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Abstract: Hydrologic environments are open and complex, rendering them prone to multiple interpretations and 
mathematical descriptions. Hydrologic analyses typically rely on a single conceptual-mathematical model, which ignores 

conceptual model uncertainty and may result in bias in predictions and under-estimation of predictive uncertainty. This study 
is to assess conceptual model uncertainty residing in five recharge models developed to date by different researchers based 
on different theories for Nevada and Death Valley area, CA. A recently developed statistical method, Maximum Likelihood 

Bayesian Model Averaging (MLBMA), is utilized for this analysis. In a Bayesian framework, the recharge model uncertainty 
is assessed, a priori, using expert judgments collected through an expert elicitation in the form of prior probabilities of the 

models. The uncertainty is then evaluated, a posteriori, by updating the prior probabilities to estimate posterior model 
probability. The updating is conducted through maximum likelihood inverse modeling by calibrating the Death Valley 
Regional Flow System (DVRFS) model corresponding to each recharge model against observations of head and flow. 

Calibration results of DVRFS for the five recharge models are used to estimate three information criteria (AIC, BIC, and 
KIC) used to rank and discriminate these models. Posterior probabilities of the five recharge models, evaluated using KIC, 

are used as weights to average head predictions, which gives posterior mean and variance. The posterior quantities 
incorporate both parametric and conceptual model uncertainties.       

 
Ⅰ. INTRODUCTION 
 

Hydrologic analyses are commonly based on a single 
conceptual-mathematical model. Yet hydrologic 
environments are open and complex, rendering them prone 
to multiple interpretations and mathematical descriptions. 
This is true regardless of the quantity and quality of 
available hydrologic information and data. Focusing on 
only one conceptual-mathematical model may lead to a 
Type I model error, which arises when one rejects (by 
omission) valid alternative models. It may also result in a 
Type II model error, which arises when one adopts (fails to 
reject) an invalid conceptual-mathematical model. Indeed, 
critiques of hydrologic analyses, and legal challenges to 
them, typically focus on the validity of the underlying 
conceptual (and by implication mathematical) model. If a 
proposed model is found to be severely deficient, 
hydrologic analysis based on the single model may damage 
professional credibility of the work; result in the loss of a 
legal contest; and lead to adverse environmental, economic 
and political impacts ([1-2]).  

The need to properly assess conceptual model 
uncertainty has motivated the recent development of a 
Maximum Likelihood Bayesian Model Averaging method 
(MLBMA) [3-4]. MLBMA is being applied in our study to 
assess conceptual model uncertainty in the Death Valley 
Regional Flow System (DVRFS) model, developed by the 
U.S. Geological Survey [5] to simulate the regional flow 
system in southwest Nevada and southeast California. This 
area includes the U.S. Department of Energy proposed 

Yucca Mountain nuclear repository, the nation’s first long-
term permanent geologic repository of spent nuclear fuel 
and high-level radioactive waste.   

Our study is focused on assessing conceptual model 
uncertainty due to five alternative recharge models listed in 
Table 1: (1) the Maxey-Eakin (ME) model [6], (2) two 
distributed parameter watershed (DPW) models, one with 
and one without a runon-runoff component [7], and (3) two 
chloride mass balance (CMB) models, each with different 
zero-recharge masks, one for alluvium and one for both 
alluvium and elevation [8]. These five models are based on 
different methodologies for estimating recharge and have 
different levels of complexity, and they all have been used 
for groundwater modeling in Nevada. Recharge estimates 
of the five models are plotted in Figure 1, and they are 
significantly different. A large amount of conceptual model 
uncertainty exits in the recharge models [9]. Since recharge 
significantly affects modeled groundwater flow paths and 
travel times, it is important to evaluate the recharge model 
uncertainty and quantify its propagation through the 
groundwater modeling process.  

Using MLBMA, we assess the recharge model 
uncertainty a priori and a posteriori. The terms “a priori” 
and “a posteriori” refer primarily to how or on what basis 
our assessment is conducted. An assessment is conducted a 
priori if it is based on prior information without calibrating 
the regional flow model (of which the recharge model is a 
component) against site observations (e.g., hydraulic head 
and groundwater flux). The prior information includes 
assessment of model uncertainty from a similar site and/or 



expert judgments based on one’s professional experience. 
An assessment is conducted a posteriori when the regional 
flow model (of which the recharge model is a component) 

is calibrated against site observations. In MLBMA, 
assessments a priori and a posteriori are quantified by prior 
and posterior model probabilities, as discussed below.  

 

 
Figure 1. Illustration of the five recharge models: (a) ME, (b) DPW1, (c) DPW2, (d) CMB1, and (e) CMB2. 

 
Table 1. Abbreviation and Description of the Five 
Recharge Models. 

Models Model Description 
ME Maxey-Eakin model 

DPW1 Distributed parameter watershed model with 
runon-runoff component  

DPW2 Distributed parameter watershed model 
without runon-runoff component 

CMB1 Chloride mass balance model with fluvial 
mask 

CMB2 Chloride mass balance model with fluvial and  
elevation masks 

 
Ⅱ. MAXIMUM LIKELIHOOD BAYESIAN MODEL 
AVERAGING (MLBMA) 
 

To render our paper complete and self-contained, we 
start with a brief description of MLBMA; for additional 
details the reader is referred to [3-4]. If ∆ is the desired  
predicted quantity given a set of K alternative models, 
then its posterior distribution, given a discrete set D of 
site data, is 
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where p(∆|Mk,D) is the posterior distribution of ∆ under 
model Mk and p(Mk|D) is posterior probability of Mk. With 
consideration of parametric and conceptual model 
uncertainty, mean and variance of ∆ are 
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where , kE M⎡∆ ⎤⎣ ⎦D  and , kVar M⎡∆ ⎤⎣ ⎦D  are mean and 
variance of ∆ under model Mk due to uncertainty of 
parameters associated with Mk. The weight p(Mk|D) used 
to average model predictions and corresponding 
predictive variance is posterior model probability of 
model Mk, evaluated using Bayes’ rule 
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where p(D|Mk) is likelihood of model Mk (a measure of 
consistency between model predictions and site 
observations D) and p(Mk) is prior probability of Mk. 
Estimating prior model probability will be discussed in 
detail in Section Ⅲ.The posterior model probability is 
conditioned on site observations explicitly and prior 
information implicitly. According to [4], equation (4) can 
be approximated as 
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where KIC is Kashyap information criterion defined as 
[10] 
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where N is number of calibration data D, Nk is number of 
parameters kθ  associated with model Mk, e is the natural 
number, ω (the same for all models) is weight matrix 
associated with calibration data D, and X is sensitivity 
matrix with element '
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can be estimated using maximum likelihood (or, 
equivalently, generalized least square) methods, which 
also gives the calculated error variance, 2
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where '= −e D D  is residual and WSSRk is weighted sum 
of squared residual of model Mk. All the quantities above 
can be estimated based on results of model calibration 
using common software such as MODFLOW2000 [11].       
 
Ⅲ. EVALUATE RECHARGE MODEL 
UNCERTAINTY: A PRIORI 
 

Conceptual uncertainty of the five recharge models is 
first evaluated, a priori, using prior probabilities of the 
models. Prior model probability is interpreted by [4] as 
subjective values reflecting the analyst’s (or a group of 
analysts’) belief about the relative plausibility of each 

model (or a group of models) based on its apparent 
(qualitative, a priori) consistency with available 
knowledge and data.  The analyst’s perception, degree of 
reasonable belief [12], or confidence [13] in a model is 
ideally based on expert judgment, which is considered by 
[14] as the basis of conceptual model development. Hence 
we view integrating expert judgment in MLBMA (by 
specifying subjective prior probabilities) to be a strength 
rather than a weakness. According to this view, the 
models included in the model set must be those (and only 
those) that experts consider being of potential relevance to 
the problem at hand. Given a set of alternative models, 
their prior probabilities sum up to one, 
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This implies that all possible models of relevance are 
included in the model set (collective exhaustiveness), and 
that all models in the set differ from each other 
sufficiently to be considered mutually exclusive (the joint 
probability of two or more models being zero).  

Following the process suggested by [15], an expert 
elicitation is conducted to elicit professional judgments 
from seven experts on uncertainty of the five recharge 
models. Elicited prior probabilities of the five models are 
plotted in Figure 2, which shows that the maximum and 
minimum prior probabilities are 45% and 5%, 
respectively. Models ME, DPW1, and CMB2 are the 
three most plausible models, and do not receive the 
minimum prior probability from any expert. Although the 
experts evaluate the models from various aspects (e.g., 
model assumptions and sensitivity of model predictions to 
mode parameters), no experts place more than 50% prior 
probability on any model.  

The prior model probabilities are aggregated using 
simple averaging i.e.,  
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where NE=7 is number of experts and Pik is the prior 
probability expert i assigns to alternative model Mk,. The 
aggregated prior model probabilities are plotted in Figure 
3. Models DPW1 and DPW2 have the largest and smallest 
probability, respectively, since the experts regard that 
including the runon-runoff component is more realistic. 
Probability of the model CMB2 is larger than that of 
CMB1, since experts regard that elevation mask is an 
important feature in recharge estimation. Model ME is 
ranked as the second most plausible model and has prior 
model probability of 25%, although this model is the 
simplest one and its recharge estimation is significantly 
different from that of other four models. Although prior 
probabilities given by each expert are significantly 



 

 

 

  

different (Figure 2), the aggregated probabilities are more 
or less uniform, considering that the equally likely prior 
probability is 20%. The largest deviation from the equally 
likely prior probability is only 10% for model DPW1. 
This manifests the inherent uncertainty in the recharge 
models, since they are developed independently based on 
solid physical principles and assumptions, calibrated with 

site measurements, and have all been applied to water 
resource management in Nevada. Since none of the 
models dominates over other models and all models have 
prior model probabilities larger than 5%, there is no 
justification to select one model and discard others, a 
priori. 
 

 

0.00
5.00

10.00
15.00
20.00
25.00
30.00
35.00
40.00
45.00
50.00

ME DPW1 DPW2 CMB1 CMB2

Pr
io

r M
od

el
 P

ro
ba

bi
lit

y 
(%

)

 
Figure 2. Column chart of prior probabilities of the five models given by seven experts. Columns of each model represent 
elicited prior model probability from one expert. Model names are explained in Table 1. 
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Figure 3. Prior probabilities of the five recharge models 
obtained through an expert elicitation. Model names are 
explained in Table 1. 
 
Ⅳ. EVALUATE RECHARGE MODEL 
UNCERTAINTY: A POSTERIORI 
 

Recharge model uncertainty is assessed, a posteriori, 
by maximum likelihood model calibration against site 
observations. Results of model calibration are used to 
estimate model likelihood p(D|Mk), which, in turn, is used 
to evaluate posterior model probability p(Mk|D) in (4). 
Whereas prior model probabilities must in our view 
remain subjective, the posterior model probabilities are  
modifications of these subjective values based on an 
objective evaluation of each model’s consistency with 
available data.    

 
Ⅳ.A. Model Calibration Using MODFLOW2000 
 

Plausibility and uncertainty of each of the five 
recharge models is evaluated by calibrating the Death 
Valley Regional Flow System (DVRFS) model, of which 

the recharge model is a component. DVRFS was modeled 
by [5] using MODFLOW2000, and a three-dimensional 
hydrogeologic framework based on characterization of 
regional geology, hydrology, and hydrogeology. The 
recharge model used in DVRFS is DPW1 developed by 
[7]. Our study is to assess recharge model uncertainty in 
the modeling framework of DVRFS, without modifying 
its other components. DVRFS was calibrated using 
MODFLOW2000 against a total of 4,963 observations of 
head (2,227), head change (2,672), discharge (49), and 
constant-head flow (15). These observations are also used 
in our calibration.  

Our calibration process, however, is different from 
that of DVRFS, which calibrated 55 model parameters, 23 
in the steady-state model and 32 in the transient model. 
Our model calibration is based on the transient model 
only, since there is insufficient information to identify 
how the 23 parameters are calibrated in the steady-state 
model. In addition, only some of the 55 parameters are 
calibrated in our study, due to different purposes of our 
study. Specifically, 32 of the 55 parameters are calibrated 
for DPW1 and DPW2. The two models estimate 
precipitation (not recharge), which is converted to 
recharge within DVRFS by dividing the top model layer 
into five recharge zones. Recharge coefficients in two 
zones are calibrated against site observations. Since the 
other three models estimate recharge directly, recharge 
coefficients are not used and therefore only 30 parameters 
are calibrated. All other calibration parameters are the 
same as those used in DVRFS. Although MLBMA allows 
different models having different numbers of calibrated 
parameters, we intend to calibrate the same model 
parameters for all the recharge models so that model 
ranking and uncertainty analysis are on the same basis. In 
the same line, model calibration is conducted in the same 



 

 

 

  

manner for all the recharge models. Specifically, all the 
model calibrations use identical initial parameter values, 
convergence criterion, and other calibration variables 
such as parameter log transform and damping factors. 

Model calibration results corresponding to the five 
recharge models are summarized in Table 2 and Figure 4. 
Table 2 lists WSSR (weighted sum of squared residuals) 
of the four kinds of observations, respectively, and total 
WSSR. WSSR of DVRFS is also listed for comparison. 
The table shows that, except for recharge model ME, the 
values of WSSR of the models are close and are lower 
than that of DVRFS. This is not surprising since our 
calibration is based on model calibration of DVRFS to a 
certain extent, and can be regarded as further calibration 
of DVRFS. The largest relative differences of WSSR 
occur for the observations of discharge and constant-head 
flow. Figure 4 plots some of the calibrated parameters 

whose values are noticeably different between the 
recharge models (values of other calibrated parameter are 
close). The values of calibrated parameters in DVRFS are 
also plotted for comparison. Although WSSR 
corresponding to the recharge models are similar, some 
parameter values are different, indicating different 
responses of the regional flow system simulation to the 
recharge models, which provides a basis for model 
discrimination. The largest difference of parameter values 
occurs for hydraulic conductivity of volcanic rock units 
(K3) such as K3BRU123 and K3CTM. While most of the 
parameters are within the parameter ranges given in [5], 
several parameter values exceed the ranges. This, 
however, is not surprising, since the ranges are based on 
limited information of site measurements. All values of 
the calibrated parameters are considered reasonable. 

 
TABLE 2. Weighted Sum of Squared Residuals (WSSR) for all Kinds of Observations Corresponding to the Five Recharge 
Models and DVRFS. 

Type of 
observation 

Observaion 
Number  

DVRFS ME DPW1 DPW2 CMB1 CMB2 

Hydraulic head 2227 23083.22 26321.55 20030.92 20296.37 20215.87 19803.57 
Head changes  2672 13348.08 11805.63 12599.57 12752.66 12372.07 12057.11 

Discharge 49 637.64 2078.36 674.43 611.12 1001.34 1062.06 
Constant-head flow 15 438.15 1520.28 296.94 350.56 863.24 641.49 

Total 4963 37507.10 41725.82 33601.86 34010.71 34452.52 33564.23 
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Figure 4. Comparison of values of some calibrated parameters corresponding to the five recharge models.  

 
Ⅳ.B. Posterior Model Probability 

 
Posterior model probabilities of the recharge models 

are calculated using equation (6) based on the model 
calibration results listed in Table 3, which also lists three 
information criteria (AIC, BIC, and KIC) commonly used 
to rank alternative models. AIC and BIC are evaluated via 
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These information criteria rank alternative models not 
only based on their goodness-of-fit (as measured by 
WSSR) but also on the principle of parsimony, which 
states that a simple model (with lower number of 
parameters) is considered more plausible than a complex 
model if their predictions fit observations equally well. 
The three information criteria rank the five recharge 
models at almost the same order, with models ME, DPW2, 
and CMB1 ranked as the least plausible. In addition, the 
information criteria show that DPW1 and CMB2 are more 
plausible than DPW2 and CMB1, respectively, which is 
consistent with the results of the expert elicitation (Figure 
3). Nevertheless, model ME is ranked as least plausible 
after model calibration. AIC and BIC rank CMB2 as the 



 

 

 

  

best model, while KIC ranks DPW1 as the best one. 
Inconsistency of model ranking given by different 
information criteria is not uncommon. Among the three 
criteria, KIC is favored since it incorporates quality of 
data used for model calibration [3] and can yield more 
reliable model rankings in various circumstances [e.g., 4].  
 
TABLE 3. Quality Criteria, Ranking, And Prior/Posterior 
Probabilities Associated With The Five Recharge Models. 

 ME DPW1 DPW2 CMB1 CMB2 
Nk 30 32 32 30 30 

WSSR 41726 33602 34011 34453 33564 
ln|F| 360 346 344 349 346 
AIC 10627 9556 9616 9676 9547 
Rank 5 2 3 4 1 
BIC 10822 9765 9825 9872 9742 
Rank 5 2 3 4 1 
KIC 10808 9718 9775 9852 9720 
Rank 5 1 3 4 2 
p(Mk)  25% 30% 11% 13% 20% 

p(Mk|D) 0 83.25% 0 0 16.75% 
p(Mk) 20% 20% 20% 20% 20% 

p(Mk|D) 0 76.82% 0 0 23.18% 
 

Posterior model probabilities are evaluated using (5) 
for two sets of prior model probabilities. One set has 
informative priors obtained from the expert elicitation and 
the other one treats the five models equally likely. 
Regardless of prior probabilities, posterior probabilities of 
models ME, DPW2, and CMB2 are zero, indicating that 
they are implausible given the calibration data. This is so 
even though model ME received a relatively large prior 
probability from the experts. The effects of prior on 
posterior model probability is observed for models DPW1 
and CMB2. Posterior probability of DPW1 decreases 
6.43% when its prior probability decreases 10%. This 
results in a concomitant increase of 6.43% in the posterior 
probability of model CMB2, even though its prior 
probability does not change. Although it is expected that 
sensitivity of posterior to prior model probability 
diminishes as the amount conditioning (calibration) data 
increases, this study shows that, even with 4,963 
observations, sensitivity to prior probability does not 
disappear. In this case, using informative prior model 
probability (obtained from expert elicitation in this study) 
may increase accuracy of model uncertainty assessment, 
as suggested in [16]. Note that just like prior probabilities, 
posterior probabilities are valid only in a comparative, not 
in an absolute, sense. They are conditional on the choice 
of models, calibration data, and prior information used to 
estimate prior model probabilities. 
 
 
 

Ⅴ. BAYESIAN MODEL AVERAGING 
Based on equations (2) and (3), Bayesian model 

averaging is used to yield the posterior mean and variance 
to incorporate both parametric and conceptual model 
uncertainty. The posterior mean represents the optimum 
prediction and the posterior variance measures the 
associated predictive uncertainty. Monte Carlo simulation 
is used to assess parametric uncertainty and estimate 

, kE M⎡∆ ⎤⎣ ⎦D  and , kVar M⎡∆ ⎤⎣ ⎦D  for model Mk. 
Multivariate normal distributions are used to generate 200 
parameter realizations of the calibrated parameters. The 
mean of the normal distribution is the maximum 
likelihood parameter estimate ˆ

kθ  of model Mk and the 
covariance matrix is 2 1( )T

k k
−X ωXσ  [3, 11]. Estimation of 

posterior mean and variance using equations (2) and (3) is 
straightforward. Figure 5 plots mean head predictions 
corresponding to the five recharge models (Figures 5b-5f) 
and the MLBMA (Figure 5a) posterior mean head in the 
first (top) model layer at stress period 87 (1998, the last 
year of the transient model). The MLBMA mean head 
(Figure 5a) is an average of the mean heads for DPW1 
and CMB2, since the other three models have zero 
posterior probabilities. Mean head contours of DPW1 and 
DPW2 are similar to each other, as are the contours of 
CMB1 and CMB2, owing to the similarity of the two 
pairs of recharge models. Since these four recharge 
models are different from ME, the contour of ME is 
different from the four contours in Figures 5c-5f. Figure 6 
plots the cumulative distribution function (CDF) of the 
mean head and standard deviation of head predicted by 
models DPW1 and CMB2 and MLBMA for the entire 
simulation domain at stress period 87. For mean head 
predictions, the CDFs of DPW1, CMB2, and MLBMA 
are almost identical, due to the similarity of mean head 
predictions of DPW1 and CMB2 (shown in Figures 5b 
and 5f). Nevertheless, the standard deviation of head 
prediction of MLBMA is larger than that of models 
DPW1 and CMB2, since MLBMA considers both 
parametric and conceptual model uncertainty, while the 
two single models address only parametric uncertainty.    
 
Ⅵ. CONCLUSIONS 
 

This study assesses conceptual model uncertainty of 
five recharge models within the modeling framework of 
DVRFS, of which each recharge model is a component. 
Conceptual model uncertainty is first assessed, a priori, 
using expert judgment gathered from an expert elicitation. 
The experts placed higher probabilities on DPW1and 
CMB2 than DPW2 and CMB1, respectively. However, 
since the recharge models are developed by different 
researchers based on different theories, prior model 
probabilities elicited from the experts are around the 
average value of 20%. This indicates that one cannot 



 

 

 

  

select one model for predictions and discard all others a 
priori. Since prior information cannot fully assess 
conceptual model uncertainty, model calibration is needed 
to assess conceptual model uncertainty a posteriori based 
on observations of head and flow. DVRFS is used as the 
framework for numerical modeling and only its recharge 
component varies for different recharge models (other 
components remain the same). Based on model 
calibration results using MODFLOW2000, three 
information criteria (AIC, BIC, and KIC) are evaluated to 
rank the models. Model ranking of AIC and BIC are the 
same, but different from that of KIC. Consistent with 
results of expert elicitation, DPW1 and CMB2 are ranked 
more plausible than DPW2 and CMB1, respectively. 
However, as opposed to the results of expert elicitation, 
model ME is ranked as least plausible. This suggests the 
importance of uncertainty assessment a posteriori. 
Posterior model probabilities are evaluated using KIC, 
which is considered superior to AIC and BIC. Models 

ME, DPW2, and CMB1 have zero posterior probabilities. 
Sensitivity of posterior to prior probabilities for models 
DPW1 and CMb2 does not disappear, although 4,963 
observations are used for model calibration. Note that 
posterior probabilities are valid only in a comparative, not 
in an absolute, sense. They are conditional on the choice 
of models, calibration data, and prior information used to 
estimate prior probabilities. Bayesian model averaging is 
conducted to estimate posterior mean and variance of 
head and flux. Posterior variance of MLBMA is larger 
than the variance of any single model, since conceptual 
model uncertainty is also addressed. Our research results 
can be extended to incorporate conceptual model 
uncertainty in flow path delineation, which can in turn be 
used to design networks for detection and monitoring of 
potential radionuclide transport in the saturated zone of 
the Death Valley Regional Flow System, where Yucca 
Mountain is located. 

 

 
Figure 5. Mean head predicted by (a) MLBMA, (b) ME, (c) DPW1, (d) DPW2, (e) CMB1, and (f) CMB2 in the first (top) 
layer at stress period 87 (1998). 
 

 
Figure 6. Cumulative distribution function (CDF) of mean head and standard deviation of head prediction over the whole 
simulation domain at stress period 87 (1998). 
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