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ABSTRACT

We presented a way to improve the buffer usage for the transaction management model in an earlier study.
The method presented in this paper identifies the conflicting and the non-conflicting parts of the affected
data sets and separates them. The original operations are converted into two sets of operations - one set oper-
ates on disjoint data and can be executed in parallel, another set operates on conflicting data using buffers.
This approach will reduce the size of the buffers used in the earlier approach.
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1. Introduction

In [HL94] [HL.95] we presented a new transaction management model by analyzing
the semantics of the database operations. We studied the existing semantic approaches
[Gar83]{Lyn83]{FO89] and proposed a new approach to analyze the semantics of the data-
base operations. This new model allows the possibility of increasing the degree of concur-
rency substantially. Since the resulting new operations produced by the algorithms in our
model will be totally de-synchronized, they can be executed in parallel. We think that this
model presents a new approach for managing database transactions. Since the model uses
buffers to resolve local and global conflicts, the buffers are important elements of the pro-

cess. In our model there is a buffer for inserted tuples and one buffer to hold the tuples to
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be changed by each UPDATE operation. These buffers can be de-allocated once the oper-
ation is done. This is an improvement to the traditional “multiversion” models
[BHGS87]1[KS88][AK91] since in the “Multiversion” models “Whenever a transaction
attempts to write a data item, the system creates a new version of the data item with the
new value”[KS88]. Also there needs to be a “version control” function in the traditional
multiversion model to keep track of the different versions belonging to different opera-
tions and different transactions. However, in the model of [HL95] the buffers hold all of
the affected and inserted tuples of all the INSERT and UPDATE operations of the transac-
tion. In this paper we show how to improve this so that buffers hold only those tuples for
which there is potential conflict among operations in the tuple. Those portions of the tuple
sets referenced by a transaction for which there is no conflict at all be handled separately
and in parallel. The set of tuples for which there is potential conflict can then be handled in
the buffers according to the techniques of [HL.95], and the buffer will be generally smaller.
Moreover, this “factoring out” process can be applied to transaction processing to reduce
the set of conflicting tuple sets even if the techniques of [HL95] are not used.

The rest of this article is arranged as follows: In Section 2 we introduce some of the
definitions used by the following sections. These definitions may also be found in [HL.94]
[HL95]. Section 3 presents a more detailed study on the attribute sets and the data sets of
the database operations. Section 4 presents the technique to factor out the nonconflicting

parts of the data sets. Section 5 is the closing remark.

2. Definitions

Definition 2.1: A database state (DBT) [UlI88] [MH89] consists of the set of tuples in

the relations of the database.
In this paper we consider four database operation types: READ, INSERT, DELETE
and UPDATE. There are also five corresponding buffer operation types: READB,




APPENDB, INSERTB, DELETEB and UPDATEB.

Definition 2.2: An attribute specification for a relation R of arity n is a sequence
(S, .5'2, e, S ) where: each S; is either a constant or a variable. The set of constants in the
sequence is denoted by Cand the set of variables by % We will write (C, 7) when the par-
ticular order of the constants and variables is not crucial to the context. When Cis empty
(.e., (S, S, ..., §,) consists of all variables) we say the specification is empty and abbre-
viate it as (). A specification with exceptions is an expression of the form S-T where Sis a
specification and T is a set of tuples. In general, if S; and S, are specifications, we may
also write S, U S, and S; N §, as complex specifications. For simplicity we will assume
throughout this paper that the variables in a specification are all distinct; i.e., there are no
repeated variables.

Definition 2.3: The set of tuples in R matched by an attribute specification
(S5 85 o Sn) = (G, V) is the set of tuples in R which have the same values in the same
attribute positions as the constants in C.

We denote the matched tuple set for a specification § in relation R by MS_(R) . Obvi-
ously, the matched tuple set depends on the database state. The set of tuples in R matched
by S-T is the set difference M S (R) —T. The set of tuples matched by S, U S, (S, N S,)
is the set union (intersection) of those matched by §; and S, . The set of the tuples
matched by () - empty specification - is the entire tuple set for the relation. We use S to
denote the specification which matches the empty tuple set.

Definition 2.4: A Database operation is a four-tuple O= (O®, TDBT, A, B) where

1. OPis one of the ordinary database operations we are concerned with (READ,
INSERT, DELETE, UPDATE);

2. TDBT is the target database state on which this database operation is applied. Since
we assume that any operation affects only one relation at a time, 7DBT is a relation name

in general. As we will see in the next definition, TDBT could also be a buffer.
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3. Ais a pair of attribute specifications for the affected relation written as ((C,, ,

Vin )’

(C V,,)orsimply (S, .S, )

out?

4. Bis apair ((Cg, Vy), BOL or (S, BOL) where S is the specification of the
buffer content which should have the same form as in Definition 2.2, and BOL is a list of
the buffer operations associated with this buffer (or this operation). BOL could contain 0 or
more of buffer operations mentioned above. The formal definition of the buffer operations
will be given in Definition 2.5.

5. There will always be 0 or one READB followed by 0 or more APPENDB opera-
tions at the beginning of the list of the buffer operations if BOL# & . READB and
APPENDB are the operations to load the buffer. They will be executed prior to any other
buffer operations and prior to the execution of the all the ordinary operations. That is,
buffer-loading is done at the beginning of the transaction prior to any actual database oper-
ation taking place. The rest of the buffer operations can be executed any time prior to the
execution of the operation which owns the buffer.

Note: in general the database operations submitted by an original transaction do not
have buffer operations. That is BOL = & for the operations submitted by a transaction.
The transaction management model we introduced in [HL95] will create new database
operations with actual buffer operations. For uniformity we use the same definition for

both original database operation and the newly created database operation.

Definition 2.5: A buffer operation is a three-tuple O= (0P, TDBT, A) where

1. OPis one of the buffer operations we are concerned with (READB, APPENDB,
INSERTB, DELETEB, UPDATEB);

2. TDBT is the name of the buffer.

3. A4is the same as in Definition 2.4;

Note that we assume that a buffer operation does not, in turn, contain any associated

buffer operations.



For example: We could have an operation submitted by a transaction T of the form
(UPDATE, R, (8, §,), (S, (7)) in which case there are no buffer operations. We could
also have a newly created database operation like:

(INSERT, R, (S, S3), (S5, BOL)) where BOL is:

[(READB, B,, (S,, S8,))

(DELETEB, B, (S5, Sx))

(UPDATESB, B,, (84, S3))]
in which case the (INSERT, R,...) has an associated list of buffer operations BOL. In this
case tuples matching S, are loaded into B, at the beginning of the transaction containing
this INSERT operation. Then DELETEB and UPDATEB are performed in order, after
which tuples remaining in B, that match S, are inserted into R.

Note that we should have §;, = § our [Or READ and READB, § n = S for INSERT
and INSERTB, S, = S for DELETE and DELETEB.

Definition 2.6: The input database state of a database operation is the database state
before the database operation is performed

Definition 2.7: The affected set AS  _of a database operation O is the set of tuples in R
matched by §;, just before O is performed.

Note that AS ) = MSg, (DBT) .

Definition 2.8: The resulting set RS of a database operation O is the set of tuples

inserted into the databse by O during the execution of O, and it matches S ,.

Note that for the case of UPDATE or UPDATEB, RS, = M PSSOi:t (AS,) . This nota-
tion states that the result set is a mapped set from the affected set AS . The mapping (or
set operation) is defined by S;, and S, of O.

Definition 2.9: Specification S; subsumes specification S, if for every position in S,

containing a constant the corresponding position in §, also contains the same constant.

For example (0727, x, y, z, Henschen) subsumes (0727, C49, u, v, Henschen). When




tuple specification §; subsumes tuple specification S, , the tuple set matching §, is con-
tained in the tuple set matching §, .
Definition 2.10: The output state of a database operation is the database state after the
operation is performed and is denoted O(DBT) where DBT is the input database state.
Notice that O (DBT) = (DBT-AS,)) URS . Also, if Ois a retrieval operation (i.
e., the OPis READ) O(DBT) = DBT. We will also use the notation AS_ (DBT) to refer
specifically to the affected set of an operation O applied to a specific input database state

DBT.
3. Attribute sets and the data sets

The method introduced in [HL95] and the extension to be developed here depends
heavily on comparing the attribute specifications and corresponding matching tuple sets
for two operations. We therefore describe the matching process in more detail. The con-
cept is a straightforward application of unification in automated reasoning and its applica-
tion to deductive databases, as in [HN84] and [MH89]. In this description we will not be
interested in the particular order of the attributes in the specifications and will usually
write the attributes which are constants at the beginning of the list. Of course, in practice,
the constants in a specification can be in any position.

Consider two attribute specifications
S, =(a, b,x,c,y)and
S, =(a,d,e,z,u)

where

1. a represents the constant vectors common to both § | and S 25

2. b and d are constant vectors having the same length and attribute position but

different values for §; and Sy

3. e is a vector of constants, and x is a vector of variables of the same length and




attribute positions

4. z is a vector of variables, and ¢ is a vector of constants of the same length and

attribute positions and

5.y and u are variable vectors of the same length and attribute positions.

For a more concrete example let us consider two attribute specifications

(385, 5/20/93, x5, x4, x5, X¢, Chicago) and

(385, 5/20/93, 1000, y, , y5, Y5 Y7)-

In this case, a is (385,5/20/93), ¢ is (Chicago), e is (1000), x is (x5), y is (x4, X5, X)),
zis(y;), and uwis (y,, 5, ¥4)- In this example, b and d have length 0.

Let us now suppose that the variables in §, are also distinct from those in S, . Clearly,
if b and d have length > 0, there can be no tuples in common in the matching tuple sets.
For example, suppose b specifies the attribute NAME to be HENSCHEN and d specifies
the attribute NAME to be LEE; obviously, no tuple can have both values for the NAME
attribute. (In automated reasoning and deductive databases, S, and S, would be called
non-unifiable in this case.) On the other hand, if & and d have length 0, as in the two spec-
ifications in the preceding paragraph, then the matching tuple sets may or may not have
tuples in common depending on 4, ¢, and e, the variables and the current database state.
(In this case, S, and S, would be called unifiable in automated reasoning terms.) In such
cases there may be conflict between the operations containing §; and S, depending on
where §; and S, occur in the two operations (i.e., specifying AS or RS) and what the
operations themselves are.

It is easy to derive a specification S, that describes the potential conflicts of two spec-
ifications §; and §, as the following theorem shows.

Theorem 3.1: The specification of the conflict set of two matched sets can be derived
from the specifications of the two set S| and S, .

Proof:




S, =@ b,x,c,y)and S, =(a, d,e,z,u) wherea, b,x,c,y,d, e, z, u are as we defined
above.

Let us denote the length (number of attributes) of a vector v as vl.

Case1:ifbl=id >0

Then it is obvious that MS, (DBT) N MS, (DBT) = O.

Case 2: if Ibl = Id| = 0. In general we have S, =(a, x,c,y) and S, =(a, e, 2z, u).
Clearly,

MSg, (DBT) "MSg, (DBT) = MSg, (DBT) where
S3 =(a,e, c,v)

There are many special cases when one or more of the relevant vectors has length 0.
For example, Icl =0, then Sy = (a, e, v); if lel = 0, then S, =(a,c,v),etc.

Q.E.D.

Note that in Case 2, S 3 is just the common instance of S 1 and S, after unification
([HN84], [MHZ89])).

Note that the vectors of constants and variables a, b, ¢, d, e, x, y, z and u may be inter-
spersed in S, and S, . However, a simple one-pass, left-to-right scan is sufficient to iden-
tify them and form S . The following linear algorithm suffices and is essentially the
normal unificatiom algorithm of automated reasoning adapted to the special case of only
variables and constants. Let k be the number of attributes in the specifications. Let S(i)
refer to the ith attribute of the specification S.

for (i=1; i<=k; i=i+1)
{ if ( §; () and S, (¥) are different constants )
{ 85=54;
break;
}

if ( Sj (i) is a constant for j=1 or 2 )



S, (i) = that constant;
else
S, (i) = a distinct new variable;
}
In case the variables in a specification need not be all distinct, a modified algorithm
which records connections between variables and constants discovered in the loop will

suffice and is also still linear.
4. Conflicting and non-conflicting parts of transactions

Suppose we have a sequence of operations whose selecting specifications are S, ,.S,,
s Sn . If we pairwise find the common instances as in Theorem 3.1, each S ; could be
transformed into two parts - an §', with exceptions, the exceptions being anything that
might lead to common tuple with some other § s and an §”; which is the part of S; that
unifies with at least one other § - We will illustrate this idea in the next example. At that
point we could parallelize the parts specified by the S'; because none of these would have
conflict with ANY OTHER specification. That would leave just the sequence

0, 8%,

o, §7,

o, §”,
for which conflict needs to be handled either by the buffer approach of [HL.94] and
[HL95] or by any of the other traditional methods.

Here’s an example.

O;: (INSERT, R, (S, (e.f. £)), B1)

0,: (INSERT, R, (S, (a, b, ¢)), B2)

0,: (DELETE, R, ((a, x, ¢), S3), B3)




0,: (UPDATE, R, (3, b, ¢), (0, h, ¢)), B4)

Os: (DELETE, R, ((#, d, ¢), S), BS)

O, does not unify with anything else and can be done totally independently from all
the others and in parallel. O, potentially conflicts with O; and O,, but not with Os. (In
this case, actually 0, should just be removed because (a, b, ¢) will definitely be deleted,
but let us just go on with the example.) However, the only point of conflict is the tuple (a,
b, ¢). For O, this means any tuple matching (&, x, ¢) but with x different than b will not be
in conflict with O, , and for O, any tuple matching (y, b, ¢) but with y different than a will
also not be in conflict with O, . Note that O, and Oy are not in conflict at all. Now com-
pare O, with O, and Oy. O; and O, could conflict for y =a and eitherx = orx = h. But
any other combination will not be in conflict. Similarly, O; and Oy could be in conflict for
u=aandx =d. Finally O, and O are not in conflict at all because of the mismatch of the
second attribute for both (y, b, ¢) and (y, k, ¢). That means that for the sets of tuples in the
operations:

O, : (INSERT, R, (S, (e, [, ), B1) with no exceptions

0, : (INSERT, R, (S, (a, b, ¢)), B2) with the exception (a, b, ¢),

i.e., the tuple (a, b, ¢) has to be handled through the buffer or other means of
handling conflict.

O, : (DELETE, R, ((a,x, ¢), S ), B3) except forx =borx=h orx =d

0,: (UPDATE, R, (5, b, ¢), (0, h, ¢)), B4) excepty =a

Os: (DELETE, R, ((u, d,c), S5), BS) exceptu=a

Then we could do in parallel

o

0,

0”3

0"

1 01 02 03 0'4 05



o
where O, is (INSERT, R, (S, (e, [, g),Bl)
O, is NULL operation since
((INSERT, R, (S, (a, b, ¢)), B2) with the exception (a, b, ¢))
0, is (DELETE, R, ((a, x, ¢), S ), B3) except for x in the set {b, k, d}
0, is (UPDATE, R, ((3, b, ¢), (y, h, ¢)), B4) except for y in the set {a}
05 is (DELETE, R, ((#, d, ¢), ), B5) except for u in the set {a}
and 07, isNULL
0”, is (INSERTB, B, (S, (a, b, ¢)))
0”, is (DELETEB, B, ((a, b, ¢), S))
(DELETEB, B, ((a, h, ¢), Si))
(DELETEB, B, ((a,d, ¢), S))
0”, is (UPDATEB, B, ((a, b, ¢), (a, k, c)))
0”5 is (DELETEB, B, ((a, 4, ¢), S))

In this particular case the result is extremely simple because all the potentially con-
flicting tuples are fully grounded, that is there are no variables left at all in the exceptions.
This needn’t always be the case. For example, we could have had in this example 4
attributes and the last one was always a variable vector - i.e.

(e.f g wl)

(a,b,c,w2)

(a,x,c,w3)

etc.

Still, it seems that the exceptions would be relatively small and easy to express
because they come out of the unification of specifications, and these all have just variables
and explicit constants. For this kind of unification, the unification process for one pair of

specifications is linear. For a very small overhead of unifying all pairs of specifications in




a transaction we can factor out the parts that do not conflict.

For completeness we state the following theorem and corollary. The proofs are
straightforward and are only sketched here.

Theorem 4.1. Given the notation introduced in this section, performing an operation
O on a database state DBT is equivalent to performing O’and O0”on DBT in arbitrary
order.

Proof Sketch.

Let (S in s S

[

) be the specification for O and($';,, §',,,) and (87, , §” ) the speci-

out out in? out

fications for O’and O”respectively. Obviously the tuples matched by §';, and §”, are
disjoint and together equal the set of tuples matched by S;, . Similarly for S ,. From this
remark a simple analysis of the three possibilities for O yields the result.

Corollary 4.1. For any transaction T, applying the technique described in this section
and the technique of [HL.95] produces a sequence of conflict-free operations which can be
executed in parallel and whose execution always produces the same final database state as
executing T itself.

Proof Sketch.

By Theorem 4.1, each O, in T is equivalent to O, plus O”;. By construction, the tuple
sets involved in the O; operations are all disjoint from each other and from the tuples
involved in the O”; operations. These operations are therefore independent of the 07,
operations and from each other and can safely be executed in parallel. The technique in
[HL95] to be applied to the O”; operations is proven correct in [HL95], completing the
proof of this corollary.

5. Remarks

We have introduced a new approach to handle the conflicting sets of affected data for

the operations in a transaction. For the conflict resolution method of [HL94] and [HL95]




Further study can be made on how to handle the integrity constraints using a similar
approach by analyzing the specifications of operations as introduced in this paper and
[HL94], [HLS5].

Work was supported by the U.S. Department of Energy under contract W-31-109-
Eng-38.
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