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Abstract

In this note are described the global DC closed orbit correction experiments
conducted on the X-ray ring at National Synchrotron Light Source (NSLS). The beam
response matrix, defined as beam motion at BPM locations per unit kick by corrector
magnets, was measured and then inverted using the technique of singular value
decomposition (SVD). The product of the inverted matrix and the difference orbit gives the

incremental kick strengths necessary to correct the orbit. As a result, the r.m.s. orbit error
around the ring was reduced from 208 pm to 61 pm.
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1. Introduction

The third generation synchrotron light sources, such as the APS, are characterized
by low emittance of the charged particle beams and high brightness of the photon beams
" radiated from insertion devices. Transverse stability of the particle beams is a crucial
element in achieving these goals and the APS will implement extensive beam position
feedback systems, which include 320 corrector magnets, 360 positron beam position
monitors distributed around the storage ring, miniature BPMs for insertion device beam
lines, and photon beam position monitors at the end of the X-ray beam lines.

The beam position feedback systems can largely be divided into the global and Iocal
feedback systems according to the extent of correction, and the DC and AC feedback
systems according to the bandwidth of correction. DC correl:tion of the beam positions, as
the name implies, is a slow process with sub-Hz bandwidth and is typically done with an
integral control algorithm with unity gain for full correction and less-than-unity gain for
partial correction. In contrast, AC correction is a fast process with wide bandwidth
(typically 10 — 100 Hz), and the APS will employ the proportional, integral, and derivative
(PID) control algorithm to ensure stability with minimal noise infiltration.1:2

In this note, we will present the results of global DC beam position feedback
experiments conducted on the X-ray ring of the National Synchrotron Light Source
(NSLS). Integral control with full correction was used, and the technique of singular value
decomposition (SVD) was used to invert the response matrix. The product of the inverted
matrix and the difference orbit gives the incremental kick strengths necessary to correct the
orbit.

The rest of this note will consist of description of the theory of SVD for application
to global beam position correction in Section 2 and the measurement results in Section 3.
Summary will be given in Section 4.

2. Theory

Global correction of the closed orbit is done with a set of corrector magnets
distributed around the ring and a set of beam position monitors (BPMs). Let M be the
number of BPMs and let N be the number of correctors. Changes in the corrector strengths
A bring about changes in the closed orbit Ax, and we assume that they are linearly related
through the response matrix Rjj by




Axj = i RijABj. (for 1<i<M) 2.1)
1

Axj is the beam motion at the i-th BPM and A is the increment in the angular kick by the j-
th corrector. The response matrix Rjj can be written in terms of the betatron functions B
and  at the locations of the BPMs and correctors as

NBifej_ o (l\yi—\ycjl—nv), (2.2)

i~ 2 sin nv
where Bj and y; (Bcj and Y¢j) are the betatron amplitude and phase functions of the i-th
BPM (j-th corrector). v is the tune.

The response matrix Rjj in Eq. (2.1) can be diréctly measured by changing the
strength of the j-th magnet by a small amount and then £11easuring the resulting beam
motion at all BPMs and repeating the same procedure for all correctors. Global correction
of the closed orbit is then equivalent to inverting this process. Writing Eq. (2.1) in matrix
form, we have

Ax = R-A0. (2.3)

The inverse matrix of R, which we call Ry, uniquely exists such that

R-Rinv =RpvR =1 2.4

if M =N and if the matrix is not singular. 1 is the identity matrix.

Even if M # N or if the matrix is singular, an inverse of the matrix can still be
obtained, though with some restrictions, using the technique of singular value
decomposition (SVD).3-5 Any M x N matrix R can be written ast

R =U-W-VT, (2.5)

where U is an M X M unitary matrix (UT-U = U-UT = 1), W is an M x N diagonal matrix
with positive or zero elements, and V is an N x N unitary matrix (VT.V = V.VT = 1),
The representation given in Eq. (2.5) is unique only to a certain extent, and there are other
ways of decomposing the matrix R.7:8

Since both U and V are unitary, they represent orthonormal transformations from
one frame to another. The V matrix rotates the N-dimensional orthogonal coordinate
system, with each axis corresponding to a corrector magnet, to another N-dimensional




orthogonal coordinate system and generates a new set of N transformed correctors (or t-
correctors). The U matrix operates similarly on an M-dimensional BPM space and
generates a new set of M transformed BPMs (or t-BPMs). Let us define Axt and A6t as

Axt=UT.Ax and A6t=VT.AQ, (2.6)

where "t" denotes "transformed”. Then from Egs. (2.3), (2.5), and (2.6), we have

Axt =W-A@t, 2.7)

Comparing Eqs. (2.3) and (2.7), we see that SVD diagonalized the matrix R into
W. We can write the matrix W, with the indices i and j in the ranges 1 <i<M and 1 <j<
N, as ‘

_{ widij ~ (MsSN) 2.8

wj Oij, M=2N)

where Sij is the Kronecker delta. The diagonal elements 'wi's (or wj's), or the eigenvalues,
are non-negative, and the number of them are equal to the lesser of M and N. Associated
with the eigenvalues are the mutually orthogonal eigenvectors {vj11<j< N} spanning the
space of the t-correctors. Similarly, we have {ujl 1 <i<M]}, aset of mutually orthogonal
unit vectors spanning the t-BPM space. These eigenvectors are related by

R-vi=wjuj, 1<i<min (M, N). 2.9

Thus, the eigenvalues represent the coupling efficiency between the t-correctors and t-
BPM:s.

Since the W matrix has dimension M x N, some of the columns are all zeroes when
M < N and some of the rows are all zeroes when M > N. Let us first consider the case
when M < N. We can see immediately that there are at least (N — M) t-correctors which
have no corresponding non-zero eigenvalues and contribute nothing as far as orbit
correction is concerned. Therefore, these t-correctors can be set to any arbitrary values, but
for the purpose of minimizing the norm of the vector A8, they are set to zero. Simiarly, if
M > N, then we have at least (M — N) t-BPMs which cannot be changed since they have no
coupling to the correctors. This imposes a limitation on how much the closed orbit can be
corrected with a given number of correctors. The finite capacity of the power supplies is
another limiting factor and will be discussed later.




One great advantage of SVD is that we can know in advance whether a given matrix
is singular or not before trying to invert the matrix and remove the singularities if so
desired. From Eq. (2.5), we write the inverse of the matrix R as

Rinv = V-Winy-UT, (2.10)

where the N X M matrix Wipy is constructed by inverting the eigenvalues and then taking
the transpose of the matrix. If M < N, W-Wipy is equal to the the M x M identity matrix,
but Winy-W has only M unity elements in the diagonal axis and all others are equal to zero.

If any of the eigenvalues is equal to zero, that is, if the matrix R is singular, these
singularities can be removed simply by putting

1 -
;V_j- -0 . 2.11)
rather than a large number in the inverse matrix Wigy. This technique can be extended to
the cases when the matrix is nearly singular, that is, when some of the eigenvalues satisfy

Wj < € Wmax (2.12)

where the singularity criterion € is a preset small number and represents the desired
accuracy of feedback. wmax is the greatest of the eigenvalues. We now write Wipy, with
the indices i and jin theranges 1<i<Nand 1 <j<M, as

qj 6ij, M<N)

Wi s 2.13
e {Qi 8j,  (M=2=N) @13

where
0 N w j < EeEw max
i = 2.14
% —17, otherwise ( )
Wj

and similarly for q;. For a given matrix R, let us define e (R) of the matrix R as

em(R) = max {&| wj > € wmax for all wj # 0}. (2.15)

That is, €n, is the largest possible value for € in order to retain all non-zero eigenvalues.
Now that removal of singularities has become trivial, we will assume for simplicity that R
is not singular in the following discussion unless noted otherwise. When & is equal to 0,




all the non-zero eigenvalues are kept, and we will have the most accurate feedback.
However, this comes at the cost of more robust power supplies for the corrector magnets.
In the other extreme case, when € is equal to 1, Rjpy is identically zero, and there is no
feedback.

Now, from the above consideration, the pseudo-inverse of R defined in Eq. (2.10)
satisfies

R-RinvR =R (e<gp) and RjpyR-Ripy=Rjpy (for all g). (2.16)

In addition, with € < gy,

RinR=1if M2N and R-Rypy=1ifM<N. (e<ep) (2.17)

By removing the eigenvalues satisfying Eq. (2.12) with € > gy, the inverse matrix Ry
will be less accurate than it would otherwise be, but the vector norm of the solution can be
significantly smaller. This is very desirable when certain limitations exist on the magnitude
of the vector components. In our application, the solition vector is the change in the
corrector strengths, which cannot be arbitrarily large because of the finite capacity of the
power supplies.

Given the current orbit x;, measured by the BPMs and the desired reference orbit
Xr, let Axq be the difference orbit given by

AXd =Xr—Xnm. (2.18)

We want to calculate back A8y, the required changes in corrector strengths to bring the orbit
to the desired reference orbit, which satisfies

R-AQ4 = Axg. (2.19)

We may categorize this linear equation according to the relative sizes of M and N as
follows:

M > N — overdetermined, no exact solutions
M = N - uniquely determined, a unique solution (2.20)
M < N - underdetermined, many solutions

Now, the inverse matrix Riny obtained in Eq. (2.10) using SVD gives a solution as

AB4 = Rjpy-Axg. (2.21)




In case M > N, this solution does not satisfy Eq. (2.19) exactly but minimizes the
difference IR-AOd - Axdl. Consider

M
. Z+1 IAxé,ilzJ"z. 2.22)

i=C

|R-A04 — Axg| = | W-40§ - Ax{] =[

due to Egs. (2.5) and (2.6). C is the number of coupled t-BPMs (or t-correctors). The
index i between C + 1 and M corresponds to decoupled t-BPMs, for which the initial
difference Ax(ti,i cannot be changed. The coupled t-BPMs will change to the reference
values; therefore, Eq. (2.22) is the minimum difference and this is the best we can get.

On the other hand, when M < N, there are many (actually an infinite number of)
solutions, and SVD picks the solution that minimizes |A6d| by setting the decoupled t-

correctors to zero. That is,

C
oo -l -5, |k} ez

is the absolute minimum among all solutions, with Aeé,j =0forC+1<j<N. These
decoupled t-correctors do not affect orbit correction at all. So, Eq. (2.23) is the best we
can get, since the overall changes in corrector strengths will be the smallest possible.

Once Afq as given by Eq. (2.21) is applied, the closed orbit will move to a new
orbit given by '

Xm = Xp + R-A6q. (2.249)

When ¢ is larger than ey, this new orbit will not necessarily be equal to the reference orbit
Xr, since R-Ripv is not necessarily equal to 1. However, as long as € is not changed,
which keeps Ripy the same, there cannot be any further correction of the closed orbit. The
new difference orbit Axg, from Egs. (2.21) and (2.22), is given by

Axq = xr — X = (1 — R-Rjpy)-Axq. (2.25)
The new corrector strength change A4 then vanishes, since
ABG = Rinv-Ax] = (Ripy — Rinv'R-Riny)-Axq =0 (2.26)

according to Eq. (2.16). In reality, due to the error in the measurement of the response
matrix R, changes in the machine condition, and external perturbations, there will remain
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some residue in the closed orbit error which still needs to be corrected. Elimination of this
residue in the orbit error will be done by fast AC closed loop feedback with appropriate
bandwidth, as is discussed in Refs. 1 and 2.

Let us then consider optimization of orbit correction by adjusting the corrector
strengths such that the total vector length is minimized. In Figs. 2.1(a) and 2.1(b), three
points representing the uncorrected orbit, the reference orbit, and the current orbit are
shown. Axj is the difference between the reference orbit and the uncorrected orbit. The
current orbit was established by applying corrector strength A@; to the uncorrected orbit,
which gives the current difference orbit as

Ax3 = Axy — R-A0;. (2.27)

Let Axj and Ax3 be the corresponding residual difference oibits after correction. Then we
have

Ax5 = (1 - R-Riny)-Ax3 = Ax} — (R — R-Rjny-R)-A0;. (2.28)

This shows that the residual difference orbit depends on the current orbit and is not unique
in general. Only when € < &y, we have Ax3 = Ax3, according to Eq. (2.16).

A similar result can be derived for the corrector strength. The incremental corrector
strength A@3 for correction of the current orbit is given by

A03 = Ripy-Ax3 = A8 — Rip-R-A0, (2.29)
Current Current
Orbit (®) Orbit (b)

AX; Reference

Reference
Ax,  Orbit

ncorrected
Orbit Orbit

Fig. 2.1: Optimization of orbit correction. For M < N, when ¢ is small enough such that
W-Winv =1, we have Ax3 = Ax3 and AB; = A0 + AO3.




which gives the overall change A03; as

A0G31 = AB3 + AB1 = AB3 + (1 — Rjp-R)-A0;. (2.30)

When M < N, A03; always has larger vector norm than A@,, since AB5 is already
optimized by SVD. When M 2 N, we can write Q = 1 — Rjp'R, where

(2.31)

1, i=jandeseWmax
Qij= .
0. otherwise

Therefore, only when € < &, we have A83; = A@», and the corrector strength is unique.
Generally, when € > &p, the corrector strength is not unique but we always have |A031] >
[A0,], since AB2-Q-A01 = AG%-Q-AO{ = 0. Besides this, when optimizing the corrector
strength, it also has to be considered that the magnet current should not exceed the limit for
individual correctors.

3. Simulation of NSLS X-ray Ring

In this section we will discuss simulation of DC global beam position feedback on
the NSLS X-ray ring using the model functions B and v, and in the next section we will
present the measurement results. In Table 3.1 are shown the model B and v functions in
the vertical direction at locations of BPMs (48) and corrector magnets (39). The nominal
vertical tune of the machine is vy = 6.2. From this table, we can construct the response
matrix R as given by Eq. (2.2) and calculate the inverse matrix Ripy by using SVD. The
result can be used to simulate beam position correction and estimate its efficiency in terms
of the residual orbit error and the required changes in the corrector strength.

For a particle of momentum p, the relation between the angular deflection A8 and
the magnet current change Al is obtained from

0.2998 BZ (T-m)

AB (rad) = Al (A) p(GeVid) T(A) - (3.1)
For the NSLS X-ray ring, p = 2.528 % and?
T-m
4.68 x 10-4 ——, V8 correctors
B¢ A
= (3.2)

6.67 x 10-4 T—:—l others
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Table 3.1: B and W functions (vertical) at the BPMs and correctors in the NSLS X-ray ring.
The nominal tune is: vy = 6.2. (* D: disabled, N: nonexistent)

BPM Bm)  y(ad)/ Comector B (m)  wy@ad)/ =~

Name 2% Name 2%
X1PUE1 1.553 0.1713 X1V3 12.3800 0.2345 D
X1PUE2 15.9830 0.2498 X1V5 26.4170 0.2559
X1PUE3 2.2850 0.3679 X1V8 3.4200 0.3343
X1PUE4 | 5.3150 0.4660 X1Vi4 26.4170 0.5191
X1PUES 15.9830 0.5252 X1Vie 12.3800 0.5405
X1PUE6 14.0690 0.5504 X2V3 12.3800 1.0095
X2PUE7 14.0690 0.9995 X2V5 26.4170 1.0309
X2PUES 15.9830 1.0248 X2V8 3.4200 1.1093
X2PUE9 2.2850 1.1429 X2Vi4 26.4170 1.2940
X2PUEI10 5.3150 1.2410 X2V16 12.3800 1.3155
X2PUEL11 15.9830 1.3002 X3V3 12.3800 1.7845
X2PUE12 14.0690 1.3254 X3V5 | 26.4170 1.8059
X3PUE13 14.0690 1.7745 X3V8 3.4200 1.8843
X3PUE14 15.9830 1.7998 X3Vi4 " 26.4170 2.0691
X3PUEI1S 2.2850 1.9179 X3V16 12.3800 2.0905
X3PUEL16 5.3150 2.0160 X4V3 12.3800 2.5595
X3PUEL17 15.9830 2.0752 X4V5 26.4170 2.5809
X3PUE18 14.0690 2.1004 X4V8 3.4200 2.6593
X4PUEI19 14.0690 2.5495 X4V14 - 26.4170 2.8440
X4PUE20 15.9830 2.5748 X4vV1e 12.3800 2.8655
X4PUE20 2.2850 2.6929 X4V17 7.3259 2.8853 N
X4PUE22 5.3150 2.7910 X5V3 12.3800 3.3345
X4PUE23 15.9830 2.8502 X5Vs 26.4170 3.3559
X4PUE24 14.0690 2.8754 X5V8 3.4200 3.4343
X5PUE25 14.0690 3.3245 X5Vi4 26.4170 3.6191
X5PUE26 15.9830 3.3498 X5Vie 12.3800 3.6405
X5PUE27 2.2850 3.4679 X5V17 7.3259 3.6603 N
X5PUE28 5.3150 3.5660 X6V3 12.3800 4.1095
X5PUE29 15.9830 3.6252 X6V5 26.4170 4.1309
X5PUE30 14.0690 3.6504 X6V8 3.4200 4.2093
X6PUE31 14.0690 4.0995 X6V14 26.4170 4.3941
X6PUE32 15.9830 4,.1248 X6V16 12.3800 4.4155
X6PUE33 2.2850 4.2429 X7V3 12.3800 4.8845
X6PUE34 5.3150 4.3410 X7V5 26.4170 4.9059
X6PUE35 15.9830 4.4002 X7V8 3.4200 4.9843
X6PUE36 14.0690 4.4254 X7V14 26.4170 5.1691
X7PUE37 14.0690 4.8745 X7V16 12.3800 5.1905
X7PUE38 15.9830 4.8998 X8V3 12.3800 5.6595
X7PUE39 2.2850 5.0179 X8V5 26.4170 5.6809
X7PUE40 5.3150 5.1160 X8V8 3.4200 5.7593
X7PUE41 15.9830 5.1752 X8V14 26.4170 5.9440
X7PUE42 14.0690 5.2004 X8V16 12.3800 5.9655
X8PUE43 14.0690 5.6495
X8PUE44 15.9830 5.6748
X8PUE45 2.2850 5.7929
X8PUE46 5.3150 5.8910
X8PUE47 15.9830 5.9502
X8PUE48 14.0690 5.9754
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Table 3.2: Simulation results of DC global beam position correction on the NSLS X-ray
ring. Riny was obtained for different values of € for comparison. £y = 0.00234. The
initial Axppg is 207.8 um.

3 Almin (A)  Almax (A)  Alms (A) ~ Axymg (Um)
0.001 -4.10 3.39 1.54 46.8
0.002 -4.10 3.39 1.54 46.8
0.003 -2.64 1.32 0.85 72.2
0.005 -1.27 0.74 0.46 85.2
0.01 . -1.15 0.27 0.33 91.6
0.02 -0.08 0.07 0.04 128.7
0.1 -0.08 0.07 0.04 128.7
0.2 -0.04 0.04 0.02 162.3
0.3 -0.01 0.01 0.01 183.1
1.0 0.00 0.00 -0.00 207.8

Therefore, we have from Egs. (3.1) and (3.2)

5.55 x 10-5 AI (A), V8 correctors
A9 (rad) = (3.3)
7.91 x 10-5 AI (A). others

The increment in the magnet current Al can then be obtained from Egs. (2.21) and (3.3) in
terms of the difference orbit Ax.

For simulation of beam position correction on the NSLS X-ray ring, a sample of
uncorrected orbit with r.m.s. orbit error of 208 pwm relative to the reference orbit "orbit44"
was taken as the initial state. The response matrix R was calculated from the betatron
functions listed in Table 3.1. For different values of €, the pseudo-inverse matrix Ripv
was then calculated, which gives changes in the magnet current and resulting reduction in
orbit error. The result is summarized in Table 3.2. For smaller €, the r.m.s. orbit error is
smaller, but the price is the larger changes in the corrector strengths.

4, Measurement Results

In this section, we will present the results of global vertical orbit correction
experiments on the X-ray ring of NSLS. All of the 48 BPMs and 39 correctors as listed in
Table 3.1 were used, except for the X1V3, X4V17, and X5V17 correctors.

The flowchart of the algorithm for DC global beam position feedback is shown in
Fig. 4.1. The first step is to measure the response matrix R. If it has already been done,

11
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lculate A, |g—-——
Measure Caleu d
R? Y
Yes Apply Kicks
Read R Measure R ¥
Y Measure Ax,

| Calculate R,,

Y ‘ No
Measure Ax,
g\) Yes

Fig. 4.1: Flowchart for DC global beam position feedback.

this step is skipped and the matrix is read from the disk. The pseudo-inverse matrix Ripy is
then calculated using € in Eq. (2.12) and stored in the memory. It is used to calculate the
necessary kick strengths for the corrector magnets after each measurement of the difference
orbit Ax4, until it is requested by the user to stop the process.

The response matrix was measured by changing the strength of the correctors one
by one and measuring the beam motion at all BPMs. From this raw response matrix, the
betatron functions  and y were derived for the BPMs and correctors,10 which again were
used to reconstruct the response matrix, thereby reducing the measurement error. For this
reconstructed matrix, € was 0.00182.

Figure 4.2(a) shows the horizontal (upper) and vertical (lower) closed orbits around
the ring after applying the harmonic correction to the uncorrected orbit with vertical r.m.s.
orbit error of 208 um. The horizontal orbit was not corrected. After harmonic correction,
the vertical r.m.s. orbit error was 138 pm. The SVD correction was applied to this orbit,
with € = 0.002, which further reduced the orbit error to 61 ym as shown in Fig. 4.2(b). A

12
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Fig. 4.2: Results of global orbit correction using (a) harmonic correction and (b) SVD
correction. The uncorrected orbit had 208 pm r.m.s. error relative to the reference orbit,

which was reduced to 138 pm by harmonic correction. SVD correction further reduced it
to 61 pm using € = 0.002.

13

A g . T — e pp—— y —ryr




few corrections were necessary before the r.m.s. error settled down to this value. This is
due to the difference in the machine conditions when the matrix was measured and when
the orbit correction was done. While the response matrix was measured with the X25
wiggler gap closed,!! the orbit correction was done with the gap open. This slight
difference, though minor, has resulted in a less than exact correction. This was confirmed
by later measurement of the response matrix with the wiggler gap open.

The corrector strength change ranged from -4.85 A to 2.27 A, with the r.m.s. value
of 1.41 A. Some of the corrector power supplies got close to, but did not reach, saturation
at the maximum current of 10 A. With e, = 0.00182, reducing € to 0.001 would trip off
some of the power supplies and was not tried.

5. Summary

In this note, we presented the theory and application of the singular value
decomposition (SVD) for DC global correction of the vertical closed orbit in the NSLS X-
ray ring. The method is, in principle, equivalent to inverSion of the matrix, and the matrix
in our case is the response matrix, which is the ratio of orbit motion per unit change in the
corrector strength. Using SVD, either the residual orbit error (M = N) or the r.m.s.
corrector strength change (M < N) is absolutely minimized. This means that given the
initial difference orbit, no other correction algorithm can further reduce these. This was
proven by introducing the concepts of t-BPMs and t-correctors, which are appropriate
linear combinations, or transforms, of the actual BPMs and correctors.

Considering the limitation on the corrector power supplies, the important parameter
is the singularity criterion € for SVD, which represents the degree of correction accuracy.
For the most accurate correction, € is set to less than €, but this will result in large
changes in the corrector strength. When this is unacceptably large due to the current limit
of the power supply, € must be increased to a value less than 1. When € is equal to 1,
there is no correction. Therefore, by adjusting €, orbit corrections can be optimized in
terms of the desired orbit error and the corrector strength limit.

As a result of the correction using SVD with € = 0.002, the r.m.s. orbit error in the
vertical plane was reduced to 61 pm from 138 pum due to harmonic correction. The
uncorrected orbit had 208 pm orbit error. The corrector current change ranged from -4.85
A to 2.27 A, with the rm.s. of 1.41 A.

The computer code used for this work is highly modularized so that it can be easily
applied to closed orbit correction in other storage rings with proper I/O interface to the
beam position monitors and corrector magnets. It also can be used for simulation and
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diagnosis of an orbit correction system if the response matrix, or alternatively the beta
function, phase, and tune, is known. Such analysis for the APS storage ring is now being
undertaken and will be published in the near future.
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