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Abstract

A formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous
fluid momentum equations is presented. The tangential and normal components of the velocity boundary
condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vortic-
ity is determined using a kinematical formulation which is a generalization of Helmholtz’ decomposition of
a vector field. Related forms of the decomposition were developed by Bykhovskiy and Smirov {5] in 1983,
and Wu and Thompson [30] in 1973. Though it has not been generally recognized, these formulations re-
solve the over-specification issue associated with creating vorticity to satisfy velocity boundary conditions.
The generalized decomposition has not been widely used, apparently due to a Jack of a useful physical inter-
pretation. An analysis is presented which shows that the generalized decomposition has a relatively simple
physical interpretation which facilitates its numerical implementation.

The implementation of the generalized decomposition is discussed in detail. As an example the flow in a
two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport
algorithm in the hydrocode ALEGRA. ALEGRA's Lagrangian transport algorithin has been modified to
solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate
method to simulate incompressible flows. This numerical implementation and the new boundary condition
formulation allow vorticity-based formulations to be used in a wider range of engineering problems.
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Executive Summary

Vorticity formulations of the Navier-Stokes equations have distinct advantages over veloc-
ity-pressure formulations. These advantages remain largely unused, however, since appro-
priate boundary conditions for vorticity formulations are not resolved. The problem is that
boundary conditions for the Navier-Stokes equations are in terms of velocities, but a
boundary condition in terms of vorticity is required for vorticity formulations. Thus, it is
necessary to deduce a vorticity boundary condition from a velocity boundary condition. A
vorticity boundary condition could consist of a normal gradient of vorticity, or a value of
vorticity. However, neither the vorticity on the boundary nor its gradient is generally
known. Some recent efforts in this area are Koumoutsakos, et al., [16], Wu, Wu, Ma, and
Wu [34], and Anderson [1], based on the work by Quartapelle and Valz-Gris [25]. The ob-
jective of this discussion is to present and demonstrate a new generalized method to de-
scribe vorticity generation. This formulation allows the advantages of vorticity-based
formulations to be applied to a wider range of flows that occur in engineering problems.

The main advantage of the proposed formulation is that all components of the velocity
boundary conditions are imposed simultaneously. In classical formulations, normal and
tangential components of the boundary velocity are imposed in separate steps. As a result,
all components of the velocity boundary conditions are not always satisfied simultaneous-
ly. The proposed formulation allows all components of the velocity boundary condition to
be satisfied simultaneously, as is desired for quantitative analysis.

The essential form of the boundary condition formulation was described previously by Wu
[33] and Morino [19], [20]. Morino refers to the mathematical work of Bykhovskiy and
Smirnov [5], and shows that it yields the same result as Wu and Thompson [30]. Details of
this formulation are not well-understood, however, and as a result, it has not been widely
used.

As will be shown, the formulations by Wu and Thompson, and Bykhovskiy and Smirnov
are essentially generalizations of Helmholtz’ decomposition of a vector field. To provide
insight, and to facilitate its numerical implementation, the generalized decomposition is
derived by applying limiting processes on Helmholtz’ decomposition. This approach
shows that velocity boundary conditions are simply vortex sheets and volume source dis-
tributions that lie ourside the fluid, a feature not considered in classical formulations. To
determine the vorticity which is created in the fluid, the vortex sheet outside the fluid is
partitioned according to the tangential velocity boundary condition. This interpretation
provides insight regarding the singular behavior on boundaries, thus providing confidence
in the overall formulation, and helping to resolve long standing issues in the implementa-
tion of vorticity boundary conditions.




Introduction

A boundary condition for vorticity is required to solve the vorticity form of the Navier-
Stokes equations for incompressible flows. Boundary conditions are typically specified in
terms of velocities, however, so that vorticity boundary conditions must be deduced from
velocity boundary conditions. The vorticity boundary condition essentially represents the
creation of vorticity whenever the tangential velocity on the boundary is specified, as'in
viscous flows.

Over the last two decades, many formulations for vorticity boundary conditions have been
formulated, as described in reviews by Gresho [9], and Puckett {23]. Accurate flow simu-
lations have been obtained using a wide variety of approaches, yet several fundamental is-
sues remain to be resolved. Several previous models are described below.

Lighthill [17] proposed the basis for most approaches to describe vorticity creation. To be-

gin, it is noted that the velocity induced by an arbitrary vorticity field (via the Biot-Savart

law) will not, in general, satisfy either the normal or tangential velocity boundary condi-

tion. A new velocity field which satisfies the normal velocity boundary condition can be

obtained by adding a potential velocity field, which does not change the vorticity field. .
The tangential velocity boundary condition is not generally satisfied by the new velocity

field, and the deviation from the boundary condition is generally referred to as a slip ve-
locity, ug;,,. Lighthill indicated that the slip velocity is actually a vortex sheet with strength
-Uglip» and that this vortex sheet represents the vorticity created on the boundary.

An approach for solving the Prandtl boundary layer equations for motionless boundaries
was originated by Chorin (see Chorin and Marsden [6]). A brief description of the method
follows. An approximate solution of the inviscid equations is advanced one time step. The
velocity field induced by the vorticity field generally differs from the tangential velocity
boundary condition by ug;,. To cancel this slip velocity, vortex sheets of cumulative
strength -2ug;, are created on each segment of the boundary. A Gaussian random walk is
then applied to the sheets as a means to describe viscous diffusion. As a result of the ran-
dom walk, half of the sheets leave the fluid domain, so that on average, the cumulative
strength of the vortex sheets remaining in the fluid is -ug;,. This result is in agreement
with Lighthill’s work, although Chorin does not add the potential velocity field to satisfy
the normal velocity boundary condition. In fact, the normal velocity boundary condition is
not considered explicitly, although zero normal velocity can be shown to be satisfied in the
half-plane. Wu [31] notes that for arbitrary geometries, it is not clear that the normal and
tangential velocity boundary conditions are satisfied simultaneously.

Wu [33] proposed a formulation based on an equation derived by Wu and Thompson [30],
which prescribes an integral relationship between a vorticity field and all components of
the velocity boundary conditions. A similar formula was developed independently by
Bykhovskiy and Smirnov [5], and is discussed by Morino [19], [20]. In their formulation,
the velocity at one point depends on all other points, and all components of the velocity
boundary conditions are considered simultaneously. Either the normal or tangential com-
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ponent of the formulation can be used to form a set of linear equations to be solved for the
unknown vorticity. Wu indicates that the linear system of equations is rank deficient, and
must be supplemented with the additional constraint that the mtegral of the vorticity field
over the domain be zero. (Wu, et al., [311, {32], [33]) '

Kinney, et al. {14}, [13] and Hung and Kinney [10] use the tangential component of the
Navier-Stokes equations on the boundary as the basis for determining a vorticity flux.
(The Laplacian of the viscous term in the primitive variable equations is replaced by the
curl of the vorticity using a vector identity.) Essentially, the vorticity flux is determined by
specifying that the slip velocity vanishes over a timestep.

Anderson [1] combines the vorticity form of the Navier-Stokes equations with the time-
derivative of an integral constraint on vorticity (developed by Quartapelle, et al., [24],
[25]). The resulting formulation is used to determine the vorticity boundary condition for
streamfunction-vorticity formulations. This approach yields vortex sheets with the same
strength as found by Lighthill and Chorin.

Koumoutsakos, er al. [16], use a streamfunction solution to determine the vortex sheet
strengths on boundaries, from which a vorticity flux is determined and is distributed to
vortex blobs which already exist near the boundary. The vortex sheet strengths are con-
strained by an integral based on Kelvin’s theorem. In their model, creation of vortex sheets
on the boundary results in “the nullification of (the) spurious vortex sheet ar the body sur-
face so as to enforce the no-slip condition,” where the “spurious” sheet refers to the sheet
associated with the slip velocity.

Wu, Wu, Ma, and Wu [34] assert that kinematics are incapable of determining vorticity
creation or any necessary constraints. (All the work described above is based on kinemat-
ics, except that of Kinney, et al.) They use two integral solutions. The first solution is for
the Navier-Stokes equations, based on the fundamental solution to the heat equation in
free space. This solution includes boundary integrals containing the vorticity and its nor-
mal gradient on the boundary. Since both the vorticity on the boundary and its normal gra-
dient are unknown, an additional equation is needed. The second solution is for a pressure
Poisson equation based on the fundamental solution of the Poisson equation in free space.
(The pressure poisson equation is obtained by taking the divergence of the velocity-pres-
sure form of the Navier-Stokes equations.) The pressure solution contains boundary inte-
grals for the pressure and the vorticity on the boundary. Thus, the vorticity on the
boundary is common to both solutions, but the normal gradient of vorticity and pressure
on the boundary occur in only one equation, so there are three unknowns and only two
equations. To form a closed system, Wu, et al. [34] show that the normal gradient of vor-
ticity can be cast in terms of the pressure and vorticity on the boundary. Thus, the vorticity
solution now has unknowns of the vorticity and pressure on the boundary, just as the pres-
sure solution. After solving the equations simultaneously for vorticity and pressure, the
normal gradient can be calculated directly.

The aforementioned models for vorticity creation are similar in many respects, but they
also differ in several fundamental respects. One issue is that the proper type of boundary
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condition (vorticity on the boundary or its normal derivative) is not clear; nor is it clear
that there is a proper type of boundary condition.

Another issue is whether vorticity creation should be determined from formulations based
on kinematics or dynamics. Kinematic formulations are generally based on the relation-
ship between vorticity, velocity, and streamfunctions. Dynamic formulations generally use
the tangential component of the Navier Stokes equations on the boundary.

Most investigators indicate that a linear set of equations must be solved to determine the
vorticity created on the boundary. Most investigators also indicate that the linear set of
equations must be supplemented with an integral constraint, although the precise mathe-
matical justification for such constraints is not always clear. For example, Wu [31] indi-
cates that the linear system of equations is rank deficient. For closure, Wu specifies that
the volume integral of the vorticity field must be zero. Wu, Wu, Ma, and Wu [34] claim
that a constraint is needed to exclude spurious solutions that arise due to the fact that the
vorticity equation contains higher order derivatives of velocity. They use a pressure-based
constraint which requires a pressure poisson equation to be solved. Sarpkaya [27] uses a
constraint based on the requirement that the pressure be single valued on the boundary.
Koumoutsakos et al. also indicate that an integral constraint is needed to obtain a unique
solution; they use a constraint based on Kelvin’s theorem. Quartapelle, et al. [24], [25] in-
dicate that, in order to satisfy both normal and tangential velocity boundary conditions for
stream-function vorticity methods, vorticity created on the boundary must satisfy an inte-
gral constraint they derived. Thus, it is seen that numerous constraints have been proposed
for numerous reasons. By specifying an additional constraint, the problem becomes over-
specified. Using various techniques such as Lagrange multipliers, a solution can be ob-
tained, but it is only a least squares solution so that the boundary conditions are satisfied
only approximately (Wu, Wu, Ma, and Wu [34]).

A related issue concerns the well-posedness of the mathematical problems associated with
vorticity creation, which appears to be (but is not actually) over-specified. For example, in
two-dimensional flows only one component of vorticity is created, but there are two ve-
locity boundary conditions (normal and tangential components of velocity). Each of the
issues described above remains to be resolved.

Our point of view is that vorticity creation can be specified from purely kinematic consid-
erations. The point of departure for the present analysis is the formula by Wu and Thomp-
son [30], which will be shown to be a generalization of Helmholtz decomposition. It will
be shown that the vortex sheets have the same strength as indicated by Chorin and Ander-
son.

Wu and Thompson’s [30] formulation is not well-understood, and as a result, it has not
been widely used. One issue of interest is that the generalized decomposition is a vector
equation, and both Wu and Morino assert that only a single component of the equation
should be used to calculate the vorticity generated on a boundary. (Morino states that only
the normal velocity boundary condition is needed, whereas Wu allows for specification of
normal or tangential components.) The implication is that the components of the velocity
boundary condition depend on each other, which appears to contradict the general notion
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that the components of velocity boundary conditions are independent. It is shown that all
components are in fact independent, but are coupled by a jump in velocity on the bound-
ary, which is the key feature of the generalized decomposition.

The objective of this investigation is to implement the generalized Helmholtz decomposi-
-tion. The implementation is facilitated by showing that several important features are im-
plicit in the formulation. In particular, the reason that vorticity creation is not over-
specified becomes clear. In addition, the necessity for integral constraints are shown to
arise from discretization of the governing equations. That is, the analytical form of the
generalized Helmholtz decomposition satisfies the constraints implicitly, but discrete rep-
resentations do not. This suggests future work to formulate a discrete representation that
satisfies the constraint identically.

An important feature of the formulation is that it contains singular boundary integrals, and
by making use of certain physical interpretations, the nature of the singular behavior be-
comes clear, which further facilitates its numerical implementation. The formulation can
then be used to describe vorticity creation on boundaries.

This manuscript is organized as follows. First, the generalized Helmholtz decomposition
is presented including a physically-based derivation, and a description of how it resolves
the over-specification problem. Boundary integrals in the generalized decomposition are
shown to represent vortex sheets and volume sources outside the fluid. This interpretation
facilitates the formulation of the boundary conditions, which are described in detail. As an
example, the flow field in a lid-driven cavity is described using the new boundary condi-
tion formulation.




Mathematical Formulation

Vorticity is defined as the curl of the velocity field, u,
©=Vxu. (1)

Transport of vorticity in a constant density and constant viscosity fluid is described by the
vorticity form of the Navier-Stokes equations, e.g., Batchelor [2]

a_%)+ eV = (0o V)u+vV2e in the domain R. @)

The kinematic viscosity is v. Velocity bohndary conditions are denoted as
u = u, onthe boundary, S. 3)

In the course of solving Eq. (2), the velocity field, u , must be determined from the vortic-
ity field, @, by solving the coupled equations,

Vey =0,Vxy = @ in the domain R, 4)

with the velocity boundary conditions, Eq. (3). It is also necessary to describe the creation
of vorticity on boundaries. The formulation proposed herein which performs these two op-
erations is

c(x) ou(x)= ' G)

Vx [0(5) 6 () dR () +Vx [ I, ()4 () X1, (5,)1 G (5.1, dS (5,)
R S

-V [ 6@ - Vv j (—[7(x,) 1, (x,)]) G (% x,) dS (x,)
) hY

where D = V ey (which is zero for the incompressible flows of interest here), 7 is the
outward pointing unit normal vector on the boundary, and G (x, x) is the infinite domain
Green’s function. In two-dimensions,

G(xx) = ilog[ ! ] (6)

2n “llx-x|

and in three-dimensions,
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dmlx-x|"

Gxx) = @)

¢ (x) is atensor which arises from the singular behavior of the boundary integrals, whose
components depend on the location of the evaluation point x. The domain is denoted as R
(two- or three-dimensional), S is the boundary of the domain, x is a location in the do-
main, and a prime superscript denotes a variable of integration. Locations on the boundary
are denoted as x, .

100
¢ In the domain, ¢ (x) = {g 1 ¢l

001

000
* outside the domain, ¢ (x) = {0 ¢ of.

000

* on the boundary, the components of ¢ take on the value of the internal angle, di-
vided by 2n for two-dimensional flows, and the internal solid angle divided by
47 in three-dimensional flows. In any orthogonal, right-handed coordinate sys-
tem,

oa00
c(®) =000
00«

For example, on a smooth boundary of a two-dimensional domain, the internal
angle is T, so that a = 1/2. ¢ (x,) can be determined as described in APPENDIX
C. '

The boundary integrals in Eq. (5) contain the velocity boundary conditions. The tangential
velocity boundary condition is contained in the term A Xy, , and the normal velocity
boundary condition is the term 7 o i, . The quantity Y, denotes a vortex sheet which we
have chosen to represent the vorticity that is created to satisfy the velocity boundary con-
ditions. (We plan to investigate the possibility of solving for the vorticity field adjacent to
the boundary rather than vortex sheets.) A vortex sheet essentially specifies a vorticity flux
boundary condition as, following the work of Kinney, et al., [13] and [14],

15




(t+dn)
y, = J vixt) (AeV)o(xr)dr. @)

t

(see APPENDIX D) (although Wu, Wu, Ma, and Wu [34] suggest this is only an approxi-
mate solution).

The formulation presented by Wu and Thompson [30] can be obtained from Eq. (5) by set-
ting Y, = 0 and setting c (x) to the identity tensor. Similarly, Bykhovskiy and Smirnov’s
[5] formulation can be obtained by setting Y = 0, replacing 7 ® y, with /i ® Ay, replac-
ing 7 X u, with 7i X Ay (where Ay is an arbitrary velocity jump), and setting ¢ (x) to the
identity tensor.

In the following section, Eq. (5) is derived using a much simpler approach than Wu and
Thompson [30] or Bykhovskiy and Smirnov [5]. The objective of the derivation is to’show
that for two-dimensional flows vorticity creation is properly specified using only one com-
ponent of Eq. (5) (either the normal or the tangential component). This is true since as will
be shown, Eq. (5) is constructed in such a way that if one component of Eq. (5) is written

-(on the boundary) and solved for the vortex sheet strengths, then the other component will
be satisfied even though it was not considered explicitly. Thus, specification of normal and
tangential velocity boundary conditions do not over-specify the creation of vorticity on the
boundary.

1. Derivation of the Generalized Helmholtz Decomposition

The derivation of Eq. (5) begins with the classical Helmholtz’ decomposition of a vector
field. The classical formulation provides a method to recover a vector field from the curl
of the field and the divergence of the field. For example, a velocity field can be recovered
from the divergence of the velocity field D (x) = V ey and the curl of the velocity field,
which is the vorticity field. (Batchelor [2], Morino [19]) '

u(x) = Vx J@ (x)G(xx)dR(x) -V ID (%) G (% x)dR(¥) )
R, R,
Proper use of this equation requires that the vorticity field satisfies Ve @ = 0, as is re-
quired of any vector which is the curl of another vector. It is noted that the integration is
over the infinite domain; thus, to use the decomposition in a finite fluid domain, it is neces-
sary that, outside the fluid, ® = 0 and D = 0. This restriction is manifested in the con-
straint that @ ¢ # = 0 on the boundary of the finite domain. That is, if @ = 0 outside the
finite domain, then no vortex lines can cross the boundary, which implies that the normal
component of the vorticity on the boundary is zero, @ # ## = 0. Moreover, @ e 7 = 0 isa
condition for which the curl of the first integral (referred to as the Biot-Savart integral)
yields the vorticity. Related discussions on this topic are given by Batchelor [2], and by
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5
Edge of Fluid L
Inner Edge of Ry, T

=0

S+
Outer Edge of Ry, 4
Velocity Jump 4

4

Figure 1  Configuration of fluid and boundary domains, Ry and Ry,. The unit
normal vector 7 points outward from the fluid. The side of R,
adjacent to the fluid is denoted as S, and the other side of Ry, is
denoted as S™.

Lighthill, in Chapter 2 of Rosenhead [17].) It is also noted that Eq. (9) is arbitrary to with-
in an irrotational, incompressible velocity field, due primarily to the fact that the velocity
boundary conditions do not appear Eq. (9).

To derive a generalization of Eq. (9) that includes velocity boundary conditions, the infi-
nite domain is considered in Figure 1 to consist of a finite fluid region Ry, a small region R,
lying on the boundary of the fluid. The velocity field in the remainder of the infinite do-
main is required to be incompressible and irrotational. Consider the volume of the bound-
ary region to be defined by a thickness An and a surface area dJ,

R, = dS e An. (10)

We shall consider the limit as An approaches zero to form the boundary. The limiting pro-
cess also takes into account non-zero vorticity and velocity divergence, ®w#0 and
D #0 in Ry, The two sides of R, in Figure 1 are denoted S* and §°, where the “+” super-
script denotes a location that is an infinitesimal distance in the positive normal direction
from Ry. The “-” superscript denotes a location that is an infinitesimal distance in the neg-
ative normal direction from R,
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i x7/2 s+ '
l £e—=0
#

S ﬁX;Y/2

Figure 2 The velocity jump across a vortex sheet with strength y > 0. The
magnitude of the jump in tan +gent1al velocity across the shéet is 71 Xy,
with velocity —n Xy/2 onS™,and 2 Xy/2 on §. S* and S” denote the
two sides of the vortex sheet.

1.1 Vortex Sheets

For non-zero vorticity @, in the boundary region Ry, consider holding the quantity @_An
constant as the thickness is reduced to zero, and @_ approaches infinity,

y= lm @An (11)

@, oo
An—>0
fiew—0

where v is the strength of a vortex sheet. Note that the normal component of vorticity is
zero to satisfy the constraint that vortex lines cannot cross the boundary.

Applying this limiting procedure to the velocity due to @, in Ry, yields,

lim ijm xNVG(x,x)dR (X) —-)ij’y(xb)G(x x'p) ds (x,). (12)

The singular contribution of the above boundary integral at a particular point is shown in
Figure 2. (Kellog [11]) On S*, the velocity is only in the tangential direction, with magni-
tude —7 Xy/2; on §°, the velocity is in the direction opposite to the tangential direction,
with magnitude 7 x y/2. Thus, there is a jump in tangential velocity from S* to §°, with
magnitude -7 x7y.  Accordingly, the vortex sheet strength can be defined as
Y =AaXx (u, Ug, — U S~) The consistency of this definition can be seen if it is noted that
—fi X 7 X y 1s the tangential component of y ; then - Xy = A X [A X (u — U )] isa
jump in tangential velocity from S* to S. Since the vortex shcct strength is
Y=nX(u e’ S_) specification of u o and u - determines y.

18



-6/2

Figure 3  The velocity jump across a source sheet with strength ¢ > 0. The
magnitude of the j jump in normal velocity across the sheet is 0, with
velocity 6/2 on §*,and -6/2 on §. ’

1.2 Source Sheets

Now consider a region of non-zero velocity divergence D; in the boundary region R;,. Fol-
lowing a similar procedure as above, a surface distribution of a source ¢ is defined as

o = lim D An. (13)

D, — e
An—)O

Applying this limiting procedure to the velocity due to D, in R, yields,

Dlim VJDS ()G (x,x)dR(X) %VJC(E)G(E, J.C')JS (x,) . (14)
A;:: R

The singular contribution from the above boundary integral is shown in Figure 3. (Kellog
[11]) On S*, the velocity is only in the normal direction, with magnitude 6/2; on §, the
velocity is —0 /2, in the direction opposite to the normal direction. Thus, there is a jump
in normal velocity from S* to §°, with magnitude ©. Accordingly, the vortex sheet
strength can be defined as ¢ = 71 @ (u -u S+) . Therefore, specification of u o and u 5
determines ©.
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1.3 Generalized Decomposition

Adding the boundary integrals from the previous section to Helmholtz’ decomposition Eq.
(9) yields a generalized Helmholtz decomposition (in the domain),

u(x)= | (15) .

Vo) G ax)dR () + Vx [1(5) G (55,45 (z7)

’ R S

v j D (x) VG (3 5) dR (¥) - Vjcs (x,)G (%, dS (x,)
R S

1.4 Evaluation of Generalized Decomposition on the Boundary

The generalized decomposition is evaluated on the boundary to define the strengths of the
vortex sheets and source sheets in the boundary integrals. Topics regarding the well-pos-
edness of vorticity creation and the need for additional constraints are also discussed.
Hereafter, the flow is-assumed to be incompressible; i.e., D (x) = 0.

The decomposition is evaluated at a point on the boundary denoted by x, . For notational
simplicity, the velocity due to all vorticity in the domain, and all vortex sheets and sourc-
es, except those at x, , is denoted as u, (x,) -

) = (16)

V% j © (x) G (x,, x) dR ()
R

V[ 1) Gy ds ()

S(x, #x,)

Ry _[ 6 (x,) G (%, %, dS (x,)

S(x, #x,)

The restriction x, # x,' on the limits of the boundary integrals indicates that y, (x,) has
the same value at §* (x,) and S™(x,). That is, the velocity jump at x, is due to Y (x,)
and o (x,), and is not included in u, (x,) -
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The decomposition is evaluated on both sides of the boundary, S* and § to yield two
equations. The equations differ in the sign (+ or -) of the singular contribution from the
boundary integrals. (See Kellog [11], or consider the velocity induced by the sheets, as
shown in Figure 2 and Figure 3.)

For x, on S*,

e (1) = =37 (%) XY(x%,) +37.(%,) 0 (x) +¥, (x,) L an

For ggb’ onsS’,

ug (5) = 38 (%) X7(x) ~ 3 (1) 0 (x) +4, (x,) (18)

The first two terms in these two equations are the singular contributions to the velocity by
the vortex and source sheets at the point. The boundary is assumed to be smooth for this
discussion, hence the coefficients are 1/2.

At this point, values must be chosen for ¥, and y_ . Since u__ is the velocity at the edge
of the fluid, u U. should be the velocity boundary condition, y Ue = Up. To choose ¥, con-
sider that u_, = is essentially a reference velocity for the fluid. The most general refqerencc
velocity is u o = 0. This choice has other clear advantages, as discussed below.

Foru = u, and = 0:

s g

1) Values for Y.and G are given by
u, (x,) = A(x,) Xy(x,)-A(x,)o(x,). (19)

Thatis, 6 = ~fzey,, and y = -Axy,. This result can be obtained by subtracting
Eq. (18) from Eq. (17), substituting g, —u. = O0-y,, and noting that
~n(x,) XA (x,) Xu, (x,) is the tangential componcnt of U, -

2) The generalized decomposition yields the same equation on both S* and §°

—3R (x) XA (5) X1, () + 37 (5) T o] = w4, (x) (20)

Recall that -7 (x,) X7 (x,) X4, (x,) is the tangential component of u, - Eq. (20) can
be obtained by substituting u Ug, = 0 into Eq. (17), with 0 = —-fiey, and
Y = —AixXu, or, substiuting ¥ =y, into Eq. (18) with ¢ = -Aiey, and
Y = —fiXu,. Accordingly, Eq. (26) is an unambiguous definition of what it means to
evaluate thc decomposition on boundary; i.e., it does not matter whether the evalua-
tion is considered to be on S*or §".

3u o = 0 has special implications regarding the issue of over-specification of vorticity
creation by velocity boundary conditions. That is, the value of u g+ Can be chosen arbi-




trarily, but it will be shown that the choice # _, = 0 allows both components of the ve-
locity boundary condition to be satisfied simultaneously. To see this, first consider the
potential velocity field ¥ = V¢ outside the fluid domain, as determined from the
Laplace equation V2¢ = 0 and appropriate boundary conditions. The boundary con-
ditions must satisfy

jv(p-ﬁds:()andqu)o%dS:o. o en

S+ S+

The boundary of the entire domain is S*, and for V¢ g = 0, these constraints are ob-
viously satisfied, so a Laplace solution can be considered.

It will be shown that solutions to the Laplace equation have the property that if one of
the boundary conditions (77 ® V¢ or T e V¢ ) is zero everywhere on the boundary, then
the other un-specified boundary is determined to be zero everywhere on the boundary.

To show this, consider that if the normal velocity boundary condition, Vo ¢ /i = 0 ev-
erywhere on the boundary, and is also specified at infinity, it is well-known that
V¢ = 0 everywhere, including on S*,sothat Vo eT = 0 on S*. (Batchelor [2])

Similarly, the solution obtained by specifying the tangential velocity boundary condi-
tion Vo #T = 0 everywhere on the boundary is V¢ = 0, including Vd o7 = 0 on
S*. This can be seen by considering that V¢ ¢ T = 0 implies that ¢ = constant on the
boundary. Then, from the maximum-minimum modulus theorem (which states that
harmonic functions can have maxima and minima only on boundaries!), the solution
to the Laplace equation is ¢ = constant in the non-fluid domain. Thus, V¢ = 0, in-
cluding Vo o7 = 0 on S*.

Thus, it is proved that for the potential flow outside the fluid domain, satisfaction of
one component (normal or tangent) of the boundary condition as being zero implies
that the other component of the boundary condition is zero.

Now consider the separate components of the generalized decomposition, Eq. (5),
evaluated on the boundary. If the normal or tangential component of Eq. (5) satisfies
the normal or tangential component of u o = 0, the previous discussion indicates that
the unspecified component also satisfies u_, = 0. That is, specifying one component
of u, = 0 for Eq. (5) fully determines the velocity field. As a result, there is no over-
specification of vorticity creation even though there are more components of velocity
boundary conditions than unknown components of vorticity.

1. The maximum-minimum modulus theorem applies to closed bounded regions; i.e., the theorem
is not generally stated as applying to unbounded domains. However, as described by Wu [31] and
Morino [19], velocity boundary conditions at infinity can be properly represented by the boundary
integrals in Eq. (5) when the integrals are applied to a boundary whose location approaches infinity.
In this sense, all domains can be considered as bounded.
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6. The generalized decomposition implicitly satisfies the integral relationships that have

been used as constraint equations in previous analyses. These constraints are typically
indicate that the integral of the vorticity is zero over the infinite domain, as given by

J'@dR =0, 22)
R

]

This constraint can be deduced from the identity V e ® = 0, which implies that vor-
tex lines cannot end in space, and therefore must form closed loops. Solenoidality of
vorticity also shows that [@ e dA is the same at any cross section A of a vortex tube,
where a vortex tube can be defined in terms of the surface which none of vortex lines
cross. Since the vortex lines must be closed, vortex tubes must be closed, and since
j ®e* dA is constant at every cross section of the tube, the integral of the vorticity of a
closed tube is zero. Hence, since all vorticity must consist of closed loops, and the in-
tegral of the vorticity in any closed loop is zero, the integral of vorticity over the infi-
nite domain is zero. For two-dimensions, the integral of the vorticity in the infinite
plane must also be zero. The vortex lines also form closed loops, but with non-zero
curvature occurring only at +/- infinity in the direction perpendicular to the plane. In
the plane, the loops are straight and perpendicular to the plane.

This constraint is implicit in the generalized decomposition, as can be shown by con-
sidering the identity [15]

J(ny)dR::J(ﬁXy)dS (23)
B S

on the region enclosed by S*, and the region consisting of Ry the fluid domain, and R,
is the infinitesimal boundary region containing the vortex and source sheets. Since
4, = 0, the boundary integral in Eq. (23) is zero.

Now consider the volume integrals in Eq. (23). Let the velocity in the domain be given
as 4 = U, +ug+u. , representing the three terms in the generalized decomposition,
the Biot-Savart Law, the normal velocity boundary integral, and the tangential velocity
boundary integral. InR; VXy = @, VXy = 0,and V><157 = ( so that

j(v xu)dR = I@dR . (24)
R, Ry

In R, the theorem in Eq. (23) is invoked again so that




j(ng)dR: j (A1) dS 25)
R, (5%,5)

where the boundary integral is performed around the entire periphery of R; i.e., on

both $* and 5. On S+’L~’s+ = 0, so the boundary integral is zero. On 8™, y_ = u,_,
. » . . " . + S b
and the direction of integration is opposite that on S¥, so that
J‘ (Axu)dS = j(—ﬁxktb) ds (26)
($%,5)
~ Using Eqns. (24), (25), and (26), Eq. (23) becomes
J(de+j(—ﬁXz~4b)dS = 0. 27)
Ry
Using ¥ = -7 X u,, Eq. (27) becomes
J‘(de+J‘:de =0 (28)
R,
or,
J(de+ lim wdR = 0. (29)
@ — o
Rf An—0 R,
fiew—0

Eq. (29) shows how the generalized decomposition implicitly satisfies the kinematic re-
quirement that the total circulation be zero in the infinite domain. Accordingly, the need to
explicitly specify Eq. (29) as a constraint must arise from discretization of the generalized
decomposition. For example, discretizations based on point collocation and piecewise
constant boundary elements do not generally satisfy Eq. (29). Failure to satisfy Eq. (29)
results in erroneous solutions. (The vorticity rapidly approaches numbers larger than al-
lowed on computers.) To satisfy Eq. (29), it is specified as an additional constraint, result-
ing in too many equations, for which only a least squares solution can be obtained. The
typical result is that the velocity boundary conditions are not satisfied as well as might be
desired. These observations are presently motivating us to construct numerical methods
that satisfy Eq. (29) implicitly.
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2. Vorticity Creation

The generalized decomposition provides a mathematical prescription for the vorticity cre-
ated to satisfy velocity boundary conditions. To begin, consider that velocity boundary
conditions and vorticity fields cannot be specified arbitrarily. For an arbitrary vorticity
field, and an arbitrary normal velocity boundary condition, 7 ® y, , the generalized decom-
position determines the tangential velocity in terms of vortex sheet strengths Y on the
boundary, as denoted in Eq. (30),

u(x)= , (30)

Vx J@ ()G (% x)dR(¥) +V X jy(xb') G (x,x,)dS (x,)
R 8

v J' [ (z,) 21, (5016 (2.5,) d5 (1)

The unknown y can be determined by writing the tangential component of Eq. (30) at dis-
crete locations on the boundary and solving the resulting set of linear equations. The tan-
gential velocity on S is A Xy which is not generally the specified tangential velocity
boundary condition.? The vortex sheet Y. however, contains the “boundary condition vor-
tex sheet” Yoo = - Xu,, with the excess vortex sheet strength Y. =YY, representing
the vorticity. that is created in the fluid.

From another point of view, the tangential velocity boundary condition is used to partition
Y into two vortex sheets: one which remains outside the fluid, yb , and the other which en-
ters the fluid (representing vorticity created in the fluid Y, =% ) Figure 4 shows the
configuration of the two sheets. The fact that the tangennal velocny boundary condition is
satisfied at the interface between the two sheets can be seen by considering that for the ve-
locity Y, as defined in Eq. (16), the tangentlal component of Eq. (30) on the boundary St
yields

(31

For the configuration shown in Figure 4b, the tangential velocity on the interface between
the two vortex sheets is

u =—f1><yc/2+iix;ybc/2—ﬁxﬁ><z~41 (32)

T

Substituting Y. =YY, yields

2. Although only the tangential component of was Eq. (30) solved, the normal velocity boundary
condition is enforced since y,, = 0, as discussed in item 5 of the previous section.
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-Aixy/2 —— s+ “ S+
nxy, /2 Cybc=—nxgb
Y —AXY /2 --—
- 'Zc_'!_’-y-bc
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Figure 4  Partitioning of a vortex sheet Y which satisfies zero tangential velocity
: on S* into a boundary condition vortex sheet Yo = —fi X u, , and a sheet
representing the creation of vorticity in~the fluid, v = y-v, .
Tangential velocities are shown, with the velocity u, is defined i 'ﬁf]

(16).

ue = ~AX (Y=Y, )/2+AXY, /2-AXAXY (33)

Substituting Eq. (31) into Eq. (33) yields

= AX (-AXu,) o, 34

(35)

where the operator —#i X /1 X ( ) extracts the tangential component of any vector. This ex-
ercise shows that the tangential velocity boundary condition is satisfied on the interface
between the two sheets. Substituting y = 7y, +1(C and y, = —Axu, into Eq. (30) Eg.
(5). '

This formulation provides a mathematical basis for the classical approach suggested by
Lighthill [17]. In Lighthill’s approach, a potential velocity field is added to the velocity
field induced by vorticity in order to satisfy the normal velocity boundary condition, but
without satisfying the tangential velocity boundary condition, in general. The deviation
from the tangential velocity boundary condition, or “slip” velocity is then eliminated by
adding a vortex sheet to cancel the slip velocity. Although this approach can yield correct
results, to some observers, it appears to be essentially ad hoc. Moreover, it is not generally
recognized that both components of the velocity boundary condition are satisfied simulta-
neously. For example, in Chorin’s algorithm, vortex sheets are added to satisfy the tangen-
tial velocity boundary condition, and image sheets are used to satisfy the normal velocity
boundary condition. ’
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The generalized decomposition shows that in order to satisfy the normal velocity bound-
ary condition, a vortex sheet Y must exist on the boundary. In Lighthill’s approach, the slip
velocity Hoip which occurs after the normal velocity boundary condition is satisfied is
u, ko= Xy,ory=-fAXuy %. For zero tangential velocity, this result agrees with
the results of Chorin [6] and Anderson [1]; i.e., the slip velocity u, slip is eliminated by
adding vortex sheets of strength Y = —AXugy, 1. Note that the vortex sheet at a boundary
location does not by itself eliminate the slip vef ocity; the vortex sheet at that location elim-
inates only half of the slip, and the other half is eliminated by the motion induced by the
other vortex sheets and the previously existing vorticity.

An additional feature deduced from the generalized decomposition allows non-zero tan-
gential velocity boundary conditions to be specified, and shows that non-zero tangential
velocity boundary conditions are satisfied on an internal interface of the vortex sheet, in
which case, only a portion of the vortex sheet is vorticity created within the fluid. The tan-
gential velocity boundary condition therefore specifies how 7Yy is to be partitioned, thus
specifying how much vorticity is created in the fluid. B

Finally, it is noted that the boundary integrals in the generalized decomposition are not
merely a representation of the traditional potential velocity field V¢ . Consider that V¢ is
constrained by chp *%dS = 0, whereas u, is constrained more generally by
J@dv = [Axug,tdS. If @ = 0, this constraint simplifies to the traditional constraint for

potential flows [A xu,,,%dS = 0.

3. Example of Non-Uniqueness If the Vorticity Constraint is Violated

Consider a two-dimensional vorticity field that does not satisfy the constraint that the area
integral of the vorticity must be zero. It will be shown that if this constraint is not satisfied,
the velocity field outside the vorticity field has a different solution depending on whether
it is calculated using the Biot-Savart law or a Laplace solution. This inconsistency is elim-
inated by including the boundary integrals in the generalized decomposition.

Consider a two-dimensional, circular region of constant vorticity, ®_, contained within a
domain with radius R,. This vorticity field does not satisfy Eq. (22),

j(poﬁAdA = @, R2#0. (36)
A

The velocity field specified by the Biot-Savart law includes an azimuthal velocity compo-
nent u
e E4

(DO
ug = ?r forr<R, @37

and
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Figure 5  Radial variation of the azimuthal velocity field induced by a circular
vortex sheet (radius R) with a uniform strength of unity. The velocity
induced inside the sheet is 0. Outside the sheet, the velocity varies as 1/r,
the same variation as the velocity induced by a point vortex atr = 0.

® R2
ug = -éi’—rf for r2R, (38)

The Biot-Savart law specifies that the radial velocity is zero everywhere.

Now consider the boundary of the domain to be r = R, and calculate the potential velocity
field in R, <r<eo, by solving V2¢ = 0. On r = R_, the radial velocity is zero, so
Voesn = 0. Similarly, Voe7 = 0 is assumed on r = 0. The unique solution is
V¢ = 0, which includes the zero tangential velocity on » = R_, which differs with the
solution obtained from the decomposition.

In reality, the Biot-Savart solution is incomplete since the effects of boundary conditions
are not included. In particular, the boundary integral containing the tangential velocity
must be included. The motion induced by the boundary integral is shown in Figure 5 for
unit vortex sheet strength. In » > R _, the outward pointing normal is toward the center of
the circle, so the tangent direction is counterclockwise. Since the tangential velocity on the
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boundary is w R _/2 (clockwise, from Eq. (38)), the result in Figure 5 must be multiplied
by -w,R_ /2. Adding that velocity field to the field given by Eq. (38) yields the correct
velocity field; i.e., the velocity outside r2 R, is zero since the motion induced by the
boundary integral is equal and opposite the motion induced by the vorticity field. For this
problem, the solution in the domain r <R is unaffected by the boundary integral.

Lastly, consider the integral constraint Eq. (29). Y = ~®_R_/2 in the line integfal, so that
éyds = (-w,R./2)  (27R,) = -0, nR? .
The circulation of the domain vorticity is,

R

j(gdA = 21tJ.(oordr = ®,TR?

0

Thus,

jg_)dA +§1(ds =0

as is necessary to satisfy the constraint on vorticity, Eq. (29).
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Fractional Step Numerical Formulation

1. General Solution Procedure:

As mentioned earlier, the transport of vorticity in a constant density and constant viscosity
fluid is described by the vorticity form of the Navier-Stokes equations,

%‘_f +weV)e = (weV)u+vV2ip in the domain R. (39)

Vorticity creation on the boundaries and outflow velocities are determined by evaluating
the generalized decomposition on the boundary, Eq. (5). The flux of vorticity on bound-
aries is specified using Eq. (8). In the domain, the velocity field in the domain is obtained
from the vorticity field and the velocity boundary conditions using Eq. (5) with D = 0.

Eq. (39) describes simultaneous inviscid transport and viscous transport, and could be
solved using finite element or finite difference methods. However, inviscid transport can
be greatly simplified for vorticity transport so, inviscid transport and viscous transport are
considered separately. Inviscid transport is described by

%‘;-)+(§_1°V)@= (weV)u (40)
which, according to Helmholtz’ theorem, is also described by moving vortex lines at the
local fluid velocity, which is described in a Lagrangian reference frame by,

dx (g, 1)

=2 = u(x(en) @n

where x (¢, t=0) = ¢ is the starting point of a point on a vortex line.

This is the basis for Lagrangian vortex blob methods, and is closely related to the basis by -
which momentum transport is described in many shock wave physics or “hydrocodes”
used to model high pressure (mega-bars), high velocity (km/s) phenomena. See Benson
[3]. Hydrocodes describe momentum transport by solving,

2 F :
d_"'x' =4 = Z.l (42)
dr? m _

wherein Eq. (42) describes the motion of points on discrete volumes, which contain quan-
tities to be transported, such as mass and energy.

The algorithm used in hydrocodes has been adapted to solve Eq. (41) to describe vorticity
transport. Two other investigations are also in progress regarding this approach, and have
had encouraging results. See Bless and Chacon [4], and Russo and Strain [26].




Diffusion of vorticity into the domam and diffusion of vorticity within the domain are de-
scribed by solving

QU
e

(43)

&
=~ |2
I
<
<
[\>]
g

with the boundary condition

P . ~C

vineVw) = i

To briefly summarize the algorithm, first, the vortex sheet is determined which satisfies the
normal velocity boundary condition. Second, the vortex sheet is moved to lie inside the
fluid, such that the tangential velocity boundary condition is also satisfied. (This step re-
quires no effort--it’s purely conceptual.) Third, the vorticity field is transported inviscidly.
Fourth, viscous diffusion of the vorticity field is described, including a flux of vorticity
from the boundaries. At this point, the velocity boundary conditions are no longer satis-
fied, so that new vortex sheets must be found on the boundary, which begins the repetition
of the algorithm.
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Example of the Algorithm: Impulsively Started, Driven Lid Cavity

Moving Lid B. C. on fluid: u; =-1,u, =0

0,1 1,1
Ly A
' /’
/ ¢
¢ ’
/ /
U[=O,un=0= ‘ ut=O’UH=O
’ 4
Y/ ¢
‘ A
/ 7
¢ ’
/ /
©, O;IIIII l§lllllllt:')l/( 1.0)
ut = 0, l]-n -

Figure 6  Schematic of a driven-lid cavity. The top of the cavity moves from
left to right, imparting motion to the fluid via the no-slip boundary
" condition. The tangential velocity on all other boundaries is zero.

In addition, the normal velocity is zero on all boundaries.

The incompressible flowfield in a two-dimensional cavity with a moving lid is simulated
to demonstrate the introduction of vorticity into fluid using the generalized decomposi-
tion. This is intended to be a demonstration, rather than a validation, of the proposed algo-
rithm, although the results presented fall within the ranges of previously reported
solutions for a Reynolds number of unity. A validation of the algorithm would require
comparisons of solutions over a wide range of Reynolds numbers, which has not been
completed at this time. This demonstration merely shows the algorithmic process by
which vorticity is introduced into the fluid. The Lagrangian transport algorithm in the hy-
drocode ALEGRA was modified to perform this simulation. Steady-state results were ob-
tained by solving the transient equations until steady-state was reached.

For this preliminary calculation, constant, discontinuous boundary elements were used to
represent the boundary integrals, with a single point collocation scheme for evaluating the
vortex sheet strengths. For this simple representation, the velocity boundary conditions are
satisfied only on average over an element, and the integrals constraints are satisfied only to
within a few percent. As discussed below, however, this simple scheme yields results that
agree with calculations from previous analyses. Thus, we view this simple and not very
accurate scheme as a preliminary numerical validation of the generalized decomposition,
and are presently developing more accurate schemes, including a Galerkin weighted resid-
ual method.
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0,0 —»x

Figure 7  Velocity vectors and vorticity contours for a lid-driven cavity, fora
Reynolds number of unity. The cavity is square, each side has unit
length, the lid motion is left to right, the grid is 10 X 10, and the
center of the primary vortex is x,, = (0.5, 0.754), which is within
the range of previously reported results :

The major feature of the flow field in a lid-driven cavity is the recirculation motion shown
in Figure 9. (The flow field is generally no_n%ymmetric, except at low Reynolds numbers,
and smaller recirculation regions, or Moffatt eddies [18] occur in the corners.) This prob-
lem has been used as a test of the ability of Navier-Stokes codes to resolve recirculating
motion (see Olson [22],Winters and Cliffe [29], and Ghia, et al. [8]. A principal quantita-
tive diagnostic is the location of the center of the largest recirculation region
Xy = (xy»¥y) . As summarized by Olson [22], for a Reynolds number of unity, in a
square of unit width and height, the center of the recirculation region lies at x,, = 0.5, and
0.794 2 y,, 2 0.75 for discretizations ranging from 10 X 10 to 101 X 101, with no apparent
dependence on discretization, for a number of analyses. Using the proposed vorticity for-
mulation with a 10 X 10 grid, the vortex center obtained is Xy = (0.5, 0.754), which is in
the range of previously reported results. Velocity vectors and lines of constant vorticity are
shown in Figure 7.

As mentioned earlier, the objective of this discussion is to describe the process of vorticity
generation at boundaries. The results shown in Figure 7 were obtained by solving the tran-
sient equations until steady-state was reached. The initial condition is

4 (x,0) = 0 inthe domain (and, implicitly @ (x, 0) = 0)
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and the boundary conditions are

fiey, = u, = 0 onall boundaries (impermeable boundaries)

and

Tey, = u = -1 onthelid

T

and

A

T ey, = 0 onall other surfaces.

This problem is mathematically ill-posed, as are all impulsively-started problems. To see
this, consider Stokes’ theorem,

J ©oh,dA = sﬁqus . | (44)

The line integral has value -1 since the tangential velocity is -1 over the lid length which
has unit length (the tangential velocity is zero elsewhere). In order for the equality in Eq.
(44) to hold, vorticity must be added to the fluid. If this problem were being numerically
simulated using a velocity-pressure formulation of the Navier-Stokes equations, a vortex
sheet would occur on the boundaries of each wall after the first time-step, which would
render the problem well-posed. (See Gresho [9] for a description of the vortex sheet that
forms in impulsively-started flows.) In a velocity-vorticity formulation, we must explicitly
determine the nature of the vortex sheet associated with the initial condition, and in doing
s0, explain (kinematically) its formation.

As discussed previously, the tangential velocity boundary condition can be viewed as a
vortex sheet with strength Yoo

= -AxXy, = -AX (upa+ul) = —uk = k.

U =~1

Y,

c

Att=0, Yoo induces non-zero normal velocities on the side walls of the cavity, thus vio-
lating the normal velocity boundary condition, as shown in Figure 8. The addition of
Y, = —k on the driven lid, as obtained by solving Eq. (5), induces equal and opposite nor-
mal velocities on the cavity side walls. (see APPENDIX B for analysis of a 1 X 1 discreti-
zation.) Thus, the normal velocity boundary conditions are satisfied, and the total
circulation of the flow is zero, Yot Y. = 0, as required. Additionally, with Y, and Y,
superposed, the velocity in the cav1ty is zero, which also satisfies the initial conﬁmon for
velocity.

If not for viscous diffusion, there would be no further evolution of the flow. Viscous diffu-
sion, however, injects circulation from Y, into the fluid. With the spatial separation of cir-
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Figure 8  a) Motion induced by the vortex sheet which represents the tangential
velocity boundary condition for the lid-driven cavity. The normal
velocity induced on the side-walls and lid violates the normal velocity
boundary condition, thus making the initial condition ill-posed. b) The
additional vortex sheet obtained using the generalized decomposition
cancels the motion induced by the boundary condition to obtain a well-
posed problem. '

culation associated with y from the circulation associated with ¥y » DON-ZEr0 velocities
are generated in the fluid. As a result, the velocity boundary conditions are no longer satis-
fied (on any of the boundaries). In order to satisfy the boundary conditions, new vortex
sheets are solved for on all the boundaries, and are diffused into the domain, as before. In
this way, the evolution of the flow is described numerically.

In the course of obtaining the solutions, Stoke’s theorem was not satisfied exactly after the
new vortex sheets were determined. This is in spite of the fact that Stokes’ theorem is sat-
isfied analytically by the generalized decomposition. The non-zero “residual” for Stokes’
theorem essentially is an indication of discretization error. In particular, the generalized
decomposition is written at the mid-point of each boundary element. As a result, the
boundary condition is satisfied at the mid-point of each element, but not necessarily at oth-
er points on the element. For example, consider a different problem in a unit square in
which the initial condition is that the vorticity field has a value of unity throughout the do-
main, and all the boundaries are motionless and impermeable. The tangential velocity in-
duced by the vorticity at the midpoint of each side is approximately 0.55, and decreases to
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0.37 at the corners. If a 1 X 1 grid is used (the coarsest grid possible), and the evaluation
point is the midpoint, then the vortex sheet created on each side satisfies the boundary
condition at the evaluation point to within machine precision at the midpoint, but the
boundary condition is satisfied to only 1 - 0.37/0.55 = 30% at the comners. With errors this
large, the numerical solution overflows at some short time. Of course thls error decreases
rapidly with finer dlscrctlzatlon

Two approaches are being considered to reduce the discretization error. First, the residual
to Stokes’ theorem is subtracted on an area-weighted basis from the vortex sheets created
‘at each time step. This approach was used in the results presented here, and appears to
yield good results with little computational effort. :

~ Another approach is to require that the boundary condition on €ach element be satisfied in
an average sense. That is, instead of writing one component of

ub = .]f((.‘.)’ I;.‘b: Yc)

at a point on each boundary element and solving for . on the element, as done in this
work, the equation for each element might be one component of a vector function

luy —f(@u,,v)]ds = 0

element

To test this approach, we are writing a Galerkin, weighted residual boundary element for-
mulation. At this early stage, a Galerkin approach appears to have the advantage that the
near-singular behavior of the generalized decomposition on boundaries is mollified by the
additional integration.
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Summary

A generalization of Helmholtz’ decomposition is used to formulate velocity boundary
conditions for vorticity forms of the incompressible Navier-Stokes equations. The gener-
alized decomposition is obtained by requiring the velocity field outside the fluid domain to
be zero. This solution matches a solution to a Laplace equation for the velocity potential.
This matching procedure requires the use of singular forms of vorticity and velocity diver-
gence just outside the fluid; i.e., on the boundary of the fluid. The strength of these singu-
larities is specified in terms of the velocity jumps across them. It was shown that it is
consistent to specify the velocity on the fluid side of the singular forms as the velocity
boundary condition, and the velocity on the non-fluid side of the singular forms as zero.
The resulting formulation allows all components of the velocity boundary condition to be
specified simultaneously. Moreover, it was shown that a single (normal or tangential)
component of the boundary velocity vector is sufficient to determine the vorticity generat-
ed in the fluid that satisfies the velocity boundary conditions.

The generalized decomposition also satisfies implicitly the integral constraint that the total
circulation in the domain must be zero. Thus, the need to specify the constraint explicitly
arises from discretization of the governing equations. This suggests that discrete formula-
tions should be developed to satisfy the integral constraint implicitly, in much the same
way the many numerical methods to solve transport equation have been developed to sat-
isfy conservation principles. :

The ‘generalized decomposition provides the basis for a no-slip boundary condition in
which velocity boundary conditions are satisfied by the creation of vorticity in fluid, adja-
cent to the boundary. The unknown vorticity is determined from in the form of a vortex
sheet, from which a diffusive flux of vorticity into the fluid is determined.

The same formulation can be used to determine inviscid flow fields, wherein the vorticity
on the boundary (in the form of vortex sheets) does not diffuse into the fluid, but instead
represents a slip velocity.

The use of ALEGRA’s Lagrangian step and remap capability to solve the inviscid trans-
port equation for vorticity provides an accurate formulation to describe incompressible
transient flows. The high accuracy and ALEGRA’s interface reconstruction algorithm is
expected to be particularly useful in describing transient instabilities in coating flows.
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APPENDIX A: Analysis of the Generalized Decomposition

To gain a better understanding of how to use the generalized decomposition, consider the
divergence and the curl of the decomposition. If the velocity jump on the boundary is Ay,
then

()= Vx [0()G @) dR ()

Vx [ [7(x,) xAv(5,)1G (5, 1) dS (z,) | 45)
3

VG x) (A (x,) »Av(x,)145 (x,)
3

Upon taking the divergence (where V operates only on functions of x, not functions of
x'), the first two integrals are zero identically, yielding

Ve u(= [V26 (%) (7 () * Arx)]dS (1)) 46)
S

The Green’s function is defined so that its Laplacian is,

VG (x,x) = -3(x-%) (47)

where 8 (x—x') is the Dirac delta function. For x restricted to the fluid domain (not in-
cluding the boundary), the delta function is zero, so

Veyu=20. (48)
To satisfy the divergence theorem,
_[V-gdze - jﬁ-gds. (49)
R s

for incompressible flows, the condition



j'[ﬁoAg]ds =0, | (50)
S

must be satisfied.

Now, consider the curl of Eq. (45) for the purpose of ensuring that Vxyu = @, which is
necessary for consistency. Using the identity (for any vector A)

Vx (VXA) = —V24+V(VeA) (51)

the curl of Eq. (45) can be expressed as,

V % ]
-J‘- () V232G (x,x)dR () + VJV * {w(x)G(x 1) }dR(X)
R R

- f [4 (x,) XA (x,)] V2G (x, ¥',) dS (x,) 2)
S

#V [V {10 ) x By (1) 16 (5 ¥,) 1S (5,)

where the curl of the source (normal velocity) integral is zero identically. Using Eq. (47),
in the first and third integrals, and the divergence theorem on the second integral,

Vxu=

® () —Vj[@(a.c') 716 (x5) dS(x)
Ky (53)

V[V (1 (1) xBr(5)]) G (5%, 5 (5,)
S

The integrand in the last integral is the divergence of a vortex sheet of strength,
Y = i X Av , which is zero identically. The next to last term is zero since @ = 0 outside
the fluid domain, which implies that no vorticity crosses the boundary, or equivalently,
@e# = 0 onthe boundary.

Thus, the result of this analysis is that
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VXxu = . (54)

Boundary conditions that are compatible with the vorticity field must satisfy the integral -
identity,

JVngV - jﬁxgds, (55)
1% S
or, for system of interest,
IcpdV - fﬁxAgds : (56)
v S

The conclusion to be drawn from this analysis is that the decomposition Eq. (45) satisfies
Vey = 0 and VXxuy = @ independent of the velocity boundary conditions. As a result,
the velocity boundary conditions must satisfy certain constraints, as given by equations
(50) and (56).
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Figure 9  Schematic of a driven-lid cavity. The top of the cavity moves from
left to right, imparting motion to the fluid via the no-slip boundary
condition. The tangential velocity on all other boundaries is zero.
In addition, the normal velocity is zero on all boundaries.

APPENDIX B: Example of Vorticity Creation: Lid-Driven Cavity

As an example of how Eq. is used to generate vorticity on boundaries, consider the flow
in a lid-driven cavity, as shown in Figure 9. The lid of the cavity is impulsively started,
and is the only source of motion in the fluid. The initial condition for the fluid is

' u (x,0) = 0 in the domain (and, implicitly ® (x,0) = 0)
and the boundary conditions are

fiey, = u, = 0 onall boundaries (impermeable boundaries)
and
Tey, =u, =-1 onthelid

and

A

Tey, = 0 on all other surfaces.

As stated, this problem is mathematically ill-posed. To see this, consider Stokes’ theorem,




n - normal unit vector pointing away from fluid

A
Domain Boundary

BoundaryVZ
Jump i e—0 .
v, srrsrsrrsrs Edge of Fluid

Vortex Sheet Y ; e->0

Figure 10 Configuration of boundary velocity jump and vortex sheet near the
boundary of the cavity lid. The vortex sheet lies in the fluid, whereas
the boundary jump occurs in the zero thickness region between the
edge of the fluid and the boundary.

[oon,an = fu.ds . 57)

A

The line integral has value -1 since the tangential velocity is -1 over the lid length which
has unit length. In order for the equality in Eq. (57) to hold, vorticity must be added to the
fluid. If this problem were being numerically simulated using a velocity-pressure formula-
tion of the Navier-Stokes equations, a vortex sheet would occur on the boundaries of each
wall after the first time-step, which would render the problem well-posed. In a velocity-
vorticity formulation, we must explicitly determine the nature of the vortex sheet associat-
ed with the initial condition. '

Eq. isevaluatedfor V., = 0,sothat Ay = 0- V. = -V . The objective of this analy-
sis is to determine the strength of the sheet on each surface of the cavity. The configuration
of the velocity jump Av and the vortex shcet is shown in Figure 10. Performing the curl
and gradient operations, setting i X (-V_) = -(%T e Vs Yk = —u, k where u. is the tan-
gential velocity boundary condition, andg settmg w = 0 (the 1n1t1al condmon in the do-
main), yields the operational equation to determine the strength of vortex sheets,
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1 R 1 |
il’!b ('Zb) = —-n ("x-b) X iYCb (Eb)

1 [l x,) [ (x5, x5 - 0y =¥ 1]
ZTCS lib“'-’-cbllz

das (x,)
1 (4, (,_)gbv)»[(xb*xb')j— (yb—yb')'{] (58)

+_._.
2m [ — 2]

ds (x,)

1o, () [ -x,) i+ 5= )]

+__
2m S %,

ds (x,)

A crude discretization is assumed to allow hand calculation of the vortex sheet strengths.
Each vortex sheet is assumed to be uniform over each surface of the cavity, and represent-
ed by a constant boundary element whose node is at the mid point of each cavity surface,
as shown in Figure 9. For this coarse discretization and a single point quadrature, the dis-
crete terms in the integrand of Eq. (58) have the values

X=X) A5 = +1and 2=Y) A5 = 41,
|’~‘b - l‘b'lz be - Ebllz

with the + or - depending on the two points being considered.

First, the normal component of Eq. (58) is considered at each of the node points, 0 - 3 (see
Figure 9). '

Yep (;’.Cb') [(xb _xb')} - (yb —yb') ;]

% - %)

S0 ) = Ax) ¢35 | 45 (x,)
A)

+i1(x,) ® ds (x,)

56 =" (59)

_l—J‘-—MT (.Zfb') [('xb —xb').l]:- (yb"’yb')ﬂ
2n ’
hY

—u, (x,) [, =%,V T+ (v, = ¥,)7]

. I-Kb - -.’fb'lz

o 1
+(x) o 5=
S

ds (x,)
+ (1) o [-2 () %37, ()]

Denoting a quantity at node i with the subscript i, Eq. (59) evaluated at node O (the bottom
~ of the cavity, x=1/2,y =0), is
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%“n,o =% (0) +v, (1) +7,(0) +v;(-1)

+u1’0(0) +u1,1(1) ‘”‘:,2(0) +u1‘3(—1)'7

+u, (=1 +u, ,(0) +u, 5(~1)

Note that although this is the normal component of Eq. (58), both normal and tangential
velocity boundary conditions are included. This aspect is an advantage over other ap-
proaches in which normal and tangential boundary conditions are specified serially, result-
ing in the so-called over-specification problem wherein (in two-dimensions) there are two
boundary conditions, but only one component of vorticity to satisfy them. In the present
formulation, normal and tangential velocity boundary conditions are spccxﬁed simulta-
neously, thus overcoming the over-specification problem.

Returning to the problem at hand, the only non-zero velocity on the boundary is the lid ve-
locity u, ,, thus the above equation simplifies to

Node 0: 0 = v, - ;. (60)
Evaluating Eq. (58) at the other three node points results in the following equations.
Node I: u, = ~Y,+7,
Node 2: 0 = -y, + 7,
Node 3: -u_ = 7v,-71,
Notice that the equations for nodes 0 and 2 are linearly dependent, as are the equations for

nodes 1 and 3. Thus, y; cannot be determined from these equations. If this set of equations
is supplemented with a discrete form of Stokes’ theorem Eq. (57)

Yot Y1+ Y T3 = U, (61)

the rank of the system increases to 3, but a rank of 4 is needed to determine ;. The normal
velocity constraint Eq. (50) is satisfied implicitly, thus it offers no help.

Having failed at finding y; from the normal component of Eq. on the boundary, a similar
procedure is attempted with the tangential component of Eq. on the boundary,
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| ¥(x) [(5,=%,)5= 0, -3,)1]
24 (%) = 1) '21r." =% B
S
oy o L[ [Gp=2) - 0,30 (62)
+1 (x,) MJ -5] (%)
J ,
+%YC(;Z,)

Multiplying both sides of the equation by 27, the equations at the nodes are:

Node 0: u

PR (1t S Tt Ol £

Node 11 u, = Y, + oY, +7,+7;
Node 2: mu, = Y+, + XY, + ¥,
Node 3: u, = Y, +vY, +Y,+ Vs

Note that if the normal velocity boundary conditions were non-zero, they would be includ-
ed in this equation set, so that the solution would satisfy both the normal and the tangential
velocity boundary conditions.

In matrix form, the set of linear equations is,

g111|%f |*%
1l 1f[h) 2 |* 63)
11=w1 'Yz TCMT
111m _’Y?.’- -ut-
The solution to Eq. (6'3) is
70=71='Y3=O972=u1 ' (64)

This solution specifies that a vortex sheet lies just inside the boundary of the fluid adjacent
to the lid of the cavity. The velocity induced by the vortex sheet cancels the motion im-
posed the motion of the lid, so as to obtain the initial condition that the fluid is initially
motionless.

This solution also satisfies the normal component equations, Egns. (60), and Stokes’ theo-
rem, Eq. (61), thus providing confidence that the overall formulation is correct. Note that
if Stokes’ theorem is used to replace any of the equations, incorrect answers are obtained.
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The solution Eq. (64) also represents the situation if the flow was inviscid. Our interest is
in viscous flows, however, in which the vortex sheet diffuses (as a result of viscosity) into
the domain. Essentially, vorticity diffuses into the domain and then must be considered in
the area integral of vorticity in the domain. New vortex sheet strengths can then be calcu-
lated as responses to the vorticity in the domain and the velocity boundary conditions.
These new vortex sheets will generally have non-zero strengths, and as they diffuse into
the domain, they correspond directly to the aforementioned vortex sheets observed in nu-
merical simulations of the velocity-pressure form of the Navier-Stokes equations.

To continue the simulation, the vorticity in the domain would be transported according the
vorticity form of the Navier-Stokes equations, which we consider in fractional steps of in-
viscid transport (which is specified by solving dx/dt = u), and viscous transport, includ-
ing the diffusion of the new vortex sheets into the domain. In this way, the time evolution
of the vorticity field, and the velocity field in the cavity is simulated.
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APPENDIX C: Calculation of Coefficients on the Boundary

The general expression for a velocity field in terms of its vorticity field and velocity
boundary conditions is,

cwu = [EE

A

-x')
12

¢

dA (x') (65)

¢

) J, [, () *A (®,)1 -3,) + [, (5) XA ()] X G-5) 5,)
§

2nfx-x,)?

In general, c is a tensor. In the domain, Cjj = 1. Outside the domain, Cjj = 0. On the bound-
ary, c;; depends only on the geometry of the boundary. In x-y coordinates,

cu = | o {“x N (66)
Cyx Cyy| [My

The values of Cjj in Eq. (66) are determined in the section that follows. In normal-tangen-

tial coordinates,
c.c.llu
cu = nn “nt n , (67)
C‘Cn CTT u’t

In section 2, the values of each component in Eq. (67) are determined in terms of the coef-
ficients in Eq. (66).

It is shown that

n ('gb,) ¢ ('—x-;b_lcb,) ’
Cox = Cpy = Cpp = Cpp = _J anzb—zb’l —dS (x,7) (172 on smooth surfaces)
and
ke [A(x,) x (x,—-%,)] )
yx = Cxy T Cp T Cpe T -J 211?[)6 —x '|2 ds (z-cb)
S ""b ""b

(0 on smooth surfaces)




1. Determination of ¢;; in x-y Coordinates

¢;; are independent of the velocity field. Thus, to determine cj;, any flow field can be con-
sidered, but a uniform flow is particularly useful. In a uniform flow, there is zero vorticity,

o =0.

The x-y components of velocity and the normal unit vector are,
U, = iu +ju,
ho=in +jn,

Substituting (68), (69), and (70) into Eq. (65) yields

ds(x,")

{Cu Cx{l [ui _ jZnbe-—xb T
C - c u,
LY ¥y ¥ n dS(~b)

janxb -X, lz

where
N =n(x-x)+n,(y-y) =ae (x-x)
{=n(-Y)-n(x-x) = ko [Ax (x-x)]

Foru, = 1 and Uy, = 0, the x-component of Eq. (71) reduces to

.. = _J'n().cb) * (x,—x%,)

ds (x,’

4

A

and the y-component of Eq. (71) feduces to

I’é. A ’ _ ’
‘,, = _J- [7(x,) X (x,— %, )]ds()!b,)

S znl)fb B Eb’l 2
Foru, = 0 and u, = 1, the x-component of Eq. (71) reduces to

cyy = Cxx
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and the y-component of Eq. (71) reduces to

Coy = ~Cyy- an

2. Determination of ¢;; in Normal-Tangential Coordinates

The results of section 1 will be transformed into normal-tangential coordinates. First, the
x-y components of velocity in Eq. (71) are represented in terms of normal and tangential
velocity components,

o _ n, —ntlu, . (78)
u, n, n|lu, :
to obtain the vector,
Cox Cxyl J |[Mx 1| | %0 } ‘ (79)
Cyx Cyyl U1y M [ ¥e

This vector is still in x-y coordinates; e.g., the x-component of Eq. (79) is
Cop lnu, —n u ] +cx,[n),‘un+nxu1 . Accordingly, the normal and tangential compo-
nents of Eq. (79) are oétained by operating on it with the tensor

7 (80)

n, ny { Crx Cxy { n,-ntlu, }} - 1)
-ny, ny| ey e Yny ny |y

The normal component of this vector is

to obtain

n fc,, (n.xun—nyut) +Cy (nyun +nu)l (82)
+ [ny (nu,~ nyut) +ey (nyun +nu)]

According to Eq. (67), the coefficients of u, and u,_ are ¢, and c,.. Rearranging Eq.
(82) yields,
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u,ln, (ne,  + nc,) + n,(nc + nycyy) ] (83)

u [n, (—nycxx + nxcxy) +n, (—nycyx + nxcyy)

Using ¢, = €y, and ¢, = —c,,, Eq. (83) becomes

un[(nf +n)2,) Con t (nxnyanxny) ny] , (84)

25,2
+ u, [nxny (Cox—Cp) + (n2+ ny) ny]
Noting that n f + ny2 = 1, the normal component of the velocity vector is

UpCrx + u‘ccxy

which indicates that ¢,, = ¢, and ¢, = Cry- Similar analysis of the tangential compo-

nent of the vector yields ¢, = Cyy (=c¢,)andc, = Cox (= —ny)-
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APPENDIX D: Viscous Diffusion of Vortex Sheets into the Fluid

In a viscous fluid, the (zero-thickness) vortex sheet Y. can be used to introduce new vor-
ticity into the fluid. The approach described below is also used by Koumoutsakos, et al.
[16]. Recall the definition of a vortex sheet,

Essentially, the amount of vorticity A@_ created at a boundary will be represented as a
vortex sheet that is expanded from zero thickness to a finite thickness An over a time in-
terval Az. The equation

Aw, = Y/An » (85)

relates the vortex sheet strength to the vorticity introduced within the fluid. One choice for
An is the approximate distance a quantity will diffuse over a time interval Az, which is
An=JvAt , where v is the kinematic viscosity. Another choice could be the height of the
discrete elements or cells adjacent to the boundary into which vorticity will enter. As will -
be shown, one need not choose An, since the final result is independent of it.

The addition of vorticity to the fluid can be specified as a flux of vorticity from the bound-
ary into a volume

V = AAn (86)
where A is the surface over which the flux is applied.
This balance of vorticity is given by (the normal is assumed to point outward),
(rt+An

J‘ [v(heV)wAld = Ag_,V. (87)

1
In discrete form,

| v(fieV)w AAL = Ag,V (88)
Using Eq. (85), Eq. (86), and Eq. (87), the nQrmal gradient of vorticity at the boundary is

iY

(h o V) W, = ;/A_t (89)
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To interpret this, consider that y represents a deviation from the desired tangential veloc-
ity on the boundary, vy = #i X Su (1), at the time . The tangential velocity boundary

i ~sli .
condition will be satisﬁed, however, by diffusing the vorticity into the domain over the.

time interval Ar, so that Sk‘szip (t+Ar) = 0.0,

SE‘szip (t+At) - Sk‘sup (1) _ 0-7y, _ d (aliszip) ' _ (90)
At At dt

That is, 'yc/ At in Eq. (89) is an approximation for the time-rate of change of the deviation
from the tangential velocity boundary condition. To summarize, the flux of vorticity into
- the domain can be specified using the vortex sheet strength, as given by Eq. (89).
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