stokes model for either 

the RANS or the LES frameworks. The only differences between these turbulence 

frameworks are the closures for the various “turbulence” terms involving the unknown 

variables from the fluctuating (RANS) or from the subgrid (LES) parts. Even though the 

hydrodynamic and thermodynamic models for RANS and LES have the same set of 

Partial Differential Equations, the physical interpretations of these PDEs cannot be the 

same, i.e., RANS models an averaged field, while LES simulates a filtered field. In this 

manuscript, we also demonstrate that this multiphase model fully fulfills the second law 

of thermodynamics and fulfills the necessary requirements for a well-posed initial-value 

problem. In the next manuscripts, we will further develop specific closures for multiphase 

RANS, LES, and hybrid-LES. 
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“Big whorls have little whorls, 
That feed on their velocity; 
And little whorls have lesser whorls, 
And so on to viscosity.” 
 
 
Lewis Fry Richardson (1881–1953), 
Summarizing the essence of his seminal paper “The supply of energy from and to atmospheric 

eddies,” Proceedings of the Royal Society, A97, 354–373, 1920. 
 
 
 

 

 
 
 



1. Introduction 

1.1.  Scope and Objectives 

Large-scale, atmospheric, transient-buoyancy dusty plumes and jets, such as plinian clouds (Figure 

1 and Figure 2), nuclear “mushrooms” (Figure 3, Figure 4, and Figure 5), and “supercell” forest fire plumes 

[Fromm and Servrankx 2003], potentially pose a major threat to human life, livestock, the environment, 

and aircraft safety and, therefore, may disrupt nationwide social and economical activities [Dartevelle 

et al., 2002]. These geophysical flows also present a great scientific and engineering interest because 

their dynamic has this peculiarity of being mostly (if not solely) controlled by turbulence or by the 

magnitude of “mixing” with the surrounding atmosphere. Hence, dusty geophysical plumes and jets 

present the “ideal” multiphase flows for implementing and testing new geophysical turbulence and 

numerical models. In addition, many of these large-scale plumes are well constrained by observations 

and by remote-sensing data, allowing modelers to validate their numerical results and mathematical 

models. Last but not least, this project can also be applied to boundary-dominated geophysical dusty 

gravity currents such as base surge clouds generated by nuclear blasts (Figure 5) or surge flows 

following, for instance, the collapse of the twin towers in New York City (Figure 6) or the collapse of 

volcanic jets (Figure 7) [Wohletz 1998]. For these latter flows, the boundary (e.g., ground layer and the 

atmospheric boundary layer) has an important effect upon the whole flow dynamic. Therefore, 

multiphase gravity currents turn out to be ideal flows to further test hybrid approaches (i.e., hybrid-

LES) consisting of RANS at and nearby the boundary and LES further away in the boundary-free 

atmosphere. 

1.2.  Definitions 

The primary goal of this manuscript is to pave the way to a better understanding of geophysical 

multiphase turbulence. By turbulence, we mean that the small-scale motions (generally unknown) have 

a significant influence upon the large-scale motions (which are the scales of interests in geophysics). 

By multiphase, we mean that the fluid system is made of different materials, each of them having their 

own specific and distinct behavior over all scales [Kashiwa and Vanderheyden 2000]. By geophysical, 

we mean that the flow event may last from microsecond to several hours over spatial scales from 

centimeters to thousands of kilometers. 
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1.3.  Methodologies and Organization 

Because geophysical multiphase turbulence is still very much in its infancy [Dartevelle 2004; 

Dartevelle et al., 2004], we must devise a model flexible enough to be compatible with different 

approaches to turbulence (e.g., LES, RANS, or hybrid methods). Indeed, different geophysical flows 

may require different multiphase turbulence methodologies, and/or the same geophysical flow may be 

explored with different multiphase turbulence models. In other words, before getting to any specific 

turbulence closures and models, we must set an appropriate mathematical framework able to “nest” 

different turbulence models. Establishing this framework is what this manuscript wants to achieve. 

This manuscript is organized as follows. First (§2), we systematically review the mathematical and 

physical formalisms behind multiphase flow and turbulence. In particular (§2.3), we define the exact 

chosen methodology of this manuscript (the function of presence) for setting a multiphase system fully 

compatible with different approaches to turbulence; viz., the ensemble averaging process (RANS in 

§2.5) and the filtering process (LES in §2.6). The specific mass and phasic-weighted Favre 

decompositions are defined for both RANS and LES approaches in §2.7. With this theoretical 

background reviewed, we introduce a general multiphase hydrodynamic model (§3) based upon the 

derivations performed in Appendix 2 for the RANS approach and in Appendix 3 for the LES approach. 

Next, we demonstrate that this “universal” hydrodynamic model satisfies the necessary requirement for 

well-posed system as an initial value problem (§5) and is fully compliant with the second law of 

thermodynamics (§6). In §4, we define the exact relationships between the RANS and LES stress 

tensors in order to rationally set hybrid turbulence models based upon both the RANS (e.g., near walls) 

and the LES (e.g., away from walls) models. 

All the symbols, constants, operator, tensors, invariants, SI units, and acronyms are thoroughly 

defined in Appendix 7 and Appendix 8. The averaging and filtering mathematical rules are summarized 

and reviewed in §2.4 and in Appendix 1. In particular, the averaging properties within RANS are 

reviewed in §2.5.1 and §2.5.3, while the filtering properties within LES are reviewed in §2.6.1. 

The sign convention for stress is such that it follows the same convention as Fick and Fourier laws 

[Bird et al., 1977; Dartevelle 2004]. In other words, viscous stress is positive in the direction of 

decreasing velocities. Hence, compressive stress, compressive strain, and their rates are positive. 

Unless specified otherwise, vectors (e.g., q, y, u) and tensors (e.g., T, ) are denoted in bold, while 

scalar functions (e.g., ρ, ε, T, y) are noted in normal. 

τ
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Figure 1. Mt. Pinatubo volcanic plume, Philippines, June 12, 1991. Altitude: ~12 km. 

 

 
 
Figure 2. Ascending eruption cloud from Redoubt Volcano. View is to the west from the Kenai Peninsula. Notice that 
the main plume is offset from the vent. Altitude: ~10 km. (Photograph by J. Warren, April 21, 1990, USGS.) 
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Figure 3.  Baneberry Test, Operation Emery, December 1970, Nevada (failed containment underground test in a 
~280-m-deep shaft). Yield: 10 kt; Altitude: ~3 km. Because the explosive device was initially underground (and 
supposed to be contained), the rising plume was highly enriched in dust causing local nuclide pollution. 

 

 
Figure 4.  George Test, Operation Greenhouse, May–June 1951, Ruby Island, Enewetak Atoll. Yield: 225 kt. 
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Figure 5.  Grable Test, Operation Upshot-Knothole, May 1953, Nevada. Yield: 15 kt. Notice the dusty surge cloud 
radially spreading around the main plume. 

 

 
Figure 6.  Dusty gravity currents following the collapse of the Twin Towers, World Trade Center, New York City,     
September 11, 2001. 
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Figure 7.  Pyroclastic flows and surges flowing the collapse of the plinian jet in Japan (exact location and time 
unknown). 
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2. The Making of a Multiphase Model 

2.1. Turbulence Approaches 

What would be the best turbulence model to properly capture geophysical multiphase jets, plumes, 

and boundary-dominated geophysical multiphase gravity currents? The answer is far from obvious 

because many multiphase turbulence models available in computational fluid dynamics (CFD) have not 

been thoroughly tested in geophysics1. In addition, knowing the large span of temporal and spatial 

scales covered by multiphase geophysical flows, we may reasonable expect that there would be no 

universal and unique turbulence approach. Rather, we should aim a unique mathematical model able to 

accommodate different approaches to turbulence. 

Generally speaking, four major approaches are available to capture turbulence phenomenon: 

1. The most traditional approach in multiphase-CFD is the Reynolds Averaged Navier-Stokes 

framework (RANS), which is an entirely statistical approach in that only a statistical mean 

(e.g., by ensemble-average) of a given variable is computed, while all the higher-order 

statistical moments are modeled. In other words, only the mean part of a quantity is 

“simulated,” whereas the “small-scale” effects from turbulent fluctuations must be 

somehow modeled. Although RANS approaches have received considerable attention these 

past decades, these models have led to disappointing results with computer costs being 

higher and higher as the RANS models become more and more sophisticated [e.g., Sagaut et 

al., 1997; Lakehal 2002]. RANS approaches have been quite extensively developed for 

multiphase flows [e.g., Besnard et al., 1987, 1992; Simonin 1996; Kashiwa and 

Vanderheyden 2000; Peirano et al., 2001]. However, to the best of our knowledge, these 

multiphase models have never been applied to large-scale geophysical multiphase flows. 

2. The Direct Numerical Simulations approach (DNS) is purely deterministic because it solves 

all spatial and temporal scales of motions from the largest to the smallest ones. The smallest 

scales may be related, for instance, to the Kolmogorov dissipation scales or any other 

dissipation scales (e.g., boundary layer) [Lesieur 1997]. DNS therefore must require 

extremely small time-steps and mesh size in order to fully capture the smallest dynamical 

scales of the flow. In other words, DNS can only be achieved with a prohibitive 

computational cost and, therefore, may never have been applicable (or not for long) for any 

geophysical flows developing upon large spatial scales and over long times. 

                                                 
1 It should be noted, however, that the LES framework of single-phase turbulence is the most common way to capture 
turbulence effects in atmospherical sciences. It is also generally admitted in engineering literature (particularly in 
aeronautics) that highly unsteady and nonuniform (large-scale) turbulence is better captured by LES than RANS models. 
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3. LES is partially deterministic because it is constructed on a spatial or a temporal separation 

between the large scales and the small scales within the subgrid. Typically, large scales are 

strongly anisotropic and need to be directly simulated in a way similar to DNS, while small 

(subgrid) scales of the flow are assumed to be much more isotropic and universal so that 

simple scaling subgrid models can be used to model their effects. The separation between 

simulated large scales and modeled subgrid scales is achieved using filter functions 

(“kernels”). The filtered (“known”) variables will be solved with the Navier-Stokes 

equations, and the effects from the unfiltered (“unknown”) subgrid scales will be somehow 

modeled with supplementary source terms. At first glance, it may seem that LES should be 

far superior to the RANS approach because RANS models all scales, while LES only 

models the subgrid scales (the large scales are directly simulated). However, as we will 

show in this manuscript, the mathematical development of all the LES subgrid terms is far 

more complicated that in the RANS approach. Modeling all the LES terms is challenging2, 

particularly within the multiphase framework. In addition, some further complications arise 

with LES methods when dealing with nonisotropic and nonhomogenous grid. 

4. In many engineering applications (e.g., aeronautic, naval engineering sciences), LES usually 

has the favor as it better captures all the large-scale turbulent features of a given flow. 

However, near a boundary wall, the spatial resolution must often be increased in order to 

properly capture turbulent unsteadiness and instabilities near and at the wall. The spatial 

resolution needed at the wall must be so high in highly turbulent flows that the wall-LES 

model practically becomes a DNS model with prohibitive computer costs. Therefore, it may 

be more practical (and less computer demanding) to use a RANS model at the wall and to 

simulate the turbulent large-scale features with a LES approach far from the wall. These 

hybrid-turbulent approaches (often named “hybrid-LES”) are gaining in popularity in 

aeronautic engineering sciences but present the challenge to properly “connect” averaged 

values of a given variables (from RANS) with its filtered values (from LES). 

Because LES and RANS are based upon different mathematical and physical methodologies, it is 

necessary to systematically review these approaches first. Later, this manuscript devises a mathematical 

approach to derive a multiphase Navier-Stokes model compatible with both the statistical (RANS) and 

the filtering (LES) approaches. Specific turbulence closures will be developed in other manuscripts. 

                                                 
2 It is not rare to find LES models not very well set (e.g., non-Galilean invariant) because of a poor choice of 
approximations [e.g., see discussion in Speziale 1985]. 
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2.2. Multiphase Formalism 

Because the system is made up of a large number of particles, it is impractical to solve the motion 

of each individual particle; hence, we have chosen Implicit Multi-Field formalism (IMF), which treats 

all phases in the system as interpenetrating continua. Each instantaneous local point variable (mass, 

velocity, temperature, pressure, and so forth) must be, by some means, “treated” to acknowledge the 

fact that any given arbitrary volume can be co-shared by different phases at the same time. This 

treatment may involve, for instance, an “averaging” or a “smoothing” process. The fact that we have 

averaged out or smoothed out some details is not worrisome as we are mostly concerned with the bulk 

flow behavior and as we rather want to know how the system works as a whole instead of knowing the 

exact history of a particular grain within the flow [Kashiwa and Vanderheyden 2000; Dartevelle 2003; 

Dartevelle 2004]. 

The process of deriving a single-phase Navier-Stokes system of equations into a multiphase 

system is far from being an obvious task, and yet it is a critical one, particularly when multiphase 

turbulence must be accounted for. Setting the multiphase Navier-Stokes equations alongside the 

appropriate turbulence closures has two basic approaches: the “double-step” and the “single-step” 

techniques3. This manuscript is only concerned with the single-step technique, which is by far the most 

efficient and compatible technique with the different approaches to turbulence: LES, RANS, and 

hybrid-LES. 

1. The most common and somehow intuitive approach is the double-step technique. The first 

step involves a volume-average of all instantaneous local point variables in order to 

determine how much of a control volume (CV) is co-shared by all phases making up the 

multiphase system. This volume-average step must be achieved over a region that is large 

compared with the particle spacing but much smaller than the overall flow domain 

[Anderson and Jackson 1967]. In carefully specifying the mass, momentum, and heat 

transfer between phases alongside the jump conditions at their interfaces, it is easy to 

deduce a full set of Navier-Stokes equations for each phase. The most common volume-

averaged approach for granular flows is from Anderson and Jackson [1967]. Afterwards, the 

second step consists of making the turbulence terms explicit within the volume-averaged 

equations by either averaging again (RANS framework) or filtering (LES framework). In 

this second step, each volume-averaged variable is decomposed into mean and fluctuating 

                                                 
3 It should be noted that many modelers do not worry that much about averaging/smoothing processes and directly deduce 
the macroscopic equations. However, when it comes to the exact formulation of a multiphase turbulence model, many terms 
may be “forgotten,” leading to unknown but critical assumptions regarding a given turbulence model, or even worse, 
leading to not very well-posed problems. 
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parts within the RANS framework or decomposed into filtered and subgrid parts within the 

LES framework. The double-step method is widely used within the RANS framework [e.g., 

Besnard et al., 1987; Besnard and Harlow 1988; Besnard et al., 1992; Cao and Ahmadi 

1995; Zhang and Reese 2001; Boulet and Moisette 2002] but somewhat uncommon within 

LES because it becomes rather confusing to deal with both a volume-averaged and then a 

filtered variable. The double-step method is also inconvenient because the algebra during 

the second step is quite cumbersome. 

2. The single-step technique relies on the phasic “function of presence” that formally describes 

the space occupation within any CV by a given phase [Drew 1983; Lhuillier 1996; Enwald 

et al., 1996; Lakehal et al., 2002]. The use of the function of presence saves us from the first 

step (i.e., the volume-averaged step) and allows us to directly derive a set of Navier-Stokes 

PDEs either by ensemble averaging (RANS framework) or by filtering (LES framework). 

This single-step method is clearly gaining in popularity [e.g., Simonin et al., 1995; Simonin 

1996; Tran 1997; Kashiwa and VanderHeyden 2000; Milelli et al., 2001; Lakehal et al., 

2002] because it offers an easier, clearer, and “handier” set of Navier-Stokes equations, 

which, in addition, are potentially compatible with different turbulence frameworks—

RANS, LES, and hybrid-LES. 

Because we aim to set a mathematical model that offers enough versatility to be compatible with 

different turbulence approaches, we are only concerned with the single-step technique, which is 

systematically reviewed in the next sections. 
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2.3. The Phasic and Interfacial Function of Presence 

In a multiphase flow system, more than one phase may coexist in any CV. Therefore, let the ith 

phase function of presence, Xi(x,t), at location x and at time t be [Drew 1983] 

 

i
1 if location  is inside phase i at time t,

X ( , t )
0 otherwise

⎧⎪= ⎨
⎪⎩

x
x  (1) 

 

Hence, in a two-phase gas-solid flow, we must have Xg=1–Xs. In addition to being a unique 

material identifier, Xi has some important properties [Drew 1983; Lhuillier 1996; Drew and Passman 

1999]. 

 

a. First Property       
 

i iX∇ = − δn Int

sX 0

 (2) 
 

where ni is a unit normal vector pointing outward to the ith phase at the location x and time t. The 

gradient of the phase function must be zero everywhere except exactly at the interface between phases. 

This gradient vector points towards the direction of maximum increase that is towards phase i itself in a 

direction opposite to ni. Obviously, at location x and time t in a two-phase flow, we have 

, or more generally, . In Eq. (2), δInt is Dirac delta function at the interface 

location as it directly results from the step-like behavior of the interface as seen in Eq. (1). Hence, δInt 

acts as a function of presence of the interface itself (it is zero at any location where there is no 

interface). 

gX∇ = −∇
n

i
i 1

X
=

∇ =∑

The gradient in Eq. (2) can be used to sort out mass, molecular, and heat fluxes (and their 

directions) at the interface between gas and solid phases. Indeed, let us use an “angular operator,” 〈〉 , 

which will be thoroughly defined in the next sections (within RANS, it will be an ensemble averaged 

operator; within LES, it will be a filter operator). Ensemble-averaging or filtering Eq. (2), we have 

 

i i Int

i i

X

X

∇ = − δ

= ∇ = ∇ε

n
     , (3) 
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where εi is a “bulk” volumetric concentration of phase i (which will be thoroughly defined 

hereafter—see RANS §2.5.2 and LES §2.6.4). Clearly, the product of any property φ with the gradient 

of the phase function, e.g., i iXφ ∇ , must give a bulk contributory effect of fluxes of φ of phase i at its 

“bulk” interface over the whole domain of integration. By definition, in a two-phase system at location 

x and time t, we must have , or more generally, g∇ε = −∇εs

n

i
i 1

0
=

∇ε =∑ . 

b. Second Property 

The volumetric concentration of the interfacial area, Ai, can be defined as the “angular operator” 

upon the scalar product of ni and : iX∇

 

i iA X= − ⋅ ∇n i      . (4) 

 
Again, the angular operator may be either an ensemble-averaged operator (RANS) or a filter 

operator (LES). Clearly, in a system made of two phases (gas and solid) at location x and time t, we 

have As=Ag. 

 

c. Third Property 

i
Int i

i
Int i Int

X
X 0

t
X
t

∂
+ ⋅∇ =

∂
∂

⇔ = ⋅
∂

u

u n δ

     , (5) 

 

where uInt is the velocity of the interface between phases. Eq. (5) indicates that the material 

(Lagrangian) derivative of Xi is always nil ( idX 0
dt

= ) no matter where it occurs. Indeed, being exactly 

at the interface and moving with its local velocity (uInt), Xi represents a constant jump, and Eq. (5) must 

equal zero [Lhuillier 1996]. Being at any a location other than the interface, then either Xi=1 (inside the 

material) or Xi=0 (outside the material), and therefore all the partial derivatives (time and space) must 

vanish [Drew and Passman 1999]. This result, of course, justifies the second line of Eq. (5) because the 

transient term of Xi ( iX
t

∂
∂

) must vanish at any location except when an interface crosses that specific 

location. 

 

 12



d. Fourth Property 

In a multiphase flow made of two and only two phases, the interface is straightforward to define 

(e.g., between the solid particles and the gas phase). In a mixture made of n phases (n>2), one must 

distinguish n-1 interfaces separating each phase from each other. Let us write the function of presence 

of interfaces in Eq. (2) between phase i and j as δInt,i,j where i≠j; then the function of presence of all 

interfaces between all phases in the system is 

 
n 1 n

Int Int , i , j
i 1 j i 1

−

= = +

δ = δ∑ ∑      . (6) 

 

And the function of presence of the interface between phase i only and all the other phases in the 

system is 

 
n

Int , i Int , i , j
j 1
j i
=
≠

δ = δ∑      . (7) 

 

Hence each phase’s interface can be easily tracked without any confusion between different 

interfaces of different phases. With these new definitions, uInt in Eq. (5) would represent a “bulk mean” 

interfacial velocity of all interfaces between all phases making up the multiphase system. 
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2.4. Core Properties of the Angular Operator 〈〉 

In order to properly manipulate the multiphase Navier-Stokes equations within different 

turbulence frameworks (RANS and LES), we must define a mathematical operator that must own at 

least the three following properties. The exact mathematical nature of 〈〉 will be analyzed in the RANS 

(§2.5) and in the LES sections (§2.6). 

 

a. First Property: conservation of constant 

Let c be a constant, then 

 

c = c      . (8) 

 

b. Second Property: linearity 

Let α and β be scalars, vectors, or tensors, then 

 

α + β = α + β      . (9) 
 

c. Third Property: commutativity with respect to derivations 

Let ‘ι’ be either a space (x) or time (t) variable. Let α be a scalar, vector, or tensor, then 

 

∂ α∂α
=

∂ι ∂ι
     . (10) 

 

As we will see hereafter, the commutativity property is guaranteed within the RANS framework 

but required some discussions and further work within LES. 

Generally speaking and unlike the RANS angular operator, a LES angular operator is not a 

Reynolds operator. This is an important difference between LES and RANS, leading to a different 

Navier-Stokes set of equations. Appendix 1 develops and demonstrates additional properties that will 

be extensively used throughout this manuscript. 
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2.5. Averaging Process – RANS Framework 

2.5.1. Definition of the RANS operator 〈〉 

Let φ(x,t) be an instantaneous local (microscopic) fluid property at some specific punctual position 

x in space and at time t (φ can be a scalar, vector, or tensor). Let us achieve N identical experiments 

(replicas) with the same initial and boundary conditions. For each replica, we systematically measure at 

the same location x and time t the property φ(x,t). Of course, we may expect to measure slightly 

different values of φ(x,t) in each of these experiments. However, our prime interest is to capture a bulk 

property of the system or an averaged value of φ(x,t), which would be a “macroscopic” characteristic 

value for the whole ensemble of experiments. This ensemble average over the N replicas is 

 

N

n nN
n 1

lim ( , t ) P

( , t )
( , t ) dF( )

→∞
=

∞

−∞

⎧
φ⎪

⎪
φ = ⎨

⎪ φ φ⎪
⎩

∑

∫

x

x
x

     , (11) 

 

where φn(x,t) is the nth realization of φ(x,t) with an observed probability Pn (if each realization of φ 

is equiprobable4, then n
1P N= ); dF(φ) is the element of probability of observing a given specific 

realization of φ (F is the cumulative distribution function of φ); and the integration takes over the whole 

set of possible values of φ. Both definitions (sum vs. integral) are strictly identical depending on 

whether φ(x,t) is seen as a continuous or discrete random function5. 

Other averaging methods are possible, such as volume-averaged, which is performed around a 

fixed point x at time t, or the time-averaged, which is performed at the location x in a time interval 

around t. However, in many instances, time and volume average may be seen as a special case of the 

ensemble average. For instance, if the flow is homogenous (on the average, the flow is uniform in all 

directions) and stationary (on the average, the flow does not vary with time), time, volume, and 

ensemble are just identical averages (this is the ergodicity hypothesis). 

 

                                                 
4 Which is very likely the case because N tends to infinity. 
5 Ensemble average is a molecular dynamic concept, whereas, in classical statistics, Eq. (11) is named the expectation of a 
random variable or random function. 
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2.5.2. The RANS operator 〈〉  upon the function of presence and density 

The ensemble average of the function of presence of a given phase, Xi, must give the probability 

of presence of the ith phase at x and t as it represents the averaged occurrence of phase i: 

 

i i iX ( , t ) X ( , t ) dF(X )
+∞

−∞

ε = = ∫x x i      , (12) 

 

where εi is the volumetric concentration of the ith phase6. We may now define the phasic bulk 

density as 

 

i i i i iˆ X ( , t ) ( , t )ρ = ε ρ = ρx x      , (13) 

 

where the ensemble-averaged density of the ith phase is weighted by the ensemble-averaged phasic 

function of presence, i.e., 

 

i i i i

i i i i
i ii

X ( , t ) ( , t ) X ( , t ) ( , t ) 1 X ( , t ) ( , t ) dF(X , )
X ( , t )

∞ ∞

−∞ −∞

ρ ρ
ρ = = = ρ ρ

ε ε ∫ ∫
x x x x

x x
x

i , (14) 

 

where ρi is the microscopic density of the ith phase (for the solid phase, it will be assumed to be 

constant). Averaging processes have very important properties that are entirely demonstrated in 

Appendix 1. These properties will be extensively used to set up the multiphase Navier-Stokes equation 

system. 

 

2.5.3. The RANS operator 〈〉 as a Reynolds operator 

Let α(x,t) and β(x,t) be two random variables, c a constant, and 〈〉 defined by Eq. (11). The 

angular-operator acts as a Reynolds operator within the RANS framework if and only if all the 

properties seen in §2.4 hold and if, in addition, we have 

                                                 
6 Eq. (12) is not exactly the volume average or the volumetric concentration of the ith phase. The only correct interpretation 
of Eq. (12) is that it represents the “expected value” of the ratio of the volume occupied by phase i to the total control 
volume, if the limit of the total volume approaches zero. If the spatial distribution of phase i is homogenous, then Eq. (12) 
represents exactly a volume-averaged concentration [Drew and Passman 1999]. 
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( ) ( )c , t c , tα = αx x   (15) 

 

α β = α β . (16) 

 

Consequently, we also find 

 

( ) ( ), t , t

0

α = α

′α = α − α =

x x

, (17) 

 

where α’ is the turbulent fluctuation or the deviation from the expectation of α(x,t) (i.e., α ). For 

more details on these properties, see Appendix 1. 
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2.6. Filtering Process — LES framework 

2.6.1. Definition of the LES operator 〈〉 

A key idea of LES is the separation of the simulated large-scale properties of the flow from the 

modeled (subgrid, SG) small-scale properties. The limit7 between large scales and subgrid scales is 

“supposed” to take place in the inertial subrange. This decomposition is obtained using a spatial filter 

with a characteristic width, ξ, equal to (or of the order of) the computational mesh-size8 or using a 

temporal filter with a characteristic time, τ, equal to (or of the order of) the time interval. 

As in §2.3, let φ(x,t) be an instantaneous local (microscopic) fluid property at some specific 

punctual position x in space and at time t. The LES space- and time-filtering process of φ is formally 

defined as [Sagaut 1998] 

 

0

( , t ) G( , ) ( , t ) dt d
∞ ∞ ∞ ∞

−∞ −∞ −∞

′ ′ ′ ′φ = τ φ∫ ∫ ∫ ∫x ξ x x      , (18) 

 

where the spatial integration is produced over the entire flow domain, Ω (or any of its subdomains 

of constant grid-size), at any time. Eq. (18) filters φ(x,t) at a point x=x´ (spatial filtering) and at a time 

t=t’ (time filtering) and weighted φ(x,t) by G(ξ,τ). In mathematics, this process is called the 

“mollification” of φ(x,t). Eq. (18) defines a “regulariser” or “mollifier” [Galdi 1994]. The filter kernel, 

G(ξ,τ), is defined by its spatial width ξ, ξ=x-x’, over which the smoothing process take place, and by its 

time interval τ, τ=t-t’ during which the filtering process occurs. It can be seen that for the most 

commonly used spatial filters (e.g., box, Gaussian, or spectral filters), G is centered in ξ, symmetric 

around ξ, and keeping the same shape in space as x’ varies9. 

                                                 
7 This limit is often named “cutoff.” 
8 Although it does not have to be, the width may even be totally independent of the grid size. However, for finite volume 
codes, the most natural way is to relate ξ with the grid size. 
9 There are other filters that do not have these properties. 
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2.6.2. Properties of the LES operator 〈〉 

1. The filter kernel is normalized to preserve the constants (First Property in §2.4); hence, over 

the whole domain, Ω (or any of its subdomains), during the whole time under consideration, 

we must have     
0

G( , ) dt d 1
∞ ∞ ∞ ∞

−∞ −∞ −∞

′ ′τ =∫ ∫ ∫ ∫ ξ x      . 

2. The space and time filter kernel, G(ξ,τ) in ℜ4, is initially obtained by tensorizing two kernels 

in space, Gx(ξ) in 3, and in time, Gt(τ) in ℜ [Sagaut 1998] ℜ

 

x tG( , ) G ( ) G ( )τ = τξ ξ  (19) 

 

3. At the limit of ξ and τ going to zero, Eq. (18) becomes a Dirac delta sequence function [Weber 

and Arfken 2004] 

 

x t0
0 0 0

lim G ( ) G ( ) ( , t ) dt d ( ) ( ) ( , t ) dt d

( , t ) ( , t )

∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

→
τ→ −∞ −∞ −∞ −∞ −∞ −∞

′ ′ ′ ′ ′ ′ ′τ φ = δ δ τ φ

φ = φ

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫ξ
ξ x x ξ x x

x x

′
, (20) 

 

so that, when the grid size and/or the time step becomes smaller and smaller, near x=x´ and t=t’, 

we must have ( , t ) ( , t )φ ≈ φx x  as expected, wanted, and shown by Eq. (20). 

 

2.6.3. Explicit spatial filters 

In LES engineering and single-flow atmospherical literatures, it is by far more common to use a 

spatial filter rather than a time filter10 because the time filter separates spatial scales (large vs. subgrid) 

with an obvious ease. This is formally expressed as 

 

x t x0
lim G ( ) G ( ) G ( ) ( )
τ→

τ = δ τξ ξ      . (21) 

 

                                                 
10 We should, however, mention that time filtering has numerous advantages, particularly filtering within a nonuniform grid 
domain and when applied to hybrid LES-RANS turbulence approaches. 
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It should be kept in mind that whenever a spatial filtering is achieved, an implicit (and often 

“forgotten”) time filtering is also achieved as well [Sagaut 1998], which imposes supplementary 

conditions over the time step of any LES simulations. 

Let us define a cutoff length, , in the xk
th direction (k=1, 2, 3 or xk=X, Y, Z), k∆

I

 

k kn x∆ = ∆      , (22) 

 

where xk is the mesh size in the X-, Y-, and Z-directions and ‘n’ is an integer usually taken 

between 1 and 3 (i.e., the filter length is two to three times coarser than the grid size in any given 

direction). 

∆

One of the most commonly used filters in space is the Gaussian spatial filter, e.g., in the xk
th 

direction [Ferziger 1976; Piomelli et al., 1991], 

 
2
k

2
k

x k
k

1G ( ) e

γ ξ
−

∆γ
ξ =

π∆
     , (23) 

 

where γ is a constant usually taken to be equal to 6 [Sagaut 1998; Pope 2000] and the filter width 

in the xk
th direction is ξk=xk-x’. 

Another filter often used in finite-volume methods is the box spatial filter, e.g., in the xk
th direction 

[Deardorff 1970; Piomelli et al., 1991], 

 

k
k

x k k

1 if 
G ( ) 2

0 otherwis

⎧ ∆⎪ ξ <⎪ξ = ⎨ ∆
⎪
⎪⎩ e

     . (24) 

 

With the box filter, ( , t )φ x  is the weighted-average of φ(x,t) over an interval ξ smaller than half 

of ∆X, ∆Y, or ∆Z (Figure 8A). 

 Both filters are shown in Figure 811. 

                                                 
11 There are many other filters [see Pope 2000]. We will review them in the next manuscript on multiphase LES approaches 
(under preparation). 
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Figure 8 

Two possible and common spatial filters: A. the box filter and B. the Gaussian filter. 
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2.6.4. The LES operator 〈〉  upon the function of presence and density 

Let us use the ith phase function of presence, Xi(x,t), as defined in Eq. (1) of §2.3. Then the spatial-

filtering of Xi must give the filtered occurrence of phase i at the ∆
I

-scale over the whole domain Ω ,  

 

i i x iX ( , t ) G ( ) X ( ', t ) d '
Ω

ε = = ∫∫∫x ξ x x      , (25) 

 

where εi is the volumetric concentration of the ith phase [compare with Eq. (12)]. Hereafter in this 

manuscript, we will not make any symbolic difference between the volumetric concentrations obtained 

by an ensemble averaging (RANS) or by a filtering (LES) process. The filtered phasic bulk density is 

 

i i i i iˆ X ( , t ) ( , t )ρ = ε ρ = ρx x      , (26) 

 

where the “bottom upside-down hat” is used to emphasize that the variable has been filtered 

(instead of being averaged as in RANS). The filtered density of the ith phase is weighted by the filtered 

phasic function of presence, 

 

( )i i i i

i x i i
i ii

X ( , t ) ( , t ) X ( , t ) ( , t ) 1 G ( ) X ( , t ) ( , t ) d '
X ( , t ) Ω

ρ ρ
′ ′ρ = = = ρ

ε ε ∫∫∫
x x x x

ξ x x
x

x  , (27) 

 

where ρi is the microscopic density of the ith phase. 

 

2.6.5. Anisotropic and nonhomogenous explicit spatial filters 

In many engineering and geophysical applications, the grid size, ∆x, (hence the spatial-filter width, 

ξ) may not be homogenous over the whole computational domain (i.e., ∆x varies in some directions) 

and/or may not be isotropic (i.e., ∆x1 ≠ ∆x2 ≠ ∆x3). The latter is not a problem, but the former is quite a 

matter of concern as it does pose a problem for the commutativity property with respect to space 

derivation [Third Property of §2.4, Eq. (10)]. 
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The most common and classical way to deal with anisotropic filter width is the Deardorff [1970] 

method, which takes the geometric mean of the grid length between the 3 directions of space ( ∆ ) to 

evaluate a “geometric-averaged” filter cutoff length, 

 

3

3 k
k 1

n n x
=

∆ = ∆ = ∆∏    ,  (28) 

 

where ‘n’ is a constant (usually between 1 and 3) and ∆xk is the grid width in the xk
th direction of 

space. Many modifications of Deardroff’s original model [see Sagaut 1998] and other models have also 

been proposed [e.g., Scotti et al., 1993, 1997]. Those will be reviewed in a future manuscript on 

multiphase LES. 

To deal with nonhomogenous filter characteristic length, i.e., ∆
I

 is nonconstant within the 

computational domain, , let Ω i and Ω Ω j be two subdomains of Ω  ( 0 i, j   i j∀ ∈` ∩ ≠ ), each 

characterized by constant grid sizes (∆xk) in any direction (hence constant filter cutoff lengths, i.e., i∆
I

 

and ); let ∂ i,j be the boundary between these subdomains; and let Gi and Gj be the spatial-filter 

kernels associated with Ω i and j. 

j∆
I

Ω

Ω

Let us examine first what happens to the filtering process with these nonhomogenous filters. 

Because  is nonconstant, the space-filter kernel becomes a function of ∆∆
I I

 itself, i.e., Gx(ξ,∆
I

) over Ω . 

We note that differentiating φ(x,t) with respect to space becomes 

 

x

x x

x

( , t) G ( , ) ( , t) d

G ( , ) ( , t) d G ( , ) ( , t) d

( , t) G ( , ) ( , t) d

Ω

Ω Ω

Ω

⎡ ⎤
⎢ ⎥′ ′∇ φ = ∇ φ
⎢ ⎥⎣ ⎦

⎡ ⎤′ ′ ′⎡ ⎤= ∇ φ + ∇ φ⎣ ⎦ ⎣ ⎦

⎡ ⎤ ′ ′= ∇φ + ∇ φ⎣ ⎦

∫∫∫

∫∫∫ ∫∫∫

∫∫∫

x ξ ∆ x x

′ξ ∆ x x ξ ∆ x

x

x

ξ ∆ x x

I

I I

I

     . (29) 

 

The second term of Eq. (29) would have been zero over a strictly homogenous domain; therefore, 

it represents a source of errors if not properly accounted for. This term can be further expanded into 
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x
x x

G ( , )G ( , ) ( , t) d G ( , ) ( , t) ( ) d
Ω ∂Ω

∂ ∂ ∂⎡ ⎤ ⎡ ⎤′ ′ ′ ′φ = + φ⎣ ⎦ ⎣ ⎦∂ ∂∂∫∫∫ ∫∫
ξ ∆ ∆ξ ∆ x x ξ ∆ x n x

x x∆
s

I II I
I      , (30) 

 

where the first term on the RHS represents the error that is due to the spatial variation of the filter 

length and the second term represents the error from the flux of ( , t )φ x  through the surface of the 

boundary ∂ i,j between the subdomain Ω Ω i and Ω j. In Eq. (30), n represents an unit vector normal to 

∂ i,j pointing in the positive direction of the flux of Ω ( , t )φ x . 

As thoroughly seen in the next paragraph (§2.7), any instantaneous local fluid property at some 

specific punctual position x and at time t, φ(x,t), can be decomposed into a filtered (simulated and 

known) part (e.g., φ = φ� ) and a subgrid (unfiltered and unknown) part (e.g., ) and this in each 

subdomain i and j of Ω  (i.e., Ω i and j) as follows: 

′′φ

Ω

 

i j

i i j j

within . withinΩ Ω

′′ ′′φ = φ + φ = φ + φ

 
     . (31) 

 

Because each domain has different spatial resolution (hence different filter characteristics and 

filter length) but the same kernel function, we may define 

 

( )
i j

i, j

i, j i j

i i j j

i i j j

G ( ) ( , t) d G ( ) ( , t) d

G ( ) G ( ) ( , t) d

Ω Ω

Ω

φ = φ − φ

′ ′ ′ ′= φ − φ

′ ′= − φ

∫∫∫ ∫∫∫

∫∫∫

ξ x x ξ x

ξ ξ x x

� � �

x      , (32) 

 

where  becomes a new complementary field allowing the transfer of information between i, jφ� Ω i 

and j at ∂Ω i,j. The key information points that must now be tracked at all times are (1) the flux 

directions of φ(x,t) between the subdomains (if 

Ω

Ω i → Ω j, then j i i, jφ = φ − φ� � �  at ∂Ω i,j or if Ω j → Ω i, 

then  at ∂ i,j) and (2) the exact location of the boundaries between subdomains, ∂i j i,φ = φ jφ� � �+ Ω Ω i,j. 
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The method to achieve LES simulation with multiresolution subdomains will mostly depend on 

the exact geometry configuration: either the finer grid subdomain is surrounded by a coarser subdomain 

[Kravchenko et al., 1996; Sullivan et al., 1996; Boersma et al., 1997], or, in the more general case, 

there is no specific geometric configuration between fine resolution and coarse resolution subdomains 

[Sagaut 1998; Quemere et al., 2001]. In the former case, the solution is solved either first in each Ω i 

independently from the other subdomains (a separate time step for each i) and, afterwards, all 

solutions are coupled between all subdomains at their respective boundaries [Sullivan et al., 1996; 

Boersma et al., 1997], or the solution is solved within a unique time step over the whole 

Ω

Ω  and all its 

subdomains with appropriate subdomain coupling [Kravchenko et al., 1996]. In the latter and more 

general case, the time integration must be achieved within a unique time step over the whole Ω . We 

should also mention the application of LES approaches to adaptative grids by Cook [2001] and Mitran 

[2001]. All these methods will not be reviewed herewith—our main point was simply to show that 

anisotropic, multigrid domains and adaptative grids can be dealt within the LES framework, even 

though it raises the level of complexity in code development. 

It can be seen that with a box-filter [Eq. (24)] the problem is rather simple as it reduces itself to a 

simple factor multiplication of the variables at the boundary subdomain (rescaling φ through ∂Ω i,j)12. 

Therefore, we assume hereafter that the 3rd Property of §2.4 [Eq.(10)] is fully valid within the LES 

framework. 

                                                 
12 For instance, let 1 be the fine grid subdomain and Ω Ω 2 the coarse grid domain, so that 2

1 3 6

∆
∆ =  (each mesh length is 

two times coarser in Ω 2 than in 1). Hence, we have Ω
 

from 1 (fine) to 2 (coarse) flux at ∂ Ω 1,2: Ω Ω 1
2 3 6

φ
φ =

�
�      and 

from 2 (coarse) to 1 (fine) flux at ∂ Ω 1,2: Ω Ω 3
1 26φ = φ� �      . 
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2.7. RANS and LES Favre Decompositions 

Within the RANS framework (§2.5), each time an idealized experiment is achieved, we may 

measure deviations (fluctuations) between the calculated ensemble average over all the experiments 

and the instantaneous local variable measured at position x and t. As we are mostly interested in the 

bulk flow, the approach of taking the ensemble average of each variable in the system is fully justified. 

However, the ensemble-averaged value of a given variable and its factual instantaneous local value 

may greatly differ. Hence, it becomes critical to “properly” recover the lost information during the 

averaging process that will be supplied by a RANS model. Each instantaneous local variable, φ(x,t), is 

broken into an ensemble-averaged part ( φ  or φ� ) and a fluctuating part ( ′φ  or ) using two Favre 

decompositions (density-weighted and volumetric concentration-weighted) [Favre 1965]. 

′′φ

Within the LES framework (§2.6), a formal scale separation by means of filter functions is 

achieved between the anisotropic large scales and the more isotropic small scales. The filtering process 

between scales can be achieved either in space (spatial filter, the most common approach) or in time 

(temporal filter). Each instantaneous local variable, φ(x,t), is broken into a filtered (or resolved, 

simulated) part ( φ�  or φ ) and an unresolved (or unfiltered within the subgrid) part (  or �
� ′φ� ′′φ� ) that needs 

to be modeled. The same two Favre decompositions used in RANS—mass-weighted and phasic-

weighted [Favre 1965]—complete this decomposition. The unresolved part can be seen as all the 

fluctuations caused by, for instance, turbulence within the subgrid. However, it should be kept in mind 

that the unresolved part exists only because of the finite cutoff scale, ∆
I

, of the filter13. 

In this manuscript, and within the LES framework only, all Favre decompositions are noted by a 

“bottom upside-down hat” under the variable (e.g., , , , ,  ...φ ρu T ). 

Favre phasic-weighted decompositions are shown below: 

 

RANS framework LES framework 

i i
′φ = φ + φi  (33) i i i

′φ = φ + φ  (34)

 

Within the RANS framework, the prime stands for the fluctuating part and the horizontal bar 

stands for the mean part obtained from the Favre phasic-weighted ensemble averaging. Within the LES 

framework, the horizontal bar stands for the resolved (the filtered field that is simulated), while the 
                                                 

13 In other words, it is not mathematically correct to compare the fluctuating part obtained from RANS and the subgrid part 
obtained from LES, even though both may be somehow connected to the small-scale (turbulent) flow fluctuations. 
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prime stands for the unresolved subgrid (residual) field (that needs to be modeled). The phasic-

weighted ensemble-averaged and filtered decompositions are given by the following: 

 

RANS framework: 
i i i i

i
ii

X ( , t ) ( , t ) X ( , t ) ( , t )

X ( , t )

φ φ
φ = =

ε

x x x x

x
 (35)

LES framework: 
i i i i

i
ii

X ( , t ) ( , t ) X ( , t ) ( , t )

X ( , t )

φ φ
φ = =

ε

x x x x

x
 (36)

 

The Favre mass-weighted decompositions are shown below 

 

RANS framework LES framework 

i i
′′φ = φ + φi i (37) i i

′′φ = φ + φ  (38)

 

where the double prime stands for the fluctuating (or unresolved residual) part and the tilde stands 

for the mean (or resolved) part. The Favre mass-weighted ensemble-averaged and filtered 

decompositions are given by the following: 

 

RANS framework: 
i i i i i i

i
ii i

X ( , t ) ( , t ) ( , t ) X ( , t ) ( , t ) ( , t )

ˆX ( , t ) ( , t )

ρ φ ρ φ
φ = =

ρρ

x x x x x x

x x
 (39)

LES framework: 
i i i i i i

i
ii i

X ( , t ) ( , t ) ( , t ) X ( , t ) ( , t ) ( , t )

ˆX ( , t ) ( , t )

ρ φ ρ φ
φ = =

ρρ

x x x x x x

x x
 (40)

 

Unless it can be shown that the microscopic density of a given phase is strictly constant (which is 

the case if the dispersed phase is made of solid grains), the mass-weighted values ( i  or φ iφ ) are not 

equal to the phasic-weighted values ( i or φ iφ ). Last but not least, it is worth mentioning that filtering 

and averaging have two very distinct properties (see also Appendix 1): 
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RANS framework 

(Averaging) 

LES framework 

(Filtering) 

i i

i i

φ = φ

φ = φ
 

i i

i i

φ ≠ φ

φ ≠ φ
 

i i 0′ ′′φ = φ =  i i 0′ ′′φ ≠ φ ≠  

 

In other words, within the LES framework, filtering a variable twice does not give the same results 

as the initial filtered variable, and filtering the unresolved subgrid (residual) field of the variable will 

not necessarily give a nil result14. The consequence is that modeling subgrid fields (stress, heat flux, 

and so forth) will be more complicated than for the RANS approach [Ferziger 1997]. 

With all this in mind, it is now possible to derive in a “one-step ensemble-averaging process” 

(RANS) or in a “one-step filtering process” (LES) a full set of Navier-Stokes equations for all the 

phases in the system as demonstrated in Appendix 2, Appendix 3, and detailed in the next section (§3). 

 

                                                 
14 It would be possible to define a filter Gx so that filtering the unresolved subgrid field leads to zero, but this is not that case 
with a Gaussian and the box filters. 
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3. RANS and LES Hydrodynamic and Thermodynamic Model 

From the demonstrations in Appendix 2 (RANS) and Appendix 3 (LES), one can see that it is 

possible to derive hydrodynamic and thermodynamic models that would be able to accommodate 

both the Large-Eddy Simulation and Reynolds-Favre ensemble-averaged Navier-Stokes frameworks of 

turbulence. Of course, the constitutive equations for turbulent or subgrid phenomena (stress, 

dissipation, heat conduction, and so forth) and possibly the interfacial terms may differ. 

In the following, we will not make any distinction between the LES and RANS symbols; however, 

we will retain the symbols for phasic-weighted decomposition ( φ ), mass-weighted decomposition ( φ� ) 

variables, and their subsequent fluctuating or unfiltered parts, i.e., φ′ or φ″, respectively. 

The equations are written in terms of the ensemble-averaged or filtered variable for each phase, 

where , ũ, and ỹ pertain to averaged or filtered macroscopic density, velocity vector, and mass 

fraction. The indices ‘s’ and ‘g’ are for the solid and gas phase. Because each phase is modeled as a 

continuum, they can be present at the same time in the same control volume, CV [Harlow and Amsden 

1975]. Hence, we must distinguish the microscopic density of a particular material, ρ, from the 

macroscopic bulk density, 

ρ̂

i iˆ    ρ = ε ρi , where ε is the volumetric fraction of the phase under 

consideration and iρ  is the phasic-averaged (§2.5.2) or filtered (§2.6.4) density. Within any CV, we 

must have  for all n phases, and for all m species of a given phase, . The gas phase 

needs an equation of state, which has be specified in a specific context15, e.g., 

n

i
i 1

1
=

ε =∑
m

j
j 1

y
=

=∑ 1

 

( )g g gfct P , R ,T , ...ρ =      , (41) 

 

where  is the ratio of the universal gas constant (R) and the molar mass of a gas mixture of m 

species, 

R

 
m

j

jj 1

y
R R

M
=

= ∑      , (42) 

 

where Mj is the molar mass of the jth gas species. 

                                                 
15 The EOS issue is thoroughly discussed in the Method of Characteristics (MOC) section (see §5). 
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3.1. Phasic and Species Continuity 

From Appendix 2 and Appendix 3, we may write the phasic continuity equation valid within both 

RANS and LES frameworks as 

 

i
i i i

ˆ
ˆ R

t
∂ρ

+ ∇ ⋅ρ =
∂

u      , (43) 

 

where, for instance, i=1 for the gas phase and i≥2 for the dispersed phases and Ri is the mass 

exchange flux between phases at their interfaces, with 
n

i
i 1

R 0
=

=∑ . 

In the case where one of the phases would be made up of different species (e.g., for the gas phase, 

dry air and water vapor), the species continuity for both RANS and LES framework (see Appendix 2 

and Appendix 3) is 

 

( )i j tur / SG
i j i i j j i j i , j

ˆ y
ˆ ˆy

t
∂ρ

+ ∇ ⋅ρ = −∇ ⋅ρ + + ε Γ +
∂

u y y C      , (44) 

 

where  is the averaged or filtered mass fraction of the jth species; jy� jΓ  is the averaged/filtered 

mass source or sink rate because of chemical or physical processes between species; and Ci,j is the 

interfacial species mass transfer rate and has two contributions—one from the mass transfer between 

phases and one from the diffusion of the interface belonging to species j of the ith phase. The latter 

contribution is very often disregarded [Syamlal et al., 1993; Veynante and Poinsot 1997]; hence, in 

most circumstances, Ci,j can be written as a simple function of mass transfer between phases: 

 

i , j j iC y≈ R

0

     , (45) 

 

with the mean jump condition between the m species of phase i and all other phases as 

     . 
n m

i , j
i 1 j 1

C
= =

=∑∑
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In Eq. (44), the species mass fraction flux has two contributions: one from the averaged or filtered 

flux (i.e., yj) and one from turbulence  (RANS, turyj, 00Appendix 2: Favre-Averaged Navier-Stokes 

Equations) or from the subgrid (LES, SGyj): 

 

( ) ( ) ( )

j j

tur
j j i

SG
j j i j i j i j i j i

y

y RANS framework

y y y y y LES framework

= ϖ∇

′′ ′′=

′′ ′′ ′′ ′′= − + + +

y

y u

y u u u u u

 (46) 

 

where ϖ is the molecular diffusion coefficient of species j in the mixture. It can be recognized in 
SGyj, from left to right between parenthesis, the LES Leonard-, Cross-, and Reynolds-terms. 

Clearly, the turbulent contribution must be modeled within a specific context of turbulence (either 

RANS or LES). 

 

3.2. Momentum 

From Appendix 2 and Appendix 3, we may write the phasic momentum equation within both 

RANS and LES frameworks as 

 

( )tur / SGi i
i i i i i i i i i

ˆ
ˆ ˆ

t
∂ρ

+ ∇ ⋅ρ = −∇ ⋅ ε + + ρ +
∂

u
u u T T G M     , (47) 

 

where Mi is the interfacial momentum transfer rate between phases;  represents a body force 

(e.g., gravity); and 

iG

iT  and tur/SGTi are respectively the phasic mean/averaged stress and the Reynolds 

(RANS) or the subgrid (LES) stress tensors. As seen in Appendix 4, Mi may be decomposed into a 

contribution from mass transfer between phases and a contribution from the interfacial forces at the 

interfaces (e.g., drag force, added mass forces, interfacial shear stress, and pressure), 

 
drag

i Int i Int , i i Int , i i iR P= + ∇ε + ⋅∇ε +M u τ M      , (48) 

 

where Mi
drag represents the contribution of drag forces between phase; Intu  is the averaged/filtered 

bulk velocity of all interfaces (Appendix 4 discusses a few possibilities to model and simplify Intu ); 
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and PInt,i and τInt,i are the interfacial pressure and stress between phase i and all the other phases (see 

Appendix 4). Eq. (48) can be simplified knowing that Int , i iX⋅∇τ , which represents the interfacial 

shear stress, is expected to be important only in separated phase flows; hence, for most geophysical-

atmospherical applications where all phases are well mixed, it can be safely neglected. So, Eq. (48) into 

Eq. (47) yields the following: 

 

( )

( )

tur / SG dragi i
i i i i i i i i Int i Int , i i i

tur / SG dragi i
i i i i i i i i i i i Int i Int , i i i

tur / Si i
i i i Int , i i i i i i

ˆ
ˆ ˆ R P

t

ˆ
ˆ ˆP R

t

ˆ
ˆ P P

t

∂ρ
+ ∇ ⋅ ρ = −∇ ⋅ ε + + ρ + + ∇ε +

∂

⇔

∂ρ
+ ∇ ⋅ ρ = −∇ε − ∇ ⋅ ε − ∇ ⋅ ε + ρ + + ∇ε +

∂

⇔

∂ρ
+ ∇ ⋅ ρ = ∇ε − ∇ε − ∇ ⋅ ε +

∂

u
u u T T G u M

u
u u τ T G u M

u
u u τ( )

P

G drag
i Int i i ii

ˆR+ + + ρT u M G

     . (49) 

 

The first two terms on the RHS need to be developed in a specific phasic context. For instance, for 

the gas phase, the pressure is simple to define, and it is clear that Pi=Pg; hence, 

 

Gas (carrier) phase: i i g g g g g gP P P P∇ε ≡ ∇ε = ε ∇ + ∇ε      . (50) 

 

For the solid phase, defining the pressure is more complicated, but it is generally thought that there 

must be a contribution from the carrier phase and, possibly, a contribution from the dispersed phase 

itself. Because the concept of granular pressure in this manuscript is entirely defined from a specific 

turbulence context (RANS vs. LES), we formally write i iP∇ε  as 

 

Dusty (dispersed) phase: i i s g s s s g g s s sP P P P P∇ε ≅ ∇ε + ∇ε = ε ∇ + ∇ε + ∇ε P      . (51) 

 

The first term, s gP∇ε , represents three-dimensional buoyancy effects on the particle (the gas 

pressure gradient exerts a buoyancy force on a population of grains), and the second term, s sP∇ε , 

represents granular pressure effects that must be defined in a specific solid-phase turbulence and/or 

rheological model. Within the RANS framework, either turPs represents the collisional part of the solid 

pressure (while the kinetic granular pressure would represent the true turbulent motions of the grains), 
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or turPs simply represents both the kinetic and the collisional pressures16. A third more complete 

approach [e.g., Dartevelle 2004] is to consider the effects from an averaged bulk frictional plastic 

pressure, so that the total solid phase pressure would now read as Ps = fPs + turPs, with fPs (or sP ) being 

a frictional pressure and turPs being a pressure from a turbulence model (e.g., kinetic-collisional model 

within RANS). Within LES, it is usually assumed that the granular subgrid pressure is negligible. In the 

following, we will assume that it is always possible to define a filtered or an ensemble-averaged solid-

phase stress (i.e., sP  and sτ ) from, for instance, a plastic rheology as achieved by Dartevelle [2004], 

but other interpretations can be given to sP  and sτ . 

Rearranging Eq. (49) with Eq. (50) or Eq. (51) in a two-phase dusty cloud context, we 

systematically have a term, ( )Int , i g iP P− ∇ε , that represents the pressure difference between the 

interface and the carrier phase. In a well-mixed multiphase flow system, this term is negligible [Ishii 

1975]. Therefore, we finally obtain, after simplification, 

 

( )
( )

Int g

Int s

g g tur / SG drag
g g g g g g g g g g g

tur / SG drags s
s s s s g s s s s s s s s

R

R

ˆ
ˆ ˆP

t
ˆ

ˆ ˆP P
t

+

+

⎧ ∂ρ
⎪ + ∇ ⋅ρ = −ε ∇ − ∇ ⋅ ε + + + ρ
⎪ ∂
⎨

∂ρ⎪ + ∇ ⋅ρ = −ε ∇ − ∇ε − ∇ ⋅ ε + + + ρ⎪ ∂⎩

u

u

u
u u τ T M G

u
u u τ T M G

, (52) 

 

where ‘s’ represents any dispersed solid phase within the gas phase. Eq. (52) is valid for both the 

LES and RANS frameworks. Within a specific turbulence framework, different constitutive equations 

must be specified for the turbulence/subgrid stress tensor of the gas phase (tur/SGTg), the stress tensor of 

the solid phase (tur/SGTs), and the drag vector for all the phases (Mi
drag). 

Within the RANS (Appendix 2) and LES (Appendix 3) frameworks, the stress tensors from 

turbulence/subgrid can be defined as 

 
                                                 

16 Defining the stress tensor of the granular (dispersed) phase, Ts, is not difficult. Within the RANS framework, it is 
common to qualify the “molecular” stress tensor (i.e., not due to turbulence) as “collisional,” while the “turbulence” stress 
tensor would describe the kinetic behavior of the grains (possibly modified by the gas-phase turbulence). However, both 
granular behaviors (collisional and kinetic) are clearly due to the fluctuating and chaotic motions of the grains within the 
flow (whatever the reasons) [Dartevelle 2003; Dartevelle 2004; Dartevelle et al., 2004]. In this manuscript, within RANS, 
we will define a turbulent granular stress as being the sum of the kinetic and collisional parts, turTs = kTs + cTs; hence, turTs is 
a full kinetic and collisional viscous stress tensor as described, for instance, in Dartevelle [2004]. Within LES, SGTs will be 
the sum of the Leonard-terms (strictly speaking the only true filtered part), the Cross-terms, and the Reynolds-term (strictly 
speaking, the “true” unresolved part from the subgrid). The nonturbulent stress ( sT , or sP  and sτ ) may be, for instance, due 
to frictional interactions between grains, which can be described at high concentrations by a visco-plastic rheology 
[Dartevelle 2004]. 
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( )

tur
i i i i

SG
i i i i i i i i i i i i

Leonard Cross Re ynolds

RANS framework

LES framework′′ ′′ ′′ ′′

′′ ′′= ρ

⎡ ⎤
⎢ ⎥⎛ ⎞ ⎛ ⎞⎢ ⎥= ρ − + + +⎜ ⎟ ⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠
⎢ ⎥
⎣ ⎦

T u u

T u u u u u u u u u u
. (53) 

 

It should be noted that the viscous stress tensor, iτ , is not easy to calculate because it involves 

unknowns in terms of Favre phasic-weighted viscosities ( b
i and iµ µ ) and velocities ( iu  instead of ) 

both within the RANS and LES frameworks. As shown in Appendix 5, it is common to assume that 

iu

iτ  

may be written as 

 

( )T b
i i i i i i i i

2
3

≈ −µ ∇ + ∇ + µ ∇ ⋅ − µ ∇ ⋅τ u u u I u I      , (54) 

 
where the viscosities acts as a constant with respect to the LES/RANS integral operators; hence, 

i iµ ≈ µ ≈ µi  and b b b
i iµ ≈ µ ≈ µi . Eq. (54) is, of course, a simplification that is nevertheless very 

common, even for compressible turbulent flows [e.g., Gatski 1997]. 

 

3.3. Energy (Enthalpy) 

From Appendix 2 and Appendix 3, we may write the phasic enthalpy equation within both RANS 

and LES frameworks as 

 

( )tur / SG hi i
i ii i i ,i i i i i i i

i
i

h dPˆ h W S
t d

ˆ ˆ∂
+ ∇ ⋅ρ = ε − ∇ ⋅ ε + + ε + +

∂
ρ

ρτu q q H
t

     , (55) 

 

where hHi is the interfacial heat transfer between phases;  represents any supplementary heat 

sources (i.e., radiation); Wτ,i is the viscous dissipation; 

iS

iq  is the intraphase heat conduction flux; and 
tur/SGqi is a supplementary heat flux induced by turbulence (RANS) or by the subgrid (LES). We have 

neglected in Eq. (55) the supplementary dissipation from turbulence (turWτ,i) or from the subgrid 

(SGWτ,i), as it is universally assumed to be negligible with respect to all the other contributions in this 

equation. 
hHi can be approached by (see Appendix 4) 

 34



 

( )i

n
h

i i j j i
j 1
j i

H h R Q T T
=
≠

≈ + −∑      , (56) 

 
where Qj represents the interfacial heat transfer coefficient, which is usually taken as a function of 

the Nusselt, Reynolds numbers, and phasic heat conduction coefficients, and Ri represents the total 

contribution of mass transfer between i and all the other phases. 

The heat fluxes are 

 
i i i

tur
i i i i i i i

SG
i i i i i i i i i i i i i i i i

k T

h h RANS framework

h h h h h LES framework

= − ∇

′′ ′′ ′′ ′′= ρ = ρ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤′′ ′′ ′′ ′′= ρ − ρ + ρ + ρ + ρ⎢ ⎥ ⎢ ⎥ ⎣ ⎦⎣ ⎦ ⎣ ⎦

q

q u u

q u u u u u

   , (57) 

 
where ki is the molecular (not affected by turbulence) thermal conductivity coefficient of phase i. 

The following general definitions are used in Eq. (55) (see also Appendix 7 and Appendix 8): 

 

( )

( ) ( )

b b
ii i i i i i i i i

T b
i i i i i

, i i i

12 2
3

2
3

W :

⎧ ⎡ ⎤
≈ µ − µ ∇ ⋅ = µ + ∇ ⋅ − µ ∇ ⋅⎪ ⎢ ⎥

⎣ ⎦⎪
⎪ ⎡⎪ = µ − ∇ + ∇ + ∇ ⋅ − µ ∇ ⋅⎨ ⎢

⎣ ⎦⎪
⎪ ≈ − ∇
⎪
⎪⎩

τ

τ D u I D u I u I

u u u I u

τ u

i
⎤
⎥ I      , (58) 

 

where µ and bµi are the shear and bulk viscosity of phase i and Di and  are the rate-of-strain 

tensor and its deviator. 

iD

 

In the two-phase dusty flow context without any phase change between the solid particles and the 

gas phase, Eq. (55) may be further simplified into 
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( ) ( )

( ) ( )

g g gtur / SG
g g g g ,g g g g g g g s g

tur / SGs s s
s s s s ,s s s s s s s s

ˆ h d
ˆ ˆh W S Q T

t d
ˆ h dˆ ˆh W S Q T T

t d

⎧ ∂ρ
⎪ + ∇ ⋅ ρ = ε − ∇ ⋅ ε + + ε + ρ + −
⎪ ∂
⎨
⎪ ∂ρ

+ ∇ ⋅ ρ = ε − ∇ ⋅ ε + + ε + ρ − −⎪ ∂⎩

τ

τ

u q q

u q q g

P
T

t

P
t

. (59) 

 

where, in Eq. (59), for the solid phase, various interpretations can be given to sdP
dt

 and are 

disregarded most of the time. 
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4. Reynolds (RANS) and Subgrid (LES) Relationships 

As we have mentioned throughout this manuscript, unlike the RANS framework, the subgrid stress 

tensor in a multiphase system is not very well known. On the other hand, the RANS framework of 

turbulence is not common in geophysical-atmospherical multiphase flow applications (yet highly 

developed for small-scale flows as in chemical engineering). Therefore, one way or the other, it would 

be interesting to know the exact relationships between the Reynolds stress tensor from the RANS 

framework and the subgrid stress tensor from the LES framework. In addition, for the hybrid model of 

turbulence, knowing the exact relationship between RANS and LES variables is essential. 

We know that for any instantaneous and local variable of phase i (see §2.7): 

 

i i i i

RANS . LES
′′ ′′= + = +u u u u iu

     . (60) 

 
The stress tensor from turbulence (RANS, turTi) and from the subgrid (LES, SGTi) are defined by 

Eq. (53). To avoid in the following any confusion between averaging and filtering operation, let us 

rewrite Eq. (60) as 

 

i i i iav RANS LES

RANS . LES
′′ ′′= + = +u u u u ui

     , (61) 

 
where, now, in this paragraph, the tilde denotes a Favre mass-weighted filtering process and the 

angular operator with the subscript “av” indicates a Favre mass-weighted ensemble-averaging process. 

As a reminder, the double prime indicates either the fluctuating part (RANS) or the subgrid part (LES) 

of a variable. With this in mind, let us define the following Reynolds stress tensor, turRi, from the 

RANS framework and subsequently filter it with the definitions of Eq. (61) 

 
tur

i i i i i i iRANS RANS RANS RANSav av

tur
tur i

i
i

′′ ′′ ′′ ′′= ρ = ρ

⇒ =
ρ

T u u u u

TR

    , (62) 

 

and 
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tur
i i iRANS RANS av

tur
i i i i i i iav avLES LES

av

tur
i i i i i i iav av av LES LES av

i i i i i iav av avLES LESav av
2 2 2

′′ ′′=

⎛ ⎞ ⎛ ⎞′′ ′′= + − + −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

′′ ′′= + +

′′ ′′+ − −

R u u

R u u u u u u

R u u u u u u

u u u u u u

     , (63) 

 

where we have used the fact that i av avav
=u iu . We also know that 

 

i i i i i i i iav av av av

i i i i i iav av av avRANS LES
av

i i i iav av av LES av

.a

2 2

2 2

= + −

⎛ ⎞′′ ′′= + −⎜ ⎟
⎝ ⎠

′′= −

u u u u u u u u

u u u u u u

u u u u .b

     . (64) 

 
Eq. (64)a and Eq. (64)b into Eq. (63) yields the following: 

 

tur
i i i i i i iav av av

i i i iav av LES LES av

i i LES av

i i i iav avLES LESav av

i iav av

2

2 2

2

= + −

′′ ′′+ +

′′+

′′ ′′− +

−

R u u u u u u

u u u u

u u

u u u u

u u

     . (65) 

 
Rearranging Eq. (65) yields the following: 
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tur
i i i i i i i i iav av LES LES LESav av

i i i iav av av

2 ′′ ′′ ′′= − + +

+ −

R u u u u u u u u

u u u u

     . (66) 

 

Applying the commutative property between ensemble averaging and filtering, we finally obtain 

 

tur SG
i i i i iav av avav

= + −R R u u u ui      , (67) 

 

where the LES subgrid stress tensor is as usual defined as 

 

( )SG
i i i i i i i i iLES LES LES

2 ′′ ′′ ′′= − + +R u u u u u u u u      . (68) 

 

Eq. (67) shows the relationship between the RANS Reynolds stress tensor (turRi) and the LES 

subgrid stress tensor (SGRi). In other words, both models of turbulence (RANS vs. LES) can control 

each other. Indeed, the LHS of Eq. (67) is the filtered Reynolds turbulence stress given by a specific 

RANS model, whereas the first RHS term of Eq. (67) is the average of the subgrid stress model 

supplied by a LES model. The two other RHS terms in Eq. (67), (  and i iu u i iav av
u u ), are known 

because they are modeled by the respective momentum equations (from either the LES or RANS 

frameworks). 

Needless to say, Eq. (67) turns out to be critical for the hybrid-LES model because it makes a 

specific connection between the RANS subdomain (usually near a wall boundary) and LES subdomain 

(usually far away from a wall boundary). 
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5. Method of Characteristics 

5.1. Introduction 

We will now demonstrate that the hydrodynamic and thermodynamic model presented in §3 and 

based upon the demonstrations in Appendix 2 and Appendix 3 meets the necessary condition for well-

posedness as an initial value problem [e.g., Sedney 1970; Lyczkowski 1978; Wendroff 1979; 

Lyczkowski et al., 1982; Stewart and Wendroff 1984]. 

A mathematical problem is said to be well posed as an initial value or Cauchy problem (also called 

a properly posed problem) if and only if 

 
• There is a solution (“existence”), 

• The solution is uniquely determined (“uniqueness”), and 

• The solution smoothly and continuously depends on the initial (or previous time-step) 

data (“stability”). 

 
In typical time-dependent problems of this manuscript, it is necessary that all “characteristics” of a 

set of partial differential equations are strictly real17. If not (i.e., “complex characteristics”), any 

perturbation introduced at the initial time would grow exponentially18. 

Let us define a characteristic function within the (t,x)-plane, χ(t,x)=0, as “a discontinuity of a 

solution which only occurs along the characteristics”19 [Courant 1965]. In other words, a set of 

variables U (density, velocities, energies, porosity, pressures, …) is continuous across χ(t,x)=0 [and 

possibly everywhere else in the (t,x)-plane], but the normal derivatives of U, 
n

∂
∂
U , taken on χ(t,x)=0, 

may present “jump” in that they may be undetermined20. 

 

                                                 
17 Real characteristics in themselves are not a sufficient condition to guarantee well-posedness, but a necessary condition to 
be met The reason is that, for time-dependent problem, proper initial and boundary conditions must be also provided [e.g., 
Courant 1965; Lyczkowski et al., 1978] 
18 A time-dependent elliptical system seems to be physical nonsense because the variable “time” does not have the exact 
meaning of time as it is understood in this part of the Universe. Theoretically, such a time-dependent elliptical system would 
lead to solutions within the current time step that would depend as much as on the past data as on the future data. Because 
time flows into one unbounded direction (from past to future), this is clearly not acceptable. 
19 By discontinuity, we mean a “weak discontinuity” (i.e., not shock, which is a strong discontinuity) in which any variables 
are perfectly continuous, but normal derivatives of these variables upon the characteristics’ function may be discontinuous 
or undetermined [Sedney 1970; Garabedian 1986]. 
20 Because the normal derivative on the characteristic curve “goes out of the curve,” it is commonly named the “exterior 
derivative,” whereas the tangential derivative that lies on the curve itself is often named “interior derivative” [Sedney 1970]. 
This “interior/exterior” nomenclature is after Courant [1965]. 
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Figure 9 

Characteristic curve, χ, in the (t,x)-plane with the normal and tangential (n,s) coordinates on χ. 

 

Knowing, U, the vector column formed of n dependent variables (i.e., the n components of U), the 

set of PDEs (continuity, momentum, energy) seen in the previous paragraphs may be written as 

 

L( ) D( ) 0+ =U U      , (69) 
 
where L(U) is a matrix operator that can be written in 1-D as the following: 

 

t xL( ) A A
t x

∂ ∂
= +

∂ ∂
U UU      . (70) 

 
At and Ax are n×n square matrices, and D(U) is a vector function of U but not of any of its 

derivatives. 

In this one-dimensional demonstration, the characteristic functions are curves in the (t,x)-plane. 

On these curves, let “s” be an arc length and “n” be a unit normal to the curve (see Figure 9). By the 

chain rule, we have 
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s n
t s t n

s n
x s x n

⎧ ∂ ∂ ∂ ∂ ∂
= +⎪ ∂ ∂ ∂ ∂ ∂⎪⎪

⎨
⎪ ∂ ∂ ∂ ∂ ∂⎪ = +
⎪ ∂ ∂ ∂ ∂ ∂⎩

U U U

U U U

t

x

    . (71) 

 
Let us cast Eq. (71) into Eq. (69), which yields the following after rearrangements: 

 

t x t x
n n s sA A A A D( )
t x n t x s

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂
+ + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

U U U 0=      . (72) 

 

In other words, we have just made a change of variables to rewrite the original time and space Eq. 

(71) in terms of normal and tangential variables (see Figure 9). In order to have, across the 

characteristic curve, a “jump” of the normal derivative of U, 
n

∂
∂
U , (i.e., a nontrivial solution), we must 

have the following determinant as 

 

t x

x t

n nDet A A 0
t x

Det A A 0

∂ ∂
+ =

∂ ∂

⇔

− λ =

     , (73) 

 
where λ is the eigenvalues of the characteristics 

 
n

dxt
n dt
x

∂
∂λ = − = −
∂
∂

     , (74) 

 
and Eq. (73) is a characteristic equation or characteristic condition. Every characteristic curve for 

the system of equations, Eq. (69), is a solution of the Ordinary Differential Equation, Eq. (74), where λ 

is the root of the polynomial equation given by Eq. (73). A characteristic function, χ(t,x)=0, is therefore 

a privileged path of points of (weak) discontinuities moving along the direction x with time t at a 
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velocity dx
dt

. Associated with each eigenvalue, λ1, λ2, …, λn, it is possible to find at least one 

eigenvector21, ui, 

 
( )i x i tu A A 0− λ =      . (75) 

 
These eigenvectors are, by definition, all linearly independent with each other. Hence, if n real and 

distinct eigenvalues can be found, the system, Eq. (69), is totally hyperbolic. If all eigenvalues are real, 

but not necessarily distinct (nonequilibrium flows), the system is simply referred as hyperbolic [Sedney 

1970]. 

In Appendix 6, this preceding MOC technique is applied to a single-phase compressible flow for 

the Euler and Navier-Stokes PDEs. Appendix 6 highlights the importance of viscous phenomena 

(molecular and/or turbulent) because the Euler and Navier-Stokes do not have all their characteristics in 

common. However, both single-phase models (inviscid vs. viscous) have real eigenvalues, hence 

satisfy the necessary condition required for well-posed initial-value problems [Lyczkowski et al., 

1978]. 

In the following, we will demonstrate that the multiphase Navier-Stokes PDEs satisfy the 

necessary condition for well-posed initial-value problems if and only if viscous phenomena are 

included in the model. In other words, multiphase Euler PDEs are not a well-posed model as an initial 

value problem22. 

 

 

                                                 
21 Which happens to be the normal derivative of U. 
22 We won’t demonstrate that result in this manuscript, but the demonstration is rather straightforward. This result has, 
however, important implications because the turbulence phenomena become critical if not a necessity for the stability and 
uniqueness of the mathematical model. 
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5.2. Necessary Requirement for Well-Posed RANS and LES Systems 

Let us summarize our equations in 1-D, two phases23 (gas, g, and dispersed, s) with no phase 

change within the RANS and LES frameworks: 

 

g g
g g g

s s
s s s

g g g g g
g g g g g g g g g g g

gs s s s s
s s s s s s s s s s s s

g g g

Continuity

u 0
t x

u 0
t x

Momentum

u P
u u T M G

t x x x x

Pu P
u u T M G

t x x x x x

Energy

h

∂ε ρ ∂
+ ε ρ =

∂ ∂

∂ε ρ ∂
+ ε ρ =

∂ ∂

∂ε ρ ∂ ∂τ∂ ∂
+ ε ρ + ε + ε + ε = + ε ρ

∂ ∂ ∂ ∂ ∂

∂∂ε ρ ∂ ∂τ∂ ∂
+ ε ρ + ε + ε + ε + ε = − + ε ρ

∂ ∂ ∂ ∂ ∂ ∂

∂ε ρ

⎧
⎪
⎪
⎨
⎪
⎪⎩

⎧
⎪
⎪
⎨
⎪
⎪⎩

g
g g g g g g g g ,g g g g

s s s s
s s s s s s s s ,s s s s

dP
u h q W S Q

t x dt x

h dP
u h q W S Q

t x dt x

τ

τ

∂ ∂
+ ε ρ − ε + ε = ε + ε ρ +

∂ ∂ ∂

∂ε ρ ∂ ∂
+ ε ρ − ε + ε = ε + ε ρ −

∂ ∂ ∂

⎧
⎪
⎪
⎨
⎪
⎪⎩

 (76) 

 

We have dropped out the symbol referring to LES and RANS because these equations are identical 

in both frameworks. All terms on the RHS of Eq. (76) are scalar functions of the column vector U: M is 

a momentum transfer function, Q is a heat exchange function between phases, G is a body force, S is a 

heat source within a given phase, and W is a viscous dissipation function. On the LHS, all the stress 

terms, T, τ, and P, may involve turbulence and/or subgrid dissipation with “molecular” viscous 

dissipations. For instance, for the dispersed phase, the pressure, Ps, and the shear stress, τs, may include 

plastic contribution and a contribution from RANS or from LES. The term qi represents the heat 

transfer by conduction within a given phase and is generally given by a Fourier law. Let us further note 

that in 1-D 

 

                                                 
23 Hereafter, “s” represents any dispersed phase—in some cases, it may be compressible, in other cases, fully 
incompressible (it is then a true granular phase). 
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g
g g g g g

s
s s s s s

u
T P P

x
uT P P
x

⎧ ∂
= + τ = − µ⎪⎪ ∂

⎨
∂⎪ = + τ = − µ

⎪ ∂⎩

     , (77) 

 

where µg and µs are viscous functions, possibly functions of turbulence, and 

 

g g
g

s s s
s

dP P P
u

dt t x
dP P Pu
dt t x

⎧ ∂ ∂
= +⎪⎪ ∂ ∂

⎨
∂ ∂⎪ = +

⎪ ∂ ∂⎩

g

     . (78) 

 

Last but not least, it should be recalled that our multiphase model is entirely derived from the 

phasic function of presence, Xi, which takes two values—1 or 0 (see §2.3). In addition, these unique 

binary values for Xi are ensured with the following property (written in 1-D): 

 
i i

Int
X X

u 0
t x

∂ ∂
+ =

∂ ∂
     , (79) 

 
where uInt is the bulk velocity all the interface in the system. After averaging/filtering, Eq. (79) 

becomes 

 
g g

Intu 0
t x

∂ε ∂ε
+ =

∂ ∂
     . (80) 

 
The exact formulation of the ensemble-averaged or filtered uInt is not really needed for the 

following demonstrations; nonetheless, Appendix 4 suggests different possibilities to approximate Intu  

and shows that it can be written as a function of each bulk phasic velocity. 

We will now demonstrate that the set of PDEs, Eq. (76), Eq. (77), and Eq. (80), meets the necessary 

condition for well-posed initial-value problems (i.e., all eigenvalues on the characteristics are real) and 

also that the characteristics are invariant to the chosen dependent variables’ vector and Equation of 

State. The demonstration starts first with the most general case possible, i.e., all phase are 

compressible. Afterwards, we redemonstrate with a more realistic case, i.e., the dispersed phase is 

incompressible. 

 

 45



5.2.1. General case: all phases are compressible 

We assume both phases are fully compressible with the following EOS for each phase: 

 

Gas phase 

g g g gh h (P ,= ρ ) ) 

Dispersed phase 

s s s sh h (P ,= ρ  

g g
g g

g g P

g, g g,P g

h h
dh dP d

P

h dP h d
ρ

ρ

∂ ∂
= +

∂ ∂ρ

= +

gρ

ρ

 
s s

s s
s s P

s, s s,P s

h hdh dP d
P

h dP h d
ρ

ρ

∂ ∂
s= + ρ

∂ ∂ρ

= + ρ

 

 

Rearranging the set of Eq. (76), we now have the following: 

 
Continuity: 

( ) ( ) ( )

g g g g g
g g g g g g g g

g gs s s
g s g s g s s s

u
u u

t t x x x

u
1 1 1 u u

t t x x x

⎧ ∂ρ ∂ε ∂ρ ∂ε ∂
ε + 0

0

ρ + ε + ρ + ρ ε =⎪
∂ ∂ ∂ ∂ ∂⎪

⎨
∂ε ∂ε∂ρ ∂ ∂ρ⎪ − ε − ρ + − ε ρ + − ε − ρ =⎪ ∂ ∂ ∂ ∂ ∂⎩

 (81) 

 

Momentum: 

( ) ( ) ( ) ( )

g g g g
g g g g g g g g

g gs s s
g s g g g s s s

du P
T M

dt x x x

Pdu P
1 1 1 1 T M

dt x x x x

∂ ∂τ ∂ε
ε ρ + ε + ε + = + ε ρ

∂ ∂ ∂

∂ ∂∂ ∂τ
− ε ρ + − ε + − ε + − ε − = − + ε ρ

∂ ∂ ∂ ∂

⎧
⎪
⎪
⎨
⎪
⎪⎩

s

G

G
ε

 (82) 
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Energy: 

i i i i
i i i i i i i i , i i i i

i i i i
i i i i i , i i i i i

i i i i i
i i i , i , P i i i , i i i i i

i i

h dP
u h q W S Q

t x dt x

dh dP q
q W S Q

dt dt x x

dP d dP q
h h q W S Q

dt dt dt x x

1 h

τ

τ

ρ τ

∂ε ρ ∂ ∂
+ ε ρ − ε + ε = ε + ε ρ +

∂ ∂ ∂

⇔

∂ε ∂
ε ρ − ε + = ε + ε ρ + − ε

∂ ∂

⇔

ρ ∂ε ∂
ε ρ + − ε + = ε + ε ρ + − ε

∂ ∂

⇔

−ε − ρ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( )

( ) ( ) ( )

i i i i
i , i i i , P i i , i i i i i

i
i , i i i i i

i i , Pi i i i
i i i

i i , i i ,i i ,

dP d q
h q W S Q

dt dt x x

q
W S QhdP d q x

dt dt x1 h 1 h1 h

ρ τ

τ

ρ ρρ

ρ ∂ε ∂
+ ε ρ + = ε + ε ρ + − ε

∂ ∂

⇔

∂
ε + ε ρ + − ερ ρ ∂ε ∂−ε + ε ρ + =

∂− ρ − ρ− ρ
 (83) 

 

It can be shown (Appendix 6) that the ratio, i i,P

i i,

h
1 h ρ

ρ

− ρ
, is always nonzero and positive and may be 

related to the square of the speed of sound. To facilitate the reading and the manipulations of the 

following equations, let us labeled this ratio as Ci
2. The phasic energy equations can now be written as 

( ) ( ) ( )

g
2 g g , i g g g g

g g g g g2
g g g g

g g g , P g g ,

s
2 s s , i s s s s

g2s s s s
g g s s

s s ,g s s , P

q
W S QdP d q C xC

dt dt h x 1 h

q
W S QdP d q C x1 1 C

dt dt x 1 h1 h

ρ

ρ

∂
ε + ε ρ + − ερ ∂ε ∂−ε + ε ρ + =

ε ρ ∂ − ρ

∂
ε + ε ρ + − ε∂ερ ∂− − ε + − ε ρ − =

∂ − ρ− ε ρ

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

. (84) 

 
It is now clear that the column vector of dependent variables must be 

 

( )T
g g s g s g s g s, , , u , u , P , P , ,= ε ρ ρ τ τU      . (85) 

 

The 9 dependent variables with 9 PDEs are 2 continuities [Eq. (81)], 2 momentums [Eq. (82)], 2 

energies [Eq. (84)], and 2 stress equations [Eq. (77)]; the ninth PDE is Eq. (80), which is only made of 
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known variables, εg and uInt, where uInt, the interfacial velocity, is a function of dependent variables, 

i.e., us, ug, εg, ρs, and ρg (see Appendix 4). 

If our set of equations meets the necessary condition for well-posed initial-value problems, we must 

show that this set of equations, t xA A D( )
t x

∂ ∂ 0+ + =
∂ ∂
U U U , has only real eigenvalues. In other 

words, the roots of the characteristic polynomial, x tDet A A 0− λ = , must all be real (i.e., λ ∈ ). 

The 9×9 square matrices At and Ax are respectively 

 

( )

( )

( ) ( )

g g

s g

g g

g s

2
t g g g g

2
g s s g

0 0 0 0 0 0
0 1 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 1 0 0 0

A 0 C 0 0 0 0 0
0 0 1 C 0 0 0 1 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

ρ ε

−ρ − ε

ε ρ

− ε ρ

= ε ρ −ε

− ε ρ − − ε

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0
0

0
0

0
0

0
0
0

 

 

and 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( )

g g g g g g

s s g s g s

g g g g g g g

s s g s s g g g

2

g g 2

g g g g g g

g ,Px

2
2s s

g s s s g s

s ,P

g

s

Int

u u 0 0 0 0 0 0

u 0 1 u 0 1 0 0 0 0

P 0 0 u 0 0 0

P 0 0 0 1 u 1 1 0 1

q C
C u 0 0 0 u 0 0 0

hA

q C
0 1 C u 0 0 0 1 u 0 0

h

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

u 0 0 0 0 0 0 0 0

ρ ε ε ρ

− ρ − ε − ε ρ

+ τ ε ρ ε ε

− − τ − ε ρ − ε − ε − ε

ε ρ −ε
=

− − ε ρ − − ε

−µ

−µ

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟

⎠

. 

 

The characteristic polynomial is as follows: 
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( ) ( ) ( ) ( )

x t

2 32 3
g s I nt g g s g

det A A 0

u u u 1

− λ =

⇔

− λ − λ − λ ε − ε µ µ = 0

     . (86) 

 

All the “characteristic polynomial roots” are real: { }g g s s Intu , u , u , u , uλ → . Our mathematical 

model in both the LES and RANS realms satisfies the necessary condition for well-posed initial-value 

problems. 

 

5.2.2. Dusty cloud case: the dispersed phase is incompressible 

We now assume that only the gas phase is compressible with the following EOS: 

 

Gas phase 

g g g g(P , )ρ = ρ η  
Dispersed phase 

ρs = constant 

g g
g g

g g P

2
g g g,P g

d dP
P

C dP d
η

−

∂ρ ∂ρ
ρ = +

∂ ∂η

= +ρ η

gdη
  

 

where ηg and Cg are the entropy and the speed of sound of the gas phase. We take note that there 

is no granular pressure in this specific context; hence, from thermodynamics, 

 

g g gP
g

1dh T d dP
η

= η +
ρ g s s sdh T d= η , 

 

where the symbol ‘T’ refers to temperature and should not be confused, in the following 

discussion, with the symbol for stress. Rearranging the set of Eq. (76) with this new EOS, we now have 

the following: 
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Continuity24: 

( )

g g g g g
g g g g g g g g

g gs
g s

u
u u

t t x x x

u
1 u

t x x

⎧ ∂ρ ∂ε ∂ρ ∂ε ∂
ε + ρ + ε + ρ + ρ ε⎪

∂ ∂ ∂ ∂ ∂⎪
⎨

∂ε ∂ε∂⎪− + − ε − =⎪ ∂ ∂ ∂⎩

0

0

=
 (87) 

 
Momentum: 

( )

( ) ( ) ( )

g g g g
g g g g g g g g g

g gs s
g s g g s s s s

du P
P M G

dt x x x
Pdu

1 1 1 M
dt x x x

⎧ ∂ ∂τ ∂ε
ε ρ + ε + ε + + τ = + ε ρ⎪

∂ ∂ ∂⎪
⎨

∂ ∂ε∂τ⎪ − ε ρ + − ε + − ε − τ = − + ε ρ⎪ ∂ ∂ ∂⎩
G

 (88) 

 
Energy: 

( )

g g g
g g g g g g , i g g g g

g ss
g s s s s s , i s s s s

d q
T q W S Q

dt x x

qd
1 T q W S Q

dt x x

⎧ η ∂ε ∂
ε ρ + = ε + ε ρ + − ε⎪

∂ ∂⎪
⎨

∂ε ∂η⎪ − ε ρ − = ε + ε ρ + − ε⎪ ∂ ∂⎩

 (89) 

 
With this set of PDEs, the column vector of dependent variables is 

 

( )T
g g s g s g g s, , , u , u , P , ,= ε η η τ τU      . (90) 

 

The 8 PDEs involved are 2 continuities [Eq. (87)], 2 momentums [Eq. (88)], 2 energies [Eq. (89)], 

and 2 stress equations [Eq. (77)]. In this case, we do not use Eq. (80). The 8×8 square matrices At and 

Ax are respectively: 

 

                                                 
24 Interestingly enough, one can see that the void fraction (εg) is propagating exactly with the dispersed solid-phase velocity 
(us) and with a dissipation rate equal to the divergence of us [Lyczkowski et al., 1982]. From Eq.(87), 

( )g
g s

d
1

dt

ε
= − ε ∇ ⋅ u      . 
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( )

( )
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g g g,P 2
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g g

g st
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0 0 0 0 0 0
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⎜ ⎟
⎜ ⎟−
⎜ ⎟
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⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

0

0

0

0

0

0
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and 

 

( )

( ) ( ) ( )

( )

g
g g g g,P g g2

g

s g

g g g g g g g

x s g s s g g

g g g g g

s g s s s

g

s
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C
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q u T 0 0 0 0 0 0

q 0 1 u T 0 0 0 0 0
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ε⎛ ⎞
ρ ε ρ⎜ ⎟

⎜ ⎟
⎜ ⎟− − ε⎜ ⎟
⎜ ⎟+ τ ε ρ ε ε⎜ ⎟
⎜ ⎟= −τ − ε ρ − ε − ε
⎜ ⎟

ε ρ⎜ ⎟
⎜ ⎟

− − ε ρ⎜ ⎟
⎜ ⎟−µ⎜ ⎟
⎜ ⎟−µ⎝ ⎠

 

 

And the resulting characteristic polynomial is as follows: 

 

( ) ( ) ( )

x t

2 22 3
g s g g g s s g s g

det A A 0

u u 1 T T

− λ =

⇔

− λ − λ 0ρ ε − ε ρ µ µ =

     . (91) 

 

All eigenvalues are real, { }g g s su , u , u , uλ → , and are nearly equivalent as in §5.2.1 with the 

exception of uInt. 
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5.3. Characteristic Invariance 

We now demonstrate that the characteristics found in §5.2.1 are invariant to the EOS used and 

hence to the dependent variable vector. Again, taking the general case—both phases are 

compressible—we may use this following EOS: 

 

Gas phase 

g g g g(P , )ρ = ρ η  

Dispersed phase 

s s s s(P , )ρ = ρ η  

g g
g g

g g P

2
g g g,P g

d dP
P

C dP d
η

−

∂ρ ∂ρ
gdρ = + η

∂ ∂η

= +ρ η

 
s s

s s
s s P

2
s s s,P s

d dP
P

C dP d
η

−

∂ρ ∂ρ
sdρ = +

∂ ∂η
η

= +ρ η

 

 

Rearranging the set of Eq. (76) with this new EOS, we now have the following: 

 
Continuity: 

( ) ( ) ( )

g g g g g
g g,P g g g2

g

g gs s
g s,P s g s2

s

dP d d u
0

dt dt dt xC

1 ddP d u
1 1
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ε η ε ∂⎧
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⎨
− ε εη ∂⎪
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s 0

 (92) 

 
Momentum: 

( )

( ) ( ) ( ) ( ) ( )

g g g g
g g g g g g g g g

g gs s s
g s g g g s s s s s

du P
P M G

dt x x x

Pdu P
1 1 1 1 P M

dt x x x x

∂ ∂τ ∂ε
ε ρ + ε + ε + + τ = + ε ρ

∂ ∂ ∂

∂ ∂∂ ∂τ
− ε ρ + − ε + − ε + − ε − + τ = − + ε ρ

∂ ∂ ∂ ∂

⎧
⎪
⎪
⎨
⎪
⎪⎩

G
ε

 (93) 

 
Energy: 

( )

g g g
g g g g g g , i g g g g

g ss
g s s s s s , i s s s s

d q
T q W S Q

dt x x

qd
1 T q W S Q

dt x x

⎧ η ∂ε ∂
ε ρ + = ε + ε ρ + − ε⎪

∂ ∂⎪
⎨

∂ε ∂η⎪ − ε ρ − = ε + ε ρ + − ε⎪ ∂ ∂⎩

 (94) 
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The column vector of dependent variables is [compare with Eq. (85)] 

 

( )T
g g s g s g s g s, , , u , u , P , P , ,= ε η η τ τU      , (95) 

 

which is used with 9 PDEs: 2 continuities [Eq. (92)], 2 momentums [Eq. (93)], 2 energies [Eq. 

(94)], and 2 stress equations [Eq. (77)]. The ninth PDE is Eq. (80). The 9×9 square matrices At and Ax 

are respectively as follows: 

 

( ) ( )

( )
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g
g g g,P 2
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g
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s

g g

t g s

g g g
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0 0 0 0 0
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0 T 0 0 0 0 0 0

0 0 1 T 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0

ε⎛ ⎞
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠
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0

0

0
0
0

 

 

and 

 

( ) ( ) ( )

( ) ( ) ( ) ( )
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g

g g g g g ,P g2
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g

s s g s s ,P g s s2

s

g g g g g g g
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s g s s s

g

s
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C

1
u 0 1 u 0 1 0 u 0 0

C
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q u T 0 0 0 0 0 0 0

q 0 1 u T 0 0 0 0 0 0
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ε
ρ ε ρ

− ε
− ρ − ε ρ − ε ρ

+ τ ε ρ ε ε

= − − τ − ε ρ − ε − ε − ε

ε ρ

− − ε ρ

−µ
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
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⎜
⎜
⎜
⎜
⎜

⎝

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎜ ⎟⎜ ⎟
⎠
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The characteristic polynomial is as follows: 

 

( ) ( ) ( ) ( )

x t

2 32 3
g s I nt g g g s s g s g

det A A 0

u u u 1 T T

− λ =

⇔

− λ − λ − λ ε 0ρ − ε ρ µ µ =

     . (96) 

 

Not only are all eigenvalues real, { }g g s s Intu , u , u , u , uλ → , but they are exactly the same as in 

§5.2.1. Hence, the characteristics of our model are invariant to the choice of EOS and to the desired 

dependent variables. 
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6. LES and RANS Entropy Constraints 

The second law of thermodynamics25 states that the entropy change of a nonisolated system 

cannot be less than the entropy exchanged with the surrounding world26 [Lhuillier 1996]. The entropy 

can be seen as the amount of disorder of a system; its internal energy directly depends on the amount 

of disorder, and its temperature quantifies this amount of disorder.27 However, in a multiphase 

system with enormous scale differences between the constituents of the multiphase system (gas 

molecule sizes vs. grain-sizes), the notion of entropy is not obvious to define because the exact 

meaning of microscale depends on the phase under consideration (gas or granular phase). Nevertheless, 

the entropy condition can be used to somehow assess or, at least, shed some light on the physical 

soundness of a multiphase model. Indeed, the Clausius-Duhem inequality can be used as a restriction 

on the various constitutive laws making up the mathematical model [Ishii 1975; Arnold et al., 1990; 

Lhuillier 1996] and also the constitutive laws (closures) of the turbulence models (RANS or LES). 

From this particular perspective of closures and constitutive laws, the Clausius-Duhem inequality 

should be rather seen as a macroscopic (or mesoscale) entropy condition [Drew and Passman 1999] 

obtained either by statistical (RANS) or by filtering (LES) processes. 

From Appendix 2 (RANS) and Appendix 3 (LES), the entropy condition in a multiphase system of 

n phases (i=1,2,..,n) may be written as 

 

( )tur / SGi
i i i i i i

dˆ ˆ H
dt

ηη
ρ ≥ −∇ ⋅ ε + + ρ Σ +Φ Φ i      , (97) 

 

where, Φi, the flux of entropy, has two sources: one Favre-phasic averaged/filtered ( i
i

iT
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

qΦ ) 

and one from the turbulence/subgrid [tur/SG , see Eq. (AII.44)  for RANS or Eq. (AIII.27) for LES]; 

the entropy source is defined by a Favre-mass weighted relationship: 

iΦ

i
i

i

S
T

⎛ ⎞
Σ = ⎜

⎝ ⎠
⎟

                                                

; and the mean rate of 

interfacial entropy between phases, ηHi, complies with the entropic jump condition, , 
n

i
i 1

H 0η

=

≥∑
 

25 Or the Entropy law, or the Clausius-Duhem inequality. 
26 If the system is isolated, then the entropy of this system cannot decrease. 
27 This mental picture works well for the gas phase. At the molecular level, the disorder is captured by the temperature of 
the gas phase: the hotter the gas, the more disorder and the higher the fluctuating kinetic energy of gas molecules. For an 
Eulerian dispersed (solid) phase, this notion of disorder is less clear as we may have very hot grains in a perfectly idle 
granular deposit. In other word, there is no clear relationship between internal energy, entropy, and amount of disorder at 
the grain scale. 
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which does not necessarily vanish because an entropy production may occur at the interface [Lhuillier 

1996]. At this stage, we do not need to make any distinction between filtered (LES) or ensemble-

averaged (RANS) variables28. However, let us keep in mind that the exact definition and the meaning 

of each variable (averaged vs. filtered) are, of course, not the same. 

Because it is universally acknowledged within the multiphase flow realm [Ishii 1975; Arnold et 

al., 1990; Drew and Passman 1999], we follow the main idea of Ishii [1975]. Let us assume that the 

fluctuating part (RANS) or the subgrid part (LES) of any constitutive variables of the internal energy is 

much smaller than the macroscopic change (averaged/filtered) of the variable under consideration29. 

Such an assumption holds if we consider a time interval sufficiently short (∆t<<) and, in addition for 

LES, a filter size sufficiently small (∆xk<<). With this assumption in mind, let us define the phasic 

internal energy as a function of the macroscopic phasic density ( iρ ) and entropy ( )30: iη

 
( )i i i iI I ,≈ η ρ      , (98) 

 
with 

 

i
i

i

2 i
i i

i

i
i i i i i i i2

i i

i i i i i

i i

IT a

IP b

1 PdI T d P d T d d c.

dI I d I d d.
dt dt dt

⎧ ∂
≈⎪ ∂η⎪

⎪ ∂
≈ ρ⎪

∂ρ⎪
⎨
⎪ ≈ η − = η + ρ
⎪ ρ ρ
⎪

∂ η ∂ ρ⎪ = +⎪ ∂η ∂ρ⎩

.

.

                                                

 (99) 

 
28 We have dropped out the “bottom lower hat” for the LES variables. 
29 Hence, i i i i i i i iP P P ; ; and T T T≈ ≈ η ≈ η ≈ ≈ . 
30 It could be shown that the internal energy is a much more complicated function [e.g., Bedford and Ingram 1971] if one 
strictly follows “the principle of equipresence” that states that “a variable present as an independent variable in one 
constitutive equation should be present in all constitutive equations” [Coleman and Mizel 1963]. Hence, Eq. (98) should be 
rather written as [e.g., Bedford and Ingram 1971]: 
 

( )i i i 1, .., n i 1,.., n i i i iI I , , , , T , T , ...= =≈ ρ ∇ρ ∇ ∇u u      . 

 
And, most certainly, the interfacial terms may need to be added as well. Hence, in a multiphase flow system, this principle 
of equipresence turns out to be very quickly unmanageable and totally inappropriate [Drew and Passman 1999]. In the 
following (simplified) discussion, we aim to reach an entropy condition as “usable” and “manageable” as possible within a 
specific mathematical model (and computer code) [e.g., Arnold et al., 1990]. Therefore, we follow the “principle of 
separation of components” [Drew 1971; Drew and Passman 1999] that states that “the constitutive equation of a variable of 
a given component is a unique function of variables associated to that component only.” This principle of separation of 
components is exactly applied in Eq. (98). 
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Therefore, we may rewrite Eq. (97) as the following: 

 
i

i i i i i i i i
dˆ ˆT T S T
dt

η⎛ ⎞η
ρ ≥ − ∇ ⋅ ε + ρ +⎜ ⎟

⎝ ⎠
Φ iH      . (100) 

 
We also note that the macroscopic internal energy is (see, for instance, the demonstration in 

Appendix 2 with the appropriate simplifications of Appendix 5) as follows: 

 

( ) ( )

( ) ( )

( ) ( )

tur / SG tur / SG Ii i
i i i i ,i ,i i i i i i i

tur / SG tur / SG Ii
i i ,i ,i i i i i i i i i

tur / SG tur / SG Ii
i i ,i ,i i i i i i i i i

ˆ I ˆ ˆI W W S
t

dIˆ ˆW W P S
dt

dIˆ ˆW W P S
dt

∂ρ
+ ∇ ⋅ρ = ε + − ∇ ⋅ ε + + ρ +

∂
⇔

ρ ≈ ε + − ε ∇ ⋅ − ∇ ⋅ ε + + ρ +

⇔

ρ ≈ ε + − ε ∇ ⋅ − ∇ ⋅ ε + + ρ +

T T

τ τ

τ τ

u q

u q q

u q q

i

i

H

H

H

q

0

     , (101) 

 

where tur/SGqi is the heat flux contribution from turbulence or from the subgrid; the mean rate of 

interfacial internal energy transfer between phases, IHi, that fully complies with the jump condition 

between all possible interfaces is 
n

I
i

i 1

H
=

=∑ . In Eq. (101), we further assume that the fluctuating 

(RANS) or the subgrid (LES) velocity is divergenceless ( i i 0′ ′′∇ ⋅ ≈ ∇ ⋅ ≈u u ) [Besnard et al., 1992]. 

 

Taking the material derivative of the equation of state, Eq. (99)c: 

 

i ii i i
i 2

i

i ii i i
i i i i i i2

i i

i i i
i i i i i i i i

i

dI d P dT
dt dt dt

dI d P dT R
dt dt dt

dI d P dˆ ˆ T R P P
dt dt dt

η ρ
= +

ρ
⇔

⎛η
= + − ε ρ ∇ ⋅ − ρ⎜

ε ρ ⎝ ⎠
⇔

⎛ ⎞η ε
ρ = ρ + − ε ∇ ⋅ −⎜ ⎟ ρ⎝ ⎠

u

u i

⎞ε
⎟  (102) 

 
Eq. (101) and Eq. (102) into Eq. (100) gives the following: 
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( ) ( )

( ) ( ) ( )
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i i itur / SG tur / SG f i i
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k T P dW W H R P 0
dtT

≥

⇔

ε ∇ ⎡ ⎤ε
ε + + − ∇ ⋅ ε + − + ≥⎢ ⎥ρ⎣ ⎦

τ τ q

 (103) 

 

which is the equation’s aim as it clearly imposes a condition to the whole set of various closures 

laws. Reading from left to right, on the LHS of Eq. (103) are the following: (i) molecular shear-viscous 

dissipation (Wτ,i>0); (ii) the RANS turbulent energy (turWτ,i>0) or LES subgrid energy (SGWτ,i>0) 

dissipations31; (iii) molecular heat conduction where ki is the phasic conduction of heat (ki>0); (iv) heat 

conduction within a given phase by turbulent means ( ) or within the subgrid ( ); 

and finally, (v) between brackets, the interfacial Helmholtz free energy (fHi>0), the mass exchange rate 

through the interface (–Ri); and the phasic volumetric concentration variations, 

tur
i−∇ ⋅ ε qi

SG
i i−∇ ⋅ ε q

id
dt
ε , “seen” by the 

material, where i i
i i

d
dt t
ε ∂ε

= + ⋅ ∇
∂

u� ε

i

. 

 

In the most classical way to approach turbulence [Kashiwa 2001; Dartevelle 2004], the turbulent 

heat flux term ( ) is always positive with an eddy-viscosity model (RANS or LES): tur / SG
i−∇ ⋅ ε q

 
tur / SG tur / SGi

i itur / SG
Cp T

Pr
= − µ ∇q i

                                                

     , (104) 

 
where Cpi is the specific heat at constant pressure, tur/SGPr is the turbulent Prandtl number, and 

tur/SGµi is the turbulent eddy-viscosity that must be provided by a RANS or a LES model. Therefore, 

 
31 As a reminder, tur/SGWτ,i is often neglected. 
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one can see that, with maybe the exception of the bracket term, all the terms of Eq. (103) are always 

positive. 

Let us define, anywhere and anytime, the system as the mixture of all the phases in a CV. 

Therefore, for the mixture system, we must sum all terms of Eq. (103) between all the n phases 

[Kashiwa 2001]: 

 

( ) ( )2
n i i itur / SG tur / SG f i i

i ,i ,i i i i i i
iii 1

k T P dW W H R P
dtT

=

⎧ ⎫ε ∇ ⎡ ⎤ε⎪ ⎪
ε + + − ∇ ⋅ ε + − +⎨ ⎬⎢ ⎥ρ⎣ ⎦⎪ ⎪

⎩ ⎭

∑ τ τ q 0≥  (105) 

 

where the bracket term in Eq. (105), 
n

f i
i i i

ii 1

P dH R P
dt

=

i⎡ ⎤ε
− +⎢ ⎥ρ⎣ ⎦

∑ , is, by definition, either positive 

or equal to zero because , 
n

i
i 1

R 0
=

=∑
n

i
i 1

1
=

ε =∑ , and . 
n

f
i

i 1

H 0
=

≥∑
 

Hence, overall (for all phases), the mixture condition of Eq. (105) is fully satisfied as required by 

the second law of thermodynamics. 
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7. Summary and Conclusions 

This manuscript has developed a multiphase flow hydrodynamic and thermodynamic model within 

both the RANS and the LES frameworks. With the mathematical methodologies established in §2, it 

has been demonstrated that the basic Navier-Stokes equations are essentially the same for RANS and 

LES, even though the mathematical and physical meaning of these PDEs is radically different: 

ensemble-averaged (RANS) vs. filtered (LES) fields. Yet, because the hydrodynamic and 

thermodynamic PDEs share essentially the same basic “structure,” they may be discretized within the 

same computer code with appropriate subroutines for turbulence/subgrid closures and for interfacial 

closures. This manuscript also demonstrates that this model meets the necessary requirement for a well-

posed initial value problem and is fully consistent with the second law of thermodynamics. 

The main asset of this model is its versatility with respect to the multiphase turbulence approaches; 

therefore, it would be possible to apply this model to different multiphase flows as seen in §1.1: gravity 

currents within the atmospheric boundary layer (near/at the ground) or “boundary-free” flows within 

the atmosphere (e.g., dusty plumes and jets). This versatility makes possible using hybrid-RANS/LES 

approaches to simulate dusty surges and associated buoyant co-ash clouds, or, possibly, to simulate 

engineering multiphase flows (e.g., in nuclear reactor, aeronautical, and automotive industries; aerosol 

dispersions; and atomization and sprays dynamics) with RANS near the wall-boundary and LES away 

from the boundary. 

In a next manuscript, we will develop specific RANS turbulence and LES subgrid closures to be 

implemented within this current multiphase Navier-Stokes model. Afterwards, in a hopefully not too 

far future, the main step will be to implement the code of the whole model as presented in this 

manuscript with the appropriate turbulence, subgrid, and interfacial closures. 
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Appendix 1: Averaging and Filtering Rules 
In this manuscript,we have used  

• the angular operator to signify an “ensemble-averaging or a filtering process,”  

• a horizontal bar for a “phasic-weighted process,”  

• a tilde for a “mass-weighted process,” and  

• an upside-down hat under a variable to indicate a “LES filtering process.” 

Let α(x,t) and β(x,t) be some fluid property (scalar, vector, tensor) and let c be a constant. X(x,t) is 

the phase indicator function. The volumetric concentration and the bulk density of the ith phase are 

respectively: 

( )

( )

i i i

i i

x i

i i i i i i i i i

i i i i i x i i

X dF(X , ) a.
X

G ( ') X d ' b.

ˆ X X dF(X , )

ˆ X G ( ') X d '

∞

−∞

Ω

∞ ∞

−∞ −∞

Ω

⎧
⎪ ρ
⎪⎪ε = = ⎨
⎪ −⎪
⎪⎩

ρ = ε ρ = ρ = ρ ρ

ρ = ε ρ = ρ = − ρ

∫

∫∫∫

∫ ∫

∫∫∫

x x x

x x x

c.

d.

 (AI.1) 

Favre phasic-weighted decomposition 

 

RANS framework: i i

i i i i i i i
i

X
, where X

α
′α = α + α α = ⇔ α = ε α

ε i  (AI.2) 

LES framework: i i

i i i i i i i
i

X
, where X

α
′α = α + α α = ⇔ α = ε α

ε i  (AI.3) 

Favre mass-weighted decomposition 

 

RANS framework: 
i i i

i i i i i i i i
i

X
ˆ, where X

ˆ

ρ α
′′α = α + α α = ⇔ ρ α = ρ α

ρ i  (AI.4) 

LES framework: 
i i i

i i i i i i i i
i

X
ˆ, where X

ˆ

ρ α
′′α = α + α α = ⇔ ρ α = ρ α

ρ i  (AI.5) 
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Operation upon a constant 

c c c= =  (AI.6) 

 

Average of the average (RANS only) 

i i i

i i i

i i i

e.g.,

dP( ) dP( )
∞ ∞

−∞ −∞

α = α = α

α = α = α

α = α α = α α = α∫ ∫ i

 (AI.7) 

 

(Note that, in LES, i iα ≠ α .) 

 

Average of the fluctuating part (RANS only) 

i i

i i i

i i i i i

0

e.g.,

0

′ ′′α = α =

′α = α − α

′α = α − α = α − α =

 (AI.8) 

 

(Note that, in LES, i i 0′ ′′α ≠ α ≠ .) 

 

Operation upon time derivative (RANS and LES) 

ii

t t

∂ α∂α
=

∂ ∂
 (AI.9) 

 

bcause within RANS, 
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i
i i

i i

i

( , t ) dP( )
t t

( , t ) dP( )
t

t

∞

−∞

∞

−∞

∂α ∂
= α α

∂ ∂

⎡ ⎤∂ ⎢ ⎥= α α
∂ ⎢ ⎥⎣ ⎦

∂ α
=

∂

∫

∫

x

x      , 

 

and within LES (spatial filter), 

i
x i

x i

i

G ( ) ( ', t ) d '
t t

G ( ) ( ', t ) d '
t

t

Ω

Ω

∂α ∂
= α

∂ ∂

⎡ ⎤∂ ⎢ ⎥= α
∂ ⎢ ⎥⎣ ⎦

∂ α
=

∂

∫∫∫

∫∫∫

ξ x x

ξ x x      . 

 

Operation upon space derivative (gradient or divergence) is as follows: 

i ix x

∂ α∂α
=

∂ ∂
 (AI.10) 

 

because within RANS, 

i i

i

i

dP( )
x x

dP( )
x

x

∞

−∞

∞

−∞

∂α ∂α
= α

∂ ∂

⎡ ⎤∂ ⎢ ⎥= α
∂ ⎢ ⎥⎣ ⎦

∂ α
=

∂

∫

∫ α      , 
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and within LES (spatial filter)32, 

x i
i i

x i
i

i

G ( ) ( ', t ) d '
x x

G ( ) ( ', t ) d '
x

x

Ω

Ω

∂α ∂
= α

∂ ∂

⎡ ⎤∂ ⎢ ⎥= α
∂ ⎢ ⎥⎣ ⎦

∂ α
=

∂

∫∫∫

∫∫∫

ξ x x

ξ x x      . 

 

Hence, 

 
i i

i i

∇ ⋅ = ∇ ⋅

∇α = ∇ α

α α
     . (AI.11) 

 

From Eq. (AI.9), Eq. (AI.10), and Eq. (AI.11), the following can be inferred by chain rules: 

 

i i i
i i

X X
X

t t

∂ α ∂α ∂
= + α

∂ ∂
i

t∂
 (AI.12) 

 

i i i i i i

i i i i i i

X X X

X X

∇ α = ∇α + α ∇

∇ ⋅ = ∇ ⋅ + ⋅∇α α α X
 (AI.13) 

 

Operation upon a sum (linearity)33 

i i i iα + β = α + β  (AI.14) 

 

                                                 
32 Within the LES framework, it is essential that the spatial filter size, ξ, remain constant and that the cutoff length, ∆

I
, 

remain constant as well over the whole domain (or subdomains) of integration, Ω. In other words, within any domain (or 
subdomain) of integration, the grid size must be homogenous (see §2.6.5). 
33 In statistics (RANS framework), this is one of the fundamental properties of the expectation of a random variable. 
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Useful correlations (RANS only) 

0

since,

dP( ) dP( )

0

∞ ∞

−∞ −∞

′ ′αα = αβ =

′ ′ ′ ′αβ = αβ β = α β β

′= αβ

=

∫ ∫ ′  (AI.15) 

 

( )

i i

i i i

i i i i

i i i
i

i i i i i i i i i

i i i i i i i i i i i

i i i

i i i i i
i

0

0

e.g.,

X
X

X dP X dP X d

ˆX X X

X
ˆ ˆ 0

ˆ

∞ ∞ ∞

−∞ −∞ −∞

′′ρ α =

′′ε ρ α =

′′ε ρ α
′′= = ρ α

ε

′′= ρ α = ρ α − ρ α

= ρ α − α ρ = ρ α − α ρ

⎛ ⎞ρ α⎜ ⎟= ρ − α = ρ α − α =⎜ ⎟ρ⎜ ⎟
⎝ ⎠

∫ ∫ ∫ P

 (AI.16) 

 

( ) ( )
since,

′ ′αβ = αβ + α β

′ ′= α + α β + β

′ ′ ′ ′ ′ ′ ′= αβ + αβ + α β + α β = αβ + αβ + α β + α β

′ ′= αβ + α β

′

 (AI.17) 

 

2 2 ′α = α + α 2  (AI.18) 
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Relations for which any operation holds34 

i i i iα β ≠ α β  (AI.19) 

 

( )

i i

i i i i i

i i i i
i i

ˆ 0

since,

X X
ˆ ˆ

ˆ

′′ρ α ≠

⎛ ⎞α ρ α⎜ ⎟= ρ α − α = ρ −⎜ ⎟ε ρ⎜ ⎟
⎝ ⎠

 (AI.20) 

 

and more generally, Eq. (AI.20) can be written as 

( )
i i

i i i

0′′β α ≠

= β α − α
     . (AI.21) 

 

For a compressible phase (both RANS and LES), 

i i

i i

ρ ≠ ρ

≠u u
 (AI.22) 

                                                 
34 Within RANS, in Eq. (AI.19), the equality cannot hold because these two random functions are not stochastically 
independent. 
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Appendix 2: Favre-Averaged Navier-Stokes Equations 
 

1. RANS Phasic Continuity 

The continuity for a single-phase system (n=i=1): 

 
i

i i 0
t

∂ρ
+ ∇ ⋅ρ =

∂
u  (AII.1) 

 
Because we have more than one phase, we must modify Eq. (AII.1) to account for all the possible 

random occupations by the different phases in the system anywhere and anytime. Let us multiply Eq. 

(AII.1) by the phasic function of presence (Xi, §2.3): 

 

( )

i
i i i

i i i
i i i i i i i

i i
i i i i Int i i Int

X 0
t

X X
X X

t t
X

X
t

⎡ ⎤∂ρ
+ ∇ ⋅ρ =⎢ ⎥∂⎣ ⎦

∂ ρ ∂
⇔ + ∇ ⋅ ρ = ρ + ρ ⋅

∂ ∂

∂ ρ
⇔ + ∇ ⋅ ρ = ρ − ⋅ δ

∂

u

u u

u u u n

∇      . (AII.2) 

 

Let us average 

 

( )i i
i i i i Int i i Int

i i

i i i i

X
X

t

X
X R

t

∂ ρ
+ ∇ ⋅ ρ = ρ − ⋅ δ

∂

∂ ρ
⇔ + ∇ ⋅ ρ =

∂

u u u

u

n

0

    , (AII.3) 

 

where Ri is the mass-production or mass-destruction rate of the ith phase and must be specified in a 

specific context; δInt is the function of presence of all the interfaces. Ri must follow the jump condition 

 
n

i
i 1

R
=

=∑      . (AII.4) 
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Knowing that that i i iˆX ρ = ρ  and that i i i i iˆX ρ = ρu u , Eq. (AII.3) can be rewritten as the 

following: 

 
i

i i i

ˆ
ˆ R

t
∂ρ

+ ∇ ⋅ρ =
∂

u      . (AII.5) 

 

2. RANS Species Continuity 

If phase ‘i’ is made of different species, then the continuity equation for the jth species is simply 

written as the following [Besnard et al., 1992; Veynante and Poinsot 1997; Travis et al., 1998], 

assuming one phase only (n=i=1): 

 
j i

j i i i j j

y
y y

t
∂ ρ

+ ∇ ⋅ ρ = −∇ ⋅ ϖρ ∇ + Γ
∂

u      , (AII.6) 

 
where yj is the mass fraction of the jth species; ϖ is the molecular diffusion coefficient of species j 

in the mixture; and Γi is the mass source or sink rate because chemical or physical processes between 

species. Global conservation upon all m species of phase i imposes that . 
m

j
j 1

y 1
=

=∑
 

Let us account for n phases in the system by multiplying Eq. (AII.6) by the phasic function of 

presence (Xi, §2.3): 

 

( )

j i
i j i i i i j j

i j i
i j i i i i j i j

i
j i j i i i i j i

i j i
i j i i i i j i j

j i Int i i Int i j i Int

y
X y X y

t

X y
X y X y X

t

X
y y X y

t

X y
X y X y X

t

y y

∂ ρ
+ ∇ ⋅ ρ = −∇ ⋅ ϖρ ∇ + Γ

∂

∂ ρ
⇔ + ∇ ⋅ ρ = −∇ ⋅ ϖ ρ ∇ + Γ

∂

∂
+ ρ + ρ ⋅ ∇ + ϖρ ∇ ⋅ ∇

∂

∂ ρ
⇔ + ∇ ⋅ ρ = −∇ ⋅ ϖ ρ ∇ + Γ

∂

+ ρ − ⋅ δ − ϖρ ∇ ⋅ δ

⎡ ⎤
⎡ ⎤⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎣ ⎦

u

u

u

u

u u n n

X      . (AII.7) 

 

Let us average Eq. (AII.7) as follows: 
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( )

i j i
i j i i i i j i j

j i Int i i Int i j i Int

i j i

i i j i i i j i j i , j

X y
X y X y X

t

y y

X y
X y X y X C

t

∂ ρ
+ ∇ ⋅ ρ = −∇ ⋅ ϖ ρ ∇ + Γ

∂

⎡ ⎤+ ρ − ⋅ δ − ϖρ ∇ ⋅ δ⎢ ⎥⎣ ⎦

⇔

∂ ρ
+ ∇ ⋅ ρ = −∇ ⋅ ϖ ρ ∇ + Γ +

∂

u

u u n n

u

      . (AII.8) 

 
The mean interfacial species mass transfer rate (Ci,j) must be specified in a specific context. 

However, it clearly has two contributions: one from the mass transfer between phases as described in 

Eq. (AII.3) (i.e., Ri) and one describing the “diffusion” of the interface belonging to species j of the ith 

phase: 

 

 ( )i , j j i Int i i j i IntC y y⎡ ⎤= ρ − − ϖρ ∇ ⋅ δ⎢ ⎥⎣ ⎦
u u n      . (AII.9) 

 
Very often the molecular diffusion term is simply neglected [Symlal et al., 1993], and this neglect 

is even more justified if the flow is at high Reynolds number [Veynante and Poinsot 1997]. 

Ci,j fully complies with the mean jump condition at the interfaces between species of a given phase 

and all other phases: 

 
n m

i , j
i 1 j 1

C
= =

=∑∑ 0      . (AII.10) 

 

Let us take the Favre mass-weighted ensemble average of velocity and species mass fraction and 

decompose these into mean and fluctuating parts: 
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( ) ( )i j i
i i j j i i i i j i j i , j

i j
i i j i i i j i i i j i i i j i

i j i j i , j

i j
i j i i j i j i i j i , j

X y
X y y X y X C

t

ˆ y
X y X y X y X y

t
ˆ y C

ˆ y
ˆ ˆ ˆy y y C

t

∂ ρ
′′ ′′+ ∇ ⋅ ρ + + = −∇ ⋅ ϖ ρ ∇ + Γ +

∂

⇔

∂ρ
′′ ′′ ′′ ′′+ ∇ ⋅ ρ + ∇ ⋅ ρ + ∇ ⋅ ρ + ∇ ⋅ ρ

∂

= −∇ ⋅ ϖρ ∇ + ε Γ +

⇔

∂ρ
′′ ′′+ ∇ ⋅ ρ = −∇ ⋅ ϖρ ∇ − ∇ ⋅ ρ + ε Γ +

∂

u u

u u u u

u u

( )i j tur
i j i i j j i j i , j

ˆ y
ˆ ˆy C

t

⇔

∂ρ
+ ∇ ⋅ ρ = −∇ ⋅ ρ + + ε Γ +

∂
u y y

     , (AII.11) 

 

where the species' mass fraction fluxes have two contributions: one from the averaged mean flux 

(i.e., yj) and one from turbulence (i.e., turyj): 

 

j j

tur
j j i

y

y

= ϖ∇

′′ ′′=

y

y u
 (AII.12) 

 

3.  RANS Momentum 

Let us start with the momentum equation of a single-phase (n=i=1), 

 
i i

i i i i i i iP
t

∂ρ
+ ∇ ⋅ρ = −∇ − ∇ ⋅ + ρ

∂
u

u u τ G      , (AII.13) 

 
where Pi is a thermodynamic isotropic pressure; τi is a viscous symmetric stress tensor (that can 

be broken into a spherical and deviatoric parts); and Gi represents the body force contribution (e.g., 

gravity). We have used the dyadic notation so that uiui is a second order tensor. Let us combine Pi and 

τi: 

 
i iP= +T I τi      ,  (AII.14) 
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where the viscous stress tensor τi is defined in Appendix 7 (as a reminder, compression and its rate 

are taken as positive). Let us account the presence of all n phases in the system in multiplying Eq. 

(AII.13) by the phasic function of presence (Xi, §2.3): 

 

( )

( )

i i
i i i i i i i

i i i i
i i i i i i i i i i i i i i i i

i i i
i i i i i i i i i i i Int i i Int i i Int

X
t

X X
X X X

t t

X
X X X

t

∂ρ
+ ∇ ⋅ ρ = −∇ ⋅ + ρ

∂

∂ ρ ∂
⇔ + ∇ ⋅ ρ = −∇ ⋅ + ρ + ρ + + ρ ⋅ ∇

∂ ∂

∂ ρ
⇔ + ∇ ⋅ ρ = −∇ ⋅ + ρ + ρ − ⋅ δ − ⋅

∂

⎡ ⎤
⎢ ⎥
⎣ ⎦

X

δ

⎡ ⎤
⎢ ⎥
⎣ ⎦

⎡ ⎤
⎣ ⎦

u
u u T G

u
u u T G u T u u

u
u u T G u u u n T n

  . (AII.15) 

 
Let us average Eq. (AII.15): 

 

( )

( )

i i i
i i i i i i i i i i i Int i i i Int

i i i
i i i i i i i i i i i Int i i i Int

i i i
i i i i i i i i i i

X
X X X

t

X
X X X

t

X
X X X

t

∂ ρ
+ ∇ ⋅ ρ = −∇ ⋅ + ρ + ρ − − ⋅ δ

∂

∂ ρ
⇔ + ∇ ⋅ ρ = −∇ ⋅ + ρ + ρ − − ⋅

∂

∂ ρ
⇔ + ∇ ⋅ ρ = −∇ ⋅ + ρ +

∂

⎡ ⎤
⎣ ⎦

⎡ ⎤
⎣ ⎦

u
u u T G u u u T n

u
u u T G u u u T n

u
u u T G M

δ

 (AII.16) 

 

The mean interfacial momentum transfer rate between phases (Mi) must be specified in a specific 

context. It has two contributions as expected: one from the mass transfer between phases as described 

in Eq. (AII.3) (i.e., Ri) and one from the interfacial forces at the interfaces (e.g., drag force, added mass 

forces, …): 

 

( )i i i Int i i i Int
⎡ ⎤= ρ − − ⋅ δ⎢ ⎥⎣ ⎦

M u u u T n      . (AII.17) 

 
Mi fully complies with the mean jump condition derived from the local balance momentum at the 

interfaces between phases, 

 
n

i
i 1

0
=

=∑M      , (AII.18) 

 

 11



where we have neglected all surface tension effects between phases [Ishii 1975; Ishii and Mishima 

1984; Lhuillier 1996]. 

 

Let us take Favre mass-weighted ensemble average of velocity, decompose it into a mean and 

fluctuating part, and subsequently develop Eq. (AII.16): 

 
i i

i i i i i i i i i i i i

i i
i i i i i i i i i i i i i i i i i

i i
i i i i i i i i i i i i i i

ˆ
X X X

t

ˆ
ˆX 2 X X

t
ˆ

ˆ ˆ ˆ2 X
t

∂ρ ⎛ ⎞ ⎛ ⎞′′ ′′+ ∇ ⋅ ρ + + = −∇ ⋅ + ρ +⎜ ⎟ ⎜ ⎟∂ ⎝ ⎠ ⎝ ⎠

∂ρ ′′ ′′ ′′⇔ + ∇ ⋅ ρ + ∇ ⋅ ρ + ∇ ⋅ ρ = −∇ ⋅ ε + ρ +
∂

∂ρ ′′ ′′ ′′⇔ + ∇ ⋅ρ + ∇ ⋅ρ + ∇ ⋅ ρ = −∇ ⋅ ε + ρ +
∂

u
u u u u T G M

u
u u u u u u T G M

u
u u u u u u T G

( )

i

i i
i i i i i i i i i i i i

turi i
i i i i i i i i i

ˆ
ˆ ˆ0

t
ˆ

ˆ ˆ
t

∂ρ ′′ ′′⇔ + ∇ ⋅ρ + + ∇ ⋅ ε ρ = −∇ ⋅ ε + ρ +
∂

∂ρ
⇔ + ∇ ⋅ρ = −∇ ⋅ ε + + ρ +

∂

M

u
u u u u T G M

u
u u T T G M

 (AII.19) 

 
where the RANS Reynolds stress is clearly defined from Eq. (AII.19) as 

 
tur

i i i i
′′ ′′= ρT u u     . (AII.20) 

 

See Appendix 5 for further discussions on the term iT . 

 

4.  RANS Energy 

Let us write first the energy balance for a pure single phase (n=i=1) [Bird et al., 1960], 

 

 ( )i i
i i i i i i i i i i i

E E S
t

∂ρ
+ ∇ ⋅ ρ = −∇ ⋅ ⋅ − ∇ ⋅ + ρ + ρ ⋅

∂
u T u q G u      , (AII.21) 

 
where Ei is the total energy per unit of mass; the first term on the RHS represents the total work 

done by all the surface forces (viscous and pressure); qi is the heat conduction flux vector that follows a 

classical Fourier law; ρiSi represents a source contribution involving, for instance, radiation; and the 

last term is the work done by the body forces (e.g., gravity). The total energy is defined as 
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2
i

i i
u

E I
2

= +      , (AII.22) 

 
where Ii is the internal energy per unit of mass of the phase under consideration; the second term of Eq. 

(AII.22) is the kinetic energy of phase i. 

 
The total stress tensor, Ti and the viscous stress tensor, τi, (see also Appendix 7) are  

( )

( ) ( )

i i i

b b
ii i i i i i i i i

T b
i i i i i

P

12 2
3

2
3

⎧
⎪

= +⎪
⎪ ⎡ ⎤⎪ = µ − µ ∇ ⋅ = µ + ∇ ⋅ − µ ∇ ⋅⎨ ⎢ ⎥

⎣ ⎦⎪
⎪ ⎡ ⎤⎪ = µ − ∇ + ∇ + ∇ ⋅ − µ ∇ ⋅⎢ ⎥⎪ ⎣ ⎦⎩

T I τ

τ D u I D u I u I

u u u I ui I

     , (AII.23) 

where µi and bµi are the shear and volumetric viscosities; Di is the rate-of-strain tensor and  is 

its deviator; and I is the unit tensor. From Eq. (AII.23), we define rate-of-strain positive in 

compression. 

iD

Let us account the presence of n different phases in the system (i=1,2,…, n) in multiplying Eq. 

(AII.21) by the phasic function of presence (Xi, §2.3): 

 

( )

( )

( )

( )

i i
i i i i i i i i i i i i i

i i i
i i i i i i i i i i i i i i i i

i
i i i i i i i i i i i

i i i
i i i i i i i i i i

E
X E X S

t

X E
X E X X X S X

t
X

E E X X
t

X E
X E X X X

t

∂ρ
+ ∇ ⋅ ρ = −∇ ⋅ ⋅ − ∇ ⋅ + ρ + ρ ⋅

∂

⇔

∂ ρ
+ ∇ ⋅ ρ = −∇ ⋅ ⋅ − ∇ ⋅ + ρ + ρ ⋅

∂

∂
+ ρ + ρ ⋅ ∇ + ⋅ ∇ + ⋅ ⋅ ∇

∂

⇔

∂ ρ
+ ∇ ⋅ ρ = −∇ ⋅ ⋅ − ∇ ⋅ + ρ

∂

⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎣ ⎦⎣ ⎦

⎡ ⎤
⎢ ⎥⎣ ⎦

u u T q G u

u u T q G u

u q u T

u u T q

( ) ( )

i i i i i i

i i Int i i Int i i i i Int

S X

E

+ ρ ⋅

+ ρ − ⋅ δ − + ⋅ ⋅ δ⎡ ⎤⎣ ⎦

G u

u u n q u T n

X      . (AII.24) 

 
This equation can be rearranged in terms of the internal energy, Ii. To do so, let us “dot multiply” 

the momentum equation, Eq. (AII.13), by ui to obtain the equation of mechanical energy only as 

follows: 
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2
i

2i
i

i i i i i i i i

2
i

2i i
i

i i i i i i i i i i

2 2
i i i

i i i i i

2
i

2i i
i

i i i i i i i i i i

2
i

i

u
u2X

t 2

u
X u2 X X X

t 2

u X u
X

2 t 2

u
X u2 X X X

t 2

u
2

∂ρ
+ ∇ ⋅ ρ = − ⋅ ∇ ⋅ + ρ ⋅

∂

⇔

∂ ρ
+ ∇ ⋅ ρ = − ⋅ ∇ ⋅ + ρ ⋅

∂

∂
+ ρ + ⋅ + ρ ⋅ ∇

∂

⇔

∂ ρ
+ ∇ ⋅ ρ = − ⋅ ∇ ⋅ + ρ ⋅

∂

+ ρ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟

⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

u u T G u

u u T G u

u T u

u u T G u

u( ) ( )Int i i Int i i i Int− ⋅ δ − ⋅ ⋅ δ
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

u n u T n

i

 (AII.25) 

 

And subtracting this Eq. (AII.25) from Eq. (AII.24), we obtain, after simplifications, 

 

( )i i i
i i i i i , i i i i i i i i Int i i Int i i Int

X I
X I X W X X S I

t
∂ ρ

+ ∇ ⋅ ρ = − ∇ ⋅ + ρ + ρ − ⋅ δ − ⋅ δ
∂

⎡ ⎤⎣ ⎦Tu q u u n q n

i

     , (AII.26) 

 
where WT,i (= ) represents the reversible and irreversible work done by all the surface 

forces upon the internal energy. Let us average Eq. (AII.26) in the following: 

i :− ∇T u

 

( )i i i
i i i i i , i i i i i i i i Int i i Int i i Int

i i i I
i i i i i , i i i i i i i

X I
X I X W X X S I

t

X I
X I X W X X S H

t

∂ ρ
+ ∇ ⋅ ρ = − ∇ ⋅ + ρ + ρ − ⋅ δ − ⋅ δ

∂

⇔

∂ ρ
+ ∇ ⋅ ρ = − ∇ ⋅ + ρ +

∂

⎡ ⎤⎣ ⎦T

T

u q u u n q

u q

n

(AII.27) 

 
where IHi is the mean rate of interfacial heat transfer between phases and must be defined within a 

specific context for a specific phase, 
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( )I
i i i Int i i i IntH I⎡ ⎤= ρ − − ⋅ δ⎣ ⎦u u q n      , (AII.28) 

 
where the first RHS term represents heat source or sink from mass transfer at the interfaces 

between phases [see Eq. (AII.3)]; the second term is the heat flux exchange at the interfaces between 

phases. IHi must fully comply with the jump condition between all possible interfaces, 

 

      , (AII.29) 
n

I
i

i 1

H
=

=∑ 0

 
where we have neglected all interfacial energy source between phases [Ishii 1975; Ishii and 

Mishima 1984; Lhuillier 1996]. 

 

Let us take the Favre phasic-weighted ensemble average and mass-weighted average of velocity. 

Then, let us decompose these into a mean and fluctuating part and subsequently develop Eq. (AII.27) 

as follows: 

 

( ) ( )

( )

i i i I
i i i i i , i i i i i i i

i i i I
i i i i i i i i i i i i i i

Ii i
i i i i i ii i i i i i i i i i i i i i i

X I
X I X W X X S H

t

X I
ˆX I I : S H

t

ˆ I ˆ ˆI X I : P : P S
t

ˆ

∂ ρ
+ ∇ ⋅ ρ = − ∇ ⋅ + ρ +

∂
⇔

∂ ρ
′′ ′′+ ∇ ⋅ ρ + + = ε − ∇ − ∇ ⋅ ε + ρ +

∂
⇔

∂ρ ′′ ′′ ′ ′ ′ ′+ ∇ ⋅ ρ + ∇ ⋅ ρ = ε − ∇ − ∇ ⋅ − ∇ − ∇ ⋅ − ∇ ⋅ ε + ρ +
∂

⇔

∂

Tu q

u u T u q

u u τ u u τ u u q iH

( ) ( )tur tur Ii i
i i i i , i , i i i i i i i

I ˆ ˆI W W S H
t

ρ
+ ∇ ⋅ ρ = ε + − ∇ ⋅ ε + + ρ +

∂
T Tu q q

 (AII.30) 

 

where the surface force works have ensemble-averaged and fluctuating (from turbulence) 

contributions (see also demonstration in Appendix 5): 

 

,i i i i i

tur
,i i i i i

W : P

W : P

= − ∇ − ∇ ⋅

′ ′ ′= − ∇ − ∇ ⋅

T

T

τ u u

τ u u ′
     . (AII.31) 

 

 15



Idem for the heat flux: 

 
i i i

tur
i i ii i i ii i

k T

I I

= − ∇

′′ ′′ ′′ ′′= ρ = ρ

q

q u u
     , (AII.32) 

 
where ki is the molecular (not affected by turbulence) thermal conductivity coefficient of phase i. 

Eq. (AII.31) is particularly difficult because it involves two new unknowns in this system: the Favre 

phasic-weighted averaged and fluctuating parts of the velocity ( i and i′u u

iu

) instead of the Favre mass-

weighted components [  as in Eq. (AII.19) and Eq. (AII.20)]. For a detailed discussion on 

WT,i and turWT,i and possible approximations, see Appendix 5. 

i  and ′′u

 

For many engineering purposes, it is much more practical to have the energy equations in terms of 

the enthalpy instead of the internal energy. The enthalpy, hi, of a single phase i (n=i=1) is as follows: 

 
i

i i
i

P
h I= +

ρ
     . (AII.33) 

 
Let us take the material derivative of hi 

 

i i i

i

i i i
i

i

dh dI Pd
dt dt dt

1ddh dI dP1P
dt dt dt dt

⎛ ⎞
= + ⎜ ⎟⎜ ⎟ρ⎝ ⎠

⇔

ρ
= + +

ρ
i

     . (AII.34) 

 
Using the continuity equation of a single phase, Eq. (AII.1), we know that 

 

i i
i2

ii

1d d1 1
dt dt

ρ ρ
= − = ∇ ⋅

ρρ
u      . (AII.35) 

 
Let us recall that we have not yet averaged anything and we still only see one phase in the system. 

From Eq. (AII.26), we may deduce the equation of internal energy of only one phase in the system 

(n=i=1), 
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i i
i i i i i i i i

i i
i i i i i i i i

I I :
t

d I I :
dt

∂ S

S

ρ
+ ∇ ⋅ ρ = − ∇ − ∇ ⋅ + ρ

∂
⇔

ρ
+ ρ ∇ ⋅ = − ∇ − ∇ ⋅ + ρ

u T u q

u T u q

     , (AII.36) 

 
where . Substituting Eq. (AII.35) into Eq. (AII.34), multiplying 

the latter by ρi, and applying the chain rules yields the following: 

i i i i i: P :− ∇ = − ∇ ⋅ − ∇T u u τ ui

 
i i i i id h d I dP

dt dt dt
ρ ρ

= +      . (AII.37) 

 
Substituting Eq. (AII.36) into Eq. (AII.37) yields the following: 

 
i i i

i i i i i i i i

i i i i
i i i i i i i i

i

i i i
i i i i i i i i i i

i i i
i i i i i i i i

d h dP
I : S

dt dt

d h P dP
h : S

dt dt

h d
h P : S

t d

h dP
h : S

t dt

ρ
= −ρ ∇ ⋅ − ∇ − ∇ ⋅ + ρ +

⇔

ρ
= −ρ − ∇ ⋅ − ∇ − ∇ ⋅ + ρ +

ρ

⇔

∂ρ
+ ∇ ⋅ ρ = ∇ ⋅ − ∇ − ∇ ⋅ + ρ +

∂

⇔

∂ρ
+ ∇ ⋅ ρ = − ∇ − ∇ ⋅ + ρ +

∂

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

u T u q

u T u q

u u T u q

u τ u q

P
t

     . (AII.38) 

 

Let us account the presence of all n phases in the system in multiplying Eq. (AII.38) by the phasic 

function of presence (Xi). After development and rearranging all the terms, we have 

 

 17



( )

( ) ( )

( )

i i i i
i i i i i i i i i i i i i

i i Int i i Int i i Int

hi i i
i i i i i i i i i i i i i i i

turi i
i ii i i , i , i i i

X h dP
X h X : X X X S

t d

h

ˆ h d ˆX h h X : S H
t d

ˆ h ˆ h W W
t

∂ ρ
+ ∇ ⋅ ρ = − ∇ − ∇ ⋅ + + ρ

∂

+ ρ − ⋅ δ − ⋅ δ

⇔

∂ρ ′′ ′′+ ∇ ⋅ ρ + + = − ∇ − ∇ ⋅ ε + ε + ρ +
∂

⇔

∂ρ
+ ∇ ⋅ ρ = ε + − ∇ ⋅ ε +

∂

⎡ ⎤
⎣ ⎦

τ τ

u τ u q

u u n q n

u u τ u q

u q( )

t

P
t

tur hi
i i i i i

dP ˆ S H
dt

+ ε + ρ +q

    , (AII.39) 

 
where hHi is the mean rate of interfacial heat transfer between phases for the enthalpy equation and 

must be defined within a specific context for a specific phase. As usual, hHi must comply with the jump 

condition (i.e., ). The contributions of turbulence in the enthalpy equations from viscous 

dissipation and heat transfer are respectively defined in Eq. (AII.31) and Eq. (AII.32). 

n
h

i
i 1

H
=

=∑ 0

 

5. RANS Entropy 

Let us write the entropy condition for a pure single phase (n=i=1) [Aris 1962; Ishii 1975] as 

 
i i i i i

i i i
i i

S 0
t T

∂ρ η ρ
+ ∇ ⋅ρ η + ∇ ⋅ − ≥

∂
qu

T
     , (AII.40) 

 
where ηi is the specific entropy (entropy per unit of mass); qi is the heat conduction flux vector 

that follows a classical Fourier law; Si represents various heat sources per unit of mass (e.g., radiation); 

and ρi and Ti are the density and temperature of phase i. Hence, i

iT
q  is the entropy flux, and i

i

S
T

 is any 

source of entropy. 

 
Let us account the presence of n different phases in the system (i=1,…, n) in multiplying Eq. 

(AII.40) by the phasic function of presence (Xi): 
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( )

i i i i i i i i i i
i i i i i i i i i i i

i i i

i i i i i i i i i i
i i i i i i i i i i i

i i i

i i i i i i i i
i i i i i i Int i i

i i

X X X XX X X
t t T T T

X X X S XX X
t T T t

X X X SX
t T T

∂ ρ η ∂ ρ
− ρ η + ∇ ⋅ ρ η − ρ η ⋅∇ ≥ −∇ ⋅ + ⋅∇ +

∂ ∂
⇔

S

X
T

⎡ ⎤∂ ρ η ρ ∂
+ ∇ ⋅ ρ η ≥ −∇ ⋅ + + ρ η + ρ η ⋅∇ + ⋅∇⎢ ⎥∂ ∂⎣ ⎦

⇔

∂ ρ η ρ
+ ∇ ⋅ ρ η ≥ −∇ ⋅ + + ρ η − ⋅

∂

q qu u

q qu u

qu u u n i
Int i Int

iT
⎡ ⎤

δ − ⋅ δ⎢ ⎥
⎣ ⎦

q n

   .  (AII.41) 

 
Let us average Eq. (AII.41) 

 
i i i i i i

i i i i i i i
i i

X SX X X
t T

η∂ ρ η ρ
+ ∇ ⋅ ρ η ≥ −∇ ⋅ + +

∂
qu H

T
     , (AII.42) 

 
where ηHi is the mean rate of interfacial entropy between phases 

 

( ) i
i i i Int i i In

i
H

T
η ⎡ ⎤

= ρ η − − ⋅ δ⎢ ⎥
⎣ ⎦

qu u n t

0

     , (AII.43) 

 
which complies with the entropic jump condition between all phases in the system [Lhuillier 

1996]—i.e.,  (it may be possible to have some entropy production at the interface). 
n

i
i 1

Hη

=

≥∑
 

Let us take the classical Favre decompositions of mean and fluctuating part in Eq. (AII.42) and use 

all the averaging rules of Appendix 1 in the following: 

 

( ) ( )

( )

i i i i i
i i i i i i i i i i

i i

i i i i
i i i i i i i i i

i i

turi i
i ii i i i i i i i

X SX X X
t T

ˆ Sˆ ˆ H
t T T

ˆ ˆ ˆ H
t

η

η

η

∂ ρ η
′′ ′′+ ∇ ⋅ ρ η + η + ≥ −∇ ⋅ + ρ +

∂

⇔

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ρ η ⎢ ⎥′′ ′′+ ∇ ⋅ ρ η ≥ −∇ ⋅ ε + ρ η + ρ +⎜ ⎟ ⎜ ⎟∂ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦
⇔
∂ρ η

+ ∇ ⋅ ρ η ≥ −∇ ⋅ ε + + ρ Σ +
∂

qu u

qu u

u Φ Φ

H
T

      , (AII.44) 
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where the flux of entropy has two sources, one Favre-phasic averaged ( i
i

iT
⎛ ⎞

= ⎜
⎝ ⎠

⎟
qΦ ) and one from 

turbulence ( tur
i i i′′ ′′= ρ ηΦ ui ), whereas the entropy source is defined by a Favre mass-weighted-averaged 

relationship: i
i

i

S
T

⎛ ⎞
Σ = ⎜

⎝ ⎠
⎟ . Eq. (AII.44) may also be expressed as 

 

( )turi
i i i i i i

dˆ ˆ H
dt

ηη
ρ ≥ −∇ ⋅ ε + + ρ Σ +Φ Φ i      . (AII.45) 
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Appendix 3: Favre Filtered Navier-Stokes Equations 

1. LES Phasic Continuity 

From Eq. (AII.3) in Appendix 2, we know 

 

 
i i

i i i i

X
X R

t

∂ ρ
+ ∇ ⋅ ρ =

∂
u      ,  (AIII.1) 

 
where Ri is the mass production or destruction rate of the ith phase (source or sink) and must be 

specified in a specific context (see §2.3), 

 

 ( )i i Int i i IntR = ρ − ⋅ δu u n      , (AIII.2) 

 

and Ri must follow the jump condition between all n phases: 
n

i
i 1

R 0
=

=∑ . 

Using the filtering definitions of §2.6 and §2.7, Eq. (AIII.1) becomes 

 

 
i

i i i

ˆ
ˆ R

t

∂ρ
+ ∇ ⋅ ρ =

∂
u      . (AIII.3) 

 

2. LES Species Continuity 

From Eq. (AII.8) in Appendix 2, 

 

 
i j i

i i j i j i i j i j i , j

X y
X y X y X C

t

∂ ρ
+ ∇ ⋅ ρ = −∇ ⋅ ϖ ρ ∇ + Γ +

∂
u      , (AIII.4) 

 
where yj is the species mass fraction; ϖj is the molecular diffusion coefficient of species j in the 

whole mixture; Γj is the mass source or sink rate because chemical or physical processes between 

species; and Ci,j is the mean interfacial species mass transfer rate and has two contributions: one from 

the mass transfer between phases [Ri in Eq. (AIII.2)] and one describing the “diffusion” of the interface 

belonging to species j within the mixture 
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 ( )i , j j i Int i i Int j i j i IntC y y⎡= ρ − ⋅ δ − ϖ ρ ∇ ⋅ δ⎢⎣
u u n n ⎤

⎥⎦

0

1

     . (AIII.5) 

 
Ci,j must comply with the mean jump condition at the interfaces between species of a given phase 

and all other phases: 

 

      . (AIII.6) 
n m

i , j
i 1 j 1

C
= =

=∑∑
 

Of course, global conservation upon all m species of phase i imposes that . Using the 

averaging-filtering definitions of §2.6, Eq. (AIII.4) becomes 

m

j
j 1

y
=

=∑

 

( ) ( )i j i
i i j j i i j i i j i j i , j

i j
i i j i i i j i i i j i i i j i

j i j i j i , j

i j
i j i i j

X y
X y y X y X C

t

ˆ y
X y X y X y X y

t
ˆ y C

ˆ y
ˆ ˆy y

t

∂ ρ
′′ ′′+ ∇ ⋅ ρ + + = −∇ ⋅ ϖ ρ ∇ + Γ +

∂

⇔

∂ρ
′′ ′′ ′′ ′′+ ∇ ⋅ ρ + ∇ ⋅ ρ + ∇ ⋅ ρ + ∇ ⋅ ρ

∂

= −∇ ⋅ ϖ ρ ∇ + ε Γ +

⇔

∂ρ
′+ ∇ ⋅ρ + ∇ ⋅ρ

∂

u u

u u u u

u i i j i i j i

j i j i j i , j

ˆ ˆy y

ˆ y C

′ ′′ ′′ ′′+ ∇ ⋅ρ + ∇ ⋅ρ

= −∇ ⋅ ϖ ρ ∇ + ε Γ +

u u u

     . (AIII.7) 

 
Let us decompose the first convective momentum flux term with the following LES “trick”: 

 

i j i i j i i j i i j iˆ ˆ ˆ ˆy y y∇ ⋅ρ = ∇ ⋅ρ + ∇ ⋅ρ − ∇ ⋅ρu u u y u      . (AIII.8) 

 
And rewriting Eq. (AIII.7) with Eq. (AIII.8), we have 
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i j
i j i i j i i j i i j i i j i i j i

j i j i j i , j

i j
i j i i j i j i , j

i j i

ˆ y
ˆ ˆ ˆ ˆ ˆ ˆy y y y y y

t
ˆ y C

ˆ y
ˆ ˆy y C

t

ˆ y

∂ρ
′′ ′′ ′′ ′′+ ∇ ⋅ρ + ∇ ⋅ρ − ∇ ⋅ρ + ∇ ⋅ρ + ∇ ⋅ρ + ∇ ⋅ρ

∂

= −∇ ⋅ ϖ ρ ∇ + ε Γ +

⇔

∂ρ
+ ∇ ⋅ρ = −∇ ⋅ ϖρ ∇ + ε Γ +

∂

− ∇ ⋅ρ − ∇

u u u u u u

u

u( ) ( ) ( )

( )

i j i i j i i j i i j

i j SG
i j i i j j i j i , j

ˆ ˆ ˆ ˆy y y y

ˆ y
ˆ ˆy C

t

⎡ ⎤
i′′ ′′ ′′⋅ ρ + ∇ ⋅ρ + ∇ ⋅ρ + ∇ ⋅ρ⎢ ⎥⎣ ⎦

⇔

∂ρ
+ ∇ ⋅ρ = −∇ ⋅ρ + + ε Γ +

∂

u u u u

u y y

′′

)

(AIII.9) 

 

where the species mass fraction fluxes has two contributions—one from the resolved large-scale 

flux (i.e., yj) and one from the “subgrid” (i.e., SGyj)— 

 

 ( ) ( ) (
j j j

SG
j j i j i j i j i j i

L C R
j j j

y

y y y y y

= ϖ ∇

⎡ ⎤′′ ′′ ′′ ′′= − + + +⎢ ⎥⎣ ⎦

= + +

y

y u u u u

y y y

u      , (AIII.10) 

 
where between brackets, it can be recognized three contributions from the Leonard terms (Lyj), the 

Cross-terms (Cyj), and the Reynolds (Ryj). Obviously, once a filter is specified, it is easy to calculate the 

Leonard-term, while the Cross-term and Reynolds-term need to be modeled. Let us note that, strictly 

speaking, Lyj is not from the subgrid as it entirely made of known and filtered large-scale quantities. 

 

3. LES Momentum 

From Eq. (AII.16) in Appendix 2, we have 

 

 
i i i

i i i i i i i i i i

X
X X X

t

∂ ρ
+ ∇ ⋅ ρ = −∇ ⋅ + ρ +

∂

u
u u T G M      , (AIII.11) 

 
where Ti is the stress tensor; Gi represents the body force contribution (e.g., gravity); and Mi is the 

interfacial momentum transfer rate between phases, which is defined as 
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 ( )i i i Int i i i Int
⎡ ⎤= ρ − − ⋅ δ⎢ ⎥⎣ ⎦

M u u u T n      , (AIII.12) 

 

complying with the jump condition between phases—
n

i
i 1

0
=

=∑M  (all surface tension forces are 

assumed to be negligible). 

 

Using the filtering definitions of §2.6 and §2.7, Eq. (AIII.11) becomes 
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∂
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∂

u
u u T G M

u
u u u u T G M

u
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u
u u

X

X

i i i i i i ii i i i iˆ ˆ ˆ2 ′′ ′′ ′′+ ∇ ⋅ ρ + ∇ ⋅ ρ = −∇ ⋅ ε + ρ +T G Mu u u u

 (AIII.13) 

 
Let us decompose the first convective momentum flux term with the following LES “trick”: 

 
      . (AIII.14) i i i i i i i i i i i iˆ ˆ ˆ ˆ∇ ⋅ρ = ∇ ⋅ρ + ∇ ⋅ρ − ∇ ⋅ρu u u u u u u u

 
And rewriting Eq. (AIII.13) with Eq. (AIII.14), we have 
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i i
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⇔

∂ρ
+ ∇ ⋅ ρ = −∇ ⋅ ε + + ρ +

∂

u
u u u u u u u u u u

T G M

u
u u T T G M

′ ′′

     , (AIII.15) 

 
where SGTi is the “subgrid” stress tensor 
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i i i i i i i i i i i i i i i i

L C
i i

R
i

′′ ′′ ′′⎡ ⎤ ⎡⎡ ⎤= ρ − ρ + ρ + ρ + ρ⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣

= + +

T u u u u u u u u u u

T T

′′ ⎤
⎥
⎦

T

     . (AIII.16) 

 
These three tensors are known as the Leonard stress (LTi), Cross-term stress (CTi), and the subgrid 

Reynolds stress (RTi). The Leonard stress terms are made only of filtered (hence known) components 

and do not need to be modeled. Sensus stricto, the Leonard stress term does not result from the subgrid. 

Although this decomposition is a natural result of the preceding demonstration, it is nevertheless rarely 

done, as it is difficult to model these three terms separately. And usually a Smagorinsky approach is 

used to model the whole term SGTi. in (implicitly) assuming that the only term that dominates is RTi 

(for instance, in assuming that filtering would give similar results to ensemble averaging, it then 

becomes that LTi+CTi≈0). See Appendix 5 for a discussion on iT . 

 

4. LES Energy 

From Eq. (AII.39) in Appendix 2, we have the conservation of the enthalpy of the ith phase in a 

system of n phases 

 

( )i i i hi
i i i i i i i i i i i i i i

X h dP
X h X : X X X S H

t d

∂ ρ
+ ∇ ⋅ ρ = − ∇ − ∇ ⋅ + + ρ +

∂
u τ u q

t
 ,  (AIII.17) 

 
where hHi is the rate of interfacial heat transfer between phases encompassing all contribution 

from mass flux exchange and heat flux exchange at the interfaces between phases. It is defined as 

 

 ( )h
i i i Int i i i IntH h⎡ ⎤= ρ − − ⋅ δ⎣ ⎦u u q n      , (AIII.18) 

 

complying with the jump condition between all phases in the system—i.e., 
n

h
i

i 1

H
=

0=∑ . In Eq. 

(AIII.17), the first RHS term represents the irreversible work done by the surface forces (viscous 

dissipation), τi is the viscous stress tensor, qi is the heat conduction flux vector (following a Fourier’s 

law), and Si represents any enthalpy sources. 

 

Using the filtering definitions of §2.6 and §2.7, Eq. (AIII.17) becomes 
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∂
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H

ˆ h u

 

  (AIII.19) 

 
Knowing that 

 
     , (AIII.20) i i i i i i i i i i i iˆ ˆ ˆh h h∇ ⋅ρ = ∇ ⋅ρ − ∇ ⋅ρ + ∇ ⋅ρu u u

 
Eq. (AIII.20) in Eq. (AIII.19) yields the following: 
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     , (AIII.21) 

 

where the viscous dissipation has a filtered and a “subgrid” contribution (see demonstration in 

Appendix 5): 

 

,i ii i
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= + +

τ

τ

τ u

τ u τ u τ u τ u τ u    . (AIII.22) 

 
And, in the same vein, the heat flux is 

 

 

i i i

SG
i i i i i i i i i i i i i i i i

L C
i i

k T

h h h h h
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R
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′′
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= + +

q

q u u u u

q q

u

q

     , (AIII.23) 
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where ki is the molecular (not affected by turbulence) thermal conductivity coefficient of phase i. 

In both Eq. (AIII.22) and Eq. (AIII.23), we can recognize a contribution from the Leonard-term, the 

Cross-terms, and the Reynolds-terms. Unlike the Leonard-terms, the Cross-terms and the Reynolds-

terms are strictly speaking from the subgrid and therefore must be modeled. 

As for the RANS case, Eq. (AIII.21) and Eq. (AIII.22) are particularly complicated because they 

involve two new unknowns in this system: the Favre phasic-weighted filtered and fluctuating parts of 

the velocity ( i  and ′u iu i) instead of the Favre mass-weighted components [ i  and ′′u u  as in Eq. 

(AIII.15) and Eq. (AIII.16)]. Therefore, SGWτ,i is very often neglected or seen as negligible relative to 

the heat conduction, the convective transport of heat, and heat transfer between phase. For a detailed 

discussion on  and SGWτ,i and possible approximations, see Appendix 5. ,iWτ

 

5. LES Entropy 

From Eq. (AII.42) in Appendix 2, the entropy balance inequality of the ith phase in a system of n 

phases is 

 
i i i i i i

i i i i i i i
i i

X SX X X
t T

η∂ ρ η ρ
+ ∇ ⋅ ρ η ≥ −∇ ⋅ + +

∂
qu H

T
    , (AIII.24) 

 

where ηi is the entropy; i

iT
q  is the entropy flux (qi is the heat conduction flux vector and Ti is the 

temperature); i i

i

S
T

ρ  is any source of entropy (Si represents some heat sources), and ηHi is the mean rate 

of interfacial entropy between phases, 

 

( ) i
i i i Int i i In

i
H

T
η ⎡ ⎤

= ρ η − − ⋅ δ⎢ ⎥
⎣ ⎦

qu u n t

0

     , (AIII.25) 

 
where uInt is the bulk velocity of all interfaces and ui is the bulk velocity of phase i. ηHi complies 

with the jump condition between all phases in the system—i.e., . Using the filtering 

definitions of §2.6 and §2.7, Eq. (AIII.24) becomes 

n

i
i 1

Hη

=

≥∑
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 (AIII.26) 

 
where the flux of entropy has two sources, one from the known filtered part ( iΦ ) and one from the 

subgrid ( ): SG
iΦ
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     , (AIII.27) 

 
while the entropy source is simply defined by a filtered Favre mass-weighted-relationship: 

i
i

i

S
T

⎛ ⎞
Σ = ⎜

⎝ ⎠
⎟ . In Eq. (AIII.27) we can recognize in the entropy flux a contribution from the Leonard-, 

Cross-, and Reynolds-terms. 

 

Eq. (AIII.26) may also be expressed as 

 

( )i SG
i i i i i i

d
ˆ ˆ H

dt
ηη

ρ ≥ −∇ ⋅ ε + + ρ Σ +Φ Φ i      .  (AIII.28) 
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Appendix 4: RANS and LES Interfacial Closures 
When averaging or filtering the Navier-Stokes equations from a single phase towards a multiphase 

system, different supplementary terms arise describing mass, momentum, and energy transfers at the 

interface between the phases. Those terms are highly important because they couple all the phases, and, 

in the energy equations, if they are disregarded, the second law of thermodynamics may not be 

fulfilled. 

The mean interfacial terms between phases are 

Rate of interfacial phasic mass transfer ( )i i Int i i IntR = ρ − ⋅ δu u n  

Rate of interfacial species mass transfer ( )i , j j i Int i j i j i IntC y y⎡ ⎤= ρ − − ϖ ρ ∇ ⋅ δ⎢ ⎥⎣ ⎦
u u n  

Rate of interfacial momentum transfer ( )i i i Int i i i Int
⎡ ⎤= ρ − − ⋅ δ⎢ ⎥⎣ ⎦

M u u u T n  

Rate of interfacial internal energy transfer ( )I
i i i Int i i i IntH I⎡ ⎤= ρ − − ⋅ δ⎣ ⎦u u q n  

Rate of interfacial enthalpy transfer ( )h
i i i Int i i i IntH h⎡ ⎤= ρ − − ⋅ δ⎣ ⎦u u q n  

Rate of interfacial entropy transfer ( ) i
i i i Int i i In

i
H

T
η ⎡ ⎤

= ρ η − − ⋅ δ⎢ ⎥
⎣ ⎦

qu u n t  

 

where uInt is the velocity of all the interfaces between all phases making up the multiphase system 

and ui is the bulk velocity of phase i. The jump condition imposes on any interfacial term between all n 

phases and between all m species that 
n n n n

I h
i i i i

i 1 i 1 i 1 i 1

R M H H 0
= = = =

= = =∑ ∑ ∑ ∑
n m

i,j
i 1 j 1

C 0
= =

= , =∑∑

0

, and 

. In other words, in a system of two phases (e.g., gas and solid) with no mass transfer 

between species and phase, we must have 

n

i
i 1

Hη

=

≥∑

 

g s

I I
g s

h h
g s

H H

H H

= −

= −

= −

M M

     . (AIV.1) 
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Usually, Ri does not pose any major problems but must carefully be set in a specific situation 

(condensation, sublimation, magmatic “fragmentation,” so forth). Most of the time, Ci,j is taken as 

simply equal to  (the contribution of the “diffusion” of the species interface is assumed to be 

unimportant, see Syamlal et al. [1993] and Veynante and Poinsot [1997]). 

j iy R�∼

 

The momentum transfer, Mi, has two parts; one comes from the mass transfer between phases, 

which, for instance, between the ith phase and all other phases, can be easily modeled as 

 

( )i i Int i i Int Int iRρ − ⋅ δ ≈u u u n u      , (AIV.2) 

 
where Intu  is the bulk averaged/filtered velocity of all the interfaces in the system. 

 

In a flow where all the phases are all well mixed 35, the bulk interfacial velocity can be approached 

with either a center-of-mass velocity [Saurel and Abgrall 1999] or a center-of-volume velocity 

[Delhaye and Boure 1982] as follows: 

 
n

i i i
i 1

Int n

i i
i 1

n

Int i i
i 1

a.

b.

=

=

=

ε ρ

≈

ε ρ

≈ ε

∑

∑

∑

u
u

u u

     . (AIV.3) 

 
If, in addition to the previous assumption, there is an instantaneous microscopic velocity 

equilibration between the interface and the phase itself, we may also assume that Int i≈u u , so that Eq. 

(AIV.2) becomes Int i i iR ≈u u R . This second assumption, although more drastic, is certainly the most 

common and by far the most practical in engineering literatures [e.g., Lee and Lyczkowski 2000] and 

in code developments (e.g., MFIX codes, version of 2004). A variation of this approach is to 

systematically make the bulk interfacial velocity equal to the velocity of the least compressible phase 

[Baer and Nunziato 1986]—i.e., in a dusty cloud, this would be Int i s iR R≈u u . 

                                                 
35 In a strongly stratified and separate flow, it may be possible that some phases may never been in contact with each other; 
if so, it may necessary instead to track each velocity interface separately (uInt,i) instead of an unique bulk interfacial velocity 
(uInt). These stratified multiphase flows are not the objective of this manuscript. 
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The second contribution in Mi, i i Int− ⋅ δT n , represents the phase interaction force induced by 

the local perturbation (at the interface) of the fluid flow from the particle influence. This interfacial 

force is clearly related to the drag. Following Drew and Passman [1999], let us rewrite the total stress 

Ti in Mi as 

 
i i Int i i

i i i i

X

P X X

− ⋅ δ = ⋅∇

= ∇ + ⋅∇

T n T

τ
    , (AIV.4) 

 
where Pi and τi are the total (bulk) pressure and shear stress contributions of phase i. Among these 

normal and shear stresses, there are specific stress contributions of the interface between phase i and 

all the other phases 

 

( )

( )

i i i

Int , i
i

i i i

Int , i
i

P X
P

A

X

A

⎧ ∇ ⋅⎪
=⎪

⎪
⎨
⎪ ∇ ⋅
⎪ =⎪
⎩

n

τ n
τ

     , (AIV.5) 

 
where Ai can be interpreted as the volumetric concentration of interfacial area between phase i and 

all other phases [see §2.3, Eq. (4)]. PInt,i and τInt,i are the interfacial pressure and the interfacial shear 

stress between phase i and all the other phases. Before developing any further, we must recall that the 

angular brackets have two different meanings: ensemble averaging within the RANS framework and 

filtering within the LES framework; hence, 

 

RANS framework LES framework 

Int , i Int , i

Int , i Int , i

P P=

=τ τ
 

Int , i Int , i

Int , i Int , i

P P≠

≠τ τ
 

 

Because we aim to produce similar multiphase Navier-Stokes within RANS and LES frameworks, 

we must proceed with some care and in a different manner than what is usually achieved in the 

common literature [e.g., Drew and Passman 1999; van Wachem et al., 2001]. 
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In the total stress acting on a given phase [Eq. (AIV.4)], there must be a contribution of the stress 

at the interface and the total stress minus the interfacial stress: 

 

( ) ( )

( ) ( )

( ) ( )

i i i i i i

Int , i i Int , i i Int , i i Int , i i

Int , i i i Int , i i Int , i i i Int , i i

Int , i i Int , i i i Int , i i Int , i i

drag
Int , i i Int , i i ii

In

X P X X

P P P X X

P X P P X X X

P X X P P X

P X X X

P

⋅ ∇ = + ∇ + ⋅ ∇

= + + − ∇ + + − ⋅ ∇

= + ∇ + − ∇ + ⋅ ∇ + − ⋅ ∇

= + ∇ + ⋅ ∇ + − + − ⋅ ∇

= + ∇ + ⋅ ∇ + ⋅ ∇

= +

⎡ ⎤
⎣ ⎦

T τ
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τ T

drag
t , i i Int , i i iX X∇ + ⋅ ∇ +τ M

     , (AIV.6) 

 
where Ti

drag is the stress tensor specifically associated to the drag between the phases where (Pi-

PInt,i) is named the “form drag” and (τi-τInt,i) the “skin drag” by Ishii [1975]. Usually, the whole term, 

Mi
drag in Eq. (AIV.6), is written as a sum of all forces associated with drag force, added mass force, lift 

(transverse) force, Basset (history) force, … [Viollet et al., 1992; Enwald et al., 1996; Simonin 1996; 

Drew and Passman 1999]. With appropriate integration (ensemble average or filtering), Eq. (AIV.6) 

can be rewritten as 

 
drag

i i Int , i i Int , i i iX P⋅∇ = + ∇ε + ⋅∇ε +T τ M      . (AIV.7) 

 

If we assume that the particles are much heavier than the carrier phase (ρs>>ρg), Mi
drag can be 

written as the drag force’s only contribution [Simonin 1996]. 

As examples in a two-phase flow (other forms are also possible), 

Within the RANS framework only, in a two-phase flow system with a gaseous carrier phase, the 

drag between the gas and the dispersed granular phases can be expressed as 

 
drag drag
g s

s g drift

K= − ≈ ∆

∆ = − −

M M

U u u u

U
     , (AIV.8) 
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where ∆U is the mean relative velocity between the gas phase and the solid phase minus the drift 

velocity (udrift). In Eq. (AIV.8), we have neglected the influence of the drag function (K and Cd) 

fluctuation along particle trajectories [Viollet et al., 1992]. 

 

Drag for dilute suspension (εg > 0.8) Drag for concentrated suspension (εg ≤ 0.8) 
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u u

     , (AIV.9)  

where Cd and Res are the mean drag coefficient and the mean particle Reynolds number [Peirano 

et al., 2001]; ds is the grain diameter; and µg is the molecular viscosity of the carrier phase. The drift 

velocity accounts for the dispersion effect from the particle transport by the fluid turbulence; hence, it 

represents the correlation between turbulence in the gas phase and the spatial distribution of the 

particles. If we assume an homogenous isotropic turbulence of the gas phase, 

 
int

gs 12
drift g s

g s

t k 1 1
3

⎛ ⎞
⎜ ⎟= ∇ε −
⎜ ⎟ε ε⎝ ⎠

u ∇ε      , (AIV.10) 

 

where inttgs and k12 are respectively the fluid-particle turbulent characteristic time and the trace of 

the covariance tensor between the turbulent velocity fluctuations of the two phases: 
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k

where,

k1t

β

=

−
+

′′ ′′= ⋅

=
β ε

u u

u u
     , (AIV.11) 

 
where turntg is the eddy turnover time; k1 and ε1 are the turbulent kinetic energy of the gas phase 

and its dissipation rate respectively. Cβ and β1 are constants that may depend on the directions within 

the flow (stream-wise or span-wise) [Fevrier and Simonin 2000]. 

 

In the previous equations, the quantity, s g−u u , represents the local instantaneous relative 

velocity between particles with velocity (us) and the surrounding carrier fluid velocity (ug) undisturbed 

by the presence of the particles at that particle position but possibly “influenced” by turbulence 

[Enwald and Almstedt 1999]: 

 

( ) ( )2

s g i 1 2 122 k k k− ≈ ∆ + + +u u U      , (AIV.12) 

 
where k2 is the turbulent kinetic energy of the solid phase that is related to the granular 

temperature, Θ, by 2 s s
1 3k
2 2

′′ ′′= ⋅ =u u Θ . 

 

Within the LES two-interpenetrated fluids framework, interfacial closures are much less well 

known. Naturally, the interfacial transfer closures must be expressed in terms of the resolved (filtered 

and known) quantities. However, one would assume that there would be some contributions from the 

unresolved subgrid scales, which are unknown both theoretically and experimentally. Therefore, a 

simpler approach must be taken in which all subgrid contributions to the interfacial terms are assumed 

to be negligible [we have in a way taken a similar approach in Eq. (AIV.8)]. 
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If we assume that the particles are much heavier than the carrier phase (ρs>>ρg), Mi
drag in Eq. 

(AIV.6) can be simply written as a drag-force-only contribution [Simonin 1996]. In a two-phase flow 

system with a gaseous carrier phase, the drag between the gas and the solid dispersed phase is 

 
drag drag
g s

s g

K= − ≈ ∆

∆ = −

M M

U u u

U
     , (AIV.13) 

 

where K is a resolved (filtered) drag function given by 
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     ,  (AIV.14) 

 
where ds is the grain diameter; µg is the molecular viscosity of the carrier phase; and Cd and Res 

are the drag coefficient and the particle Reynolds number. 

 

Finally, the internal energy/enthalpy flux exchange at the interface, - i i Int⋅ δq n , can be similarly 

modeled with the following: 

 

( )

( )

i i Int i i

Int i Int i

Int i i Int i

X

X

X X

− ⋅ δ = + ⋅∇

= + + − ⋅∇

= + ⋅∇ + − ⋅∇

q n q

q q q

q q q

     . (AIV.15) 
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For the same reasons as the momentum interfacial terms, in a well-coupled phasic flow, we may 

neglected the interfacial heat transfer (unless there is a strong interface between phases as in separated 

and stratified flows): 

 

( )i i i Int iX X⋅∇ ≈ − ⋅∇q q q      . (AIV.16) 

In other words, the interfacial heat transfer can be simply expressed as the heat transfer between 

phases at the interface between them. Hence, as an example, within the RANS and LES frameworks, in 

a two-phase flow system with a gaseous carrier phase, Eq. (AIV.16) can be expressed as 

 

( ) ( )

( ) ( )

( )

h
i i i i i, Int i i i s g

s g
2
s

7 71 12 210 3 10 3
g g s g g s

pg g

g

10 6 2
g g g

H h R X h R Q T T

where,
6 k

Q Nu
d

7Nu 7 10 5 1 Re Pr 1.33 2.4 1.2 Re Pr
10

C
Pr

k

k 418.3925 10 60054 1846 T 2 10 T  [J/s.m.K]− −

≈ + − ⋅∇ ≈ + −

ε
≈

⎛ ⎞
≈ − ε + ε + + − ε + ε⎜ ⎟

⎝ ⎠
µ

≈

≈ × + + ×

q q

     , (AIV.17) 

 
where the mean Re number would be calculated by Eq. (AIV.9) within the RANS framework and 

by Eq. (AIV.14) within the LES framework. As in the interfacial momentum transfer, we have 

neglected any contributions from fluid characteristic fluctuation along particle trajectories or any 

subgrid contribution to the filtered resolved Q, Nu, and Pr quantities. 
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Appendix 5: RANS and LES Stress and Work 
 
In the energy equations, the work of the surfaces forces, i i iX :− ∇T u , and, in the momentum 

equations, the acceleration from the surface forces, i iX− ∇ ⋅ T , are problematic in the RANS and LES 

frameworks of this manuscript. The problem is that these terms require the knowledge of two averaged 

or two filtered velocities (i.e.,  or u u ). Ideally, one would not want to have within the same 

mathematical model a variable (u or P) from a Favre phasic-weighted decomposition (i.e., , Pu ) and, 

at the same time, from a Favre mass-weighted decomposition (i.e., ). Indeed, let us recall that, for 

a fully compressible flow in both LES and RANS, 

, Pu

 
P P 0 RANS

P P P
P P 0 LES

idem, 0

⎧ − ≠⎪′′ = − = ⎨
− ≠⎪⎩

′′ = − ≠u u u

     . (AV.1) 

 
In the following, and in this entire manuscript, we assume that the shear viscosity (µ) and bulk 

viscosity (bµ) act as constants with regard to the LES and RANS integration (filtering or ensemble 

averaging)36: 

 

b b b

µ ≈ µ ≈ µ

µ ≈ µ ≈ µ
 (AV.2) 

 
Now, let us examine the acceleration resulting from the viscous forces and the work of the 

surfaces forces: 

 

( )
i i i i i i

T
i i i i i i i i i

i i i i i i i i i

i i i i i i i i i

X X P X

X P X X

X : X P X :

X P X X

− ∇ ⋅ = − ∇ − ∇ ⋅

= − ∇ − µ ∇ + ∇ − λ ∇ ⋅

− ∇ = − ∇ ⋅ − ∇

= − ∇ ⋅ − ∇ ⋅ ⋅ + ⋅ ∇ ⋅

T τ

u u u I

T u u τ u

u τ u u τ

     , (AV.3) 

 

                                                 
36 This is a “universal” and reasonable assumption, which also applies to the specific heats (Cp or Cv), the species diffusion 
coefficients (vj), and the thermal conductivity coefficients (ki). 
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where µi and λi are the shear and the second coefficients of viscosity (see Appendix 8). 

 

We must decompose Pi and τi into a fluctuating and an averaged part (RANS) or into a subgrid and 

a filtered part (LES). It would make sense to use the Favre mass-weighted decomposition of velocities 

( ), because  is solved in the momentum equations in both the RANS and LES 

frameworks. However, in Eq. (AV.3), the operator 〈 〉 represents a Favre phasic-weighted averaging/ 

filtering (e.g., 

i i i′′= +u u u iu

i i ′= +u u ui ; see §2.7). Therefore, one way or another, we have supplementary 

unknowns depending on how we expand Eq. (AV.3), i′′u  or iu , which would require further 

assumptions and equations to solve these supplementary unknowns (possible within the RANS realm, 

but, within the monophase- and multiphase-LES, no solution has ever been proposed). The task may be 

considerably simplified in assuming [Gatski 1997] the following: 

 

( )T
i i i i i i i i i i i i i

i i i i i i i i i i i i

i i i i i i i i i

X P

X : : P :

P b

⎡ ⎤ ⎡ ⎤− ∇ ⋅ = −∇ε ≈ −∇ε − ∇ ⋅ ε µ ∇ + ∇ − ∇ ⋅ ε λ ∇ ⋅⎣ ⎦⎢ ⎥⎣ ⎦

− ∇ = −ε ∇ ≈ −ε ∇ ⋅ − ε ∇

≈ −ε ∇ ⋅ − ε ∇ ⋅ ⋅ + ε ⋅∇ ⋅

T T u u u I

T u T u u τ u

u τ u u τ

a.

.

 (AV.4) 

 

These kinds of approximations are common in atmospherical science within both LES and RANS. 

However, the justification is not exactly the same: 

 

—Within the RANS realm, this assumption can be justified if i i≈u u . In other words, 

i i

i i i i i

i i i

i i i i i

i i i

i
i

X ( , t ) ( , t ) ( , t ) X ( , t ) ( , t )

X ( , t ) ( , t ) X ( , t )

X ( , t ) ( , t ) ( , t ) X ( , t ) ( , t )

d
( , t ) constant w.r.t. 

dt

≈

ρ
≈

ρ

ρ
≈

ε ρ ε

ε
⇒ ρ ≈

u u

x x u x x u x

x x x

x x u x x u x

x

     . (AV.5) 
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This means that such an assumption would hold if and only if the microscopic density of a given 

phase acts as a constant or as a constant with respect to the phasic volumetric concentration variations. 

Because we aim to model buoyant dusty plumes and clouds, this assumption seems reasonable. Indeed, 

it has been shown [Dartevelle 2003; Dartevelle et al., 2004] that volumetric variations within the ash 

plume can be fairly large (several orders of magnitude), which would indicate that the variations of gρ  

(because temperature and/or pressure changes) are unimportant with respect to ε variations. 

 

In developing Eq. (AV.4)b, we have also assumed that the contribution from the work of 

“turbulent surface forces” (i.e., dissipation of turbulent kinetic energy) is negligible with respect to 

WT,i. For instance, 

 

( ) ( ) ( ) ( ) ( ) ( )

i i i i i i

i i i i i i i i i

ii i i i i i i i i i i i i

i i i i i i i i i i i i

i i i i i i i i i i i i

X : :

P

P P

P P P P

: : : :

− ∇ = −ε ∇

= −ε ∇ ⋅ − ε ∇ ⋅ ⋅ + ε ⋅ ∇ ⋅

′ ′ ′ ′ ′= −ε + ∇ ⋅ + − ε ∇ ⋅ + ⋅ + + ε + ∇ ⋅ +

′ ′ ′ ′= −ε ∇ ⋅ − ε ∇ ⋅ − ε ∇ ⋅ − ε ∇ ⋅

′ ′ ′ ′−ε ∇ − ε ∇ − ε ∇ − ε ∇

T u T u

u τ u u τ

u u τ τ u u u u τ τ

u u u u

τ u τ u τ u τ u

i
′

 (AV.6) 

 

This equation can be further simplified if we assume that the fluctuating velocity is divergenceless; 

if  [Besnard et al., 1992], Eq. (AV.6) becomes i 0′∇ ⋅ ≈u

 

i i i i i i

i i i i i i i i i

X : :

P :

− ∇ = −ε ∇

:′ ′≈ −ε ∇ ⋅ − ε ∇ − ε ∇

T u T u

u τ u τ u
     . (AV.7) 

 

Eq. (AV.7) is discussed in great detail by Besnard et al. [1992]. It can be noted that for simplifying 

Eq. (AV.7) into Eq. (AV.4)b, we must not only consider that i i≈u u  but also that the dissipation 

process of turbulent viscous forces ( i i i:′ ′−ε ∇τ u ) is negligible for the macroscopic heat generation (or 

at least is negligible with regard to the other form of heat generations: convection, pressure work, heat 

conduction, heat generation from mass transfers, and so forth). 
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—Of course, within the LES framework, the development of i i iX :− ∇T u  is more complicated 

because of the presence of the Leonard- and Cross-terms, which do not vanish during the filtering 

process: 

 

( ) ( ) ( ) ( ) ( ) ( )

i i i i i i

i i i i i i i i i

i i i i i i i i i i i i i i i

i i i i i i i i i i i i

i ii i i i

X : :

P

P P

P P P P

: :

− ∇ = −ε ∇

= −ε ∇ ⋅ − ε ∇ ⋅ ⋅ + ε ⋅ ∇ ⋅

′ ′′ ′′ ′′ ′′= −ε + ∇ ⋅ + − ε ∇ ⋅ + ⋅ + + ε + ∇ ⋅ +

′′ ′ ′ ′′= −ε ∇ ⋅ − ε ∇ ⋅ − ε ∇ ⋅ − ε ∇ ⋅

−ε ∇ − ε ∇

T u T u

u τ u u τ

u u τ τ u u u u τ τ

u u u u

τ u τ

′′

i i i i i i i: :′′ ′′ ′′ ′′− ε ∇ − ε ∇u τ u τ u

 (AV.8) 

 

where a phasic-weighted decomposition has been used for the pressure and a mass-weighted 

decomposition for the velocity vector (and therefore for the tensor τ)37. Using the traditional LES 

“trick,” 

 

i i i i i i i i

ii i ii i ii i ii i

P P P P

: : :

∇ ⋅ = ∇⋅ + ∇ ⋅ − ∇ ⋅

∇ = ∇ + ∇ − ∇

u u u

τ u τ u τ u τ u:

u
     . (AV.9) 

 

Eq. (AV.9) into Eq. (AV.8) yields the following: 

 

( )SG
i i i i i i i , i , iX : : W W− ∇ = −ε ∇ ≈ ε +T TT u T u      , (AV.10) 

 

with 

 

                                                 
37 The reason is obvious because filtering does not delete the Cross-terms and a filter variable is not constant with repect to 

the filtering integral: i iP P≠ , i ≠u ui and i i i i i i i iP P : :′ ′ ′′∇ ⋅ ≠ ∇ ⋅ ≠ ∇ ≠ ∇ ≠u u τ u τ u 0 . Hence, the Favre phasic-weighted 
decomposition is neither useful nor advisable. 
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{ }

L
, i

C
, i

, i i i ii i

SG
,i i i i i ii i ii i

W

i i i i i i ii

W

W P :

W P P : :

P P : :′′ ′

= − ∇ ⋅ + ∇

⎧
⎪
⎪⎡ ⎤= − ∇ ⋅ − ∇ ⋅ + ∇ − ∇⎨⎢ ⎥⎣ ⎦⎪
⎪⎩

⎡ ⎤′′ ′+ ∇ ⋅ + ∇ ⋅ + ∇ + ∇⎢ ⎥⎣ ⎦

T

T

T

T

u τ u

u u τ u τ u

u u τ u τ u ′

R
, i

i i i ii

W

P :′ ′′

⎫
⎪

⎡ ⎤ ⎪′′ ′′+ ∇ ⋅ + ∇ ⎬⎢ ⎥⎣ ⎦ ⎪
⎪⎭T

u τ u
 (AV.11) 

 

where the subscripts ‘L’, ‘C’, and ‘R’ pertain to Leonard-, Cross-, and Reynolds-terms, the 

resolved (filtered) and the Leonard-terms are made of known quantities. It is interesting to note that so 

far we have made no simplification at all for the resolved pressure work and viscous dissipation. 

However, within the subgrid, the Leonard-, Cross-, and Reynolds-terms of the irreversible and 

reversible works of the surface forces are universally ignored, “hoping” that subgrid dissipation 

processes are unimportant and/or that once a variable has been filtered it will remain roughly constant 

within the subgrid (it can be seen then that the Leonard- and Cross-terms must go to zero). 
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Appendix 6: Method of Characteristics Applied to Single-Phase Flow 
In order to highlight the results demonstrated in §5, we apply the same Method of Characteristics 

(MOC) to a “traditional” compressible single-phase flow. 

 

The 1-D Euler equations for constant flow area within a pipe [Lyczkowski et al., 1982] taken from 

Bird et al. [1960] are 

 

uu 0
t x t

u u Pu G F
t x x

h h P P qu u
t x t x x

∂ρ ∂ρ ∂
+ + ρ =

∂ ∂ ∂
⎛ ⎞∂ ∂ ∂

ρ + + = ρ −⎜ ⎟∂ ∂ ∂⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂

ρ + − + = − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
uF

     , (AVI.1) 

 

where G is body forces; F is a wall friction force per unit of volume along the x-direction; and, 

hence, uF represents dissipation along the wall. The equivalent 1-D Navier-Stokes (viscous) equations 

would read 

 

uu 0
t x t

u u Pu G
t x x x

h h P P qu u
t x t x x

∂ρ ∂ρ ∂
+ + ρ =

∂ ∂ ∂
⎛ ⎞∂ ∂ ∂ ∂τ

ρ + + + = ρ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂

ρ + − + = − − τ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

u
x

     , (AVI.2) 

 

where F and uF have been replace by a more comprehensive viscous model. In the momentum 

equation, F becomes the shear viscous force effects (
x

∂τ
−

∂
), and, in the energy equation, uF becomes 

the work of these viscous forces ( u
x

∂
−τ

∂
). The viscous forces per unit of volume are defined as 

follows: 

 

u
x

∂
τ = −µ

∂
     , (AVI.3) 
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where µ is some form of shear viscosity, possibly due to turbulence. Let us use the following EOS: 

h = h(P,ρ); we therefore note that 

 

P

h hdh dP d
P

h dP h dρ

∂ ∂
= +

∂ ∂ρ
= +

ρ

ρ
     , (AVI.4) 

 

where hρ and hP are the enthalpy at constant density and pressure respectively. Let us transform the 

enthalpy equations in the Euler set, Eq. (AVI.1), with w=uF or in the Navier-Stokes set, Eq. (AVI.2), 

with uw
x

∂
= −τ

∂
: 

 

( )

( ) ( )

( )

P

P

P

P

h h P P qu u w
t x t x x

dP d dP qh h w
dt dt dt x

dP d qh 1 h w
dt dt x

q whP P xu u
t x t xh 1 h 1

q whP P u xu
t x x1 h h

ρ

ρ

ρ ρ

ρ ρ

⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂
ρ + − + = − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
⇔

⎛ ⎞ρ ∂
ρ + − = − +⎜ ⎟ ∂⎝ ⎠
⇔

ρ ∂
ρ − + ρ = − +

∂
⇔

∂
− +⎛ ⎞ ρ ⎛ ⎞∂ ∂ ∂ρ ∂ρ ∂+ + + =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ρ − ρ −⎝ ⎠ ⎝ ⎠

⇔
∂

− +⎛ ⎞ ρ∂ ∂ ∂ ∂+ + ρ =⎜ ⎟∂ ∂ ∂− ρ ρ −⎝ ⎠ ( )1

     , (AVI.5) 

 

Before getting any further, we must understand the meaning of 
( )

Ph
1 hρ

ρ

− ρ
. We note that this ratio 

has the units of the square of a velocity or of specific energy [m2/s2]. From standard thermodynamics, it 

is known that 
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P P P

1dh h dP h d Td dPρ ρ
η

≡ + ρ = η +
ρ

     , (AVI.6) 

where h is the specific enthalpy [m2/s2]; η is the specific entropy [m2/K s2]; hρ is h
P

∂
∂

 [m3/kg]; and 

hP is h∂
∂ρ

 [m5/kg s2]. Then, 

 

( )

( ) ( )

P

P

P

1h dP h d Td dP

h d Td 1 h dP

h TdP d
d d1 h 1 h

ρ

ρ

ρ ρ

+ ρ = η +
ρ

⇔

ρ ρ = ρ η + − ρ

⇒
ρ ρ η

= +
ρ ρ− ρ − ρ

    . (AVI.7) 

 

As shown by Lyczkowski et al. [1982] in the isoentropic case (dη=0), we must have 

 

( )
2PhP C

1 hρη

ρ∂
= =

∂ρ − ρ
     , (AVI.8) 

 

where C would be a constant material speed of sound. Of course, because of either the frictional 

dissipation along the wall (Euler set) or the viscous dissipation within the flow (Navier-Stokes set), the 

entropy and C cannot be constant (e.g., for an ideal gas, C would increase with the temperature). 

Nevertheless, the ratio, 
( )

Ph
1 hρ

ρ

− ρ
, is guaranteed to be nonzero and positive. To ease the following 

mathematical reading, let us label this ratio as C2. 

 

Therefore, the equations of continuity, momentum and energy, and shear stress for the Navier-

Stokes model [Eq. (AVI.3)] lead to the following dependent variable vectors and characteristic 

analysis: 
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U = (u, P, ρ)T U = (u, P, ρ, τ)T 

t

0 0 1
A 0

0 1 0

⎛ ⎞
⎜ ⎟= ρ⎜ ⎟
⎜ ⎟
⎝ ⎠

0  t

0 0 1 0
0 0 0

A
0 1 0 0
0 0 0 0

⎛ ⎞
⎜ ⎟ρ⎜ ⎟= ⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 

x
2

0 u
A u 1

C u 0

⎛ ⎞ρ
⎜ ⎟

= ρ⎜ ⎟
⎜ ⎟⎜ ⎟ρ⎝ ⎠

0  x 2

0 u 0
u 1 0 1

A
C u 0 0

0 0 0

⎛ ⎞ρ
⎜ ⎟ρ⎜ ⎟= ⎜ ⎟ρ⎜ ⎟
⎜ ⎟−µ⎝ ⎠

 

( ) ( )

x t

2 2

Det A A 0

u u C

− λ =

⇔

⎡ ⎤ 0ρ − λ − λ − =⎢ ⎥⎣ ⎦

 

( )

x t

2

Det A A 0

u 0

− λ =

⇔

− λ µ =

 

 
Characteristics: Characteristics: 

 

{ }u, u Cλ → ±  

 

{ }u, uλ →  

 

All eigenvalues along the characteristic curves are real as required for well-posedness. 

Interestingly enough, the full viscous Navier-Stokes model has a characteristic less than the Euler 

model—it does not have the speed of sound in its characteristic values. Indeed, in a way, the viscous 

phenomenon “damped out” instabilities propagation within the flow and explains why weak-

instabilities “just” travel with the flow velocity. 

These results, although obvious from the previous demonstration, seem not have been 

demonstrated before in the common literature. 
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Euler set Navier-Stokes set 



Appendix 7: Operators, Tensors, and Invariants 
Operators 

   deviatoric part (traceless) of a symmetric tensor 
°   spherical part (trace) of a symmetric tensor 
⋅�    mean (RANS) or filtered (LES) part of a variable obtained by  

   Favre mass-weighted decomposition 
⋅    mean (RANS) or filtered (LES) part of a variable obtained by  

   Favre phasic-weighted decomposition 
⋅�    obtained from or after a filtering process (LES framework) 

:   scalar product of two tensors 
⋅   scalar product of two vectors 
║ ║   Euclidian norm of a tensor 
〈 〉   ensemble-average (RANS) or filtering (LES) operator 
tr   trace operation of tensors 
T   transposed operation of matrices 
∇  1/m gradient operator 
∇⋅  1/m divergence operator 

d

dt t

∂
= + ⋅ ∇

∂
u  1/s material (Lagrangian) time-derivative 

 
Tensors, invariants, and work terms 
Rate-of-strain tensor: 

(AVII.1) T1=-
2

⎡∇ + ∇⎣D u u ⎤
⎦  1/s 

Deviator of the rate-of-strain: 

(AVII.2) 1= +
3

∇⋅D D u I  1/s 

First invariant of the rate-of-strain tensor: 

(AVII.3)  1/s 
3

D ii
i 1

I tr( ) D
=

= = = −∇∑D ⋅u

13 23

Second invariant of the rate-of-strain tensor: 

(AVII.4)  1/s2 
3 3

2 2 2 2 2 2
D ij ji 11 22 33 12

i 1 j 1
II tr( ) D D D D D 2D 2D 2D+ +

= =
= ⋅ = = + + +∑∑D D

Second invariant of the deviator of the stress tensor: 

(AVII.5) 
( ) ( ) ( )2 2 2

11 22 22 33 33 11 2 2 2
dT 12 13 23

T T T T T T
II T T T

6
− + − + −

= + + +  Pa2 (kg2/m2 s4) 

Second invariant of the deviator of the rate-of-strain tensor: 

(AVII.6) 
( ) ( ) ( )2 2 2

11 22 22 33 33 11 2 2 2
dD 12 13 23

D D D D D D
II D D D

6
− + − + −

= + + +

I

DI

 1/s2 

Total stress tensor: 

(AVII.7)  Pa (kg/m s2) bP P 2= + = + µ − µ ∇ ⋅T I τ I D u
Viscous dissipation (irreversible work): 

(AVII.8)  J/m3 s (kg/m s3) ( )( ) 2
DW : 2 µ II= − ∇ = − ∇⋅ ⋅ − ⋅∇ ⋅ = + λτ τ u τ u u τ

Work of all surface forces: 
(AVII.9) ( ) ( ) DW : P : : P P I= − ∇ = − ∇ + ∇ = − ∇ ⋅ − ∇ ⋅ ⋅ + ⋅∇ ⋅ = +T τT u I u τ u u τ u u τ W  J/m3 s (kg/m s3) 
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Appendix 8: Notations, Units, Constants, and Acronyms 
 

Latin 
Ai  1/m (m2/m3) “volumetric concentration” of interfacial area of phase i 
Cd  dimensionless drag coefficient 
C  m/s isoentropic speed of sound 
Ci,j  kg/m3 s rate of interfacial mass transfer between species j and all other  
   species within phase i 
Cp  J/kg K(m2/s2 K) specific heat at constant pressure 
Cv  J/kg K (m2/s2 K) specific heat at constant volume 
d  m particle diameter 
D  1/s rate-of-strain tensor 
E  J/kg (m2/s2) total energy per unit of mass (internal + kinetic energy) 
EΘ  m2/s2 volume averaged granular fluctuating energy 
G  m/s2 body force 
G  1/m s LES space- and time-filter (kernel) function in ℜ4 
Gx  1/m LES space-filter (kernel) function in ℜ3 
Gt  1/s LES time-filter (kernel) function in ℜ 
g (0,0,-9.80665) m/s2 gravity vector 
fHi  J/s m3 (kg/m s3) rate of interfacial Helmholtz free energy between phase i  
   and all other phases 
IHi  J/s m3 (kg/m s3) rate of interfacial internal energy between phase i and all other phases 
hHi  J/s m3 (kg/m s3) rate of interfacial enthalpy between phase i and all other phases 
ηHi  J/K s m3 (kg/K m s3) rate of interfacial entropy between phase i and all other phases 
h  J/kg (m2/s2) enthalpy per unit of mass 
I  J/kg (m2/s2) internal energy per unit of mass 
I  dimensionless unit tensor 
k  W/m K (kg m/K s3) thermal conductibility coefficient 
K  kg/m3 s gas-solid momentum transfer (drag) function 
kλ  1/m wave number scale of the largest unresolved turbulent eddies 
m  kg mass of grain 
Ma 28.9644 kg/kmol molar weight of dry air 
Mj  kg/kmol molar weight of any gas species 
Mi  Pa/m (kg/m2 s2) rate of interfacial momentum transfer between phase i  
   and all other phases 
Mw 18.0152 kg/kmol molar weight of water 
n  1/m3 number of grains per unit of volume 
Nu  dimensionless Nusselt number 
P  Pa (kg/m s2) pressure 
Ps′   Pa (kg/m s2) granular pressure (usually understood as a kinetic and collisional  
    within RANS) 
molPr  dimensionless “molecular” (not induced by turbulence) Prandtl number 
turPr 0.95 dimensionless turbulent Prandtl number 
q  kg/s3 thermal-heat flux or granular-heat flux vector 
r  m position vector 
Q  W/m3 K (kg/s3 K) gas-solid heat transfer function 
R 8314.56 J/kmol K (kg m2/s2 kmol K) universal gas constant 
R   J/kg K (m2/s2 K) mixture gas constant 
Re  dimensionless particle Reynolds number 
Ri  kg/m3 s rate of interfacial mass transfer between phase i and all other phases 
R  Pa m3/kg (m2/s2) specific Reynolds stress tensor (RANS or LES framework) 
S  J/kg s (m2/s3) rate of heat/energy supplementary source 
t  s time 
T  K temperature 
T  Pa (kg/m s2) total stress tensor 
u  m/s velocity vector 
uInt  m/s bulk velocity vector of all the interfaces 
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Ux  m/s mean mixture horizontal/radial-speed of all phases 
Vy  m/s mean mixture vertical-speed of all phases 
WT  J/m3 s (kg/m s3) total work done by all the surface forces 
Wτ  J/m3 s (kg/m s3) irreversible work done by the surface forces (viscous dissipation) 
Xi 1 or 0 dimensionless function of presence of the ith phase 
y  dimensionless species mass fractions 
 
 
 
Greek 
∆  m 3-D geometric mean of the computational grid-size 
∆
I

  m filter cutoff length 
∆xk  m computational grid-size width in the kth direction 
ε  dimensionless phasic volumetric concentration 
maxεs 0.64 dimensionless maximum solid volumetric concentration 
εE  m2/s3 turbulent energy cascade rate 
Φ  kg/K s3 entropy flux 
γ (6) dimensionless constant in the Gaussian spatial-filter 
Γ  k/s m3 source/sink of a given species 
ι  s or m generic symbol for the time- or a space-variable 

b 2
3

λ = µ − µ  Pa s (kg/m s) second coefficient of viscosity 

µ  Pa s (kg/m s) shear viscosity 
µb  Pa s (kg/m s) bulk viscosity 
η  J/kg K (m2/s2 K) entropy per unit of mass 
Θ  J/kg (m2/s2) granular temperature 
ρ  kg/m3 microscopic weight density 
ρ̂   kg/m3 macroscopic weight density 
ρm  kg/m3 mean mixture weight density between all phases 
Σ  J/kg s K (m2/K s3) entropy source 
τ  Pa (kg/m s2) viscous stress tensor 
τ  s characteristic LES filter time interval 
ϖj  m2/s diffusion coefficient of species j in the whole mixture 
ξ  m characteristic LES filter width 
ξk  m characteristic LES filter width in the kth direction 
Ω   computational domain/subdomain 
∂Ω   domain/subdomain boundary 
 
 
 
Subscripts-Superscripts 
 
´ fluctuating (RANS) or unresolved (LES) part of a variable obtained  
 by Favre phasic-weighted decomposition 
´´ fluctuating (RANS) or unresolved (LES) part of a variable obtained  
 by Favre mass-weighted decomposition 
a dry air 
b bulk viscosity 
c collisional 
C Cross-terms 
g gas phase 
Int denotes an interface or all the interfaces 
Int,i denotes the interface between phase i and all the other phases 
K kinetic 
L Leonard-terms 
m mixture 
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mol “molecular” (i.e., not induced by turbulence) 
R Reynolds terms 
s solid phase 
t relative to time 
tur induced by turbulence 
kth some X-, Y-, Z-directions 
x X-direction (radial or horizontal) or relative to space 
y Y-direction (vertical) 
w water vapor (steam) 
 
 
 
Acronyms 
 
CFDlib computational fluid dynamic library code 
CV control volume 
EOS equation of state 
(G)MFIX geophysical multiphase flow with interphase exchange 
IMF implicit multifield 
LANL Los Alamos National Laboratory 
LES large eddy simulation 
LHS left-hand side 
MFIX multiphase flow with interphase exchange 
MOC method of characteristics 
NETL National Energy Technology Laboratory 
ODE ordinary differential equation 
ORNL Oak Ridge National Laboratory 
PDE partial differential equation 
RANS Reynolds Averaged Navier-Stokes 
RHS right-hand side 
SG subgrid 
SGH subgrid heat (flux) 
SGS subgrid stress (flux) 
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