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I ntroduction

Organic material contributes ~20-50% to the total fine aerosol mass at continental mid-
latitudes (Saxena and Hildemann, 1996; Murphy et al., 1998; Peterson and Tyler, 2002; Putaud
et al., 2004) and as much as 90% in tropical forested areas (Andreae and Crutzen, 1997; Artaxo
et al., 2002). Significant amounts of carbonaceous aerosols are also observed in the free
troposphere (Heald et al., 2005). A substantial fraction of the organic component of atmospheric
particles consists of water-soluble, possibly multifunctional compounds (Saxena and Hildemann,
1996; Kavouras et al., 1998).

It is critical that we understand how organic aerosols and their precursors are transformed
in the atmosphere and the dependence of the transformation on the chemical and thermodynamic
conditions of the ambient environment: 1) to accurately forecast how changing emissions will
impact atmospheric organic aerosol concentrations and properties on the regional to global scale,
and 2) to relate atmospheric measurements to sources. A large (but as yet unquantified) fraction
of organic aerosol is formed in the atmosphere by precursor gases. In addition, both primary and
secondary organic aerosol interact with other gas and aerosol species in the atmosphere so that
their properties (i.e., size, hygroscopicity, light absorption and scattering sphere efficiency) can
change significantly with time and distance from their source.

Organic aerosols (OA) are composed of complex mixtures of different organic species
from less-polar organics (n-alkanes, polycyclic aromatic hydrocarbons, fatty alcohols, fatty
acids, etc.) to highly polar organics such as dicarboxylic acids and multi-functional organic
acids. Studies employing FTIR spectroscopy and NEXAFS have demonstrated the presence of
different functional groups such as ketonic and carboxylic groups. Humic-like substances
(HULIS) have been identified in aerosols. Field observation and laboratory smog chamber
studies have demonstrated that oxidative reactions of biogenic and anthropogenic precursors in
the gas phase produce low molecular weight organic acids such as oxalic and other dicarboxylic
acids, dicarbonyls and multi-functional organics. Oxidation reactions in the particle phase may
also produce oxygenated species, including aldehydes, organic acids, and large molecules such
as HULIS. Despite this progress, a significant fraction of atmospheric OA still remains poorly
characterized.

Secondary organic aerosol (SOA), particulate matter formed by the condensation of
oxidation products of volatile organic compounds (VOCs), is known to constitute a substantial
fraction of fine particulate matter in the lower atmosphere. Considerable effort has been devoted
to gaining a detailed, quantitative understanding of the formation and growth of SOA in the
troposphere, but this has been hampered by difficulties in identifying the individual chemical
components of SOA. Even a single precursor hydrocarbon generally yields a large number of
condensable products, many of which may not have been identified in laboratory studies. This
lack of speciated aerosol data has made it difficult to model aerosol growth accurately from first
principles using detailed treatments of gas-phase chemistry and gas-particle partitioning. The
oxidation of terpenes in the troposphere plays an important role in the generation of secondary
organic particulate matter (Kavouras et al., 1999; Yu et al., 1999ab). SOA formation from
biogenic VOCs has now been amply demonstrated in laboratory chamber experiments (e.g.,
Palen et al., 1992; Zhang et al., 1992; Hoffmann et al., 1997; Griffin et al., 1999a; Barnes, 2004;
Hoffmann, 2001; Jaoui and Kamens, 2003).



A long-standing puzzle associated with the analysis of molecular speciation of SOA has
been the presence in the aerosol of species whose vapor pressures are far too high to support
significant partitioning into the aerosol phase (Forstner et al., 1997ab; Yu et al., 1998, 1999ab).
It was speculated that these relatively small and volatile species might actually be decomposition
products of larger, less volatile molecules that were broken apart by the relatively harsh
environment of the mass spectrometric methods traditionally used for analysis. Very recently,
high molecular weight (and therefore low vapor pressure) products have been identified in the
aerosol phase using less harsh analytical techniques. There is now substantial evidence that SOA
growth may also be influenced by heterogeneous reactions, so that the condensation of some
organics may be reactive as well as absorptive. Such evidence includes the observation of
increased aerosol yields under acidic conditions (Jang et al., 2001, 2002; linuma et al., 2004; Gao
et al., 2004 ab) and the measurement of high-MW oligomers in SOA (Kalberer et al., 2004;
Tolocka et al., 2004; Gao et al., 2004 ab). Although the evidence that heterogeneous reactions
may contribute to SOA growth is strong, the reactions themselves remain poorly understood. The
detailed chemistry (kinetics, thermodynamics, mechanism) is generally poorly constrained, and
significant discrepancies exist between the results from experimental and theoretical studies
(Barsanti and Pankow, 2004). Oligomer formation following both biogenic and anthropogenic
VOC degradation may indeed be responsible for an important fraction of the SOA chemical
build up in the troposphere Tolocka et al. (2004) and Gao et al. (2004ab) have identified
oligomers as large as tetramers in chamber experiments during o-pinene ozonolysis using acidic
inorganic seed aerosol. They conclude that a-pinene ozonolysis is strongly influenced by
oligomerization reactions of primary ozonolysis products, most likely by aldol condensation
and/or gem-diol formation. The exact mechanisms of the oligomer and/or polymer formation
and their significance for the chemical formation and properties of the secondary organic aerosol
remain to be determined.

The gas-phase chemistry prior to gas-particle partitioning is believed, in addition, to be
significantly more complex than simply the formation of condensable products from a single
oxidation step. For example, SOA formed in the photooxidation of aromatic hydrocarbons
includes compounds such as cyclic anhydrides, organic acids, and polycarbonyls (Forstner et al.,
1997; Yu et al., 1997; Edney et al., 2001; Jang et al., 2001), highly oxidized compounds that are
not produced directly in the initial reaction of the parent aromatic hydrocarbon. Instead, they are
likely to be formed by photolysis or gas-phase reactions (with OH, NO;, or Os) of the first-
generation products (Ng et al., 2006). Aerosol growth from first-generation oxidation products
may be governed by a complex competition between reaction with those oxidants, reaction with
OH, and photolysis. NOx concentration controls the fate of peroxy radical intermediates by
changing the branching between reaction with NO and reaction with HO, or RO,. Reaction with
NO produces mostly alkoxy radicals, which may decompose to smaller (and more volatile)
compounds, whereas reaction with HO, or RO, may form acids, peracids, peroxides, and
alcohols, which may partition efficiently into the aerosol phase. In this case, the “first-generation
products” are not the first set of molecular oxidation products but rather the peroxy radical
intermediates formed from the initial OH reaction.

Key questions on secondary organic aerosol (SOA) formation include: (1) How important
is SOA formation in the atmosphere (OA vs. inorganics; SOA vs. POA), and how does it
influence the properties and environmental effects of atmospheric aerosols? (2) How important
are the different SOA formation pathways relative to each other; in particular, how important are
aerosol-phase reactions relative to gas-phase oxidation followed by gas-to-particle conversion?
(3) What are the molecular mechanisms and kinetics of the chemical and physical processes



involved? (4) What are the most important products of SOA formation (organic acids,
oligomers/polymers, HULIS, etc.) and what are their physicochemical properties (functional
groups, molecular mass, stability, volatility, solubility, hygroscopicity, optical absorption, etc.)?

The following sections summarize results obtained under this grant aimed at addressing
the above questions. Each of these sections summarizes results contained in journal publications
that are attached to this report as pdf files.

Particle Phase Acidity and Oligomer Formation in Secondary Organic Aerosol

A series of controlled laboratory experiments are carried out in dual Teflon chambers to examine
the presence of oligomers in secondary organic aerosols (SOA) from hydrocarbon ozonolysis as
well as to explore the effect of particle phase acidity on SOA formation. In all seven
hydrocarbon systems studied (i.e., a-pinene, cyclohexene, 1-methyl cyclopentene, cycloheptene,
I-methyl cyclohexene, cyclooctene, and terpinolene), oligomers with MW from 250 to 1600 are
present in the SOA formed, both in the absence and presence of seed particles and regardless

of the seed particle acidity. These oligomers are comparable to, and in some cases, exceed the
low molecular weight species (MW < 250) in ion intensities in the ion trap mass spectra,
suggesting they may comprise a substantial fraction of the total aerosol mass. It is possible that
oligomers are widely present in atmospheric organic aerosols, formed through acid- or base-
catalyzed heterogeneous reactions. In addition, as the seed particle acidity increases,

larger oligomers are formed more abundantly in the SOA; consequently, the overall SOA yield
also increases. This explicit effect of particle phase acidity on the composition and yield of SOA
may have important climatic consequences and need to be considered in relevant models.

L ow-molecular-weight and Oligomeric Componentsin Secondary Organic Aerosol from
the Ozonolysis of Cycloalkenes and alpha-Pinene

The composition of secondary organic aerosol (SOA) from the ozonolysis of Cs-Cg cycloalkenes
and a-pinene, as well as the effects of hydrocarbon precursor structure and particle-phase acidity
on SOA formation, have been investigated by a series of controlled laboratory chamber
experiments. A liquid chromatography-mass spectrometer and an ion trap mass spectrometer are
used concurrently to identify and to quantify SOA components with molecular weights up to
1600 Da. Diacids, carbonyl-containing acids, diacid alkyl esters, and hydroxy diacids are the
four major classes of low-molecular-weight (MW < 250 Da) components in the SOA; together
they comprise 42-83% of the total SOA mass, assuming an aerosol density of 1.4 g/cm’. In
addition, oligomers (MW > 250 Da) are found to be present in all SOA. Using surrogate
standards, it is estimated that the mass fraction of oligomers in the total SOA is at least 10% for
the cycloalkene systems (with six or more carbons) and well over 50% for the a-pinene system.
Higher seed particle acidity is found to lead to more rapid oligomer formation and, ultimately, to
higher SOA yields. Because oligomers are observed to form even in the absence of seed
particles, organic acids produced from hydrocarbon oxidation itself may readily promote acid
catalysis and oligomer formation. The distinct effects of carbon numbers, substituent groups, and
isomeric structures of the precursor hydrocarbons on the composition and yield of SOA formed
are also discussed.



Secondary Organic Aerosol Formation from the Ozonolysis of Cycloalkenes and Related
Compounds

The secondary organic aerosol (SOA) yields from the laboratory chamber ozonolysis of a series
of cycloalkenes and related compounds are reported. The aim of this work is to investigate the
effect of the structure of the hydrocarbon parent molecule on SOA formation for a homologous
set of compounds. Aspects of the compound structures that are varied include the number of
carbon atoms present in the cycloalkene ring (Cs to Csg), the presence and location of methyl
groups, and the presence of an exocyclic or endocyclic double bond. The specific compounds
considered here are cyclopentene, cyclohexene, cycloheptene, cyclooctene, 1-methyl-1-
cyclopentene, 1-methyl-1-cyclohexene, 1-methyl-1-cycloheptene, 3-methyl-1- cyclohexene, and
methylenecyclohexane. The SOA yield is found to be a function of the number of carbons
present in the cycloalkene ring, with an increasing number resulting in increased yield. The yield
is enhanced by the presence of a methyl group located at a double-bonded site but reduced by the
presence of a methyl group at a nondouble-bonded site. The presence of an exocyclic double
bond also leads to a reduced yield relative to that of the equivalent methylated cycloalkene. On
the basis of these observations, the SOA yield for terpinolene relative to the other cyclic alkenes
is qualitatively predicted, and this prediction compares well to measurements of the SOA

yield from the ozonolysis of terpinolene. This work shows that relative SOA yields from
ozonolysis of cyclic alkenes can be qualitatively predicted from properties of the parent
hydrocarbons.

Secondary Organic Aerosol For mation from Cyclohexene Ozonolysis. Effect of OH
Scavenger and the Role of Radical Chemistry

To isolate secondary organic aerosol (SOA) formation in ozone-alkene systems from the
additional influence of hydroxyl (OH) radicals formed in the gas-phase ozone-alkene reaction,
OH scavengers are employed. The detailed chemistry associated with three different scavengers
(cyclohexane, 2-butanol, and CO) is studied in relation to the effects of the scavengers on
observed SOA yields in the ozone-cyclohexene system. Our results confirm those of

Docherty and Ziemann that the OH scavenger plays a role in SOA formation in alkene
ozonolysis. The extent and direction of this influence are shown to be dependent on the specific
alkene. The main influence of the scavenger arises from its independent production of HO,
radicals, with CO producing the most HO,, 2-butanol an intermediate amount, and cyclohexane
the least. This work provides evidence for the central role of acylperoxy radicals in SOA
formation from the ozonolysis of alkenes and generally underscores the importance of gas-phase
radical chemistry beyond the initial ozone-alkene reaction.

M easur ement of Secondary Organic Aerosol (SOA) from Oxidation of Cycloalkenes,
Teprenes, and m-Xylene using an Aerodyne Aerosol M ass Spectr ometer

The Aerodyne aerosol mass spectrometer (AMS) was used to characterize physical and chemical
properties of secondary organic aerosol (SOA) formed during ozonolysis of cycloalkenes and
biogenic hydrocarbons and photooxidation of m-xylene. Comparison of mass and volume
distributions from the AMS and differential mobility analyzers yielded estimates of “effective”
density of the SOA in the range of 0.64-1.45 g/cm’, depending on the particular system.
Increased contribution of the fragment at m/z44, CO,+ ion fragment of oxygenated organics, and
higher “A” values, based on ion series analysis of the mass spectra, in nucleation experiments of
cycloalkenes suggest greater contribution of more oxygenated molecules to the SOA as



compared to those formed under seeded experiments. Dominant negative “A” values of SOA
formed during ozonolysis of biogenics indicates the presence of terpene derivative structures or
cyclic or unsaturated oxygenated compounds in the SOA. Evidence of acidcatalyzed
heterogeneous chemistry, characterized by greater contribution of higher molecular weight
fragments to the SOA and corresponding changes in “A” patterns, is observed in the ozonolysis
of a-pinene. Mass spectra of SOA formed during photooxidation of m-xylene exhibit features
consistent with the presence of furandione compounds and nitro organics. This study
demonstrates that mixtures of SOA compounds produced from similar precursors result in
broadly similar AMS mass spectra. Thus, fragmentation patterns observed for biogenic versus
anthropogenic SOA may be useful in determining the sources of ambient SOA.

Cloud Condensation Nucleus Activation Properties of Biogenic Secondary Organic Aerosol

Organic aerosols in general and secondary organic aerosol (SOA) in particular are known to
contribute significantly to the atmospheric population of cloud condensation nuclei (CCN).
However, current knowledge is limited with respect to the nature of this contribution. This study
presents a series of experiments wherein the potential for biogenically derived SOA to act as
CCN is explored. Five compounds were studied: four monoterpenes (a-pinene, B-pinene,
limonene, and A’-carene) and one terpenoid alcohol (terpinene-4-ol). In each case the aerosol
formation was driven by the reaction of ozone with the biogenic precursor. The SOA produced in
each experiment was allowed to age for several hours, during which CCN concentrations were
periodically measured at four supersaturations: S = 0.27%, 0.32%, 0.54%, and 0.80%. The
calculated relationships between particle dry diameter and critical supersaturation were found to
fall in the range of previously reported data for single-component organic aerosols; of the
systems studied, a-pinene SOA was the least CCN active, while limonene SOA exhibited

the strongest CCN activity. Interestingly, the inferred critical supersaturation of the SOA
products was considerably more sensitive to particle diameter than was found in previous
studies. Furthermore, the relationships between particle size and critical supersaturation for the
monoterpene SOA shifted considerably over the course of the experiments, with the aerosol
becoming less hygroscopic over time. These results are consistent with the progressive
oligomerization of the SOA.

Representation of Secondary Organic Aerosol (SOA) Laboratory Chamber Data for the
I nter pretation of M echanisms of Particle Growth

Absorptive models of gas-particle partitioning have been shown to be successful in describing
the formation and growth of secondary organic aerosol (SOA). Here the expression for particle
growth derived by Odum et al. (Odum, J. R.; Hoffmann, T.; Bowman, F.; Collins, D.; Flagan, R.
C.; Seinfeld, J. H. Gas/particle partitioning and secondary organic aerosol yields. Environ. ci.
Technol., 1996, 30, 2580- 2585) is extended to facilitate interpretation of SOA growth data
measured in the laboratory in terms of the underlying chemistry, even when details of the
reactions are not wellconstrained. Asimple (one-component) expression for aerosol growth (AM)
as a function of the amount of hydrocarbon reacted (AHC) is derived, and the effects of changes
to three key parameters, stoichiometric yield of condensable species, gas-particle partitioning
coefficient, and concentration of preexisting aerosol, are discussed. Two sets of laboratory
chamber data on SOA growth are examined in this context: the ozonolysis of a-pinene and the
OH-initiated photooxidation of aromatic compounds. Even though these two systems have a
number of significant differences, both are described well within this framework. From the
shapes of the AM versus AHC curves in each case, the importance of poorly constrained



chemistry such as heterogeneous reactions and gas-phase reactions of oxidation products is
examined.

Chamber Studies of Secondary Organic Aerosol Growth by Reactive Uptake of Simple
Carbonyl Compounds

Recent experimental evidence indicates that heterogeneous chemical reactions play an important
role in the gas-particle partitioning of organic compounds, contributing to the formation and
growth of secondary organic aerosol in the atmosphere. Here we present laboratory chamber
studies of the reactive uptake of simple carbonyl species (formaldehyde, octanal, trans,trans-2,4-
hexadienal, glyoxal, methylglyoxal, 2,3-butanedione, 2,4-pentanedione, glutaraldehyde, and
hydroxyacetone) onto inorganic aerosol. Gas-phase organic compounds and aqueous seed
particles (ammonium sulfate or mixed ammonium sulfate/sulfuric acid) are introduced into the
chamber, and particle growth and composition are monitored using a differential mobility
analyzer and an Aerodyne Aerosol Mass Spectrometer. No growth is observed for most
carbonyls studied, even at high concentrations (500 ppb to 5 ppm), in contrast with the results
from previous studies. The single exception is glyoxal (CHOCHO), which partitions into the
aqueous aerosol much more efficiently than its Henry’s law constant would predict. No major
enhancement in particle growth is observed for the acidic seed, suggesting that the large glyoxal
uptake is not a result of particle acidity but rather of ionic strength of the seed. This increased
partitioning into the particle phase still cannot explain the high levels of glyoxal measured in
ambient aerosol, indicating that additional (possibly irreversible) pathways of glyoxal uptake
may be important in the atmosphere.
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