

ornl

OAK RIDGE
NATIONAL
LABORATORY

MARTIN MARIETTA

MANAGED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

A NOTE ON
SEVEN ANALOGOUS PROPERTIES BETWEEN
STIRLING NUMBERS OF THE FIRST KIND
AND BINOMIAL COEFFICIENTS

Tommy Wright

RECEIVED
JUN 29 1995
OSTI

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

This report has been reproduced directly from the best available copy.

Available to DOE and DOE contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401, FTS 626-8401.

Available to the public from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Rd., Springfield, VA 22161.

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

Computer Science and Mathematics Division
Mathematical Sciences Section

**A NOTE ON
SEVEN ANALOGOUS PROPERTIES BETWEEN
STIRLING NUMBERS OF THE FIRST KIND
AND BINOMIAL COEFFICIENTS**

Tommy Wright
Mathematical Sciences Section
Oak Ridge National Laboratory
P. O. Box 2008 Bldg 6012
Oak Ridge, Tennessee 37831-6367

Date Published: June 1995

Research was supported by the
ASA/NSF/Census Research Fellow Program
of the U. S. Bureau of the Census.

Prepared by the
Oak Ridge National Laboratory
Oak Ridge, Tennessee 37831
managed by
Martin Marietta Energy Systems, Inc.
for the
U. S. DEPARTMENT OF ENERGY
under Contract No. DE-AC05-84OR21400

DISTRIBUTION OF THIS DOCUMENT IS UNLIMITED

GT

MASTER

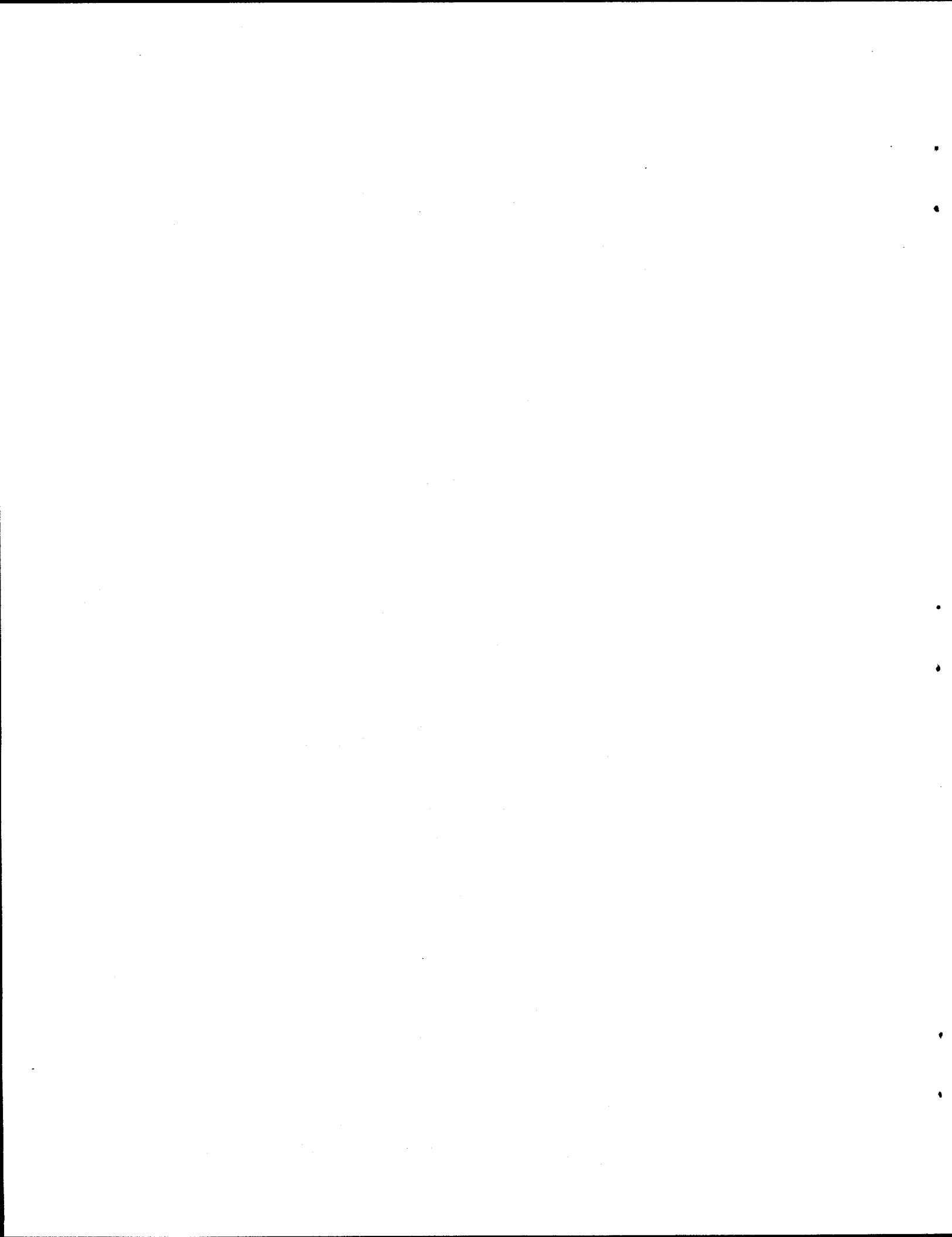
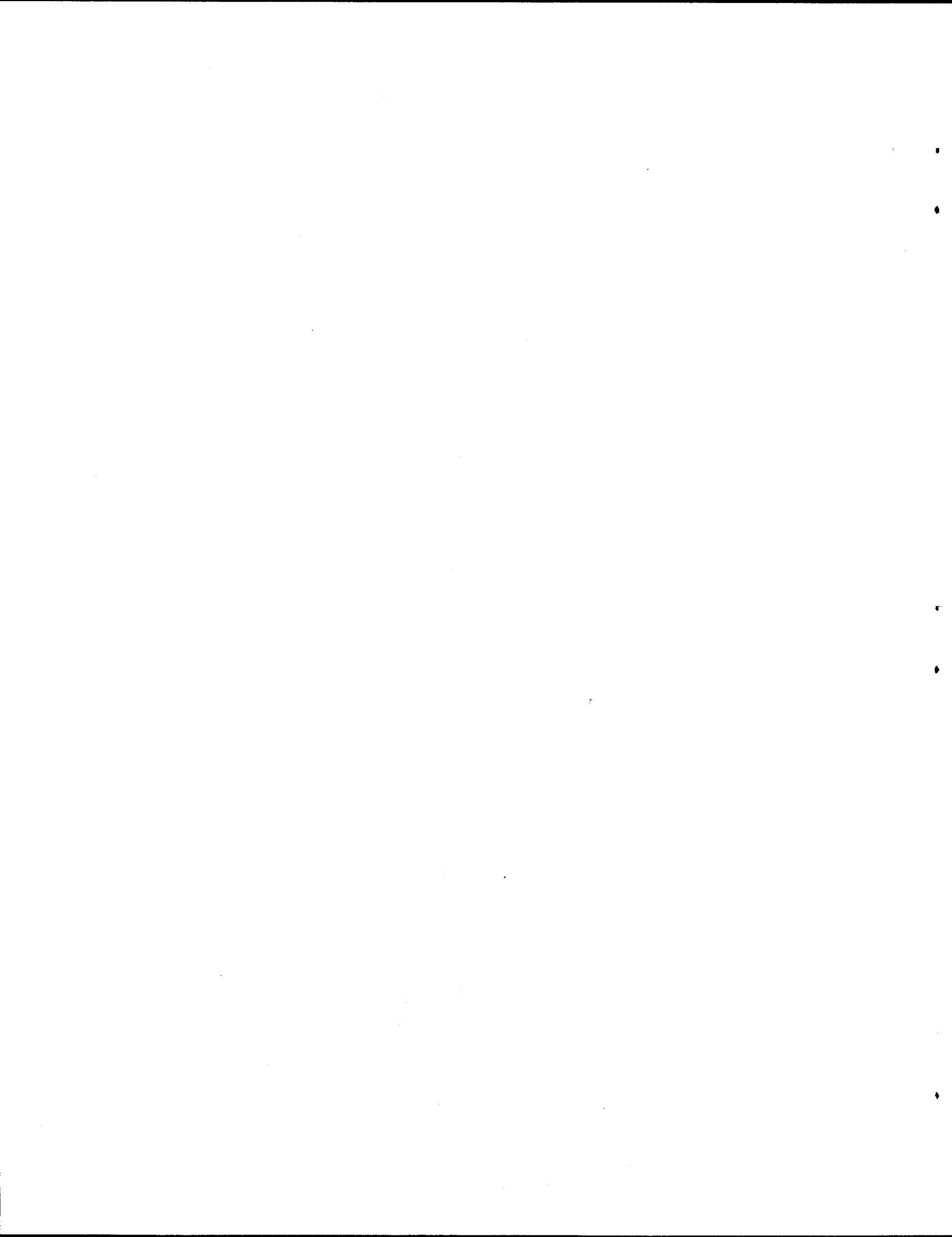


TABLE OF CONTENTS

ABSTRACT	<i>v</i>
1. INTRODUCTION	1
2. SOME ANALOGOUS PROPERTIES OF THE COEFFICIENTS $[n]$ and (n)	1
ACKNOWLEDGMENT	5
REFERENCES	5



**A NOTE ON
SEVEN ANALOGOUS PROPERTIES BETWEEN
STIRLING NUMBERS OF THE FIRST KIND
AND BINOMIAL COEFFICIENTS**

Tommy Wright

ABSTRACT

This notes gives seven analogous properties between Stirling numbers of the first kind and binomial coefficients.

1. INTRODUCTION

If n and r are both nonnegative integers where $r \leq n$, the **binomial coefficient** $\binom{n}{k}$ is given by

$$\binom{n}{r} \equiv \frac{n!}{r!(n-r)!}. \quad (1)$$

The symbol $\binom{n}{r}$ is called a binomial coefficient because it is the coefficient of the $(r+1)^{th}$ term in the expansion of $(1+x)^n$ by the binomial theorem. Furthermore, these coefficients are the entries in Pascal's triangle. For a recent historical treatment of Pascal's *arithmetical triangle's* roots, which stretch backward before Christ, see Edwards(1987). The binomial coefficient plays a fundamental role in several areas including combinatorics, applied probability, and probability sampling (Knuth, 1981; Graham, Knuth, and Patashnik, 1989; Ross, 1989; Wilf, 1989; and Wright, 1989, 1991).

If n and r are both nonnegative integers where $r \leq n$, the **Stirling Number of the First Kind** $[n]_r$ is defined as

$$[n]_r \equiv \text{the sum of all possible products of } n-r \text{ integers taken from the first } n \text{ positive integers.} \quad (2)$$

For $r = n$, we define $[n]_n \equiv 1$. Note that $[n]_0 \equiv n!$. Thus if $n = 4$ and $r = 2$, $[4]_2 = 1 \cdot 2 + 1 \cdot 3 + 1 \cdot 4 + 2 \cdot 3 + 2 \cdot 4 + 3 \cdot 4 = 35$. Also $[4]_0 = 4! = 24$ and $[4]_4 = 1$. In general, the number of terms in the sum $[n]_r$ is $\binom{n}{r}$.

In a result analogous to the binomial theorem, it can be shown that

$$\prod_{i=1}^k (i+x) = \sum_{r=0}^k [k]_r x^r. \quad (3)$$

The quantities $[n]_r$ have a triangular arrangement which is similar to Pascal's triangle for the binomial coefficients. (Graham, Knuth, and Patashnik (1989); and Wright(in press))

2. SOME ANALOGOUS PROPERTIES OF THE COEFFICIENTS $[n]_r$ AND $\binom{n}{r}$

In this section, we list several properties of the coefficients $[n]_r$. For each property, an analogous result is noted for Pascal's triangle. The proofs of these properties are straightforward.

Property 1.

$$[n]_r = n \left[\begin{matrix} n-1 \\ r \end{matrix} \right] + (n-1) \left[\begin{matrix} n-2 \\ r-1 \end{matrix} \right] + \cdots + (n-r) \left[\begin{matrix} n-(r+1) \\ 0 \end{matrix} \right].$$

Example 1.

$$\begin{bmatrix} 5 \\ 2 \end{bmatrix} = 5 \begin{bmatrix} 4 \\ 2 \end{bmatrix} + 4 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 3 \begin{bmatrix} 2 \\ 0 \end{bmatrix}.$$

Analogous Property and Example:

$$\binom{n}{r} = \binom{n-1}{r} + \binom{n-2}{r-1} + \binom{n-3}{r-2} + \cdots + \binom{n-(r+1)}{0}.$$

$$\begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 0 \end{bmatrix}.$$

Property 2.

$$\begin{bmatrix} n \\ r \end{bmatrix} = \begin{bmatrix} n-1 \\ r-1 \end{bmatrix} + n \begin{bmatrix} n-2 \\ r-1 \end{bmatrix} + n(n-1) \begin{bmatrix} n-3 \\ r-1 \end{bmatrix} + \cdots + n(n-1)\cdots(r+1) \begin{bmatrix} r-1 \\ r-1 \end{bmatrix}.$$

Example 2.

$$\begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} + 5 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + 5 \cdot 4 \begin{bmatrix} 2 \\ 1 \end{bmatrix} + 5 \cdot 4 \cdot 3 \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Analogous Property and Example:

$$\binom{n}{r} = \binom{n-1}{r-1} + \binom{n-2}{r-1} + \binom{n-3}{r-1} + \cdots + \binom{r-1}{r-1}.$$

$$\begin{bmatrix} 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

Where x is a real number, define $[x] \equiv$ the greatest integer less than or equal to x . Property 3 is a *symmetry* property.

Property 3.

$$\sum_{r=0}^{[n/2]} \begin{bmatrix} n \\ 2r \end{bmatrix} = \sum_{r=0}^{[n/2]} \begin{bmatrix} n \\ 2r+1 \end{bmatrix}.$$

Example 3.

$$\begin{bmatrix} 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ 2 \end{bmatrix} + \begin{bmatrix} 5 \\ 4 \end{bmatrix} = \begin{bmatrix} 5 \\ 1 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \end{bmatrix} + \begin{bmatrix} 5 \\ 5 \end{bmatrix}.$$

Analogous Property and Example:

$$\sum_{r=0}^{[n/2]} \binom{n}{2r} = \sum_{r=0}^{[n/2]} \binom{n}{2r+1}.$$

$$\binom{5}{0} + \binom{5}{2} + \binom{5}{4} = \binom{5}{1} + \binom{5}{3} + \binom{5}{5}.$$

Property 4.

$$\sum_{r=0}^n \binom{n}{r} = (n+1) \sum_{r=0}^{n-1} \binom{n-1}{r}.$$

Example 4.

$$\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 5 \left\{ \binom{3}{0} + \binom{3}{1} + \binom{3}{2} + \binom{3}{3} \right\}.$$

Analogous Property and Example:

$$\sum_{r=0}^n \binom{n}{r} = 2 \sum_{r=0}^{n-1} \binom{n-1}{r}.$$

$$\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 2 \left\{ \binom{3}{0} + \binom{3}{1} + \binom{3}{2} + \binom{3}{3} \right\}.$$

Property 5 follows from Property 4.

Property 5.

$$\sum_{r=0}^n \binom{n}{r} = (n+1)!.$$

Example 5.

$$\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 5!.$$

Analogous Property and Example:

$$\sum_{r=0}^n \binom{n}{r} = 2^n.$$

$$\binom{4}{0} + \binom{4}{1} + \binom{4}{2} + \binom{4}{3} + \binom{4}{4} = 2^4.$$

For the nonnegative integers x and y where $x \leq y$, define P_x^y to be

$$P_x^y \equiv \frac{y!}{(y-x)!}. \quad (4)$$

Property 6.

$$\sum_{m=0}^n P_{n-m}^{n+1} \sum_{r=0}^m \begin{bmatrix} m \\ r \end{bmatrix} = \sum_{m=0}^n P_{n-m}^{n+1} (m+1)! = (n+1)(n+1)!.$$

Example 6. For $n = 3$,

$$\begin{aligned} P_3^4 \begin{bmatrix} 0 \\ 0 \end{bmatrix} + P_2^4 \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} + P_1^4 \left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\} + P_0^4 \left\{ \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right\} \\ = 4 \cdot 3 \cdot 2(1!) + 4 \cdot 3(2!) + 4(3!) + (4!) = 4(4!). \end{aligned}$$

Analogous Property and Example:

$$\sum_{m=0}^n \sum_{r=0}^m \binom{m}{r} = \sum_{m=0}^n 2^m = 2^{n+1} - 1.$$

For $n = 3$,

$$\begin{bmatrix} 0 \\ 0 \end{bmatrix} + \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} 2 \\ 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 2 \end{bmatrix} \right\} + \left\{ \begin{bmatrix} 3 \\ 0 \end{bmatrix} + \begin{bmatrix} 3 \\ 1 \end{bmatrix} + \begin{bmatrix} 3 \\ 2 \end{bmatrix} + \begin{bmatrix} 3 \\ 3 \end{bmatrix} \right\} = 2^4 - 1.$$

Property 7.

$$\sum_{i=0}^r \begin{bmatrix} n \\ i \end{bmatrix} = (n+1) \sum_{i=0}^{r-1} \begin{bmatrix} n-1 \\ i \end{bmatrix} + n \begin{bmatrix} n-1 \\ r \end{bmatrix}.$$

Example 7. For $n = 6$ and $r = 4$,

$$\begin{bmatrix} 6 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ 1 \end{bmatrix} + \begin{bmatrix} 6 \\ 2 \end{bmatrix} + \begin{bmatrix} 6 \\ 3 \end{bmatrix} + \begin{bmatrix} 6 \\ 4 \end{bmatrix} = (6+1) \left\{ \begin{bmatrix} 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ 1 \end{bmatrix} + \begin{bmatrix} 5 \\ 2 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \end{bmatrix} \right\} + 6 \begin{bmatrix} 5 \\ 4 \end{bmatrix}.$$

Analogous Property and Example:

$$\sum_{i=0}^r \binom{n}{i} = 2 \sum_{i=0}^{r-1} \binom{n-1}{i} + \binom{n-1}{r}.$$

For $n = 6$ and $r = 4$,

$$\begin{bmatrix} 6 \\ 0 \end{bmatrix} + \begin{bmatrix} 6 \\ 1 \end{bmatrix} + \begin{bmatrix} 6 \\ 2 \end{bmatrix} + \begin{bmatrix} 6 \\ 3 \end{bmatrix} + \begin{bmatrix} 6 \\ 4 \end{bmatrix} = 2 \left\{ \begin{bmatrix} 5 \\ 0 \end{bmatrix} + \begin{bmatrix} 5 \\ 1 \end{bmatrix} + \begin{bmatrix} 5 \\ 2 \end{bmatrix} + \begin{bmatrix} 5 \\ 3 \end{bmatrix} \right\} + \begin{bmatrix} 5 \\ 4 \end{bmatrix}.$$

Acknowledgment. The support from the U. S. Bureau of the Census to the author while serving as a research fellow is gratefully acknowledged.

REFERENCES

1. A. W. F. Edwards, *Pascal's Arithmetical Triangle, Charles Griffin Books Series*, Oxford University Press, New York , (1987).
2. R. L. Graham, D. E. Knuth, and O. Patashnik, *Concrete Mathematics*, Addison-Wesley, Reading, (1989).
3. D. E. Knuth, *The Art of Computer Programming, Vol I, Seminumerical Algorithms, 2nd*, Addison-Wesley, Reading, (1981).
4. B. Pascal, *Traite du Triangle Arithmetique*, Desprez(1665).
5. S. M. Ross, *Introduction to Probability Models*, 4th Ed., Academic Press, San Diego, (1989).
6. H. S. Wilf, *Combinatorial Algorithms: An Update, # 55 in CBMS-NSF Regional Conference Series in Applied Mathematics*, Society for Industrial and Applied Mathematics, Philadelphia, (1989).
7. T. Wright, A note on Pascal's triangle and simple random sampling, *College Mathematics Journal*, 20(1989)59-66.
8. T. Wright, *Exact Confidence Bounds When Sampling From Small Finite Universes*, Springer-Verlag, New York, (1991).
9. T. Wright, "Pascal's triangle gets its genes from Stirling numbers of the first kind", *The College Mathematics Journal*,(in press).

INTERNAL DISTRIBUTION

1. C. K. Bayne	18. G. Ostrouchov
2. J. J. Beauchamp	19-23. S. A. Raby
3. K. O. Bowman	24. C. H. Romine
4. C. C. Brandt	25. R. L. Schmoyer
5. T. S. Darland	26-30. R. F. Sincovec
6. E. F. D'Azevedo	31-35. T. Wright
7. D. J. Downing	36. D. A. Wolf
8. D. M. Flanagan	37. Central Research Library
9. E. L. Frome	38. K-25 Applied Tech. Library
10. P. Hu	39. ORNL Patent Office
11-15. M. R. Leuze	40. Y-12 Technical Library
16. M. D. Morris	41-45. Laboratory Records Department
17. C. E. Oliver	46. Laboratory Records Dept. - RC

EXTERNAL DISTRIBUTION

47. Mx. Maxine Anderson-Brown, Program Manager, DIR, Room 2270-3, U.S. Bureau of the Census, Washington, DC 20233.
48. Dr. Dan Hitchcock, Office of Scientific Computing, ER-7, Applied Mathematical Sciences, Office of Energy Research, U.S. Dept. of Energy, Washington, DC 20585.
49. Dr. Fred Howes, Office of Scientific Computing, ER-7, Applied Mathematical Sciences, Office of Energy Research, U.S. Dept. of Energy, Washington, DC 20585.
50. Dr. David Nelson, Scientific Computing Staff, Applied Mathematical Sciences, Office of Energy Research, U.S. Department of Energy, Washington, DC 20585.
51. Office of Assistant Manager for Energy Research and Development, U.S. Department of Energy, Oak Ridge Operations Office, P.O. Box 2001, Oak Ridge, TN 37831-8600.
52. Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37830.
53. Dr. How J. Tsao, Management Services Division, Eastman Kodak, Rochester, NY 14652-3302.
54. Professor Mary F. Wheeler, Rice University, Department of Mathematical Sciences, P.O. Box 1892, Houston, TX 77251.