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Abstract: Hydrologic environments are open and complex, rendering them prone to multiple interpretations and
mathematical descriptions. Hydrologic analyses typically rely on a single conceptual-mathematical model, which ignores
conceptual model uncertainty and may result in bias in predictions and under-estimation of predictive uncertainty. This study
is to assess conceptual model uncertainty residing in five recharge models developed to date by different researchers based
on different theories for Nevada and Death Valley area, CA. A recently developed statistical method, Maximum Likelihood
Bayesian Model Averaging (MLBMA), is utilized for this analysis. In a Bayesian framework, the recharge model uncertainty
is assessed, a priori, using expert judgments collected through an expert elicitation in the form of prior probabilities of the
models. The uncertainty is then evaluated, a posteriori, by updating the prior probabilities to estimate posterior model
probability. The updating is conducted through maximum likelihood inverse modeling by calibrating the Death Valley
Regional Flow System (DVRFS) model corresponding to each recharge model against observations of head and flow.
Calibration results of DVRFS for the five recharge models are used to estimate three information criteria (AIC, BIC, and
KIC) used to rank and discriminate these models. Posterior probabilities of the five recharge models, evaluated using KIC,
are used as weights to average head predictions, which gives posterior mean and variance. The posterior quantities
incorporate both parametric and conceptual model uncertainties.

I.INTRODUCTION

Hydrologic analyses are commonly based on a single
conceptual-mathematical model. Yet hydrologic
environments are open and complex, rendering them prone
to multiple interpretations and mathematical descriptions.
This is true regardless of the quantity and quality of
available hydrologic information and data. Focusing on
only one conceptual-mathematical model may lead to a
Type I model error, which arises when one rejects (by
omission) valid alternative models. It may also result in a
Type II model error, which arises when one adopts (fails to
reject) an invalid conceptual-mathematical model. Indeed,
critiques of hydrologic analyses, and legal challenges to
them, typically focus on the validity of the underlying
conceptual (and by implication mathematical) model. If a
proposed model is found to be severely deficient,
hydrologic analysis based on the single model may damage
professional credibility of the work; result in the loss of a
legal contest; and lead to adverse environmental, economic
and political impacts ([1-2]).

The need to properly assess conceptual model
uncertainty has motivated the recent development of a
Maximum Likelihood Bayesian Model Averaging method
(MLBMA) [3-4]. MLBMA is being applied in our study to
assess conceptual model uncertainty in the Death Valley
Regional Flow System (DVRFS) model, developed by the
U.S. Geological Survey [5] to simulate the regional flow
system in southwest Nevada and southeast California. This
area includes the U.S. Department of Energy proposed

Yucca Mountain nuclear repository, the nation’s first long-
term permanent geologic repository of spent nuclear fuel
and high-level radioactive waste.

Our study is focused on assessing conceptual model
uncertainty due to five alternative recharge models listed in
Table 1: (1) the Maxey-Eakin (ME) model [6], (2) two
distributed parameter watershed (DPW) models, one with
and one without a runon-runoff component [7], and (3) two
chloride mass balance (CMB) models, each with different
zero-recharge masks, one for alluvium and one for both
alluvium and elevation [8]. These five models are based on
different methodologies for estimating recharge and have
different levels of complexity, and they all have been used
for groundwater modeling in Nevada. Recharge estimates
of the five models are plotted in Figure 1, and they are
significantly different. A large amount of conceptual model
uncertainty exits in the recharge models [9]. Since recharge
significantly affects modeled groundwater flow paths and
travel times, it is important to evaluate the recharge model
uncertainty and quantify its propagation through the
groundwater modeling process.

Using MLBMA, we assess the recharge model
uncertainty a priori and a posteriori. The terms “a priori”
and “a posteriori” refer primarily to how or on what basis
our assessment is conducted. An assessment is conducted a
priori if it is based on prior information without calibrating
the regional flow model (of which the recharge model is a
component) against site observations (e.g., hydraulic head
and groundwater flux). The prior information includes
assessment of model uncertainty from a similar site and/or



expert judgments based on one’s professional experience.
An assessment is conducted a posteriori when the regional
flow model (of which the recharge model is a component)
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is calibrated against site observations. In MLBMA,
assessments a priori and a posteriori are quantified by prior
and posterior model probabilities, as discussed below.
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Figure 1. Illustration of the five recharge models: (a) ME, (b) DPW1, (¢) DPW2, (d) CMBI, and (¢) CMB2.

Table 1. Abbreviation and Description of the Five

Recharge Models.
Models Model Description
ME Maxey-Eakin model

DPWI1 Distributed parameter watershed model with
runon-runoff component

DPW2 Distributed parameter watershed model
without runon-runoff component

CMBI1 Chloride mass balance model with fluvial
mask

CMB2 | Chloride mass balance model with fluvial and
elevation masks

II. MAXIMUM LIKELIHOOD BAYESIAN MODEL
AVERAGING (MLBMA)

To render our paper complete and self-contained, we
start with a brief description of MLBMA; for additional
details the reader is referred to [3-4]. If A is the desired
predicted quantity given a set of K alternative models,
then its posterior distribution, given a discrete set D of
site data, is

p(A|D)=>" p(AIM,.D)p(M, D) (1)

k=1
where p(A|My,D) is the posterior distribution of A under
model My and p(My|D) is posterior probability of M. With

consideration of parametric and conceptual model
uncertainty, mean and variance of A are
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where E[A|D,Mk] and Var [A|D,Mk] are mean and

variance of A under model My due to uncertainty of
parameters associated with My. The weight p(My|D) used
to average model predictions and corresponding
predictive variance is posterior model probability of
model My, evaluated using Bayes’ rule
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where p(D|My) is likelihood of model My (a measure of
consistency between model predictions and site
observations D) and p(My) is prior probability of My.
Estimating prior model probability will be discussed in
detail in Section III.The posterior model probability is
conditioned on site observations explicitly and prior
information implicitly. According to [4], equation (4) can
be approximated as
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where KIC is Kashyap information criterion defined as
[10]

KIC, =(N-N,)Ino; -N,In(e-2z)+In | XjoX, | (6)

where N is number of calibration data D, Ny is number of
parameters 0, associated with model My, € is the natural

number, o (the same for all models) is weight matrix
associated with calibration data D, and X is sensitivity

matrix with element X, ; = D, ; / 00, ; evaluated at
maximum likelihood parameter estimates, ék’ ; (Dy;

being predictions at locations of D; by model My). ék, i
can be estimated using maximum likelihood (or,
equivalently, generalized least square) methods, which
also gives the calculated error variance, O'kz s

elme, WSSR
o_kZ — k k — k (7)
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where e =D —D' is residual and WSSR, is weighted sum
of squared residual of model My. All the quantities above
can be estimated based on results of model calibration
using common software such as MODFLOW2000 [11].

[I. EVALUATE RECHARGE MODEL
UNCERTAINTY: A PRIORI

Conceptual uncertainty of the five recharge models is
first evaluated, a priori, using prior probabilities of the
models. Prior model probability is interpreted by [4] as
subjective values reflecting the analyst’s (or a group of
analysts’) belief about the relative plausibility of each

model (or a group of models) based on its apparent
(qualitative, a priori) consistency with available
knowledge and data. The analyst’s perception, degree of
reasonable belief [12], or confidence [13] in a model is
ideally based on expert judgment, which is considered by
[14] as the basis of conceptual model development. Hence
we view integrating expert judgment in MLBMA (by
specifying subjective prior probabilities) to be a strength
rather than a weakness. According to this view, the
models included in the model set must be those (and only
those) that experts consider being of potential relevance to
the problem at hand. Given a set of alternative models,
their prior probabilities sum up to one,

ilﬂ(MkF1 (8)

k=1

This implies that all possible models of relevance are
included in the model set (collective exhaustiveness), and
that all models in the set differ from each other
sufficiently to be considered mutually exclusive (the joint
probability of two or more models being zero).

Following the process suggested by [15], an expert
elicitation is conducted to elicit professional judgments
from seven experts on uncertainty of the five recharge
models. Elicited prior probabilities of the five models are
plotted in Figure 2, which shows that the maximum and
minimum prior probabilities are 45% and 5%,
respectively. Models ME, DPW1, and CMB?2 are the
three most plausible models, and do not receive the
minimum prior probability from any expert. Although the
experts evaluate the models from various aspects (e.g.,
model assumptions and sensitivity of model predictions to
mode parameters), no experts place more than 50% prior
probability on any model.

The prior model probabilities are aggregated using
simple averaging i.e.,

1 NE
PR=—o>P 9
k NEZ:]: ik ( )

where NE=7 is number of experts and Pj is the prior
probability expert i assigns to alternative model My,. The
aggregated prior model probabilities are plotted in Figure
3. Models DPW1 and DPW?2 have the largest and smallest
probability, respectively, since the experts regard that
including the runon-runoff component is more realistic.
Probability of the model CMB2 is larger than that of
CMBI, since experts regard that elevation mask is an
important feature in recharge estimation. Model ME is
ranked as the second most plausible model and has prior
model probability of 25%, although this model is the
simplest one and its recharge estimation is significantly
different from that of other four models. Although prior
probabilities given by each expert are significantly



different (Figure 2), the aggregated probabilities are more
or less uniform, considering that the equally likely prior
probability is 20%. The largest deviation from the equally
likely prior probability is only 10% for model DPW1.
This manifests the inherent uncertainty in the recharge
models, since they are developed independently based on
solid physical principles and assumptions, calibrated with

site measurements, and have all been applied to water
resource management in Nevada. Since none of the
models dominates over other models and all models have
prior model probabilities larger than 5%, there is no
justification to select one model and discard others, a
priori.

50.00

45.00 -
40.00

35.00 +
30.00 +
25.00 +
20.00 +
15.00 A
10.00 A

5.00 A

0.00 -

Prior Model Probability (%)

ME DPW1 DPW2 CMB1 CMB2

Figure 2. Column chart of prior probabilities of the five models given by seven experts. Columns of each model represent
elicited prior model probability from one expert. Model names are explained in Table 1.
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Figure 3. Prior probabilities of the five recharge models
obtained through an expert elicitation. Model names are
explained in Table 1.

IV. EVALUATE RECHARGE MODEL
UNCERTAINTY: A POSTERIORI

Recharge model uncertainty is assessed, a posteriori,
by maximum likelihood model calibration against site
observations. Results of model calibration are used to
estimate model likelihood p(D|My), which, in turn, is used
to evaluate posterior model probability p(M|D) in (4).
Whereas prior model probabilities must in our view
remain subjective, the posterior model probabilities are
modifications of these subjective values based on an
objective evaluation of each model’s consistency with
available data.

IV.A. Model Calibration Using MODFLOW2000
Plausibility and uncertainty of each of the five

recharge models is evaluated by calibrating the Death
Valley Regional Flow System (DVRFS) model, of which

the recharge model is a component. DVRFS was modeled
by [5] using MODFLOW2000, and a three-dimensional
hydrogeologic framework based on characterization of
regional geology, hydrology, and hydrogeology. The
recharge model used in DVRFS is DPW1 developed by
[7]. Our study is to assess recharge model uncertainty in
the modeling framework of DVRFS, without modifying
its other components. DVRFS was calibrated using
MODFLOW?2000 against a total of 4,963 observations of
head (2,227), head change (2,672), discharge (49), and
constant-head flow (15). These observations are also used
in our calibration.

Our calibration process, however, is different from
that of DVRFS, which calibrated 55 model parameters, 23
in the steady-state model and 32 in the transient model.
Our model calibration is based on the transient model
only, since there is insufficient information to identify
how the 23 parameters are calibrated in the steady-state
model. In addition, only some of the 55 parameters are
calibrated in our study, due to different purposes of our
study. Specifically, 32 of the 55 parameters are calibrated
for DPW1 and DPW2. The two models estimate
precipitation (not recharge), which is converted to
recharge within DVRFS by dividing the top model layer
into five recharge zones. Recharge coefficients in two
zones are calibrated against site observations. Since the
other three models estimate recharge directly, recharge
coefficients are not used and therefore only 30 parameters
are calibrated. All other calibration parameters are the
same as those used in DVRFS. Although MLBMA allows
different models having different numbers of calibrated
parameters, we intend to calibrate the same model
parameters for all the recharge models so that model
ranking and uncertainty analysis are on the same basis. In
the same line, model calibration is conducted in the same



manner for all the recharge models. Specifically, all the
model calibrations use identical initial parameter values,
convergence criterion, and other calibration variables
such as parameter log transform and damping factors.
Model calibration results corresponding to the five
recharge models are summarized in Table 2 and Figure 4.
Table 2 lists WSSR (weighted sum of squared residuals)
of the four kinds of observations, respectively, and total
WSSR. WSSR of DVRFS is also listed for comparison.
The table shows that, except for recharge model ME, the
values of WSSR of the models are close and are lower
than that of DVRFS. This is not surprising since our
calibration is based on model calibration of DVREFS to a
certain extent, and can be regarded as further calibration
of DVRFS. The largest relative differences of WSSR
occur for the observations of discharge and constant-head
flow. Figure 4 plots some of the calibrated parameters

whose values are noticeably different between the
recharge models (values of other calibrated parameter are
close). The values of calibrated parameters in DVRFS are
also plotted for comparison. Although WSSR
corresponding to the recharge models are similar, some
parameter values are different, indicating different
responses of the regional flow system simulation to the
recharge models, which provides a basis for model
discrimination. The largest difference of parameter values
occurs for hydraulic conductivity of volcanic rock units
(K3) such as K3BRU123 and K3CTM. While most of the
parameters are within the parameter ranges given in [5],
several parameter values exceed the ranges. This,
however, is not surprising, since the ranges are based on
limited information of site measurements. All values of
the calibrated parameters are considered reasonable.

TABLE 2. Weighted Sum of Squared Residuals (WSSR) for all Kinds of Observations Corresponding to the Five Recharge

Models and DVRFS.
Type of Observaion DVRFS ME DPW1 DPW2 CMBI1 CMB2
observation Number
Hydraulic head 2227 23083.22 | 26321.55 | 20030.92 | 20296.37 | 20215.87 19803.57
Head changes 2672 13348.08 11805.63 12599.57 12752.66 12372.07 12057.11
Discharge 49 637.64 2078.36 674.43 611.12 1001.34 1062.06
Constant-head flow 15 438.15 1520.28 296.94 350.56 863.24 641.49
Total 4963 37507.10 | 41725.82 | 33601.86 | 34010.71 34452.52 | 33564.23
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Figure 4. Comparison of values of some calibrated parameters corresponding to the five recharge models.

IV.B. Posterior Model Probability

Posterior model probabilities of the recharge models
are calculated using equation (6) based on the model
calibration results listed in Table 3, which also lists three
information criteria (AIC, BIC, and KIC) commonly used
to rank alternative models. AIC and BIC are evaluated via

AIC, =-2In p(D[M, )+2N, =NIno; +N,
BIC, =—2In p(D|M, )+ N, InN
=NIno? + N, (InN 1)

(10)
(11)

These information criteria rank alternative models not
only based on their goodness-of-fit (as measured by
WSSR) but also on the principle of parsimony, which
states that a simple model (with lower number of
parameters) is considered more plausible than a complex
model if their predictions fit observations equally well.
The three information criteria rank the five recharge
models at almost the same order, with models ME, DPW2,
and CMBI ranked as the least plausible. In addition, the
information criteria show that DPW1 and CMB2 are more
plausible than DPW2 and CMBI, respectively, which is
consistent with the results of the expert elicitation (Figure
3). Nevertheless, model ME is ranked as least plausible
after model calibration. AIC and BIC rank CMB?2 as the



best model, while KIC ranks DPW1 as the best one.
Inconsistency of model ranking given by different
information criteria is not uncommon. Among the three
criteria, KIC is favored since it incorporates quality of
data used for model calibration [3] and can yield more
reliable model rankings in various circumstances [e.g., 4].

TABLE 3. Quality Criteria, Ranking, And Prior/Posterior
Probabilities Associated With The Five Recharge Models.

ME DPWI1 | DPW2 | CMBI1 | CMB2
Nk 30 32 32 30 30
WSSR | 41726 | 33602 | 34011 | 34453 33564
In|F| 360 346 344 349 346
AIC 10627 | 9556 9616 9676 9547
Rank 5 2 3 4 1
BIC 10822 | 9765 9825 9872 9742
Rank 5 2 3 4 1
KIC 10808 | 9718 9775 9852 9720
Rank 5 1 3 4 2
p(My) 25% 30% 11% 13% 20%
p(MyD) 0 83.25% 0 0 16.75%
p(My) 20% 20% 20% 20% 20%
p(MyD) 0 76.82% 0 0 23.18%

Posterior model probabilities are evaluated using (5)
for two sets of prior model probabilities. One set has
informative priors obtained from the expert elicitation and
the other one treats the five models equally likely.
Regardless of prior probabilities, posterior probabilities of
models ME, DPW2, and CMB2 are zero, indicating that
they are implausible given the calibration data. This is so
even though model ME received a relatively large prior
probability from the experts. The effects of prior on
posterior model probability is observed for models DPW1
and CMB32. Posterior probability of DPW1 decreases
6.43% when its prior probability decreases 10%. This
results in a concomitant increase of 6.43% in the posterior
probability of model CMB2, even though its prior
probability does not change. Although it is expected that
sensitivity of posterior to prior model probability
diminishes as the amount conditioning (calibration) data
increases, this study shows that, even with 4,963
observations, sensitivity to prior probability does not
disappear. In this case, using informative prior model
probability (obtained from expert elicitation in this study)
may increase accuracy of model uncertainty assessment,
as suggested in [16]. Note that just like prior probabilities,
posterior probabilities are valid only in a comparative, not
in an absolute, sense. They are conditional on the choice
of models, calibration data, and prior information used to
estimate prior model probabilities.

V. BAYESIAN MODEL AVERAGING

Based on equations (2) and (3), Bayesian model
averaging is used to yield the posterior mean and variance
to incorporate both parametric and conceptual model
uncertainty. The posterior mean represents the optimum
prediction and the posterior variance measures the
associated predictive uncertainty. Monte Carlo simulation
is used to assess parametric uncertainty and estimate

E[A|D,M, ] and Var[A|D,M, | for model My.
Multivariate normal distributions are used to generate 200

parameter realizations of the calibrated parameters. The
mean of the normal distribution is the maximum

likelihood parameter estimate ﬁk of model My and the

covariance matrix is o’ (XI oX,)"' [3, 11]. Estimation of

posterior mean and variance using equations (2) and (3) is
straightforward. Figure 5 plots mean head predictions
corresponding to the five recharge models (Figures 5b-5f)
and the MLBMA (Figure 5a) posterior mean head in the
first (top) model layer at stress period 87 (1998, the last
year of the transient model). The MLBMA mean head
(Figure Sa) is an average of the mean heads for DPW1
and CMB32, since the other three models have zero
posterior probabilities. Mean head contours of DPW1 and
DPW?2 are similar to each other, as are the contours of
CMBI1 and CMB2, owing to the similarity of the two
pairs of recharge models. Since these four recharge
models are different from ME, the contour of ME is
different from the four contours in Figures 5¢-5f. Figure 6
plots the cumulative distribution function (CDF) of the
mean head and standard deviation of head predicted by
models DPW1 and CMB2 and MLBMA for the entire
simulation domain at stress period 87. For mean head
predictions, the CDFs of DPW1, CMB2, and MLBMA
are almost identical, due to the similarity of mean head
predictions of DPW1 and CMB2 (shown in Figures 5b
and 5f). Nevertheless, the standard deviation of head
prediction of MLBMA is larger than that of models
DPWI1 and CMB?2, since MLBMA considers both
parametric and conceptual model uncertainty, while the
two single models address only parametric uncertainty.

VI. CONCLUSIONS

This study assesses conceptual model uncertainty of
five recharge models within the modeling framework of
DVREFS, of which each recharge model is a component.
Conceptual model uncertainty is first assessed, a priori,
using expert judgment gathered from an expert elicitation.
The experts placed higher probabilities on DPW land
CMB2 than DPW2 and CMBI, respectively. However,
since the recharge models are developed by different
researchers based on different theories, prior model
probabilities elicited from the experts are around the
average value of 20%. This indicates that one cannot



select one model for predictions and discard all others a
priori. Since prior information cannot fully assess
conceptual model uncertainty, model calibration is needed
to assess conceptual model uncertainty a posteriori based
on observations of head and flow. DVRFS is used as the
framework for numerical modeling and only its recharge
component varies for different recharge models (other
components remain the same). Based on model
calibration results using MODFLOW2000, three
information criteria (AIC, BIC, and KIC) are evaluated to
rank the models. Model ranking of AIC and BIC are the

same, but different from that of KIC. Consistent with

results of expert elicitation, DPW1 and CMB2 are ranked
more plausible than DPW2 and CMBI, respectively.
However, as opposed to the results of expert elicitation,
model ME is ranked as least plausible. This suggests the
importance of uncertainty assessment a posteriori.
Posterior model probabilities are evaluated using KIC,
which is considered superior to AIC and BIC. Models

Figure 5. Mean head predicted by (a) MLBMA, (b) ME, (c) DPW1, (d) DPW2, (¢) CMBI, and (f) CMB2 in the first (top)

ME, DPW2, and CMB1 have zero posterior probabilities.
Sensitivity of posterior to prior probabilities for models
DPW1 and CMb2 does not disappear, although 4,963
observations are used for model calibration. Note that
posterior probabilities are valid only in a comparative, not
in an absolute, sense. They are conditional on the choice
of models, calibration data, and prior information used to
estimate prior probabilities. Bayesian model averaging is
conducted to estimate posterior mean and variance of
head and flux. Posterior variance of MLBMA is larger
than the variance of any single model, since conceptual
model uncertainty is also addressed. Our research results
can be extended to incorporate conceptual model
uncertainty in flow path delineation, which can in turn be
used to design networks for detection and monitoring of
potential radionuclide transport in the saturated zone of
the Death Valley Regional Flow System, where Yucca
Mountain is located.
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Figure 6. Cumulative distribution function (CDF) of mean head and standard deviation of head prediction over the whole
simulation domain at stress period 87 (1998).
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