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Abstract

Ultrafast Dynamics of Electrons at Interfaces
by

Jason Douglas McNeill
Doctor of Philosophy in Chemistry

University of California at Berkeley

Professor Charles B. Harris, Chair

Electronic states of a thin layer of material on a surface possess unique physical and
chemical properties. Some of these properties arise from the reduced dimensionality
of the thin layer with respect to the bulk or the properties of the electric field where
two materials of differing dielectric constants meet at an interface. Other properties
are related to the nature of the surface chemical bond. Here, the properties of excess
electrons in thin layers of Xenon, Krypton, and alkali metals are investigated, and
the bound state energies and effective masses of the excess electrons are determined
using two-photon photoemission. For Xenon, the dependence of bound state energy,
effective mass, and lifetime on layer thickness from one to nine layers is examined.
Not all quantities were measured at each coverage.

The two photon photoemission spectra of thin layers of Xenon on a Ag(111)
substrate exhibit a number of sharp, well-defined peaks. The binding energy of
the excess electronic states of Xenop layers exhibited a pronounced dependence on
coverage. A discrete energy shift was observed for each additional atomic layer. At
low coverage, a series of states resembling a Rydberg series is observed. This series
is similar to the image state series observed on clean metal surfaces. Deviations
from image state energies can be described in terms of the dielectric constant of the
overlayer material and its effect on the image potential.

For thicker layers of Xe (beyond the first few atomic layers), the coverage de-

pendence of the features begins to resemble that of quantum well states. Quantum




well states are related to bulk band states. However, the finite thickness of the layer
restricts the perpendicular wavevector to a discrete set of values. Therefore, the
spectrum of quantum well states contains a series of peaks which correspond to the
various allowed values of the perpendicular wavevector. Analysis of the quantum well
spectrum yields electronic band structure information. In this case, the quantum well
states examined are derived from the Xenon conduction band. Measurements of the
energies as a function of coverage yield the dispersion along the axis perpendicular
to the surface while angle-resolved two-photon photoemission measurements yield
information about dispersion along the surface parallel.

The relative importance of the image potential and the overlayer band structure
also depends on the quantum number and energy of the state. Some members of
the image series may have an energy which is in an energy gap of the layer material,
therefore such states may tend to remain physically outside the layer and retain
much of their image character even at higher coverages. This is the case for the
n = 1 image state of the Xe/Ag(111) system. The energies of image states which
are excluded from the layer have a complex dependence on the thickness of the layer
and its dielectric constant.

The population decay kinetics of excited electronic states of the layer were also
determined. Lifetimes are reported for the first three excited states for 1-6 atomic
layers of Xe on Ag(111). As the image states evolve into quantum well states with
increasing coverage, the lifetimes undergo an oscillation which marks a change in the

spatial extent of the state. For example, the n = 2 quantum well state decreases

substantially at 3-5 layers as the electron probability density in the layer increases.

The lifetime data are modeled by extending the two-band nearly-free-electron ap-

proximation to account for the insulating Xe layer.
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Chapter 1
Introduction

The interactions of electrons with interfaces are of considerable importance in
many fields of study. The energy levels, dynamical processes, and trahsport prop-
erties of electrons at surfaces and interfaces have a direct influence on the surface
chemistry, electrochemistry, electronic device properties, and optical properties of
interfaces. The unique electronic properties of the surface are involved in the sur- .
face chemical bond. The breakihg of a surface chemical bond and the generation
of reactive species at the surface may in some cases involve electron transfer from
the substrate to the adsorbate. The field of surface science is largely concerned with
the interaction of electrons at surfaces and interfaces. Most of the tools of surface
spectroscopy, for example, electron energy loss, Auger emission, and photoemission,
involve the interactions of electrons with the surface. The scanning tunneling mi-
croscope and the atomic force microscope, which have increased our knowledge of
surfaces immensely in recent years, involve electronic interactions between the surface
and the probe tip.

The present work is concerned with electronic states which are present at a sur-
face or interface. Of primary interest is the class of states whose spatial extent is
largely coincident with that of the adsorbate layer, here referred to as the interfacial
quantum well states. The primary system of interest in the present work consists
of a metal substrate covered with a thin layer of electrically insulating material. In

addition, thin metal layers on a metal substrate have been investigated. The be-




havior of electrons at the metal/insulator interface have been investigated for films
ranging in thickness from one to several molecular layers. The chief aim has been
to develop a more complete picture of electronic structure at interfaces. A central
question which has emerged concerns the roles the molecular properties (through the
quantum mechanical energy levels of the isolated adsorbate molecule and molecular
polarizabilities), bulk electrical properties (energy bands, dielectric constants), and
surface or interface properties play in determining the electronic structure of the
composite interface. One strategy has been to build up a microscopic understand-
ing of electronic structure of an interface by comparing measurements of electronic
structure over a wide range of layer thicknesses. Presumably, effects which involve
electronic interactions between the substrate material and the first molecular layer
of adsorbate should be more prominent for very thin layers than for very thick lay-
ers. Similarly, bulk properties should be manifested as the layer thickness increases
beyond that of a single molecular layer.

Another question which emerged during the course of these investigations con-
cerns the spatial extent of interfacial electronic bands. Factors which are likely to
influence the spatial extent of the interface bands include the nature of the electronic
potential in the region near the junction between the two materials and the bulk and
molecular electronic properties of the two materials comprising the interface. Yet
another important question concerns the nature and associated time scales of the
relaxation processes of interfacial electronic bands. Many scientifically important
systems are in a metastable state in which physical interactions between parts of
the system result in a loss of energy to the surroundings. Information about the
dynamics of electrons at interfaces is of value because it offers a window into range
of processes through which an electron can transfer energy, change quantum number,
and change position. Given sufficient experimental evidence, a complete picture of
the various processes, intermediates, timescales, and likely sequences of events in-
volving electrons at interfaces can be obtained. The kind of experimental evidence
required to develop such a picture is time-resolved spectroscopic characterization of
the quantum-mechanical energy levels of electrons at interfaces. The characteristic

time scale of a given physical process is often roughly dependent on the size of the
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system. The slow dance of the planets is measured in days, years, and centuries. In
contrast, the characteristic time scale of electronic interactions in atoms and small
molecules is generally between a few femtoseconds and hundreds of picoseconds.

The experimental technique employed for these studies is time-resolved two-pho-
ton photoerhission. Time-resolved two-photon photoemission is a relatively new tech-
nique, and its application to the study of complex interfaces is even more recent. This
technique is uniquely suited to the study of the electronic structure of interfaces. The
advantages include good energy resolution (comparable or better than that of other
electron spectroscopies), ultrafast (femtosecond or 1 x 10713 s) time resolution, and
access to the energy window of primary importance to the chemical and electrical
properties of interfaces. In the language of solid state physics, the energy range
of two photon photoemission is the region containing the valence and conduction
bands, the region most important to the the electrical properties of materials. In
the language of chemistry, it is the energy region containing the HOMO (highest
occupied molecular orbital) and LUMO (lowest unoccupied molecular orbital), the
region generally associated with absorption in the ultraviolet and visible regions of
the electromagnetic spectrum, bond formation, bond cleavage and electron transfer.
The technique is also quite simple and elegant, conceptually.‘ A photon from a laser
pulse strikes a surface, imparting its energy to an electron, which is elevated to an
excited energy level of the interface. Some time later, a photon from a second laser
pulse strikes the surface, imparting enough energy to detach the electron from the
surface. The free electron then travels a fixed distance in vacuum before striking a
detector which records its energy and the direction of emission. The population of a
given electronic energy level at a given time can be determined by setting the time
delay between laser pulses.

The present work involved a combination of several experimental techniques and
the development of several theoretical models for excited interfacial states. The ex-
periments included standard surface preparation and characterization techniques of
surface science, ultrafast laser spectroscopy, and photoelectron spectroscopy. Sur-
faces and interfaces are by their nature fragile, difficult to prepare, and prone to con-

tamination. In addition, the data obtained by some of the experimental techniques




ris often difficult to analyze, somewhat ambiguous and prone to misinterpretation.
Every attempt was made to ensure that the substrate and overlayers were relatively
clean, well-ordered, and free of contamination in an ultra high vacuum environment.
Spectra were obtained in a thorough and systematic fashion. Multiple experimental
runs were used to verify the reproducibility of results. Significant efforts were made
to calibrate and verify the functioning of the TPPE spectrometer. Efforts were also
made to ensure that the model for excited interfacial states were derived from simple

models which have proven successful in similar systems.




Chapter 2

Background

2.1 History of Surface States

The study of the interaction of light with electrons at surfaces dates to the work
of a German experimenter, Philip Lenard, who studied the absorption of visible and
ultraviolet light by metals. He found that enough light energy is transferred to the
electrons in the metal so that some of them are ejected from the metal surface. He also
found that the energy of the ejected electrons did not increase with light intensity,
as predicted by classical theory. Rather, the energy of the electrons depended on
the wavelength of light while the current depended on the intensity. This work led
Einstein to develop his theory of the photoelectric effect, an important confirmation
of the quantum hypothesis [1,2].

A more detailed understanding of the electronic structure of metals was obtained
by the application of quantum mechanics to the electronic energy levels of solids.
In the theory of the electronic structure of metals as first developed it is assumed
that electrons move about freely in a constant potential throughout the interior of
the crystal. A better approximation is to consider the potential inside the crystal to
be periodic with the periodicity of the lattice. The principal effect of the periodic
potential is the presence of band gaps when the electron momentum is close to that

of a multiple of a reciprocal lattice vector, where it can be said that the electron is

Bragg-reflected by the periodic potential [3].




Early theories which included lattice periodicity assumed infinite periodic crys-
tals. An infinite crystal possesses an infinite number of states. For a finite crystal
containing N electrons the continuous bands are replaced by N discrete electronic
states often called quantum well states. Another important consequence of the finite
crystal is that the presence of the surface can give rise to additional energy levels
called surface states or surface bands. These surface states may reside in forbidden
energy gaps of the bulk and are localized in a region near the surface. These two fac-
tors differentiate surface states from bulk states or discretized bulk (quantum well)

states. Tamm [4] was the first to demonstrate the existence of surface states using the

Kronig-Penney potential to approximate the crystal. The crux of his approach was

the application of wave function matching conditions to join solutions in the crystal
and the vacuum. Maue [5] and Goodwin [6] applied the wave function matching
approach to the approximation of nearly-free electrons. Goodwin also developed a

description of surface states within the tight-binding approximation (TBA) [7].

2.1.1 The Image Potential State

In addition to the loss of periodicity at the surface, there is an abrupt change
in the electron density and the polarizability. The polarizability of the surface gives
rise to a potential well near the surface known as the image potential. The image
potential has long been recognized as a fundamentally important aspect of surface
electrostatics. As such, it is an important factor in the electronic energy levels of
adsorbed species, it affects the kinetic energy of photoemitted electrons, and it is the
dominant force in molecular physisorption?.

An electron in the vacuum near the surface is attracted to the polarization it
induces in the surface. This problem is often solved in elementary electrostatics by
the method of images [8,9], in which the electron at a distance z from a surface

interacts with a fictitious image charge of opposite sign located at —z. In the widely

In the literature it is often assumed that the dominant force involved in physisorption of non-
polar species is the interaction between the surface spill-out dipole and the polarizable adsorbate.
However, the surface dipole potential is short ranged and the exchange-correlation potential (which
can be described as a many-body description of the image potential) dominates.
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used jellium model for surface electronic structure, the image potential is described as
a many-body effect: The image potential is the real part of thé exchange-correlation
potential near a surface [10,11]. When the substrate has a band gap in the vicinity
of the vacuum level, the resulting potential well can support a Rydberg-like series
of states converging to the vacuum level (Figure 2.1). This class of surface state is
called the image state or image potential state.

Image states were first observed on the surface of liquid helium, where transitions
were detected by microwave absorption [12]. The first evidence for image potential
states on bare metals was obtained by inverse photoemission [13-15]. Giesen and
coworkers were the first to study this class of surface states by two-photon photoemis-
sion (TPPE), using nanosecond pulsed lasers [16]. This and subsequent two photon
photoemission work led to confirmation and refinement of the multiple reflection the-
ory for image state binding energies on different single-crystal metal faces [17-19].

In recent years, studies have extended into the more complex and interesting
systems where one or more molecular layers is adsorbed on a surface (see reviews
by Fauster [20] and Harris and coworkers [21]). The study of adsorbate layers is
substantially more challenging than the study of the clean surface. Experimentally,
these studies are complicated by the various classes of surface bonding and growth
modes for the adsorbed layers. The adsorption phase diagram can be quite compli-
cated, including commensurate and incommensurate phases, 2-D liquid and 2-D gas
phases, amorphous phases, coexisting phases, and structural phase transitions. It is
also difficult to determine the origin of a given spectral feature which may be at-
tributed to electrons in the substrate, the overlayer, the vacuum, or a combination of
all three regions (mixed states). Development of an accurate model is confounded by
many effects, including the complicated electrostatics of a heterostructure containing
regions of differing dielectric constant, the transfer of charge between the overlayer
and substrate, adsorbate-adsorbate interactions (polarization and orbital overlap),
bonding between overlayer and substrate, energy band mismatch, adsorption-induced
workfunction shifts, and the effects of crystal and layer steps and defects. Chemisorp-

tion and its complex and interesting relationship to surface and adsorbate electronic

structure is discussed in a paper by Lang and Williams [22] and in a review by Muscat
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Figure 2.1: An electron near a surface is bound by an image potential which the
electron induces by polarizing the material. Image states form a Rydberg series of
states that converge to the vacuum level. The surface-projected Ag(111) band gap
is shown here. Technically, the n = 2 and higher image states are resonances, since
they are degenerate with the conduction band.




and Newns [23].

Despite these complications, the spectroscopy of image states has been s.hown to
be an important tool in the study of interfaces. Steinmann, Fauster, and coworkers
used the fact that image state binding energies are pinned to the local work func-
tion [24] to observe the growth modes of Ag, Au and Co on Cu(111) and Pd(111) [25—
27] and have studied the evolution of metallic quantum wells for Au/Pd(111) [26].
These studies examine the formation of occupied valence band quantum well states

of one free-electron metal on another and were recently reviewed [20].

2.2 Spectroscopy of Surface Electronic States

In order for a technique to be a candidate for surface electronic state spectroscopy,
it should meet several suitability criteria. It should, first and foremost, be sensitive
primarily to the surface. The resolution should, ideally, be better than the linewidth
of surface state spectral features, which are on the order of a few meV in some
cases, much narrower than bulk features. The technique must provide a method
for populating and probing excited electronic states. The ability to resolve parallel
momentum and to determine the dynamics of excited states is of substantial benefit:
the additional experimental degrees of freedom help to sort out the various factors
which contribute to the spectra of complex surface systems.

Techniques which have been used to study surface states include low energy
electron energy loss spectroscopy (EELS), ultraviolet photoemission spectroscopy
(UPS), X-ray photoemission spectroscopy (XPS), inverse photoemission (IPE), scan-
ning tunneling microscopy (STM), and two photon photoemission (TPPE). XPS is
useful in identifying the species, oxidation state, and bonding of chemisorbed and ph-
ysisorbed layers as well as serving as a powerful tool for band structure spectroscopy.
UPS is well-suited to characterizing the valence and conduction band structure of
the substrate as well as occupied surface states. Here we shall only cover TPPE in
detail because of the relevance to the current work. Also, much of the relevant recent
experimental data rélating to surface states was acquired using TPPE. There have

recently been many advances to the technique of TPPE including improved resolu-
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tion in time and energy and the development of additional applications for TPPE
such as hot electron dynamics, coherent phase-locked TPPE and TPPE of quantum

beat signals arising from closely spaced levels.

2.2.1 Photoemission Spectroscopy

Photoemission spectroscopy is a technique which is uniquely suited to the study
of the electronic structure of interfaces. Electronic states of solids and surfaces have
been studied extensively using photoemission measurements [28]. The process in-
volves the absorption of a photon of known energy hv near the surface of a solid,
photoemitting an electron of initial energy F; yielding an electron with the kinetic
energy Erin. By measuring the energy of the photoemitted electron, the energy of
the initial state with respect to the vacuum energy can be determined. If the Workb
function is known, then the energy of the state with respect to the Fermi level Ep
can be obtained. The energy distribution curve of photoemitted electrons provides a
picture of the initial density of states, provided the final states form a smooth contin-
uum and the transition probability is homogeneous. With monocrystalline samples
and clean, well ordered surfaces it is possible to determine the band structure at high
symmetry points and lines of the Brillouin zone. Angle-resolved measurements yield
additional information about the 3-D band structure. Photoemission is limited to
the study of occupied initial states below Er and unoccupied final states above the
vacuum level. Final state results are scarce due to experimental considerations and
the difficulty of interpreting final state photoemission results. Inverse photoemission
spectroscopy and two photon photoemission spectroscopy provide access to surface

and adsorbate states between the Fermi level and the vacuum level.

2.2.2 Inverse Photoemission

Inverse photoemission (IPE) refers to the class of experimental techniques in
which a monochromatic electron beam is directed at the sample surface. A number
of the electrons decay radiatively into unoccupied states. The photon energy for a

given spectral feature is equal to the difference between the electron beam energy
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and the final state energy. The resolution of IPE is limited by spectral width of the e-
beam and the energy resolution of the photon detector and is typically on the order
of several hundred meV. Inverse photoemission is so named because the technique
is analogous to “time-reversed” photoemission. However, while photoemission yields
the energies of occupied electronic states, IPE yields the energy of unoccupied elec-
tronic states. Recent developments in the field of IPE have been covered in several
review articles [29-31]. Here we shall restrict ourselves to a discussion of the main
featureé of IPE and a comparison to TPPE.

IPE is similar to TPPE in.that both techniques are complementary to traditional
photoemission spectroscopy, yielding the energies of states above the Fermi level.
Parallel momentum is conserved in the IPE process. The IPE spectrum can be
obtained as a function of parallel momentum by varying the angle of the incident
electron beam with respect to the sample. Because of the relatively high energy of
the electron beam (on the order of 10 to 20 V), IPE is typically capable of sampling
a larger range of k) than TPPE. Inverse photoemissibn may also be more well-suited
to the spéctroscopy of states above the vacuum level, though, in principle, TPPE
may also be applied to the study of states in this energy range.

It is difficult to make a direct comparison between the éignal levels for IPE and
TPPE since the TPPE response depends on the peak laser power. According to
first-order perturbation theory, the ratio of the cross-section for IPE versus the cross-

section for photoemission is given by [28]

R= (A’\hwy | (2.1)

Qualitatively, this reflects the available phase space for the final state particles.

Typically, R is on the order of 10~°, which explains the low signal/noise ratio typically
observed in IPE spectra.

An important difference between inverse photoemission and traditional photoe-
mission or TPPE is that the IPE process does not involve the generation of an
electron vacancy or hole. This is generally not an issue in TPPE spectroscopy of

metals where the hole is rapidly and effectively screened owing to the high density of

carriers. For semiconductors and insulators, where screening is less effective because
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of the lower number of carriers, there may be a notable difference between TPPE

and IPE measurements related to imperfect screening of holes.

2.2.3 Two Photon Photoemission Spectroscopy

Time-resolved two photon photoemission is a relatively new technique which is
uniquely suited to the study of the electronic structure and dynamical processes at
interfaces and offers several advantages over PE and IPE. The advantages include
applicability to the energy range between Er and Eyq., good energy resolution (com-
parable or better than that of other electron spectroscopies), ultrafast (femtosecond)
time resolution, surface sensitivity, and low background. The technique is quite sim-
ple and elegant, conceptually. A photon of energy hv; from a laser pulse is absorbed
at a surface, imparting its energy to an electron at or below the Fermi energy level
in the solid and elevating it to an excited intermediate state of the interface. Some
time later, a photon of energy hv, from a second laser pulse is absorbed, imparting
enough energy to eject the electron from the surface. The free electron then travels
to a detector which records its energy and direction.

The TPPE spectrum is a distribution of electron kinetic energies. The energies
of the intermediate states can be determined by subtracting the energy of the second
photon hvy. The ahgle of the photoemitted electrons can be used to determine the
energy as a function of the parallel momentum of the intermediate electronic state,
referred to as the dispersion of the state. In addition, the population dynamics of
intermediate states can be determined by varying the time delay between pump and
probe laser pulses.

Surface two photon photoemission was first developed and applied to the study
of surface states by Giesen and coworkers [16] in 1985. This work constituted the
first high-resolution spectroscopy results for the image states of Ag(111), Cu(111),
and Ni(111) surfaces. Much of the early work concentrated on the energies of image
states and surface states for a variety of transition metal crystal faces. Two review
articles cover much of the results and development of the technique [32, 33] during

the first few years.
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Later, the application of angle-resolved TPPE yielded measurements of the dis-
persion of image states. The dispersion of image states, E(k), is determined by
obtaining TPPE spectra at a series of angles. Dispersion measurements have been
obtained for a wide number of crystal faces of transition metals [18, 24, 32, 34, 35].
The results of dispersion measurements are often described in terms of a quasipar-
ticle effective mass. Initial theory for‘ image state dispersion predicted an eﬂ”ective
mass of near unity for all crystal faces, except for measurements at high k; where
the two band model is not accurate. |

In the last few years the initial promise of ultrafast laser techniques coupled with
TPPE has been largely realized, and even more important results and advances in
the technique are sure to follow. Importantly, TPPE is no longer merely a tool for the
study of image potential states. Increased signal levels, improved time resolution, and
a wider wavelength range have extended the reach of TPPE to an ever wider range
of processes and systems including hot electron dynamics and transient molecular
anions. Still, many important dynamical processes involving electrons which are
known or thought to take place on surfaces have yet to be characterized. |

The team of Knoesel, Hertel, Wolf, and Ertl applied femtosecond time-resolved
TPPE to the study of CO on Cu(111) [36,37]. Later they applied the same technique
to the optical response of hot electrons for the same crystal face [38]. According to
their analysis of the data, the results yielded a qualitative agreement with Fermi
liquid theory. These results were later disputed by Petek and coworkers [39] who
determined that the lifetimes deviated substantially from the (E — Er)~2 functional
form predicted by the standard Fermi liquid theory. A qualitative agreement with the
theory was reached when the band structure of Cu was taken into account, though the
calculated lifetimes were a six times faster than the measured lifetimes. The failure
of the free electron model in predicting the energy dependence and rhagnitude of the
scattering times is attributed in part to d band electrons, which can participéte in
both scattering and screening of hot electrons.

Time-resolved TPPE was also used to compare the dynamics of image states on

clean Cu(111) to the dynamics of the image state for a monolayer of Xe on the same

surface [40]. Qualitative agreement was reached with the results of a penetration




14

model assuming the primary effect of the Xe layer was the lowering of the work
function. However, the near degeneracy of the Cu(111) conduction band with the
image state invalidates the results of the penetration model, since the model requires
that the state be in the band gap of the substrate. Since small changes in the
model parameters yield wildly different results, agreement between the model and
the experiment may be assumed to be due to a fortuitous choice of model parameters
and not a strong indication of the correctness of the model. A more important
contribution of this paper was the treatment of coherence dephasing using the optical
Bloch equations [41] for a single resonant transition between two levels. Later work
has shown that a two step Bloch model does not adequately describe two photon
photoemission [42]. Interestingly, the more complex three step model yields results
for lifetime (77) which are similar to those obtained by use of the rate equations
(which do not include dephasing).

In a later paper [43], hot electron results are interpreted in terms of simple rate
equations rather than the optical Bloch equations which were employed earlier [40].
It was determined that most of the photon energy is absorbed by d band electrons.
It was also determined that d band hole states possess roughly twice the lifetime of
sp band electronic states, probably due to the highly localized nature of the d band
hole state, since localization most likely reduces the probability of scattering events.
The authors also found that approximately half of the excited electron distribution
is removed from the surface region by ballistic electron transport within 20 fs of the
initial excitation.

Aeschlimann and coworkers have used ultrafast time-resolved TPPE to study
a variety of complex systems of broad interest, including magnetic thin films [44-
47], alkali layers [48, 49}, chemisorbed oxygen [50], and hot electron dynamics. In
a recent paper in which the spin-resolved hot electron dynamics were determined
for the Co(001) surface, it was found that the lifetime of excited electrons of the
majority spin is twice as long as that of the minority spin carrier. Importantly, the
results demonstrate the feasibility of studying spin-dependent electron dynamics in
ferromagnetic solids directly in the time domain (as opposed to static bulk transport

measurements), providing a unique and detailed perspective on electron transport in
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ferromagnetic solids and films.

Petek and coworkers have concentrated their efforts on the study of hot electron
dynamics [39] and the fundamental aspects of the interaction of short laser pulses
with electronic states at or near the surface [42]. They extended the technique of
ultrafast two photon photoemission by using phase-locked laser pulses, and were thus
able to obtain time and phase-resolved information on the laser-induced polarization
at the surface. It was found that, in addition to the initial oscillations at the laser
frequency w, there is an oscillation at a freqﬁency of 2w corresponding to the second
harmonic. It was determined that the appearance of the second harmonic is not
instantaneous. In their work on hot electroﬁ dynamics, Ogawa and coworkers find a
dependence on the crystal face. Petek and Ogawa have written a review [51] on recent
findings in the field of ultrafast laser spectroscopy of electrons in metals. Recently,
the ultrafast kinetics of desorption precipitated by the transfer of an electron from
the metal substrate to an adsorbed alkali atom were measured [52] This work will
likely lead to additional application of the TPPE technique to the spectroscopy of

transition states on surfaces.

2.2.4 Angle resolved Two Photon Photoemission

Angle resolved two-photon photoemission (ARTPPE) and angle resolved inverse
photoemission experiments can be used to measure the dispersion of image states.
The dispersion is the relation between energy and parallel momentum (E(k;)) for
a given band. A related technique, angle resolved photoemission spectroscopy, has
proven to be a useful extension of photoemission spectroscopy. The additional exper-
imental parameter greatly increases the amount of information obtainable by pho-
toemission experiments, providing detailed information about the three-dimensional
band structure. Similarly, angle resolved two-photon photoemission yields additional
information about excited surface bands.

The angle between the detector axis and the surface normal can be related to the

parallel momentum kj associated with a given spectral feature using the relation

kj =h"'v2mEsin#, (2.2)
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where # is the angle of the detector with respect to the surface normal. Often, the
dispersion can be described by an effective mass parameter. The effective mass of

image states is discussed in detail in a later section.

2.3 Theoretical Models of Surface States

There are essentially two broad classes of approaches to the modeling of surface
states: ab-initio. and empirical. The ab-initio approach more or less completely
simulates the system of interest, solving the complete Schrédinger equation for a
sufficiently large slab. Such calculations are often computationally expensive, and
often possess limited explanatory power in terms of physical properties or trends.
Experimentalists attempting to establish trends and determine physical properties
often rely on approximate solutions and empirical models which employ physical
properties obtained by experiment in order to predict physical properties, spectral
features, and trends. These models are typically based on a simplified hypothetical
system which treats a small subset (hopefully the most important subset) of the
processes and interactions encompassed by a more complete treatment of the system.

Multiple Reflection Theory (MRT), proposed by Echenique and Pendry [17], and
its variants, constitute a useful, empirical approach to the problem of image states.
The power of the multiple reflection approach rests in its simplicity and its ability
to account for differences in image state binding energies on various crystal faces, as
well as its reliance on the well-known two band nearly-free-electron theory and such
physical parameters such as the positions and widths of the substrate bands. Multiple
reflection theory is a piecewise approach to the image state problem: appropriate
wavefunction solutions in the substrate and vacuum are joined at the surface where
eigenenergies are determined by solving the resulting boundary value problem. The
following subsections illustrate approximate potentials and wavefunction solutions
in the vacuum and in the substrate and are followed by a discussion of the multiple

reflection method for determining bound states.
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2.3.1 The Image Potential or Surface Barrier

Consider the case of an electron at a distance z outside a perfect conductor.
From elementary electrostatics it is known that the electric field must vanish at the
conductor surface. This boundary condition defines the electric field. A solution can
be obtained by applying the method of images: an imaginary positive charge at an
equal distance —z from the conductor surface (an image charge) cancels the field at
the surface satisfying the requirement that the field vanish at the surface. Since the
interaction of the electron with its image is Coulombic, the resulting image potential

takes the form of a Coulomb potential [17]:

v=-2 (2.3)

VA
z
where z is the distance from the conductor surface and Z is a coupling constant
related to the static dielectric constant e:
_le—1
C4e+1

(2.4)

For a perfect conductor € = co and Z = 1/4. If the potential approaches V — —o0

as z — 0, the energy levels? with respect to the vacuum level are given by:

—7Z2 —136¢eV
Ey = 2~ 16n2? (2:5)

For an electron outside an insulating material with a low dielectric constant, Z is
smaller resulting in a lower binding energy. ,

The image potential at a realistic metal surface, while exactly Coulombic for
large z, differs substantially from the Coulomb form within an Angstrom or so of
the surface: At metal surfaces electron density profile in the surface region tapers off
smoothly from the bulk electron density some distance inside the metal to essentially
zero a short distance outside the metal. The electron density is said to “spill out”

from the surface. The resulting charge distribution gives rise to the surface dipole

?Elsewhere it is stated that Equation 2.5 only holds for an infinite potential barrier (V = +o0)
at z = 0. According to the properties of the confluent hypergeometric functions solutions for the
Coulomb potential, the divergence of the potential in the region near z = 0 is more important than
the potential at a single point. The infinite barrier at z = 0 merely serves as a way to emphatically
remove from discussion any contribution from substrate electronic structure.
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(spillout dipole) which contributes to the work function. As a negative test charge
approaches fhe surface, electron-electron repulsion with the electron density outside
the surface replaces the singularity near z = 0 present in the classical image potential
with a smooth function which joins to the potential of the crystal interior. The
connection with the interior crystal potential is responsible for the substrate-induced
deviations from hydrogenic binding energies. A thorough discussion of a realistic
quantum mechanical form of the image potential from a density functional point
of view is available in a review article [19] and has been refined recently [53]. In
the density functional treatment of surfaces, the image potential is the tail of the
exchange-correlation potential outside the surface®.

In the multiple reflection theory for image states and some related theories, the
image potential is approximated by a Coulomb potential with a flat cutoff potential in
the region closest to the surface. The wavefunction solution to the time-independent
Schrddinger equation for the image potential region which matches the solution in
the cutoff region and properly vanishes at infinity is a confluent hypergeometric
function known as the irregular Whittaker function [54,55], W ,(p), where p = 1/2,
A= Z/V2E , p=22V2E, and Z = 1/4 for a metal image potential, and F and z

are the energy and distance in atomic units.

2.3.2 The Two Band Nearly-Free-Electron Model

The two band nearly-free-electron (NFE) model describes an electron in a weak
periodic potential [3]. It is a simple model which describes the electronic structure
of ordered materials in terms of energy bands and is discussed in solid state physics
textbooks [56,57]. It is often invoked to describe the conductivity of simple metals
and insulators in terms of a forbidden energy gap. The two band nearly free electron

model is also the basis for many models surface and image states [58-60]. For an

3In some approximate forms of density functional theory, most notably the local density approxi-
mation (LDA), the exchange-correlation potential does riot possess the correct asymptotic 1/z form
but rather decays exponentially for large z. This is a consequence of neglecting nonlocal effects;
LDA assumes the electron and its exchange hole are attached. When LDA methods are used in
calculating image potentials, a correction must be applied [53].
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infinite, perfectly crystalline solid, the crystal potential is periodic:
V(r)=V(r+a), (2.6)

where a is a primitive translation vector of the lattice. According to the well-known
Bloch-Floquet theorem, the wavefunction solutions for a single electron in this po-

tential are also periodic and are given by
Y(r) = uk(r)e™”, (2.7)

where uk(r) is periodic with the lattice. States of this form are said to be Bloch
states.

In the following theoretical discussion, a one dimensional approximation of the
two band model is used. In applying this approximation to a 3-D crystal, it is
assumed that the Hamiltonian for the system is approximately separable into per-
pendicular and parallel components. Generally, it is assumed that ky = 0 and the
contribution of H; to the total énergy is assumed to be a constant.

Here only the major features of the two band model will be outlined. The notation
is adapted from Smith [61]. In the two band NFE approximation the 1-D crystal
potential is written as a Fourier expansion in multiples of the reciprocal lattice vector
g=2r/a:

Viz) =3 Voget™=. (2.8)
~ ,

The potential fluctuations are assumed to be weak, so only the first two terms,
V,, V_4 are kept and the higher order terms are ignored. For crystals with inversion
symmetry V, = V_,. Electron energies ¢ with respect to the zero of energy (here
taken to be the band energy at zone center) for the two-band NFE model are given
by solving the secular equation

(R?/2m*)k? — ¢ Vo

\ =0. (2.9)
£ (h*/2m*)(k - g)* — ¢

At the zone boundary located at £ = ¢/2 (in momentum or reciprocal space)
there is an energy gap of width 2|V,|. Figure 2.2 illustrates the roots of Equation 2.9

and how the parameters of the two band NFE model are related to the position
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Figure 2.2: The main features of the two band nearly-free-electron model are the gap
energy E, and gap half width V, at the g/2 = 7/a zone boundary. The upper and
lower solid curves are the roots of Equation 2.9 as a function of £. The dashed curve
is the solution for V, = 0, which corresponds to the case of a perfectly free electron.
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and widths of the Vélence and conduction bands. Within the gap solutions exist
for complex k, which correspond to an evanescent wave decaying into the metal.
The wave vector can be represented as a sum of real and imaginary components,
k=p+1iq.

For the 1-D case corresponding to solutions along the surface normal Equation 2.9

yields the standard results

p = g/2, ‘ (2.10)
(R*/2m")¢® = (4eE;+ V)2 — (e + E,), (2.11)
E, = (R*/2m")p% (2.12)
sin(20) = —(h?/2m*)(2pa/V,), (2.13)

where E, is the midgap energy, m* is the effective mass, ¢ = 27/d where d is the
interplanar spacing, and ¢ is a wave-function phase*. The wave function in the crystal
is given by

Y = e¥ cos(pz + 9). (2.14)

For energies within the valence or conduction bands, the imaginary part of the
wavevector, denoted by g is zero. Within the gap ¢ > 0 which causes the wavefunc-
tion of Equation 2.14 to exponentially decay away from the surface. The maximum

value of ¢ is given by
2

1)
%QQmam = l%' (215)
The energy corresponding t0 gp,q, 1S given by
2 2
— 4E 9 __ Vg_

&(Gmaz) = iF, (2.16)

The sign of V, depends on the symmetry of the wave function at the top and bottom
of the gap. For Ag(111) the band gap is sp inverted: solutions are s-like at the top
of the gap and p-like at the bottom. This case corresponds to V, > 0.

4For sp inverted band gaps, the correct branch of the arcsin required to solve for é in Equa-
tion 2.13 can be determined by requiring that § = 0 at the bottom of the gap, § = 7 /4 at the
middle of the gap where |g| is at a maximum and § = 7/2 at the top of the gap.
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By itself, the two band model possesses limited predictive value for a given system.
However, the values o‘f E,, Vg, which are the energy (with respect to the energy
zero at zone center) and half width, respectively, of the band gap, can be taken
from experimental results or state of the art band structure calculations, yielding a
parameterized model which has proven useful in describing the electronic structure
of the substrate in models of surface states and quantum well states. The two band
NFE model has proved useful in describing the effects of the energy gap and electron
occupancy on the conductivity of simple metals and insulators. The details of the
multiple reflection model, which uses the two band NFE approximation, are discussed

below.

2.3.3 Multiple Reflection Theory

Multiple reflection theory, also referred to as the phase shift model for surface
states, is a method for solving the internal boundary value problem where two band
nearly-free-electron wavefunction solutions for the metal connect to (Whittaker func-
tion) solutions for the image potential at the surface. The model is based on the
reflective properties of the potential barriers presented by the substrate lattice and

the image potential. A plane wave is constructed in the (infinitesimal) region be-

| tween the metal and the image barrier. If a wave )~ carries a unit of flux towards

the crystal, a portion of the wave will be reflected. The reflected wave will have the
form

roe’cyt, | (2.17)

where rc and ¢¢ are the modulus and phase of the crystal reflectivity and ¥ is a

wave which carries a unit of flux away from the crystal. When this wave is reflected

from the surface (image) barrier where rp and ¢p are the modulus and phase of the

barrier reflectivity, the resulting wave is
7°B€i¢B7‘Cei¢'C’lp'_. (218)

Upon repeated scatterings, the total amplitude for ¢~ is given by the geometric sum

1
1 - T‘Brcei(¢3+¢c)_

(2.19)
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A pole in Equation 2.19 denotes a bound state of the surface. Assuming unity

reflection coefficients the bound state condition is
éc + ¢p = 27n. (2.20)

Expressions for ¢¢ and ¢p are derived from solutions in the crystal substrate and in
the vacuum.
The phase shift ¢ for the image barrier is defined by matching the wavefunction

for the image barrier to a plane wave of the form
Y = €% 4 rpet®Beihz, (2.21)

In the present coritext, wavefunction matching is performed by determining the log-
arithmic derivatives® of both the plane wave and the wavefunction solution in the
vacuum (Equation 2.14), setting them equal, and solving for ¢g. As stated earlier,
the wavefunction solution in the vacuum region is the irregular Whittaker function
Wi.(p) where u = 1/2, A = Z/\/2E , p = 22v/2E, and Z = 1/4 for the case of an
image potential, and the energy E and the coordinate z are in atomic units. The
resulting expression for the phase shift of a unit of flux traveling from the origin

towards the Coulomb barrier is

(2.22)

65 = 2kzo + 2 tan™! (2\/ 2E Wi,u(Po))

kc W/\,H«(pﬂ)
where Wy ,(po) is the derivative with respect to p, k. is the wave vector in the

cutoff region [54], pp = 220V2E , and z is the cutoff distance®. The value of OB
increases rapidly as E approaches zero, causing the total phase shift to increase
rapidly which therefore sweeps though the bound state condition more frequently.
This is consistent with the Rydberg-like series of states converging on the vacuum
indicated in Equation 2.5.

A useful approximation to ¢p has been derived that reproduces the hydrogenic

limit (Equation 2.5) and illustrates the dependence of ¢ on energy [19],

¢p(E) = (\/2_—ZW - 1) . : (2.23)

5The logarithmic derivative of 1 with respect to z is defined as d/dz(ln ) or equivalently ¥’ /v.
5A cutoff is used to approximate the flattening of the image potential arising from electron-
electron repulsion of the image electron with the electron gas near the metal surface.
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This result is referred to as the interpolation formula for the barrier phase shift
¢p and is reliable for determining trends in binding energies of image states. A
comparison of the phase shift as a function of energy for the the interpolation formula
and the quantum-mechanical expression reveals that the quantum-mechanical phase
shift oscillates about the interpolation formula phase shift.

The crystal phase shift ¢ is determined by matching the plane wave of the form
P = e 4 roetfeeths (2.24)

to the Bloch wave in the bulk given by Equation 2.14. The resulting expression for

¢¢ is given by

k tan (%9—) = ptan(pa/2 + §) — q. (2.25)

assuming the metal terminates at a distance equal to half the interlayer spacing
outside the last layer of cores (half layer termination).

For sp inverted band gaps’, the crystal phase shift varies from ¢o = 0 at the
bottom of the gap to ¢¢ = 7 at the top of the gap. Considering the value of ¢¢ at
the bottom and the top of the gap, the bound state condition of Equation 2.20 can
be satisfied near the bottom of the gap when

$c = —¢B. (2.26)

This yields the surface state, which derives its name from the observation that the
maximum in probability density is near the surface. Near the top of the gap the phase

shift is approximately 7 in which case the bound state condition is approximately
n=20,12.., (2.27)

¢5 = (2n + ), (2.28)

which yields the results of the hydrogenic approximation.

TA band gap is said to be sp inverted when Bloch states of s orbital symmetry (where the wave
function amplitude is largest at the atom cores) are higher in energy than Bloch states of p orbital
symmetry (where the wave function amplitude is largest between neighboring ators in the lattice).
The inversion is attributed to the contribution of d orbitals to the hybridized band, the effect of
which is to lower the energy of the p band states with respect to the s band states.
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It should be noted that the use of logarithmic derivatives to determine the phase
shifts in Equations 2.22 and 2.25, together with the bound state condition ¢c+¢p =
27n (Equation 2.20) ensure that the total wavefunction is continuous in slope and
‘value. In fact, it can be easily shown that the phase shift requirement is only met

when the logarithmic derivatives of the solutions in the bulk and in the vacuum are
equal at z = 0.

In order to illustrate the use of multiple reflection theory to describe image and
surface states, the results of calculations of the n = 0 surface state and the n = 1
and n = 2 image states on the Ag(111) surface are shown here. The parameters used
in the calculation are listed in Table 2.1 along with experimental and calculated
energies for the image and surface states. The interplanar spacing a along the (111)
direction for Ag is 2.36 A. The parameters E,, V,, and EF are taken® from a review
article by Fauster and Steinmann [62] and the experimental numbers were obtained
from the apparatus described later. The calculated probability densities 1*1y are
shown in Figure 2.3. The n = 1 image state is similar to the hydrogenic n = 1 state,
with a node near the metal surface and a relatively small probability density in the
metal. The n = 2 state also has a node near the metal surface, but is degenerate
with the conduction band, hence it does not decay exponentially into the metal as
the n = 1 state; the n = 2 wavefunction extends infinitely into the metal. The n =0
state is often referred to as the surface state, as it possesses a maximum (instead of
a node) near the surface plane and does not belong to the hydrogenic image series.
The n = 0 state is present in the model only when the valence band is of s orbital
symmetry.

Multiple reflection theory successfully accounts for the existence of image and
surface states within a single formalism and has been useful in attributing differences
inbthe positions of image and surface states on different crystal faces to differences

in positions of the vacuum level and the band gap. For more complicated systems,

8The review [62] actually lists a value of 2.15 for V,. In their approach, the work function @ is
treated as an adjustable parameter and the interpolation formula (Equation 2.23) is used to evaluate
¢p which yields results which differ from those obtained from the Whittaker functions. The value
of 2.075 is taken from Merry [63] who determined the value for V, by subtracting experimental
values for the conduction [32] and valence [64] bands.
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substrate vacuum
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distance, A

Figure 2.3: Probability densities for the n = 0 surface state and the n = 1,2 image
states for Ag(111). The potentials are for illustrative purposes only and do not
represent a realistic crystal potential.
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]Sample] Ve |Eg l E; | o |State|ETheo.|EExp.|z0|

Ag(111) | 2.075 | 9.64 | 7.865 | 4.56 | n=0 -4.65 -4.61 | .6
n=] -.76 =77 |1
n=2 -21 - -.21 1

Table 2.1: Multiple Reflection Theory parameters and resulting binding energies for
n =0,1,2 for Ag(111). The energy values are in eV. Vj is the gap half width, E,
is the position of the gap with respect to zone center (the I' point), Ey is the Fermi
level with respect to I', and & is the work function. The cutoff distance zy in the
image potential is in units of Angstroms. The energies of n = 0, 1,2 are with respect
to the vacuum level.

simple expressions for ¢¢c or ¢p are not available, which limits the utility of the
phase shift approach. In such cases, it is more straightforward to employ numerical
integration to determine the wave function for potential regions for which simple

analytical forms of the solution are not available.

2.3.4 Effective Mass of Image States

As mentioned earlier, the result of a series of angle-resolved two photon pho-
toemission measurements of a given spectroscopic feature is the relation between
energy and momentum in the surface plane E(kj) called a dispersion curve. Often
the dispersion curve may be conveniently described by an effective mass parame-
ter. The effective mass m* associated with a given spectral feature is defined by the

expression,
— _ (2.29)

where m* is expressed as a fraction of the mass of a free electron. Qualitatively, the
effective mass or dispersion of image and surface state electrons is a measure of the
influence of the substrate bands. For quantum well states, the parallel dispersion is
related to the 3-D band structure.

It has been shown [32] that the effective mass or dispersion of image and surface
states of several crystal surfaces can be explained in terms of the properties of the

surface projected bulk band structure, shown in Figure 2.4 for Ag(111) along with
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the dispersions of the n = 0 and n = 1 bands. The effective mass of the surface
projected conduction band in Figure 2.4 is 1.6 m. according to the literature [32].
The aptly named surface projected bulk band structure is the 3-D bulk band structure
projected onto a given surface plane. The presence of a band at a given energy F
and parallel momentum &) indicates the existence within the full 3-D band structure
of one or more band states at that energy with a momentum whose projection onto
the surface plane’ is k. The presence of a gap in the surface projected bulk band
structure indicates an absence of states over the range of energy and surface projected
momentum which describes the gap.

The work of Giesen, and coworkers [32] describes the effective mass of surface and
image states in terms of the reflective properties of the associated surface projected
band gap. As shown in Figure 2.4, the upper and lower gap edges each possess a
different dispersion in the surface plane and may cross, closing the gap at some value
of k. For sp inverted bands like the valence and conduction bands of Ag(111) the
phase shift ¢¢ of the conduction (or upper) band edge is 7 and the phase shift of the
lower band edge is zero. At a given energy, the crystal phase shift as a function of
k)| does not remain constant but rather decreases since the distance from the upper
band edge increases (assuming an upwardly dispersing band as in Figure 2.4).

The effect of this variation in crystal phase shift on the effective mass can be
estimated using a geometric construction [32]. A hypothetical hydrogenic n = 1
image state on a perfectly reflecting substrate possesses a binding energy of —Ryd./16
or —.85 eV and an effective mass of unity. Assuming that the effective mass of the
upper bulk band edge is larger than that of the electron (as is the case for Ag(111)),
the hydrogenic image state will cross the upper band edge at some value of k. At
the point where the hydrogenic image state crosses the band edge, the phase shift
is w. Therefore, at this point the energies of the hydrogenic image state and the
real image state should be equal. This point and the measured binding energy at

kj = 0 define the dispersion parabola of the image state and thus its effective mass.

9The state or states of the crystal which correspond to a point in a surface-projected band may

also possess a nonzero &, in the range of zero to g/2. For example, the state corresponding to the
valence band edge at kj; = 0 possesses a k1 of 7/a.
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Figure 2.4: The surface projected bulk band structure of Ag(111). The dispersions
of the n = 0 surface state and the n = 1 image state are also shown. The surface
projected valence and conduction bands are indicated by the lower and upper shaded
areas, respectively. The surface projected band gap is the region between the surface
projected valence and conduction bands.
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A diagram of this construction for the n = 1 state on Ag(111) is shown in Figure 2.5.

If the point where the hypothetical hydrogenic free electron crosses the upper
band edge is labelled E¢, Ey = —.85 €V is the energy of the hydrogenic image state,
and Erg is the energy of the real image state at k = 0, the effective mass is given

by the expression

Tmne - ——-—gs ~ gfq (2.30)
which is derived from the geometric construction. This result agrees with the ex-
perimental observation that the effective mass of image bands is larger than unity
when the image state is relatively near a surface projected bulk band which has a
large effective mass, while the effective mass of image bands is less than unity when
the image state is relatively near a surface projected bulk band which has a low
effective mass. Qualitatively, it can be said that the image band is partially repelled
by nearby bulk bands.

Prior to the development of this model for effective mass based on the crystal re-
flectivity, the excess effective mass of image states (m*/m, = 1.3 for n = 1, Ag(111))
was attributed to a variety of physical mechanisms, including surface corrugation [65],
coupling with electron-hole pairs [66,67], and coupling with surface plasmons [68].
However, none of these mechanisms could account for the wide variation in effective
mass observed for the various crystal faces of Ag and Cu. The simpler approach
based on the reflective properties of the surface projected band structure succeeds
because most of the physics relevant to image state dispersion (including some of
the effects mentioned above) is represented in the surface projected band structure.
The geometric model of the effective mass is only applicable to the clean surface and
does not adequately explain the effective mass of surface or quantum well states in
the presence of an adsorbate layer. An attempt to develop a method for treating the

effect of the overlayer in the effective mass approximation is detailed in Chapter 4.

2.3.5 Lifetime of Image States

The lifetime of image states has been the subject of theoretical and experimental

investigation since the existence of image states was proposed [17]. Early qualitative
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Figure 2.5: Graphical determination of the effective mass of the n = 1 image state
on Ag(111). The shaded area is the surface projected conduction band. Eg is the
Energy of a fictitious hydrogenic image state. Ejg is the energy of the image state.

E¢ is the point where both the image state and the fictitious hydrogenic state cross
the conduction band edge.
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arguments about the lifetimes of image states were based on the properties of the
orbit of an electron in an image potential well. The round-trip time of an electron
of quantum number n in a Coulomb well increases as n®. Assuming that decay is
via tunneling into the metal, the lifetime depends on the attempt rate or round trip
time. Multiple derivations yielding 7 &< n® are provided in a review article [19]. The
first quantitative theoretical calculations for the lifetime of image state electrons were
provided by Echenique and coworkers [69]. The calculations employed the self-energy
formalism in which the lifetime is related to the imaginary portion of the complex self-
energy. Schoenlein and coworkers [70] provided the first direct measurements of the
lifetimes of image states on metal surfaces using transient two photon photoemission
spectroscopy with femtosecond pulses. Their results were in agreement with the
earlier predictions. Schuppler and coworkers [71] used high-resolution two-photon
photoemission spectroscopy to determine the linewidths of image states which may
in some cases be related to the lifetimes.

An empirical approach to calculating image state lifetimes has developed in which
the lifetime is related to the penetration of the image state wavefunction into the
substrate. The penetration p is defined as the probability density in the bulk [69,
72-74],

p= f_ooo Yrpdz. (2.31)

The lifetime broadening I' of the image state is related to the linewidth of the bulk

crystal conduction band ['y(E) by
p-Ty(E). (2.32)
The value of T'y is approximated by the expression
I'y(E) =a(E — Ep), (2.33)

where a depends on the material [75]. The expression in Equation 2.33 has been
shown to hold for the range of 5 to 50 eV for several transition metals, based on
photoemission and inverse photoemission linewidth data. For Ni, Cu, and Ag a fit

to the inverse photoemission data yields a = 0.13.
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The various decay paths for image state electrons involve excitations of quasi-
particles or quasiparticle pairs in the substrate. For most metals, the primary decay
pathway for image state electrons is via Auger processes in which the image state
electron transfers its energy to an electron in the bulk, generating an electron-hole
pair [69]. Additionally, energy can be transferred to surface plasmons and phonons.

In addition to decay channels in which the final state is a bulk state, relaxation
can occur in which either intermediate states or final states are image or surface
states. Image electrons of nonzero parallel momentum may decay into image states
of lower parallel momentum, a process called momentum relaxation or intraband
relaxation. Image electrons may also decay to image and surface states of lower
quantum number. It has been estimated that 90% of the linewidth of n = 2 states is
from decay into n = 1 states [76]. Approximately 30% of the linewidth of the n =1
state for Ag(111) is attributable to decay via the n = 0 surface state [77].

The rate of decay of image states at metal surfaces in which the decay is via
the exchange of energy with quasiparticles can be modeled using the self-energy
formalism. In the self-energy formalism, the real part of the complex self-energy
corresponds to the energy of the state whereas the imaginary portion corresponds
to the lifetime. An advantage of the self-energy formalism is its ability to take
into account interactions with various quasiparticles to arbitrary order. The effects
of other image states on the lifetime of a given state may be taken into account.
Generally, lower order terms which correspond to Auger processes dominate the
calculated lifetime. '

In the first time-resolved two-photon photoemission measurements of image state
lifetimes performed by Schoenlein and Fujimoto [70], a simple exponential decay of
image state population was assumed. Recent experiments [38,42] have explored the
possible role of coherence dephasing, in which the kinetics are not described by a
simple exponential. Rather, the kinetics are described by a set of coupled differential
equations known as the optical Bloch equations [41]. These effects will be discussed

in Chapter 4.
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2.4 Quantum Well States

Quantum well electronic states are a feature of thin film systems. When an infinite
solid is truncated, the continuum  of bulk states is replaced with a finite number of
discrete electronic states. The spacing and number of quantum well states depend
on the number of atomic or molecular layers in the slab. For a very thick layer, the
number of states is very large and the energy spacing between states is very small;
the electronic properties are essentially indistinguishable from those of an infinite
solid. However, for a very thin layer, consisting of 1-20 atomic layers, the number
of states decreases and the energy spacing between levels is relatively large. This
often results in carrier transport properties (for example, energy gap, mean free
path, and carrier lifetime) which differ substantially from those of the bulk. Low
temperature electron tunneling experiments on thin metal films were performed in
the early 1970’s [78-80] in which oscillations in the tunneling current as a function
of film thickness and sample bias were observed. The oscillations were attributed to
the existence of discrete energy levels in the thin film.

Loly and Pendry [81] proposed the study of thin films as a method to improve
band structure determination by photoemission. Peaks in photoemission spectra
correspond to a vertical transition between two energy bands. In principle, by mea-
suring the energy of the photoemitted electron for a range of photon energies, the
band structure along the surface normal can be mapped out. This ideal is not reached
due to fundamental limitations of the photoemission technique. The ability to relate
a given feature in a photoemission spectrum to a given point in the Brillouin zone,
the momentum of the initial and final state must be well defined. It is well known
that while the wave vector along the surface plane & is conserved during the pho-
toemission process, the perpendicular wave vector k, is only partially conserved. As
the electron crosses the surface on its way out of the solid, &, is not conserved as the
electron scatters from the surface barrier. This results in blurring of photoemission
features and limits the accuracy of photoemission measurements to approximately
25% of the distance to the Brillouin zone boundary. In practice, this greatly limits

the resolution of photoemission except near band edges where the dispersion is flat.
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Other final state effects also add to the uncertainty in photoemission measurements.
Firstly, the finite lifetime of the hole left behind by the photoemitted electron results
in the blurring of the band energies. For hole states near the Fermi level in free-
electron-like materials, the lifetime broadening is relatively small compared to the
other contributions to the final state linewidth. Also, k, for the electron in the solid
is uncertain because of the extinction length of around 5-10 A. Clearly, it would be
advantageous to develop a technique which is not sensitive to the uncertainty in k;
in the final state.

The picture changes when one assumes a sample N layers thick. The wavefunction

of the film along the surface normal can be written in terms of Bloch waves:
Y(2) = u(z)e. (2.34)

Assuming the wavefunction must vanish at the layer boundaries (0, N), the resulting
wavefunction alongvthe perpendicular direction is a standing wave of the form ¥ =
u(z)sink;,z where j is a quantum number. In order to vanish at z = Na, k, must
satisfy ,
k;, = jm/Na. (2.35)

The quantum numbers in the plane k;, k, remain continuous and reveal the bulk
dispersion along the surface parallel. An angle-resolved photoemission experiment
on this system will reveal a series of spikes in the spectrum. The uncertainty in &,
no longer affects the spectrum since &, of the initial state is fixed by the boundary
conditions of the thin layer quantum well. Thus the final state limitations are effec-
tively removed, the resolution of the technique is limited in principle only by the hole
lifetime. The energies of discrete quantum well states can be related to the bulk band
structure: the energies are taken from the spectra and a value of k;, is determined
from the thickness Na using Equation 2.35, yielding the dispersion F(k).

Loly and Pendry verified that this technique should work on a real system con-
sisting of overlayers on a substrate by modeling the system using the PEOVER
photoemission program, which includes multiple scattering processes, surface effects,

and hole lifetime.
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This technique was later applied successfully to actual photoemission experiments
on metal layers including Ag/Si(111) [82], Pb/Si(111) [83], and Ag/Cu(111) [84]. The
technique was also applied to an insulator, Xe [85,86]. In these systems, thin layers
(3-40 A) were studied. For such thin layers the boundary conditions complicate the
simplified picture of Loly and Pendry. The imperfect boundary conditions were taken
into account by introducing a quantum defect parameter 6. The resulting expression
for k, is:

ki, = (j +d)n/Na. (2.36)

It was advantageous to acquire spectra at a range of coverages in order to have
enough data points to simultaneously determine ¢ and tight binding parameters.
Later, the method was applied to the conduction band using the technique of two
photon photoemission. Fischer and Fauster [26] investigated the Au/Pd(111) system.
It was possible to observe QW states for this syStem since the Au conduction band
edge is well below the vacuum level, while the Pd(111) substrate gap extends well
above the vacuum level. Smith and coworkers [87] derived a formula which yields
the wavefunctions and binding energies of both the valence and conduction bands

for the case of an NFE overlayer.

2.5 The Photoemission Process

It is useful to discuss briefly some of the fundamental aspects of the interaction
of light with metal surfaces. These aspects are relevant to the surface depth of the
spectroscopy, selection rules, overall photoyield, and their relation to experimental
parameters such as light polarization and the azimuthal angle of the light imping-
ing on the surface. Detailed treatments of the photoemission process are given by
Inglesfield [88] and Feder [89]. A treatment of single photon photoemission provides
an appropriate basis for the understanding of the two-photon photoemission process
since the initial and final states are essentially the same. TPPE differs from PE in
that an intermediate state is also involved, and that the photon energies are generally

smaller.
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Feder divides the photoemission process into five basic steps. The first step is the
penetration of the radiation through the surface. The second step is the propagation
of the radiation inside the solid. The third step is the excitation of the electron. The
fourth step is the propagation of the electron towards the surface. The fifth step is the
penetration of the surface into the vacuum. Steps 3 through five comprise the well-
known three step model for photoemission [90]. In the fully quantum-mechanical
one step model, all of the aspects of the three step model are represented as one
concerted step.

Steps one and two primarily relate to the optical properties of metals and how
they affect the dependence of the cross-section on the angle and polarization of the
incoming light. In a simplified view, the metal can be considered to be a material
with a dielectric constant of greater than unity. Some of the light is reflected and
some is refracted into the material. In general, s polarized light is more likely to be
reflected while p polarized light is more likely to be refracted and later absorbed. If
the incoming light is circularly polarized, the refracted beam will contain unequal
components of s and p polarized polarization and will thus be elliptically polarized,
except when the light is incident normal to the surface. This fact must be taken into
account in experiments involving circularly polarized light. The preferred geometry
for such experiments is near normal incidence. The reflectance of s polarized light
incident on a metal surface is a function which decreases monotonically as the angle
with respect to the sample normal increases. For p polarized light'incident on a
metal surface, the reflectance has a minimum at an angle referred to as the principal
angle of incidence [91]. For Ag and a wavelength of 590 nm, the principal angle
is approximately 78 degrees. Except at surface normal and grazing incidence, p
polarized light is more efficiently absorbed than s polarized light. Assuming that
photoyield is proportional to the number of photons absorbed, p polarized light
should yield a higher number of photoelectrons than s polarized light. The optimum
angle for the incident light is between the principal angles for the wavelengths used.

Steps 4 and 5 of the photoemission process, propagation through the bulk and

penetration of the surface barrier, are not very important for surface states, since

much of the probability amplitude is outside the substrate. These steps are im-
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portant for photoemission, and are responsible for the lack of conservation of k¥, in
photoemission from bulk states.

The absorption of the photon results in the excitation of electrons in the bulk or at
the surface. Several detailed descriptions of the excitation process are available [28,
89]. Assuming the variation of the electric field due to the incoming radiation is
small compared to the length scale of the atoms in the crystal lattice, the matrix

element for excitation is proportional to
(Ef|VV|E;), (2.37)

where VV is the gradient of the potential and |E;) and |E;) are the initial and
final electronic states. The nature of the potential gradient VV at and near the
surface results in two rather different excitation mechanisms. For a hypothetical
perfect conductor, no electric fields are allowed inside the metal; VV is strictly zero.
Even in the electron gas (jellium) picture, the potential inside the metal is constant
(except very near the surface) and therefore VV is zero. Near the surface, there is
a discontinuity in the field in the case of a classical perfect conductor and a smooth
variation for the case of a quantum-mechanical electron gas. For these two idealized
systems, surface photoemission is the only allowed photoemission process. For the
more realistic case of a muffin-tin-like potential inside the metal, VV in the bulk is
non-vanishing, and excitation within the bulk of the solid may occur. The relative
magnitude of the bulk and surface contributions of VV depends on many factors,
including the wavelength of the incident light, the polarization of the incoming light,
the plasmon frequency of the solid, and the symmetry of states |E) and |E;). It
should be noted that when nonlocal effects are considered, the distinction between
surface and bulk photoemission is somewhat blurred. The polarization of incident
light can be varied to help distinguish between surface and bulk photoemission.
Surface photoemission is often enhanced by p polarized light.

Since image states are located a distance away from the metal where there is
little electron density, momentum is required to displace an electron from the bulk
to the image state. This momentum is largely provided by the surface field VV, so

surface photoexcitation is considered to be the dominant mechanism. However, for
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direct excitation involving two bulk energy levels, the bulk field usually dominates

the excitation process.
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Chapter 3
Experimental

The experiments were performed using a custom ultrafast laser two-photon pho-
toemission spectrometer. Briefly, the spectrometer may be described as follows. An
ultrafast laser is used to generate short light pulses. The laser light source is a com-
mercial titanium-sapphire oscillator and regenerative amplifier. Tunability of the
laser in the visible wavelength region is achieved by the use of an optical parametric
amplifier (OPA). An ultraviolet pulse is produced by second harmonic generation
using a BBO crystal. The UV pulse serves as the excitation (pump) pulse in the
present experiments. The residual fundamental (visible) pulse is used as the probe
pulse. The two pulses are séparated using a dichroic mirror. The probe pulse is re-
flected by a pair of mirrors on a stepper motor-driven translation stage. The position
of th‘e stage determines the time delay between pump and probe pulses. The two
pulses are recombined using a second dichroic mirror and are focussed collinearly
onto the sample. The sample is a Ag(111) crystal mounted in an ultra high vacuum
chamber. The pump pulse generates an excited electronic distribution on the surface.
The probe pulse photoejects the excited electrons. The energy of the photoejected
electrons is determined by time-of-flight.

The experimental apparatus can be roughly divided into three main systems:
the ultra-high vacuum chamber and associated hardware and diagnostic equipment,
the laser system and associated optics, and the data acquisition electronics, which

includes the detection electronics, the computer interface, the control program, and
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the mechanical translation stage. The apparatus was constructed for the study of
electronic states at interfaces by two photon photoemission. Each component must
address its portion of the requirements of a TPPE system, as well as the additional
requirements imposed by other parts of the system.

The ultra-high vacuum chamber must provide an environment in which a sample
interface can be prepared, characterized, and maintained relatively free of contami-
nants for the duration of the experiment. The laser system must provide light which
is tunable in the energy region réquired to populate the electronic states of interest.
Ideally, the laser should produce pulses of a duration on the order of the lifetime
of the excited states of interest or shorter. In the case of image states on clean
metal surfaces, the lifetimes are on the order of 10-100 fs. An additional constraint
is placed on the pulse width by the relatively short path length of the time-of-flight
electron spectrometer, which requires that pulses be shorter than 1 nanosecond for
optimal energy resolution. The spectral width of the laser pulses should be on the
order of 50 meV or less, in order to resolve the first few members of the image series.
The pulse energy should be low to avoid the production of too many electrons per
pulse, which leads to broadening and distortion of the electron energy profile. Since
single electron counting detection is employed, the number of electrons which reach
the detector for a given laser pulse should be one or fewer. A general rule of thumb
is that one electron count for every 106 or 20 laser shots yields a relatively accurate
spectrum.

The data acquisition system should maximize signal throughput and minimize
artifacts and distortion of the spectrum due to limitations of the data acquisition
scheme, especially any effects which coﬁld affect the linearity of the energy measure-
ment or the amplitude of spectral features. The data acquisition system and methods
should also address such problems as long term drift in signal due to fluctuations in
laser power. Also, standard procedures and baseline measurements are required to
maintain the overall health of the system, rapidly identify and repair faulty compo-
nents, and ensure repeatability and validity of results. Measurements of laser power
(at several critical points in the laser system), pulse profile, spectrum, and shot-to-

shot noise are required. The quality of the vacuum in the vacuum chamber, substrate
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crystal order and cleanliness, and the purity of sample material introduced into the
chamber should be measured. The accuracy and linearity of the time-of-flight spec-
trometer must be determined for a wide range of operating conditions (sample bias,
count rate, number of low energy electrons). This chapter is a description of the
features of the apparatus which satisfy the requirements of the experiment, as well
as the efforts which have been undertaken to ensure the reliability of the results.

Experimental results and interpretation are given in the following chapter.

3.1 The Ultra-High Vacuum Chamber

The ultra-high vacuum (UHV) chamber was built specifically for the purpose
of angle-resolved two-photon photoemission. A detailed description along with dia-
grams of several key components can be found in the dissertation of W. Merry [63].
The bell jar is constructed of type 501 stainless steel, which is resistant to oxida-
tion, is relatively free of materials which outgas, and is bakeable to 150 C. Also,
type 501 stainless has a magnetic permeability near unity, which makes it suitable
for electron spectroscopy. Type 505 stainless steel bell jars are also available which
have the advantage of higher baking temperature, strength, and a magnetic perme-
ability closer to unity. Recently, high magnetic permeability nickel alloy chambers
have been developed specifically for applications which require very low magnetic
fields. All chamber materials were chosen to be UHV compatible and bakeable to
100-150 C, all breakable seals are conflat type with OFHC (oxygen free, high con-
ductivity) copper gaskets.

The vacuum chamber consists of severél subsystems: vacuum pumps, sample
manipulator, sample characterization (LEED, Auger, UPS), the time-of-flight spec-
trometer, gas leak valve, effusion cells, pressure gauges, and a quadrupole mass

spectrometer.
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3.1.1 Sample Manipulator

The sample manipulator fulfills a variety of functions necessary for the opera-
tion of the experiment. It securely holds the sample in place and allows the user to
precisely control its position. The manipulator linearly translates the sample along
three orthogonal axes. The manipulator may also be rotated to direct the sample to
the various ports on the UHV chamber for sarﬁple deposition, sputtering, LEED and
Auger spectroscopy, and time-of-flight photoelectron spectroscopy. The sample is
mounted on a goniometer sector which allows the sample to be rotated with respect
to the detector axis of the time-of-flight spectrometer. The goniometer sector allows
for rotation of the sample between approximately —4° and 20°. A useful feature of
the goniometer sector is the dial which facilitates the determination of the sample
angle. The Ag(111) sample is held by molybdenum clips to the sample holder. A
thermocouple is in contact the sample in order to measure sample temperature. The
sample holder is a piece of molybdenum which contains tungsten filaments for resis-
tive heating of the sample. The current to the heater is controlled by a Eurotherm
temperéture controller. The bottom of the sample holder is attached to a flexible
copper braid connected to a liquid He cold tip. This arrangement allows the sample

to be cooled to approximately 45 K.

3.1.2 Vacuum Pumping System

The ultra high vacuum chamber requires a number of pumps to maintain high
vacuum in the range of 1 x 10~ torr. The most important pump is the ion pump
(Perkin-Elmer model TNB-X), which maintains vacuum when the vacuum system is
not loaded with sample gas. The pumping capacity of the ion pump is augmented
by. titanium sublimation pump. When the system is under load, :.e., when a sample
gas is introduced into the chamber, the gate valve over the ion pump is closed and
the gas is removed using a turbomolecular pump (Edwards model EXT250) which
is more efficient than the ion pump for removing large volumes of gas at moderately

high vacuum. The turbomolecular pump requires a backing pump for operation. A

rotary pump is used as a backing pump. Maintenance of the system includes checking
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and changing the oil in the backing pump and periodic replacement or refurbishing

of the turbomolecular pump.

3.1.3 LEED and Auger Spectrometer

Low Energy Electron Diffraction (LEED) is useful for determining the structure
of the sample surface and adsorbed species. An electron gun is directed at an ordered
sample. The elastically diffracted electrons pass though a retarding field grid and
onto a phosphor screen where diffraction spots may be viewed. Analysis of the
electron diffraction spots can yield the two-dimensional unit cell of the surface or
adsorbate layer. LEED spot size can be used as a rough measure of the disorder of
a surface or layer.

Auger Electron Spectroscopy is a technique for identifying the chemical species
on or near a surface. High energy electrons are directed at the sample. Some of the
electrons exchange energy with tightly bound electrons on atoms of the substrate,
ejecting the electrons from the parent atoms. One of the remaining electrons drops
to the empty low-lying state. The remaining excess energy is taken up by ejecting
an additional (secondary) electron. This exchange of energy between electrons is
referred to as the Auger effect. The energy spectrum of the secondary or Auger
electrons is indicative of the atomic number of the parent atoms.

The low energy electron diffraction apparatus and Auger electron spectrometer
are combined in a single unit (a SPECTALEED NG from Omicron Vakuumphysik
GmbH). The operation in both modes is controllable by computer. The LEED
pattern is viewable through a port window (rear view configuration), which greatly
improves the viewable area over forward view LEED, especially in the case of a bulky

sample manipulator such as the one currently in use.

3.2 Laser System and Optics

The laser system consists of a self-mode-locked titanium-sapphire oscillator, a

titanium-sapphire regenerative amplifier, and an optical parametric amplifier. Both
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the oscillator and the regenerative amplifier are optically pumped using a single 22 W
CW argon ion laser (Coherent Innova 400). A beam splitter divides the 22 W output
into a beam of approximately 8 W which is used to pump the oscillator and a beam
of approximately 14 W which is used to pump the regenerative amplifier. The laser
system is illustrated in Figure 3.1. |

The oscillator (a Coherent model Mira 950-F) is a modelocked ultrafast laser that
uses titanium:sapphire as its gain medium. The laser cavity consists of a coaxially
pumped titanium-sapphire crystal at the focal point of a pair of concave mirrors,
a pair of Brewster prisms for dispersion compensation, a birefringent filter which
allows limited tunability of the laser, a variable width slit which helps to improve the
stability of the mode-locked pulse train, and an output coupler (a partially reflective
mirror). The output of the Mira oscillator is a 76 MHz pulse train of pulses with
a width of approximately 200 fs. At the center wavelength of 800 nm, the spectral
width of the laser pulse is approximately 9 nm. As configured, the oscillator is
tunable from 790 nm to 910 nm. The output power is approximately 1.9 W in CW
mode and 1.2 W in modelocked mode. After the beamsplitter the modelocked power
is approximately 380 mW.

The amplifier (a Coherent model RegA 9000) is a CW pumped Q-switched tita-
nium-sapphire laser. Prior to the injection of a pulse from the oscillator, an acousto-
optic Q-switch interrupts lasing in the cavity for-a period, allowing energy to build
in the lasing medium. Shortly before injection, the Q) switch is turned off. Pulses
from the Mira oscillator are directed into the RegA. The input beam passes through
a cube polarizer and a Faraday isolator. A single laser pulse is injected into the
cavity through an SiO, acousto-optic cavity dumper. Both the cavity dumper and Q
switch are powered by several watts of radio frequency power provided by a control
unit. The timing and phase of the RF pulses are determined by feedback from pho-
todiodes monitoring the injected and ejected pulses. The pulse takes approximately
20-30 round trips in the cavity. The resulting pulse is stretched to approximately
20 ps by the group velocity dispersion of the TeO; Q-switch and titanium-sapphire
crystal. The cavity dumper then extracts the pulse which returns through the Fara-

day isolator and is separated from the input beam by a polarizer. The stretched,
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Figure 3.1: Diagrém of the major components of the ultrafast laser two photon
photoemission spectrometer. The picosecond timing electronics used to determine

electron energies are omitted from the figure.
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amplified pulse is then compressed using four passes of a single gold-coated holo-
graphic grating. The output power is approximately 730 mW (3.7 uJ). The output
pulse width is approximately 260 fs.

The tunability of the Mira/RegA combination is not sufficient for the current
experiments, which often require light wavelengths between 550 and 750 nm. To
add tunability into the visible spectrum, an optical parametric amplifier is used
(Coherent model OPA 9400). The output of the RegA 9000 is sent through a 50%
beamsplitter. Half of the RegA beam is focussed into a sapphire disc to generate
white light continuum. The other half is focussed into a BBO crystal to generate
second harmonic. The white light and the second harmonic are focussed collinearly
in another BBO crystal where a portion of the continuum is amplified by a non-linear
optical process known as parametric amplification. The wavelength of the amplified
light is determined by the angle of the BBO crystal. A second pass through the
BBO is taken, further amplifying the portion of the continuum amplified in the first
pass. The amplified continuum is tunable from approximately 520 nm to 730 nm. At
a wavelength of 600 nm, the output power is approximately 30 mW (150 nJ). The
chirped output of the OPA is compressed using a prism pair. The resulting pulse
width is approximately 80 fs.

In the present experiments, a UV pulse is used as the excite or pump pulse.
The UV is generated by focusing the OPA output into a BBO crystal. The UV
and residual fundamental are separated using a dichroic mirror. The fundamental
takes a single round trip on a mechanical translation stage with a 1 um step size,
corresponding to a precision of 6.6 fs. The fundamental and second harmonic are

recombined on a second dichroic mirror and are focussed collinearly on the sample.

3.3 Data Acquisition System

Previously, the experiment used a picosecond laser and the apparatus was used
only for measurements of state energies and effective masses. The addition of the

femtosecond laser enabled measurements of the dynamics of the electronic states at

the metal surface, as lifetimes of such states are on the order of 10-100 fs. The
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acquisition of time-resolved TPPE spectra required the addition of a stepper-driven

mechanical translation stage and a computer program to scan the stage and acquire

spectra at each stage position. The data acquisition electronics and software are
central to the experiment and an often overlooked or misunderstood area. Errors in
this area are difficult to detect and may render results useless. An understanding of
the data acquisition system is required in order to use the system properly and to
tune and calibrate the system for optimum accuracy, linearity, and signal rate. Also,
future changes to the experiment may require a more complete understanding of the
current setup and its limitations. Therefore, the data acquisition system is described
in some detail.

The data acquisition system consists of the time-resolved single-electron-counting
electronics, the mechanical stepper motor driven stage, the stage controller, and the

program which controls the electron-counting electronics and the stage controller.

3.3.1 Amplification, Discrimination, and Timing

The amount of time required for an electron generated in this experiment to
traverse the 13 cm flight tube is typically a few hundred nanoseconds. For the
desired energy resolution of about 5 to 10 meV, a time resolution of a fraction of a
nanosecond is required. To obtain this level of time resolution, care must be taken
in the design of the detector, and special electronics are required. The electron
detector is a microchannel plate detector (Galileo Electro-Optics model FTD-2003,
with 2.5 cm diameter plates). The microchannel plates act as an electron multiplier.
A bias of +200 V between the flight tube and the first channel plate accelerates
the electrons in the direction of the channel plates. A bias of +2000 V is placed
across the channel plates which accelerates the electrons through the channels in the
microchannel plates. As the electrons strike the walls of the channels, an electron
cascade results which amplifies the signal. Upon exiting the second channel plate,
the electron cascade is accelerated by an additional +200 V bias towards the 50 2
impedance detector anode. At the top of the anode is a copper layer on top of a

.5 mm ceramic plate which is connected to a conical aluminum stalk. The conical
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form of the anode helps prevent reflections of the signal which lead to ringing in
the pulse shape. The ceramic plate decouples the anode from the voltage bias of
the copper layer: the anode is A.C. coupled. The anode terminates in a 50 2 BNC
connector which is attached to an ultra high vacuum compatible BNC feedthrough
mounted on a conflat type flange.

The amplified pulse has a positive-going hump with a rise time of a fraction of a
nanosecond followed by a negative hump followed by some ringing. The pulse height
varies substantially from pulse to pulse (the amount of amplification provided by
the channel plates varies from point to point on the plate), but the overall pulse
shape is reproducible. The pulse is amplified by a factor of 10 by a high bandwidth
(1 GHz) amplifier (Philips Scientific model 6954B-10) located near the chamber.
The output of the amplifier is connected to a Tennelec model TC454 Quad Constant
Fraction Discriminator. The role of the Constant-Fraction Discriminator (CFD) is
to turn the complicated pulse from the microchannel plates into a reliable timing
pulse with a jitter of less than 100 ps. A threshold discriminator (as opposed to a
constant fraction discriminator) generates a timing pulse whenever the input pulse
reaches a certain voltage threshold. However, since the input pulses have a variable
peak height, some timing jitter would result from threshold discrimination. Also,
a threshold discriminator may not be able to differentiate between the fast MCP
pulses and slow line noise. A CFD possesses additional circuitry to circumvent these
shortéomings. A CFD splits off a fraction of the incoming pulse, inverts it, delays it,
and adds it to the original pulse. This eliminates slow pulses, since only a pulse with
a rise time on the order of the fixed time delay between fractions will have appreciable
amplitude. The resulting pulse is then sent to the threshold discriminator portion
of the CFD. The threshold discriminator triggers a zero-crossing detector. When
the pulse crosses zero, a timing out pulse is generated. The timing out pulse relies
primarily on the rise characteristics of the incoming pulse, and not the amplitude.
The threshold and zero crossing voltages can be set with trimmer potentiometers
and measured with a voltmeter. The constant fraction delay is specified by a short
length of cable. In general, for best linear response, the discriminator levels should

be readjusted whenever it is suspected that changes in the timing characteristics or
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amplitudes of MCP pulses have occurred, for example, when replacing the amplifier,
replacing the channel plates, changing the MCP bias, and periodically as the channel
plates age. Improper adjustment of the CFD can lead to occasional triggering from
the ring instead of the main pulse (this can give rise to slightly twinned, broadened
péaks), low count rate (if the threshold is set too high), a high number of dark counts
(if the threshold is set too low), biasing towards two electron pile up events, and poor
time resolution. One way to-test of the adjustment of the discrimination electronics
is to increase the channel plate voltage by 100 volts or so in order to change the
mean amplitude of the electron pulses and measure the change in count rate. If
the discrimination electronics are properly adjusted and the channel plates are in
working order, there should be a minimal impact on the count rate and no impact
on the spectrum. |
Currently, there are improved constant fraction discriminators on the market.
The latest discriminators allow for more flexibility in the adjustment of the size of
the fraction and the fraction delay. The other timing pulse is the photodiode output.
Since the photodiode output has a much lower variation in amplitude (typically
5 percent), a threshold discriminator is used. The photodiode output acts as the
“start” pulse and the processed output of the MCP is provides a “stop” pulse. The

time between pulses is (approximately) the flight time of the photoemitted electron.

3.3.2 Time to Digital Conversion

Both timing pulses are sent to the TAC, Time to Amplitude Converter (Canberra
Model 2043 Time Analyzer). The TAC generates a pulse whose voltage is propor-
tional to the time between start (photodiode) and stop (MCP) pulses. The TAC
voltage is digitized by the MultiChannel Buffer (MCB), which is an EG&G Ortec
Model 918 ADCAM. The MCB uses an efficient buffering scheme. Instead of passing
each digitized value along to the computer, it simply adds a count to an address
in the internal buffer memory corresponding to the digitized value. The result is a
histogram of electron energies. Since the MCB has a 13-bit ADC (Analog to Digital

Converter), the buffer memory has 2'® or 8192 addresses, or “bins”. Each bin has
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a capacity of 31 bits or 23! ~ 2 x 10° counts. An extra bit is reserved for marking
regions of interest. After a scan with a duration of 15 s to several minutes, the
resulting histogram is read using a dual port memory interface card in the the PC.
This buffering scheme avoids a potential bottleneck in the data acquisition process
and frees the PC to perform other tasks while the MCB is collecting and buffering
the data. A typical data rate is 10 kHz. FEach time conversion takes approximately
12 ps, which results in a “dead time” during which subsequent events are ignored.
Since laser pulses arrive every 5 us, two potential electron counting events are ig-
nored, resulting in an effective dead time of 10 us per recorded event. For a 10 kHz
acquisition rate, the dead time comprises approximately 10% of the total acquisition
_ time. The model 918 MCB keeps track of dead time by adding 12 us to a dead time
counter for each data acquisition event. Unfortimately, this results in a 20% overes-
timation of the dead time. This error is corrected in the data analysis software. It
should be noted that newer ADC devices have a reset time of less than 5 us, which
for the current experiment would eliminate dead time in the digitization step. There
are also picosecond time analyzers that can handle multiple stop pulses per start
pulse, which increases the usable data rate. Newer time analyzers often have built-in

ADC units, so a separate ADC is not necessary.

3.3.3 Linearity, Count Rate, and Noise

Since this is a single-electron-counting system, the signal is only linear with count
rate when there are one or fewer electrons per laser shot. Non-linearity caused by
~high count rates can be easily observed in the current system. This non-linearity
can make it difficult to compare peak heights (either between two neighboring peaks
at a given femtosecond time delay or for one peak at different time delays). Also
it can flatten the top of very tall, narrow peaks, making measurements of lineshape
difficult. It can also cause asymmetry in a measured peak. In addition, high count
rates can often be a sign that space charge broadening is occurring, i.e., that the

electron flux is high enough that a measurable broadening and shifting of electron

peaks occurs through electron-electron repulsion in the free space of the flight tube.
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Space charge broadening should not be confused with dielectric charging, which is the
accumulation of charge on dielectric components near the sample or flight tube. The
effect of dielectric charging is less predictable than that of space charge broadening.

For a laser repetition rate of 200 kHz, one would assume that a count rate of
10 kHz would mean that the probability of any one laser shot producing an electron
would be 1/20 or 5%. The chance of two electrons being emitted would be 1/400 or
0.25%. Thus 5% of the signal (not 0.25%) would be lost due to two electrons being
emitted per laser shot. However, this assumes a constant probability of emitting an
electron per laser shot. In reality, there is an appreciable amount of noise in the laser,
approximately 5 or 10%. Assuming that the probability of emitting an electron is
proportional to the laser power to the third power, this means that for pulses that
have 10% more energy, the probability of emitting an electron is 33% larger than
that of a pulse of average energy. Thus, pulse-to-pulse fluctuations in the laser pulse
energy can significantly increase the probability of more than one electron reaching
the detector per shot, reducing the usable count rate. It should not be assumed that
the linearity of the detection electronics remains the same day-to-day. The linearity
of the detection electronics should be verified on a regular basis, by comparing spéctra
and decay traces for a range of count rates (for example, by using a neutral density
filter to attenuate the laser beam). '

In addition to the shot-to-shot noise referred to in the previous paragraph, the
laser power can drift over the course of a few minutes or a few hours. This laser
drift can have a devastating effect on the accuracy of kinetics traces. To minimize
the effect of the laser drift, scan times should be as short as possible. This can be
achieved either by reducing the number of points (stage positions) in a scan, or by
reducing the amount of time a spectrum is acquired at a given stage position. A lower
limit is placed on the number of stage positions by the fact that a large number of
points along the decay trace are required in order to gain good statistics on the time
constants extracted from the data. A lower limit on the data acquisition time per
stage position is placed by the fact that it takes a few seconds to set up acquisition
at each stage position. The bottleneck in this case is the amount of time required to

transfer buffered data from the MCB and to clear the MCB memory in preparation
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for a new scan. Currently, the spectrum is acquired for approximately 15 seconds
at each stage position, and the number of steps in a scan is between 40 and 200.
Generally, six complete scans are taken for a given set of experimental conditions.
The overall amplitudes of each scan in a set are compared in order to check for the

effects of laser power drift.

3.3.4 The Data Acquisition Program

The data acquisition program is responsible for controlling the electron c.ounting
electronics and the stepper motor-driven translation stage as well as generating a
data file. The data acquisition program is actually a MATLAB script called TRTPPE.M
running in DOS. MATLAB was chosen because the system’s users were familiar with
MATLAB syntax, the syntax is terse and readable, and the MATLAB interpreter
environment is ideal for rapid code development and testing.

The initialization of the data acquisition script involves essentially three steps:
1. Define the number and spacing of steps in the scan.

2. Query the user for number of scans and scan direction.

3. Move the stage to the start position.

The main loop contains three essential steps:

1. Calculate the stage position and move the stage.

2. Clear the MCB and start acquiring a spectrum, wait.

3. Read the contents of the MCB, store to a file.

Since the version of MATLAB in use has no facility for interfacing with data
acquisition hardware, the script makes use of three DOS programs written in C to
control the stage, control the MCB, and write the contents of the MCB to a file.
These three programs are called STAGE, MCBACQ, and MCBMAT, respectively. MATLAB
provides a mechanism for executing small DOS programs from within a MATLAB

script. The source code for the MATLAB script and the C programs is in Appendix A.
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The stage controller is a Klinger Scientific model CC1.1. It drives a mechanical
translation stage with a step size of 1 um driven by a stepper motor. The round trip
time difference for the laser pulse for a single step is 6.7 fs. The stage controller is
interfaced to the computer using the IEEE-488 (GPIB) interface bus and a National
Instruments AT-GPIB interface card. The GPIB bus is a medium bandwidth (ap-
proximately 100 kilobyte/sec) bus capable of controlling 15 instruments. The stage
is controlled by issuing simple text commands across the GPIB bus. In the software,
the commands are arguments to GPIB functions in a function library which is sup-
plied with the interface card. The STAGE program performs the communication with
the stage controller. The program accepts two arguments, a direciion and a position.
The appropriate arguments are generated by the TRTPPE.M script.

The MCBACQ program issues commands to the Ortec model 918 ADCAM multi-
channel buffer. The connection to the model 918 to the computer is through a special
purpose interface card. The card possesses a mailbox I/O interface through which
commands are issued to fhe 918 by writing to a specific I/O address. C functions
for the low-level I/O were provided by EG&G Ortec. The example programs in the
manual are incorrect. The MCBACQ program clears the buffer memory and acquires a
spectrum for a fixed amount of time, typically 15 s.

The MCBMAT program is used to save the contents of the 918 buffer memory. The
memory is accessible through the interface card using a dual-port memory interface.
The contents of the 918 data buffer are accessible on the PC in the 0xD0O00 memory
page.

A full spectrum 1is generated at each stage position. Depending on the number
of points along the time axis required for a given experiment, between 40 and 200
spectra are generated for a given scan. Along with each scan, a file is saved which
contains information about the number and spacing of points along the time axis
as well as a text comment. The data are saved in platform-independent MATLAB
format. The MATLAB format is readable by a number of programs including Octave,
a freely-redistributable MATLAB clone. Information on the file format is available in

the MATLAB documentation.
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Chapter 4
Results and Discussion

In this section the results of a systematic series of experiments and theoretical
investigations designed to identify and characterize the important physics relating to
electronic states and dynamics at molecular adsorbate interfaces are presented. Two
photon photoemission is employed to determine the energies and population kinetics
of excited electronic states at molecular adsorbate interfaces. The adsorbate mate-
rials studied theoretically and experimentally include alkali metals, alkanes and rare
gases. Theoretical models were implemented in an attempt to relate experimental
results to well-known physical parameters and in order to test assumptions about
the role of the substrate and overlayer electronic structure and the polarizability of
the interface and in order to develop and refine a coherent physical picture of the
systems of interest.

Because of the complexity of the electronic structure of overlayer systems, it is
difficult to separate the relative contributions of the substrate and overlayer and
the physical parameters which describe them. This is the motivation for studying a
series of similar, but slightly different materials, such as alkanes and rare gases. The
alkane data is contained in other theses, so only the rare gas and alkali metal work
are presented here. In addition to varying the material under study, the coverage is

also varied, in an attempt to determine the impact of layer thickness on quantum

confinement and in order to monitor the development of 3D band structure.
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4.1 Surface and Image States of an Alkali Layer
on Cu(111)

In this section a theoretical model is developed and an analytic solution is derived
for the case of an ultrathin alkali metal layer (specifically, Na) on a metal substrate.
Portions of this work were adapted from a paper by McNeill and Harris [92]. The
author performed a series of experiments on K/Ag(111) in order to further test the
model and improve our understanding of image and surface states in the presence
of alkali metal layers. However, problems with the TPPE spectrometer cast doubt
on the validity of the results, and it was decided not to include them in this thesis.
The model described in this section was developed in an attempt to address several
important issues relating to the electronic structure of excited electronic states at
interfaces. These issues include the delocalization and resulting dispersion or effec-
tive mass of interface states or bands, the interplay between effects induced by the
image barrier, interface potential, and substrate band structure, and the applica-
bility of multiple reflection theory [17] to adsorbate systems. A single atomic layer
of alkali metal on a metal substrate was chosen for these calculations since it is
more straightforward to model than other cases, such as insulator overlayers, as the
metal overlayer does not affect the image potential in the vacuum and the electronic
structure of the overlayer itself is simple (free-electron-like).

The fundamental effects of adsorbates on the electronic structure of surfaces
have been identified by experiment and theory. The presence of adsorbates on a
metal surface has been shown experimentally to shift the binding energy of image
states [93-96], give rise to adsorbate-derived states [97-99], or change the disper-
sion of the image states [95,100,101]. More recently, laser-induced desorption of
alkali metal atoms from metal surfaces was observed and monitored on the fem-
tosecond timescale [52]. An approximate phase shift model for image and surface
states for the case of an alkali metal layer deposited on a noble metal substrate was
developed by Lindgren and Walldén [102]. Their model agreed with image state

binding energies determined by inverse photoemission. However, the results of later
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studies of Na/Cu(111) and K/Cu(111) using high-resolution two-photon photoemis-
sion [101,103] conflict with the predictions of that model. The approximate nature
of that model and the development of experimental methods with resolution suffi-
cient to provide a good test of theory warrants the re-investigation of the phase shift

model for the case of alkali overlayers.

4.1.1 Multiple Reflection Theory for a Metal Adlayer

An extension of the phase shift approach to multiple reflection theory was pro-
posed by Lindgren and Walldén [102] for the case of alkali metal layers adsorbed on
a noble metal substrate. In their approach, the overlayer is represented as an addi-
tional phase shift of 2¢4, where ¢4 = d\/ 2me(E - U)/ h? and E is the energy of the

electron, U is the potential in the overlayer, and d is the thickness of the overlayer.

The bound state condition is then ¢.+ ¢, +2¢, = 27n. However, a careful inspection
of the underlying wavefunction solution reveals that wavefunction matching is not
preserved for the above bound state condition. While this expression constitutes
an approximate solution to the problem, it is possible to solve the problem exactly
for a more general potential (potential illustrated in Figure 4.1). In the present ap-
proach, the effect of an alkali overlayer is explicitly incorporated into the expression
for ¢. by applying the appropriate matching conditions at the boundaries between
the substrate and overlayer regions, thus ensuring that the bound state energy given
by multiple reflection theory corresponds to a continuous wave function. The re-
sults of the model are then compared to the binding energy and dispersion results of
Fischer [101,103)]. |

The present phase shift model is a variant on the well-known particle in a 1-D
box model. In this case, the flat box potential represents the layer. On one side, the
box is bounded by a periodic potential representing the substrate, while on the other
side the box is bounded by the metal image potential. Bound states are determined
by applying matching conditions at the edges of the box. The two-band nearly- free-

electron model [5,61] is used to describe the electronic wave function of the substrate.

According to the model, the wave function for an electron in the band gap is of the
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Figure 4.1: The model involves a metal substrate with a work function &, band gap
parameters E,, V,, and wavevector g, an overlayer represented by a flat potential
barrier of height U and thickness d, and a Coulomb potential in the vacuum.
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form »
Y. = Ke% cos(pz + §), (4.1)

where p the real part of the electron’s wave vector, ¢ the imaginary part of the wave
vector, and ¢ the phase parameter are related to the reciprocal lattice vector g and
the band gap parameters E, and V, which correspond to the position and width of
the gap, respectively..

In the overlayer region, the potential is approximated by a square well. Solutions
in this region are in general a linear combination of incoming and outgoing plane
waves:

P = Ae™* + Be 1% (4.2)

where k; = \/ 2m(E — U)/Rh?, E is the energy of the electronic state, U is the po-
tential of the overlayer, and m is the effective mass for thé overlayer band. The
origin of the z axis is set to the adlayer/vacuum boundary in this derivation. The
wave function in the adlayer at z = —d, where d is the thickness of the overlayer, is
then matched to solutions in the bulk crystal at half the inter atomic spacing outside
the bulk crystal along the z direction (half-layer termination [61] is assumed). The
matching condition is satisfied by setting the logarithmic derivatives of the wavefunc-
tion solutions on either side of 2 = —d to be equal, thus determining the coefficients
A and B. The application of wavefunction matching results in a single expression
which treats the crystal and adlayer as a unit for the purpose of calculating phase
shifts. In order to determine the phase shift, the solution in the adlayer is matched

at the adlayer/vacuum boundary (z = 0) to a plane wave of the form
P = e " 4 re'Poe? (4.3)

where x = /2mE/h*. The two sets of matching conditions give rise to a system of
equations which can be simplified to yield an expression for the total phase shift in

the crystal and overlayer regions:

tan b _ Rt tan (kld + tan™! (—_q +2 tan(pa/2 + 6))) . (4.4)
2 K ki ki

As in previous calculations of image state binding energies for clean metal sur-

faces [19], the potential in the vacuum region is approximated by a Coulomb potential
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with a cutoff. The solutions to the time-indépendent Schrédinger equation for the
Coulomb potential are confluent hypergeometric functions [55]. The solution in the
vacuum region which matches the solution in the cutoff region and vanishes at in-
finity is the irregular Whittaker function [54], W, ,(p), where u = 1/2, A = Z+/2E,
p=22V2F, and Z =1 /4 for the case of a conducting substrate, and F and z are
in atomic units. The phase shift for a unit of flux traveling from the origin towards

the Coulomb barrier is

(4.5)

d’b = 2k.2p + Ztan"l (2\/2—E— Wi,u(p0)> ‘

ke Wi u(po)
where Wy (po) is the derivative with respect to p evaluated at po , k. is the wave
vector in the cutoff region, py = 220v/2F , and 2z, is the cutoff distance. The
values of W) ,(po) were calculated using the generalized hypergeometric function
HyperGeometricU in Mathematica [104]. As in the case of multiple reflection theory,
bound states occur where the round trip phase shift is an integer multiple of 27.
The zero of energy in the matching was set set such that k. = . This simplifies the
expression for ¢, but does not affect calculated binding energies. Since the expres-
sion for the phase shift is derived using the proper matching conditions, the wave
functions derived where thé bound state condition is met are continuous, as shown
in Figure 4.2. Since the bound state condition does not uniquely define the quantum
number n, we define n according to the behavior of the wave function in the vacuum
region, i.e., a wave function with an exponential tail in the vacuum is an n = 0 state,
a wave function similar to a hydrogenic n = 1 state in the vacuum is an n = 1 state,
etc. |

Whereas Fischer and coworkers [101] concluded that no set of parameters in
the expression of Lindgren and Walldén [102] fit the observed binding energies, the
present model fit the observed binding energies to nearly within experimental error.
The best fit resulted when the Na potential was set to 4.25 €V below vacuum and the
thickness of the layer was set to 4 A. The values of E,, V,, and the cutoff distance
in the vacuum z;, were taken from Echenique and Pendry [19]. The work function
of Na/Cu(111), 2.69 eV, was taken from Lindgren and Walldén [102]. The effective

mass for the overlayer was set to that of a free electron (the results could perhaps be
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Figure 4.2: Wave functions for the surface state (n = 0) and first two image states
(n =1, 2) for a model potential for Na/Cu(111).
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improved by employing the effective mass of the appropriate band of bulk Na). The
best fit parameters give binding energies of 3.0 and .72 eV for the n =0 and n =1
states, respectively. These values compare well with the experimental values of 2.88
and 0.72 eV.

One difference between the present model and previous attempts is that the phase
shift for the overlayer is calculated using a solution which is properly matched at the
layer/substrate boundary, as opposed to assuming an additive phase shift ¢; = k;d.
It is easy to illustrate that in some cases the assumption of an additive phase shift
will yield results which are clearly incorrect. If one assumes a high potential barrier
in the layer, the electron is excluded from the layer, the phase shift at the layer is
7, and the result is a hydrogenic image series. However, if one assumes the phase
shift of the substrate is additive and is, for example, 7/2, the model will predict
that the substrate will result in a substantial deviation from hydrogenic behavior.
This result doesn’t make sense given the fact that the electron is effectively excluded
from the substrate and therefore the substrate shouldn’t affect the binding energies.
The application of matching conditions at the substrate/layer boundary as in the
present model removes this apparent contradiction. The expression of Equation 4.4
possesses the correct behavior (¢, = m) for the limiting case of an infinite potential
barrier in the layer. |

Another important difference betWeen the two models is the use of a cutoff pa-
rameter 2;, for the image potential in the vacuum in the present model instead of
extending the overlayer potential to the point where it intersects with the image
potential as in the previous model. The presence of the cutoff implies that in most

cases, the deepest part of the potential well is in the vacuum region outside the layer

instead of inside the layer. In other words, there is a small potential barrier for an

- electron impinging on the layer. This barrier affects the energies of low-lying states
which possess a maximum in the probability amplitude near the layer /vacuum in-
terface. It is worth noting that the present model potential may also be extended
to the case of thin insulator layers, as is shown later. The previous model fails for
insulator layers where the layer potential is above the vacuum level, since the layer

potential may not intersect the image potential as required by the model.




63

4.1.2 Eﬁ'ecfive Mass

The method of Giesen et al. [32] for estimating the effective mass of image state
and surface state electrons within the multiple reflection theory formalism has been
successful in accounting for the observed effective mass of image and surface states
on clean surfaces but not for adsorbate covered surfaces. This method was described
in Section 2.3.4. The method relies on the value of the phase shift at a bulk band
edge, either (top of gap, for the case of a Shockley-inverted band gap) or zero
(bottom of the gap for a Shockley-inverted band gap).

A straightforward way to apply this model to the case of an adsorbate layer is to
assume that the primary effect of the adsorbate layer on the surface electronic struc-
ture is the adsorption-induced work function change. For the case of Na/Cu(111),
the work function lowering induced by the adsorbate places the image state near
the middle of the gap. Assuming this to be the only effect of the adsorbate layer,
the model predicts an effective mass of m* =~ 1m, for the n = 1 image state. The
measured effective mass is 1.3 m, [101}, which indicates that work function lowering
alone does not explain the Na/Cu(111) effective mass. ‘

It is apparent that, as well as causing a work function change, the adlayer has an
additional effect on the dispersion of the image state electron. vTherefore a method
which explicitly incorporates adlayer effects into effective mass calculations is re-
quired. In this section, the theory of the previous section for binding energies of a
simple overlayer is extended to determine a theoretical effective mass.

An approximate way to calculate effective mass using the 1-D model potential
is by including the momentum dependence in the parameters which describe the
band gap. If m},, is the reduced effective mass of the upper band edge and mj, is
the reduced effective mass of the lower band edge, then since E, corresponds to the
average of the upper and lower bend edges, its dependence on k;, is given by

21.2 1

k
Ey(ky) = E(0) + 1 ——, (4.6)

*
2me M,

where m;, . is the average of the masses of the upper and lower band edges. Since

2V, is the difference between the upper and lower band edges, its dependence on k
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is given by

Vi) = Y0+ o (- ). @)

’ e \lype m?be
The dispersion in the overlayer can be approximated by adding an effective mass
term to the expression for the perpendicular component of kinetic energy in the

overlayer,

KE. =E — U, — i’k /2my, (4.8)

where m; is the effective mass in the overlayer and Uj is the overlayer potential.

For the clean surface, the curve corresponding to ¢, = 7 is the upper band edge.
The addition of an overlayer will change the position and dispersion of the curve
corresponding to ¢, = m. The new position and dispersion of the ¢. = m band can
be found by inserting a value for & in equations (7) and (8) to determine the local
values of E; and V,, which are in turn used to determine the parameters p, g, and 4,
related to the crystal phase shift by Equation 4.4. The curve is finally determined
by fitting a parabola between points corresponding to ¢, = 7 for several values of k.
Figure 4.3 compares the upper band edge of Cu(111) and the curve corresponding
to a crystal phase shift of 7 in the presence of an overlayer of Na. Dispersion of
the overlayer band was not taken into account—a flat dispersion in the overlayer was
assumed. Note that there is a shift of almost 2 eV and a flatter dispersion in the
¢. = w curve. The effective mass of the image state is determined by the geometric
construction of Giesen et al.

An important question is how to treat the dispersion in the overlayer. One could
assume a flat dispersion in the overlayer which implies that the kinetic energy in the
overlayer would be independent of k. For the case of Na/Cu(111) this assumption
leads to a result of m*/m, = 1.8 for the n = 1 state. If one assumes a free-electron
dispersion in the overlayer, the resulting effective mass’for the n = 1 state is m* =
1.1m,. A comparison of these results to the experimental value [101] of m*/m, = 1.3
suggests that the effective mass m; associated with the Na layer is somewhat greater
than that of a free electron. A quantitative analysis of the relative influence of the
effective mass of the overlayer material and the substrate material on the image state

effective mass within the assumptions of this model was not performed but would be
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Figure 4.3: The effective mass associated with an image state is determined by forcing
the image state parabola to cross the ¢, = « curve at the same point (E¢) where
the free electron band crosses the ¢. = 7 band. For the case of a bare metal surface,
the upper band edge and the ¢, = © band are one and the same. The presence of an
adlayer changes the position and curvature of the ¢, = 7 band.




66

useful for future studies of similar systems.

4.1.3 Conclusions

Within the assumptions of the two-band nearly-free-electron model, a flat adlayer
potential, and a Coulomb potential with cutoff, an exact analytic solution to the
problem of image states on alkali metal-covered surfaces was derived within the
framework of multiple reflection theory. The expression for the total phase shift
yields binding energies in good agreement with experimental binding energies of
image and surface states on Na/Cu(111). A simple theory which accounts for the
effective mass values of image and surface states was modified for the case of a metal
overlayer. Effective mass calculations for Na/Cu(111) suggest that the electron in the
overlayer is somewhat heavier than that of a free electron and qualitatively account
for the discrepancy between experimental results and those obtained from simple
work function lowering arguments. The principal difference between this model and
previous models is the addition of a cutoff parameter which implies a potential jump
at the layer side of the layer/vacuum interface. It can be concluded that the presence
of this barrier is important in determining the energies of low-lying electronic states.
The approach taken here, matching the wave functions in the overlayer to wave
functions in the bulk and in the vacuum‘, is general in principle and may be applied
to more complicated cases, such as dielectric layers, which are discussed later in this

chapter.

4.2 Ultrafast Kinetics of Image States on Clean
Ag(111)

This section illustrates the analysis an interpretation of ultrafast kinetics data
presented in later sections. The ultrafast kinetics for the n = 1 image state on the
Ag(111) surface were determined using the vacuum chamber and Titanium:Sapphire
laser described in Chapter 3. The time delay between pump and probe pulses is

determined by the position of the mechanical translation stage. The time-of-flight
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electron energy analyzer records a complete spectrum for each stage position. The
result is a three dimensional data set where the axes are time, energy, and electron
counts. Typical results for the n = 0 and n = 1 states on clean Ag(111) at laser
wavelengths of 295 nm for the pump and 530 nm for the probe are shown in Figure 4.4. |
The n = 0 state feature is due to a non-resonant two photon excitation through a
virtual intermediate state. -

Kinetics traces are generated for a given feature by plotting the signal as a func-
tion of time delay. The signal in this case is the number of electron counts associated
with a given spectral feature. In the case where the functional form of the line shape
of the spectral feature is known, the signal may be determined by numerical fitting.
For other cases, it is more practical to approximate the integrated signal by summing
the electron counts over a small range of energy near the peak maximum. Figure 4.5
contains the kinetic traces for the n = 0 and n = 1 states taken from the spectra
shown in Figure 4.4. While the two traces are similar in shape, there is a slight asym-
metry in the n = 1 peak and the maximum of the trace occurs at approximately 35
femtoseconds after thé maximum of the n = 0 trace. Since the n = 0 state is due to
a non-resonant two photon absorption, the kinetics trace represents the instrument
response function. The instrument response function is assumed to be Gaussian in
shape. The n = 1 state is modeled by convolving the instrument response function
with an exponential rise and decay function. The exponential rise and decay function
is the solution of the rate equations for a system in which initial excitation from the
ground state into the upper state is followed by decay into the lower state which is
the state of interest. The fit corresponds to a rise and decay of 20 fs and 26 fs.

The functional form for a single exponential decay is
n(t) = Ae'l". (4.9)

In some cases, the population in a given state may be due to population transfer or
feeding from another state. If the population transfer is governed by rate equations,

the kinetics may be described by a single exponential decay with an exponential rise.
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Figure 4.4: The time resolved two photon photoemission spectrum for clean Ag(111)
at a probe wavelength of 590 nm. The n = 0 surface state and the n = 1 image state
are visible in the spectrum. The time axis represents the relative delay between
pump and probe laser pulses. At t = 0, the pulses are coincident in time. The

n = 0 feature is present at approximately 1.5 ¢V and the n =1 feature is present at
approximately 1.2 eV. , »
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For this case, the functional form is

71

nt)=A (e7t/m — e7t™), (4.10)

To—T1

Equation 4.10 may be difficult to evaluate numerically near 7 = 71, something which
must be considered when modeling data using this equation, since many minimization
algorithms may become trapped near the discontinuity. It ﬁlso should be noted that
Trise aNd Tgecoy are interchangeable in Equation 4.10. A fit to this equation does not
determine which time constant is associated with the rise or decay of population in
the state of interest.

When the laser pulse duration and the lifetime of the state of interest are on a
similar time scale‘, the fesult is a smearing of the kinetics trace. The smearing of
the signal is often described as a convolution with an instrument response function.
Consider first the case where the pulse duration is short compared to the kinetics
being measured. The signal at time ¢ may be represented by the product of the
integrated laser intensity I and the population dynamics (n(t) = Ae~¥/" for t > 0
and n(t) = 0 for t < 0). When the pulse duration and 7 are on a similar time
scale, the integrated laser intensity I is replaced by a function I(¢) which describes
its intensity as a function of time. The signal at a given time delay ¢ changes from

a simple product of intensity and population to an integral,

S(t) o \/% [ °:o I(t — £)n(t')dt. (4.11)

The above is the definition of the convolution integral [105], hence the signal can
be termed a convolution of the probe pulse profile and the function which describes
the population. Qualitatively, the non-instantaneous probe pulse with a maximum
intensity at time ¢ probes a weighted average of the population in the region near
t. The weighted average is represented by the convolution. Similarly, for the case
of a non-instantaneous pump pulse, the population as a function of time is smeared
compared to the exponential and can be represented as a convolution of the decay

function with the time profile of the pump pulse. It can be shown that this pair of

convolutions can be represented by a convolution with a single instrument function
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Rins:. Representing the convolution integral for functions f (t) and g(t) as f = g, the
signal S(t) is given by

S(t) o< I ¥ (I % n) = Ripgy * n, (4.12)

where Rjns:(t) is the instrument response function for the pump and probe pulses
I,(t) and I(t) given by,
Rinst = I + L. (4.13)

The instrument response function given by Equation 4.13 is also known as the
cross-correlation of the pump and probe pulses. If the pump and probe pulses are
Gaussian in shape, then the cross-correlation is also Gaussian in shape. For the
current experiment, the n = 0 signal at a given time delay is directly related to the
product of the pump and probe intensities integrated over the time axis. The n =0
feature serves as a convenient measure of the time instrument response function for
the experiment. A portion of the 35 fs shift from ¢ = 0 in the maximum of the
n = 1 decay trace can be explained in terms of the properties of the convolution.
When the symmetric Gaussian instrument response function is convolved with the
asymmetric exponential decay, the result is a shift in the maximum. Another portion
of the time shift can be attributed to the exponential rise of the n = 1 population.
An alternative explanation for the exponential rise, one which does not imply initial
excitation from thé ground level to an upper level and subsequent decay to a lower

level, is provided by the optical Bloch equations described later.

4.2.1 Numerical Fitting

As noted in the previous section, it is often necessary to describe the kinetics trace
as a convolution of an instrument response function with a function describing the
population dynamics (for example, a single exponential function). This complicates
the determination of the decay constant 7 for a given kinetics trace. In addition,
a given data set will contain a certain amount of noise which also complicates the
determination of 7. Numerical methods are required both to determine the under-

lying rate and to generate statistical estimates of the uncertainty of the measured
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Figure 4.5: The n = 0 state (circles) and n = 1 state (squares) kinetics traces for
clean Ag(111) at 590 nm and a temperature of 50 K. The Gaussian full width half |
maximum of the n = 0 feature is 112 fs and represents the instrument response
function.
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rate based on the noise or measurement uncertainty associated with the data. In
addition to estimates of uncertainties, numerical methods can be used to determine
the quality of fit, which is useful in establishing which of two or more candidate
models yields a better fit to a given data set.

Numerical evaluation of the convolution may be achieved by using the convolution
theorem, which relates the convolutfon of two functions to their Fourier transforms.
The Fourier transform (denoted by T'[]) of the convolution of two functions is equal

to the product of their Fourier transforms,
T[S] = T[Linst]T[n] = TLinst * n]. (4.14)
The convolved signal S(t) is obtained by application of the inverse Fourier transform,
S=TT[S)]| = T [T[Iins:] T[] - (4.15)

Because the data consist of discrete points, discrete Fourier transforms are employed.
The application of discrete Fourier methods to model the effect of an instrument
function is covered elsewhere [106]. In principle, it is possible to directly retrieve the

population n(t) by direct deconvolution,

n(t) = T [Tr‘gi]] | (4.16)

The above equation only yields meaningful results when the Fourier transform of Linst
is nonzero everywhere. In practicé, numerical deconvolution is often not a reliable
method for extracting information about n(t). The preferred method for extracting
the underlying population n(t) is convolution of a trial function (in this case an expo-
nential decay function) with the instrument response function (a Gaussian instrument
function) in conjunction with optimization of the non-linear parameters of the trial
function via minimization of the square error 3" (Sezpt — Smodet)?; @ method known as
non-linear least squares minimization. There are several methods available for non-
linear least squares minimization. The choice of method depends on the kind of data
and the functional form of the fitting function. The Levenberg-Marquardt method is

a popular and fast gradient search method. Nelder-Mead downhill simplex is slower
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but is preferred in some cases. Some implementations of Levenberg-Marquardt min-
imization behave poorly when degenerate solutions exist, as is often the case when
modeling multiple exponential decays. The fit to the data shown in Figure 4.5 was
obtained using Nelder-Mead downhill simplex minimization.

It is poor judgment to compare model results and base conclusions on parameters
without reliable estimates of the uncertainty in model parameters. Reliable estimates
of the uncertainty in the measured time constants may only be determined by care-
ful application of statistical methods to well chosen models.- Uncertainty is typically
represented by a confidence interval in which it is relatively certain (expressed as a
percent probability) that the “true” value resides. Typically a confidence interval
of 1o and 20 of a Gaussian distribution corresponding to a probability of approxi-
mately 67% or 95% is employed. Many implementations of the Levenberg-Marquardt
minimization method return uncertainty estimates as part of the calculation. Other
methods for determining uncertainty in the model parameters include the constant
chi square boundary method and Monte Carlo methods. A common problem in
many attempts to estimate experimental uncertainty is the lack of an independent
measure of the measurement error o. In such cases, an estimate of the measurement
error is obtained from the residuals of fits to the data. The uncertainties reported

here were determined using the constant chi square boundary method.

4.2.2 Coherence Dephasing

The rate equations often used to describe the pump-probe kinetics traces are inad-
equate for describing systems in which the pump and probe fields interact coherently.
In particular, features such as the time shift [40] observed in kinetics traces, narrow-
ing of spectral features with probe delay time (or equivalently, dynamics which are
different near the center of the peak than in the wings), quantum beats (oscillations
due to interference between two or more states), and the oscillations observed in
phase locked spectroscopy are not properly explained in terms of simple rate equa-

tions. In such cases, a more complete description which accounts for the interaction

of the pump and probe fields is required. An adequate description for many such




74

cases is provided by the optical Bloch equations.

The following is a description of the optical Bloch equations for a three level
system interacting with two laser pulses [107] where the intent is to describe the
interactions of ultrafast laser pulses with the surface in 2 time-resolved two photon
photoemission experiment. No detailed description of the optical Bloch equations
in this context is available currently in the literature, so an attempt is made here
to describe the equations and some of the implications for interpretation of time
resolved TPPE. A derivation and discussion of the optical Bloch equations for a
two level system is presented in a book by Loudon [41]. For the present system
of interest, it is assumed that the two laser frequencies are different, as well as the
energy spacings between levels. The initial population is all in the |0) state. The |0)
state is assumed to be a continuum or band of states. Additional approximations
employed in the standard optical Bloch model for a two level system are also present
in the current model, such as the rotating wave approximation. The first field E, is
at or near resonance with the |0) — |1) transition and the second field Ej, is at or near
resonance with the |1) — |2) transition. The radiative lifetime T1 of the intermediate
state |1) is finite while the lifetime of final state is assumed to be infinite. There
is also a dephasing time 7T, associated with each transition. The dephasing is often
explained in terms of small differences in the resonance frequency of a transition
which result in broadening of the spectral line. Figure 4.6 indicates the energy levels
and fields of the system.

The Hamiltonian H for the system is given by

H =Ho + HE, +HE, + Hr, (4.17)

where Hf, is the contribution from the interaction of the electric field E,, HE, is
the contribution from the interaction of the electric field Ej,, and Hg encompasses
relaxation effects which result in depopulation and dephasing.

In the dipole approximation, the matrix form of initial and interaction Hamilto-
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Figure 4.6: Diagram of the energy levels and fields of the optical Bloch equations
for the 3 level system representing two photon photoemission. The excitation field
is &,(t), the probe field is &,(t), Ty is the time constant for state |1), |0} is the
initial state, |1) is the intermediate state, |2) is the final state, and Ag, Ayo are the
detunings for the [0) — [1) and [1) — |2) transitions.
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nian can be written

th _ﬂaEa 0
HO + 7'lint = "'ﬂaEa hw1 _ﬂbEb . (418)
0 —wEy  huw
The field is written as
E, = £,(t)ee™t +c.c., (4.19)
where &,(t) is the (Gaussian or sech?) profile of the laser field (the square root of the
intensity /(t)).
The system may be described using the density matrix formalism where the

density operator is p = |U)(¥| and the density matrix for the three level system is

Poo Po1  Po2
pP=1 P Pu P12 |- (4.20)
Po2 pﬁ P22

The equations of motion of the density matrix are given by

9 _ 9p

1
0 — o+t + (L) (4.1)

and :
dpy 1
(a)R = Ei[’HR,p]' (4.22)

The matrix elements for relaxation are given by the reciprocal of the dephasing times

15, Ty, T3 and the reciprocal of the population decay time 77,

0 1/T, 1/T¢

a nn'
(gt) =—pw | /T /7% 1T |. (4.23)
§ YT YT, 0

This form for the matrix elements p,, is based on the assumption that the diagonal
elements decay with a time constant called T} which is related to population decay
while the off-diagonal elements decay with a time constant called 7, which is related

to dephasing or linewidth.
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Explicitly, the equations of motion for each matrix element are given by

a i aga t ~ ~

Epoo = _MT()(pOI - P10), (4-24)
0 TeEa(t) , . - Tupp(t) .

=P = +u(P01 — pio) — 2 )(,012 — pa1) — Tipua, (4.25)
ot h h

d 1sE(t) | . - :

al2 = +wbhb( )(Pu — p21) (4.26)
a ~ ) aga t ) 8 t ~ . ~

5{001 = +w—2-h—(-)-(p11 — Poo) — W;g( )Poz + (180 — To1)fo1,  (4.27)
0 . TupEp(t CtpeEel(t) . .

5P = +/1be!;(_)_(,)22 —pn) + a 2h( )Poz + (1A12 — T2) P12, (4.28)
0 . 1aEa(t) tupEp(t) . -

P2 = +’ua—2h(—2012 — MbQ;:( ),001 + (A2 — Ap1] — To2)fo2,  (4.29)

where p is related to p by the expression p = e**p. According to Equation 4.23, the

expressions for I'y, ['g;, ['12, g2 are given by

1
ho= 7 . (4.30)
* * Fl 1
T = [g+Ti+ 5, (4.31)
* * Fl .
F12 == Fl + F2 '+' _2—, (432)

Where T3 is the lifetime of state [1), Iy is the (dephasing) linewidth of the |0) state,
I'} is the (dephasing) linewidth of state |1) and I'} is the dephasing linewidth of state
|2). The final signal is given by the value of pyp as t — oo.

Some of rthe above parameters are readily obtainable from photoemission and
TPPE data, while others may only be obtained through extensive modeling of the
data and additional experiments such as phase-locked spectroscopy. The lifetime 17
of state |1) is readily obtained by fitting the exponential tail of the kinetics trace,
provided the lifetime is not too short compared to the pulse width. The linewidth of
the initial state |0) may be obtained by measuring its spectral width in an experiment
where the wavelength is short enough to excite directly to state |2) (in the case of
some TPPE experiments, the initial state is the surface state, the width of which

can be determined by UPS). The remaining free parameters are I'; and I'}.
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The detuning Ay; vanishes for a single initial state when the light frequency is
exactly resonant with the [0) — |1) transition. When this is not the case (such as
for a light source with an appreciable spectral width or when excitation from several
initial states is possible), the signal is given by an average over the detunings Ag;.
Assuming a continuum of final states, a sum over the detunings A;, should also be
performed. If the energy spectrum is divided into N discrete elements Ej where
k=1.N,ata given energy Ej the signal is given by,

k(tp) = D |22 P (L) Dy (Aa) | Te(Di2), (4.34)
A1z Ao
where ¢, is the time delay between the pulses and I is a function representing the
energy resolution of the spectrometer.

Several features of the time-dependent TPPE spectrum are contained in the above
set of equations. One feature is the shift of the maximum of the kinetics trace to later
times. The “time shift” is due to the fact that the E field does not directly transfer
population from |0) to |1), rather it first generates a polarization (represented by
the off-diagonal matrix elements) which is transferred to the |1) state by a second
interaction with the electric field with a rate of I'g;. The amount of time shift
depends on T3 and the detunings Ag; and Aj,. Also, the exponential tail of the
time profile is affected by the detunings. For large detunings, the signal essentially
repreduces the instrument response function. In terms of the spectral features, the
Bloch equations (Equations 4.24 through 4.29) reproduce the narrowing of peaks at
longer probe delay times observed in experimental spectra. Typical variations in line
shape as a function of pump-probe delay are shown in Figure 4.7. At early times
for the two level picture, the line shape contains contributions from both 75 and 77,
whereas at later times the peak width is primarily associated with the 77 population
decay. This difference in linewidth has an important impact on the way peak height
is determined and its impact on the interpretation of TPPE kinetics traces. If the
peak height is determined by integration of the area under the peak, the effect of
coherence on the kinetics trace is removed and the results may be interpreted using
the rate equations. Also, in cases where the dephasing is fast (5 << T1), the results

of the optical Bloch model are the same as those obtained by the rate equations.
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Figure 4.7: The variation in line shape as a function of time as calculated using the
optical Bloch equations. A two level system was assumed. The values used in the
calculation are 77 = 50 fs, 75 = 50 fs, the coincidence time t; = 150 fs, the pulse
width is 100 fs. Part (a) illustrates the spectrum as a function of time. There is a
substantial background near ¢, at all energies which coincides with the time profile of
the laser pulse. This feature is also observed in the experiment. Part (b) illustrates
the narrowing of the peak as a function of time.
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The 'application of the simpler two state version of the optical Bloch equations
to the interpretation of TPPE data [38] has been the subject of some debate in the
literature [42]. It can be shown that the assumption of only two states on resonance,
together with the assumption of only lifetime dephasing (75 = o0), applied to the
n = 1 state of Cu(111) yields a result for 77 which is approximately a factor of
two too small. Interestingly, the application‘ of the full three step model to the
data yields decay constants closer to those obtained by a fit to the rate equations.
This is due to the inclusion of additional dephasing parameters associated with the
additional energy level, which has the effect of reducing coherence. The additional
parameters introduced by the three step model complicate the fitting procedure.
Researchers should apply this powerful methodology with care, as misapplication or
incorrect or hidden assumptions may result in large systematic errors in reported
results. It is useful to compare the results of the Bloch models to the results of
the rate equationsbfor a given set of data. If there is a large discrepancy between
rate model and Bloch model results, the Bloch model results should be viewed with
skepticism. The optical Bchh equations reduce to the standard rate equations in
the incoherent limit (77 >> 75). It should be noted that coherence dephasing is not
the only possible explanation of the time shift evident in kinetics traces. Another
possibility is feeding from other states which are higher in energy, in which the time
delay can be attributed to the rate at which the higher energy states feed population
into the state of interest (this system is described by an exponential rise and decay
function, shown in Equation 4.10). A questionable practice is the use of linewidths
derived from éxperimental spectra to reduce the number of free parameters in the
Bloch model. That a particular measured linewidth is relevant to the transition in
question should be established by additional, independent experiments before such
an assumption is used in data analysis. In addition, slight differences in sample
preparation or the cleanliness of the surface can cause differing amounts of surface
inhomogeneities which may result in substantially different measured linewidths or
dephasing (75) times. |

Because of the concerns raised in the previous paragraph, the time-resolved data

presented later is interpreted using the standard rate equations. Spectral peak areas
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were determined by fitting the peak to a Voight function of fixed width using linear
least squares. For most of the data presented here, the inclusion of an exponential
rise improved the fit substantially. It is speculated that the exponential rise is due

to feeding from states of higher parallel momentum.

4.3 Quantum Well States of Xe: Spectral Features

This section describes two photon photoemission experiments on multiple molecu-
lar layers of Xenon on the Ag(111) substrate and the development of a 1-D quantum-
mechanical model for the resulting binding energies using multiple reflection the-
ory in conjunction with a continuum dielectric theory. Portions of this section are
adapted from a paper by McNeill and coworkers [108]. Solid Xenon serves as a
model system for understanding aspects of band structure and transport in both
semiconductors [109] and insulators [110] due to its large band gap and high ex-
cess electron mobility. Also, the study of quantum well (QW) states associated
with such layers should provide important information about the bulk band struc-
ture [81]. Recently, ultraviolet photoemission spectroscopy has been used to investi-
gate the occupied valence band quantum well electronic states in metal/metal {84],
metal/semiconductor [82,83], and metal/insulator [85,86] systems. In this section,
angle-resolved two-photon photoemission (ARTPPE) spectra of the excited quantum
well and image states in the presence of insulating layers of Xe and Kr on Ag(111)
are presented. _

Previously, this technique was used to study a monolayer of Xe where the changes
in image state binding energy and dispersion were assigned to the work function shift
due to adsorption and the polarization of the Xe layer [96]. ARTPPE investigations
of layers of alkanes [95,111] revealed a sensitive dependence of the electronic structure
on the layer thickness and the presence of localized electronic states. TPPE spectra
of layers of metal on metal [24-26,103] have demonstrated the pinning of image states
to the local work function, line width broadening due to lateral electron confinement
on islands of adsorbate, and quantum well states.

There are several factors that are expected to influence the energies of excited
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Ag(111)

A\

Figure 4.8: The surface-projected band structure for (left) clean Ag(111) and (right)
Xe on Ag(111). The zero of energy is set to the Fermi level. The adsorption of a
monolayer Xe reduces the work function ® by 0.5 e€V. This lowers the image state
energies with respect to the Fermi level since image states are pinned to the vacuum
level. Adsorption of additional layers of Xe results in the formation of quantum
well states. The Xe and Ag(111) bands are denoted by light and dark shading,
respectively. A two-photon photoemission spectrum for a bilayer of Xe on Ag(111)
containing the n = 1,2, and 3 peaks is shown on the right hand side.
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electronic states at the Xe/Ag(111) interface. A diagram of the relevant energy levels
of the Xe layer and the substrate is shown in Figure 4.8. Xe possesses a large energy
gap and electrons in solid Xe have a high mobility. Since Xe is relatively inert, no
chemical bonding ekists between the Xe layer and the Ag substrate. The empty 6S
orbital forms a conduction band below the vacuum level. The conduction band, which
is located near the vacuum level, should influence the energies of interface electronic
bands. Because of the symmetry of the thin layer system and.the substrate, the
electron is confined by the vacuum potential and the substrate band gap, resulting
in discrete states perpendicular to the surface. Along the surface parallel, the states
form continuous bands. Quantum confinement of the electron within the layer may
affect band energies. The effective mass of the Xe conduction band, which is rather
less than that of a free electron, should influence the parallel dispersion of the image
bands. Also, the dielectric constant of Xe should affect the shape and depth of the
image potential well near the Xe surface. The effect of the conduction band and
quantum confinement are addressed by taking photoemission spectra at a range of
coverages. The dispersion or effective mass of the interface bands is determined by

angle-resolved two photon photoemission.

4.3.1 Experimental

For this set of experiments, a 2 MHz train of 6 ps pulses at Wavelengths of
590-620 nm was generated by a synchronously-pumped, cavity-dumped dye laser.
Second harmonic generation was achieved by means of a 2 mm BBO crystal. The
laser was tuned so that the photon energy of the second harmonic was just below
the work function in order to be able to investigate states near the vacuum level
while keeping one-photon photoemission down to acceptable levels (below the point
where space-charge broadening has a noticeable effect on the spectral features). The
second harmonic and the residual fundamental beam were focused collinearly on the

sample. The energies of emitted electrons were determined by time-of-flight.

At a given angle 0 the wave vector along the surface parallel k| was determined




from the sample angle and photoelectron kinetic energy E as follows,

ky = \/2m E/K2sinf. (4.35)

A fit to the parabolic dispersion relation, £ = E0+h2kﬁ /2m* where Ej is the kinetic
energy for emission normal to the surface, determined the effective mass m*.

The sample was cooled to 45 K by means of a liquid helium cryostat. The UHV
chamber background pressure was ~1 X 10719 torr. Mono- and bilayer Kr and Xe
were obtained by cooling the sample and backfilling the chamber with sample gas at
pressures and sample temperatures specified by the phase diagrams of Kr and Xe on
Ag(111) [112,113]. At a Xe pressure of ~ 2 x 107 torr and at temperatures between
82-68 K a monolayer of Xe formed. At a Xe pressure of ~ 2x107® torr and a temper-
ature of 67-66 K a bilayer formed. Experiments were performed quickly to minimize
the effects of contaminants in the chamber or sample gas. Xenon multilayers were
formed by carefully metered dosing of the cooled (~45 K) sample. The spectrum
for a monolayer Xe grown by backfilling the chamber with Xe at temperatures and
pressures specified by the 2-D phase diagram of Xe/Ag(111) was indistinguishable
from the spectrum for a monolayer of Xe obtained by metered Langmuir dosing at
45 K. This is consistent with Xe/Ag(111) X-ray structure results [114], which show
Xe to form an incommensurate hexagonal layer on the Ag(111). surface for layers
grown by both methods. Two photon photoemission spectra were obtained for 1-9
layers of Xe, as shown in Figure 4.9.

The adsorption-induced work function shift changes the contact potential differ-
ence between the sample and detector which in turn changes the measured kinetic
energy of the photoelectrons. In order to determine binding energies with respect to
the vacuum, the work function change must be determined. The adsorbate-induced
work function shift A® was determined by TPPE and confirmed via threshold UPS.
A fit of the UPS data to the Fowler form [115,116] was used to extract the work
function from the photoemission data. In addition, the work function shift was de-
termined from the TPPE spectrum by analyzing the convergence of the image series
to the vacuum level using the quantum defect formula, £ = —.85/(n + a)?, and

simultaneously solving for the quantum defect @, the binding energy with respect to
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the vacuum E, and the position of the vacuum level (the energy to which the series
converges), for both the clean and the adsorbate-covered surface. Then the difference
between the vacuum level for the clean and adsorbate-covered surface yields the work
function change due to adsorption. The quantum defect formula can only be applied
to the bare surface and the monolayer, where the states are still approximately hy-
drogenic. For bilayer, only UPS results were used. The UPS and TPPE results for
the work function change due to the monolayer agree to within 10 meV. Our results
differed somewhat from other threshold photoemission work [117] in that most of
the work function difference was observed in the first layer (A® = —.500 eV), with a
small shift (A® = —.036 eV) for the second layer, and no shift within experimental
uncertainty for the third layer. We attribute this discrepancy to uncertainty in the
~ determination of coverage in the previous work. In the present work, the coverage
could be determined precisely by monitoring the TPPE spectrum. The work function
shift due to the presence of a monolayer of Kr was determined to be approximately
—.30 eV.

The parallel dispersion was measured by varying the angle of the sample with re-
spect to the detector rotating the goniometer sector on which the sample is mounted.
Typical spectra for a range of sample angles are shown in Figure 4.10 along with a

dispersion plot.

4.3.2 Coverage Dependence of the Spectral Features

The TPPE spectra of Xe/Ag(111) at various thicknesses of Xe are presented in
Figure 4.9, and the binding energies of the n = 1, 2, 3 states are plotted in Figure 4.11.
The labels n = 1, 2, 3 represent the image state levels to which the states correspond
in the limit of zero coverage. The binding energies are also shown in Table 4.1. The
binding energies of the image states on a monolayer of Kr were determined to be
—.62 and —.19 eV for n = 1 and n = 2, respectively.

For the first layer, the features are similar to the n = 1,2, 3 image states of clean
Ag(111), as shown by Merry et al. [96]. The spectral features shift in energy and

change in relative amplitude as the Xe coverage is varied from 1 to 9 monolayers.
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Figure 4.9: Two-photon photoemission spectra of Xe/Ag(111) at a series of coverages
(1-9 atomic layers, approximately). After two layers, the Xe coverage is non-uniform,
and peaks corresponding to more than one coverage are visible in a given spectrum.
The dark line through the peaks indicates which peak is assigned to the coverage (in
monolayers) indicated at the left of the figure.
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Figure 4.10: In plot (a) spectra of the n = 1 state of a monolayer of Xe on Ag(111)
at a series of angles are displayed. The peak energy positions are used to determine
the dispersion relation. In plot (b) reduced dispersion data for a monolayer of Xe on
Ag(111) are shown along with a parabolic fit determining the experimental effective
mass, yielding m*/m, = .95 £ .1.
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Figure 4.11: Experimental binding energies (symbols) of the n = 1,2, 3 states as a
function of Xe coverage, and a comparison to the results of a dielectric model (solid
lines). Energies are with respect to the vacuum level.




Layers [ n=1|{n=2|n=3
1 —.67 | —.20 | —.09
—63 | -.20 | —.09

—.60 | —.23 | —-.10

—.60 | -.30 | —.11

—-.58 | =36 | —.12

—-.57 | —40 | —.16

—-.57 | —43 | —-.21

—-57 | —47 | —.26

CoO I O U i W N

Table 4.1: Binding energies for the n = 1, 2, 3 states for one to eight layers of Xe on
Ag(111). Energies are reported in eV with respect to the vacuum level.

The n = 1 feature on a monolayer of Xe is significantly narrower than that of the
clean Ag(111) surface, indicating a longer lifetime of the n = 1 state in the presence
of a layer of Xe. At the completion of a bilayer, the signal intensity of the n = 1
peak is reduced relative to the n = 2, 3 features while the peak shifts to lower binding
energy. The binding energy of the n = 1 state decreases by 16% over the range of
1-9 layers. Most of this shift takes place over the first few layers. A similar decrease
in binding energy with layer thickness has been observed for image states on n-
alkanes [95], which have a negative (repulsive) electron affinity [118,119] and where
the image state electron density is located in the vacuum. Due to the similarity of
the coverage dependence for n = 1 on Xe/Ag(111) with the coverage dependence for
n = 1 observed on alkane layers, the n = 1 state is tentatively assigned to be an
image state residing primarily at the Xe/vacuum interface. For an electron residing
outside the layer, the primary effect of the layer is dielectric screening of the image
potential. The effect of the layer on the n = 1 energies can therefore be modeied
using the dielectric continuum model which treats the adsorbate as a structureless
dielectric. '

The binding energies of the n = 2, 3 states monotonically increase as the number

of layers increases. The marked contrast between the coverage dependence of the

n = 1 peak and the n = 2, 3 peaks suggests that the states exist in different locations

along the axis perpendicular to the surface. The coverage dependence of the n =1
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peak is characteristic of image states outside an insulating layer, whereas the binding
energies of the n = 2, 3 states at higher coverage are close to the Xe conduction band
minimum, an indication of QW states of the Xe layer. At intermediate coverage,
the n = 2,3 state energies are between image state (—.85/n?) energies and the Xe
conduction band minimum, indicating mixed behavior. The energies of the n = 2
and 3 states at higher coverage are modeled using a quantum well model which
represents the Xe band structure and treats the covefage dependence of the energies
as a quantum confinement effect which splits the Xe band into a series of discrete
states. Dielectric effects are ignored in this model.

These initial observations on the coverage dependence of the binding energies of
all the interface states are consistent with a picture in which the attractive electron
affinity of the Xe slab provides a shallow quantum well, bounded by the bulk band gap
of the substrate on one side and the image potential on the other side. This picture
forms the basis of a third model which represents an attempt to bring the two pictures
together in a way which more accurately reflects the observed binding energies of both
image states and quantum well states at all coverages and which includes the most
important features identified in previous models: the band structure of the metal
substrate, the band structure of the Xe overlayer, and the screened image potential
of the adsorbate/metal system.

The parallel dispersion of the TPPE features was determined for 1-4 layers of
Xe and for one and two layers of Kr. The angle-resolved spectra of the n = 1
state on a monolayer of Xe at a series of angles between 0° and 16° are shown in
Figure 4.10 along with the reduced parallel dispersion data with a parabolic fit. The
coverage dependence of the effective mass of the n = 1,2 states of Xe/Ag(111) is
shown in Figure 4.12. For both the n = 1 and n = 2 states, the effective mass
goes from that of a free electron (0.95 £ 0.1m, for n = 1) at monolayer coverage
to significantly less than that of a free electron (0.6 & 0.2m, for n = 1) at 4 layers
of coverage. The n = 1 effective masses for 1-2 layers of Kr follow the same trend
as for Xe (0.9 &+ 0.1m, for a monolayer, 0.8 & 0.2m, for a bilayer). The dispersion
measurements are complementary to the binding energy measurements in that they

yield information about electronic structure and transport properties in the plane of
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the interface. These results are later interpreted using a model which includes the
3D band structure of the substrate and overlayer material in calculating the energies

of the interfacial electronic states as a function of parallel momentum.

4.3.3 Dielectric Continuum Model

To model image states perturbed by the presencé of the dielectric layer, the well-
established dielectric continuum model for image states outside an insulator layer
on a perfect conductor was employed. The analytical form of the solution to this
problem was first presented along with numerical solutions by Cole [120,121]. An
approximate analytic form for the wave function ‘was developed by Trninié¢-Radja
and coworkers {122]. This model represents an attempt to account for the effect of
the dielectric nature of the adsorbate (represented by a dielectric constant and an
affinity level) on image state binding energies. Binding enérgies for image states on
liquid He [123] and thin layers of alkanes on a metal [118,119] can be explained by
this model. However, this model does not take into account the band structure of
the layer and substrate, which should be important for states near in energy to the
Xe conduction band. In the next two sections, models which take into account the
band structure of Xe are presented.

In the dielectric continuum model, the electrostatic potential on the inside of the
dielectric slab as presented by Jackson [124] is given by,

e 4 e2(e — 1)
dez  de(e+ 1)(t — 2)

_E(e=1)(t+22)
de(e + 1)t(t + 2)

Vi(z) =

+8Vi(2) — EA, (4.36)

where z is the distance from the metal surface, t is the thickness of the layer, the
electron affinity of the layer E'A is treated as an additive constant and is set to 0.5
eV [125] (which corresponds to the Xe conduction band minimum), € is the static

dielectric constant of Xe, and the correction term is given by the infinite series

Vi(z) = - e (U )(6_ l)k. L

e+1

(
3o 2 H(R = 22
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Figure 4.12: Effective masses of n = 1 and n = 2 states as a function of Xe coverage.
Data from two separate experiments are shown.
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Numerical computation yields the following explicit approximation for §V;(z),
22

Vi)~ V() 5 |

1—.55(1 — 2/t) +.30(1 — z/t)?] . (4.38)

The series for 6V; can be summed at z = ¢ to give,

+1'

SVi(t) = € [(1 i ﬁ) In(1+0) — —ﬁ - 1} where = (4.39)

4et B

The electrostatic potential in the vacuum, first presented by Cole [121], can be

written as,
e’ e?(e—1)
Vo(z) = — - oV, 4.4
&) = —2er1r ernGop O (4.40)
and the correction term is given by,
et X (=1F 1k re—1\*
5V, (55)- 41
Vole) =~y z,cz1 kt+z) et 1 (4.41)

The correction term can adequately be approximated by,

2t2 8V,(2)

Vol2) ™ iy 1 +0.222 (51) - In(2/t)’

(4.42)

where the value of 8V, at z =t is given by,

OVo(t) = _%2 [(62;—1) In (63—61) a 2(6:- 1)] ' (4‘43)

Two steps were taken to avoid the singularities in the electrostatic solution at

the interface boundaries. First, a cutoff was imposed at —4 eV near the metal,
resulting in a bare metal binding energy of —.75 eV which is close to the experimental
value for clean Ag(111) of —.77 eV. Second, the potential is linearly interpolated
between V(t —b/2) and V(¢ +b/2) near the dielectric/vacuum interface. Eigenvalues
for the model potential were determined using an implementation of the discrete
variable representation (DVR) [126]. Subsequent calculations were performed using
a Runge-Kutta integrator as described in the next section. It was found that the
DVR implementation was inefficient (optimized for harmonic wells) and somewhat
inaccurate (the wave function did not completely vanish at the origin as requ&red)

for the potential of interest.
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The potential given by the dielectric model for e = 3.0, EA =0.5¢eV,and b=3 A
for various layer thicknesses is shdwn in Figure 4.13. The resulting binding energies
are shown in Figure 4.11, plotted with the binding energies extracted from the data
of Figure 4.9. Although the model overestimates the binding energies for all three
states, it is significant that it does reproduce the major trends in the data: the n =1
image potential state energy becomes more positive while the higher quantum state
energies become more negafive as the adlayer thickness increases.

Analysis of the model results yields the following observations. First, the n =1
electron is partially excluded from the layer by the potential barrier represented by
the electron affinity. This can be seen in the the wave functions predicted by the
continuum model which show a tendency for the probability associated with then = 1
image potential electron to move out toward the adlayer/vacuum interface as shown
in Figure 4.14. Second, the electron affinity presents an attractive potential within
the layer for the n = 2,3 states. The n = 2,3 image states transform into quantum
well states of the layer as thickness increases. This suggests that the n = 2, 3 energies
should be analyzed by a model which takes explicit account of their quantum well
character, including the effective mass of the Xe conduction band. The proximity
of the n = 2 and 3 states to the substrate suggests it is appropriate to include the

substrate band structure as well.

4.3.4 Discrete Wave Vector Model for QW States

Loly and Pendry [81] proposed using photoemission from thin layers as a method
for achieving highly accurate valence band structure measurements. Here this ap-
proach is applied for the first time to two photon photoemission, yielding accurate
conduction band measurements. According to the theory of Loly and Pendry [81],
QW wave functions possess a factor of sin k,z. For wave functions in a layer N atoms
deep the wave function must vanish at z = 0 and Nd, where d is the interplanar
spacing, leading to the bound state condition k, = mj/Nd, where j is the quantum
number of the QW state. In the effective mass approximation the energy levels will

follow the dispersion relation E = h?k2/2m*. Thus the electronic energy levels of a
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Figure 4.13: The potential used in the dielectric model eigenenergy calculations.
The potential is the solution to the electrostatic problem of an electron in or near a
dielectric slab on.a metal surface. The results for 1-3 layers of Xe (3.6 A per layer,
€ = 3.0) are shown. The image potential at the metal is cut off at —4 eV. The
potential is linearly interpolated over a region of width b = 3 A at the Xe/vacuum
interface.
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Figure 4.14: The resulting probability densities for the dielectric continuum model
for the n = 1 (solid lines) and n = 2 (dashed lines) states for 0,2,4, and 6 layers of
a slab of dielectric constant € = 3.0 and electron affinity EA = 0.5 eV. This figure
illustrates the tendency of the n = 1 state to have significant electron density at the
Xe/vacuum interface at these coverages while the n = 2 state looks like a hydrogenic
n = 2 image state for a monolayer but tends to move inside the layer and have a
node near the Xe/vacuum interface, which is indicative of a quantum well state, for

thicker layers.
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quantum well can be thought of as a discretized band structure. If the energies of
the states for a range of thickness are plotted against k,, the perpendicular disper-
sion can be observed. The band structure information obtained by this analysis is
complementary to band structure information obtained by angle resolved measure-
ments of the parallel dispersion: by performing angle resolved measurements and
coverage resolved measurements, a large area of the 3-D surface corresponding to
the conduction band (E(ky, k)) can be determined.

In Figure 4.15 the binding energies of the n = 2, 3 states are plotted with respect
to the perpendicular momentum along with a fit to a pa,rabdla determining an exper-
imental value for the Xe conduction band edge of —.55 eV and an effective mass of
.57m.. Here we have assumed that the n = 2, 3 states are the j = 1,2 quantum well
states, respectively. The binding energies qualitatively match the expected quantum
well behavior for 7-9 Xe layers. In the range of 1-3 layers the dispersion is too
flat to correspond to a QW state derived from the Xe conduction band, suggesting
that n = 2,3 are modified image states at low coverage. At intermediate coverage
the slope of the dispersion curve changes smoothly from flat dispersion to parabolic
dispersion, suggesting that the n = 2,3 states in this range are “mixed” states that
possess both image state and QW state character, i.e., the states possess significant
probability density in the layer and the vacuum.

The crossover between image-like and quantum well-like behavior appears to
occur at approximately the thickness corresponding to the expectation value (z) =
6agn? for the same state in the hydrogenic image state model [17]- at four layers
(14 A thick) for n = 2 and at seven layers (25 A thick) for n = 3. This result
can be interpreted in terms of perturbation theory as follows. For the monolayer,
the states are only slightly perturbed from those of the clean surface because of the
small spatial overlap of the layer potential with the hydrogenic (zero order) wave
function. When the layer is thick enough for significant overlap with the zero order
wave function (¢ ~ (z)) , the n = 2,3 wave functions are brought down in energy by
" the attractive Xe layer potential. In contrast, the n = 1 state energy is in the Xe

gap, therefore the n = 1 state is pushed out into the vacuum by the Xe layer.
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Figure 4.15: Perpendicular dispersion plot of Xe quantum well states. The perpen-
dicular wave vector is determined by the layer thickness and the quantum number of
the state. The perpendicular dispersion of the j = 1,2 quantum well states (which
correspond to the n = 2,3 image states) is fit to a parabola, yielding a Xe conduc-
tion band minimum of —.55 eV and an effective mass of .57m,. The higher k, values
correspond to lower coverage. Energies for the j = 1 state are plotted versus k, for
2-9 Xe layers, and energies for the j = 2 state are plotted versus &, for 4-9 layers.
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4.3.5 A Quantum Well on an NFE Substrate

The dielectric model with a hard wall at the metal correctly predicts the gross
features of the data but fails quantitatively, especially in that the energies of n = 2, 3
drop too quickly as a function of layer thickness. The discrete wave vector model
ignores the metal substrate and the image potential in the vacuum. Here an attempt
is made to develop a simple model which takes into account the important physics
of both models and properly treats the electronic structure of the substrate. QW
states of a metal layer on a metal substrate have been successfully modeled as a two-
band nearly-free-electron (NFE) metal on a two-band NFE substrate with an image
potential in the vacuum [87,127]. However, the wide Xe gap with a flat core-level
valence band precludes the use of the two-band NFE model for states near the Xe
conduction band. It is more proper to ignore the Xe valence band by setting Vx. to
the Xe conduction band minimum and using the effective mass approximation for
the conduction band dispersion. Therefore the Ag(111) substrate is treated as an
NFE material and a potential is constructed outside the metal using the effective
mass approximation to the Xe conduction band and the image potential outside a
dielectric slab on a metal substrate from Section 4.3.3.

The details of the model are as follows. In the substrate the two-band NFE
approximation is used. This approximation has been successful in describing the
substrate for the case of surface states in the band gap of a metal. Such states
possess an exponential tail in the metal which can be adequately described in the
two-band NFE approximation. The two band NFE model is detailed in Chapter 2.

A value of —.55 eV with respect to the vacuum is used for the bulk Xe conduction
band minimum and a bulk Xe effective mass of .57m, taken from the discrete wave
vector analysis in the previous section. The Xe interplanar spacing of 3.577 A was
taken from X-ray data [114]. The Ag(111) parameters were taken from calculations
of clean surface image and surface state binding energies [19]. In the vacuum the
potential was taken to be the image potential outside a dielectric slab given in Equa-
tion 4.40 with a cutoff at 1.3 A from the layer/vacuum boundary. The dielectric

constant was fixed at € = 2, which was calculated from the Clausius-Mossotti equa-
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tion using the atomic polarizability of Xe and the density of solid Xe. An illustration
of the potential is given in Figure 4.16. ’

The eigenstates of the model potential were determined by numerical integration
as follows. The 2-band NFE solution for the substrate corresponding to an evanes-
cent wave decaying into the metal substrate is evaluated at the substrate /overlayer
interface. The slope and value are then propagated numerically through the flat
overlayer potential (where the kinetic energy is evaluated using an effective mass of
.57m.) and out into the vacuum (where the mass is m,) using a 4th and 5th order
- Runge-Kutta integrator with adaptive step sizes. The trial solutions are evaluated
at large z for a range of energies to find solutions which are ‘well-behaved at infinity’,
i.e., eigenstates. The accuracy of this numerical technique was verified by compari-
son to the results obtained by multiple reflection theory [19] for clean Ag(111) using
the potential for the clean surface (i.e., zero layers of Xe).

The model was implemented as a set of MATLAB scripts using a Runge-Kutta
integrator available in the MATLAB function library. One of the advantages of Runge-
Kutta integrators is that they readily handle a variety of boundary conditions such
as those imposed by the NFE substrate in the present model. Such flexibility is
not generally available in techniques (such as DVR or collocation) that involve basis
functions, since the choice of basis function imposes boundary conditions. The scripts
are included in Appendix B. The time-independent Schrédinger equation is a second
order ordinary differential equation (ODE). Runge-Kutta integrators usually only
solve first order differential equations. Fortunately, higher order ODEs can always
be reduced to the study of sets of coupled first order differential equations. For

example, the general second order equation

d%y dy
@Yy a9 _ 4.44
72T q(z) Iz r(z), (4.44)

can be rewritten as two first order equations,

dy
dz
dz

dx

= 2(z), (4.45)

= r(z) — q(z)z(x), (4.46)
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Figure 4.16: Potential used in calculating the quantum well states for 1, 2, and 3
layers of Xe. The potential in the metal is a two-band nearly-free-electron potential.
The potential in the layer is set to the Xe conduction band minimum. The potential
in the vacuum is the continuum electrostatics solution for an electron outside a
dielectric layer on a metal substrate.
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where z(z) is an introduced variable. For example, the time-independent Schrédinger

equation may be written as a pair of coupled first order differential equations as

follows,
dy ‘
o = z(z), (4.47)
Z—; = 2m(E - V(z))y(z). (4.48)

The determination of eigenvalues can be treated as a two point boundary value
problem. In this case, the initial boundary values are the slope z(z) and value y(z)
of the wavefunction where the substrate and adlayer meet. The slope and value
of the NFE wavefunction are employed. The second boundary condition is that
the wavefunction vanish at infinity. This boundary condition can be approximated
by requiring that the wavefunction vanish at a large value of z. Solutions to the
boundary value problem are typically obtained by employing the numerical method
known as the shooting method. The problem was divided into two steps. First,
a coarse grid search was used to determine approximate upper and lower bounds
on the energy of a bound state. This was performed by numerical solution of the
differential equations at several trial energies using a Runge-Kutta integrator. When
a sign change in the trial solution at large z was observed between two trial energies,
it was assumed that a bound state existed somewhere in the range defined by those
two energies. Then a binary search was employed to narrow the range to a set
precision.

This model was used to determine binding energies for 1-9 layers of Xe. A cutoff of
1.3 A in the image potential outside the layer gave the best fit to the data. Binding
energies are shown in Figure 4.17 and the corresponding probability densities are
shown in Figure 4.18. The binding energies predicted by the model underestimate
slightly the n = 2,3 binding energies, but the overall agreement with the data is
good. The n = 2 probability density possesses a maximum in the Xe layer, whereas
the n = 1 density exponentially decays within the layer. This is expected since the
n = 2 state is above the Xe gap and thus the wave function propagates (is plane
wave-like) in the layer. However, the n = 1 state is in the Xe gap and does not

propagate in the layer.
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Figure 4.18: Calculated probability densities for the n = 1,2 states for 2,4,6, and 8
layers of Xe/Ag(111) calculated using the model outlined in this section for the case
of a Xe layer. The vertical lines indicate the thickness of the Xe layer. The solid line
represents the n = 1 state and the dashed line represents the n = 2 state.
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4.3.6 Effective Mass of Quantum Well Electrons

In principle, angle-resolved two photon photoemission measurements of quantum
well states yield information about the (bulk) band dispersion of the overlayer ma-
terial along both the surface parallel and the surface normal. As discussed in the
previous section, normal photoemission from quantum well states has been shown to
yield precise band structure information along the direction normal to the surface.
The coverage dependence of the parallel dispersion (shown in Figures 4.10 and 4.12)
along one or more axes of the surface Brillouin zone yields additional information
about the full 3D band structure, expanding the amount of information obtainable
by photoemission considerably. However, the interpretation of coverage dependent
parallel dispersion measurements thin layer quantum well is complex in that the dis-
persion of quantum well states is determined by several effects including the layer
band structure, the substrate band structure and by the probability amplitude of the
- quantum well state in the substrate, overlayer, and vacuum regions. Here the com-
bined effects of the the band structure of the substrate and overlayer as well as the
probability amplitude in the various regions which together determine the quantum
well effective mass are explored.

Since the present interest is in describing the electronic states within a substrate
gap, the NFE model is a natural starting point. We shall also assume that all the
measurements are neér zone center of the surface Brillouin zone in which case two-
bands are sufficient to describe the dispersion. The geometric theory of Giesen and
coworkers [18] (outlined in Section 4.1.2) for the effective mass of image states on
the clean surface of noble metals is useful as an example of a successful theory upon
which more sophisticated theories for more complex systems may be built. Indeed,
the effective mass model for a thin alkali metal layer (Section 4.1) is based largely
on the geometric model. The model for the alkali layer replaces the conduction band
edge with a ¢. = 7 curve which contains both substrate and overlayer effects.

The success of the geometric theory owes to the fact that it more or less correctly
partitions the effective mass between the ’substrate, where the effective mass is related

to the valence and conduction band dispersions, and the vacuum, where the effective
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mass is that of a free eleétron. It should be noted that the theory is only applicable for
surface states which are close in energy to either the conduction or valence band edge.
The results are ambiguous in the middle of the gap, where it is not known which band
the image state will eventually cross. This ambiguity relates fact that the derivation
is geometric instead of algebraic, and relies on the fact that the crystal phase shift
¢c is 7 at the point along k; where the image state crosses the conduction or valence
band. Obviously, this ambiguity is not a feature of the underlying physics, but rather
a weakness in the model. An additional complication in the case of a dielectric layer
is the fact that the potential outside the layer is not the hydrogenic image potential.
This makes phase shift analysis impractical. Ihstead, the approach taken is to include
a dependence on kj in the substrate and overlayer band parameters, as was done for
the case of alkali metal layers in Section 4.1.2. In addition, the k; dependence of
the image potential is included, and eigenstates are determined (as explained in
Section 4.3.5) for a range of k| values, thus determining the dispersion. Calculations
of phase shifts are not necessary in this approach.

The details of the calculations are as follows. As in Section 4.1.2, the substrate
band gap energy E; and half width V; are parameterized with respect to k| in order
to account for the changes in gap width and energy as a function of & in the surface
projected bulk band structure (for an illustration of the surface projected bulk band
structure, see Figure 2.4). The perpendicular component of the kinetic energy in the
overlayer and vacuum regions is also parameterized in k). Assuming the Hamiltonian
for the system is roughly separable into perpendicular and parallel components, the
total kinetic energy can be written as the sum of the perpendicular and parallel
components. In the overlayer, the effective mass approximation with effective mass
parameter mj} is used to account for the band dispersion of the overlayer material,
resulting in an expression for perpendicular kinetic energy,
h2kﬁ

% 7
2mj,

E,=E-V=E-V, - (4.49)

where V7, is the conduction band minimum of the layer. In the vacuum, a similar

expression is used for the perpendicular component of the kinetic energy, except the
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Effective Mass
n=1 n=2
expt. | theo. | expt. | theo.
0.96 | 0.91 | 1.09 | 0.98
0.78 | 0.79 | 0.94 | 0.96
0.63 | 0.72 | 0.77 | 0.93
0.63 | 0.67 | 0.69 | 0.80

> N —

Table 4.2: Measured effective mass of the n = 1 and n = 2 image-like states for 1-4
layers of Xe on an Ag(111) substrate and a comparison to calculated results.

mass employed is the free electron mass,

E (2) = E — Vip(2) — —, (4.50)

where V;,,,(2) is the image potential taken from the dielectric continuum model. The
effective mass of the thin layer quantum well state is determined by finding binding
energies for a few given values of k| and fitting the results to a parabola. The effective
masses for 1-4 layers of Xe were calculated using version of the program included
in Appendix B which was modified to take into account k; in the manner described
above. The results of the calculation are plotted together with the experimental
results in Figure 4.19. A table of experiﬁlental and calculated values is given in
Table 4.2. ‘

The theory follows the overall trends in the data, including the fact that n = 2
has a larger effective mass than n = 1, but seems to underestimate the effect of the
layer in lowering the eﬂ'ecti{fe mass. Perhaps this is a result of using an effective mass
of 0.57m,, taken from a simplistic interpretation of the TPPE data, instead of the
literature value of 0.35m.. However, even in calculations performed with the lower
effective mass, the effective mass is somewhat larger than experiment. Perhaps this
indicates that the model does not calculate overlap with the layer as well as would
be believed considering the success of the model for binding energies at k” = 0.
Indeed, this discrepancy indicates that effective mass Ieasurements may be more
sensitive to the spatial extent of the electron than binding energy measurements.

It should be noted that uncertainty estimates for the effective mass measurements
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Figure 4.19: The effective mass as a function of Xe coverage. Circles and squares
indicate the calculated effective mass of the n = 1 and n = 2 states, respectively.
Triangles and diamonds indicate experimental values of the effective mass of the
n =1 and n = 2 states.
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were not obtained, so a quantitative evaluation of model correctness is not possible.
The n=2 dispersion measurements for monolayer and bilayer Xe suffered from low
signal levels. In addition, it is possible that the photon energy was not sufficient
for accurate measurement of n=2 at 1ML. The success of the effective mass model
in reproducing the data indicates that angle-resolved TPPE measurements of thin
lgyers of material together with the model presented here can be a useful method

for obtaining momentum-resolved 3D band structure measurements of unoccupied
bands.

4.3.7 Discussion

The coverage dependent spectra exhibited several types of behavior which we
attribute to image states, quantum well states, and “mixed” states. The n = 1
state behaves as a screened image state of the composite metal/dielectric interface
at intermediate Xe coverage. On the other hand, the n = 2,3 image states become
~quantum well states of the overlayer at 7+ layers of Xe and exhibit a coverage
dependence between that expected for image and quantum well states for 3-6 layers.
An important difference between image states and quantum well states is that image
states are energetically within the Xe gap while quantum well states are energetically
within thevXe conduction band. Based on this distinction the n = 1 state, which is
below the Xe conduction band in energy, is an image state while the n = 2, 3 states
are quantum well states. The image state binding energy depends largely on the
electrostatics of the insulator/vacuum interface, while the energy of the quantum
well states depends on the perpendicular dispersion and the minimum of the Xe
conduction band.

The results of the dielectric continuum model of Section 4.3.3 indicate that the
n = 1 state moves to more positive binding energy (weaker binding) due to the
dielectric polarization of the Xe slab in the presence of the image potential electron.
This is a combination of two competing effects. First, the polarizable Xe adlayer,
characterized by dielectric constant ¢, serves to screen the image electric field between

the electron and the metal, leading to a more positive binding energy. Screening is
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primarily due to the first term in Equation 4.36 and the first term in Equation 4.40.
Second, the induced polarization interaction between the electron and the Xe slab,
represented by the second term in Equation 4.40, is attractive and favors a more
negative binding energy. This model correctly predicts that the net effect for the n =
1 state is weaker binding to the interface as each of the first five or six layers is added
(Figure 4.11), which results in a shift of electron density toward the Xe/vacuum
interface. This reduction in binding energy is manifest in this model for any case
where the affinity of the layer is repulsive with respect to the n - 1 binding energy.
For states above the affinity level in the layer, the state “falls into” the layer at
some thickness. The fact that the affinity level (Xe conduction band minimum) falls
between the n = 1 and n = 2 energies distinguishes the coverage dependent behavior
of the two states. ‘

The relative intensities (Figure 4.9) of the peaks as a function of Xe coverage
give additional evidence as to the nature of the states. The linewidths would also be
important but were difficult to determine due to overlapping features. Photoemission
from the n = 1 state becomes reduced in intensity relative to that from the n = 2,3
states for 3 and 4 layers of Xe, but is similar in intensity for 6-8 layers of Xe. This
is consistent with our assignment of the » = 1 state to an image state of the Xe -
layer, primarily located at the vacuum/Xe interface. The intensity of this feature
may be determined by two competing effects related to the location ofthen =1
state at the layer/vacuum interface. The initial decrease in intensity may be due to
the fact that the probability of excitation of a substrate electron into the n = 1 state
becomes lower as a function of coverage since the state is located relatively far from
the initial states in the metal making the spatial overlap with the bulk states small.
Similarly, the increase in relative intensity at 6-8 layers is likely due to an increase
in the lifetime of the n = 1 state. The lifetime increase is due to the fact that the
electron must tunnel though a thicker layer in order to decay into the metal.

The n = 2, 3 states at higher coverage possess a perpendicular dispersion similar
to accepted Xe conduction band values as shown in Figure 4.15. The influence of
the Xe conduction band can also be seen in the angle-resolved data (Figure 4.12),

where the dispersion is measured along the surface parallel while the perpendicular
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momentum is fixed by the layer thickness. The effective masses measured along the
surface parallel are higher than accepted bulk Xe conduction band values because
for the first few layers a significant fraction of the probability density of the states
is in the metal and in the vacuum which results in a larger effective mass. The
effective mass for the n = 1 image state on a clean Ag(111) surface (corresponding
to the limiting case of a state where all the probability density is outside the layer)
is 1.3m,. The parallel dispersion of the n = 1 state corresponds to an effective mass
close to that of a free electron for the monolayer (m*/m, = 0.95) and the effective
mass monotonically decreases to m*/m, = .6 at four layers. Also apparent from
Figure 4.12 is that, for a given layer thickness, the n = 1 state has a lower effective
mass (closer to the bulk Xe value of .35m,) than that of the n = 2 state. This may be
due to differences in the spatial overlap of the states with the substrate and overlayer.
According to the calculations in Section 4.3.5 the n = 2 state has a higher probability
density in the metal than n = 1 which should increase the effective mass with respect
ton = 1. In looking at the wave functions for two and four layers (Figure 4.18),
one can see that for up to four layers the n = 1 state has more density in the layer
than the n = 2 state. Model calculations of the effective mass reproduce the trends
seen in the data and demonstrate the usefulness of the combined angle-resolved and
coverage-resolved TPPE in determining 3D band structure of the overlayer material.
The calculations also suggest that the effective mass is quite sensitive to spatial
extent of the electron. |

It should be noted that the high energy and momentum resolution afforded by this
technique along both the surface parallel and surface normal yield the most precise,
detailed spectra to date of the Xe conduction band. Angle-resolved UPS of a bulk
single crystal conducted at a variety of wavelengths can also map out the conduction
band structure, but UPS resolution is ultimately limited by hole lifetime effects and
the fact that &, is only partially conserved in photoemission from bulk material. The
precision of the TPPE measurements of the conduction band is in principle only
limited by the lifetime broadening of the conduction band of the overlayer.

The QW treatment of Section 4.3.5 has the appropriate behavior in the limiting

cases of zero and infinite Xe layers. The model reduces to the multiple reflection
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model for the clean surface in the limit of zero coverage. In the limit of high coverage,
the model reduces to the effective mass approximation of the Xe conduction band. It
also appears to adequately describe the data in the intermediate case of 1-9 layers.
The probability density of the wave functbions in Figure 4.18 indicates that for two
Xe layers approximately 5% of the n = 2 wave function is in the layer whereas
for 8 atomic layers of Xe approximately 95% of the wave function is in the layer.
This model is perhaps successful because it partitions the wave function more or
less correctly between the layer, vacuum, and substrate, allowing the substrate and
vacuum parts of the potential to primarily determine the n = 2,3 binding energy
for the first few layers but allowing the overlayer potential to dominate for thicker
layers.

Merry and coworkers [96] discussed the effect of the work function shift due to
adsorption on the image state binding energy. In the application of this model,
the work function shift of —.5 eV was taken into account. Therefore this effect of
the substrate band structure is explicitly accounted for in this model, allowing for
a comparison of the relative importance of the work function shift, the dielectric
properties of the interface, and the band structure of the layer.

The binding energies and effective masses of the excited states of the Xe/Ag(111)
interface within an electron-Volt below the vacuum level have been measured using
ARTPPE for one to nine atomic layers. Purely 2-D image potential states (which
only propagate freely in the plane of the surface) evolve into quantum well states that
converge to the conduction band states of the 3-D bulk xenon solid with increasing
layer thickness. This work demonstrates that ARTPPE is a powerful technique
for studying the transition from two- to three-dimensional electronic structure at
nanometer scale interfaces. The simple QW model outlined in Section 4.3.5 accounts
for the energies of the n = 1,2, 3 states over the range of coverages examined in this
work. Importantly, the model yields a simple method for determining an accurate
conduction band structure from the experimental data. In the following section, the

lifetimes of the Xe QW states are investigated.
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4.4 Ultrafast Dynamics of Xe QW States

The culmination of the present work is the determination of the ultrafast decay
kinetics for electrons in quantum well states of the Xe layer. Portions of this section
are adapted from previously published work [128]. The population decay kinetics
were determined from one to six layers of Xe. These results represent the first time-
resolved measurement of the evolution from image states into quantum well states.
These results are important because the transition of the electronic structure from
two-dimensional atomically thin layers to the three-dimensional extended electronic
structure of the bulk has implications in many fields including surface photochem-
istry, photoinduced charge transfer, and semiconductor device physics. Both surface
effects, including chemisorption; band-bending, surface reconstructions, and image
potential states, and quantum confinement, which results in the discretization of
- momentum along the surface normal, may affect the electronic characteristics (ener-
gies, dispersions, and transport properties) of the composite interface. Femtosecond
time-resolved two-photon photoemission (TRTPPE) has proved to be a useful tech-
nique for the determination of the energies and dynamics of interfacidl electronic
states for a Variety of systems [21,129] including metal surfaces [130], semiconductor
surfaces [131,132], and metal-insulator interfaces [40,118]. This approach represents
a new and general method for determining the evolution of electronic structure from
two-dimensional states of a single atomic layer to three-dimensional quantum well
states by analysis of the femtosecond dynamics of excited electronic states for a range
of layer thicknesses. Such a study has the potential of providing a measure of the
spatial distribution of the electron at the interface and the thickness dependence of
the spatial distribution as well as the transport properties across the insulator and
the metal/insulator heterojunction.

Physisorbed multilayers of Xe on a noble metal surface [85, 86, 108] have been
identified as an important model system for understanding carrier dynamics at in-
terfaces and in quantum wells. Since solid Xe is electronically similar to SiOq, aspects
of this model system are similar to those of a metal-oxide-semiconductor junction.

Because the crystal and electronic structures of bulk Xe and Ag are experimen-
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tally [133,134] and theoretically [135] well-characterized, models of the composite
interface electronic structure andvdynamics can be constructed and tested. Of fun-
damental importance to understanding electron behavior in quantum wells and at
interfaces are the time scales and mechanisms for energy and momentum relaxation
of carriers near the junction of two materials. A systematic study over a range of
film thicknesses provides a unique probe of the interface since the evolution of the
electronic structure can be monitored atomic layer by layer, allowing for the separa-
tion of the various factors which determine the electronic structure and dynamics of
the composite interface.

The evolution of an n = 1 image potential state into a QW state has been observed
by Fischer et al. [26] for Au/Pd(111). In the previous section it was determined that
cohduction band QW states can form with increasing layer thickness for an insulating
overlayer such as Xe which has a positive (attractive) electron affinity [108]. The
energy levels of excess electrons in these states were measured, and it was shown
that the binding energies were quantized according to the layer thickness. It was
also demonstrated that the quantized energy levels were in good agreement with the
Xe conduction band dispersion. Here, these measurements are extended to the time
domain, providing the first direct (time domain) measurement of the lifetime of QW
states at a metal-insulator interface. It is shown that the lifetime provides a measure
of the spatial distribution of the electron at the interface and thickness dependence
of the spatial distribution as well as the transport properties across the insulator and
the metal /insulator heterojunction.

In general, the electronic states of the interface depend on contributions from the
electronic structure of the substrate, the overlayer material, polarization or image
effects, and quantum confinement effects. As shown below, all of these effects are
important in Xe/Ag(111). QW states occur in a layered sample when the states of
one material are confined by band gaps in the neighboring layers. The relevant bulk
bands of the materials under study are the surface-projected Ag(111) valence and
conduction bands (VB and CB, respectively) and the Xe 65 CB (Figure 4.8). In
addition, the polarizability of the metal surface supports a Rydberg series of image

potential bound states converging to the vacuum level. The lowest members of that
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series are also plotted in Figure 4.8. The work function shifts for monolayer and
bilayer were determined from the kinetic energy of the n = 3 feature [108]. The
work function shift of A® = —0.5 eV due to the adsorption of monolayer Xe places
the vacuum level at approximately 0.07 eV above the Ag CB minimum. The Xe CB
minimum is at approximately -0.5 eV with respect to the vacuum level. Electrons
promdted to the CB of a Xe slab on the surface will be subject to confinement by the
projected band gap in the metal and the image pbtentia.l in the vacuum. Previous
work has shown that the manner in which an image state evolves with coverage
depends on its energy relative to the band structure of the Xe slab. The n = 2 and 3
image states, which are above the Xe CB minimum, become QW states of the layer
at 7-9 layers of Xe and exhibit a mixed QW-image state behavior at intermediate
coverage. These exhibit a discrete perpendicular dispersion corresponding to the Xe
CB, whereas n = 1 does not [108].

The details of the experimental apparatus are described previously. Only the
experimental parameters which are specific to this experiment are described here.
A Coherent Ti:sapphire oscillator-regenerative amplifier system in conjunction with
the optical parametric amplifier is employed to generate 70 fs visible pulses which
are frequency-doubled to yield UV pump pulses. The residual fundamental is used
as a probe pulse and is optically delayed with respect to the pump pulse. The
two pulses are focussed collinearly on the sample. The energy of the photoemitted
electrons is determined by time—of;ﬂight. Using 300 and 600 nm pulses as pump and
probe, the measured instrument function is ~ 110 fs FWHM. The wavelength was
selected to place the pump photon energy (4.13 eV) close to the vacuum level but
to avoid producing excess background counts from one photon photoemission. The
sample was cooled to 45 K by means of a liquid helium cryostat in the UHV chamber
with background pressure at ~ 1 x 10710 torr. Xe was adsorbed on the sample by
Langmuir dosing using a leak valve. Xe/Ag(111) X-ray structure results [114] show
Xe to form an ordered incommensurate hexagonal layer on the Ag(111) surface.

A time-resolved spectrum of the clean Ag(111) surface state was taken before
deposition, in order to calibrate time zero on the delay stage, to determine the

instrument function width, and to determine the n = 1 clean surface lifetime as a




116

sanity check for the system. Time-resolved TPPE spectra were acquired for each of
one to six layers of Xe. The n =1 and n = 2 traces correspond to an exponential rise
and decay convolved with a Gaussian instrument function, as shown in Figure 4.20.
The n = 1 lifetime increases monotonically with each additional layer of Xe while the
lifetime of the n = 2 state initially increases with the addition of a monolayer of Xe,
decreases slightly at 3 layers, then increases again at five and six layers (Figure 4.20).
The n = 3 state lifetime pdssesses a similar oscillation at three layers and remains

approximately constant from five to six layers, suggesting a second oscillation.

4.4.1 Quantum Well Model Estimates of Lifetimes

In order to qtiantify the possible contributions to the binding energies of the
image potential and QW states, a 1D quantum-mechanical model which explicitly
includes the polarizability of the metal substrate and adlayer as well as the substrate
and adlayer band structure is used [108]. As shown in the previous section, the model
results are in good agreement with experimental binding energies. Implicit in this
model is the quantum confinement due to the band gap of the substrate and the
image potential barrier in the vacuum. As is shown below, a simple extension yields
lifetime predictions for Xe QW states based on wavefunction penetration into the
substrate. The Ag(111) substrate bands are treated within the two-band nearly free
electron (NFE) approximation. The two band NFE approximation was chosen since
it had been successfully applied [61] to describe the substrate for the related case
of surface states in the band gap of a metal. The two-band parameters were taken
from calculations of clean Ag image and surface state binding energies [62]. In the
overlayer the potehtial was set to the Xe CB minimum of -0.5 eV with an effective
mass of 0.55m,. In the vacuum the potential was taken from the continuum dielectric
model [118,120]. The continuum dielectric model yields the image potential outside
a dielectric slab on a metal surface, accounting for the polarizability of the metal
and adlayer. The dielectric constant of the layer was set to the literature value [136]
of ¢ = 2. The eigenstates of the model potential were determined by numerical

integration, and binding energies and wavefunctions were determined for 1-10 layers
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Figure 4.20: Ultrafast time-resolved two-photon photoemission traces (a) for the
n = 1 state for one to four layers of Xe (symbols) along with a fit obtained by
convolving a single exponential with a Gaussian instrument function. Lifetimes (b)
of the n = 1,2 and 3 states for 1-6 layers of Xe extracted from the time-resolved
data (filled circles). Lifetime predictions taken from the 1-D model (open circles) are
in qualitative agreement with the oscillations in lifetime apparent in the data. The
experimental error bars are calculated for a 95% confidence limit.
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of Xe. The probability densities are shown in Figure 4.21.

Lifetime predictions were obtained from this model as follows. Since Xe has
a large gap, it can be assumed that very few decay channels are present within
the Xe layer, and therefore the primary decay pathway for excited electrons at the
Xe/Ag(111) interface is recombination with a vacancy in the substrate. Based on this
assumption, the lifetime should depend on wavefunction overlap with the substrate.
A model which has proven successful in obtaining qualitative lifetime predictions
from calculated wavefunctions starts by assuming that the coupling to the crystal is
related to the penetration p of the image state into the bulk, where p is defined as
the probability density in the bulk [69, 72-74], |

p= /_ Ooo Yrpdz. (4.51)

The lifetime broadening I' of the image state is related to the linewidth of the bulk
crystal conduction band T'y(E) by p - I',(E). Calculated lifetimes using a value of T,
based directly on independent photoemission data [75] are shown in Figure 4.20. The
value of I'; at a given energy is given by an expression obtained by empirically fitting

photoemission and inverse photoemission linewidths over a range of 2 to 50 eV,
T4(E) = 0.13(E - Ej). (4.52)

The n =1 state is at -0.77 eV, or 3.79 eV above E;. This yields a I'y of 490 meV.
The trends and overall magnitudes of the n.= 2 and 3 lifetimes are reproduced by
this simple model. These trends can be understood by considering two effects which
have an opposite impact on lifetime. First, the semi-classical round trip time in a
simple square well varies as the width squared. Assuming the lifetime is inversely
proportional to the attempt rate, the lifetime should increase as the square of the
number of layers. The second effect is due to the presence of the soft image barrier in
the vacuum: For a monolayer, the image potential well in the vacuum is both wider
and deeper than that of the layer. As the layer thickness increases, the increased dis-
tance from the metal substrate weakens the image potential in the vacuum while the
layer potential gets wider. At a certain thickness, approximately when the Xe layer

terminates near a node in the zero-order image state wavefunction, it is energetically
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Figure 4.21: The electron probability density ¥*y for the quantum well model for
the n = 1 and 2 states for 1,3, and 6 layers of Xe. The model predicts that the
probability density in the layer increases for the n = 2 state as the number of layers
increases. The vertical lines represent the layer-vacuum boundary.
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- favorable for the electron to move inside the layer, resulting in increased probability
density in the layer, as can be seen by comparing the n = 2 wavefunction for one
and three layers (Figure 4.21). The expectation value (z) decreases, resulting in an
increase in the probability density in the substrate which reduces the lifetime. A
given image potential state effectively becomes a QW state in successive steps, the
number of Which is determined by the number of nodes in the zero-order hydrogenic
wavefunction, i.e., the quantum number. For example, the calculations indicate that
n = 3, having two nodes.in the wavefunction, will have two oscillations in lifetime
before the simple square well behavior takes over.

Degeneracy of the image state with the ‘subst'rate conduction band results in a
decrease in lifetime relative to image states within the gap [130]. The fact that the
lifetime of the n = 3 state in the presence of a monolayer of Xe is shorter (the
lifetimes for n = 1,2 and 3 are 210, 210, and 180 fs, respectively) than that of n =1
and n = 2 could be explained in terms of the degeneracy of the n = 3 state with
the bulk. However, for,the similar case of a monolayer of cyclohexane (Cg¢Hjs) on
Ag(111), the lifetimes of the n = 1,2 and 3 states are 200, 220, and 660 fs. The
work function of Xe/Ag(111) is 30 meV lower than the value of 4.09 eV measured
for cyclohexane on the same substrate, placing the n = 3 state in the presence of
a Xe monolayer within the band gap, according to previous measurements of the
Ag(111) band gap [26]. That the n = 3 lifetime in the presence of a monolayer of Xe
is shorter than that of the n = 3 state in the presence of a monolayer of cyclohexane
despite the fact that the former is within the band gép of the substrate rules out
degeneracy as the cause of the difference in lifetime. Rather, this suggests that the
difference in lifetime is due to differences in the potential within the layer. The
main difference is that the alkanes possess a negative (repulsive) electron affinity,
which prohibits the formation of quantum well states. No oscillations are observed
or predicted in the lifetime for n-heptane/Ag(111) as a function of coverage. The
lifetimes increase ‘monotonically, consistent with a picture in which the negative
electron affinity excludes the electron from the layer. In contrast, appreciable electron
density in the layer and the formation of quantum well states related to the band

structure are observed for Xe layers [108]. -
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The model results for the n = 1 state predict that its lifetime should also increase
quadratically with layer thickness. This conflicts with the data, which indicate that
the lifetimes for n = 1 reach limiting values by five or six layers. A possible interpre-
tation is that the n = 1 state ceases to evolve as an image state at the Xe-vacuum
interface [108] and becomes a screened image state of the metal inside the Xe slab.
The finite lifetime of an electron in bulk Xe, which may have an effect on measured
lifetimes, is not taken into account. Also, for thicker layers defects and the pres-
ence of islands of adsorbate instead of continuous layer may shorten the lifetime.
In order to deterrhine the relative importance of these effects, a more sophisticated,
self-consistent approach to the potential in the overlayer is required. Recently, so-
phisticated self-consistent pseudopotential calculations of image state lifetimes on Li,
Cu, and Ag surfaces were reported [53]. The results of those calculations point to the
importance of nonlocal effects (correlation) on image state lifetimes. Interestingly,
the results of empirical multiple reflection theory calculations compare favorably with
the pseudopotential calculations, which mirror recent experimental results. When
nonlocal effects are left out of the pseudopotential calculations, the lifetime of the
image states is overestimated. The nonlocal effects are important to the lifetime,
since they include the interaction of electrons in the vacuum with electrons in the
metal. It should be noted that nonlocal effects are implicit (but approximate) in
the multiple reflection formalism, which assumes delocalized Bloch waves in the sub-
strate. Multiple reflection theory also approximates the important many body effects
by including the image potential. An interesting question is what effect the overlayer
has on the importance of nonlocal effects. Unfortunately, the self-consistent pseu-
- dopotential model could not be readily adapted for the current system, due to the
large number of electrons in the Xe and the difficulty in handling relativistic effects.

Since the calculated wavefunctions successfully account for the lifetimes of the
quantum well states, we conclude that the wavefunctions correctly describe the par-
titioning of conduction electrons between the three spatial regions of this model
interface,. i.e., between a noble metal, an insulator, and vacuum, as illustrated in
Figure 4.21. In addition, we have shown that the electron lifetime as a function of

thickness displays a charactéristic oscillation marking the onset of QW electronic
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behavior. Femtosecond layer-by-layer TPPE constitutes a new approach to under-

standing the complex dynamics of electrons at interfaces leading to stringent tests

for electronic structure theory and dynamics.
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Chapter 5
Conclusions

In the present work, the binding energies and dynamics of excited electronic levels
in thin layer quantum wells have been determined by the technique of two photon
photoemission. The results have been interpreted in terms of the bulk electronic
properties of the Xe adsorbate, through the conduction band minimum and effective
mass as well as the dielectric constant. The layer-by-layer data show a pronounced
effect of coverage on binding energy and lifetimes of excited electronic states. Individ-
ual, well-separated peaks in the energy spectrum were associated with each coverage.
This indicated complete layers at the monolayer through trilayer coverages and large,
ordered islands at higher coverages from 6-9 layers. The individual peaks at each
coverage were shown to possess a dispersion which also depended on coverage. The
lifetimes of the excited electrons exhibited oscillations as a function of coverage.

These effects were interpreted in terms of fundamental physical properties of
the overlayer material and the substrate, and yielded precise information about the
electronic structure of the overlayers and the spatial extent of overlayer electronic

states. At low coverages, the excited electrons were shown to reside primarily outside
| the layer and the binding energies of the image states are determined largely by
the polarizability of the layer and substrate. The polarizability of the adsorbate
and substrate was modeled using a dielectric continuum approximation. At higher
coverages, the electrons overlap significantly with the Xe overlayer and the coverage

dependence of the binding energies was explained in terms of a quantum size effect
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which was shown to yield the perpendicular dispersion of the Xe conduction band,

described by a band minimum and effective mass. The dispersion within the plane
of the surface was qualitatively explained in terms of the bulk Xe effective mass and
the probability density of the excited electron within the layer.

It was shown that the affinity level of the overlayer material is important in deter-
mining the coverage-dependent behavior of the states. For electronic states initially
energetically below the bulk affinity level of the layer material, the layer acts as a
barrier and the electron is pushed further out into the vacuum with each additional
layer. For these states, the electron resides'primarily in the image well outside the
layer. The image well outside the layer has contributions from the polarizability of
the layer as well as contributions from the substrate image potential. The layer po-
larizability term 1/4ez dominates the potential at high coverage. For states initially
energetically above the layer affinity level, the layer presents an attractive quantum
well. For very thin layers, however, the confinement energy of the layer makes it
energetically unfavorable for the electron to reside in the layer. The lifetimes of the
excited quantum well states possess a significant oscillation or decrease in lifetime as
a function of coverage which was interpreted as marking the onset of quantum well
electronic behavior. The results were modeled quantitatively in terms of a penetra-
tion model which confirmed the experimentally observed oscillations in lifetime are
a result to the onset of quantum well electronic behavior, as the decrease in lifetime
was accompanied by a substantial increase in the probability amplitude in the layer.
Thus the difference in the coverage dependence of the lifetimes for the n = 1 state
versus the n = 2 and 3 states can be interpreted as a measure of the way the spatial
extent changes as the coverage increases.

The models which were developed to iﬁterpret these results were based on the
multiple reflection theory for image states on metal surfaces. The effect of the over-
layer was modeled by modifying the image potential in the vacuum to take into
account the présence of the layer. Inside the layer the potential was that of a one di-
mensional box, with the potential set to the minimum of the bulk conduction band of
the overlayer material. On the substrate side, the wavefunction solutions of the box

were joined with the nearly-free electron solutions of the bulk. On the vacuum side,
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the wavefunctions were joined to solutions for the image potential, which contains
contributions from the layer polarizability as well as the substrate image potential.
. The calculation results underlined the importance of the substrate band structure in
the lifetime in some cases. For states near the substrate band edge, small changes
in the energy of the state or the position of the vacuum level result in large changes
in the penetration into the substrate. Wavefunction penetration into the substrate
is directly related to the inverse lifetime.

It was also shown that the TPPE results provide a sensitive measure of the
dispersion or effective mass of the relevant electronic bands of the overlayer material.
The coverage dependence of the binding energies yields a measure of the overlayer
band dispersion along the surface normal while angle-resolved measurements yield
information about the dispersion along the surface parallel. The interpretation of the
dispersion data is somewhat complicated by the presence of the substrate bands, but
this effect can be modeled reasonably well using the quantum well model developed.

An important development in this research was the realization of the significance
of coherence and dephasing in the time-resolved spectra. The lineshapes of TPPE
features along both the energy axis and the time axis are affected by the coherence
dephasing process. Coherence dephasing results in a delayed rise in the population
of the excited state, a feature observed in many spectra. The delayed rise time is
associated with the coherence dephasing time. The energy peaks in the spectrum are
experimentally observed to narrow as a function of pump-probe delay. In the past, it
has been difficult to model coherence dephasing in time-resolved TPPE spectroscopy
because of the large number of parameters to determine given a single kinetics trace.
But since the TOF spectrometer allows us to obtain a complete, high resolution en-
ergy spectrum at each time delay, the size of the data set is greatly increased. The
determination of the dephasing parameters of the optical Bloch equations for the
system by the application of non-linear least squares minimization on the complete
three-dimensional data set should yield more information than is currently available
about the various decay processes of electrons at surfaces. Ideally, such a determi-
nation should yield additional information about the relative contributions from the

various processes involved in dephasing: pure dephasing, electron-electron scatter-
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ing, defect scattering, and momentum relaxation. Proper analysis of the results can
yield information about hole state lifetimes, as well.

The relatively long dephasing times open up the possibility of phase-locked mul-
tiple pulse experiments yielding multidimensional data sets roughly analogous to 2D
NMR results. This also opens up the possibility of quantum control of electrons and
chemical reactions on surfaces. The surface provides a way to align molecules, and
provides a straightforward method for cooling them. Cold, well-aligned molecules
are important for quantum control, since pure populations are required in order for
quantum-mechanical interference effects to be manifest. Also, the enhanced sur-
face sensitivity of techniques such as TPPE allows the measure of subtle effects or
processes with low cross-sections. ‘

Another possible area of study for future work is the excitation mechanism for
negative ions at surfaces. There has been a lot of work published recently which
assumes the importance of a hot electron distribution in the formation of dissociative
and non-dissociative negative ion statés at surfaces [137,138]. The qualitative picture
that has emerged is: absorption of one or more photons in the bulk near the surface
excites one or more electrons. The electron or electrons quickly exchange energy
with other electrons resulting in a thermalized hot electron distribution. There is
then electron transport which carries a number of these hot electrons to the surface
where they attach to adsorbate molecules.

There is a different possible scenario: direct excitation from bulk-like of surface
electronic states to rnegative ion states of the adsorbate. The distinction is not merely
semantical, as the photon energy and polarization dependence for the two mecha-
nisms should be distinct. In particular, direct excitation is favored for adsorbates
with an electron affinity level nearer the vacuum level, since hot electron lifetimes
at this energy are very shdrt, making transport from the bulk to the surface quite
inefficient. |

It should be straightforward, in principle, to study the relative importance of the
hot electron-mediated versus direct mechanism. There are several possible experi-
mental approaches to the problem. One is to compare rates of negative ion formation

for a range of wavelengths, examining the effect of off resonant versus on resonant
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pump wavelengths (in the hot electron-mediated picture, resonance should not be a
factor). In the absence of a surface state, the valence band edge could be employed
as the initial state. Another approach is to examine the relative rates for negative ion
formation for a homologous series of adsorbates with different negative ion energiés.
Also, the polarization of the incident light can be manipulated to favor one process
or the other, since direct surface photoexcitation is favored for p polarized light. In
addition, the dependence on crystal material can be examined, since hot electron
dynamics in transition metals are highly dependent on the position of the occupied
d band.

An interesting but as yet unexplored subject is hot electron dynamics and coher-
ence dephasing in quantum wells. The impact of the quantum size effect on dynamics
and transport of hot electrons is as yet unknown. Possible materials which would
be amenable to study include semiconductors and metals. Current and future work
would also benefit immensely from additional detailed, self-consistent calculations of
the excited electronic structure of adsorbate systems. Such calculations coupled with
the experimental results presented here would greatly enhance our understanding of
the electronic structure of Xe/Ag(111), but require state-of-the-art techniques in or-
der to properly take into account many body effects, nonlocal effects (exchange and
correlation), and relativistic effects due to the large Z atoms comprising the interface.
Technological improvenients on the current state of the two photon photoemission
technique may also facilitate studies of systems more important to chemistry and
catalysis. The use of vacuum ultraviolet or soft X-ray sources would improve the
chemical sensitivity and specificity of the technique. The detection of photodesorbed
ions and molecules instead of photoelectrons is another possibility.

In closing, the physics and chemistry of the interaction of light with excited elec-
trons at adsorbate-covered surface is fundamentally complex, involving some of the
more difficult aspects of solid state physics: many body effects, coherence, energy
transfer, carrier transport, defect scattering, quantum confinement, and tunneling.
This complexity also makes the system interesting, since information is yielded about
important processes, assuming the data can be decomposed to yield information

about the various processes at the surface by the appropriate application of exper-
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imental and theoretical technique.. Angle-resolved and coverage-resolved techniqﬁes
were shown to be promising as experimental methods to decompose various processes
or effects at the interface.

This work has shown that both the experimental and theoretical problems as-
sociated with the study of electron dynamics at interfaces are indeed tractable. It
was also shown that the interwoven complexitiés inherent in this system can in some
important cases be separated and adequately explained by the application of simple
physical ideas to the results of systematic experimental investigations. The cur-
rent ability to describe the observed behavior of electrons at surfaces in terms of
the subtle interplay of many-body interactions, effective mass, the surface barrier,
quantum confinement, and dielectric effects is in part due to the many experimen-
tal degrees of freedom and quality of data afforded by the technique of two photon
photoemission. The success of this work is also due to the fact that the experiment
brings together two mature experimental methodologies, ultrafast pump-probe spec-
troscopy and angle-resolved photoemission, and its explanatory power is leveraged
from the large body of knowledge in these two fields. This technique has continuing

promise as an important window into electronic and chemical processes at surfaces.
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Data Acquisition Programs

-- MCB (multichannel buffer) DATA ACQUISITION PROGRAM

Simple program to collect data for argv([i] seconds of
LIVE_TIME and exit. The program communicates with the MCB
via the mailbox i/o interface of the MCB card. It sets up
and starts a scan with argv[1] seconds of LIVE_PRESET.

Then the program waits for the scan to finish. LIVE_TIME
may differ substantially from wall clock time, so the
program may only terminate when LIVE_TIME==LIVE_PRESET.
LIVE_TIME is read from the MCB. However, asking the MCB for
the LIVE_TIME too often does not let the MCB perform its
data acquisition duties. Therefore, the code tries to guess
how much longer it should sleep before the scan is
finished.

Requires DIALOG.C and DIALOG.H code Copyright EG&G Ortec

<stdio.h>
<stdlib.h>
<string.h>
<ctype.h>
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#include <time.h>

#include <dialog.h>

#define CLOCKS_PER_SEC 1000

#define SCAN_TIME 15 /* Scan duration in seconds */

char mcb_env_var[81]; /* MCB environment variable storage */

main(int argc, char *argv[])
{ v

char response[129], pctbuf12];

char cmd_ptr[129], *1str="00750";

int mcb_number = 1, cmd_len = 0,

max_resp = 128, max_cmd = 128;

int type = MCB$918 ;

int i, sum, resp_len, ioerr, errmac, errmic;

int scan_duration, elap, ltime, rtime;

clock_t timeo;

*cmd_ptr=NULL;
/* SHAREPOR is the shared memory port addr (see dialog.c) */
/* the port is used for communication with the MCB */
/* SHAREMEM is the actual RAM address */
/* that’s where the actual data is */

/**********************************************************/

/* Check for a time argument (command line) */
/**********************************************************/

if(arge > 1) { /* 1 or more params */
scan_duration = atoi(argv[i]);

} else {
scan_duration

SCAN_TIME;
%

/**********************************************
assume MCB 1, do mcb_dialog() to see if card

is present and working
sk sk ok ok skok ok ok ok sk sk sk ok sk sk ok ok ok o ki sk kakok sk kol ok sk ok ok ok ok /

printf ("MCBACQ V1.00\n");

/3 skok ok sk ok sk ok ok sk sk sk ok kil ok sk ok ok sk oo o o ok ok sk sk ok ok o s o ok ok sk sk ok ok sk o s sk ok ok sk sk sk sk ok ok sk ok ok ok
Now use mcb_dialog to send the following sequence of
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commands to MCB:

STOP

CLEAR_ALL

CLEAR_PRESETS (probably unnecessary, done by CLEAR_ALL)
SET_LIVE_PRESET 50*scan_duration (20ms ticks)

START

ACQUIRE (wait loop for scan_duration secs)

(check LIVE_TIME to see if equal to 50*scan_duration)

(if not, estimate how long until scan is finished, goto A)
STOP :

CLEAR_PRESETS
ook ook o ok ok ok sk o KoK ok KRk ok s ok ks R koK s ok sk ok sk sk sk sk sk sk ok skl ko kok ok kokok ok /

ioerr = mcb_read(mcb_number,type,max_resp,
response,&resp_len) ;

if(icerr > 0) {
print_resp(response,resp_len);

} .

if(ioerr < 0) {
printf ("I/0 Error number %i\n",ioerr);

}

Send STOP */

sprintf (cmd_ptr, "STOP") ;
cmd_len=strlen(cmd_ptr);
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len,
max_resp,response,{resp_len,
errmac,&errmic) ;
print_resp(response,resp_len);
/* print percent response */
sprintf (pctbuf,"%%%3.3d%3.3d" ,errmac,errmic) ;
sum = 0; /* calculate checksum */
for(i = 0; i < 7; i++) {
sum += pctbuf[i];
}
sum %= 256; /* checksum mod 256 */
printf (“%s%3.3d<CR>\n",pctbuf,sum);

/* Send CLEAR_ALL x/




/*
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sprintf (cmd_ptr,"CLEAR_ALL") ;
cmd_len=strlen(cmd_ptr);
printf("Sending %s to MCB\n",cmd_ptr);
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len,
max_resp,response,&resp_len,
&errmac,&errmic) ;
print_resp(response,resp_len);
sprintf (pctbuf, "%%%3.3d%3.3d",errmac,errmic) ;
sum = 0; /* calculate checksum */
for(i = 0; 1. 7; i++) {
sum += pctbuf[i];
}
sum Y%= 256; /* checksum mod 256 */
printf ("%s%3.3d<CR>\n",pctbuf,sum);

Send SET_LIVE_PRESET */

sprintf (cmd_ptr,"SET_LIVE_PRESET %i",scan_duration * 50);
cmd_len=strlen(cmd_ptr);
printf("Sending %s to MCB\n",cmd_ptr);
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len,
max_resp,response,&resp_len,
&errmac,&errmic) ;
print_resp(response,resp_len);
sprintf (pctbuf, "%%%3.3d%3.3d" ,errmac,errmic) ;
sum = 0; /* calculate checksum */
for(i =0; i< 7; i++) {
sum += pctbuf[i];
}
sum %= 256; /* checksum mod 256 x/
printf ("%s%3.3d<CR>\n",pctbuf,sum) ;

Send START */

sprintf (cmd_ptr,"START");

cmd_len=strlen(cmd_ptr);

printf("Sending %s to MCB\n",cmd_ptr);

ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len,
max_resp,response,&resp_len,
&errmac,&errmic) ;
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print_resp(response,resp_len);

sprintf (pctbuf,"%%%3.3d%3.3d" ,errmac,errmic) ;

sum = 0Q; /* calculate checksum */
for(i = 0; i < 7; i++) {

. sum += pctbuf([i];

}

sum %= 256; /* checksum mod 256 */
prihtf("%s%3.3d<CR>\n",pctbuf,sum);

/* start wait loop */

timeo=clock(); /* DOS has no sleep function, so loop */
do {

elap=clock()-timeo;

/* assume .5 secs of deadtime */
} while( elap < CLOCKS_PER_SEC * scan_duration );

/* check the livetime */

resp_len=0;
do {
sprintf (cmd_ptr,"SHOW_LIVE");
cmd_len=strlen(cmd_ptr) ;
. printf("Sending %s to MCB\n",cmd_ptr);
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len,
max_resp,response,&resp_len,
&errmac,&errmic) ;
} while( resp_len < 6 ); /* loop until we get a response */
print_resp(response,resp_len);
sprintf (pctbuf,"%%%3.3d%3.3d" ,errmac,errmic) ;
sum = 0; /% calculate checksum */
for(i = 0; 1 < 7; i++) {
sum += pctbuf[i];
}
sum %= 256; /* checksum mod 256 */ -
printf ("%s%3.3d<CR>\n",pctbuf,sum);

/* BUSY-WAIT loop to keep the program from terminating
before the scan is finished */
do {




strncpy(lstr,response+7,4) ;
printf("livetime ticks so far: %s\n",lstr);
ltime=atoi(1lstr);
if ( 50*scan_duration-ltime < 10 ) {
rtime=10;
} else {
rtime=50*scan_duration-ltime;
}
timeo=clock();
do {
elap=clock()-timeo;
/* wait until rtime*20 clock ticks have passed */
} while (elap < rtime*20) ;

do {
sprintf (cmd_ptr,"SHOW_LIVE");
cmd_len=strlen(cmd_ptr);
printf ("Sending Command: %s",cmd_ptr);
ioerr = mcb_dialog(mcb_number;type,cmd_ptr,cmd_len,
max_resp,response,&resp_len,
gerrmac,&errmic) ;
} while( resp_len < 5 );
print_resp(response,resp_len);
} while (ltime < scan_duration*50);

/* Send CLEAR_PRESETS */

sprintf(Cmd_ptr,"CLEAR_PRESETS");
cmd_len=strlen(cmd_ptr);
printf ("Sending %s to MCB\n",cmd_ptr);
ioerr = mcb_dialog(mcb_number,type,cmd_ptr,cmd_len,
max_resp,response,&resp_len,
gerrmac;&errmic) ;
sprintf (pctbuf,"%%%3.3d%3.3d" ,errmac, errmic) ;
sum = 0; ' /* calculate checksum */
for(i = 0; i < 7; i++) {
sum += pctbuf[il;
}
sum %= 256; ' /* checksum mod 256 */
printf ("%s%3.3d<CR>\n",pctbuf,sum);
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}

/*
%
* C Call:
* print_resp(response,resp_len);
"
*/
void print_resp(char *response, int resp_len)
{
int outchars = 0, 1i;
char buffer[129], #*ptr;

for(i = 0, ptr = buffer; i < resp_len; i++) {
if (isprint (response[il)) { /* printable char */
*ptr++ = responsel[i];
outchars++;
} else if(responsel[i] =
strcpy(ptr,"<CR>") ;
ptr += 4;
outchars += 4;
} else if(responsel[i]
strcpy (ptr, “<LF>") ;

’Nr’) { /* carriage return */

1]
|

= '\n’) { /* linefeed */

ptr += 4;
outchars += 4;
} else { /* otherwise = <°7> */
sprintf (ptr,"< %c>",response[i]+64) ;
ptr += 4;

outchars += 4;

}
if (outchars > 72) { . /* if line gets too long */
sprintf(ptr,”...\n <Extra Characters Deleted>");
ptr += strlen(ptr);
break;
}
}
if (outchars > 0) { /* if any chars printed */

*ptr++ = '\n’;

}
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*ptr++ = ’\0’;
printf ("%s" ,buffer);
}

/*
MCBMAT3.C Program to read dual port memory
and write it to a mat-file. The
name of the matfile is argv[i].
The dual-port memory contains 8000
long int (32 bit) values representing a
histogram of electron energies.

April ’95 JDM

modified to automatically select the
appropriate data type to save space
(long int, int, char) Sept ’97 JDM

Also, fixed base address alignment error
(manual was incorrect)

Note: this is a 16-bit DOS program.
-Type "int" is 16 bits.

*/

#include <stdio.h>

#include <string.h>

#include <malloc.h>

#define BASEADD 0xDO000250L /* Segment:0ffset D000:0250 */

#define MASK Ox7FFFFFFFL /* Keep all but ROI bit */

#define MAXCHAN 0x4000 /* Set for maximum # of channels */

main(int argc, char *argv([])
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{
unsigned long data_val; /* storage for channel data value */
unsigned long  *data_buf,

chan_data,
mattype, /* type of MATfile to write */
mcbmax; /* max value in MCB */

unsigned long far *chan_ptr; /* pointer to data memory
(far only works in DOS) */

unsigned char mcb; /* MCB number */

int start_chan, /*bstarting channel to display */
end_chan, /* ending channel to display */
loop;

char filename([20],
*varname; /* file format is 8+3 chars long: month,
day, "scan number" and spec number */
FILE *fp_mat;
/* We only use MCB number 1 */

mcb = 1;
strcpy(varname, "mmddn000") ;

/* We use channels 1 thru 8000 */
start_chan = 1; :
end_chan = 8000; }

data_buf=(unsigned long *)malloc(8000*sizeof (unsigned long));

/* Point to dual-port memory
(this is the unportable DOS way) */

chan_ptr = (unsigned long far *)BASEADD;

/¥ sanity check command line */

if (argc '= 2)
{




printf ("USAGE:mcbmat filename\n");
exit(1);
}

/* read data into buffer array */
mcbmax=0; ° ‘
for (loop = start_chan; loop <= end_chan; loop++)
{
/* read data from pointed to channel and
mask off ROI bit */
chan_data = MASK & *(chan_ptr + loop);
if (chan_data > mcbmax) mcbmax=chan_data;
data_buf [loop]=chan_data;

/* determine the type (to save disk space) */
if (mcbmax<257) mattype=50; /* unsigned char */
else if (mcbmax<32769) mattype=40 ; /* 16 bit uint */
else mattype=20; /* 32-bit uint */

/* open output file */

varname = argvl[1i];
sprintf(filename,"%s.mat",varname) ;
printf("saving MCB data to %s\n",filename);
fp_mat = fopen(filename,"wb");

/* first save MATLAB header info */
headmat (fp_mat,mattype,varname,1,8000,0);

/* save channel data */
if (mattype==50) {
for (loop = start_chan; loop <= end_chan; loop++)
{
chan_data=(unsigned char)data_buf[loop];
furite(&chan_data,sizeof (unsigned char),1,fp_mat);
}
} else if (mattype==40) { ;
for (loop = start_chan; loop <= end_chan; loop++)
{
chan_data=(unsigned int)data_buf[loop];
fwrite(&chan_data,sizeof (unsigned int),1,fp_mat);

}
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} else { /* mattype = 20 */

for (loop = start_chan; loop <= end_chan; loop++)

{ _
chan_data=(unsigned long)data_buf [loop];
fwrite(&chan_data,sizeof (unsigned long),1,fp_mat);
}
}
fclose(fp_mat);
} .
/*
* headmat -- write a header in version 1.0 MATfile format.

* See "The Matlab External Interface Guide" for details.

*/

typedef struct {
long type; /x*
long mrows; /*
long ncols; /x
long imagf; /*
long namlen; /*

} Fmatrix;

type */

row dimension */

column dimension */

flag indicating imag part */
name length (including NULL) */

headmat (fp, type, pname, mrows, ncols, imagf)

FILE *fp;  /*
int type; /*

File pointer */
Type flag: 20 unsigned long int (32 bit),
40 unsigned int16, 50 unsigned char */

/* See LOAD in reference section of guide for more info. */

int mrows;
int ncols;
int imagf;
char *pname;

Fmatrix x;
int mn;

-type = type;

.MrOWS = MIrows;
.ncols = ncols;
.imagf = imagf;

LT T B B

/* row dimension */

/* column dimension */

/* imaginary flag */

/* pointer to matrix name */

.namlen = strlen(pname) + 1;

mn = X.Mmrows * X.ncols;

furite(&x, sizeof(Fmatrix), 1, fp);




fwrite(pname, sizeof(char), (int)x.namlen, fp);

}

/* STAGE.C:

move the translation stage, version 2, for Klinger CC1l.1,

moving it in 1 micron steps. Stage is controlled by the
National Instruments GPIB card.

See CC1l.1 manual for command syntax
Jason McNeill, April 1995

Be sure to include mibm.obj in cl line and
/AM for Medium Memory Model

Usage format:

stage type y
where type is: o (set origin)

(absolute position)

(relative position, positive)
(relative position, negative)

+ p O

and y is either 0 for origin search
or (any number) for stage movement

*/

#include <stdio.h>
#include <string.h>
#include “"ibdecl.h" /* GPIB declarations */

extern int ibfind(), /* gpib functions */
ibclr(), ‘
ibwrt (),
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ibrd(),
ibonl (),
ibloc();

int stage; /* stage device number in gpib calls */

main (int argc, char *argv([l])
{
void
error(),
finderr(),
set_origin(),
move_relativeneg(),
move_absolute(),
move_relativepos();
char
movtyps[2],
movdists[20];
const char
xoriginstr = "o",
*absolutestr -
xrelativepos = "+",
*relativeneg = "-";

/* parse argc, argv */

if (arge > 1) {
strcpy (movtyps, argv[i]);
strcpy(movdists, argv([2]);

}

else {
printf("usage: stage <movtype> y\n");
exit(1);

}

/* open GPIB device number 7 */

if ( (stage = ibfind ("DEV7")) < 0) finderr();
if ( ibclr(stage) & ERR) error();




/* depending on the value of *movtyps[0], choose a function,
either set_origin, move_absolute, move_relativepos, or
move_relativeneg */

if ( *movtyps == *originstr )
set_origin(movdists);

if ( *movtyps == *absolutestr )
move_absolute (movdists);

if ( *movtyps == xrelativepos )
move_relativepos(movdists);

if ( *movtyps == *relativeneg )
move_relativeneg(movdists) ;

void finderr() { /* Error: can’t find device */
printf ("Ibfind error; possibly device does not match\n");
printf("configuration name DEV7\n");

}

void error() { /* general GPIB error handler
"ibsta" and "iberr' declared in
header ibdecl.h */
printf ("GPIB function call error\n");
printf("ibsta=0x%x, iberr=0xY%x,",ibsta,iberr);
printf (" ibcnt=0x%x\n",ibcnt);
}

void set_origin(char *stageto) { /* sets origin of stage */
char *outstr = "A\O15%;

printf("setting origin\n") ;
ibwrt(stage, outstr, 2);
if (ibsta & ERR) error();

11\ 1Dc.|..[‘\stag(-.'} & L) erroryy,




}
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/* move to an absolute position */
char outstr[10];
int Ing;

printf ("moving to absolute position %s microns\n",stageto) ;

sprintf (outstr,"P %s\015", stageto);

lng = strlen(outstr);

ibwrt (stage, outstr, lng);

if (ibsta & ERR) error():

/* ask stage for status, this instruction effectively
pauses the computer until the stage finishes stepping.
Without this instruction, we would start taking data
before the stage was finished */

sprintf (outstr,""B\015") ;

lng=strlen(outstr);

ibwrt (stage, outstr, lng);

void move_relativepos(char *stageto) {

/* move to a relative (+)>position */
char outstr{10];
int 1ng;

printf("moving stage forwards %s microns\n",stageto) ;
sprintf (outstr,"N %s\015", stageto);

1ng = strlen(outstr);

ibwrt (stage, outstr, lng);

if (ibsta & ERR) error();

sprintf (outstr,"+\015");

1lng = strlen(outstr);

ibwrt (stage, outstr, 1lng);

if (ibsta & ERR) error();

sprintf (outstr,"G\015");

1ng = strlen(outstr);

ibwrt (stage, outstr, 1lng);

if (ibsta & ERR) error();

sprintf (outstr,"B\015");

lng = strlen(outstr);

ibwrt (stage, outstr, lng);

if (ibsta & ERR) error();
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void move_relativeneg(char *stageto) {
/*move to a (-) relative position */
char outstr[10];
int 1ng;

printf ("moving stage backwards %s microns\n",stageto) ;
sprintf (outstr,"N %s\016", stageto);
lng = strlen(outstr); .

ibwrt (stage, outstr, 1lng);

if (ibsta & ERR) error();

sprintf (outstr,"-\015");

1lng = strlen(outstr);

ibwrt (stage, outstr, lng);

if (ibsta & ERR) error();

sprintf (outstr, "G\015") ;

lng = strlen(outstr);

ibwrt (stage, outstr, lng);

if (ibsta & ERR) error();

sprintf (outstr,"B\015");

l1ng = strlen(outstr);

ibwrt (stage, outstr, 1ng);

if (ibsta & ERR) error();

/*
SCOPE.C

using National Instruments GPIB card, grab a waveform from a
LeCroy 9300 digital oscilloscope. Takes 2500 points from
math trace A.

This program is useful as a general way to download a
waveform from the digital oscilloscope in order to
analyze it on a computer. Its primary use was to acquire
waveforms from a Varian Auger spectrometer and to acquire
autocorrelation traces from the INRAD autocorrelator.




-Jason McNeill (Oct 1993) =/

/* Be sure to include mib*.obj in cl line,
/AM for medium memory model */

/* compile with "-DNO_SCOPE" to test without digital scope */
#include <stdio.h>
#include <string.h>

#include "decl.h"

/* from decl.h

extern int ibsta,
iberr,
ibent;
*/ :

char file_name([32];
void save_data(), get_new_filename();
int data[2500];
#ifndef NO_SCOPE
int ibfind(),
ibelr (),
ibwrt (),
ibrd(),
ibonl (), :
ibloc(); /* from mcib*.obj */
#endif

main (int argc, .char *argv[])

{

void error(), finderr();
int scope, cnt, ndat;

/* assume argv[1] is the output file name */
if ( arge > 1)

strcpy(file_name, argv([1]l);
else
strcpy(file_name, "auger.tmp");
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/* open GPIB device 4 */
#ifndef NO_SCOPE
if ( (scope = ibfind ("DEV4")) < 0) finderr();

/* clear device */
if( ibclr(scope) & ERR) error();
/* set scope output format to two-byte word, binary */

ibwrt (scope, "CFMT OFF, WORD, BIN",19);
/* check gpib status */
if (ibsta & ERR) error();

/* set scope output format to "header off"
(header contains information on scope dwell time,
voltage scale) */

ibwrt (scope, "CHDR OFF", 8);

if (ibsta & ERR) error();

/* set scope output to little-endian (PC byte order) */
ibwrt (scope, "CORD LO", 7);
if (ibsta & ERR) error();

/* tell scope to send 2500 points */
ibwrt (scope, "WFSU NP, 2500", 13);
if (ibsta & ERR) error();

/* ask to send DAT1, data block, of TA, trace A %/
ibwrt (scope, "TA:WF? DAT1", 11);
if (ibsta & ERR) error();

/* now read 2500 points (5000 bytes) into <data> */
cnt = 5000;
ibrd (scope, data, cnt);
#else
cnt=5000;
#endif
/* tell how many bytes received */
printf ("%d bytes received\n", cnt);
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#ifndef NO_SCOPE
/* Now send a clear to the scope */
ibclr (scope);
ibloc (scope);
ibonl (scope,0);

#endif

ndat = cnt/2;

save_data(ndat);
return(0) ;

}
void finderr() {
/* Error: can’t find device */

printf("Ibfind error; possibly device does not match\n");
printf ("configuration name DEV4\n");
}

void error() {
printf (*GPIB function call error\n");

#ifndef NO_SCOPE
printf("ibsta=0x%x, iberr=0x’%x,",ibsta,iberr);
printf(" ibcnt=0x%x\n",ibcnt);

#endif

}

void save_data(int num)
{

int 1i;

char input{20];

FILE *stream;

if ((stream = fopen(file_name, "rb")) != NULL){
fclose(stream);
printf("%s\n",file_name);

printf("File Already Exists!!!\n");

printf("Do you want to OVERWRITE?\n");
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printf(“Answer Y or N\n");

gets (input);

if (input[0] != ’y’ && input[0] !'= ’Y’)
get_new_filename();

)

if ((stream = fopen(file_name, "wb")) == NULL){
printf("Unable to open file for writing, exiting...\n");
exit(1); '

3

for (i=0; i != num; i++) /* write out the 2500 data
points to file */
fprintf (stream, "%i\n", datal[il);
fclose(stream);

void get_new_filename()

{

char input[20];
FILE *stream;
stream=NULL;
do{
printf ("The last file was %s\n", file_name);
printf ("Input new data file name.\n");
gets(file_name);
if ((stream = fopen(file_name, "rb")) !'= NULL){
fclose(stream);
printf ("File Already Exists!!!\n");
printf("Do you want to OVERWRITE?\n");
printf ("Answer Y or N\n");
gets(input); /* security hole */
if (input[0] == ’y’ || input[0] == ’Y’)
unlink(file_name);
}
} while ( input[0] != ’y’
&& input[0] != °Y’
&& stream != NULL );
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% TRTPPE.M

% A data acquisition script written in the MATLAB scripting
% language for the purpose of acquiring two-photon

% photoemission time-of-flight spectra at a series of

% optical time delays determined by setting the position of
% a mechanical translation stage. This version allows

h three different step sizes. The three step sizes are

A useful when the kinetics trace has fast and slow

% components which need to be resolved. The instrument

% control aspects are contained in three DOS executable

A programs: stage.exe, mcbacq.exe, and mcbmat.exe. These

% programs were written in C by Jason McNeill.

A

/A Original version DYNA.M written in 1995 by Jason McNeill.
h Nien-Hui Ge contributed code for variable step sizes.

A Modified to work with MCBACQ.EXE in 1997 by Jason McNeill.
A

% Some scan parameters are specified in the following section.
yA Scan parameters are saved in a file named MMDDX000.mat,

% where MM, DD, and X are the month, day, and scan number,
% respectively. A complete histogram of electron counts as
% a function of energy is saved at each stage position, in
% files named MMDDXYYY.mat.

% uses \dyna\stage.exe to move stage. See source code for command
% format.

% uses \dyna\mcbacq.exe to start acquisition and acquire for
yA argv[1] seconds.

% uses \dyna\mcbmat.exe to write data to a .MAT file.
h File name specified by argv([1].

% User configurable section:
b4orig=70; % number of microns before t0 (length of baseline)
% this is maximum positive number on stage controller
aftorig=70;% number of microns after tO
% this is the most negative number on the controller
% total stage range = bdorig+aftorig




s
endshort=40; % total number of microns acquired in stepshort
stepshort=5; 7 short stepsize in microns
endmid=60; % total number of microns acquired in stepmid
stepmid=2; % medium stepsize in microns
steplong=5; % long stepsize in microns
acqtime=15; % data acquisition time per step

#Do Not edit after this line unless you know what you are doing.

% debug flag, set to "1" if you want debugging messages

debug=0;

% Create vector <strang> describing stage positiomns

ststart = aftorig; Y%start stage 50 microns after t0.
tot=bdorig+aftorig; %total stage range

% These three lines contributed by N.-H. Ge.
stlong=0:steplong: (tot-endshort-endmid) ;
stmid=(tot-endshort-endmid+stepmid) : stepmid: (tot-endshort);
stshort=(tot-endshort+stepshort) :stepshort:tot;

%set stage at these points, used for the stage driving program
strang = [stlong,stmid,stshort];

% the stage is mounted "backwards", so strangfwd represents the

% stage delay for <+> corresponding to longer delay

% between visible and UV pulses.
strangfwd=(tot-strang(length(strang):-1:1));

%real stage positions, starting from O toward positive delay
time=strangfwd*200/30;

%time array used for the time-dependence analysis

% Advise user of current settings for time steps

tmpstr = [’stage will scan from ’,num2str(-bdorig),’ um (’,...
num2str (-bdorig*6.66),’fs) to ’];

disp(tmpstr);

tmpstr = [num2str(endshort-bdorig),’ um (’,...
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num2str ((endshort-b4orig)*6.66), ...
’fs) in steps of ’,num2str(stepshort),’ um (’,...
num2str(stepshort*6.66),’> fs) to ’];
disp(tmpstr) ;
tmpstr = [num2str(endmid+endshort-bdorig),’ um (°,...
num2str ((endmid+endshort-bdorig)*6.66), . ..
'fs) in steps of ’,num2str(stepmid),’ um (,...
num2str(stepmid*6.66),’ fs) to ’];
disp(tmpstr);
tmpstr = [num2str(aftorig),’ um (’,num2str((aftorig)#*6.66),...
’fs) in steps of ’,num2str(steplong),’ um (’,...
num2str (steplong*6.66),’ fs).’];
disp(tmpstr);
tmpstr = [’total number of steps: ’,num2str(length(strang))];
disp(tmpstr);
disp(’?);

% Query user for output file name, number of scans

prefs=’’; % prefixes
direcn=’’; % directions (forwards or backwards)
nscan=input (’enter number of scans ’);
disp(’?)
disp(’?)
for count = l:nscan
disp([’scan number ’,num2str(count)]);
prefs(count,:)=...
input (’Enter 5-letter scan name prefix (ex: ap27g) ’,’s’);
direcn(count)=input(’ (f) forwards or (b) backwards? ’,’s’);

disp(’’);

disp(’?);
end '
disp([’enter comment line’]);
comment=input(’? ’,’s’);

% Information about scan is stored in mmddx000.mat

eval([’save ’,prefs(1,:),’000 comment strang ststart’,...
> prefs bdorig aftorig nscan direcn’,...
> stepshort stepmid steplong stshort’,...




’ stmid stlong strangfwd time’]);
dummy=input (’press return to start ’);

% Main Loop

strangf=strang(length(strang):-1:1);
strangb=strang;
for j = 1l:nscan
tmpstr=num2str (length(strang));
if (length(tmpstr) == 2),
tmpstr = [’0’,tmpstr];
end
if (length(tmpstr) == 1),
tmpstr = [’00°,tmpstr];
end
disp(’’);
pref=prefs(j,:);

if debug,
disp([’Scans will be saved in files ’,...
pref,’001.mat through ’,pref,tmpstr,’.mat’]);
disp(’?); '
disp(’Moving stage to origin of time delay scan’);
end

% I assume that when the program is started, the stage is
% near "t0", when the pump and probe pulses are overlapped.
% We need a baseline measurement before tO. The amount of
% baseline before t0 is specified by "ststart".

eval([’!\dyna\stage - ’,num2str(ststart)]);

if debug,
disp(’Setting stage software origin’);
end

% set stage software origin to current position
'\dyna\stage o 0

if debug,
if direcn(j)=="f’,
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disp(’scanning in forwards mode’);
else :
disp(’scanning in backwards mode’);
end
end

% loop over stage positions <strang>
for count = 1:length(strang),

% set stage position, (depends on scan direction)
if direcn(j)=="f", ‘
% if it is a "forward" scan, move stage to "strangf"
eval([’!\dyna\stage a ’,num2str(strangf(count))]);
else
% else it is a backward scan, move stage to "strangb"
eval([’!\dyna\stage a ’,num2str(strangb(count))]);
end

% acquire spectrum
eval ([’ !\mcbacq\mcbacq’+num2str (acqtime)]);

% set tmpstr to the stage position index
if direcn(j)=="f’,

tmpstr=num2str(count) ;
else

tmpstr=num2str (length(strang)-count+1);
end

% pad stage position index with leading zeroes
if (length(tmpstr) == 2),
tmpstr = [’07,tmpstr];
end
if (length(tmpstr) == 1),
tmpstr = [’00’,tmpstr];
end

% store spectrum
eval ([’ !\dyna\mcbmat ’,pref,tmpstr]l);

end %end stage loop

if debug,




disp(’’);
disp(’Setting stage back to zero’);
end

% move stage back to software origin

'\dyna\stage a 0

eval([’!\dyna\stage + ’,num2str(ststart)]);

disp([’finished acquiring prefix ’,pref])
end % end scan loop '

disp(’finished with set of scans’);
% end script
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Appendix B

Software for Multiple Reflection

Theory

%

h
h

h
h
%
h
h

%
%

h
h
h
%
A
h
)/

SCHROD .M

A Program for finding image state wavefunctions and binding
energies using the approximations of Multiple Reflection Theory.

Multiple Reflection Theory uses confluent hypergeometric functions
to describe the wavefunctions of the image potential. However, it
is numerically more convenient to use Runge-Kutta to solve the
Schrodinger equation, rewritten as a pair of coupled ordinary

differential equations:

yi’=y2
y2’=2m(e-v)yl

This is a two-point boundary value problem. The wavefunction must
match the metal at z=0, and must "vanish" at "infinity". This code
looks for energies where the wavefunction is small at large z (say,
1204) . Strictly speaking, the exact point along the z axis where
the wavefunction is evaluated should have an influence on the
calculated binding energy. The program makes no guarantees and it
is up to the user to verify that the "zfinal" parameter is
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% sufficiently large so as to have a negligible impact on the
% resulting wavefunctions and binding energies.

% Relies on INITVS.M for initialization of the substrate band
% parameters.

% Relies on PSIS.M for the NFE wavefunction of the substrate.

% the ydot function name (containing the differential equations) is
% HAMILAG.M

% the following are used by the hamiltonian (ydot file)
% and so must be declared global (ODE doesn’t pass parameters).

global ee xcutau hartree

% atomic units conversion
hartree = 27.2114; % eV
bohr = .529177; % Angstroms

disp(’SCHROD.M:’)
disp(’Clean Ag(111) Binding Energy and wavefunctions’)

outs=input(’enter the output filename ’,’s’);

xcutoff=input (’enter the xcutoff parameter ’);

t0=0; % the point from which we are integrating
zfinal=input(’enter zfinal parameter ’);

% zfinal should be at least twice the classical turning point

global kpar

kpar=input (’enter k parallel in A"-1 ’);
tfinal=zfinal/bohr;

xcutau=xcutoff/bohr;

% Precision of calculated binding energies, in meV. Must be small
% to ensure accurate wavefunctions. Calculated wavefunctions are
% very sensitive to the precision of the binding energies.
EPRECISION = le-6; |

initvs % initialize the substrate band parameters
7

counter=0;
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yfinal=0;
ypfinal=0;

% for clean Ag, an example range is [-1:.1:-.5 -.45:.05:.1]
range=input (’enter range ’);

% Now some setup options for the Matlab 5 ODE solver.
% See ODE45 and ODESET documentation for details

options=odeset (’AbsTol’,1e-10, ’RelTol’,1e-8, ’MaxStep’,.5);

% The above options are reasonable guesses that seem to work well for
% the clean surface. If necessary, you should change them to see if
% you can increase speed affecting accuracy. Check to make sure

% integrator takes several steps in any region where is a change in

% the slope of the potential.

tic; % start timer
disp(’Finding approximate eigenenergies...’);
% first loop through a range to find approx eigenenergies

for bind=range,
counter=counter+i;
ee=bind/hartree;
% initial wavefunction value and initial wavefunction slope are
% the initial y values supplied to ydot file. The slope must be
% multiplied by <bohr>.
[xpsix, xpsipx] = psis(bind,0);
yO=[xpsix xpsipx*bohr]’;

% set the slope and value to NFE values at origin, integrate the
% 1-D Schrodinger Equation.
[t,y] = ode45(’hamilag’,[t0 tfinal],y0,options);
yfinal(counter)=y(length(y),1);

end

% look for a sign change
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bounds=[];
ptr2=0;
ptr=1;

% Find the number of eigensolutions by counting the
% number of times the wavefunction solution (as a

% function of energy) crosses zero (the sign changes)
% at large z. Record the energy region in which

% the solution is thought to reside in the <bounds>
% variable.

osgn=sign(yfinal(1));
while ptr < length(range)
ptr=ptr+i;
if sign(yfinal(ptr)) ~= osgn,
ptr2=ptr2+1;
bounds(ptr2, :)=[range(ptr-1) ,range(ptr)];
end :
osgn=sign(yfinal(ptr));
end

disp([’Number of eigenvalues is ’ int2str(ptr2)])

eeig=0;
sstr=’7;
disp(’Refining eigenenergies...’)

% perform a binary search for each eigenenergy

for eign=1:ptr2,
range=bounds(eign,:); % binary search is slow, but always works
elower=min(range); % (provided there is only omne root in range)
eupper=max(range) ;

% starting values for the binary search
bind=elower; % find yfinal at lower bound
ee=bind/hartree;
[xpsix xpsipx] = psis(bind,0); 7% initial wavefunction value
% and initial slope
yO=[xpsix, xpsipx*bohr]’; % are the initial y values
% supplied to ydot file

% integrate the 1-D Schrodinger Equation.
[t,y] = ode45(’hamilag’,[t0 tfinall,yO,options);
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yflower=y(length(y),1); % yfinal at lower bound
bind=eupper; % find yfinal at upper bound
ee=bind/hartree;
[xpsix, xpsipx] = psis(bind,0); % initial wavefunction value
; % and initial slope
yO=[xpsix, xpsipx*bohr]’; % are the initial y values
% supplied to ydot file

% integrate the 1-D Schrodinger Equation.
[t,y]l = ode45(’hamilag’,[t0 tfinall,yO,options);
yfupper=y(length(y),1); % yfinal at upper bound
if sign(yfupper) ==sign(yflower),
disp(’No sign change over interval, search not possible’)
disp(’Perhaps the <range> variable is improperly defined’)
error (’CALCULATION HALTED'®)
stop 7% This shouldn’t happen.
end

% iterate until EPRECISION is reached.
while abs(eupper-elower) > EPRECISION,
bind=(elower+eupper)/2; % find yfinal in the middle
ee=bind/hartree;
[xpsix, xpsipx] = psis(bind,0); % initial wavefunction value
% and initial slope
yO=[xpsix, xpsipx*bohr]’; % are the initial y values
% supplied to ydot file

% set the slope and value to NFE values at origin
[t,yl = ode45(’hamilag’,[t0 tfinall,y0,options);
yfmid=y(length(y),1); % yfinal in the middle
if sign(yfmid) ~= sign(yflower),
eupper=bind; % if there is a sign change between lower
yfupper=yfmid; ) bound and middle, then the new upper bound is
% the middle
else
elower=bind;
yflower=yfmid; % new lower bound is the middle
end
end
eval([’y’,int2str(eign),’=y(:,1);°1); % y(:,1) is the wavefunction
% y(:,2) is the slope
eval([’x’,int2str(eign),’=t;’]);




sstr=[sstr,’ y’,int2str(eign),’ x’,int2str(eign)];
eeig(eign)=elower; :
end

xpot=t0:.1:40;
ypot=xpot;

for ctr=1:length(xpot),
[blah,ypot(ctr)]=hamilag(xpot(ctr),[1 11);
end 7% the potential is in xpot,ypot, units are bohr, hartree

% Zero out the divergent part and normalize wavefunction

cut=zfinal-1;

ctr=0;

x1=-101:.1:-.1;

yl=x1;

if length(eeig) > 2,
nn=3;

else

nn=1ength(eeig);
end

yall=(];

for bind = eeig(l:nn),
ctr = ctr + 1;

for ctr2=1:length(xl), % inefficient for loop
yl(ctr2) = psis( bind, x1(ctr2) ); % substrate part of
% wavefunction
end

eval ([’xm={x1 x’,int2str(ctr),’(:)’’*bohrl;’]);
eval ([’ym=[yl y’,int2str(ctr),’(:)’’]1;’1);
xall=-100:.1:cut;
ya=interpl(xm,ym,xall,’cubic’);

% The numerical wavefunction solution always starts increasing

% exponentially at some large value of <z>. The following section
% attempts to truncate the divergent part. This doesn’t always

% work. This approach assumes the divergent part is exponential.
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% Using the slope of log(psi=ya) at large <z>, we can extrapolate
% linearly to where <ya> last crosses zero.

dy=log(abs(ya(length(ya))))-log(abs(ya(length(ya)-10)));
dx=xall(length(ya))-xall(length(ya)-10);
expslope=dy/dx;
expintercept=log(abs(ya(length(ya))))-expslope*xall(length(ya));
% first guess zero when y=exp(-5), this works well
% for clean Ag(111)
‘guesszero=(-5-expintercept) /expslope;
zidx=min(find(xall>guesszero)); 7% index corresponding to ya "= 0.
% try to find minimum within 200 points of guess
[minval,dzero]l=min(abs (ya((zidx~200) : (zidx+200))));
zidx=zidx+dzero-200;
idx=zidx:length(xall); % return array of indices corresponding
% to x > guesszero
ya(idx)=zeros(size(idx)); % zero out indices where ya starts to
% diverge exponentially
% normalize
yarea = sqrt( sum(ya.”2 * ( xall(2) - xall(1) ) ) );
ya=ya/yarea;
yall(ctr,:)=ya(:)’;
end
toc %display time required to calculate

% wavefunctions are in xall, yall. Length unit is Angstroms.

% Eigenenergies are in <eeig>. Always examine the wavefunctions
% as a sanity check to make sure the binding energies are

% meaningful.

% xpot, ypot is the potential in hartree and bohr radii.
% save to the initially specified MAT file.
eval([’save ’, outs, ’ range xcutoff zfinal bohr hartree’

,’ eeig xpot ypot xall yall cfe hbar’]);

% end SCHROD.M

% INITV.M




%» This script initializes many constants used to
%» find solutions to the problem of a Coulomb

% potential on a NFE metal (2-band).

% First, some fundamental constants

global ryd me gqe cfe hbar kpar

ryd=13.6056981; % Rydberg, in eV
hbar=1.0546e-34; % J * S

me=9.1096e-31; %Kg, mass electron

qe=1.602e-19; %Coulombs, fundamental charge

cfe=sqrt (hbar~2/(2*qe*me)*1e20) ; %energy-wavevector relation,
%eV & Angstroms

% Now NFE metal parameters

% This is for Ag(111)
global cs egs vgs as wfns efermis ps emaxqgs

global MU ML kpar
MU=1.6; Yeffective mass of the upper band edge

ML=.6; Yeffective mass of the lower band edge
as=2.36; %lattice spacing,

%we will assume is independent of k parallel
ps=pi/as; Ywavevector p, valid only in gap,

%will assume is independent of kpar

Mave=(MU+ML) /2; Javerage effective mass for CB and VB, use
%to calculate Eg

egs=9.64+cfe"2+«kpar~2/Mave; %energy at g/2, NOT independent of kpar

Dwidth=cfe”2xkpar~2/MU-cfe”2xkpar~2/ML; %change in gap full width
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% most calcs were done using 2.075
vgs=2.075+Dwidth/2; Y%gap half-width, NOT independent of kpar

cs=sqrt(egs)/ps; %Along gamma-L, E-k relation

%helps in determining the proper branch of g
emaxqs=(4*egs~2-vgs~2)/ (4*egs) ;

%work function, subtract .45 for Xe/Ag(111), independent of kpar
wfns= 4.56;

efermis=7.865; Jfermi level wrt gamma, independent of kpar

function [tpsi, tpsipl=psis(e,z)

% This function returns the crystal wavefunction,
% for half-layer termination

global ps c¢s as
% wavefunction

tpsi = exp( -qs{e) * (z + as/2 ) ) * cos( ps * ...
( z + as/2 ) + deltas(e));

% wavefunction slope

tpsip= -qs(e) * exp( -gs(e) * (z + as/2 ) ) * ...
cos( ps x ( z + as/2 ) + deltas(e) ) - ...
ps * exp( -gs(e) * ( z+as/2 ) ) * ...
sin( ps * ( z + as/2 ) + deltas(e) );

function en=enets(el)
% ENETS -- substrate
% finds the net energy wrt the gamma point of the substrate

% uses efermi wfns

global efermis wfns
en=el+efermis+wins;
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function d=deltas(el)
pA
%DELTA- finds delta given eg vg emaxq p ¢
“ |
global egs vgs emaxgs ps Cs

% if-then else to pick correct branch of the arctangent

if enets(el) > (egs+vgs) ’ above upper band edge
d=0;
else
if enets(el) < (egs - vgs) ), below lower band edge
d=-pi/2;
else
if enets(el) > emaxqgs % upper half of band
d=real (asin(2*qgs(el) *cs"2*ps/vgs)/2);
else % lower half of band
d=real(-pi/2-asin(2*qs(el)*cs~2*ps/vgs)/2);
end
end
end

function g=qs(el)

% function QS.M
% calculates the imaginary part of the electron wavevector
% in the gap

global egs vgs cs

% if in the gap, compute <g>, else gq=0
if (enets(el) > (egs-vgs)) & (enets(el) < (egs+vgs)),
q = sqrt( sqrt( 4 * enets(el) * egs + vgs™2) - ..
enets(el) - egs) / (-cs);
else
q=0;
end

function [yp,v] = hamilag(x,y)

% function HAMILAG.M
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% Time-independent Schrodinger equation for an Image potential,
% written as a pair of coupled ordinary differential equations.

global ee xcutau kpar cfe hartree
if x < xcutau,
= -1/4/xcutau + cfe”2 * kpar~2 / hartree;
%the kpar part takes into account parallel energy
ke= -2%(ee-v);
else
v=-1/4/x+cfe”2¥kpar~2/hartree;
%the kpar part takes into account parallel energy
ke= -2*(ee-v);
end
yp=ly(2), kexy(1)]’;




