
Nuclear Forensics: Attributing the

Source of Spent Fuel Used in an RDD Event

LA-14220-T
Thesis
Approved for public release;

distribution is unlimited.

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the Regents of the University of California, the United States Government nor any
agency thereof, nor any of their employees make any warranty, express or implied, or assume any legal
liability or responsibility for the accuracy, completeness, or usefulness of any information, appara-
tus, product, or process disclosed, or represent that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorse-ment, recommendation,
or favoring by the Regents of the University of California, the United States Government, or any agency
thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of
the Regents of the University of California, the United States Government, or any agency thereof. Los
Alamos National Laboratory strongly supports academic freedom and a researcher’s right to publish; as
an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its
technical correctness.

Los Alamos National Laboratory, an affirmative action/
equal opportunity employer, is operated by the University
of California for the United States Department of Energy
under contract W-7405-ENG-36. National Nuclear Security Administration

Funding provided by the Defense Threat Reduction Agency.

This thesis was accepted by the Department of Nuclear Engineering, Texas A&M University,
College Station, TX, in partial fulfillment of the requirements for the degree of Master of
Science. The text and illustrations are the independent work of the author and only the front
matter has been edited by the IM-1 Writing and Editing Staff to conform with Department of
Energy and Los Alamos National Laboratory publication policies.

Nuclear Forensics: Attributing the

Source of Spent Fuel Used in an RDD Event

Mark Robert Scott

LA-14220-T
Thesis
Issued: June 2005

iii

ABSTRACT

Nuclear Forensics: Attributing the Source of Spent Fuel Used in an RDD Event.

(May 2005)

Mark Robert Scott, B.S., Brigham Young University

Chair of Advisory Committee: Dr. William S. Charlton

An RDD attack against the U.S. is something America needs to prepare against. If such

an event occurs the ability to quickly identify the source of the radiological material used

in an RDD would aid investigators in identifying the perpetrators. Spent fuel is one of

the most dangerous possible radiological sources for an RDD. In this work, a forensics

methodology was developed and implemented to attribute spent fuel to a source reactor.

The specific attributes determined are the spent fuel burnup, age from discharge, reactor

type, and initial fuel enrichment. It is shown that by analyzing the post-event material,

these attributes can be determined with enough accuracy to be useful for investigators.

The burnup can be found within a 5% accuracy, enrichment with a 2% accuracy, and age

with a 10% accuracy. Reactor type can be determined if specific nuclides are measured.

The methodology developed was implemented into a code call NEMASYS. NEMASYS

is easy to use and it takes a minimum amount of time to learn its basic functions. It will

process data within a few minutes and provide detailed information about the results and

conclusions.

iv

ACKNOWLEDGMENTS

My thesis is the accomplishment and effort of many people. I would especially

like to thank Dr. William Charlton for his expertise and friendship during my effort to

complete this work. Dr. Charlton sacrificed a great amount of time in my behalf and

always left the door open in case I needed help. I appreciate the effort by those at Los

Alamos and Texas A&M who were involved in this project, which includes: David Burk,

Kristen Epresi, Don Giannangeli, Ariane Eberhardt, Erika Leibrecht, and Jessie Ross. In

particular, I would like to thank Paula Knepper who went beyond the call of duty to help

me with anything I ask for, no matter how small or big.

v

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Attribution of Radiological Dispersal Devices 1
B. Project Overview . 6
C. The Theory Behind the Inverse Problem 11

II MONITOR DEVELOPMENT . 15

A. Burnup . 15
B. Enrichment . 25
C. Reactor Type . 35
D. Age . 38
E. Shutdown Time . 41
F. Selected Isotopes . 44

1. Burnup Monitors . 45
2. Enrichment Monitors . 47
3. Reactor Type Monitors . 47
4. Age Monitors . 48
5. Summary of Monitor Nuclides . 50

III NEMASYS . 51

A. Code Requirements . 51
B. Understanding Nemasys . 52

1. Burnup Determination . 54
2. Enrichment Determination . 54
3. Reactor Type Determination . 55
4. Age Determination . 56

C. Forward Model Iteration . 57
D. Using Nemasys . 58

vi

CHAPTER Page

IV BENCHMARKING THE RESULTS WITH MIHAMA-3 64

A. Mihama-3 Reactor . 64
B. Monitors Used for Mihama-3 . 65
C. Nemasys Results for Mihama-3 . 66

V CONCLUSIONS AND RECOMMENDATIONS . 70

REFERENCES . 73

APPENDIX A . 76

APPENDIX B . 80

APPENDIX C . 85

APPENDIX D . 93

APPENDIX E . 96

APPENDIX F . 98

VITA . 136

vii

LIST OF FIGURES

FIGURE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Page

Radioactivity versus decay time for PWR spent fuel and a large 60Co
source. 5

Overview of RDD material attribution project . 7

235U fission yield curve versus isotope mass for a U.S. PWR 11

Comparison of enrichment versus burnup, between a theoretical fuel
rod that only fissions 235U and a true fuel rod . 27

The reactions that are considered in the enrichment calculation 28

Flow of forward model iteration scheme for improving the
enrichment calculation . 34

The production of 132Ba with respect to 238U for different reactor
types. 37

The production of 132Ba with respect to 148Nd for different reactor
types. 37

Buildup of 134Cs in a PWR reactor and its decay in the spent fuel
pool . 39

Comparison of the production of shutdown monitor 147Sm during
and after being irradiated . 42

Production of 147Sm in a PWR with two different power histories 43

The change in atom density of 147Sm versus shutdown time 44

Atom ratio of 148Nd to 238U for several reactor types. 46

Atom ratio of 100Mo to 238U for several reactor types. 46

Overview of the data flow within NEMASYS 53

Entering measured values into NEMASYS . 58

viii

FIGURE

17

18

19

20

Page

Meeting the requirements for NEMASYS to process the data 59

Viewing the descriptions of the categories and individual nuclides . . . 60

The NEMASYS reactor report . 61

NEMASYS individual ratio report for each reactor type 63

ix

LIST OF TABLES

TABLE

I

II.

III

IV

V

VI

VII

VIII

Page

Initial Uranium Atom Density per 238U Atom Density Calculation after
Using an Iteration Scheme with Burnup. 25

Enrichment Calculations Before and After Using an Iteration Scheme
With ORIGEN . 35

List of All Isotopes That Are Produced in a Reactor with a Half-life
Between 1 and 30 Years. 49

Suggested Monitor Nuclides . 50

Power History of Three Assemblies from the Mihama-3 Unit. 65

Monitors Used for Attribution of the Mihama-3 Unit 66

NEMASYS Burnup Results for Mihama-3 . 67

Age Prediction Results for Mihama-3 . 68

1

CHAPTER I

INTRODUCTION

A. ATTRIBUTION OF RADIOLOGICAL DISPERSAL DEVICES

The reality of terrorism in the United States has increased the need to seriously consider

terrorists using nuclear material. Weapons that use nuclear material include: nuclear

weapons, improvised nuclear devices (IND) and radiological dispersal devices (RDD).

Nuclear weapons and INDs would cause extensive damage to the U.S. if used, but they

are unlikely scenarios because they are probably out of the technical reach of non-state

sponsored terrorists and even most state-sponsored terrorists [1]. RDDs have technical

hurdles that must be overcome but are within the reach of most terrorist organizations.

An RDD is any device that uses conventional explosives to spread radiological material

with the intent to cause damage or injury. One of the more hazardous types of material

that could be used in an RDD is spent nuclear fuel. Due to the feasibility of an RDD

attack against the U.S., the ability to identify the perpetrators of such an attack is critical.

One fundamental piece of forensic evidence which may aid investigators in identifying

the perpetrators is knowing the source that produced the material. The objective of this

research is to develop a methodology to attribute the radiological material of a detonated

RDD to a source reactor. That is, to identify the specific facility that produced the

This thesis follows the style of Nuclear Technology.

2

material used in the RDD. Initially a number of likely source reactors will be identified

that have the ability to produce radiological material that matches the material used in

the RDD. Analysts can then compare the possible source reactor list with databases that

contain information on power plants worldwide, the spent fuel they produce, and known

cases of nuclear material smuggling. One such database, called SENTRY, exists at Los

Alamos National Laboratory (LANL). SENTRY is a Lotus Domino database and

contains a large amount of information. It is divided into classified and unclassified

areas and is maintained by the LANL group N-3.

Radiological sources that can be used in an RDD vary widely in strength and size. The

following are all possible sources of radiological material:

a. Large radioactive sources for industrial radiography (226Ra, 192Ir, 60Co)

b. Large neutron sources (PuBe, AmBe, AmLi, 252Cf)

c. Sources for food irradiation (137Cs, 60Co)

d. Medical isotopes (137Cs, 60Co)

e. Radioisotope thermoelectric generators (90Sr, 238Pu)

f. Well-logging sources (AmBe, PuBe, 137Cs)

g. Spent nuclear fuel

h. Reprocessing facility waste products

Generally, these materials can be divided into two categories: (1) large radioactive

sources and (2) spent fuel sources. Examples a-h are all examples of large radioactive

sources. These materials are fairly well characterized and generally consist of only one

3

major radioisotope, and potentially contain several impurities or trace isotopes. These

sources vary from low to high levels of radioactivity. Examples g and h are spent fuel

sources. Spent fuel sources are poorly characterized in their current state but are well

characterized prior to irradiation in a nuclear reactor. These sources are highly

radioactive and even a single fuel assembly could kill anyone exposed directly to its

radiation.

An RDD’s effectiveness can vary greatly depending upon the location of detonation and

the radiological source used. A study was conducted to assess the damage of detonating

an RDD containing 100 pounds of high explosives at the Washington Monument using

various sources [2]. If an RDD contained a typical industrial 5 kCi 60Co radioactive

source, the maximum dose would be 12 rem. To put this in perspective, a certified

radiological technician, or RAD worker, is allowed to receive 5 rem per year. The

increased exposure would be so small that the increased cancer rate would be difficult to

measure. If the RDD contained 50 kg of one year old spent fuel rods at 125 kCi the

maximum dosage would be 3,064 rem, or six times the lethal dose [2].

 Large radioactive sources vary between 10 Ci and 10,000 kCi, with the larger sources

used by the food and sterilization industry [3]. A 1,000 kCi industrial 60Co source will

decrease to a safer lever of 5 kCi after 40 years. There are less than 300 industrial

facilities worldwide that have sources in the range of 10 kCi to 11,000 kCi [4]. The

security at these facilities is generally high and transportation of sources above a few kCi

4

requires significant shielding, making it very difficult to transport covertly. A second

possible source is terrestrial radioisotope thermoelectric generators (RTG), which are

usually powered by 90Sr at levels as high as 500 kCi [4]. RTGs are used mainly by

Russia and the U.S. to provide power in remote locations. They are secured only by their

remote locations and by being encased in heavy shielding. A few have been reported

stolen [5].

Large radioactive sources are a real threat, but RDDs containing spent fuel have much

higher consequences. In the U.S. alone there are over 40,000 tons of spent fuel spread

out across the country [6]. The damage a terrorist could cause with spent fuel is very

high. The forward model code ORIGEN [7], calculates a pressurized water reactor

(PWR) assembly at the time of discharge to be over 230,000 kCi. After 5 years the

activity drops to 550 kCi. A spent fuel assembly will not decrease to the safer level of 5

kCi until 300 years after discharge. A comparison of radioactivity versus time for spent

fuel is given in Fig. 1. If a terrorist detonated an RDD in a large city with a recently

discharged spent fuel assembly as the radioactive source, not only would it kill a large

number of people, but it would heavily contaminate the area. This would shut down

access to the area for years. Depending on the location of the detonation, the economic

impact could be devastating to the U.S. economy. If such an event occurs, this study will

help identify the actors involved in perpetrating the attack.

5

If a terrorist is able to obtain spent fuel for an RDD, the spent fuel will most likely be an

intact fuel assembly. Detonation of an intact assembly as a weapon would not result in a

completely uniform dispersion of material. Large pieces of structure, cladding and fuel

would be present post-detonation. There are several methods and forensic techniques

one could use to identify the origin of the spent fuel in this case. By measuring the

composition and size of the structure and cladding, one could narrow down the possible

sources considerably. If a more complete dispersion of the material occurs other

methods could be used to identify the material. The source could be identified by the

isotopic composition of the fuel in the debris. This method would be independent of the

Fig. 1. Radioactivity versus decay time for PWR spent fuel and a large 60Co source.

6

nature of the explosion and structural material present. Even if terrorists ground up the

fuel into a powder, to produce even dispersion, isotopics can be used to identify the

source.

B. PROJECT OVERVIEW

The work described in this thesis is only part of a larger effort to secure the US against

RDDs. Figure 2 shows the complete RDD material attribution project. Once the event

occurs, the effort to discover the responsible party will begin immediately. Before

forensics can be applied, measurements from the RDD debris must be obtained to

determine the isotopic composition of the spent fuel or radiological source. Determining

the isotopic composition of spent fuel is complicated and will require significant

resources to accurately determine. The preferred method for performing these

measurements is with mass spectroscopy. This method is the most accurate for

measuring ratios of isotopes from the samples.

7

Fig. 2. Overview of RDD material attribution project.

8

The ability to measure trace actinides in spent fuel with an accuracy better than 1% is

necessary. In a 1 gram sample of spent fuel, some of the measured actinides will be

present in the microgram range. Mass spectrometry has advanced to the point that

isotopic ratios can be measured in the nanogram range for fission products and picogram

range for actinides [8,9].

Isotopic composition of spent fuel is not determined on a regular basis because the

material is highly radioactive and mass spectrometry is cost prohibitive. The reactor

type, fuel enrichment and burnup are generally known prior to the irradiation of the fuel.

This allows an analyst to predict the spent fuel isotopics with a forward model code. The

composition is usually determined by use of a forward model reactor physics code (e.g.

ORIGEN, CASMO, HELIOS, etc). The results from the forward model codes are then

benchmarked with a set of actinides that can be determined by either a non-destructive

method such as gamma spectrometry or mass spectrometry. Thus a database of present

day spent fuel isotopics does not exist with which to compare (and would likely be very

cumbersome if it did). Therefore, a forensics methodology is needed which will allow

for a comparison of likely reactor properties with known facilities.

Before the inverse process to find source reactors can begin, models of each reactor type

must be developed to allow for calculations of present day isotopics from given reactor

designs and operational data. These reactor models can be simulated by coupling MCNP

(Monte Carlo N-Particle Transport) [10] and ORIGEN. MCNP is a code that is capable

9

of modeling essentially any reactor type and producing one-group cross sections and

scalar fluxes. MCNP uses Monte Carlo techniques to solve the transport of neutrons. In

MCNP each interaction is characterized by a probability distribution function. Each

particle is tracked, and a history is kept, as it interacts with the material atoms. It can

obtain the flux at any area by keeping a history of the particles passing through the area.

With the flux, MCNP can calculate reaction rates and collapse to one-group cross

sections. MCNP lacks the ability to calculate the burnup and decay of material.

Oak Ridge National Laboratory (ORNL) developed ORIGEN in the 1960s to calculate

buildup, burnup and decay of materials. To get an accurate result MCNP and ORIGEN

can be run together in steps. First MCNP will run and create one-group cross sections

and scalar fluxes for ORIGEN, then ORIGEN will calculate the burnup and decay of the

material. The information from the output of ORIGEN will then be used to modify the

original MCNP model and then run again. Generally the more steps you take, the more

accurate your results will be.

The process of exchanging information back and forth between the MCNP and ORIGEN

models is a slow and tedious process. The code MONTEBURNS [11] was developed to

simplify this process. MONTEBURNS is a Perl script file that manages the data

extraction from the output files and modifying the inputs of both MCNP and ORIGEN.

MONTEBURNS gives the user the capability to change the specific power of the reactor

core at each step.

10

The process of creating one-group cross sections and scalar fluxes for the inverse process

is shown by the green dotted arrow on Fig. 2. Currently the MCNP model development

for cross section generation is being completed by others [12]. This information is

stored by SENTRY and used by the inverse model when needed.

Once the cross-sections for each reactor type have been stored in SENTRY, we need to

process the measured data to find a source reactor. As shown in Fig. 2. the inverse

model, or forensics developed in this paper produces information on the burnup, initial

enrichment, reactor type and the age. The characteristics found can then be used by a

search tool. This search tool will look for facilities that match the reactor type and uses

fuel that matches the initial enrichment. It will then see if the facilities produced spent

fuel with the same age and burnup. If it finds any matches it will then check the suspect

facilities with the database of known missing material. Only one or two matches will

likely be made.

To validate the results, an MCNP model will be created of the suspect reactor. The

power history of the suspect fuel will then be retrieved, and a MONTEBURNS deck

created. MONTEBURNS will then run a forward model of that specific fuel assembly.

The results will be compared to the measured data. This will generally allow for a more

accurate match to the measured data.

11

C. THE THEORY BEHIND THE INVERSE PROBLEM

Fresh fuel is well characterized and contains only trace quantities of other nuclides. As

the fuel is burned fission products are created throughout the fuel pin. Each nuclide has

a fission yield, which relates how likely it will be produced from fission. Figure 3 shows

the normalized yield for each nuclide of the same mass chain in a U.S. PWR reactor.

During reactor operation each isotope will be produced at a constant rate in relation to its

yield. If no other factors are involved, the production of isotope B is given by:

, (1.1)235 235 235

0

() () () (,)U U UB
f B

dN N t E Y E E t dE
dt

σ φ
∞

= ∫

Fig 3. 235U fission yield curve versus isotope mass for a U.S. PWR.

12

where is the fission yield for the production of isotope Y from the fission of isotopeX
YY

X, is the atom density of isotope X, is the fission cross section of isotope X, NXN X
fσ

is the neutron flux. E is the incident neutron energy, and t is time. As isotope B is

produced it will absorb neutrons by radiative capture at a rate related to its capture cross

section. By adding this loss term to Eq. 1.1 we get:

(1.2)

235 235 235

0

0

() () () (,)

() () (,)

B
U U U

f B

B B

dN N t E Y E E t dE
dt

N t E E t dEγ

σ φ

σ φ

∞

∞

=

−

∫

∫

where is the radiative neutron capture of isotope X. We also have to consider otherX
γσ

fission products decaying into isotope B and the decay of isotope B itself. By accounting

for decay, Eq. 1.2 becomes:

(1.3)

235 235 235

0

0

() () () (,)

() () (,) () ()

B
U U U

f B

B B
i B i B B

i

dN N t E Y E E t dE
dt

N t E E t dE N t N tγ

σ φ

σ φ λ λ

∞

∞

→

=

− + −

∫

∑∫

where is the decay constant for isotope i that leads to the production of isotope B.i Bλ →

Typically there are about 100 different fission products produced by a reactor. Each

fission product will have an equation such as Eq. 1.3 to represent it. This would result in

13

over 100 coupled differential equations. Attempting to solve 100 coupled differential

equations with both energy and time dependence, without knowledge of the material’s

initial composition is intractable.

To avoid solving the coupled differential equations with unknown initial conditions, we

look for special cases were several assumptions can be made. This allows us to decouple

the fission products and simplify Eq. 1.3 to a more manageable equation. By finding

these special cases, we can determine enough information about the scenario to run

forward models in ORIGEN. We still need more information about the initial

conditions, so we run several carefully crafted models until we get results matching the

measured data. This is the basis for the inverse model developed in this thesis (Chapter

II).

The inverse model must enable an analyst to determined the initial fuel enrichment,

burnup, age, and reactor type. These characteristics will be used to uniquely identify the

facility from which the fuel was discharged. The initial fuel enrichment refers to the

initial enrichment (or the initial ratio of 235U to total uranium) of the fuel prior to

irradiation in the reactor. Burnup is the amount of energy per kilogram of fuel and is

usually measured in megawatt days per metric ton (MWd/MT). Age refers to the time

from the discharge date to the time of measurement. Reactor type is a broad

classification given to reactors that have the same general concept design. Some

common reactor types are: pressurized water reactors (PWR), boiling water reactors

14

(BWR), Canadian deuterium uranium reactors (CANDU) and liquid metal fast breeder

reactors (LMFBR). Once these characteristics are known, there will only be a few

possible source reactors. Analysts can then use this information to compare it with

known cases of nuclear theft or diversion.

15

CHAPTER II

MONITOR DEVELOPMENT

Each fuel characteristic of interest to the forensics problem uses an isotopic monitor.

The fuel characteristics of interest here are fuel burnup, fuel enrichment, reactor type,

and fuel age. Each characteristic has unique requirements that the monitor must meet. A

specific set of monitors must be used for determination of the enrichment. Burnup,

reactor type and age determination can be performed using any combination of isotopes

that meet the requirements. The sections below detail the mathematical development of

each of these monitors.

A. BURNUP

The nuclear industry has been interested in fuel burnup for decades and has developed

accurate methods to measure burnup [13]. Burnup is the amount of energy produced per

kg of fuel. At nuclear power plants, initially the fissions from 235U and 238U provide the

source of neutrons and power in the reactor. As the reactor burns the fuel, 236U, 239Pu,

240Pu and several other minor fissionable actinides are created and fissioned which then

contribute to the neutron flux. For economic reasons, nuclear power plants want to

increase the fuel burnup as high as possible. After the fuel is discharged from the

reactor, the burnup can be measured indirectly by measuring a burnup monitor. Coupled

with mass spectrometry, it has been shown that burnup can be measured within a one

percent accuracy [14].

16

A burnup monitor can be any fission product that is created directly proportional to the

burnup. For the forensics problem a more stringent restriction exists because the reactor

type is unknown. Therefore, we need burnup monitors that are produced at the same rate

regardless of the reactor type. The neutron energy spectrum and fissioning isotopes are

primarily what changes from one reactor type to another. So for our purpose a burnup

monitor is any nuclide whose fission yield is constant as a function of the neutron flux

energy and fissioning isotopes. By identifying a burnup monitor that has a constant yield

across reactor types, the burnup may be determined without knowing additional

information about the fuel. To avoid the effects of decay, burnup monitors that have

half-lives longer than 200 years should be chosen. Another concern is transmutation of

the burnup monitor, a burnup monitor needs to have a small radiative capture cross

section to avoid the destruction of the burnup monitor as it is produced. Having a large

radiative capture cross section introduces reactor-dependent terms in the burnup

calculation. To find the burnup without knowing other reactor parameters, it is necessary

to avoid these terms.

The production of an isotope in a reactor is usually dependent upon more than its direct

fission yield. Isotopes are also produced by the decay of other fission products. An

isotope’s decay chain can have a large impact on its production if its cumulative yield is

significantly higher than its direct yield. This requires all of the fission products in a

burnup monitor’s decay chain to exhibit the same properties as the burnup monitor. The

exception to this would be in the case where the fission products individual yield is so

17

small that it doesn’t significantly effect the production of the burnup monitor. All of the

isotopes in the decay chain must have a half-life shorter than a few days to avoid delayed

production of the burnup monitor after the spent fuel is discharged. There are a few

isotopes that are shielded by a stable isotope and thus has no decay chain. If a shielded

isotope meets the requirements of a burnup monitor, then the complications of a decay

chain will not apply.

After a burnup monitor has been identified, the fuel burnup can be calculated by starting

with the reaction rate formula:

(2.1)

]

235 235

0

239 239

0

() () (,)

() () (,)

U U
f f

Pu Pu
f

RR N t E E t dE

N t E E t dE

σ φ

σ φ

∞

∞

⎡= ⎣

+ +

∫

∫ …

where RRf is the fission reaction rate. The terms not shown are the integrals of all the

remaining fissioning isotopes: 238U, 240Pu and 241Pu. We will define one-group average

fluxes and cross-sections as:

(2.2)∫
∞

=
0

),()(dEtEt φφ

and

18

. (2.3)

∫

∫
∞

∞

=

0

0

235

235

),(

),()(

dEtE

dEtEEU
f

U
f

φ

φσ
σ

By multiplying Eqs. 2.2 and 2.3, we get:

. (2.4)235 235

0

() () (,)U U
f ft E E t dEφ σ σ φ

∞

= ∫

A similar term can be produced for each of the fissioning isotopes. These can be

substituted into Eq. 2.1 to get:

. (2.5)235 235 239 239() () () ()U U Pu Pu
f f fRR N t t N t tσ φ σ φ= + +…

The power density in the reactor is given by:

, (2.6)fR RREtP =′′′)(

where is the average recoverable energy per fission. We will assume that theRE

average energy per fission is the same for all fissions. The power density then becomes:

. (2.7)()235 235 239 239() () () () ()U U Pu Pu
R f fP t E N t t N t tσ φ σ φ′′′ = + +…

The specific power (or watts per gram of the fuel) is:

, (2.8)()() US
o

P tP t ρ
′′′=

where is the initial density of uranium in the fuel. Substituting Eq. 2.7 into Eq 2.8U
oρ

19

yields:

. (2.9)()235 235 239 239() () () () ()U U Pu PuR
S f fU

o

EP t N t t N t tσ φ σ φ
ρ

= + +…

The burnup is simply the integral of the specific power over time:

(2.10)∫=
T

S dttPTBU
0

)()(

or

. (2.11)()235 235 239 239

0

() () () () ()
T

U U Pu PuR
f fU

o

EBU T N t t N t t dtσ φ σ φ
ρ

= + +∫ …

Since the one-group cross sections are assumed to be time independent,

. (2.12)235 235 239 239

0 0

() () () () ()
T T U

U U Pu Pu o
f f

R

N t t dt N t t dt BU T
E
ρσ φ σ φ+ + =∫ ∫ …

We will leave this equation for a moment and use the balance equation defining the

change rate of the burnup monitor B as:

(2.13)

235 235 235

0

239 239 239

0

() () () (,)

() () () (,) .

B
U U U

f B

Pu Pu Pu
f B

dN N t E Y E E t dE
dt

N t E Y E E t dE

σ φ

σ φ

∞

∞

=

+ +

∫

∫ …

As stated earlier, the burnup monitor is chosen such that the yield has no energy

dependence. Thus, Eq. 2.13 can be rearranged to:

20

(2.14)

235 235 235

0

239 239 239

0

() () () (,)

() () () (,) .

B
U U U

B f

Pu Pu Pu
B f

dN N t Y t E E t dE
dt

N t Y t E E t dE

σ φ

σ φ

∞

∞

=

+ +

∫

∫ …

At this point, we will also assume the cumulative yield for the burnup monitor is the

same for all fission sources. Thus, Eq. 2.14 becomes:

. (2.15)235 235 239 239() () () ()
B

U U Pu Pu
B f f

dN Y N t t N t t
dt

σ φ σ φ⎡ ⎤= + +⎣ ⎦…

This differential equation can be converted to an integral equation as follows:

, (2.16)
()

235 235 239 239

0 0 0

() () () ()
BN T T T

B U U Pu Pu
B f fdN Y N t t dt N t t dtσ φ σ φ
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

∫ ∫ ∫ …

where is the atom density of isotope X at the time of measurement. Note this()XN T

assumes that initially the concentration of the burnup monitor B in the fuel is zero. The

left hand integral thus simply becomes:

. (2.17) 235 235 239 239

0 0

() () () () ()
T T

B U U Pu Pu
B f fN T Y N t t dt N t t dtσ φ σ φ
⎡ ⎤

= + +⎢ ⎥
⎣ ⎦

∫ ∫ …

Substituting Eq. 2.12 into Eq. 2.17 yields:

. (2.18)() ()
U

B o
B

R

N T Y BU T
E
ρ=

By dividing equation 2.18 by the initial uranium atom density, we acquire:

21

. (2.19)
() ()

UB
o

BU U
o R o

N T Y BU T
N E N

ρ=

The mass density can be expressed in terms of an atom density to acquire:

. (2.20)() ()
B

U
BU

o R a

MN T Y BU T
N E N

=

Solving for burnup we get:

. (2.21)()()
B

a R
U
o U B

N T N EBU T
N M Y

=

The uranium atom density and uranium mass changes with time as the fuel is burned.

Mass spectrometry generally requires measurements to be made as isotopic ratios. So we

will modify equation 2.21 to reflect the burnup monitor being measured with respect to

the 238U content at the time of measurement,

. (2.22)
238

238
() ()()
()

B U
a R

U U
o B

N EN T N TBU T
N T N Y

⎡ ⎤⎡ ⎤
= ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

The quantity can be measured directly and , and are known
238

()
()

B

U

N T
N T aN RE BY

constants. The term is not known and can not be measured directly;
238 ()U

U
o

N T
N

however, it is similar to the quantity . This term must be accurately
238 (0)U

U
o

N
N

determined from an iteration with burnup.

The initial atom density of uranium is equal to the sum of the measured uranium

22

densities and all of the uranium reactions that occurred during irradiation. The reactions

include fission and neutron capture which leads to:

 . (2.23)

235 238 235 235

0

235 235 238 238

0 0

238 238

0

() () () ()

() () () ()

() ()

T
U U U U U
o f

T T
U U U U

f

T
U U

N N T N T N t t dt

N t t dt N t t dt

N t t dt

γ

γ

σ φ

σ φ σ φ

σ φ

= + +

+ +

+

∫

∫ ∫

∫

The radiative capture terms are essentially equal to the products in the capture chain and

the fissions of those products. For example:

, (2.24)235 235 236 236 236

0 0

() () () () ()
T T

U U U U U
fN t t N T N t t dtγσ φ σ φ= +∫ ∫

and

. (2.25)

238 238 239 239 239

0 0

240 240 240

0

() () () () ()

() () ()

T T
U U Pu Pu Pu

f

T
Pu Pu Pu

f

N t t N T N t t dt

N T N t t dt

γσ φ σ φ

σ φ

= +

+ + +

∫ ∫

∫ …

Note that the delayed production of 239Pu from the decay of 239U and 239Np is ignored.

Equations 2.24 and 2.25 are substituted into Eq. 2.23 to get:

23

(2.26)

235 238 236 239 240

235 235 238 238

0 0

236 236 239 239

0 0

() () () () ()

() () () ()

() () () ()

U U U U Pu Pu
o

T T
U U U U
f f

T T
U U Pu Pu
f f

N N T N T N T N T N T

N t t dt N t t dt

N t t dt N t t dt

σ φ σ φ

σ φ σ φ

⎡ ⎤= + + + + +⎣ ⎦
⎡

+ +⎢
⎣

⎤
+ + ⎥

⎦

∫ ∫

∫ ∫

…

…

The last term is the same term in Eq. 2.26 is the same term we found in Eq. 2.12. By

substitution, we can avoid the integrals and acquire:

(2.27)

235 238 236 239 240() () () () ()

()

U U U U Pu Pu
o

U
o

R

N N T N T N T N T N T

BU T
E
ρ

⎡ ⎤= + + + + +⎣ ⎦

+

…

The uranium density can be changed to be in terms atom density again and the uranium

terms combined to find:

. (2.28)239 240() () () ()
U U

U U Pu Pu o o
o

a R

N MN N T N T N T BU T
N E

⎡ ⎤= + + + +⎣ ⎦…

We will divide Eq. 2.28 by to acquire:238UN

(2.29)

239 240

238 238 238 238

238

() () ()

()

U U Pu Pu
o

U U U U

U U
o o

U
a R

N N T N T N T
N N N N

N M BU T
N N E

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦

+

…

We can solve Eq. 2.28 for the ratio of initial uranium atom density to the measured 238U

24

atom density to get:

. (2.30)

239 240

238 238 238

238

() () ()
() () ()

() 1 ()

U Pu Pu

U U UU
o

UU
o

a R

N T N T N T
N T N T N TN

MN T BU T
N E

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
+ + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦=⎢ ⎥

⎣ ⎦ −

…

This is still in terms of burnup which is unknown. We will initially guess that BU(T) = 0

and then solve Eq. 2.30 to get . We will then solve Eq. 2.22 for BU(T). We238 ()

U
o

U

N
N T

will then iterate between Eq. 2.30 and 2.22 until they converge. The burnup equation is

not very sensitive to changes in the initial uranium atom density, allowing it to converge

after only a few iterations. On average the error in calculating was around 0.1%,U
oN

(see Table I) which is sufficient accuracy for this work. The term will be238 ()

U
o

U

N
N T

used again by our enrichment calculation, and the enrichment is more sensitive to this

term. Thus, while an error of 0.1% is insignificant for the purposes of estimating

burnup, it is more important in later calculations. Thus, iterations will always be

performed to reduce the error as small as possible.

25

TABLE I

Initial Uranium Atom Density per 238U Atom Density Calculation After Using
an Iteration Scheme with Burnup

Reactor
Type

Burnup
(MWd/MT)

Exact

238 ()

U
o

U

N
N T

Calculated

238 ()

U
o

U

N
N T

Percent
Error

PWR 40,000 .9375 .9386 0.109

BWR 40,000 .9378 .9387 0.097

CANDU 15,000 .9769 .9770 0.007

LMFBR 70,000 .8291 .8284 0.076

Methods, such as show above, and others have been developed previously to determine

fuel burnup from the measurement of fission product isotopes and is used at reactors and

reprocessing facilities [15]. Two common burnup monitors that are used in industry are

148Nd and 137Cs. 137Cs has a 30 year half-life and can only be used on fresh fuels or when

the discharge date is known. By measuring 137Cs, it has been shown that the burnup can

be determine within a 5% accuracy [16]. Mass spectrometry of 148Nd has been used to

determine burnup with a higher accuracy [17], but this rarely occurs because of the

difficulties and costs associated with destructive assay of spent fuel.

B. ENRICHMENT

Determining the initial enrichment after the spent fuel has been discharge is a new

problem. Fuel is very well characterized before being used in a nuclear power plant and

26

there has been no need in the past to determine the initial enrichment from spent fuel. If

no other fissionable isotopes are present while the fuel is in the reactor, then the

enrichment would change linearly with burnup. In reality, several other fissionable

isotopes are produced and burned, thus complicating the determination of the initial

enrichment.

Figure 4 shows how the other fissionable isotopes will affect the 235U enrichment as the

fuel is burned. The solid line is an accurate calculation of the 235U enrichment in a PWR

reactor burned to 40,000 MWd/MT (calculated by ORIGEN). If this represented fuel

that was used in an RDD, the present day enrichment would be measured at 0.6%. By

considering 235U as the only fissionable isotope the initial enrichment would be back

calculated to be just below 4.8%, which has an error of 49%. The error will become

larger as the fuel burnup increases.

27

There are several reasonable assumptions made when calculating the enrichment. We

assume that:

1. The only isotopes that fission are 235U, 238U, 239Pu, 240Pu and 241Pu, as

shown in Fig. 5.

2. There is no production of 235U and 238U. All one group cross sections are

constant with time.

3. 239Np and 239U decay instantaneously to 239Pu.

4. The decay of all fissionable isotopes are neglected.

Fig. 4. Comparison of enrichment versus burnup, between a theoretical fuel rod
that only fissions 235U and a true fuel rod.

28

The only isotope that has a short enough half-life to significantly effect our calculation is

241Pu. 241Pu has a 14.1 year half-life, which will cause our calculation for initial

enrichment to be slightly high. The higher the burnup and the longer the fuel has been

discharged, the larger the effect will be on our results.

To find the enrichment, we will start with the initial density of 235U atoms as:

. (2.31)235 235 235 235 235 235

0 0

() () () () ()
T T

U U U U U U
o fN N T N t t dt N t t dtγσ φ σ φ= + +∫ ∫

Again, we use Eq. 2.24 for the radiative capture of 235U and ignore the fission of 236U to

get:

. (2.32)235 235 236 235 235

0

() () () ()
T

U U U U U
o fN N T N T N t t dtσ φ= + + ∫

Fig. 5. The reactions that are considered in the enrichment calculation.

29

We will substitute in Eq. 2.12 for the 235U fission integral as follows:

(2.33)

235 235 236

238 238 239 239

0 0

() () ()

() () () ()

U
U U U o
o

R

T T
U U Pu Pu
f f

N N T N T BU T
E

N t t dt N t t dt

ρ

σ φ σ φ

= + +

⎡ ⎤
− + +⎢ ⎥
⎣ ⎦

∫ ∫ …

Now we divide Eq. 2.33 by the initial uranium atom density:

(2.34)

235 235 236

238 238 239 239

0 0

() () ()

1 () () () ()

U UU U
o o

oU U U U
o o o R o

T T
U U Pu Pu
f fU

o

N N T N Te BU T
N N N E N

N t t dt N t t dt
N

ρ

σ φ σ φ

= = + +

⎡ ⎤
− + +⎢ ⎥

⎣ ⎦
∫ ∫ …

where is the initial enrichment. By using the balance equation for the rate of change, oe

a solution for each integral in Eq. 2.34 can be found. The balance equation for 238U is:

. (2.35)
238

238 238() ()
U

U U
a

dN N t t
dt

σ φ= −

Converting Eq. 2.35 to an integral form, yields:

. (2.36)238 238 238 238

0

() () ()
T

U U U U
o aN T N N t t dtσ φ= − ∫

We can then solve for the integral:

. (2.37)238 238 238
238

0

1() () ()
T

U U U
oU

a

N t t dt N N Tφ
σ

⎡ ⎤= −⎣ ⎦∫

The balance equation for 239Pu is:

30

. (2.38)
239

238 238 239 239() () () ()
Pu

U U Pu Pu
a

dN N t t N t t
dt γσ φ σ φ= −

Converting Eq. 2.38 to an integral form, yields:

(2.39)

239 239 238 238

0

239 239

0

() () ()

() ()

T
Pu Pu U U

o

T
Pu Pu
a

N T N N t t dt

N t t dt

γσ φ

σ φ

= −

−

∫

∫

Solving for the 239Pu integral:

, (2.40)239 239 239 238
239

0

1() () ()
T

Pu Pu Pu
oPu

a

N t t dt N N T Fφ
σ

⎡ ⎤= − +⎣ ⎦∫

where,

. (2.41)
238

238 238 238
238 ()

U
U U
oU

a

F N N Tγσ
σ

⎡ ⎤≡ −⎣ ⎦

The balance equation for 240Pu is:

. (2.42)
240

239 239 240 240() () () ()
Pu

U U Pu Pu
a

dN N t t N t t
dt γσ φ σ φ= −

Converting Eq. 2.42 to an integral form, yields:

(2.43)

240 240 239 239

0

240 240

0

() () ()

() ()

T
Pu Pu Pu Pu

o

T
Pu Pu
a

N T N N t t dt

N t t dt

γσ φ

σ φ

= −

−

∫

∫

Solving for the 240Pu integral:

31

, (2.44)240 240 240 239
240

0

1() () ()
T

Pu Pu Pu
oPu

a

N t t dt N N T Fφ
σ

⎡ ⎤= − +⎣ ⎦∫

where,

. (2.45)
239

239 239 239 238
239 ()

Pu
Pu Pu
oPu

a

F N N T Fγσ
σ

⎡ ⎤≡ − +⎣ ⎦

The balance equation for 241Pu is:

. (2.46)
241

240 240 241 241() () () ()
Pu

U U Pu Pu
a

dN N t t N t t
dt γσ φ σ φ= −

Converting Eq. 2.46 to an integral form, yields:

(2.47)

241 241 240 240

0

241 241

0

() () ()

() ()

T
Pu Pu Pu Pu

o

T
Pu Pu
a

N T N N t t dt

N t t dt

γσ φ

σ φ

= −

−

∫

∫

Solving for the 241Pu integral:

, (2.48)241 241 241 240
241

0

1() () ()
T

Pu Pu Pu
oPu

a

N t t dt N N T Fφ
σ

⎡ ⎤= − +⎣ ⎦∫

where

. (2.49)
240

240 240 240 239
240 ()

Pu
Pu Pu
oPu

a

F N N T Fγσ
σ

⎡ ⎤≡ − +⎣ ⎦

Substituting Eq. 2.37, 2.40, 2.44 and 2.48 into Eq. 2.34, yields:

32

(2.50)

235 236

238
238 238

238

239
239 239 238

239

240
240 240 239

240

241
241 241 240

241

() () ()

1 ()

()

()

()

UU U
o

o U U U
o o R o

U
f U U

oU U
o a

Pu
f Pu Pu

oPu
a

Pu
f Pu Pu

oPu
a

Pu
f Pu Pu

oPu
a

N T N Te BU T
N N E N

N N T
N

N N T F

N N T F

N N T F

ρ

σ
σ

σ
σ

σ
σ

σ
σ

= + +

⎡
⎡ ⎤− −⎢ ⎣ ⎦⎢⎣

⎡ ⎤+ − +⎣ ⎦

⎡ ⎤+ − +⎣ ⎦

⎡+ − +
⎤
⎤⎥⎣ ⎦⎥⎦

It is assumed that initially there is no plutonium in the fuel or:

.239 240 241 0Pu Pu Pu
o o oN N N= = =

We will also pass the through the brackets and make the following substitution:
1

U
oN

,
238

1
U
o

oU
o

N e
N

= −

to get:

(2.51)

238 235 236

238 238

238 239 240 241

() () ()
() ()

()

U U U

o U U U
o

U
o

a R

N T N T N Te
N N T N T

M BU T G G G G
N E

⎡ ⎤
= +⎢ ⎥

⎣ ⎦

+ − − − −

where

33

, (2.52)
238 238

238
238

()1
U U
f

oU U
a o

N TG e
N

σ
σ

⎡ ⎤
≡ − −⎢ ⎥

⎣ ⎦

, (2.53)
239 239 238

239 238
239 238

() ()
()

Pu Pu U
f
Pu U U
a o

N T N TG G
N T N

σ
σ

⎡ ⎤
≡ − +⎢ ⎥

⎣ ⎦

, (2.54)
240 240 238

240 239
240 238

() ()
()

Pu Pu U
f
Pu U U
a o

N T N TG G
N T N

σ
σ

⎡ ⎤
≡ − +⎢ ⎥

⎣ ⎦

. (2.55)
241 241 238

241 240
241 238

() ()
()

Pu Pu U
f
Pu U U
a o

N T N TG G
N T N

σ
σ

⎡ ⎤
≡ − +⎢ ⎥

⎣ ⎦

Now we have an equation in known terms and . We still have to solve explicitly foroe

, which is extremely tedious but can be done by simply algebra. Due to the length ofoe

the solution, it can be found in Appendix A.

The solution for from Eq. 2.51 is sensitive to slight changes in and has found tooe U
oN

be somewhat unstable. The error can be as high as 15%. The solution from Eq. 2.51 is

thus used as an initial calculation for the enrichment. The final enrichment result is

produced through an iteration method using ORIGEN (see Fig. 6). After finding the

burnup and enrichment from Eq. 2.22 and 2.51, the results are then used to build a

reactor core model for each reactor type being considered. Each model is then simulated

by ORIGEN. After each run the 235U content is compared with the measured value. The

initial enrichment is then adjusted by using

34

(2.56)
235 235

235 1
2

U U
measured ORIGEN

new o U
measured

U Ue e
U

⎛ ⎞−= +⎜ ⎟
⎝ ⎠

until the output of ORIGEN matches the measured value of 235U. Then the same process

is repeated for the burnup monitors. The whole cycle is then repeated twice. This

method improved the enrichment calculations to an accuracy of 2% or better. Table II

shows improvement made by performing the iteration process. This calculation used

data which will be described in more detail in Chapter IV.

Fig. 6. Flow of forward model iteration scheme for improving the
enrichment calculation.

35

TABLE II

Enrichment Calculations Before and After Using an Iteration Scheme with ORIGEN

Reported Initial Calculation After Iteration

Mihama-3 Enrichment
(a/o)

Enrichment
(a/o)

Percent
Error

Enrichment
(a/o)

Percent
Error

Sample 1 3.25 2.93 9.94 3.22 1.08

Sample 2 3.25 2.98 8.31 3.27 0.62

Sample 3 3.24 2.81 13.27 3.20 1.33

Sample 4 3.24 2.91 10.19 3.27 0.93

Sample 5 3.24 2.77 14.51 3.20 1.23

Sample 6 3.25 3.16 2.77 3.21 1.23

Sample 7 3.25 3.32 2.15 3.29 1.23

Sample 8 3.25 3.36 3.38 3.22 0.92

Sample 9 3.25 3.38 4.00 3.21 1.23

C. REACTOR TYPE

Work has been done previously to verify the reactor type of spent fuel for reprocessing

facilities [15]. This was done by taking samples of the gases that escaped from the

reprocessing process. A burnup monitor that met similar requirements as our burnup

monitor was chosen. Due to being restricted to gases, they were very limited on possible

isotopes and the accuracy wasn’t as good as the burnup monitors we chose. They found

production of 132Xe/134Xe ratio varied by as much as 25% from the different reactor

types. By measuring this ratio, they were able to determine from what type of reactor the

fuel originated.

36

Determining the reactor type is critical to the success of this project. Our ability to

predict the reactor type relies heavily on the accuracy of the one-group cross sections and

yield values. As discussed in Chapter I, the cross sections are created from MCNP

reactor core models. To differentiate the reactor types from each other, isotopes with

cross sections and yields that change significantly from reactor type to reactor type are

needed. To avoid the complication of decay, stable or long-lived isotopes are needed.

The method for determining reactor type depends upon the accuracy of ORIGEN, and as

the decay chain becomes more complicated the accuracy is diminished. ORIGEN also

has a more difficult time tallying isotopes in trace amounts with a high degree of

accuracy. To avoid these issues, it is best if the chosen isotopes have a simple decay

chain and are produced in quantities above 0.01 moles per fuel assembly.

The mass spectroscopy measurements are generally performed as isotopic ratios. 238U is

the most abundant isotope by many orders of magnitude in spent fuel. By measuring a

reactor type monitor with respect to 238U, slight changes of the quantity produced of the

monitor will make little difference in the measured value. To avoid this and improve the

accuracy, reactor type monitors are measured with respect to something that is produced

in similar quantities. This will ensure that slight changes in reactor type monitor

quantities will be easily evaluated. This is especial true when the burnup is low. Figure

7 shows the 132Ba/238U isotopic ratio versus burnup. At 10,000 MWd/MT our ability to

distinguish between reactor types is low. By measuring 132Ba with respect to 148Nd it is

much easier to distinguish between the reactor types at a lower burnup (see Fig. 8).

37

Fig. 7. The production of 132Ba with respect to 238U for different
reactor types.

Fig. 8. The production of 132Ba with respect to 148Nd for different
reactor types.

38

In the case where others attempted to validate the reactor type of spent fuel by the gases

released from reprocessing, they had difficulty distinguishing between PWR and BWR

reactors. We have found a series of isotopes that allows us to differentiate between

PWR and BWR reactors much more accurately. They are: 132Ba, 98Tc, 115In, 72Ge and

115Sn, and will be discussed in detail later.

The method for finding the correct reactor type is simple and direct. A model for each

reactor type to be considered is created and run by ORIGEN. The isotopics are then

compared with the measurements and the relative error is calculated. Each reactor type

is then ranked according to the lowest average error. To minimize the effect of a single

isotope being miscalculated by ORIGEN, as many isotope ratios as possible are used.

D. AGE

Once the burnup, initial enrichment and reactor type are known, finding the time since

the discharge date is relatively straightforward. Once again the method requires

ORIGEN and the accuracy of the solution depends upon the accuracy of ORIGEN. Age

monitors should be chosen by their half-life and the ability of ORIGEN to accurately

calculated them. To get the best accuracy, an isotope with a half-life close to the age of

the spent fuel is used to make the final calculation. Age monitors that have a half-life

between one and thirty years should be chosen, since the oldest spent fuel is less than 60

years old.

39

At this point, five reactor types that match the reactor type monitors the best are chosen.

For these five reactor types an ORIGEN model is built for each. ORIGEN runs the

models and only allows the spent fuel to decay for approximately 30 days. This allows

the short-lived isotopes to completely decay into the more stable isotopes. The isotopic

quantity is collected for each of the age monitors from the ORIGEN output. This value

is then set as the initial quantity, (shown in Fig. 9), which is the quantity of isotopeC
oN

C at the time of discharge.

Fig. 9. Buildup of 134Cs in a PWR reactor and its decay in the spent fuel
pool.

40

We first start with the standard decay equation:

, (2.57)()() e TC C
oN T N λ−=

where is the concentration of the age monitor C and 8 is the decay constant forCN

isotope C, and is given by:

. (2.58)
1 2

ln(2)
T

λ =

By substituting equation 2.58 in 2.57, and solving for T we get the following:

, (2.59)1 2 ()ln
ln(2)

C

C
o

T N TT
N

⎛ ⎞
= − ⎜ ⎟

⎝ ⎠

where T is the spent fuel age. After rearrangement into measurable terms we acquire:

. (2.60)1 2
238 238
()ln

ln(2)

CC
o

U U

T NN TT
N N

⎛ ⎞⎡ ⎤⎡ ⎤
= − ⎜ ⎟⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦⎝ ⎠

The age is then calculated for each age monitor and averaged. Not all of the age

calculations from each age monitor are going to be accurate. The closer the half-life of

the age monitor is to the actual age the more accurate it will be. The average age of all

the age monitors should be close to the actual age. Once an initial average is calculated

the two age monitors that have the closest half-life to the initial calculated average age

are selected. Then a new average is calculated with just these two age monitors. This is

then reported as the age, or the time passed since the spent fuel was discharged from the

reactor. The age determination relies upon the correct calculation of burnup, initial

41

enrichment, and reactor type. Therefore, if there are large errors in any of these

calculations, it will affect the age prediction.

If 241Pu is used as an age monitor, problems may arise with mixed oxide (MOX) fuels.

This may cause the initial amount of 241Pu, or to be more than the present-day241Pu
oN

measured amount. The only solution to Eq. 2.60 in this case is for T to be less than zero.

In this event the 241Pu should be removed as an age monitor and not used. Another factor

that will affect the age prediction is the shutdown time. Fuel is usually used in cycles

and in between cycles the fuel is temporarily stored onsite. The storage time between

cycles is referred to as shutdown time. During the shutdown the age monitors will decay

and cause the ORIGEN forward model to incorrectly calculate the atom density of the

age monitor at the time of discharge.

E. SHUTDOWN TIME

The shutdown time is when a fuel assembly is not being irradiated during its fuel cycle.

Knowing the approximate shutdown time is another important piece of information that

would aid an investigator. Once the shutdown time is known it can be used to verify the

suspect fuel assembly against its power history.

The shutdown monitor is produce mostly from the decay of other fission products. Its

individual fission product yield is either zero or small compared to its accumulated yield.

42

The shutdown monitor must be stable or long-lived to be effective. The production of

the shutdown monitor 147Sm can be seen in Fig. 10. The key that gives us the ability to

find the shutdown time is the shutdown monitor’s immediate precursor in the decay

chain. As shown in Fig. 10., the shutdown monitor’s precursor is 147Pm. The precursor

must have several characteristics. Its half-life needs to range from a few months to

approximately five years, and its one group radiative capture cross section needs to be

large.

The driving concept behind the shutdown monitor is transmutation of the precursor. As

the precursor 147Pm is produced in the reactor, part of it is transmuted into 148Pm and part

of it decays to 147Sm. During shutdown, the fuel is no longer being irradiated, so all of

the 147Pm begins to decay into 147Sm. This will boost the total production of 147Sm in the

fuel relative to the shutdown time. In Fig. 11, the production of the shutdown monitor

147Sm is shown in two different fuel cycles. Power history A is a straight burnup of the

Fig. 10. Comparison of the production of shutdown monitor 147Sm during and after
being irradiated.

43

fuel without any shutdown time. In power history B, the fuel experiences two separate

shutdowns and is temporarily stored for 200 days. The increase production of the 147Sm

during the shutdown time can easily be seen in Fig. 11.

The shutdown time can be found by the predicting the change in atom density of the

shutdown monitor from the base density. The base density is the shutdown monitor’s

atom density when the fuel experiences no shutdown time. The base density in Fig. 11 is

shown by power history A. As you increase the shutdown time, the atom density of the

shutdown monitor will increase. To show the relationship between the shutdown time

and atom density, the graph shown in Fig. 12 was created. Figure 12 shows that there is

a roughly linear relationship between the shutdown time and the change in atom density.

Fig. 11. Production of 147Sm in a PWR with two different power histories.

44

By knowing the linear relationship show in Fig. 12, one could estimate the shutdown

time by measuring the shutdown monitor’s atom density and subtracting the base atom

density predicted by a forward model (e.g. ORIGEN). This concept has been not been

benchmarked by measured data due to the lack of data on known shutdown monitors. It

has also not been implemented.

F. SELECTED ISOTOPES

The characteristics needed for each category are different. There are over 1500 known

isotopes which require an extensive effort to find isotopes that matched the needed

parameters. ORIGEN was used to run forward models of different reactor types. We

studied the output and found isotopes that met our requirements. The list given here

Fig. 12. The change in atom density of 147Sm versus shutdown time.

45

includes the suggested nuclides to use for the forensics problem; however, it is

acknowledged that this list may not be all inclusive. As additional monitor nuclides are

identified, they should be studied in more detail.

1. BURNUP MONITORS

The following are the suggested burnup monitors: 140Ce, 100Mo, 98Mo, 97Mo, 138Ba, 142Ce

and 148Nd. 148Nd (which is stable) is generally one of the more accurate monitors and is

regularly used in the nuclear industry. Figures 13 and 14 show the ratio of two burnup

monitors as a function of burnup for different reactor types. Graphs of each burnup

monitor can be found in Appendix B. 137Cs is not included in this list due to its 30 year

half-life. Since the age will not be known prior to the burnup determination, this half-

life could prove problematic. Therefore, it should only be used if no other burnup

monitors are available. In the case where it is necessary to use 137Cs, an iterative process

between burnup and age could be performed to provide a solution.

46

Fig. 13. Atom ratio of 148Nd to 238U for several reactor types.

Fig. 14. Atom ratio of 100Mo to 238U for several reactor types.

47

2. ENRICHMENT MONITORS

Enrichment is unique among the monitors because there is a particular set of isotopes

needed to calculate it. This set is: 234U, 235U, 236U, 238U, 239Pu, 240Pu and 241Pu. These are

all of the fissioning isotopes that are considered in the enrichment calculation. For the

initial calculation, it is assumed that only 235U and 238U are present in the fresh fuel. This

is a good approximation but not strictly correct in all cases. Fresh fuel has traces of 234U

and U.S. origin fresh fuel contains a small fraction of 236U from down blending of

military materials through commercial facilities [18].

In the case of MOX fuels, plutonium is present in the fresh fuel and will cause the error

in the initial enrichment calculation to be larger. This error will eliminated via the

ORIGEN iteration step. However, the plutonium isotopic composition in MOX fuels

varies and therefore even the ORIGEN iteration will likely have larger errors (greater

than 2%).

3. REACTOR TYPE MONITORS

The following nuclides are suggested as possible reactor type monitors: 109Ag, 153Eu,

156Gd, 143Nd, 240Pu, 108Cd, 113Cd, 149Sm, 166Er, 132Ba, 98Tc, 115In, 72Ge and 115Sn. The

discrimination capability of these monitors varies. For example, the ability to distinguish

a fast reactor from a thermal reactor is easily done with almost any of the isotopes listed.

The ability to distinguish between a PWR and BWR is difficult because the neutron

spectrum in both reactors is very similar. Only a few of the reactor type monitors listed

48

can distinguish PWR from BWR. 132Ba, 98Tc, 115In, 72Ge, 108Cd and 115Sn are the only

monitors listed that can distinguish a PWR from a BWR, with 132Ba being the best (see

Fig. 7). 113Cd, 149Sm, 115In, 72Ge and 115Sn are particularly good for distinguishing a fast

from a thermal reactor. A graph of each reactor type monitor versus burnup can be

found in Appendix C.

MOX fuels can also affect our ability to use 240Pu as a reactor type monitor. The

assumption was made that no plutonium was present in the fresh fuel. If plutonium is

present this will greatly affect calculations of the 240Pu content, and will cause errors in

attempts to distinguish the different reactors with 240Pu.

4. AGE MONITORS

Two characteristics should be considered when choosing an age monitor: They are the

monitors half-life and ORIGEN’s ability to accurately predict the monitor. Table III lists

all of the isotopes that have a half-life between 1 and 30 years and is produced in

sufficient quantities in spent fuel that it can be measured.

Unlike reactor type monitors, the accuracy of any individual age monitor is more

important, since it is not averaged over a large number of nuclides. The reported age is

calculated from just two of the age monitors. If one of them has a significant error, it

will directly impact the results. The accuracy of the age monitors can vary significantly,

each one should be benchmarked with measured data.

49

TABLE III

List of All Isotopes That Are Produced in a Reactor
with a Half-life Between 1 and 30 Years

Isotope Half-Life (years)
90Sr 28.8
93Nb 16.1
106Ru 1.0
101Rh 3.3
102Rh 3.7
125Sb 2.8
134Cs 2.1
137Cs 30.1
146Pm 5.5
147Pm 2.6
153Eu 13.5
154Eu 8.6
155Eu 4.8
228Th 1.9
236Pu 2.9
241Pu 14.3
243Cm 29.1
244Cm 18.1

50

5. SUMMARY OF MONITOR NUCLIDES

A summary table listing all of the suggested monitor nuclides for the nuclear forensics

problem is given in Table IV.

TABLE IV

Suggested Monitor Nuclides

Burnup Monitors 140Ce, 100Mo, 98Mo, 97Mo, 138Ba,

142Ce, 148Nd

Enrichment Monitors 234U, 235U, 236U, 238U, 239Pu, 240Pu,

241Pu

Reactor Type Monitors 109Ag, 153Eu, 156Gd, 143Nd, 240Pu,

108Cd, 113Cd, 149Sm, 166Er, 132Ba,

98Tc, 115In, 72Ge, 115Sn

Age Monitors 90Sr, 93Nb, 106Ru, 101Rh, 102Rh,

125Sb, 134Cs, 137Cs, 146Pm, 147Pm

Shutdown Monitors 90Zr, 113In, 125Te, 134Ba, 137Ba,

147Sm, 154Gd

51

CHAPTER III

NEMASYS

A Microsoft Visual Studio .NET 2003, Visual Basic code was written to implement the

methodology described in Chapter II. This code was named the Nuclear Event Material

Attribution SYStem, or NEMASYS. NEMASYS is GUI (graphical user interface) based

and user-friendly. The code was written on a Microsoft Windows XP platform and

requires Microsoft’s .NET framework for proper execution.

A. CODE REQUIREMENTS

The code needed to meet several goals and requirements. The first goal was to provide a

way for a user who only has a basic understanding of nuclear engineering principles the

ability to obtain useful information in identifying the radiological source in an RDD.

The code needed to be easy to operate. The code also needed the ability to provide all of

the necessary information a technical person would want. This would give someone who

is familiar with the process and theory behind the code the ability to check the

conclusions and make adjustments as necessary.

NEMASYS is only needed in times of emergencies and, therefore, will not be used on a

regular basis. Thus if an event occurs NEMASYS must be useable regardless of whether

or not trained personnel are available. Therefore, it needs to run in an intuitive manner

that is user friendly. There will not be time for the user to read a large manual or spend

52

days understanding how the process works. If an event occurs, the user will have a few

days at best to process the data and produce a detailed report on their findings.

B. UNDERSTANDING NEMASYS

In Chapter II, the calculation of each characteristic was discussed. Here, the connection

of these steps will be shown and how they provide information for each other. Each step

provides the data needed for the next step until a solution is found. Figure 15 shows a

graphical overview of the flow of data in NEMASYS. Before NEMASYS can perform

any calculation, it must first load all the necessary information about each reactor and the

list of isotopes to be used as monitors. The list of monitors and reactor types are pulled

from a Microsoft Access database (see Appendix D). This was done to give the user the

ability to add new monitors and reactor types without having to do any re-coding. A text

input file is also used to store the location of the files needed for each reactor type. This

includes the cross-section and yield data files and a skeleton ORIGEN model. It is

stored in a text file to allow SENTRY the ability to modify and change the location of

the data and the data itself. For example, if a better cross-section set is found, a user

could replace the old cross-section set through a SENTRY interface (Lotus Notes).

53

Fig. 15. Overview of the data flow within NEMASYS.

54

1. BURNUP DETERMINATION

Burnup requires no previous calculations nor information about the different reactor

types. It is a straightforward calculation that only requires the list of burnup monitors

and the yield for each monitor. When choosing a burnup monitor we made the

assumption that the yield was the same for all reactor types was made. Therefore,

NEMASYS can pull the necessary yield data from any of the reactor types. By default,

NEMASYS gets the yield information from the first reactor type listed in the text file

just mentioned in Section III.B. First, it calculates the burnup for each monitor; then, it

averages the burnup data using:

. (3.1)
1() ()

n

i
i

BU T BU T
n

= ∑

The average burnup is then stored in memory.

2. ENRICHMENT DETERMINATION

NEMASYS then uses the average burnup value to calculate the enrichment. The

monitors needed for the enrichment are set and can not be changed. They are the only

isotopes that are hard coded into NEMASYS. The enrichment calculation requires cross

sections for each of the reactors (see Fig. 15). The cross-sections will vary for each

reactor type; thus, the enrichment is calculated for each reactor type being considered

and stored in memory. This calculation can be done very quickly with no significant

time penalty.

55

3. REACTOR TYPE DETERMINATION

Identifying the reactor type uses a straightforward concept, but the process itself can be

very complicated. As explained in Chapter II, reactor type monitors are chosen because

their production varies for each reactor type. By knowing the burnup and enrichment,

ORIGEN can be used as a forward model to calculate the quantity of each reactor type

monitor that each reactor type should produce at the time the fuel is discharged from the

reactor. The calculated value is then compared with the value entered by the user for

each reactor type monitor. The errors are averaged by:

, (3.2)
1 n

average i
i

E E
n

= ∑

and the reactor types are ranked in order by the lowest error. The average error is then

used to find the confidence:

. (3.3)exp()averageConfidence E= −

The five reactor types with the lowest average error are stored in memory.

To perform the ORIGEN calculation, a skeleton ORIGEN model is created for each

reactor type (see Appendix E). Any time NEMASYS needs to run ORIGEN, it will only

need to modify the skeleton model and then call to execute ORIGEN. This is used to

predict the quantity of a particular monitor for any reactor type. ORIGEN automatically

calculates the production of all major isotopes. Therefore, no modification is required to

use additional monitors. To add a reactor type, the user only needs to create a simple

56

skeleton ORIGEN model. NEMASYS then modifies the skeleton model and runs

ORIGEN to make all of the production calculations. First, NEMASYS pulls the burnup

and enrichment data from memory. Then, NEMASYS will modify the correct skeleton

ORIGEN model with the burnup and enrichment values. NEMASYS then pulls the

correct cross section and yield data for ORIGEN, and ORIGEN is run and data collected

for each reactor type. The values are compared with the user inputted values as

explained before, and the reactors are ranked. This information is then stored in

memory. While the use of forward model calculations increases computational time, the

overall increase is small. Each time ORIGEN is run, it requires approximately one

second on a single 3.2 GHz Intel processor.

4. AGE DETERMINATION

To find the age, NEMASYS needs the burnup, enrichment, and cross-section and yield

data for ORIGEN. Once again, NEMASYS modifies the skeleton models of each reactor

type and sets the decay to 30 days. This is done to make sure any short-lived fission

products that decay into the age monitor are accounted for. ORIGEN is run and the

quantity of each age monitor is collected. This is set as the quantity of the age monitor at

the time of discharge. The age is calculated by using the decay equation for each age

monitor. Then, the average age is found as follows:

, (3.4)
1 n

average i
i

Age Age
n

= ∑

and the age is re-calculated using the two age monitors that have the closest half-life to

57

the average. Thirty days are then added to the average age to account for the 30 days

added to the ORIGEN models. This process is repeated for each reactor type and stored

in memory.

C. FORWARD MODEL ITERATION

As mentioned in Chapter II, the results for the enrichment calculation have errors as high

as 15%. Both the reactor type and age were determined using the calculated enrichment

values. This naturally leads to propagated errors in the reactor type and age prediction.

To improve this result, a forward model iteration was implemented (see Fig. 6). Once

the iteration process is complete, the reactor type and age are re-determined using the

new enrichment and burnup values. This process runs ORIGEN an extra 10 to 30 times

for each reactor type, causing the process to take several minutes to run on a 3.2 GHz

Intel processor.

The iteration process is not run automatically. NEMASYS makes its first calculations

without the iteration process and reports the results. This will take approximately two

seconds for every reactor type being considered. NEMASYS then gives the user the

option to run the iteration process for only one reactor type or for all of the reactor types.

If the iteration process is run for all the reactor types, they are re-ranked at the end.

58

D. USING NEMASYS

Nemasys can be used after a few simple instructions. After starting NEMASYS the first

task is to input the measurements. The area at the top left hand side (see Fig. 16) is

where the measured values can be entered. First click on the isotope in the list on the

left. Then enter the value and the measured error. If the error associated with the

measurement is unknown, leave it at zero. After clicking on “Enter Ratio” the isotope

will appear on the right with its measurement.

Fig. 16. Entering measured values into NEMASYS.

59

Each category requires certain isotopes. As the requirements are met for each category

by entering in the measured values, the category description (e.g. Burnup, Enrichment,

Reactor Type and Age) will appear at the top in the “Requirements met” box (see Fig.

17). Only after all the requirements are met will NEMASYS allow the user to process

the data.

Fig. 17. Meeting the requirements for NEMASYS to process the data.

60

If the user is uncertain about what isotopes belong in what categories, that information

can be obtained in the bottom left hand box (see Fig. 18). By clicking on the category in

the list on the left, it will display all of the isotopes in that category on the right. This

will help identify what measurements need to be taken. If the user wants to look up what

category a particular isotope is in, select the “Isotope ratios” button and the list on the

left will be populated with all of the isotopes. By selecting an isotope it will display a

description and the category on the right.

Fig. 18. Viewing the descriptions of the categories and individual nuclides.

61

After all of the requirements have been met, click on the “Report” button. This process

will take approximately 30 seconds to run. It will the display a report similar to Fig. 19.

 There are five reactor types listed by their confidence rating. The confidence level does

not consider the burnup, enrichment or age predictions; it is based solely on the reactor

type prediction. The reactor that most closely matches the reactor type monitors are listed

first. The burnup calculation is the same for each reactor and is listed at the top. To

perform the ORIGEN iteration process you can select a single reactor type and click on

“Iterate Selected.” Or the iteration process can be ran for all of the reactors by clicking

on “Iterate All.” If all of the reactor types are iterated, it will re-sort the reactors by the

new confidence rating.

Fig. 19. The NEMASYS reactor report.

62

If the user would like to see the detailed results for a particular reactor type, select the

reactor type and then click on the “Ratios” button. This will bring up a report similar to

that shown in Fig. 20. At the top it lists each burnup monitor and the burnup calculation

associated with it. The reported burnup is the burnup shown on the report above (Fig.

19). Two age monitors are listed because the age is always calculated by only two

monitors, regardless of how many age monitors are entered. The reactor type monitors

are listed at the bottom. The measured value is the value entered in by the user. The

calculated value is the value calculated by ORIGEN. The errors for each monitor is

shown to allow the user to verify the validity of the prediction and measurements. If one

particular monitor has a large error, the user can remove that monitor and rerun the

report to make sure it wasn’t adversely affecting the results. The large error can be due

to ORIGEN’s inability to predict it, a measurement error, or an error while entering the

measurement.

The description above is not a full manual but it does allow someone who is unfamiliar

with NEMASYS to use it and understand its basic functionality. A full manual will also

explain how to add monitors and reactor types. Enhancements will continue to be made

in the future as needed.

63

Fig. 20. NEMASYS individual ratio report for each reactor type.

64

CHAPTER IV

BENCHMARKING NEMASYS

Benchmarking the results is critical to validating the methodology and process used.

Unfortunately, there is limited data available on the isotopic composition of spent fuel.

Obtaining spent fuel composition measurements requires enormous resources. The data

that is available is limited mainly to actinide content and a few fission products. A

generally complete listing of possible isotopic spent fuel measurements can be found in

the NEA data bank [19]. A complete set of data that met the minimal requirements for

analysis by NEMASYS was found for a reactor in Japan. The measurements were from

the Mihama Unit 3 reactor.

A. MIHAMA-3 REACTOR

The Mihama nuclear reactor is located in the Fukui prefecture in Japan. Nine samples

were taken from three different spent fuel assemblies from the third unit (Mihama-3).

The Mihama-3 reactor is a typical U.S. PWR design with a 15×15 rod array. It is

operated by Kansai Electric Power Co. and started commercial operation in 1978. The

power history of the fuel assemblies measured can be seen in Table V. Three samples

were taken from the first assembly (JPNNM3SFA1), two samples from the second

assembly (JPNNM3SFA2), and four samples from the third assembly (JPNNM3SFA3).

65

TABLE V

Power History of Three Assemblies from the Mihama-3 Unit

Assembly
JPNNM3SFA1

Assembly
JPNNM3SFA2

Assembly
JPNNM3SFA3

Days Condition Days Condition Days Condition

229 Operation 229 Operation 229 Operation

375 Shutdown 375 Shutdown

345 Operation 345 Operation

163 Shutdown

389 Operation

B. MONITORS USED FOR MIHAMA-3

Table VI shows the isotope ratios used for monitors in each category. 234U/238U was not

given in the data, so it was assumed to be 2.76×10-4, which is the amount found in a

typical PWR reactor. The 234U/238U value was shown to have a negligible effect on the

results, so this assumption should be reasonable. It was found to have no visible effect.

For the reactor type, there was no fission product data available to differentiate a PWR

from a BWR. The accuracy of the reactor type prediction is thus limited due to this lack

of available data.

66

TABLE VI

Monitors Used for Attribution of the Mihama-3 Unit
148Nd/238U Burnup
235U/238U Enrichment
236U/238U Enrichment
238U/U Enrichment
239Pu/238U Enrichment
240Pu/238U Enrichment
143Nd/148Nd Reactor Type
240Pu/148Nd Reactor Type
241Pu/238U Age
134Cs/238U Age
137Cs/238U Age
106Ru/238U Age

C. NEMASYS RESULTS FOR MIHAMA-3

Table VII shows the NEMASYS results for the burnup prediction for each sample.

Table VII shows a consistent lower predicted burnup than the reported burnup. The

overall uncertainty in the results however is quite good. A 4% error is sufficient for the

forensics problem as long as it does not affect the other calculations significantly.

67

TABLE VII

NEMASYS Burnup Results for Mihama-3

Assembly Sample No. Reported
Burnup

(MWd/MT)

Predicted
Burnup

(MWd/MT)

Error

JPNNM3SFA1 1 8,300 7,952 -4.19%

JPNNM3SFA1 2 6,900 6,678 -3.22%

JPNNM3SFA1 3 15,300 14,664 -4.16%

JPNNM3SFA2 4 21,200 20,399 -3.78%

JPNNM3SFA2 5 14,600 14,043 -3.82%

JPNNM3SFA3 6 29,400 28,394 -3.42%

JPNNM3SFA3 7 32,300 30,931 -4.24%

JPNNM3SFA3 8 33,700 32,371 -3.37%

JPNNM3SFA3 9 34,100 32,920 -3.46%

Average Error - - - -3.74%

In Section II.B., Table II shows the results for the enrichment calculation. Before using

the forward model iteration method, the errors were as high as 14.5%. By using the

forward model iteration method, the error was reduced to less than 2%. This is sufficient

for the forensics problem and gives us greater confidence in our reactor type and age

predictions.

For the reactor type predictions, NEMASYS easily predicted that the Mihama reactor

was not an LMFBR or CANDU reactor but had difficulty distinguishing between a PWR

68

and BWR. NEMASYS predicted PWR correctly only twice out of the nine samples. It

reported the difference between the two reactors was less than 1%. Thus, to accurately

distinguish a PWR and BWR the monitors discussed in Section II.F.3 must be used.

TABLE VIII

Age Prediction Results for Mihama-3.

Assembly Sample No. Reported
Age

Calculated
Age

Error

JPNNM3SFA1 1 5 4.85 3.0%

JPNNM3SFA1 2 5 4.81 3.8%

JPNNM3SFA1 3 5 4.70 6.1%

JPNNM3SFA2 4 5 4.78 4.4%

JPNNM3SFA2 5 5 4.52 9.6%

JPNNM3SFA3 6 5 4.97 0.6%

JPNNM3SFA3 7 5 4.85 3.0%

JPNNM3SFA3 8 5 5.07 1.4%

JPNNM3SFA3 9 5 5.01 0.2%

Average Error - - - 3.6%

Table VIII shows the results for the age calculation. The age predictions all have errors

less than 9.6%. No other attributes depend upon the age prediction and so the error in

this result will not propagate. The age could have been used to correct for the decay of

241Pu used in the enrichment prediction, but with the implementation of the ORIGEN

iteration scheme this is unnecessary. This result is accurate enough that it will allow for

69

proper identification of the suspected source reactor.

70

CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS

Terrorism has demanded that the U.S. be prepared for many situations that it never

considered a significant threat before. One of these threats is the possibility of an

organization detonating an RDD on U.S. soil. The ability to quickly identify the source

of the radiological material used in an RDD would aid investigators in identifying the

perpetrators. If spent fuel is used as the radiological material for the weapon, it would

prove to be deadly and cause extensive disruption. In this work, we developed and

implemented a forensics methodology to attribute spent fuel to a source reactor. The

specific attributes determined are the spent fuel burnup, age from discharge, reactor type,

and initial fuel enrichment.

It was shown that post-event material attribution is possible with enough accuracy to be

useful for investigators. The burnup can be found to within a 5% accuracy, enrichment

to within a 2% accuracy, and age to within a 10% accuracy. The methodology can

discriminate between a CANDU, LMFBR, BWR and PWR. It was implemented into a

code call NEMASYS. NEMASYS was written so that its capabilities could be expanded

and improved without the need to perform any re-coding. New reactor types and

monitors can be added and defined by the user. This gives the user the ability to fine

tune the process as more data becomes available. NEMASYS is easy to use, and it takes

a minimum amount of time to learn its basic functions. It will process data within a few

71

minutes and provide detailed information about the results and conclusions.

As stated earlier, this work is only a small part in a larger effort to attribute spent fuel

(Fig. 2.). Additional work on NEMASYS and on the complete attributing project still

needs to be completed. Additional benchmark data would allow for improvements in the

results and building additional confidence in NEMASYS. There are still opportunities to

improve the accuracy of the methodology as well. This can be done by automating the

process to find outlier monitors, and performing an error analysis of the processes used

to find the burnup, enrichment, reactor type and age. Once a more stringent analysis of

the methodology is complete, the calculation of error propagation needs to be

implemented in NEMASYS. With sufficient benchmarking results, each monitor can be

studied in greater detail and verified to work as predicted. This can only be done after

more spent fuel measurements are performed. The implementation of the shutdown

monitor has yet to be incorporated into NEMASYS. Not only will knowing the

shutdown time help with matching the suspected fuel to a power history, but it might aid

in the calculation of the age.

Only a few reactor types were considered in our study. This needs to be expanded to

include all commercial and research reactors. Large commercial sources are not

considered by NEMASYS, and a complete study needs to be performed to allow the

implementation of a forensics methodology for large commercial sources.

72

There are scenarios when NEMASYS will be unable to identify spent fuel sources.

These scenarios and any other points of failure need to be documented. The search tool

shown in Fig. 2 has not been completed. There is a limited SENTRY search tool

available but no attempt has been made to automate the flow of information between

NEMASYS and this search tool. This is a critical component of the attribution project

and needs to completed soon.

In conclusion, we have shown that with our methodology, attributing spent nuclear fuel

is within our capabilities. This can be done quickly and easily with NEMASYS.

NEMASYS has enough accuracy to provide useful results but would still benefit from

evolutionary improvements by more data for benchmarking and modifications to the

methodology.

73

REFERENCES

1. B. Anet, “Assessing the Risk of Radiological Terrorism: How Real is The

Threat,” The Chemical and Biological Medical Treatments Symposia, April

28 - May 3, Speiz, Switzerland (2002).

2. J.L. Ford, “Radiological Dispersal Devices: Assessing the Transnational

Threat,” Institute for National Strategic Studies, National Defense University,

Strategic Forum, No. 136 (1998).

3. C. Watson, “Nuclear Terrorism,” British Pugwash Group: Britain and

Unconventional Terrorism, London, UK, December 10 (2002).

4. A.J. Gonzalez, “Security of Radioactive Sources: The Evolving New

International Dimensions,” IAEA Bulletin, 43 (4), 39 (2001).

5. G.J. Van Tuyle, T.L. Strub, H. O’Brien, C. Mason, and S. Gitomer “Reducing

RDD Concerns Related to Large Radiological Source Applications,” LA-UR-

03-6664, Los Alamos National Laboratory Report (2003).

6. R. Alvarez, “Don’t Short-Change Nuclear Safety: Tightening Security

Around Nuclear Storage Facilities Should Be an Urgent National Priority,”

Foreign Policy In Focus (November 2001).

7. S. Ludwig, “ORIGEN The ORNL Isotope Generation and Delpetion Code,”

CCC-0371/17, Oak Ridge National Laboratory (2002) .

8. F. Pointurier, N. Baglan, and P. Hemet “Ultra Low-level Measurements of

Actinides by Sector Field ICP-MS,” Applied Radiation and Isotopes, 60, 561

(2004).

74

9. M.V. Zoriy, C. Pickhardt, P. Ostapczuk, R. Hille, and J. S. Backer,

“Determination of Pu in Urine at Ultratrace Level by Sector Field Inductively

Coupled Plasma Mass Spectrometry,” International Journal of Mass

Spectrometry, 232, 217 (2004).

10. J.F. Briesmeister, “MCNP – A General Monte Carlo N-Particle Transport

Code Version 4B,” LA-12625-M, Los Alamos National Laboratory (1997).

11. D.L. Poston and H.R. Trellue, “User's Manual, Version 2.0 for

MONTEBURNS Version 1.0,” LA-UR-99-4999, Los Alamos National

Laboratory (1999).

12 D.E. Burk, “Forward Model Calculations for Determining Isotopic

Compositions of Material Used in a Radiological Dispersal Device,” M.S.

Thesis, Texas A&M University (2005).

13. A.V. Bushuev, A.F. Kozhin, G. Li, V.N. Zubarev, A.A. Portnov, V. P.

Alferov, and M.V. Shchurovskaya, “Determination of the Fuel-assembly

Burnup in a Research Reactor by Repeated Short-time Irradiation Followed

by G Spectrometric Measurements,” Atomic Energy, 97, 2 (2004).

14. J.J. Giglio, D.G. Cummings, M.M. Michlik, P.S. Goodall, and S.G. Johnson,

“Determination of Burnup in Spent Nuclear Fuel by Application of Fiber

Optic High-resolution Inductively Coupled Plasma Atomic Emission

Spectroscopy,” Nuclear Instruments and Methods in Physics Research A 396,

251 (1997).

75

15. W.S. Charlton, B.L. Fearey, C.W. Nakhleh, T.A. Parish, R.T. Perry, J. Poths,

J.R. Quagliano, W.D. Stanbro, and W.B. Wilson, “Operator Declaration

Verification Technique for Spent Fuel at Reprocessing Facilities,” Nuclear

Instruments and Methods in Physics Research Section B: Beam Interactions

with Materials and Atoms, 168(1), 98 (2000).

16. K. Abbas, G. Nicolaou, D. Pellotiero, P. Schwalback, L. Koch, “Gamma

Spectrometry of Spent Nuclear Fuel Using a Miniature Cdte Detector,”

Nuclear Instruments and Methods in Physics Research Section A, 376(2), 248

(1996).

17. C. Devida, E. Gautier, D. Gil, and A. Stankevicius, “The LFR Facility

(CNEA) for Burnup Determination in Uranium Silicide Fuels 20% 235U,”

2002 International Meeting on Reduced Enrichment for Research and Test

Reactors, November 3-8, Bariloche, Argentina (2002).

18. G.W. Fox, and J. Matheson, “Dealing with the Legacy of US and Russian

Nuclear Defence Programmes - AREVA's Contributions,” World Nuclear

Association, Annual Symposium, September 3-5, London (2003).

19. “List of Reactors in SFCOMPO on WWW Ver.2,”

http://www.nea.fr/html/science/wpncs/sfcompo/Ver.2/Eng, Nuclear Energy

Agency (2005).

76

APPENDIX A

FINAL ENRICHMENT CALCULATION

77

The final solution for the initial enrichment calculation is long. To avoid having the

equations stretch out across multiple pages, several sub-variables are defined. The sub-

variables themselves have no relation to any physical concept and are simply pieces of

the solution. The sub-variables H1 - H18 are defined as:

(A.1)
238 235 236

238 239 240 241
238 2381

U U U
U Pu Pu Pu

a R a a a a U U U
o

N N NH N E
N N N

σ σ σ σ
⎛ ⎞⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= − +⎜ ⎟⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎝ ⎠

(A.2)238 239 240 2412 ()U U Pu Pu Pu
o a a a aH M BU T σ σ σ σ= −

(A.3)
238

238 239 240 2413 1
U

U Pu Pu Pu
a R f a a a U

o

NH N E
N

σ σ σ σ
⎛ ⎞⎡ ⎤

= −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

(A.4)
234 238

238 239 240 241
2384

U U
U Pu Pu Pu

a R f a a a U U
o

N NH N E
N N

σ σ σ σ
⎡ ⎤⎡ ⎤

= − ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

(A.5)
239 238

238 239 240 241
2385

U U
U Pu Pu Pu

a R a f a a U U
o

N NH N E
N N

σ σ σ σ
⎡ ⎤⎡ ⎤

= − ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

(A.6)
238

238 239 240 2416 1
U

U Pu Pu Pu
a R f a a U

o

NH N E
Nγσ σ σ σ

⎛ ⎞⎡ ⎤
= − −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

78

(A.7)
234 238

238 239 240 241
2387

U U
U Pu Pu Pu

a R f a a U U
o

N NH N E
N Nγσ σ σ σ

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

(A.8)
240 238

238 239 240 241
2388

U U
U Pu Pu Pu

a R a a f a U U
o

N NH N E
N N

σ σ σ σ
⎡ ⎤⎡ ⎤

= − ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

(A.9)
239 238

238 239 240 241
2389

U U
U Pu Pu Pu

a R a f a U U
o

N NH N E
N Nγσ σ σ σ

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

(A.10)
234 238

238 239 240 241
23810

U U
U Pu Pu Pu

a R f a U U
o

N NH N E
N Nγ γσ σ σ σ

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

(A.11)
238

238 239 240 24111 1
U

U Pu Pu Pu
a R a a U

o

NH N E
Nγ γσ σ σ σ

⎛ ⎞⎡ ⎤
= −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

(A.12)
241 238

238 239 240 241
23812

U U
U Pu Pu Pu

a R a a a f U U
o

N NH N E
N N

σ σ σ σ
⎡ ⎤⎡ ⎤

= − ⎢ ⎥⎢ ⎥
⎣ ⎦ ⎣ ⎦

(A.13)
240 238

238 239 240 241
23813

U U
U Pu Pu Pu

a R a a f U U
o

N NH N E
N Nγσ σ σ σ

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

(A.14)
239 238

238 239 240 241
23814

U U
U Pu Pu Pu

a R a f U U
o

N NH N E
N Nγ γσ σ σ σ

⎡ ⎤⎡ ⎤
= − ⎢ ⎥⎢ ⎥

⎣ ⎦ ⎣ ⎦

79

(A.15)
238

238 239 240 24115 1
U

U Pu Pu Pu
a R f U

o

NH N E
Nγ γ γσ σ σ σ

⎛ ⎞⎡ ⎤
= −⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

(A.16)238 239 240 241 238 239 240 24116 U Pu Pu Pu U Pu Pu Pu
f a a a a a a aH σ σ σ σ σ σ σ σ= −

(A.17)238 239 240 241 238 239 240 24117 U Pu Pu Pu U Pu Pu Pu
f a a f aH γ γ γσ σ σ σ σ σ σ σ= −

(A.18)238 239 240 24118 U Pu Pu Pu
fH γ γ γσ σ σ σ=

The final solution for the initial enrichment is then given by:

(A.19)
()1 2 15

16 17 18o

H H H
e

H H H
+ +

=
+ +

80

APPENDIX B

GRAPHS OF BURNUP MONITORS

81

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

C
e-

14
0/

U
-2

38

BWR
CANDU
LFMBR
PWR

Fig. A1. Atom ratio of 140Ce to 238U for several reactor types.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

M
o-

10
0/

U
-2

38

BWR
CANDU
LFMBR
PWR

Fig. A2. Atom ratio of 100Mo to 238U for several reactor types.

82

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

M
o-

97
/U

-2
38

BWR
CANDU
LFMBR
PWR

Fig. A4. Atom ratio of 97Mo to 238U for several reactor types.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

M
o-

98
/U

-2
38

BWR
CANDU
LFMBR
PWR

Fig. A3. Atom ratio of 98Mo to 238U for several reactor types.

83

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

Ba
-1

38
/U

-2
38

BWR
CANDU
LFMBR
PWR

Fig. A5. Atom ratio of 138Ba to 238U for several reactor types.

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 5000 10000 15000 20000 25000 30000 35000 40000 45000

Burnup (MWd/MT)

Ce
-1

42
/U

-2
38

BWR
CANDU
LFMBR
PWR

Fig. A6. Atom ratio of 142Ce to 238U for several reactor types.

84

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

0.0009

0.001

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

Nd
-1

48
/U

-2
38

BWR
CANDU
LFMBR
PWR

Fig. A7. Atom ratio of 148Nd to 238U for several reactor types.

85

APPENDIX C

GRAPHS OF REACTOR TYPE MONITORS

86

0

1

2

3

4

5

6

7

8

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

A
g-

10
9/

U
-2

38

BWR
CANDU
LFMBR
PWR

Fig. B1. Atom ratio of 109Ag to 238U for several reactor types.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

Eu
-1

53
/U

-2
38

BWR
CANDU
LFMBR
PWR

Fig. B2. Atom ratio of 153Eu to 238U for several reactor types.

87

0

0.2

0.4

0.6

0.8

1

1.2

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

G
d-

15
6/

N
d-

14
8

BWR
CANDU
LFMBR
PWR

Fig. B3. Atom ratio of 156Gd to 238U for several reactor types.

0.00E+00

5.00E-01

1.00E+00

1.50E+00

2.00E+00

2.50E+00

3.00E+00

3.50E+00

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

N
d-

14
3/

N
d-

14
8

BWR
CANDU
LFMBR
PWR

Fig. B4. Atom ratio of 143Nd to 238U for several reactor types.

88

0

5

10

15

20

25

30

35

40

45

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

Pu
-2

40
/U

-2
38

BWR
CANDU
LFMBR
PWR

Fig. B5. Atom ratio of 240Pu to 238U for several reactor types.

0

0.000005

0.00001

0.000015

0.00002

0.000025

0.00003

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

C
d-

10
8/

U
-2

38

BWR
CANDU
LFMBR
PWR

Fig. B6. Atom ratio of 108Cd to 238U for several reactor types.

89

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

Cd
11

3/
Nd

14
8

BWR
CANDU
LFMBR
PWR

Fig. B7. Atom ratio of 113Cd to 238U for several reactor types.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

S
m

14
9/

N
d1

48

BWR
CANDU
LFMBR
PWR

Fig. B8. Atom ratio of 149Sm to 238U for several reactor types.

90

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0 10000 20000 30000 40000 50000
Burnup (MWd/MT)

E
r1

66
/N

d1
48

BWR
CANDU
LFMBR
PWR

Fig. B9. Atom ratio of 166Er to 238U for several reactor types.

0

0.000005

0.00001

0.000015

0.00002

0.000025

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

Tc
98

/T
c9

9

BWR
CANDU
LFMBR
PWR

Fig. B10. Atom ratio of 99Tc to 238U for several reactor types.

91

0

2E-22

4E-22

6E-22

8E-22

1E-21

1.2E-21

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

In
11

5/
N

d1
48

BWR
CANDU
LFMBR
PWR

Fig. B11. Atom ratio of 115In to 238U for several reactor types.

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

G
e7

2/
Nd

14
8

BWR
CANDU
LFMBR
PWR

Fig. B12. Atom ratio of 72Ge to 238U for several reactor types.

92

0.00E+00

5.00E-04

1.00E-03

1.50E-03

2.00E-03

2.50E-03

3.00E-03

3.50E-03

4.00E-03

4.50E-03

0 10000 20000 30000 40000 50000

Burnup (MWd/MT)

Sn
-1

15
/N

d-
14

8

BWR
CANDU
LFMBR
PWR

Fig. B13. Atom ratio of 115Sn to 238U for several reactor types.

93

APPENDIX D

THE NEMASYS ACCESS DATABASE

94

TABLE D1

Ratio Table Within the NEMASYS Access Database.
ID Isotope Ratio Numerator Denominator GroupID Ratio Error Description
1 U235/U238 922350 922380 3 0 0 Enrichment
2 Pm147/U238 611470 922380 4 0 0 Age Monitor with
3 Ru106/U238 441060 922380 4 0 0 Age Monitor with
4 Sr90/U238 380900 922380 4 0 0 Age Monitor with
5 Cs137/U238 551370 922380 4 0 0 Age Monitor with
6 Ce140/U238 581400 922380 1 0 0 Burnup
7 Mo100/U238 421000 922380 1 0 0 Burnup
10 Nd148/U238 601480 922380 1 0 0 Burnup
11 Sm147/U238 621470 922380 5 0 0 History
12 Zr90/U238 400900 922380 5 0 0 History
13 In113/U238 491130 922380 5 0 0 History
14 Te125/U238 521250 922380 5 0 0 History
15 Ba134/U238 561340 922380 5 0 0 History
16 Ba137/U238 561370 922380 5 0 0 History
17 Gd157/U238 641570 922380 5 0 0 History
19 Pu240/Nd148 942400 601480 2 0 0 Reactor Type
20 Ag109/Nd148 471090 601480 2 0 0 Reactor Type
21 Eu153/Nd148 631530 601480 2 0 0 Reactor Type
22 Gd156/Nd148 641560 601480 2 0 0 Reactor Type
23 Pu239/U238 942390 922380 3 0 0 Enrichment
24 Pu240/U238 942400 922380 3 0 0 Enrichment
25 Pu241/U238 942410 922380 4 0 0 Enrichment and
26 U238/U 922380 922330,

922340,...
3 0 0 Enrichment

27 U236/U238 922360 922380 3 0 0 Enrichment
28 U234/U238 922340 922380 3 0 0 Enrichment

95

TABLE D2

Ratio Table Within the NEMASYS Access Database.
ID Reactor Type Description
1 LMFBR
2 LMFBR2
3 RBMK 1000
4 PWR
5 BWR
6 CANDU

96

APPENDIX E

AN EXAMPLE OF A NEMASYS ORIGEN SKELETON DECK

97

Below is a BWR ORIGEN skeleton deck.

-1
-1
-1
RDA DECAY LIB XSECT LIB VAR. XSECT
LIB 0 1 2 3 251 252 253 9 50 0 1 1
RDA READ FUEL COMPOSITION INCLUDING IMPURITIES (1000 KG)
INP 1 1 -1 -1 1 1
BUP
IRP ***1 37.5 1 1 4 2
IRP ***2 37.5 1 1 4 0
IRP ***3 37.5 1 1 4 0
IRP ***4 37.5 1 1 4 0
IRP ***5 37.5 1 1 4 0
IRP ***6 37.5 1 1 4 0
IRP ***7 37.5 1 1 4 0
IRP ***8 37.5 1 1 4 0
IRP ***9 37.5 1 1 4 0
IRP ***10 37.5 1 1 4 0
IRP ***11 37.5 1 1 4 0
IRP ***12 37.5 1 1 4 0
IRP ***13 37.5 1 1 4 0
IRP ***14 37.5 1 1 4 0
IRP ***15 37.5 1 1 4 0
DEC ***16 1 1 4 0 DECAY FOR 6 MONTHS
BUP
OPTL 24*8
OPTA 2*8 5 21*8
OPTF 2*8 5 21*8
OUT 1 1 -1 0
END
2 922340 290.0 922350 **922350** 922380 **922380** 0 0.0
0

98

APPENDIX E

NEMASYS CODE

99

D:\Programs\Inverse_Model3\Form1.vb
Imports System.IO
Public Class InverseMod
Inherits System.Windows.Forms.Form
Windows Form Designer generated code
Public lbx_req_index, lbx_opt_index As Short
Public first_xy_index As Short
Public fU238C As Boolean = False
Function XYTableLoad()
'Uses the XYFile table and loads the information into the xsec_yield table
Dim i1 As Short
XYFileLoad()
For i1 = 0 To 99
If xyfiles(i1, 0) <> Nothing Then
YLoad(xyfiles(i1, 0), i1)
End If
Next
End Function
Function YLoad(ByVal filen As String, ByVal xy_index1 As Short)
'Load the yield from a Origen yield library
Dim i1, i2, i3, i4, i5, length1 As Integer
Dim TempS, Text1, fname, lname As String
Dim Temp2(300) As Single
Dim Abort1 As Boolean = False
Dim Exist As Boolean = False
Dim Start As Boolean = False
Dim found1 As Boolean = False
Dim add1, new1 As Boolean
Dim i6, i7 As Short
Dim xfile(1500, 35) As Single
Dim Temp1, index1 As Short
'Make sure the file exists
Exist = System.IO.File.Exists(filen)
If Exist = True Then
Try
FileOpen(1, filen, OpenMode.Input)
Catch
MsgBox("The file " & filen & " is locked or missing")
Abort1 = True
End Try
i1 = 0
i2 = 0
i4 = -1
i5 = 1
If Abort1 = False Then
Do Until (EOF(1))
TempS = LineInput(1)
If found1 = True Then
Dim OpenT() As String = Split(TempS, " ") 'Inputs each line as
space delimited
If OpenT(0) <> "-1" And OpenT(1) <> "-1" And OpenT(2) <> "-1"
Then
length1 = OpenT.GetLength(0)
i2 = 0
For i1 = 0 To length1 - 1
'Gets rid of the extra spaces between numbers
If OpenT(i1) <> "" Then
2 D:\Programs\Inverse_Model3\Form1.vb
'Checks to see if any number like 2.3E 01 exist and
gets rid of the space to 2.3E01
Temp1 = OpenT(i1).IndexOf("E")
If Temp1 <> -1 And Temp1 = OpenT(i1).Length - 1 Then
OpenT(i1) = OpenT(i1) & OpenT(i1 + 1)

100

OpenT(i1 + 1) = ""
End If
'Converts the chopped up string to an array of
floating point numbers
If OpenT(i1) <> "" Then
Try
Temp2(i2) = Convert.ToSingle(OpenT(i1))
Catch ex As Exception
MsgBox("Error reading the number " & OpenT
(i1))
End Try
i2 += 1
End If
End If
Next
'Tells it when to increment to the next isotope because the x
-sections can be over multiple lines
If Temp2(1) > 10000 Then
i4 += 1
i3 = 0
End If
For i5 = 0 To i2 - 1
xfile(i4, i3) = Temp2(i5)
i3 += 1
Next
Else
found1 = False
End If
Else
'Looks for the phrase Fission Product XSEC as the beginning for
importing numbers
Temp1 = TempS.IndexOf("ACTINIDE")
If Temp1 = -1 Then Temp1 = TempS.IndexOf("FISSION PRODUCT XSEC")
If Temp1 <> -1 Then found1 = True
End If
Loop
End If
FileClose(1)
'Because the info spans over two lines I will get rid of the library number
on the second line
For i1 = 0 To 999
For i2 = 9 To 16
xfile(i1, i2) = xfile(i1, i2 + 1)
Next
xfile(i1, 17) = 0
Next
'The File is now imported in the file xfile
'Now I want find the description of the isotope for the isotope number eg
(U238 for 922380)
Dim IsoDescript(i4 + 1), IsoNum As String
Dim TempNum As Integer
For i1 = 0 To i4
found1 = False
For i2 = 0 To 999
If found1 = False Then
TempNum = IsoInfo(i2, 2)
3 D:\Programs\Inverse_Model3\Form1.vb
If TempNum < 100 Then
IsoNum = Convert.ToString(IsoInfo(i2, 1)) & "0" & Convert.
ToString(IsoInfo(i2, 2)) _
& Convert.ToString(IsoInfo(i2, 3))
Else
IsoNum = Convert.ToString(IsoInfo(i2, 1)) & Convert.ToString

101

(IsoInfo(i2, 2)) _
& Convert.ToString(IsoInfo(i2, 3))
End If
If IsoNum = xfile(i1, 1) Then
IsoDescript(i1) = Convert.ToString(IsoInfo(i2, 0)) & Convert.
ToString(IsoInfo(i2, 2))
found1 = True
End If
End If
Next
Next
'Now I will transfer it to the xsec_yield table
For i1 = 0 To i4
xsec_yield(xy_index1, i1, 0) = IsoDescript(i1)
xsec_yield(xy_index1, i1, 1) = xfile(i1, 1)
xsec_yield(xy_index1, i1, 2) = xfile(i1, 5)
xsec_yield(xy_index1, i1, 3) = xfile(i1, 2)
xsec_yield(xy_index1, i1, 4) = xfile(i1, 9)
xsec_yield(xy_index1, i1, 5) = xfile(i1, 10)
xsec_yield(xy_index1, i1, 6) = xfile(i1, 11)
xsec_yield(xy_index1, i1, 7) = xfile(i1, 12)
xsec_yield(xy_index1, i1, 8) = xfile(i1, 13)
xsec_yield(xy_index1, i1, 9) = xfile(i1, 14)
xsec_yield(xy_index1, i1, 10) = xfile(i1, 15)
xsec_yield(xy_index1, i1, 11) = xfile(i1, 16)
Next
Else
MsgBox("The Origen library file at " & filen & " doesn't exist")
End If
End Function
Function XYFileLoad()
'Loads the information from the xyfiles.csv file which tell the program which
Origen libraries to use
Dim Exist As Boolean = False
Dim Abort1 As Boolean = False
Dim xyindex As Boolean = False
Dim TempS, path1, path2, path3 As String
'Checks to make sure the file exists
Exist = System.IO.File.Exists("data\xyfiles.csv")
If Exist = True Then
Try
FileOpen(1, "data\xyfiles.csv", OpenMode.Input)
Catch
'If it is currenlty opened by excel it will be locked
MsgBox("The file xyfiles.csv is locked or missing")
Abort1 = True
End Try
If Abort1 = False Then
Do Until (EOF(1))
TempS = LineInput(1)
Dim OpenT() As String = Split(TempS, ",")
If OpenT(0) = 1 Then
'Determines it the path is an absolute one or relative to the
executable
Try
If OpenT(1) = 0 Then
path1 = Application.StartupPath & "\" & OpenT(3)
4 D:\Programs\Inverse_Model3\Form1.vb
path2 = Application.StartupPath & "\" & OpenT(4)
path3 = Application.StartupPath & "\" & OpenT(5)
ElseIf OpenT(1) = 1 Then
path1 = OpenT(3)
path2 = OpenT(4)

102

path3 = OpenT(5)
End If
Catch ex As Exception
MsgBox("Missing information in the xyfiles.csv file")
End Try
'writes the path to the xyfiles table
xyfiles(OpenT(2), 0) = path1
xyfiles(OpenT(2), 1) = path2
xyfiles(OpenT(2), 2) = path3
If xyindex = False Then
first_xy_index = OpenT(2)
xyindex = True
End If
End If
Loop
End If
FileClose(1)
Else
MsgBox("The file xyfiles.csv is missing")
End If
End Function
Function enterratio()
Dim lbx_index, i1 As Short
'Record the data entered and pull up the data for the newly selected ratio
If num_rratio.Value <> 0 Or num_rerror.Value <> 0 Then
Req_ratios(lbx_req_index, 0) = lbx_rratio.Items.Item(lbx_req_index)
Req_ratios(lbx_req_index, 1) = num_rratio.Value
Req_ratios(lbx_req_index, 2) = num_rerror.Value
End If
'If num_rratio.Value <> 0 Or num_rerror.Value <> 0 Then
tbx_req.Clear()
For i1 = 0 To 49
If Req_ratios(i1, 1) <> Nothing Or "0" Then
tbx_req.Text += Req_ratios(i1, 0) & " = " & Req_ratios(i1, 1) & _
" +/- " & Req_ratios(i1, 2) & CR
End If
Next
'End If
Try
lbx_index = lbx_rratio.SelectedIndex
lbx_req_index = lbx_index
lbl_req.Text = lbx_rratio.SelectedItem
num_rratio.Value = Convert.ToSingle(Req_ratios(lbx_index, 1))
num_rerror.Value = Convert.ToSingle(Req_ratios(lbx_index, 2))
Catch ex As Exception
End Try
chkSatisfied()
End Function
Function chkSatisfied()
Dim e1, e2, e3, e4, e5, e6, e7, enrich1 As Boolean
Dim i1, i2, i3, length1 As Short
Dim b1, b2, a1, a2, r1 As Boolean
e1 = False
e2 = False
e3 = False
5 D:\Programs\Inverse_Model3\Form1.vb
e4 = False
e5 = False
e6 = False
e7 = False
enrich1 = False
a1 = False
a2 = False

103

b1 = False
b2 = False
r1 = False
'Check to see if all the necessary isotopes for enrichment are entered
For i1 = 0 To 199
If Req_ratios(i1, 0) = "U234/U238" Then e1 = True
If Req_ratios(i1, 0) = "U235/U238" Then e2 = True
If Req_ratios(i1, 0) = "U236/U238" Then e3 = True
If Req_ratios(i1, 0) = "U238/U" Then e4 = True
If Req_ratios(i1, 0) = "Pu239/U238" Then e5 = True
If Req_ratios(i1, 0) = "Pu240/U238" Then e6 = True
If Req_ratios(i1, 0) = "Pu241/U238" Then e7 = True
Next
If e1 = True And e2 = True And e3 = True And e4 = True And e5 = True And e6 =
True _
And e7 = True Then enrich1 = True
'Check to make sure at least one burnup monitor has been entered
'Pull a list from the database of all burnup monitors
length1 = DV1.Count()
Dim burnl(length1 - 1) As String
i2 = 0
For i1 = 0 To length1 - 1
If DV1.Item(i1).Item("GroupID") = 1 Then
burnl(i2) = DV1.Item(i1).Item("Isotope Ratio")
i2 += 1
End If
Next
For i1 = 0 To i2 - 1
If burnl(i1) <> Nothing Then
For i3 = 0 To 199
If burnl(i1) = Req_ratios(i3, 0) Then
b1 = True
End If
Next
End If
Next
'Check to make sure at least two age monitors have been entered
'Pull a list from the database of all age monitors
Dim agel(length1 - 1) As String
i2 = 0
For i1 = 0 To length1 - 1
If DV1.Item(i1).Item("GroupID") = 4 Then
agel(i2) = DV1.Item(i1).Item("Isotope Ratio")
i2 += 1
End If
Next
For i1 = 0 To i2 - 1
If agel(i1) <> Nothing Then
For i3 = 0 To 199
If agel(i1) = Req_ratios(i3, 0) Then
If a1 = False Then
a1 = True
6 D:\Programs\Inverse_Model3\Form1.vb
Else
a2 = True
End If
End If
Next
End If
Next
'Check to make sure at least one reactor type monitor has been entered
'Pull a list from the database of all reactor type monitors
length1 = DV1.Count()

104

Dim rtypel(length1 - 1) As String
i2 = 0
For i1 = 0 To length1 - 1
If DV1.Item(i1).Item("GroupID") = 2 Then
rtypel(i2) = DV1.Item(i1).Item("Isotope Ratio")
i2 += 1
End If
Next
For i1 = 0 To i2 - 1
If rtypel(i1) <> Nothing Then
For i3 = 0 To 199
If rtypel(i1) = Req_ratios(i3, 0) Then
r1 = True
End If
Next
End If
Next
'Write it to the text boxes
tbx_satc.Text = ""
tbx_urcat.Text = ""
If b1 = True Then
tbx_satc.Text += "Burnup" & CR
Else
tbx_urcat.Text += "Burnup" & CR
End If
If enrich1 = True Then
tbx_satc.Text += "Enrichment" & CR
Else
tbx_urcat.Text += "Enrichment" & CR
End If
If r1 = True Then
tbx_satc.Text += "Reactor Type" & CR
Else
tbx_urcat.Text += "Reactor Type" & CR
End If
If a2 = True Then
tbx_satc.Text += "Age" & CR
Else
tbx_urcat.Text += "Age" & CR
End If
End Function
Function Totburnup() As Single
'This function combines the burnup from all the burnup monitors and weights
'them according to their error
'burnuplist Table to temporarily hold the burnup isotopes from DV1
'column 0: Isotope Ration (name)
'column 1: Numerator
'column 2: Denominator
7 D:\Programs\Inverse_Model3\Form1.vb
'column 3: entered measured data by user
'column 4: entered measured error by user
Dim burnuplist(19, 4) As String
Dim length1, i1, i2, i3 As Short
Dim yield3, burn1, weight1 As Single
Dim found1 As Boolean = False
'Burnup for each monitor along with its weight from the user inputed error
Dim isoburn(19, 1) As Single
length1 = DV1.Count()
i2 = 0
'Pull a list from the database of all burnup monitors
For i1 = 0 To length1 - 1
If DV1.Item(i1).Item("GroupID") = 1 Then
burnuplist(i2, 0) = DV1.Item(i1).Item("Isotope Ratio")

105

burnuplist(i2, 1) = DV1.Item(i1).Item("Numerator")
burnuplist(i2, 2) = DV1.Item(i1).Item("Denominator")
i2 += 1
End If
Next
'Check that list against the user entered data
For i1 = 0 To i2 - 1
found1 = False
i3 = 0
Do Until found1 = True
If burnuplist(i1, 0) = Req_ratios(i3, 0) Then
burnuplist(i1, 3) = Req_ratios(i3, 1)
burnuplist(i1, 4) = Req_ratios(i3, 2)
found1 = True
End If
If i3 = 199 Then found1 = True
i3 += 1
Loop
Next
'Calculate the burnup for each of the entered ratios
i3 = 0
For i1 = 0 To i2 - 1
If burnuplist(i1, 3) <> Nothing Then
weight1 = burnuplist(i1, 4) / burnuplist(i1, 3)
yield3 = Totyield(burnuplist(i1, 1), "U235", first_xy_index)
isoburn(i3, 0) = burnup(burnuplist(i1, 0), yield3)
isoburn(i3, 1) = weight1 ' Need to fix the weight to reflex an relative
error
BurnErrors(i3, 0) = burnuplist(i1, 0)
BurnErrors(i3, 1) = isoburn(i3, 0)
i3 += 1
End If
Next
If i3 > 1 Then
'If the user didn't enter an error with the burnup monitor I will add a .01%
error
For i1 = 0 To i3 - 1
If isoburn(i1, 1) = 0 Then isoburn(i1, 1) = 0.001 'isoburn(i1, 0) * 0.
0001
Next
'Weight the burnup calculations in relaion to the measured error
Dim weight2(i3, 1) As Single
For i1 = 0 To i3 - 1
weight2(i3, 0) += isoburn(i1, 1)
Next
For i1 = 0 To i3 - 1
weight2(i1, 0) = (1 - isoburn(i1, 1) / weight2(i3, 0)) ^ 6
Next
weight2(i3, 0) = 0
8 D:\Programs\Inverse_Model3\Form1.vb
For i1 = 0 To i3 - 1
weight2(i1, 1) = isoburn(i1, 0) * weight2(i1, 0)
weight2(i3, 0) += weight2(i1, 0)
Next
weight2(i3, 1) = 0
For i1 = 0 To i3 - 1
weight2(i3, 1) += weight2(i1, 1)
Next
Totburnup = weight2(i3, 1) / weight2(i3, 0)
Else
For i1 = 0 To i2 - 1
If isoburn(i1, 0) <> Nothing Then
Totburnup = isoburn(i1, 0)

106

End If
Next
End If
i1 = 0
End Function
Function burnup(ByVal rname As String, ByVal Yield1 As Single) As Double
'rname is the name of the burnup isotope used (ie "Nd148/U238"), and yield1 is
it
's yield
'OEnrich2 is the enrich for Origen, used only when OIter = True
'A function that will calculate burnup
Dim Burn10, Burn11, Burn20, Burn21, Burn30, Burn31, N238_0, N238_1, N238_2 As
Double
Dim N234, N235, N236, N238, N239, N240, N241, blank As Single
Dim rindex As Short
Dim numRatio, error1 As Single
Dim found1 As Boolean = False
Find_Rat("U234/U238", N234, blank)
Find_Rat("U235/U238", N235, blank)
Find_Rat("U236/U238", N236, blank)
Find_Rat("U238/U", N238_0, blank)
Find_Rat("Pu239/U238", N239, blank)
Find_Rat("Pu240/U238", N240, blank)
Find_Rat("Pu241/U238", N241, blank)
Find_Rat(rname, numRatio, error1)
If failed = False Then
'First step
Burn10 = numRatio * Er * Na / MoU / (Yield1 / 100)
Burn11 = Burn10 * 0.00000000000016022 / 24 / 60 / 60
'First corrected NU238/NU
N238_1 = 1 / ((1 / N238_0 + N239 + N240 + N241) / (1 - Burn10 * MoU / Er /
Na))
'First corrected Burnup
Burn20 = N238_1 * Burn10
Burn21 = N238_1 * Burn11
'Second corrected NU238/NU
N238_2 = 1 / ((1 / N238_0 + N239 + N240 + N241) / (1 - Burn20 * MoU / Er /
Na))
'Second Burnup correction
Burn30 = N238_2 / N238_1 * Burn20
Burn31 = N238_2 / N238_1 * Burn21
''Test temporarily
'Burn31 = 30000
9 D:\Programs\Inverse_Model3\Form1.vb
'Burn30 = Burn31 * (24 * 60 * 60) / 0.00000000000016022
'Third corrected NU238/NU
If fU238C = False Then
NU238_NUC = 1 / ((N234 + N235 + N236 + 1) * (1 + Burn30 * MoU / (Na *
Er)) + N236 + N239 + N240 + N241)
'NU238_NUC = 1 / ((1 / N238_0 + N239 + N240 + N241) / (1 - Burn30 * MoU /
Er / Na))
If rname = "Nd148/U238" Then
fU238C = True
End If
End If
End If
burnup = Burn31
End Function
Function Totyield(ByVal isotope1 As Integer, ByVal source As String, ByVal
reactor As
Short) As Single
Dim i1, anum1, anum2, znum1, znum2, length1, index1 As Short
Dim iso3 As Integer

107

Dim yield1 As Single
Dim isotemp As String
Dim failed5 As Boolean = False
'Uses the source variable and finds the right index for the xsec_yield table
index1 = 0
If source = "Th232" Then index1 = 4
If source = "U233" Then index1 = 5
If source = "U235" Then index1 = 6
If source = "U238" Then index1 = 7
If source = "Pu239" Then index1 = 8
If source = "Pu241" Then index1 = 9
If source = "Cm245" Then index1 = 10
If source = "Cf252" Then index1 = 11
'Test to make sure the source is found
If index1 = 0 Then
MsgBox("Error in Total Yield calc. Wrong source")
failed5 = True
End If
'Breaks the isotope into Atomic and Z numbers
isotemp = Convert.ToString(isotope1)
anum1 = Convert.ToInt16(isotemp.Substring(2, 3))
znum1 = Convert.ToInt16(isotemp.Substring(0, 2))
'Calculate the total yield
If failed5 = False Then
yield1 = 0
For i1 = 0 To 1499
If xsec_yield(reactor, i1, 1) <> Nothing Then
anum2 = Convert.ToInt16(xsec_yield(reactor, i1, 1).Substring(2, 3))
znum2 = Convert.ToInt16(xsec_yield(reactor, i1, 1).Substring(0, 2))
iso3 = Convert.ToInt32(xsec_yield(reactor, i1, 1))
If anum1 = anum2 And znum1 >= znum2 And iso3 > 100000 Then
yield1 += Convert.ToSingle(xsec_yield(reactor, i1, index1))
End If
End If
Next
End If
Totyield = yield1
End Function
Function Enrich(ByVal Rindex1 As Short)
Dim i1, i2, Rindex2 As Short
10 D:\Programs\Inverse_Model3\Form1.vb
Dim Eo, Eo2, Eo3, E1, E2, E3 As Single
Dim N235_N238, N236_N238, N238_NU, N239_N238, N240_N238, N234_N238, N241_N238
As
Single
Dim blank, modburn As Single
Dim xfU238, xaU238, xrU238, xfPu239, xaPu239, xrPu239, xfPu240, xaPu240,
xrPu240,
xaPu241, xfPu241 As Single
Dim found1 As Boolean
'If no index is selected then it will use the x-sections from the first one
listed in the xyfile.csv
If Rindex1 = -1 Then
Rindex2 = first_xy_index
Else
Rindex2 = Rindex1
End If
'Change the burnup from MWD/MT to MeV/g
modburn = BurnupTable(0, 1) * 24 * 60 * 60 / 0.00000000000016022
'Load all of the needed cross-sections, ratios from the xsec_yield table
Find_Rat("U235/U238", N235_N238, blank)
Find_Rat("U236/U238", N236_N238, blank)
N238_NU = NU238_NUC

108

Find_Rat("Pu239/U238", N239_N238, blank)
Find_Rat("Pu240/U238", N240_N238, blank)
Find_Rat("U234/U238", N234_N238, blank)
Find_Rat("Pu241/U238", N241_N238, blank) 'Temp Pu241 check
found1 = False
i1 = 0
Do Until found1 = True Or i1 > 1399
If xsec_yield(Rindex2, i1, 1) = 922380 Then
xfU238 = xsec_yield(Rindex2, i1, 2)
xrU238 = xsec_yield(Rindex2, i1, 3)
xaU238 = xfU238 + xrU238
found1 = True
End If
i1 += 1
Loop
found1 = False
i1 = 0
Do Until found1 = True Or i1 > 1399
If xsec_yield(Rindex2, i1, 1) = 942390 Then
xfPu239 = xsec_yield(Rindex2, i1, 2)
xaPu239 = xfPu239 + xsec_yield(Rindex2, i1, 3)
xrPu239 = xsec_yield(Rindex2, i1, 3)
found1 = True
End If
i1 += 1
Loop
found1 = False
i1 = 0
Do Until found1 = True Or i1 > 1399
If xsec_yield(Rindex2, i1, 1) = 942400 Then
xfPu240 = xsec_yield(Rindex2, i1, 2)
xaPu240 = xfPu240 + xsec_yield(Rindex2, i1, 3)
xrPu240 = xsec_yield(Rindex2, i1, 3) 'Temp check Pu241
found1 = True
End If
i1 += 1
Loop
'Start Temp check Pu241
found1 = False
i1 = 0
Do Until found1 = True Or i1 > 1399
If xsec_yield(Rindex2, i1, 1) = 942410 Then
11 D:\Programs\Inverse_Model3\Form1.vb
xfPu241 = xsec_yield(Rindex2, i1, 2)
xaPu241 = xfPu240 + xsec_yield(Rindex2, i1, 3)
found1 = True
End If
i1 += 1
Loop
'End temp check Pu241
'First Step
For i1 = 0 To 1
Eo = (N235_N238 + N236_N238) * N238_NU + (modburn * MoU / (Na * Er))
MoU = 235 * Eo + 238 * (1 - Eo)
Eo = (N235_N238 + N236_N238) * N238_NU + (modburn * MoU / (Na * Er))
Eo2 = Eo
Eo3 = -(N238_NU * Na * Er * xaU238 * xaPu239 * xaPu240 * N235_N238 + _
N238_NU * Na * Er * xaU238 * xaPu239 * xaPu240 * N236_N238 + MoU * _
modburn * xaU238 * xaPu239 * xaPu240 - xfU238 * Na * Er * xaPu239 * _
xaPu240 + xfU238 * Na * Er * xaPu239 * xaPu240 * N238_NU + xfU238 * Na * _
Er * xaPu239 * xaPu240 * N234_N238 * N238_NU + xfPu239 * Na * Er * _
xaPu240 * N239_N238 * N238_NU * xaU238 - xfPu239 * Na * Er * xaPu240 * _
xrU238 + xfPu239 * Na * Er * xaPu240 * xrU238 * N238_NU + xfPu239 * Na * _

109

Er * xaPu240 * xrU238 * N234_N238 * N238_NU + xfPu240 * Na * Er * N240_N238 *
_
N238_NU * xaPu239 * xaU238 + xfPu240 * Na * Er * xrPu239 * N239_N238 * _
N238_NU * xaU238 - xfPu240 * Na * Er * xrPu239 * xrU238 + xfPu240 * Na * _
Er * xrPu239 * xrU238 * N238_NU + xfPu240 * Na * Er * xrPu239 * xrU238 * _
N234_N238 * N238_NU) / Na / Er / (-xaPu240 * xaPu239 * xaU238 + xfU238 * _
xaPu240 * xaPu239 + xfPu239 * xrU238 * xaPu240 + xfPu240 * xrPu239 * xrU238)
'Eo3 = -(N238_NU * Na * Er * xaU238 * xaPu239 * xaPu240 * xaPu241 * N235_N238
+ N238_NU * Na * Er * xaU238 * xaPu239 * xaPu240 * xaPu241 * N236_N238 + MoU *
modburn * xaU238 * xaPu239 * xaPu240 * xaPu241 - xfU238 * Na * Er * xaPu239 *
xaPu240
* xaPu241 + xfU238 * Na * Er * xaPu239 * xaPu240 * xaPu241 * N238_NU + xfU238 *
Na *
Er * xaPu239 * xaPu240 * xaPu241 * N234_N238 * N238_NU + xfPu239 * Na * Er *
xaPu240
* xaPu241 * N239_N238 * N238_NU * xaU238 - xfPu239 * Na * Er * xaPu240 *
xaPu241 *
xrU238 + xfPu239 * Na * Er * xaPu240 * xaPu241 * xrU238 * N238_NU + xfPu239 *
Na * Er
* xaPu240 * xaPu241 * xrU238 * N234_N238 * N238_NU + xfPu240 * Na * Er *
xaPu241 *
N240_N238 * N238_NU * xaPu239 * xaU238 + xfPu240 * Na * Er * xaPu241 * xrPu239
*
N239_N238 * N238_NU * xaU238 - xfPu240 * Na * Er * xaPu241 * xrPu239 * xrU238 +
xfPu240 * Na * Er * xaPu241 * xrPu239 * xrU238 * N238_NU + xfPu240 * Na * Er *
xaPu241 * xrPu239 * xrU238 * N234_N238 * N238_NU + xfPu241 * Na * Er *
N241_N238 *
N238_NU * xaPu240 * xaPu239 * xaU238 + xfPu241 * Na * Er * xrPu240 * N240_N238
*
N238_NU * xaPu239 * xaU238 + xfPu241 * Na * Er * xrPu240 * xrPu239 * N239_N238
*
N238_NU * xaU238 - xfPu241 * Na * Er * xrPu240 * xrPu239 * xrU238 + xfPu241 *
Na * Er
* xrPu240 * xrPu239 * xrU238 * N238_NU) / Na / Er / (-xaPu241 * xaPu240 *
xaPu239 *
xaU238 + xfU238 * xaPu241 * xaPu240 * xaPu239 + xfPu239 * xrU238 * xaPu241 *
xaPu240
+ xfPu240 * xrPu239 * xrU238 * xaPu241 + xfPu241 * xrPu240 * xrPu239 * xrU238)
'If Rindex1 = 4 Then
' N238_NU = 1 - Eo3
'End If
Next
If Rindex1 = -1 Then
For i1 = 1 To 99
EnrichTable(i1, 0) = Eo3 * 100
Next
Else
EnrichTable(Rindex1, 0) = Eo3 * 100
End If
12 D:\Programs\Inverse_Model3\Form1.vb
End Function
Function genreport()
Dim i1 As Short
BurnupTable(0, 1) = Totburnup()
For i1 = 0 To 99
If xyfiles(i1, 0) <> Nothing Then
Enrich(i1)
End If
Next
ReactType(False)
fU238C = False
GetFuelAge(False)
End Function

110

Function testload()
'This will load a tape6.out file from Origen with only one column of output
into
'the program input to save time testing various possibilities.
Dim i1, i2, i3, i4, length1, match As Short
Dim found1 As Boolean
Dim sum1 As Single
length1 = DV1.Count()
Dim TempRatios(length1 - 1, 3), TempS As String
'Copy the Tape6.out file to where the ParseTape6 function will expect it to be
Open1.Filter = "OUT files (*.out)|*.out|All files (*.*)|*.*"
Open1.InitialDirectory = Application.StartupPath & "\saved"
Open1.ShowDialog()
If Open1.FileName <> "" Then
TempS = Application.StartupPath & "\data\ORIGEN\TAPE6.OUT"
match = StrComp(TempS, Open1.FileName, CompareMethod.Text)
If match <> 0 Then
File.Delete(Application.StartupPath & "\data\ORIGEN\TAPE6.OUT")
File.Copy(Open1.FileName, Application.StartupPath & "\data\ORIGEN\TAPE6.
OUT")
End If
ParseTape6()
'Load all of the ratios in the database
length1 = DV1.Count()
For i1 = 0 To length1 - 1
TempRatios(i1, 0) = DV1.Item(i1).Item("Isotope Ratio")
TempRatios(i1, 1) = DV1.Item(i1).Item("Numerator")
TempRatios(i1, 2) = DV1.Item(i1).Item("Denominator")
Next
'Match the ratios in the access database to the tape6.out file and calc the
ratio
'First match the numerator
For i1 = 0 To length1 - 1
found1 = False
i2 = 0
Do Until found1 = True Or i2 > 1400
If TempRatios(i1, 1) = TTape6(i2, 0) Then
TempRatios(i1, 3) = TTape6(i2, 1)
found1 = True
End If
i2 += 1
13 D:\Programs\Inverse_Model3\Form1.vb
Loop
Next
'Next match the denominator
For i1 = 0 To length1 - 1
found1 = False
i2 = 0
Do Until found1 = True Or i2 > 1400
'Check to see if the denominator contains more than one isotope
If TempRatios(i1, 2).IndexOf(",") > 0 Then
Dim OpenT() As String = Split(TempRatios(i1, 2), ",")
sum1 = 0
For i3 = 0 To OpenT.GetLength(0) - 1
found1 = False
i4 = 0
Do Until found1 = True Or i4 > 1400
If OpenT(i3) = TTape6(i4, 0) Then
Try
sum1 += Convert.ToSingle(TTape6(i4, 1))
Catch ex As Exception
End Try
found1 = True

111

End If
i4 += 1
Loop
Next
TempRatios(i1, 3) = Convert.ToSingle(TempRatios(i1, 3)) / sum1
Else
'Contains only one isotope in the denominator
If TempRatios(i1, 2) = TTape6(i2, 0) Then
Try
TempRatios(i1, 3) = Convert.ToSingle(TempRatios(i1, 3)) /
Convert.ToSingle(TTape6(i2, 1))
Catch ex As Exception
End Try
found1 = True
End If
i2 += 1
End If
Loop
Next
'Enter the calc ratios into the req_ratios table
For i1 = 0 To length1 - 1
Req_ratios(i1, 0) = TempRatios(i1, 0)
Req_ratios(i1, 1) = TempRatios(i1, 3)
Req_ratios(i1, 2) = 0
Next
num_rratio.Value = 0
num_rerror.Value = 0
enterratio()
End If
End Function
Function Opensaved()
Dim TempS, TempS2 As String
Dim i1, i2, i3, space1, end1, length1 As Integer
Dim isotopes(499, 2) As String
Req_ratios.Clear(Req_ratios, 0, 600)
Open1.Filter = "inp files (*.inp)|*.inp|All files (*.*)|*.*"
Open1.InitialDirectory = Application.StartupPath & "\saved"
Open1.FileName = ""
Open1.ShowDialog()
14 D:\Programs\Inverse_Model3\Form1.vb
If Open1.FileName <> "" Then
FileOpen(1, Open1.FileName, OpenMode.Input)
i1 = 0
Do Until (EOF(1))
TempS = LineInput(1)
Dim OpenT() As String = Split(TempS, "=")
isotopes(i1, 0) = OpenT(0).Trim
TempS = OpenT(1).Trim
space1 = TempS.IndexOf(" ")
TempS2 = TempS.Substring(0, space1)
isotopes(i1, 1) = TempS2
space1 = TempS.IndexOf("-")
end1 = TempS.Length
TempS2 = TempS.Substring(space1 + 1, end1 - space1 - 1)
isotopes(i1, 2) = TempS2.Trim
i1 += 1
Loop
FileClose(1)
length1 = DV1.Count
For i2 = 0 To i1 - 1
For i3 = 0 To length1 - 1
If isotopes(i2, 0) = DV1.Item(i3).Item("Isotope Ratio") Then
Req_ratios(i3, 0) = isotopes(i2, 0)

112

Req_ratios(i3, 1) = isotopes(i2, 1)
If isotopes(i2, 2).Trim <> Nothing Then
Req_ratios(i3, 2) = isotopes(i2, 2)
End If
End If
Next
Next
num_rratio.Value = 0
num_rerror.Value = 0
enterratio()
End If
End Function
Function save_ratios()
Dim txtfile As String
txtfile = tbx_req.Text
Save1.Filter = "inp files (*.inp)|*.inp|All files (*.*)|*.*"
Save1.InitialDirectory = Application.StartupPath
Save1.FileName = ""
Save1.ShowDialog()
If Save1.FileName <> "" Then
FileOpen(1, Save1.FileName, OpenMode.Output)
Print(1, txtfile)
FileClose(1)
End If
End Function
Function cleartables()
MoU = 237.9
NU238_NUC = Nothing
BurnupTable.Clear(BurnupTable, 0, 22)
EnrichTable.Clear(EnrichTable, 0, 200)
RTypeConf.Clear(RTypeConf, 0, 200)
Report1.Clear(Report1, 0, 800)
IsoAge.Clear(IsoAge, 0, 10000)
FuelAge.Clear(FuelAge, 0, 100)
RTypeErrors.Clear(RTypeErrors, 0, 30000)
BurnErrors.Clear(BurnErrors, 0, 200)
AgeErrors.Clear(AgeErrors, 0, 400)
IDSelect.Clear(IDSelect, 0, 6)
End Function
15 D:\Programs\Inverse_Model3\Form1.vb
Private Sub ToolBar1_ButtonClick(ByVal sender As System.Object, ByVal e As
System.
Windows.Forms.ToolBarButtonClickEventArgs) Handles ToolBar1.ButtonClick
Dim i1 As Short
Dim run1 As Boolean = False
Select Case ToolBar1.Buttons.IndexOf(e.Button)
Case 0
Req_ratios.Clear(Req_ratios, 0, 600)
num_rratio.Value = 0
num_rerror.Value = 0
enterratio()
Case 1
Opensaved()
Case 2
save_ratios()
Case 3
If tbx_urcat.Text = "" Then
Dim frminput As New Report
genreport()
frminput.ShowDialog()
cleartables()
Else
MsgBox("First satisfy all of the required categories")

113

End If
End Select
End Sub
Private Sub MenuItem7_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles MenuItem7.Click
Close()
End Sub
Private Sub InverseMod_Load(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles MyBase.Load
CR = Chr(13) & Chr(10)
Tab1 = (Chr(9))
'Create a OleDB Connection
Dim conn As New System.Data.OleDb.OleDbConnection
conn.ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;Data source=" & _
"data\isotope_ratios.mdb"
Dim Fail1 As Boolean = False
Try
conn.Open()
Catch ex As Exception
MessageBox.Show("Failed to connect to the data source")
Fail1 = True
End Try
'Create a OleDB Data Adapter and load it to a DataSet
If Fail1 = False Then
Dim Adapter1 As New OleDb.OleDbDataAdapter
Dim Adapter2 As New OleDb.OleDbDataAdapter
Dim Adapter3 As New OleDb.OleDbDataAdapter
Dim Query1 As String = "SELECT Ratios.[Isotope Ratio], Ratios.GroupID, " & _
"Ratios.Ratio, Ratios.Numerator, Ratios.Denominator, Ratios.Error, " & _
"Ratios.Description FROM Ratios ORDER BY Ratios.[Isotope Ratio]"
Dim Query2 As String = "SELECT Categories.Category, Categories.Description,"
& _
" Categories.GroupID, Categories.Required, Categories.Satisfied " & _
"FROM(Categories) ORDER BY Categories.Category"
Dim Query3 As String = "SELECT Reactors.ID, Reactors.[Reactor Type]" & _
" FROM(Reactors) ORDER BY Reactors.ID"
16 D:\Programs\Inverse_Model3\Form1.vb
Adapter1.SelectCommand = New OleDb.OleDbCommand(Query1, conn)
Adapter2.SelectCommand = New OleDb.OleDbCommand(Query2, conn)
Adapter3.SelectCommand = New OleDb.OleDbCommand(Query3, conn)
Adapter1.Fill(DS1, "Isotope")
Adapter2.Fill(DS2, "Category")
Adapter3.Fill(DS3, "Reactor")
conn.Close()
End If
Fail1 = False
'Load the DataViews from the DataSets
Dim length1, i1 As Short
DV1 = DS1.Tables("Isotope").DefaultView
DV2 = DS2.Tables("Category").DefaultView
DV3 = DS3.Tables("Reactor").DefaultView
'Load the list box items
length1 = DV2.Count()
lbx_cat.Items.Clear()
lbx_rratio.Items.Clear()
tbx_urcat.Text = ""
tbx_uocat.Text = ""
For i1 = 0 To length1 - 1
lbx_cat.Items.Add(DV2.Item(i1).Item("Category"))
If DV2.Item(i1).Item("Required") = True Then
tbx_urcat.Text += DV2.Item(i1).Item("Category") & CR
Else
tbx_uocat.Text += DV2.Item(i1).Item("Category") & CR

114

End If
Next
length1 = DV1.Count()
For i1 = 0 To length1 - 1
lbx_rratio.Items.Add(DV1.Item(i1).Item("Isotope Ratio"))
Next
'Load the isotope information from the file elements.csv in the data folder
Dim filen, TempS As String
Dim Abort1 As Boolean = False
Dim i2 As Short
filen = "Data\elements.csv"
Try
FileOpen(1, filen, OpenMode.Input)
Catch
MsgBox("Data\elements.csv file is missing or locked")
Abort1 = True
End Try
If Abort1 = False Then
i1 = 0
Do Until (EOF(1))
TempS = LineInput(1)
If i1 > 1 Then
Dim OpenT() As String = Split(TempS, ",")
For i2 = 0 To 5
IsoInfo(i1 - 2, i2) = OpenT(i2)
Next
End If
i1 += 1
Loop
End If
FileClose(1)
'Load the cross-section and yield values for each rector
XYTableLoad()
End Sub
17 D:\Programs\Inverse_Model3\Form1.vb
Private Sub lbx_rratio_SelectedIndexChanged(ByVal sender As System.Object,
ByVal e As
System.EventArgs) Handles lbx_rratio.SelectedIndexChanged
enterratio()
End Sub
Private Sub rbn_isotope_CheckedChanged(ByVal sender As System.Object, ByVal e
As
System.EventArgs) Handles rbn_isotope.CheckedChanged
tbx_descript.Text = ""
If rbn_isotope.Checked = True Then
'Load the list box items for the categories
lbl_cat.Text = "Isotope Description"
Dim length1, i1 As Short
length1 = DV1.Count()
lbx_cat.Items.Clear()
For i1 = 0 To length1 - 1
lbx_cat.Items.Add(DV1.Item(i1).Item("Isotope Ratio"))
Next
Else
'Load the list box items for the categories
lbl_cat.Text = "Category Description"
Dim length1, i1 As Short
length1 = DV2.Count()
lbx_cat.Items.Clear()
For i1 = 0 To length1 - 1
lbx_cat.Items.Add(DV2.Item(i1).Item("Category"))
Next
End If

115

End Sub
Private Sub lbx_cat_SelectedIndexChanged(ByVal sender As System.Object, ByVal e
As
System.EventArgs) Handles lbx_cat.SelectedIndexChanged
Dim index1, i1, length1 As Short
index1 = lbx_cat.SelectedIndex
'If isotope option is checked do the following
If rbn_isotope.Checked = True Then
tbx_descript.Text = DV1.Item(index1).Item("Description")
tbx_descript.Text += CR & CR & "This Isotope is in the category "
length1 = DV2.Count()
For i1 = 0 To length1 - 1
If DV1.Item(index1).Item("GroupID") = DV2.Item(i1).Item("GroupID") Then
tbx_descript.Text += CR & DV2.Item(i1).Item("Category")
End If
Next
'If the category option is checked do the following
Else
tbx_descript.Text = DV2.Item(index1).Item("Description") & CR & CR
tbx_descript.Text += "Isotopes in this category"
length1 = DV1.Count()
For i1 = 0 To length1 - 1
If DV1.Item(i1).Item("GroupID") = DV2.Item(index1).Item("GroupID") Then
tbx_descript.Text += CR & DV1.Item(i1).Item("Isotope Ratio")
End If
Next
End If
End Sub
Private Sub btn_EnterR_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles btn_EnterR.Click
If lbx_rratio.SelectedIndex >= 0 Then enterratio()
End Sub
Private Sub btn_DeleteR_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles btn_DeleteR.Click
Dim index1 As Short
18 D:\Programs\Inverse_Model3\Form1.vb
num_rratio.Value = 0.0
num_rerror.Value = 0.0
index1 = lbx_rratio.SelectedIndex
Req_ratios(index1, 0) = Nothing
Req_ratios(index1, 1) = Nothing
Req_ratios(index1, 2) = Nothing
enterratio()
End Sub
Private Sub btn_Test_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles btn_Test.Click
OrigenPrep(num_RID.Value, num_burn.Value, num_e.Value, num_temp.Value * 365.24)
RunOrigen()
File.Copy(Application.StartupPath & "\data\Origen\TAPE6.OUT", Application.
StartupPath & "\saved\TAPE6.OUT", True)
End Sub
Private Sub MenuItem3_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles MenuItem3.Click
Opensaved()
End Sub
Private Sub MenuItem4_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles MenuItem4.Click
save_ratios()
End Sub
Private Sub MenuItem2_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles MenuItem2.Click
Req_ratios.Clear(Req_ratios, 0, 600)
enterratio()

116

End Sub
Private Sub MenuItem13_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles MenuItem13.Click
testload()
End Sub
Private Sub MenuItem8_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles MenuItem8.Click
Dim about1 As New AboutM
about1.ShowDialog()
End Sub
Private Sub MenuItem10_Click(ByVal sender As System.Object, ByVal e As System.
EventArgs) Handles MenuItem10.Click
If pnl_origen.Visible = True Then
pnl_origen.Visible = False
Else
pnl_origen.Visible = True
End If
End Sub
End Class

D:\Programs\Inverse_Model3\Module1.vb
Module Module1
'Version
Public version1 As Single = 0.902
Public reldate As String = "March 5, 2005"
Public Req_ratios(199, 2) As String 'The ratios inputed by the user ratios
Public CR As String 'Carriage Return
Public Tab1 As String 'Tab
Public DS1, DS2, DS3 As New DataSet
Public DV1, DV2, DV3 As New DataView
Public Er As Single = 200 'Average Enery per fission 200MeV/fission
Public Na As Single = 6.02214E+23 'Avogadro's number
Public MoU As Single = 237.9 ' ???
Public NU238_NUC 'U238/U corrected for burnup
Public BurnupTable(10, 1) As Single 'Will keep track of the Burnup for up to 10
reactor types
'Will keep track of the Enrichment for each reactor type
'Index matchs the reactor type ID
'0 Column: Enrichment
'1 Column: Error
Public EnrichTable(99, 1) As Single
'Keeps track of how close it matches the reactor type
'0 Column: Reactor ID
'1 Column: Confidence
Public RTypeConf(99, 1) As Single
'This is the table used to fill in the report
'0 reactor ID
'1 Column is the reactor type
'2 Column is the age
'3 Column is the Conifidence (error)
Public Report1(99, 7) As String
'First dimen reactor type ID
'Second dimen is the isotopes, it can handle up to 1,500 isotopes
'Third dimen holds the cross-section and yield data
'3rd dimen: 0=isotope name (U238) 1=isotope number(601480) ,x-section,
2=fission 3=
radiative capture ,Yields, 4=Th232 5=U233 6=U235 7=U238 8=Pu239 9=Pu241
10=Cm245 11=
Cf252)
Public xsec_yield(99, 1499, 11) As String
'List of information of each isotope imported from the file elements.csv
Public IsoInfo(999, 5)

117

'1st column: Location of the Origen Origen x-sections and yields for each
reactor
type
'2nd column: Location of the skeleton tape5.inp file
'3rd column: Location of the tape9.inp file
'The index matches the ID for each reactor type
Public xyfiles(99, 2) As String
'Temporary file to hold the moles of each isotope from the Origen tape6.out
file
Public TTape6(1499, 1) As String
2 D:\Programs\Inverse_Model3\Module1.vb
'Temporary file to hold the age isotopes so that Origen doesn't have to run
again
'after running it to find the reactor type
'First dimen. reactor type ID
'Second dimen. can handle up to 20 age isotopes
'Third dimen. 0 = isotope name , 1 = numerator (eg 922380) , 2 = denominator
(eg
922380)
'Third dimen. 3 = Origen calculated value, 4 = propagrated error
Public IsoAge(99, 19, 4)
'Age for each reactor, the index matches the reactor ID
Public FuelAge(99)
'Records the errors on the reactor type isotopes for the ratios report
'First Dimen matches the reactor ID
'Second Dimen can hold 100 reactor type isotopes
'Third Dimen: 0: Isotope Name, 1: Enter Ratio, 2: Calculated Ratio
Public RTypeErrors(99, 99, 2) As String
'Records the errors on the burnup monitors for the ratios report
'First Dimen can hold 100 burnup monitors
'Third Dimen: 0: Isotope Name, 1: Calculated Burnup
Public BurnErrors(99, 1) As String
'Records the errors on the age monitors for the ratios report
'First Dimen matches the reactor ID
'Second Dimen can hold 19 age monitors
'Third Dimen: 0: Isotope Name, 1: Calculated Age
Public AgeErrors(99, 1, 1) As String
'Tells the ratio window what reactor ID was selected
Public IDSelect(5) As Short
'Origen Iteration report
'The first row is the enrichment everything else is burnup
'The First column is the isotope ratio name
'The second column is the value
Public OIReport(99, 1) As String
'Keeps track of any errors that occur, so the programs exits instead of
continuing to
try an run
Public failed As Boolean = False
'A temporary table to keep track of the burnup after you run an origen
iteration
'1st Dimen = Reactor index
'2nd Dimen = can handle 99 Burnup isotopes
'3rd Dimen: 0 Column = monitor name, 1 Column = burnup value
Public IBurns(99, 99, 1) As String
Function RunOrigen()
Dim Origenlocation As String
Dim Exist As Boolean = False
Dim Exist2 As Boolean = False
Dim i1 As Integer
Dim drive1, argue1 As String
'Create bat file to run origen with the correct run path
drive1 = Application.StartupPath
drive1 = drive1.Substring(0, 2)

118

argue1 = drive1 & " && cd " & Application.StartupPath & "\data\Origen" & " &&
origen.exe && exit"
FileOpen(1, Application.StartupPath & "\data\Origen\runorigen.bat", OpenMode.
Output)
Print(1, argue1)
FileClose(1)
3 D:\Programs\Inverse_Model3\Module1.vb
'Run the origen executable
System.IO.File.Delete(Application.StartupPath & "\data\Origen\tape6.out")
Origenlocation = Application.StartupPath & "\data\Origen\runorigen.bat"
Exist = System.IO.File.Exists(Origenlocation)
If Exist = True Then
Dim myProcess As Process = New Process
myProcess.StartInfo.WindowStyle = ProcessWindowStyle.Hidden
myProcess.StartInfo.CreateNoWindow = True
'myProcess.Start(Application.StartupPath & "\data\Origen\runorigen.bat")
Shell(Application.StartupPath & "\data\Origen\runorigen.bat", AppWinStyle.
Hide, True, -1)
Exist2 = System.IO.File.Exists(Application.StartupPath & "\data\Origen\tape6.
out")
'Make the process wait until origen finishes running
i1 = 0
Do Until Exist2 = True
Exist2 = System.IO.File.Exists(Application.StartupPath & "\data\Origen\
tape6.out")
If i1 > 10000000 Then
Exist2 = True
MsgBox("Error running origen: can't find tape6.out")
End If
i1 += 1
Loop
Else
MsgBox("Can't find Origen.exe")
End If
End Function
Function OrigenPrep(ByVal Rindex As Short, ByVal burn1 As Single, ByVal enrich1
As
Single, ByVal decay As Single)
'Find the tape5.inp and tape9.inp files for the reactor type and copy into the
correct place
'And modify the tape5.inp according to the burnup and enrichment thus known
Dim PathT5, PathT9, TempS, TempT5 As String
Dim filechk1, filechk2, found1 As Boolean
Dim Burn5, Days(15), eU235, eU238, enrich2 As Single
Dim index1, length1, i1, i2, index2 As Short
Dim finished, found2 As Boolean
PathT5 = xyfiles(Rindex, 1)
PathT9 = xyfiles(Rindex, 2)
filechk1 = System.IO.File.Exists(PathT5)
filechk2 = System.IO.File.Exists(PathT9)
If filechk1 And filechk2 = True Then
finished = False
Do Until finished = True
Try
System.IO.File.Delete(Application.StartupPath & "\data\Origen\TAPE5.
INP")
System.IO.File.Delete(Application.StartupPath & "\data\Origen\TAPE9.
INP")
finished = True
Catch ex As Exception
End Try
Loop
System.IO.File.Copy(PathT5, Application.StartupPath & "\data\Origen\TAPE5.INP

119

")
System.IO.File.Copy(PathT9, Application.StartupPath & "\data\Origen\TAPE9.INP
")
FileOpen(1, Application.StartupPath & "\data\Origen\TAPE5.INP", OpenMode.
Input)
4 D:\Programs\Inverse_Model3\Module1.vb
'Find the burnup in the Tape5.inp file
found1 = False
Burn5 = 0
Do Until (EOF(1))
TempS = LineInput(1)
index1 = TempS.IndexOf("***1")
If index1 > 0 Then
Dim OpenT() As String = Split(TempS, " ")
length1 = OpenT.GetLength(0)
For i1 = 0 To length1 - 1
If OpenT(i1) = "***1" Then
For i2 = i1 + 1 To length1 - 1
If OpenT(i2) <> "" And found1 = False Then
found1 = True
Burn5 = Convert.ToSingle(OpenT(i2))
End If
Next
i2 = 0
End If
Next
End If
Loop
If found1 = False Or Burn5 = 0 Then
MsgBox("Error with skeleton TAPE5.INP file")
End If
'Calculate the days for each step
Days(0) = Math.Round((burn1 * 0.0666667) / Burn5, 1)
Days(1) = Math.Round((burn1 * 0.1333333) / Burn5, 1)
Days(2) = Math.Round((burn1 * 0.2) / Burn5, 1)
Days(3) = Math.Round((burn1 * 0.2666667) / Burn5, 1)
Days(4) = Math.Round((burn1 * 0.3333333) / Burn5, 1)
Days(5) = Math.Round((burn1 * 0.4) / Burn5, 1)
Days(6) = Math.Round((burn1 * 0.4666667) / Burn5, 1)
Days(7) = Math.Round((burn1 * 0.5333333) / Burn5, 1)
Days(8) = Math.Round((burn1 * 0.6) / Burn5, 1)
Days(9) = Math.Round((burn1 * 0.6666667) / Burn5, 1)
Days(10) = Math.Round((burn1 * 0.733333) / Burn5, 1)
Days(11) = Math.Round((burn1 * 0.8) / Burn5, 1)
Days(12) = Math.Round((burn1 * 0.8666667) / Burn5, 1)
Days(13) = Math.Round((burn1 * 0.9333333) / Burn5, 1)
Days(14) = Math.Round((burn1) / Burn5, 1)
Days(15) = Days(14) + Math.Round(decay, 1)
'Calculate the enrichment in atom percent
enrich2 = Math.Abs(enrich1) / 100
'eU235 = Math.Abs(enrich1) * 10000
'eU238 = 1000000 * (1 - Math.Abs(enrich1) / 100)
'Correct for the change from atom to weight percent enrichment
eU235 = -1000000.0 * 235 * (enrich2 / (3 * enrich2 - 238))
eU238 = 1000000.0 * 238 * ((enrich2 - 1) / (enrich2 - 238))
'Add the days to the Tape5.inp file and enrichment.
FileClose(1)
FileOpen(1, Application.StartupPath & "\data\Origen\TAPE5.INP", OpenMode.
Input)
TempT5 = ""
found2 = False
Do Until (EOF(1))
TempS = LineInput(1)

120

index2 = TempS.IndexOf("***1")
If index2 > 0 Then
found2 = True
End If
TempS = TempS.Replace("***1 ", Days(0) & " ")
TempS = TempS.Replace("***2", Days(1))
5 D:\Programs\Inverse_Model3\Module1.vb
TempS = TempS.Replace("***3", Days(2))
TempS = TempS.Replace("***4", Days(3))
TempS = TempS.Replace("***5", Days(4))
TempS = TempS.Replace("***6", Days(5))
TempS = TempS.Replace("***7", Days(6))
TempS = TempS.Replace("***8", Days(7))
TempS = TempS.Replace("***9", Days(8))
TempS = TempS.Replace("***10", Days(9))
TempS = TempS.Replace("***11", Days(10))
TempS = TempS.Replace("***12", Days(11))
TempS = TempS.Replace("***13", Days(12))
TempS = TempS.Replace("***14", Days(13))
TempS = TempS.Replace("***15", Days(14))
TempS = TempS.Replace("***16", Days(15))
TempS = TempS.Replace("**922350**", eU235)
TempS = TempS.Replace("**922380**", eU238)
TempT5 += TempS & CR
Loop
If found2 = False Then
MsgBox("Problem with skeleton tape5.inp file")
End If
FileClose(1)
'Write the results to the Tape5.inp file
FileOpen(1, Application.StartupPath & "\data\Origen\TAPE5.INP", OpenMode.
Output)
PrintLine(1, TempT5)
FileClose(1)
Else
MsgBox("Can't find reactor index " & Rindex & " Tape5 or Tape9 file")
End If
End Function
Function ParseTape6()
'Opens the Tape6.out file after Origen has been run and puts the moles of each
isotope into the TTape6 file
Dim found1, found2, done1 As Boolean
Dim i1, i2 As Integer
Dim TempS, elem1, iso1 As String
Dim index1, index2, length2, match1, match2 As Short
TTape6.Clear(TTape6, 0, 3000)
found1 = False
found2 = False
done1 = False
i2 = 0
found1 = System.IO.File.Exists(Application.StartupPath &
"\data\Origen\TAPE6.OUT"
)
If found1 = True Then
i1 = 0
Do Until done1 = True
Try
FileOpen(1, Application.StartupPath & "\data\Origen\TAPE5.INP",
OpenMode.Append)
done1 = True
Catch ex As Exception
i1 += 1
done1 = False

121

If i1 > 100000 Then
done1 = True
MsgBox("Origen has hung and hasn't release the output file.")
End If
End Try
Loop
FileClose(1)
done1 = False
6 D:\Programs\Inverse_Model3\Module1.vb
i1 = 0
Do Until done1 = True
Try
FileOpen(1, Application.StartupPath & "\data\Origen\TAPE6.OUT",
OpenMode.Input)
done1 = True
Catch ex As Exception
i1 += 1
done1 = False
If i1 > 100000 Then
done1 = True
MsgBox("Tape6.out can't be opened")
End If
End Try
Loop
done1 = False
Do Until (EOF(1)) Or done1 = True
Do Until (EOF(1)) Or found2 = True
TempS = LineInput(1)
index1 = TempS.IndexOf("ACTINIDES+DAUGHTERS")
If index1 > 0 Then found2 = True
Loop
If found2 = True And done1 = False Then
If TempS.IndexOf("NEUTRON SOURCE") > 0 Then done1 = True
TempS = LineInput(1)
index1 = TempS.IndexOf("POWER")
If index1 < 0 Then index1 = TempS.IndexOf("ORIGEN")
If index1 < 0 Then index1 = TempS.IndexOf("TOTAL")
If index1 < 0 Then index1 = TempS.IndexOf("AP+FP")
If index1 < 0 Then index1 = TempS.IndexOf("ACT+FP")
index2 = -1
If index1 < 0 And TempS.Length > 7 Then
index2 = TempS.IndexOf("+", 7)
If index2 < 0 Then index2 = TempS.IndexOf("-")
End If
If index2 > 0 And index2 < 23 Then
length2 = TempS.Length
TTape6(i2, 0) = TempS.Substring(0, 7)
TTape6(i2, 0) = TTape6(i2, 0).TrimEnd
TTape6(i2, 1) = TempS.Substring(7, length2 - 7)
TTape6(i2, 1) = TTape6(i2, 1).Trim
i2 += 1
End If
End If
Loop
FileClose(1)
'Changes the first column from a isotope format of U238M to 922381
Dim Temp3, Temp4 As String
For i1 = 0 To 1499
If TTape6(i1, 0) <> Nothing Then
elem1 = TTape6(i1, 0).Substring(0, 2)
elem1 = elem1.Trim
iso1 = TTape6(i1, 0).Substring(2, 3)
iso1 = iso1.Trim

122

For i2 = 0 To 999
Temp3 = IsoInfo(i2, 0)
Temp4 = IsoInfo(i2, 2)
match1 = StrComp(elem1, Temp3, CompareMethod.Text)
match2 = StrComp(iso1, Temp4, CompareMethod.Text)
If match1 = 0 And match2 = 0 Then
If IsoInfo(i2, 2).Length = 1 Then
TempS = "00" & IsoInfo(i2, 2)
ElseIf IsoInfo(i2, 2).Length = 2 Then
TempS = "0" & IsoInfo(i2, 2)
7 D:\Programs\Inverse_Model3\Module1.vb
Else
TempS = IsoInfo(i2, 2)
End If
'If TTape6(i1, 0).Length = 6 Then
If TTape6(i1, 0).IndexOf("M", 3) > 0 Then
TTape6(i1, 0) = IsoInfo(i2, 1) & TempS & "1"
Else
TTape6(i1, 0) = IsoInfo(i2, 1) & TempS & "0"
End If
End If
Next
End If
Next
Else
MsgBox("TAPE6.OUT not found")
End If
End Function
Function Find_Rat(ByVal Ratio1 As String, ByRef numRatio As Single, ByRef
numError As
Single)
'Function that will look up a needed ratio in the req_ratios table
Dim j1 As Short
Dim found1 As Boolean = False
j1 = 0
Find_Rat = True
Do Until found1 = True Or j1 > 198
If Req_ratios(j1, 0) <> Nothing Then
If Req_ratios(j1, 0).ToUpper = Ratio1.ToUpper Then
numRatio = Convert.ToSingle(Req_ratios(j1, 1))
numError = Convert.ToSingle(Req_ratios(j1, 2))
found1 = True
End If
End If
j1 += 1
Loop
If found1 = False Then
failed = True
MsgBox("Failed to find value for needed ratio")
End If
End Function
Function MatchRType(ByVal Rindex As Short) As Single
'Takes the info from the tape6.out file and determines how close it matches the
entered data for the reactor type
'Added on afterwards to tally age isotopes for calculating the age later on so
we
don't have to run Origen twice
'rtypelist Table to temporarily hold the reactor type isotopes from DV1
'column 0: Isotope Ratio (name)
'column 1: Numerator
'column 2: Denominator
'column 3: entered measured data by user
'column 4: entered measured error by user

123

'column 5: ratio calculated from Origen
Dim rtypelist(99, 5)
Dim i1, i2, i3, length1 As Short
Dim Found1, Found2 As Boolean
Dim numer1, denom1 As Single
Dim warning As Boolean = False
'Pull a list from the database of all burnup monitors
length1 = DV1.Count()
i2 = 0
i3 = 0
For i1 = 0 To length1 - 1
8 D:\Programs\Inverse_Model3\Module1.vb
If DV1.Item(i1).Item("GroupID") = 2 Then
rtypelist(i2, 0) = DV1.Item(i1).Item("Isotope Ratio")
rtypelist(i2, 1) = DV1.Item(i1).Item("Numerator")
rtypelist(i2, 2) = DV1.Item(i1).Item("Denominator")
i2 += 1
End If
Next
'Check that list against the user entered data
For i1 = 0 To i2 - 1
Found1 = False
i3 = 0
Do Until Found1 = True
If rtypelist(i1, 0) = Req_ratios(i3, 0) Then
rtypelist(i1, 3) = Req_ratios(i3, 1)
rtypelist(i1, 4) = Req_ratios(i3, 2)
Found1 = True
End If
If i3 = 199 Then Found1 = True
i3 += 1
Loop
Next
'Calculates the ratio from the tape6.out file for the burnup
warning = False
For i1 = 0 To 99
If rtypelist(i1, 3) <> Nothing Then
Found1 = False
Found2 = False
For i2 = 0 To 1499
If rtypelist(i1, 1) = TTape6(i2, 0) Then
numer1 = Convert.ToSingle(TTape6(i2, 1))
Found1 = True
End If
If rtypelist(i1, 2) = TTape6(i2, 0) Then
denom1 = Convert.ToSingle(TTape6(i2, 1))
Found2 = True
End If
Next
If Found1 = True And Found2 = True Then
rtypelist(i1, 5) = numer1 / denom1
Else
If warning = False Then
MsgBox("reactor type ratio not found in Origen output or elements
.csv")
warning = True
End If
End If
End If
Next
'Calculates how far the measured values differ from the origen calculated
values
Dim measure1, calc1 As Double

124

Dim errors(100) As Double
i2 = 0
errors(100) = 0
For i1 = 0 To 99
If rtypelist(i1, 3) <> Nothing Then
measure1 = rtypelist(i1, 3)
If measure1 <= 0 Then measure1 = 0.0000000000001
calc1 = rtypelist(i1, 5)
errors(i2) = Math.Abs(measure1 - calc1) / measure1
errors(i2) = Math.Exp(-errors(i2))
errors(100) += errors(i2)
i2 += 1
End If
9 D:\Programs\Inverse_Model3\Module1.vb
Next
errors(100) = errors(100) / i2
MatchRType = errors(100) * 100
For i1 = 0 To 99
If rtypelist(i1, 0) <> Nothing Then
RTypeErrors(Rindex, i1, 0) = rtypelist(i1, 0)
RTypeErrors(Rindex, i1, 1) = rtypelist(i1, 3)
RTypeErrors(Rindex, i1, 2) = rtypelist(i1, 5)
End If
Next
End Function
Function ReactType(ByVal OIon As Boolean)
Dim i1, i2, i3, i4 As Short
Dim burn1 As Single
i2 = 0
For i1 = 0 To 99
If xyfiles(i1, 0) <> Nothing Then
If OIon = True Then
i4 = 0
For i3 = 0 To 99
burn1 += IBurns(i1, i3, 1)
i4 += 1
Next
burn1 = burn1 / i4
BurnupTable(0, 1) = burn1
End If
OrigenPrep(i1, BurnupTable(0, 1), EnrichTable(i1, 0), 183)
RunOrigen()
ParseTape6()
RTypeConf(i2, 0) = i1
RTypeConf(i2, 1) = MatchRType(i1)
i2 += 1
End If
Next
End Function
Function GetFuelAge(ByVal OIon As Boolean)
'Calculates the fuel age for each reactor type
Dim AgeList(19), TH, No, NT, error1, sum1, numer1, denom1 As Single
Dim err1, err2, terr As Single
Dim i1, i2, i3, length1, Rindex, rtypes As Short
Dim AIso As String
Dim found1, found2, found3 As Boolean
Dim HalfL(19, 1) As Single
Dim AgeIso1, AgeIso2 As Integer
'Loop that will run Origen for each reactor type to collect isotope info at
time
of discharge
For Rindex = 0 To 99
If xyfiles(Rindex, 0) <> Nothing Then

125

'Pull a list from the database of all burnup monitors
length1 = DV1.Count()
i2 = 0
i3 = 0
For i1 = 0 To length1 - 1
'Pull the list of age monitors
If DV1.Item(i1).Item("GroupID") = 4 Then
IsoAge(Rindex, i3, 0) = DV1.Item(i1).Item("Isotope Ratio")
IsoAge(Rindex, i3, 1) = DV1.Item(i1).Item("Numerator")
IsoAge(Rindex, i3, 2) = DV1.Item(i1).Item("Denominator")
i3 += 1
10 D:\Programs\Inverse_Model3\Module1.vb
If i3 > 19 Then
i3 = 0
MsgBox("Error: only 19 age monitors are allowed")
End If
End If
Next
'Check that list against user entered data. If there is no match delete
the info
For i1 = 0 To i3 - 1
If IsoAge(Rindex, i1, 0) <> Nothing Then
found3 = False
For i2 = 0 To 199
If IsoAge(Rindex, i1, 0) = Req_ratios(i2, 0) Then
found3 = True
End If
Next
If found3 = False Then
For i2 = 0 To 2
IsoAge(Rindex, i1, i2) = Nothing
Next
End If
End If
Next
i2 = 0
Dim Burn23, Enrich23 As String
Dim i11, i12 As Short
Dim Burn1 As Single
If OIon = True Then
i12 = 0
For i11 = 0 To 99
Burn1 += IBurns(Rindex, i11, 1)
i12 += 1
Next
Burn1 = Burn1 / i12
BurnupTable(0, 1) = Burn1
End If
Burn23 = BurnupTable(0, 1)
Enrich23 = EnrichTable(Rindex, 0)
OrigenPrep(Rindex, BurnupTable(0, 1), EnrichTable(Rindex, 0), 30)
RunOrigen()
ParseTape6()
'Calculates the ratio from the tape6.out file for the age monitors
For i1 = 0 To 19
If IsoAge(Rindex, i1, 0) <> Nothing Then
found1 = False
found2 = False
For i2 = 0 To 1499
If IsoAge(Rindex, i1, 1) = TTape6(i2, 0) Then
numer1 = Convert.ToSingle(TTape6(i2, 1))
found1 = True
End If

126

If IsoAge(Rindex, i1, 2) = TTape6(i2, 0) Then
denom1 = Convert.ToSingle(TTape6(i2, 1))
found2 = True
End If
Next
If found1 = True And found2 = True Then
IsoAge(Rindex, i1, 3) = numer1 / denom1
Else
MsgBox("Age monitor isotope not found in Origen output or
elements.csv")
End If
11 D:\Programs\Inverse_Model3\Module1.vb
End If
Next
End If
Next
'Calculates an average age from each of the isotopes for each reactor
For i1 = 0 To 99
i3 = 0
sum1 = 0
For i2 = 0 To 19
If IsoAge(i1, i2, 0) <> Nothing Then
AIso = IsoAge(i1, i2, 0)
TH = GetHalfLife(IsoAge(i1, i2, 1))
HalfL(i2, 1) = TH
HalfL(i2, 0) = IsoAge(i1, i2, 1)
No = IsoAge(i1, i2, 3)
Find_Rat(IsoAge(i1, i2, 0), NT, error1)
AgeList(i3) = -TH / Math.Log(2) * Math.Log(NT / No)
sum1 += AgeList(i3)
i3 += 1
End If
Next
If i3 > 0 Then
FuelAge(i1) = sum1 / i3
End If
Next
sum1 = 0
i3 = 0
For i1 = 0 To 99
If FuelAge(i1) <> Nothing Then
sum1 += FuelAge(i1)
i3 += 1
End If
Next
If i3 > 0 Then
sum1 = sum1 / i3
End If
If sum1 < 1 Then sum1 = 1
'Find the isotopes that have a halflife closest to the average
err1 = 100000000
err2 = 100000000
For i1 = 0 To 19
If HalfL(i1, 1) <> 0 Then
terr = Math.Abs(sum1 - HalfL(i1, 1))
If terr < err1 Then
AgeIso1 = HalfL(i1, 0)
err1 = terr
End If
End If
Next
For i1 = 0 To 19
If HalfL(i1, 1) <> 0 Then

127

terr = Math.Abs(sum1 - HalfL(i1, 1))
If terr < err2 And HalfL(i1, 0) <> AgeIso1 Then
AgeIso2 = HalfL(i1, 0)
err2 = terr
End If
End If
Next
'Calculates a preferential age from the isotopes that have the closest halflife
to the average
For i1 = 0 To 19
12 D:\Programs\Inverse_Model3\Module1.vb
AgeList(i1) = Nothing
Next
For i1 = 0 To 99
If xyfiles(i1, 0) <> Nothing Then
i3 = 0
sum1 = 0
For i2 = 0 To 19
If IsoAge(i1, i2, 1) = AgeIso1 Or IsoAge(i1, i2, 1) = AgeIso2 Then
AIso = IsoAge(i1, i2, 0)
TH = GetHalfLife(IsoAge(i1, i2, 1))
No = IsoAge(i1, i2, 3)
Find_Rat(IsoAge(i1, i2, 0), NT, error1)
AgeList(i3) = -TH / Math.Log(2) * Math.Log(NT / No)
sum1 += AgeList(i3)
AgeErrors(i1, i3, 0) = IsoAge(i1, i2, 0)
AgeErrors(i1, i3, 1) = AgeList(i3)
i3 += 1
End If
Next
If i3 > 0 Then
FuelAge(i1) = sum1 / i3
End If
End If
Next
i1 = 0
End Function
Function GetHalfLife(ByVal isotope1 As Integer) As Single
'Finds the halflife for an isotope in the IsoInfo Table
Dim Anum, Mnum, Meta As Short
Dim i1, i2 As Short
Dim TempS As String
If isotope1 > 99999 Then
TempS = Convert.ToString(isotope1)
Anum = Convert.ToInt16(TempS.Substring(0, 2))
Mnum = Convert.ToInt16(TempS.Substring(2, 3))
Meta = Convert.ToInt16(TempS.Substring(5, 1))
ElseIf isotope1 < 99999 And isotope1 > 9999 Then
TempS = Convert.ToString(isotope1)
Anum = Convert.ToInt16(TempS.Substring(0, 1))
Mnum = Convert.ToInt16(TempS.Substring(1, 3))
Meta = Convert.ToInt16(TempS.Substring(4, 1))
Else
MsgBox("Can't get half life of Isotope " & isotope1)
End If
For i1 = 0 To 999
If Anum = IsoInfo(i1, 1) And Mnum = IsoInfo(i1, 2) And Meta = IsoInfo(i1, 3)
Then
GetHalfLife = IsoInfo(i1, 4) / 365.24
End If
Next
End Function
End Module

128

D:\Programs\Inverse_Model3\Report.vb
Imports System
Imports System.Globalization
Public Class Report
Inherits System.Windows.Forms.Form
Windows Form Designer generated code
Public Iterated As Boolean = False
Function loadreport()
Dim i1, i2, index1, index2, index3, index4, index5, length1 As Short
Dim er1, er2, er3, er4, er5, compare1, enrich1(4) As Single
' Displays a value with the default separator (",").
Dim nfi As NumberFormatInfo = New CultureInfo("en-US", False).NumberFormat
tbx_error.Visible = False
'Load the RTypeConf table to the Report1 table
i2 = 0
For i1 = 0 To 99
If RTypeConf(i1, 1) <> Nothing Then
Report1(i2, 3) = RTypeConf(i1, 1)
Report1(i2, 0) = RTypeConf(i1, 0)
i2 += 1
End If
Next
'Determine the top 5 Reactors with the highest confidence level
er1 = 0
er2 = 0
er3 = 0
er4 = 0
er5 = 0
For i1 = 0 To 99
compare1 = Convert.ToSingle(Report1(i1, 3))
If compare1 > er1 Then
er1 = Report1(i1, 3)
index1 = i1
End If
Next
For i1 = 0 To 99
compare1 = Convert.ToSingle(Report1(i1, 3))
If compare1 > er2 And compare1 < er1 Then
er2 = Report1(i1, 3)
index2 = i1
End If
Next
For i1 = 0 To 99
compare1 = Convert.ToSingle(Report1(i1, 3))
If compare1 > er3 And compare1 < er2 Then
er3 = Report1(i1, 3)
index3 = i1
End If
Next
For i1 = 0 To 99
compare1 = Convert.ToSingle(Report1(i1, 3))
If compare1 > er4 And compare1 < er3 Then
er4 = Report1(i1, 3)
index4 = i1
End If
Next
For i1 = 0 To 99
compare1 = Convert.ToSingle(Report1(i1, 3))
If compare1 > er5 And compare1 < er4 Then
er5 = Report1(i1, 3)
2 D:\Programs\Inverse_Model3\Report.vb

129

index5 = i1
End If
Next
'Match the reactor ID with the name from the access database
length1 = DV3.Count()
For i1 = 0 To 99
For i2 = 0 To length1 - 1
If Report1(i1, 0) = DV3.Item(i2).Item("ID") Then
Report1(i1, 1) = DV3.Item(i2).Item("Reactor Type")
End If
Next
Next
'Write the Age to the Report table
For i1 = 0 To 19
For i2 = 0 To 99
If Report1(i2, 0) = i1 Then
Report1(i2, 2) = FuelAge(i1)
End If
Next
Next
IDSelect(0) = Report1(index1, 0)
IDSelect(1) = Report1(index2, 0)
IDSelect(2) = Report1(index3, 0)
IDSelect(3) = Report1(index4, 0)
IDSelect(4) = Report1(index5, 0)
'Write the report1 table to the textboxes
Try
tbx_rtype1.Text = Report1(index1, 1)
tbx_rtype2.Text = Report1(index2, 1)
tbx_rtype3.Text = Report1(index3, 1)
tbx_rtype4.Text = Report1(index4, 1)
tbx_rtype5.Text = Report1(index5, 1)
tbx_burn1.Text = BurnupTable(0, 1).ToString("N", nfi)
tbx_age1.Text = Report1(index1, 2)
tbx_age2.Text = Report1(index2, 2)
tbx_age3.Text = Report1(index3, 2)
tbx_age4.Text = Report1(index4, 2)
tbx_age5.Text = Report1(index5, 2)
tbx_enrich1.Text = EnrichTable(0, 1)
tbx_error1.Text = Report1(index1, 3)
tbx_error2.Text = Report1(index2, 3)
tbx_error3.Text = Report1(index3, 3)
tbx_error4.Text = Report1(index4, 3)
tbx_error5.Text = Report1(index5, 3)
tbx_enrich1.Text = EnrichTable(Report1(index1, 0), 0)
tbx_enrich2.Text = EnrichTable(Report1(index2, 0), 0)
tbx_enrich3.Text = EnrichTable(Report1(index3, 0), 0)
tbx_enrich4.Text = EnrichTable(Report1(index4, 0), 0)
tbx_enrich5.Text = EnrichTable(Report1(index5, 0), 0)
Catch ex As Exception
End Try
enrich1(0) = EnrichTable(Report1(index1, 0), 0)
enrich1(1) = EnrichTable(Report1(index2, 0), 0)
enrich1(2) = EnrichTable(Report1(index3, 0), 0)
enrich1(3) = EnrichTable(Report1(index4, 0), 0)
enrich1(4) = EnrichTable(Report1(index5, 0), 0)
For i1 = 0 To 4
If enrich1(i1) > 10 Then
tbx_error.Visible = True
tbx_error.Text = "Warning! On high enrichments Pu240 can cause " & _
"significant errors when determining the reactor type. Please rerun " &
3 D:\Programs\Inverse_Model3\Report.vb
_

130

" this scenario after removing Pu240 from the measurements"
End If
Next
rbn_rtype1.Checked = True
If Iterated = True Then
SelBurn()
End If
End Function
Function OIterate()
Dim enrich1, burn1 As Single
Dim RI As Short
OIReport.Clear(OIReport, 0, 200)
RI = IDSelect(5)
burn1 = BurnupTable(0, 1)
tbx_prog.Visible = True
progress(0)
Refresh()
Application.DoEvents()
enrich1 = EnrichTable(IDSelect(5), 0)
enrich1 = OEnrich(RI, burn1, enrich1)
progress(20)
Refresh()
burn1 = OBurnup(RI, enrich1, burn1)
progress(40)
Refresh()
enrich1 = OEnrich(RI, burn1, enrich1)
progress(60)
Refresh()
burn1 = OBurnup(RI, enrich1, burn1)
progress(80)
Refresh()
enrich1 = OEnrich(RI, burn1, enrich1)
tbx_prog.Visible = False
End Function
Function progress(ByVal perc As Short)
tbx_prog.Text = "Origen Iteration Progress"
tbx_prog.Text += CR & "Progress = " & perc & " %"
Refresh()
End Function
Function OEnrich(ByVal Rindex As Short, ByVal Burn1 As Single, ByVal Enrich0 As
Single) As Single
'Find the enrichment by iterating Origen
Dim blank, i1, i2, enrich1, enrich2, error1 As Single
Dim numer1, denom1, ratio1, ratio2 As Single
Dim converge As Boolean
blank = 0
enrich1 = Enrich0
If enrich1 < 0 Then enrich1 = 1
Find_Rat("U235/U238", ratio1, blank)
i2 = 0
converge = False
'Iterate Origen until it converges
Do Until converge = True Or i2 = 10
OrigenPrep(Rindex, Burn1, enrich1, 90)
RunOrigen()
4 D:\Programs\Inverse_Model3\Report.vb
ParseTape6()
i1 = 0
For i1 = 0 To 1499
If Convert.ToString(922350) = TTape6(i1, 0) Then
numer1 = TTape6(i1, 1)
End If
If Convert.ToString(922380) = TTape6(i1, 0) Then

131

denom1 = TTape6(i1, 1)
End If
Next
ratio2 = numer1 / denom1
'Calculate the error
error1 = Math.Abs(ratio1 - ratio2) / ratio1
If error1 > 0.05 Then
If ratio1 > ratio2 Then
enrich1 = enrich1 * (error1 + 1)
Else
enrich1 = enrich1 * Math.Exp(-error1 / 1.5)
End If
ElseIf error1 < 0.05 And error1 > 0.0005 Then
If ratio1 > ratio2 Then
enrich1 = enrich1 * (error1 / 2 + 1)
Else
enrich1 = enrich1 * (1 - error1 / 2)
End If
Else
converge = True
End If
i2 += 1
Loop
'Write the result to the table
OIReport(0, 1) = enrich1
OEnrich = enrich1
i2 = 0
End Function
Function OBurnup(ByVal Rindex As Short, ByVal Enrich0 As Single, ByVal Burn0 As
Single) As Single
'Find the burnup by iterating Origen
Dim burn40, length1, numer1, denom1, ratio1, ratio2, enrich1 As Single
Dim blank As Single
Dim i1, i2, i3, i4 As Short
Dim iso1, iso2 As Integer
Dim Converge, flip As Boolean
Dim rname, error1 As String
blank = 0
enrich1 = Enrich0
If enrich1 < 0 Then enrich1 = 1
i4 = 0
burn40 = Burn0
'Run through each burnup monitor
For i3 = 0 To 99
If BurnErrors(i3, 0) <> Nothing Then
rname = BurnErrors(i3, 0)
i2 = 0
Converge = False
flip = False
'Iterate Origen until it converges
Do Until Converge = True Or i2 = 10
OrigenPrep(Rindex, burn40, enrich1, 90)
RunOrigen()
ParseTape6()
length1 = DV1.Count()
5 D:\Programs\Inverse_Model3\Report.vb
i1 = 0
'Find the ratios numerator and denominator
For i1 = 0 To length1 - 1
If DV1.Item(i1).Item("Isotope Ratio") = rname Then
iso1 = DV1.Item(i1).Item("Numerator")
iso2 = DV1.Item(i1).Item("Denominator")
End If

132

Next
i1 = 0
For i1 = 0 To 1499
If Convert.ToString(iso1) = TTape6(i1, 0) Then
numer1 = TTape6(i1, 1)
End If
If Convert.ToString(iso2) = TTape6(i1, 0) Then
denom1 = TTape6(i1, 1)
End If
Next
ratio2 = numer1 / denom1
'Calculate the error
Find_Rat(rname, ratio1, blank)
error1 = Math.Abs(ratio1 - ratio2) / ratio1
If error1 > 0.01 Then
If ratio1 > ratio2 Then
burn40 = burn40 * (error1 + 1)
Else
burn40 = burn40 * Math.Exp(-error1 / 1.5)
End If
ElseIf error1 < 0.01 And error1 > 0.0005 Then
If ratio1 > ratio2 Then
burn40 = burn40 * (error1 + 1)
Else
burn40 = burn40 * (1 - error1)
End If
Else
Converge = True
End If
i2 += 1
Loop
i4 += 1
'Write the result to the table
OIReport(i4, 0) = rname
OIReport(i4, 1) = burn40
OBurnup += burn40
End If
Next
OBurnup = OBurnup / i4
i2 = 0
End Function
Function FillR(ByVal Rindex As Short)
Dim i1 As Short
For i1 = 1 To 99
If OIReport(i1, 0) <> Nothing Then
IBurns(Rindex, i1 - 1, 0) = OIReport(i1, 0)
IBurns(Rindex, i1 - 1, 1) = OIReport(i1, 1)
End If
Next
EnrichTable(Rindex, 0) = OIReport(0, 1)
End Function
Function OIAll()
6 D:\Programs\Inverse_Model3\Report.vb
rbn_rtype1.Checked = True
Refresh()
IDSelect(5) = IDSelect(0)
OIterate()
FillR(IDSelect(5))
rbn_rtype2.Checked = True
Refresh()
IDSelect(5) = IDSelect(1)
OIterate()
FillR(IDSelect(5))

133

rbn_rtype3.Checked = True
Refresh()
IDSelect(5) = IDSelect(2)
OIterate()
FillR(IDSelect(5))
rbn_rtype4.Checked = True
Refresh()
IDSelect(5) = IDSelect(3)
OIterate()
FillR(IDSelect(5))
rbn_rtype5.Checked = True
Refresh()
IDSelect(5) = IDSelect(4)
OIterate()
tbx_prog.Visible = True
Refresh()
FillR(IDSelect(5))
progress(90)
Refresh()
ReactType(Iterated)
GetFuelAge(Iterated)
loadreport()
tbx_prog.Visible = False
Iterated = True
End Function
Function SelBurn()
'I initally set it up to only have one burnup for every reactor
'With the new option of iterating origen there is a different burnup
'for every reactor, this changes the burnup numbers in the tables as
'the different reactors are selected. So everything functions properly
Dim Rindex, i1, i2 As Short
Dim burn1 As Single
Dim nfi As NumberFormatInfo = New CultureInfo("en-US", False).NumberFormat
If rbn_rtype1.Checked = True Then
Rindex = IDSelect(0)
ElseIf rbn_rtype2.Checked = True Then
Rindex = IDSelect(1)
ElseIf rbn_rtype3.Checked = True Then
Rindex = IDSelect(2)
ElseIf rbn_rtype4.Checked = True Then
Rindex = IDSelect(3)
ElseIf rbn_rtype5.Checked = True Then
Rindex = IDSelect(4)
End If
BurnErrors.Clear(BurnErrors, 0, 200)
i2 = 0
For i1 = 0 To 99
If IBurns(Rindex, i1, 0) <> Nothing Then
burn1 += Convert.ToSingle(IBurns(Rindex, i1, 1))
BurnErrors(i2, 0) = IBurns(Rindex, i1, 0)
7 D:\Programs\Inverse_Model3\Report.vb
BurnErrors(i2, 1) = IBurns(Rindex, i1, 1)
i2 += 1
End If
Next
burn1 = burn1 / i2
tbx_burn1.Text = burn1.ToString("N", nfi)
BurnupTable(0, 1) = burn1
End Function
Private Sub ToolBar1_ButtonClick(ByVal sender As System.Object, ByVal e As
System.
Windows.Forms.ToolBarButtonClickEventArgs) Handles ToolBar1.ButtonClick
Select Case ToolBar1.Buttons.IndexOf(e.Button)

134

Case 0
Dim frminput As New Ratios
If rbn_rtype1.Checked = True Then
IDSelect(5) = IDSelect(0)
ElseIf rbn_rtype2.Checked = True Then
IDSelect(5) = IDSelect(1)
ElseIf rbn_rtype3.Checked = True Then
IDSelect(5) = IDSelect(2)
ElseIf rbn_rtype4.Checked = True Then
IDSelect(5) = IDSelect(3)
ElseIf rbn_rtype5.Checked = True Then
IDSelect(5) = IDSelect(4)
End If
frminput.ShowDialog()
Case 1
Case 2
Case 3
Dim frmOIR As New FrmOIReport
If rbn_rtype1.Checked = True Then
IDSelect(5) = IDSelect(0)
ElseIf rbn_rtype2.Checked = True Then
IDSelect(5) = IDSelect(1)
ElseIf rbn_rtype3.Checked = True Then
IDSelect(5) = IDSelect(2)
ElseIf rbn_rtype4.Checked = True Then
IDSelect(5) = IDSelect(3)
ElseIf rbn_rtype5.Checked = True Then
IDSelect(5) = IDSelect(4)
End If
OIReport.Clear(OIReport, 0, 200)
OIterate()
frmOIR.ShowDialog()
Case 4
IBurns.Clear(IBurns, 0, 20000)
OIAll()
Case 5
End Select
End Sub
Private Sub Report_Load(ByVal sender As System.Object, ByVal e As
System.EventArgs)
Handles MyBase.Load
loadreport()
End Sub
Private Sub rbn_rtype1_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles rbn_rtype1.CheckedChanged
If Iterated = True Then
SelBurn()
End If
End Sub
8 D:\Programs\Inverse_Model3\Report.vb
Private Sub rbn_rtype2_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles rbn_rtype2.CheckedChanged
If Iterated = True Then
SelBurn()
End If
End Sub
Private Sub rbn_rtype3_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles rbn_rtype3.CheckedChanged
If Iterated = True Then
SelBurn()
End If
End Sub
Private Sub rbn_rtype4_CheckedChanged(ByVal sender As System.Object, ByVal e As

135

System.EventArgs) Handles rbn_rtype4.CheckedChanged
If Iterated = True Then
SelBurn()
End If
End Sub
Private Sub rbn_rtype5_CheckedChanged(ByVal sender As System.Object, ByVal e As
System.EventArgs) Handles rbn_rtype5.CheckedChanged
If Iterated = True Then
SelBurn()
End If
End Sub
End Class

136

VITA

Mark R. Scott graduated from Brigham Young University in August 2003 with a

Bachelor of Science in Physics. After graduation he accepted employment with N-3 at

Los Alamos National Laboratory. Future contact can be made by e-mail at

marks@scophoto.com or by mail forwarded through the Department of Nuclear

Engineering, c/o Dr. William Charlton, Texas A&M University, College Station, TX

77843-3133.

This report has been reproduced directly from the
best available copy. It is available electronically
on the Web (http://www.doe.gov/bridge).

Copies are available for sale to U.S. Department
of Energy employees and contractors from:
 Office of Scientific and Technical Information
 P.O. Box 62
 Oak Ridge, TN 37831
 (865) 576-8401

Copies are available for sale to the public from:
 National Technical Information Service
 U.S. Department of Commerce
 5285 Port Royal Road
 Springfield, VA 22161
 (800) 553-6847

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	VITA
	LIST OF FIGURES
	Fig. 1. Radioactivity versus decay time for PWR spent fuel and a large 60Co source.
	Fig. 2. Overview of RDD material attribution project.
	Fig 3. 235U fission yield curve versus isotope mass for a U.S. PWR.
	Fig. 4. Comparison of enrichment versus burnup, between a theoretical fuel rod that only fissions 235U and a true fuel rod.
	Fig. 5. The reactions that are considered in the enrichment calculation.
	Fig. 6. Flow of forward model iteration scheme for improving the enrichment calculation.
	Fig. 7. The production of 132Ba with respect to 238U for different reactor types.
	Fig. 8. The production of 132Ba with respect to 148Nd for different reactor types.
	Fig. 9. Buildup of 134Cs in a PWR reactor and its decay in the spent fuel pool.
	Fig. 10. Comparison of the production of shutdown monitor 147Sm during and after being irradiated.
	Fig. 11. Production of 147Sm in a PWR with two different power histories.
	Fig. 12. The change in atom density of 147Sm versus shutdown time.
	Fig. 13. Atom ratio of 148Nd to 238U for several reactor types.
	Fig. 14. Atom ratio of 100Mo to 238U for several reactor types.
	Fig. 15. Overview of the data flow within NEMASYS.
	Fig. 16. Entering measured values into NEMASYS.
	Fig. 17. Meeting the requirements for NEMASYS to process the data.
	Fig. 18. Viewing the descriptions of the categories and individual nuclides.
	Fig. 19. The NEMASYS reactor report.
	Fig. 20. NEMASYS individual ratio report for each reactor type.

	LIST OF TABLES
	TABLE I Initial Uranium Atom Density per 238U Atom Density Calculation After Using an Iteration Scheme with Burnup
	TABLE II Enrichment Calculations Before and After Using an Iteration Scheme with ORIGEN
	TABLE III List of All Isotopes That Are Produced in a Reactor with a Half-life Between 1 and 30 Years
	TABLE IV Suggested Monitor Nuclides
	TABLE V Power History of Three Assemblies from the Mihama-3 Unit
	TABLE VI Monitors Used for Attribution of the Mihama-3 Unit
	TABLE VII NEMASYS Burnup Results for Mihama-3
	TABLE VIII Age Prediction Results for Mihama-3.

	CHAPTER I INTRODUCTION
	A. ATTRIBUTION OF RADIOLOGICAL DISPERSAL DEVICES
	B. PROJECT OVERVIEW
	C. THE THEORY BEHIND THE INVERSE PROBLEM

	CHAPTER II MONITOR DEVELOPMENT
	A. BURNUP
	B. ENRICHMENT
	C. REACTOR TYPE
	D. AGE
	E. SHUTDOWN TIME
	F. SELECTED ISOTOPES
	1. BURNUP MONITORS
	2. ENRICHMENT MONITORS
	3. REACTOR TYPE MONITORS
	4. AGE MONITORS
	5. SUMMARY OF MONITOR NUCLIDES

	CHAPTER III NEMASYS
	A. CODE REQUIREMENTS
	B. UNDERSTANDING NEMASYS
	1. BURNUP DETERMINATION
	2. ENRICHMENT DETERMINATION
	3. REACTOR TYPE DETERMINATION
	4. AGE DETERMINATION

	C. FORWARD MODEL ITERATION
	D. USING NEMASYS

	CHAPTER IV BENCHMARKING NEMASYS
	A. MIHAMA-3 REACTOR
	B. MONITORS USED FOR MIHAMA-3
	C. NEMASYS RESULTS FOR MIHAMA-3

	CHAPTER V CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES
	APPENDIX A FINAL ENRICHMENT CALCULATION
	APPENDIX B GRAPHS OF BURNUP MONITORS
	APPENDIX C GRAPHS OF REACTOR TYPE MONITORS
	APPENDIX D THE NEMASYS ACCESS DATABASE
	APPENDIX E AN EXAMPLE OF A NEMASYS ORIGEN SKELETON DECK
	APPENDIX F NEMASYS CODE

