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ABSTRACT

This notes gives seven analogous properties between Stirling numbers of the first kind
and binomial coefficients.
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1. INTRODUCTION

If n and r are both nonnegative integers where r < n, the binemial coefficient (Z) is
given by

(7)== »

The symbol (’:) is called a binomial coefficient because it is the coefficient of the (r + 1)t

term in the expansion of (1 + z)” by the binomial theorem. Furthermore, these coeflicients
are the entries in Pascal’s triangle. For a recent historical treatment of Pascal’s arithmetical
triangle’s roots, which stretch backward before Christ, see Edwards(1987). The binomial
coefficient plays a fundamental role in several areas including combinatorics, applied proba-
bility, and probability sampling (Knuth, 1981; Graham, Knuth, and Patashnik, 1989; Ross,
1989; Wilf, 1989; and Wright, 1989, 1991).

If n and r are both nonnegative integers where r < n, the Stirling Number of the
First Kind [7] is defined as

[:] = the sum of all possible products of n — r integers taken from the first n positive integers. (2)

For r = n, we define [7] = 1. Note that [j] = n! . Thusif n = 4 and r = 2, [3] =
1-241-341-442-3+2-4+3-4=35 Abo [§] =4 =24 and [j] = 1. In general,

the number of terms in the sum [7] is (7).

In a result analogous to the binomial theorem, it can be shown that

k

[HG+z)= i [’:] 2. (3)

=1 r=o

The quantities [?'] have a triangular arrangement which is similar to Pascal’s triangle for the
binomial coefficients. (Graham, Knuth, and Patashnik (1989); and Wright(in press))

2. SOME ANALOGOUS PROPERTIES OF THE COEFFICIENTS [?] AND (7)

In this section, we list several properties of the coefficients [7] . For each property, an analogous
result is noted for Pascal’s triangle. The proofs of these properties are straightforward.

Property 1.

E o I s PR A




Ezample 1.

Analogous Property and Ezample:

() - (7)) (e (5,
Property 2. (3) + (?) + (§>

["] = ["‘I]M[::ﬂ +a(n—1) [::i’]+---+n(n-1).--(r+1) [::ﬂ

T r—1
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Ezample 2.

[g] = [‘j] +5[§]+5.4[§]+5.4.3[i].
() = (22 + (2« (o) ()
() = C)+()+0)+0)

Where z is a real number, define [z] = the greatest integer less than or equal to z. Property 3
is a symmetry property.

Property 3.
£(a)- £
oo ler oo+l
Ezample 3.



Analogous Property and Ezample:
£ - E6)
r=0 2r r=0 2r + 1
5 + 5 + 5
0 2 4
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Property 4.

FEzample 4.

Analogous Property and Ezample:

560 =0

o)+ () &)+ 6)+ ()

Property 5 follows from Property 4.
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Property 5.

- Ezample 5.

Analogous Property and Ezample:

, 50 -7

o)+ () # @)+ () 0) = =
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For the nonnegative integers z and y where z < y, define PY to be

L ..

Property 6.
n n m m n "
DI ans 2:3 [r] =Y Pri(m+1)=(n+1)(n+1).

m=0 m=0

[ (2 L)+ B+ 1+ B+ (6 B+ B+ D)

=4-3-2(11) +4-3(2!) + 4(3!) + (41) = 4(4)).

Analogous Property and Ezample:

ii(?):f:zmzznﬂq.

mj%i’:fc*®}+{<ﬁ>+<f>+<z>}+{(z>+<f>+(z>+(z>}=w1.

g[’:] =(n+1)§[n;1]+n[n:1].

ol #[2) el #[e] # [a =+ fal « ]+ ]+ o]} +o ]

Analogous Property and Ezample:

r r—1

Z(’.‘):Q: n-1 +(" 1).

i=o \? i=o \ ! T
For n = 6 and r = 4,

0+ )+ )+ 6)+ @) ==10)+ )+ )+ 0} €)
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