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Abstract

This report summarizes the experimental work carried out at the Lawrence Livermore National
Laboratory on the electronic structure and reactivity of uranium thin films on Pd, Pt, Si, graphite,
Cu, and Au substrates from 1990 to 1993. The U-Pd system was studied in the most detail
because it was the first to be chosen right after the completion of the experimental equipment.

We first studied and characterized clean U overlayers and the possible surface reactions between
this metal and the substrates studied. We then subjected these systems to reactive conditions
such as heating and adsorbing corrosive gases (O3, CO, COj, and CyHy). Finally we
investigated the diffusion of U metal and some of its compounds into the substrates.

A new technique was developed, based on Auger Electron Spectroscopy, to follow in real time
the diffusion of U overlayers into the substrate. The temperature of the sample is ramped
linearly up to 900°C while following the Auger peak intensities of the two components for a
given system. Diffusion rates are obtained by differentiating the measured intensity curves, then
peaks result corresponding to diffusion processes with different activation energies. This
technique bears a strong similarity to thermal desorption spectroscopy (TDS), where the sample
is heated linearly and the rate of desorption is measured as a function of temperature and heating

rate.

December 8, 1994 i KC.1634.0194-CC




1. Introduction

Research on actinides is marked by their ambivalent role in energy production and environmental
conservation and, on a scientific level, by their interesting chemical and physical properties. In
our research at the Lawrence Livermore National Laboratory (LLNL) we are studying the
chemical reactivity and electronic structure of actinide surfaces and interfaces with other metals.
We are particularly interested in their interaction with gases (corrosion, catalysis), the
decomposition of actinide-transition metal (TM) interfaces, and the diffusion of actinide atoms
into a substrate. This research may be of importance in nuclear waste disposal. Modeling long
term corrosion and diffusion reactions (100-1000 years) by laboratory experiments needs
extrapolation of reaction mechanisms and rates to long times. The reliability of this procedure is
determined by our knowledge of the reaction system, which initially is the actinide-containment
metal interface. This includes the more fundamental aspect of the electronic structure of these
systems, which will ultimately determine their chemical properties.

We have used thin layers of actinides (uranium at this stage) to simulate the actinide-containment
metal interface. Thin layers are accessible to surface analysis tools and can be studied for their

resistance to corrosion and heat (Figure 1). In addition we can study the bulk diffusion behavior

of actinide atoms by measuring their surface concentration changes as a function of time and

temperature, which gives information on the kinetics of diffusion.
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Fig. 1 Thin layers can undergo various chemical processes such as corrosion and heat induced interface
decomposition. These reactions may also cause problems during handling and long term storage of nuclear
waste.

On a more fundamental level, thin layers allow the accentuation of some of the most interesting
physical and chemical properties of actinides. The decreased coordination of actinide atoms on a
surface becomes even more pronounced in thin 'layers and clusters, and can be expected to result
in further narrowing of the 5f bands in early actinides. This may eventually result in the
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breakdown of itinerancy close to the surface, even in those compounds that have itinerant 5f
electrons in the bulk (Figure 2). Mixed valence and enhanced surface magnetism can result in
such systems. Finally, actinide deposition onto a surface allows easy and rapid synthesis of
surface compounds with variable stoichiometry. Interesting applications lie in the field of
catalysis, where we can prepare surfaces doped with minute amounts of U to investigate their
adsorptive behavior and ultimately their catalytic properties.

Bulk atoms: - Surface atoms on  Thin layer: Clusters:
3d-coordination bulk: decreased 2d-coordination transition
coordination to isolated atoms

Band ;\\O\X\

‘5f- I 5t

delocalization locaiization

Fig. 2 The coordination of atoms decreases from the bulk to the surface, thin layers and clusters. This may
eventually result in the localization of the 5f electrons even in light actinides.

Below we will describe some of the experimental results obtained at this stage of our work. We
limited our research to U compounds. Because no previous work has been published on thin
layers of U, little is known about their stability, spontaneous surface alloying, etc. This
determined our experimental strategy (Figure 3). We first studied and characterized clean
overlayers and the possible surface reactions between U and the substrate. We then subjected
these systems to more reactive conditions (heat, corrosive gases) and finally investigated the bulk
diffusion of U metal and compounds into the substrate. We will, therefore, begin with a
discussion of the electronic structure of U overlayers on substrates, then proceed to some surface
reactions of these systems, and finally address the bulk diffusion behavior of U and U
compounds. The substrates were chosen in light of the considerations presented above. We
looked for materials that: a) Would favor 5f localization in thin films (Section 2); b) Are
potential containment materials (Section 4), and ; ¢) Are potential catalysts whose properties
could be modified by U dopants (Section 3). Thus far we have studied U deposition on Pd, Pt,
Si, Graphite, Cu, and Au. The Pd system has been studied in the most detail because it happened
that at this point the experimental setup was completed. We studied only polycrystalline
substrates because single crystals were not available at the time. Therefore, we will not address
the question of epitaxial growth, lattice mismatch, etc. Single-crystal experiments are imminent.

December 8, 1994 2 KC.1634.0194-CC



{Chap. 2) {Chap. 2) (Chap. 4)
RT, slight e
U overlayer o Near - Bulk diffusion
on substrate heating surface Heating of U metal
alloy
Gases
. , Gases o,  Surface Heating Bulk diffusion
oxides, of U compounds
carbides,etc.
{Chap. 3) (Chap. 4)

Fig.3 Organization of U thin layer research at Livermore
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2. Overlayer Growth, Interdiffusion, and Electronic Structure

We will first discuss how U deposits on the substrates and whether it forms an overlayer or
spontaneously reacts with the substrate. Because the mode of growth is reflected by the
electronic structure of the surface we will discuss both issues together. As shown in Figure 2 we
can expect that the decreased coordination at the surface and in thin layers results in a narrowing
of the 5f bands. This phenomenon is also experienced by transition metal surface atoms!.2.
Because the 5f bandwidth is already narrow in bulk U, additional narrowing at the surface may
result in the breakdown of itinerancy, which occurs when the bandwidth gets smaller than the f-f
correlation energy. But it is not clear at all if this will easily happen for U, because the 5f
bandwidth might still be too large; in Pu the changes for observing localization are much better!
Let us discuss the chances for inducing 5f localization in U. We know that in U metal and most
of its alloys U surface atoms have delocalized 5f electrons due to their bonding interaction with
the underlying bulk, either by direct 5f-5f overlap or by 5f hybridization with other orbitals. This
has been shown by highly surface-sensitive studies of the electronic structure of U bulk
compounds (UPS studies). But while such interactions are also expected for thin layers of U on
various substrates, these systems differ favorably from bulk alloys in several ways: a) The U
surface concentration (or coverage) can be varied continuously and a highly diluted U surface
phase may be synthesized. By doing this we suppress the direct U-U interactions that contribute
considerably to U5f delocalization in alloys. b) We can choose substrates that only interact
weakly with U, and on the extreme, we find graphite on which U deposits as clusters3, while for
bulk compounds there has to be a minimal interaction to avoid phase separation. This interaction
might be responsible for 5f delocalization in most metallic bulk compounds. However, not only
the strength of the overall interaction, but rather the involvement of the 5f-electrons in bonding
determines their delocalization. This latter aspect has influenced our choice of substrates. We
started with a polycrystalline Pd substrate because UPd3 is the only known U intermetallic where
the Sf-electrons are localized. This happens because they are not hybridized with the Pd4d
states, and because the U atoms are spaced far enough apart (due to the specific crystalline
structure of UPd3) to minimize direct 5f-5f overlap. Therefore, we would expect that
interactions between a U overlayer and a Pd substrate would not induce 5f delocalization. We
then proceeded to Pt, which forms the heavy-fermion UPt3, whose 5f electrons. are found in very
narrow bands. Again we hoped that the interaction between surface U and the Pt substrate would
contribute little to 5f delocalization. This expectation may have been a little naive because it has
been argued that the surface leads to the breakdown of heavy-fermion properties and, in addition,
5f localization was not observed for surface atoms of bulk heavy fermions.
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We produced thin layers of U at room temperature by magnetron sputter deposition. Coverages
from the submonolayer range to micron thickness were achieved by this technique®. The
coverage was determined by the ratio of the Uovv/PdMNN Auger intensities. However, the
interpretation of these data is not unambiguous because it depends on the way U deposits on the
surface. If U spontaneously diffuses into the near surface region to form a near surface alloy the
- dosage should be described in terms of U concentration. If U stays on the top surface forming an
overlayer, U dosage should be described by partial coverage and overlayer thickness. We found
that actually both interdiffusion and overlayer/island formation take place simultaneously (see
below). Therefore, we will describe the U dosage (for Pd) in terms of the Uoyy/PdMNnN AES
intensity ratio. To give the reader a guideline, the ratios correspond approximately to the atomic
ratios if U diffuses into Pd to form a uniform near-surface alloy within the AES information
depth, which is about four monolayers. For the other substrates, the dosage was determined by
the ratio of the main XPS emissions, e.g., U4f/Ptdf, U4£/Si3d, U4f/Cls, and is also interpreted in
terms of U concentration in a uniform near-surface alloy. |

Figure 4 shows the U4f spectra for U deposited on Pd. At very low dosage (0.23) the U4f
emission is narrow, symmetric, and has a low inelastic background. This shows that U deposits
on the top surface (low inelastic background) to form a thin overlayer and does not agglomerate
in clusters (sharp U4f signal suggesting U in one well-defined environment). The fairly
symmetric shape suggests a low local density of states of the U atoms (DOS) at the Fermi-level
(Ep). (According to the Doniach-Sunjic thcory5 electrons at the Fermi-level inelastically scatter
the photoelectrons by creation of electron-hole pairs; a high DOS at Er emphasizes this and
results in multiple energy losses of the photoelectrons which translates in a loss-tail on the high »
binding energy side of the photoelectron peak, i.e., the peak becomes asymmetric. For example,
this asymmetry has been observed for PuS, which has a high DOS at Er due to delocalized 5f
states, while it is missing in Am which has a low DOS at Er because the 5f electrons are
localized?.) Hence the symmetric shape of the U4f emission points to localized U5f electrons,
and this is corroborated by UPS data (see below). With increasing U dosage (U/Pd = 1.05, 1.92)
the U4f emission broadens, becomes asymmetric and shifts to low BE. Broadening points to the
presence of several U species, either a U overlayer covered by islands or U diffusing into Pd.

Later we will present evidence for island formation at high dosage (Section 4), but there is also
strong evidence for inward diffusion of U: the Pd3d levels experience a chemical shift to higher
BE because of the chemical interaction between U and Pd, and the Pd spectra corresponding to
medium coverage (U/Pd = 1.92) show most of the Pd3d signal shifted. ‘This indicates that most
of the Pd atoms within the Pd3d information depth of about 8 monolayers interact with U. This
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Fig. 4 U deposition on Pd at room temperature. The horizontal lines indicate the baseline at the low BE side and
show the inelastic background to increase with U dosage. For very low U dosage (0.23) the low BE
baseline is not flat because of a plasmon excitation from the Pd3d emission falling in that region.

can only be explained by U diffusing into the substrate. The increased asymmetry of the U4f
reflects a high DOS at Er which can only be produced by delocalized 5f electrons; delocalization
is induced by the increasing U concentration and is probably due to direct U-U interaction.” At
very high dosages the U4f line becomes sharper and more symmetric again. It matches the BE
and shape of the 4f emission of U metal. The decrease of asymmetry is explained by a decrease
of the DOS at Er, which is expected to occur when the 5f electrons become more delocalized,
i.e., when the band further broadens. The overall picture is shown schematically in Figure 5. |

U © U-Pd u U

overlayer
with fow [U]

overiayer

¥

Low U dosage

Medium U dosage

High U dosage

- U atomically dispersed - U-Pd overiayer + islands - U overiayer

- further increase of 5f bandwidth

- U at top surface - increasing U concentration

- U-Pd interaction - U-Pd+U-U interaction

- 51 localization - beginning 5f delocalization

Fig. 5a Mode of growth of U on polycrystalline Pd. A surface phase of dispersed U atoms on Pd at low coverage is
followed by island growth with partial U-Pd interdiffusion and finally the formation of a thick U film.
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Fig. 5b Evolution of the asymmetry of the U4f with 5f bandwidth. The highest asymmetry has to be expected when
the 5f electrons are delocalized but sit at the localization threshold, which results in narrow 5f bands with a
high 5f DOS at EF.

Let us briefly discuss the evolution of the 6 eV satellite (Figure 4). It is found in UPd3 where it
is generally interpreted as a localization satellite8, and it is absent in U metal, where the 5f
electrons are well delocalized. It has also been observed in U intermetallics? where the 5f
bandwidth is decreased relative to U metal but where the 5f electrons are still delocalized; in this
case it is interpreted as a precursor effect to localization. In our study we also find the satellite to
be absent in the thick U overlayer, where the_ 5f electrons are well delocalized, and we find it
growing with decreasing U dosage, i.e., when the 5f bandwidth decreases. However, we find it
decreasing again for very low U dosage, where the 5f electrons are clearly localized. It could be
that for intermediate coverages the satellite superimposes onto the asymmetric tail of the 4f main
peak and therefore tends to be emphasized but, on the other hand, it is also clearly seen in bulk
UPdj3 8, where the 4f levels are symmetrical. It seems to be most pronounced at the threshold of
localization.

Figure 6 shows UPS valence band spectra of U overlayers deposited on a Pd substrate at room
temperature. At low dosages the signal at Er decreases with increasing U concentration, which
points to a strong bonding interaction between U and Pd. The Pd band narrows and the Pd4d
intensity close to EF is suppressed: such findings can be understood in terms of filling of the
Pd4d band and the dilution of Pd in a surface U matrix. At low coverage a small peak appears at
1 eV BE, which has also been observed in UPd3, and is attributed to the localized 5f level. At
this point the 5f electrons in U seem to be localized. The 1 eV peak is very small, however, and
would not be sufficient by itself to argue for 5f localization. It is the coincidence of the
(stronger) U4f XPS evidence and the UPS data which allows us to make such a statement.
Resonant photoemission experiments should be performed on this system. They should reveal
the continuous transition from localization to-delocalization. A similar experiment has been
done on the ternary UPdxPt3_x system 10, At higher U dosage, the intensity at Ef increases again
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due to 5f electrons which now become delocalized. This accompanies the development of the
U4f asymmetry in Figure 4. At very high dosage the Pd4d peak becomes narrow and
symmetrical and any asymmetry or non Gaussian-Lorentzian shape, which would suggest an
initial state effect (band broadening) disappears. In addition, the shape of the Pd4d peak
becomes identical in Hell and Hel while for Pd metal it differs because of matrix element effects.
All this is suggestive of Pd atoms being embedded in a U matrix where they behave as
atomically dispersed impurities. Such a system can be expected to be unstable and annealing
experiments confirm this.

P UMARRRART M
U/Pd (AES) Pd4d f deloc.
3575 .

1.857

0.406 A
0.175 %—/-‘K‘
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0.000
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10 8 6 4 2 0
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Fig. 6 UPS-Hell study of U deposition on Pd. At low dosage a small peak is detected at about 1 eV BE which is
attributed to the localized 5f emission.

At elevated temperatures the thick U overlayer reacts with Pd. This is shown by UPS-VB and
XPS-U4f studies (Figures 7 and 8, respectively). In UPS, annealing at 200°C results in the
decrease of the signal at the Fermi-level and in the transient appearance of a small peak at 0.8 eV
BE. One might argue that this peak is due to the broadening of Pd4d superimposing on the
shrinking US5f signal at Eg. However, we found that a decrease of Igr by 60% in UPS
corresponds to a decrease of the actual surface concentration of U by less than 20% and conclude
that the USf emission in UPS does not disappear but actually shifts away from Eg. This together
with the increase of the intensity at 0.8 eV indicates that the 5f emission shifts to that location,
i.e., the USf electrons become localized (this interpretation is corroborated by the XPS study, see
below): the excess surface U reacts with Pd to form UPd3, where the U5f electrons are localized.
At higher temperatures, the 5f peak disappears completely because of the bulk diffusion of U
(see also Section 4). Notice that the Pd VB broadens during annealing and that the most notable
change occurs between RT and 200°C, indicating U reaction with Pd. The UPS spectrum at
200°C indeed bears strong similarities with XPS-VB spectra of UPd3. Such strong variation of
the electronic structure and the low temperature where it occurs demonstrate the very high
reactivity of the system (TM-rare earth systems often have to be annealed at 400°C to 600°C to
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complete the reaction with the substratell). XPS data complete our picture of the annealing
induced surface reaction (Figure 8). Annealing results in the narrowing of the 4f emission and in
its shift to higher BE: the non uniform surface phase, which was responsible for the U4f
broadening (see discussion of Figure 4), reacts with the Pd substrate to form a single uniform
near-surface alloy, thus the narrowing of the U4f (Figure 9). The surface U atoms change their
electronic structure away from that of U metal (low BE) to that of a U-Pd alloy, thus the shift to
high BE. We actually see a reversal of the shift to low BE observed with increasing U dosage
(Figure 4) because annealing results in the dilution of U in Pd. In addition, the U4f peak
becomes more symmetric after annealing indicating a decrease of the DOS at Eg: the 5f
electrons become localized, consistent with the formation of UPd3. The phase diagram shows
UPd3 to be the U-Pd alloy with the highest U concentration that is stable as a bulk phase.
Therefore, we can expect a U overlayer or U accumulation region to react to form this alloy.
(We must point out, however, that in the near-surface region alloys may exist which are not
stable in the bulk phase, therefore the bulk phase diagrams must be considered as a guide rather
than a proof.) AES studies (section 4) will confirm the formation of UPd3 by a low temperature
diffusion-reaction.

Let us summarize our findings for the U-deposition of Pd. U strongly interacts with Pd. At low
dosage it does not agglomerate in clusters but atomically disperses on the Pd surface. At higher
dosages it accumulates on the surface and, driven by the instability of such a system, begins to
spontaneously diffuse into the Pd substrate. This interdiffusion is enhanced by gentle annealing
and its driving force is the transformation of the U accumulation layer into UPd3, which is the U-
Pd compound with the highest possible U concentration. Localization of the 5f electrons is
observed for the dispersed U surface layer (high dilution) and for' the UPd3 near surface alloy. |
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Fig. 7 Hell study of the annealing of U-Pd. Sharp dro;ilof the signal at EF and broadening of the Pd4d point to the
reaction between U and Pd even at 200° C.
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Fig. 9 Low temperature diffusion reaction of U with Pd results in the formation of a homogeneous near surface
alloy putting U in one well defined chemical environment.

We made a comparable study for the U--Pt system. As we stated above, there is no U-Pt bulk
alloy with localized 5f electrons, but there is the heavy-fermion UPt3 where the bandwidth of the
5f is very narrow, i.e., the 5f electrons are close to localization. Thus our hope was that
supplementary band narrowing at the surface would induce localization. Figure 10 shows a
UPS~Hell study of the U-Pt system with increasing U dosages.
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Fig. 10 UPS-Hell study of U deposited on Pt at room temperature.
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The U coverage was determined by the ratio of the U4f/Pt4f, with an information depth of about
8 monolayers (for a thin overlayer this overemphasizes the Pt signal, therefore the apparent
higher U dilution when compared to U-Pd, where the information depth was about 3
monolayers). The narrowing of the Pt5d band with increasing U coverage indicates a strong
interaction between U and Pt and near surface diffusion of U into Pt. At low dosages U
deposition results in the decrease of the intensity at Er when compared to the Pt5d valence band,
demonstrating again the strong bonding between U and Pt. This decrease is less marked than for
the UPd system and there is no signal at 1 eV. Instead, the intensity comes back at the Fermi-
level for higher dosages: UPS does not give any indication for 5f localization. The core levels
are asymmetric for all U coverages, which confirms that the 5f electrons are delocalized, even for
dilute systems. '

In the U-Pt system annealing resuits in the bulk diffusion of U. UPS data show the Pt valence
band to broaden and the upper Pt5d band to shift to its position in pure Pt metal (Figure 11). The
5f signal at the Fermi-level decreases, but the decrease is more gradual than in U-Pd and there is
no signal at 1 eV. We conclude that as in U-Pd, annealing results in the dilution of a U surface
accumulation layer, but that alloy formation does not lead to 5f localization. This was actually to
be expected because U-Pt bulk alloys do not have localized 5f electrons. The only situation
where we could have expected to see 5f localization was at low U coverage, but the experiment
shows that even under those circumstances the 5f electrons are delocalized.

Figure 12 compares the UPS-Hell data for several other systems we investigated. We must.
caution that the Au and Cu data have been taken on substrates that were not annealed after.

sputtering and, therefore, have a high concentration of surface defects. (This probably enhances

the reactivity of the substrate and may result in near surface diffusion of U through cracks and

surface defects.) The graphite substrate shows a signal at 3 eV which comes from the Mo holder,

and O contamination at 6 eV (these were very early data!). The 3 eV signal was removed by

subtraction of the graphite (and Mo) background taken before U deposition leaving a symmetric

O2p peak that we found for UO or U oxycarbide. Au, Cu, and graphite substrates have the

advantage of not having d-emission in the region of interest (0-2 e¢V). The U~Au and U-Cu

systems show that even for small U concentrations, of the order of 0.3 monolayers, the USf

signal stays right at the Fermi-level, i.e., the 5f electrons are delocalized. There is a stronger

interaction between U and Au than between U and Cu as shown by the narrowing of the AuSd

band, while the Cu3d band changes very little. A high-resolution spectrum taken on a highly -
diluted U overlayer on graphite shows a peak at about 0.8 eV below the Fermi-level (Figure 13).
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Fig. 11 UPS-Hell study of annealing of U-Pt. Annealing leads to the decrease of the surface concentration of U and
U-Pt alloy formation.

Again there is O and Mo contamination present, but neither is thought to be capable of producing
the 0.8 eV signal: we extensively studied UO and UO2 (Section 3) and never found any
indication for a peak at 0.8 eV, but instead found the 5f signal either right at Er (U, UO) or
between 1.2-2.2 eV (UO3). The Mo signal is very weak even compared to the 1% and 5¢
emissions of graphite showing less than 2% of the surface covered is Mo. Thus, there is not
enough Mo to produce such a satellite even if it was to occur in a U-Mo compound. Also the
signal seems to be too sharp to be produced by a graphite emission. However, the measurements
should be repeated on a clean sample without O and Mo contamination to verify the validity of
these arguments. At this point we believe the 0.8 eV signal to be a genuine characteristic of the
U-graphite system. It could be due to a localization (correlation) effect occurring in very small
U clusters, but we should also mention that it has been claimed recently that U deposits on
graphite forming a B-phase!2. The enlarged U lattice constant in this 8-phase and the decreased
f—f overlap could also play a role in producing the satellite (it is not clear, however, where the U-
graphite system would acquire the thermodynamic driving force to form beta—U because graphite
interacts only weakly with U; this is why clusters form spontaneously). Weak interaction
between U and graphite is also manifested by the fact that annealing at 800°C does not induce

diffusion, while for Pd or Pt it starts already at 200°C.

From these findings we conclude that at the dosages we used, which were always above 0.2
monolayers, the U5f electrons are delocalized, ‘except for Pd where they are also localized in the
bulk compound and perhaps for graphite where U deposits as clusters. Maybe U5f localization
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will be observed at even lower U concentrations, but such experiments would involve
synchrotron radiation studies to get better statistics and, in the case of d-metal substrates, to
separate a weak USf signal from the intense substrate background using resonant photoemission.
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Fig. 12 UPS-Hell spectra for U submonolayers on Au, Cu and graphite (about 0.3 monolayers).
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Fig. 13 UPS-Hell spectrum ("high resolution” / DPCMA) of U overlayer on graphite. The spectrum is cut before the
Fermi-level,
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3. Surface Reactions on Thin U Overlayers

After characterization of the clean U-substrate systems we investigated their reactions with
gases. With these studies we want to contribute to a deeper understanding of the reactivity of the
actinide-substrate interface with, as main application, the handling and disposal of nuclear waste.
We followed the evolution of the surface reactivity with increasing U concentration, i.e., from
the low concentration limit, where the U atoms are dispersed on the substrate, to the formation of
an interface at high concentration. We emphasized the following three reaction systems:

a) Reaction of a U-TM interface (high U concentration) with a reactive oxidant (O3). Our
aim was to follow the corrosive decomposition of the interface.

b) Reaction of U deposited on an inert substrate (graphite) limiting the actinide phase to the
information depth of surface spectroscopies. This setup allows the study of terminal
reaction products.

c¢) Reaction of finely dispersed U on a TM substrate (low U concentration) with a low
reactivity gas (CO). In this setup, U loses most of its own reactivity but changes the
adsorption properties of the substrate; it takes the roles of a promoter or poison
(application: - catalysis).

a. _ Corrosion-Induced Interface Decomposition
We studied the behavior of several interfaces (U-Pd, U-Pt, U-Si) in the presence of O2. In all

cases U shows a high affinity for oxygen and O adsorption generally results in the
decomposition of the U—substrate interface and the segregation of U to the surface where it forms
UOs. Figure 14 shows a Hell study of O adsorption on a U-Pt surface. O adsorption results in
the intensity increase of a broad and asymmetric O2p signal in the region of 3-0 eV, which is
typical for oxidic oxygen in UO2. The signal at the Fermi-level, which we attributed to the 5f
electrons of metallic U, decreases and a peak appears at about 1.8 eV. This peak is also observed
in UO; where it is assigned to the localized 52 level. These findings clearly show the surface of
U to be oxidized to UO3, and this is confirmed by the XPS—U4f data. In addition , surface
oxidation is accompanied by the broadening of the Pt5d band, whose upper sub-band moves
towards the Fermi-level. This is explained by the breaking of U-Pt bonds, which is responsible
for the narrowing of the Pt5d after U deposition (Figure 10). Notice that at high O dosage there
is no Pt signal left even though there was a significant signal after U deposition. This shows Oz
adsorption to result in the surface segregation of U where it forms a continuous UO» overlayer
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(Figure 15). Above 10 L O3 the U5f2 emission shifts to lower BE due to the transformation of
n—type substoichiometric UO;_x into p-type stoichiometric or hyperstoichiometric UO24x
resulting in the decrease of the Fermi-energy.
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Fig. 14 Op2 adsorption on U-Pt at room temperature. All U spontaneously oxidizes and the surface becomes covered
by a UO» layer.

U-Pt .
interdiffusion

© layer
J Uo2
- O
Pt Pt

Fig. 15 Op adsorption on a U overlayer on Pt leads to the oxidation U. The U-Pt interface (interdiffusion layer)
decomposes, U segregates to the surface and the Pt substrate becomes covered by a continuous UO3 fiim.

U-Pd shows similar behavior. Figure 16 displays the changes of the Pd3d core-level spectra
with U oxidation. U deposition results in a chemical shift of the Pd3d to higher BE because of
the U-Pd interaction. Most of the Pd3d signal is shifted indicating that the interdiffusion layer is
several atomic layers deep. With O adsorption the Pd3d shifts back to lower BE and eventually
back to its position in pure Pd metal. The continuous shift is consistent with the gradual
depletion of U in the interdiffusion layer. The absence of the Pd3d signal of Pd oxide, at 1 eV
. higher BE than the metal, shows that up to 60'L Op Pd does not oxidize, probably because it is
~ protected by a UO; overlayer (Pd has a low affinity for oxygen anyway).
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We also studied the oxidation behavior of U on graphite. Graphite is an inert substrate on which
U was shown to deposit as clusters. Our STM group claims to have observed a strong decrease

of U reactivity in these clusters: U would not oxidize at ambient pressure for about 30 min., as

shown by a tunnel current proving U to be metallic3. We believe that at low U concentrations

and in the presence of CO7, hydrocarbons, nitrogen, etc. a thin layer of metallic UO, which is
stabilized by UC, US, UN,... ("dirty oxide"), is formed. This would account for the observed
tunneling current. A UHV experiment of the O adsorption on a thin layer of U on graphite, at
room temperature, indeed shows an almost unchanged high reactivity of the surface (Figure 17).
Within an O7 dosage of 5 L most of the surface U is oxidized to UO2!

Intensity (arbitrary units)

1 I 1 1 1 ! ] ] ]
- o2 A7 Pd3dg,
80 anneale e T
, 59 . -..--'--"-"'"'__,...__. -.....__
UPd, o, e
Pd™-., P Y
1 1 1 1 1 1 1 L 1
340 338 336 334 332

Binding Energy (eV)

Fig. 16 Pd3d with U adsorption and oxidation. The initial shift to high BE after U adsorption is reversed after
oxidation of U which points to the corrosive decomposition of the U-Pd interdiffusion region.
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Fig. 17 Hell study of the oxidation of a thin U overlayer (about 0.3 monolayer) on graphite. U shows a high affinity
for oxygen and exposure to 5 L O results in the almost complete oxidation of all surface U.
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The U-Si system shows a slightly different reactivity towards oxygen. We deposited U on a p-
type Si(111) single crystal. We did not discuss the U-Si system in Section 2 because the Si
substrate was not pure (p-doping) thus introducing some unknown effect. Let us briefly discuss
it here. A U overlayer interacts with Si as seen by the shift of the Si2p to lower BE (Figure 18),
which may be explained by the formation of a Schottky-barrier. Rare earths deposited on Si
substrates actually build up a weak Schottky-barrier!3. The U4f emission is sharp, even for a
medium U dosage (for Pd and Pt a broad 4f peak was produced), which might be explained either
by the absence of an interdiffusion layer or by the absence of a chemical shift for U in the
interdiffusion layer (Figure 19). Annealing at 400°C leads only to a weak decrease of the U
signal, while in Pd and Pt the U4f signal was already attenuated at 200°C, suggesting a weaker
interaction between U and Si than U, Pd, or Pt. The intense satellite at 6 eV BE could be
'interprcted as a precursor to localization, but a clear assignment is complicated by the fact that
U-Si has a plasmon peak at 6 eV (the satellite is at least partially due to a plasmon loss). UPS—
VB spectra did not show any evidence for 5f localization (a correlation satellite at about 1 eV is
missing completely). O adsorption results in the partial oxidation of U to UO; as shown by the
increase in intensity of the U4f oxide peak at 3 eV higher BE than the metal peak. In contrast to
the Pd and Pt systems, the Si substrate itself has a high O affinity. The development of a peak at
102 eV BE (Figure 19), characteristic of SiO;, shows that Si oxidizes even at O dosages where
part of the U is still metallic.
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Fig. 18 Evolution of the Si2p emission with U coverage and oxidation. O2 adsorption results in a partial oxidation of
Sito SiO2.
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Fig. 19 Evolution of the U4f emissions with U coverage and oxidation.

The O; adsorption study shows that U-substrate interfaces always decompose spontaneously in
the presence of O, and that in all cases U segregates to the surface. These surface reaction
studies are useful when combined with the bulk diffusion study of Section 4, where we follow

the diffusion behavior of U for varying degrees of surface oxidation.

b. _ Use of Thin Layers to Study Terminal/Oxidation Reaction Products

The study of the formation and stability of the final reaction products is of importance both in
corrosion and in catalysis research. Unfortunately, under UHV conditions, where the sample can
be exposed only to relatively minor amounts of gases, the bulk of a reactive sample such as U
often acts as a reaction product sink: it continuously abstracts adsorbed gas atoms (O, C, H, ...)
from the surface reaction layer until it becomes saturated, which is difficult to achieve under
UHYV conditions. It thereby impedes the formation of terminal reaction products, €.g., high
oxidation states. This is especially disadvantageous at high temperatures, where diffusion allows
surface atoms to migrate rapidly into the bulk. Thin layers of U on an inert substrate such as
graphite provide an easy solution because the U bulk is eliminated. We shall discuss one

application of this below.
We used thin layersbof U on graphite to assess the thermodynamic stability of U oxycarbide

surface layers (UOxCi_x) when compared to UO,. The oxycarbide is a solid solution of UO and
UC and may be viewed as carbon-stabilized UO. We are interested in UO because it is a U oxide
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with delocalized US5f electrons which may have some applications in catalysis (see next
paragraph). We previously produced it as an overlayer on U metal by adsorption of CO4, we
wanted to determine whether UQ is only a transient species in the formation UO;. (UO seems to
be stable under UHV conditions because CO does not adsorb on a UO overlayer, and therefore,
the reaction stops once the U metal is covered by a UO monolayer) or whether it is
thermodynamically stable when compared to UO3. In the latter case it should be possible to
convert UO2 into UO by exposing a UOy overlayer to a carbon source such a CoH4. The
question we ask is: can chemical reaction (1) take place at moderate (catalytically realistic)
temperatures? ’

U+U0, +20—2C ;su0C 1)

We do not know what happens to hydrogen in such a reaction but it is conceivable that it reacts
with chemisorbed CoHj4 to form CaHg or that it desorbs as Hy. Experimental results are shown
in Figures 20 and 21. We deposited a thin layer (about 8 monolayers) of U on graphite. U forms
a continuous overlayer (the system is beyond the cluster growth stage) as shown by the near
absence of the Cls signal. We partially oxidized the system by adsorbing O3, which leads to the
growth of the UO7 signal as shown in the XPS (oxide-shifted U4f) and UPS data (asymmetric
O2p, localized U5f2, and some intensity left at the Fermi-level due to non-reacted U). We then
checked the stability of the oxide phase at elevated temperature. At this stage, thin layers behave
differently than a bulk sample: for the latter the O signal would begin to decline because of O
motion into the bulk, while only a slight decrease was observed for the thin layer system. At
300°C the difference is not too pronounced, but this changes at e.g. 900°C where O completely
disappears. We finally exposed the surface to a CpHy4 atmosphere (Pcops = 1 x 104 T) to
observe if the oxide would transform into the oxycarbide. The U4f data show that the UO» oxide
'signal disappears while a peak appears at slightly higher BE than U metal, which is broader than
the U metal emission. In UPS the O2p peak becomes symmetric, the U5f2 emission of UO2
disappears, and the signal at the Fermi-level increases. (Annealing UO; on bulk U metal leads to
the decrease of the O2p signal which, however, keeps its asymmetric shapel5.) All these
findings strongly suggest the transformation of UQO; into UQ: we previously observed that CO
and CO3 adsorption on U results in the growth of a symmetric O2p line and a missing 5f2 peak.
The symmetry of the O2p line was determined as one characteristic of UO distinguishing it from
UO3, which has an asymmetric O2p. Furthermore, in UQO2 the 5f electrons are localized and
form the 5f2 level at about 1.4 eV, while in UO they are itinerant and situated at the Fermi-level.
Hence both XPS and UPS show UOz3 to be repfaced by a more reduced (small BE shift from the
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Fig. 20 XPS-U4f study of the transformation of U into UO2 followed by the reaction of UO» (and U metal) with CoHy
to form the oxycarbide.

U metal in XPS) metallic oxide intensity at Ep in UPS also (O2p in UPS), which must be UQO.
Reaction is further evidenced by the decrease of the Ols peak and the simultaneous growth of the
Cl1s signal, showing that part of the oxygen is replaced by carbon.
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Fig. 21 UPS-Hell study of the transformation of U into UO2 followed by the reaction of UO2 (and U metal) with
C2oH4 to form the oxycarbide. Oxycarbide formation results in the increase of the intensity at EF.
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c.  U-Doped Surfaces: Actinides as Promoters in Catalysis

In the mid-80s several research groups investigated possible catalytic properties of actinides and
actinide compounds (Karlsruhe, Strassbourg, Livermore, Namur). Different scientific ideas led
to the choice of actinides as model catalysts (e.g., mixed valence, hydrogen storage, and actinide
intermetallics as precursor materials for highly dispersed noble metal catalysts, etc.). We shall
concentrate here on one case that mainly applies to metallic systems: actinides have highly
correlated f-electrons and, in that respect, are similar to late transition metals (Ni, Pd, Pt, etc.)
where the d-electrons are found in narrow bands. It has been argued that the catalytic properties
of the late transition metals are due to an interplay between highly correlated d-electrons and s-p-
electrons which are present in broad bands. The theory was introduced as the "Electron Interplay
Model"16, While this model is relatively crude, ignoring geometrical effects, it allows the
explanation of a series of basic catalytic properties, e.g., why Hj dissociates on Pt but not on Na
while both Pt and Na form stable hydrides (Pt is a good hydrogenation catalyst). It was attractive
to use actinides to test this model because some actinides have highly correlated f-electrons (Np,
Pu, U) while others do not (Th, Am), and comparison of their catalytic properties could tell us
something about the role of the highly correlated electrons. This was our starting point in the
mid-80s when the authors worked on these projects in Karlsruhe. Unfortunately, it became clear
that despite the similarities between actinide 5f-electrons and late TM d-electrons, the chemical
properties of the elements are very different! The chemical properties of metallic actinides are
dominated by the highly reactive 6d7s electrons: actinides do not behave like late but like early
TMs owing to their descendence from actinium, which is a refractory metal. We found that the
high chemical reactivity of U was manifested by the exclusive dissociative adsorption of CO on
U metal, even at —200°C14. However, we also found that U loses part of its reactivity when
diluted in an alloy such as UNis. This indicated the direction our research had to take: the only
way to study the weak bonding properties of the 5f electrons without interference of the more
reactive 6d7s was to have the latter reacted in advance. In other words, we had to look for
partially reacted U compounds with 6d7s electrons in stable chemical bonds but with the 5f
electrons still available for bonding. We also discussed another solution: in order to keep U
metallic in spite of its high reactivity one could bind it in an alloy with an even more reactive
element, e.g., Th, which then would play the role of a buffer and constantly abstract O and C
atoms from the U. T. Gouder disagreed with this idea because he thought the issue was not to
keep U metallic but to keep it from reacting. A catalyst, by definition, is a material which only
weakly interacts with the reactants and releases them spontaneously after reaction. One could
not achieve this for U by keeping it reactive and adding an even more reactive species to the
surface. Let us return to the idea of deactivation of the surface of U. There are two ways of
achieving this: a) We could partially oxidize the surface forming, e.g., UO, which in contrast to
UO, is still metallic and has 5f electrons at the Fermi-level. UO is stable in the presence of C, S,
N as a solid solution of UO and UC, US, and UN. Thus our interest in the oxycarbide and the
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experiment described above to determine whether surface UO (or UOxCj1_y) is stable compared
to UO,. b) We could further dilute U in a substrate, hoping that the 6d7s electrons would
become involved in solid-state bonding, enough to make them lose their affinity for chemisorbed
molecules, while the 5f electrons, which are more localized, would stay on the U atoms and
remain available for bonding. At first sight this seems to be pure speculation, but there are
indications that it might be justified. In catalysis, conventional promoters belong to the alkali-
group and there is no question that they are oxidized during the catalytic process. The are
usually brought onto the surface in the form of oxides. However, their promoting action is
explained, at least by some theories, by electronic interaction with the substrate thereby changing
its chemisorption properties. In principle we can expect a similar promoting effect for actinide
elements with the 6d7s states involved in bonding with the substrate which simultaneously would
deactivate these electrons. In contrast to the alkaline metals, the actinides would have the 5f
electrons available for localized bonding and might behave as local reaction centers (there are
analogies with homogenous catalysis where actinide coordination complexes have catalytic
properties).

U deposition provided the opportunity to prepare highly diluted U surface compounds, which we
could use to model U-doped catalysts. Our first experiments had to address the question of
whether we could really deactivate the actinide atoms by diluting them in a TM matrix. In this
context we studied CO adsorption on U overlayers on TM substrates. CO is often used as a test
molecule to determine the reactivity of surfaces. It does not adsorb on inert materials, adsorbs
molecularly on low reactive surfaces, and spontaneously dissociates on highly reactive
substrates. This leads to the "Volcano Curve" in catalysis, where catalytic activity is suppressed
either by too low surface reactivity (no chemisorption) or too high reactivity (reaction of the
catalyst with the adsorbate). As mentioned above we found CO to adsorb dissociatively on pure
U even at —200°C showing it to be far too reactive to behave as a catalyst. We obtained our first
results during our study of the U-Pd system. As we discussed earlier, the electronic structure of
the Pd surface is dramatically changed even by small amounts of U (the Pd4d emission at the
Fermi-level is strongly suppressed [Figure 22]), which is the necessary condition for a promotion
(or poison) effect. We then exposed these surfaces to CO at room temperature (Figure 23). CO
chemisorbed molecularly on pure Pd metal, as seen by the 40 and 56/1rn molecular orbital
emissions; there is no dissociation of CO as indicated by the absence of the O2p level (between
5-6 eV), which is found for atomic O or a surface oxide. With increasing U dosage, the signal of
chemisorbed CO decreases, but only for the highest U concentration does the signal of atomic
oxygen appear. For lower U concentrations (0.2, 0.3) there is no indication for CO dissociation:
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Fig. 22 Hell spectra of U-Pd show that even small amount of U change the electronic structure of Pd. The (Pd4d)
intensity at E is strongly suppressed.

we made the surface more inert (there is less molecular and no dissociative CO adsorption) by
covering it with small amounts of initially highly reactive U atoms.
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Fig. 23 Hell-study of CO adsorption on U-Pd at room temperature.

The decrease of surface reactivity at low U coverage can be attributed a priori to two effects:
either the surface Pd becomes covered by U atoms leaving less Pd adsorption sites available for
CO molecules, or the chemisorption properties of Pd are changed by U (e.g. by filling of the
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Pd4d band) resulting in a decrease of the chemisorption energy; the latter would be a purely
electronic effect. We tested these hypotheses by following the evolution of the signal of
chemisorbed CO (CO 40 + 56 + 1n) while heating the surface on which we had previously
adsorbed 2 L CO at ~156°C (Figure 24). Heating resulted in the sudden decrease of the CO
signal (breaking of substrate C-O bonds), which can be due either to CO desorption (—
Substrate + COgas) or CO decomposition (— Substrate—C + Substrate—O). Figure 24 shows that
the reaction temperature decreased with increasing U concentration. Before discussing this let us
first decide whether the reaction is CO desorption or decomposition. If the decreased reaction
temperature was due to CO reaction with U then adsorbing 15 L CO above the reaction
temperature should allow completion of this reaction and the transition temperature should
sharply increase.

rr i rrrr.
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Fig. 24 Evolution of the CO¢em Auger signal intensity with annealing. With increasing U concentration the reaction
temperature decreases. The reaction causes CO desorption.

If, on the other hand, the reaction is the desorption of CO, then adsorbing CO above the
transition temperature should have no effect: CO simply does not adsorb. The experiment
(Figure 25) strongly points to this second explanation: the transition temperature for the U-Pd
surface is only slightly affected by CO adsorption at high temperatures (the small shift to higher
temperature is very probably due to the slow decrease of the U surface concentration because of
U bulk diffusion, which already occurs at these temperature [see next section]). From these
experiments we conclude that U loses most of:its own reactivity and changes the chemisorption
properties (CO chemisorption energy) of the Pd substrate. Therefore, the decrease of the CO
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signal in Figure 23 is at least partially due to the lowering of the chemisorption energy of CO on
Pd (U behaves more like a poison than a promoter, but we expect this to change when choosing
other substrates and gases). Supplementary evidence for the weakening of the Pd—CO bonding is
prpvided by the BE difference between the CO40 and 56 emissions (ABEg 46-50) (Figure 26).
The increase in BE between the non-bonding 46 and the CO-substrate bonding 56 by about 0.2
eV indicates that the 56 orbital energy increases and therefore suggests a weakening of the CO-
surface bond1?. However, we must point out that this argument alone is not very convincing
because a) the ABE increase is fairly small (a large ABE increase is not expected since 0.2 eV
corresponds to a decrease in chemisorption energy by about 5 kcal/mole, which is already
significant), b) there is some arbitrariness in the determination of the maximum because of the 17
signal is superimposed on the 56, and c) the correlation between ABE 46-56 and chemisorption
energy is far from generall’. Nevertheless it is interesting to notice that the decreased
chemisorption energy in this case seems to be accompanied by the expected increase of ABE 46—
50 and chemisorption energy in this case seems to be accompanied by the expected increase of
ABE 40-50. HREELS experiments on single crystal Pd are planned to confirm this.
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Fig. 25 Evolution of the COgpepm. signal intensity with annealing. Even repeated exposure of the surface to CO at
high temperature (above the reaction temperature) only little affects the reaction temperature (all five
exposures-desorptions have been done on one sample).

The results obtained thus far are encouraging for further studies of actinides as model catalysts.
We have suppressed the high initial reactivity of actinide atoms which was the primary obstacle
to these studies. The UHYV investigations should now be accompanied by some well selected
catalysis experiments on model systems with low actinide surface concentrations.
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Fig. 26 High resolution UPS spectra of thé COchem lines for CO adsorbed on U-Pd. The 40-56 splitting increases

with the U concentration.
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4. Bulk Diffusion of U Overlayers

Stability of actinide/containment-material interfaces is an important issue in the storage of
nuclear waste where thermal decomposition, corrosion, and bulk diffusion of actinide
compounds and fission products may present potential problems. Thin layers of actinides on TM
substrates offer an opportunity to study these processes. Because of the small amount of initial
material even slow processes, which are of importance in long term storage, may be addressed
under realistic conditions. Characterization of the overall diffusion reaction is generally
complicated by the fact that the actinide-substrate interface constitutes a heterogeneous system

and concentration/phase dependent diffusion mechanisms may result in the simultaneous or

sequential occurrence of different diffusion-reaction processes. (In the rest of this section we
will call "diffusion” any process contributing to the penetration of actinide surface atoms into the
substrate; this includes the classical bulk diffusion of highly diluted U atoms and also near
surface migration of U during alloying reactions.) Traditional techniques, which study the
system after reaction by analyzing the diffusion profile, obtain an integrated result and present
difficulties deconvoluting several diffusion processes. Therefore, we thought of a
complementary technique which would allow us to differentiate several diffusion mechanisms by
their activation energies even if they occur simultaneously. In this section we will briefly
describe our approach and present its application in the study of bulk diffusion of U and U
compounds into Pd. The majdr difficulty in our approach is that diffusion parameters in thin
layers often differ from bulk diffusion parameters18. We will address this briefly at the end of
the section.

In a diffusion reaction, the concentration of the diffusing species (A) varies with time and depth:
cA =cA (x,1). In the classical diffusion experiment, the diffusion is stopped after a fixed time (t =
fixed) and a diffusion profile cA (x) is determined by a sectioning technique (e.g. sputter depth
profiling with Auger spectroscopy) or by an analytical technique with depth resolution
(Rutherford Back-scattering Spectroscopy, RBS). The diffusion parameters (activation energy,
etc.) are determined by carrying out the experiment at different temperatures. In this approach
the integrated result of diffusion is measured, and if several diffusion processes are active during
the measurement time, either simultaneously (e.g. short circuit diffusion and interstitial diffusion)
or consecutively (near surface alloy formation and its subsequent dilution), the technique yields
results difficult to deconvolute. In our approach we measure the surface concentration (x = 0) of
the sample as a function of time ca (t), by following the respective AES signals of adsorbates
and substrate (AES is a fast real time technique). Hence, we do not study the system after but
during the diffusion reaction. A simple expe'“x"imental trick allows us to distinguish diffusion
processes which differ in activation energy: we ramp the sample temperature during the
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diffusion experiment. (The technique bears strong similarities to thermal desorption
spectroscopy (TDS) where a sample surface is also heated linearly and the rate of desorption is
measured as a function of temperature and heating rate). At low temperatures diffusion
processes with low activation energies predominate. If these reactions do not consume all the
diffusing materials, processes with high activation energies will be detected at higher
temperatures. We can expect this in two cases: a) the low temperature diffusion is due to grain
boundary diffusion which has only limited diffusion channels and tends to be saturated (i.e.,
temperature increase does not produce an increase in diffusion rate) and b) the low temperature
diffusion is coupled to a chemical reaction, e.g. near surface alloy formation, where the reaction
enthalpy provides the driving force and the diffusion stops after A is transformed into AyS (S =
substrate) and is still present in detectable concentrations within the information depth of AES.
A typical diffusion experiment is shown in Figure 27. A Pd sample is covered by a U overlayer
and heated linearly to 900°C. We followed the evolution of the U and Pd Auger intensities (Vpp
or integrated peak areas) with temperature and time. To have more direct access to the rate of
diffusion we construct the differentiated curved (dI/dt), where the peaks correspond to diffusion
processes with different activation energies. Notice that, as in TDS, the peaks are produced by
the counteracting effects of rate increase due to increasing temperature and rate decrease due to
decreasing concentration of the diffusing species: they are a consequence of the ramping of
temperature. While the mathematical description of such processes is well established, the finite

T T T T T T T T T

I : '

Intensity (arbitrary units)
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Diffusion peaks
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Fig. 27 Diffusion curves: evolution of the Pdyyn and Uoyy AES signal intensities with time. The temperature is

raised linearly at a rate of 1° C / sec. For discussion of diffusion rates, the initial I{t) curve is differentiated
and for easier comparison the absolute values of the derivative are displayed.
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information depth of AES introduces further complications. When these are solved it should be
possible to apply the experimental tricks of TDS, such as different heating rates and profiles, to
obtain further information on the diffusion process. However, this technique presents a few
disadvantages, e.g., the poorly defined information depth which makes it difficult to use AES to
determine surface concentrations. Therefore, it should be accompanied by sputter depth profiling
which can be perfoﬁned with the same spectrometer.

We used this technique to study the near surface and bulk diffusion of U, UOg, and UOxCj_x on
a polycrystalline Pd substrate. The polycrystalline surface introduces further complications such
as grain boundary diffusion. Therefore, it does not make sense to discuss the results in detail but
we will save this for an imminent study on single crystal Pd and limit the discussion here to some
representative results and a short intuitive discussion. Figure 28 shows Pd concentration curves
for several initial U coverages. For high U concentrations the initial Pd signal is weak because
the sample is covered by a thick U reaction layer (U-Pd alloy, U islands). Notice, however, that
the Pd signal does not vanish. All curves show regions of constant slope and s-shaped
(sigmoidal) regions. The latter are associated with the onset of a diffusion process at a given
temperature. Thus, it is clearly seen that there are several diffusion procésscs for U diffusion into

T T T T T
Initial
U/Pd AES
Intensity Ratio
6.50

el

iz 1 s 3 2 1 9+ 3 3 1 2 3 3 1 3 11

0 200 400 €600 800 1000

Pd (MNN) Intensity (arbitrary units)

Temperature ( ° C)

Fig. 28 Annealing curve (Pd signal) for different initial U coverages. The curves show regions of sudden slope
increase which correspond to onsetting diffusion processes.

Pd. In areas of constant slope either no diffusion is detected (zero slope) or, at least, no new

diffusion process is active (non zero slope).
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Let us discuss these regions in some more detail. The lowest linear region starts at room
temperature. Its upper limit moves t0 higher temperatures with higher U dosage. At very low
dosage the slope is positive even at the lowest temperatures showing diffusion processes to be
active below 100°C (the AES electrons may be involved in the activation of room temperature
diffusion). With higher U dosages the slope becomes zero even though the low temperature
diffusion processes' are active, as shown by the low coverage data. The fact that the U diffusion
into Pd is no longer seen in AES shows that it occurs beyond the AES information depth: the
reaction takes place at the base of thick islands from where Auger electrons can no longer escape

(Figure 29).
Islands = \\& \

uprd P E
surface layer
. AES . .
Low Dosage: Thin Info High Dosage: Thick Overlayer
Overlayer Depth ->Iinward Diffusion not

Fig. 29 island dissolution: For thick islands the dissolution does not change the AES signal, because AES does not
look through the layer

In spite of the thick U layers, a non zero Pd signal is detected at the beginning. This shows that
the surface is not covered uniformlyv by a U overlayer but by thick islands which grow on the U-
Pd reaction layer. The slope of the flat region at medium temperature is also a function of initial
surface coverage (Figure 28): at low coverage it is positive while at high coverage it is zero.
Our interpretation is the following. The low temperature reaction leads to the formation of a
thick UPd3 near-surface alloy (Figure 30) which then dissolves at higher temperatures. The
dissolution starts at the bottom and is only detected by AES when it reaches the top (Figure 31).
This results in the zero slope. Let us discuss the experimental evidence. Formation of UPd3 at
low temperature was already indicated by the evolution of the electronic structure (localization of
the 5f electrons, Figure 8). In addition, a Pd signal of about 75% of its final value in pure Pd
(Figure 28) suggests the formation of a Pd compound of 75 at % Pd, I.e., UPd3. This U-Pd alloy
layer can be expected to be about four times thicker than the initial U overlayer (Figure 30).
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UPd3

Pd

Pd covered by U overlayer Near surface alloy formed by
interdiffusion is about four times
thicker than the initial overlayer

Fig. 30 Diffusion of a U layer produces an interdiffusion layer UPd3 of about four times the thickness of the initial
overlayer. Partial interdiffusion takes places immediately after deposition, so the initial overlayer drawn is
only hypothetical.

UPd3 will react with the Pd substrate to form more diluted U-Pd alloys (UPd4, UPds, UsPdi1,
and U,Pd17 are stable as bulk phases) and finally dissolve in the Pd substrate!9. The reaction
will start at the interface between UPd3 and the more highly diluted phase and proceed to the
- surface. For otherwise identical conditions (same heating rate) this will take longer the thicker
the UPd3 near-surface alloy. This explains the apparent delay (or high temperature shift) of the
high temperature diffusion process with increasing U dosage. Thus, the exact position of the
diffusion peaks directly depends on the amount of U initially deposited. The correct
determination of the initial coverage is therefore crucial for a quantitative evaluation of the data.

Figure 32 shows a more extensive set of Pdyn diffusion curves for increasing U coverage. The
differentiated curves show a low and a high temperature peak system. The low temperature
system (peaks A, B, and C) is weak at low U dosages but becomes dominant at higher dosages.
This is attributed to the reaction of the U accumulation layer (U overlayer and islands) with Pd.
At low coverage there is no U accumulation and, therefore, no low temperature reaction, but with
increasing dosages U accumulates at the surface and the instability of the system triggers U

Pd , U dissolved in Pd v} ‘ i
1
‘ . 0.25
i
t1 2 13 )

0.00 -
Dissolution of the UPd3 intermetallic AES Depth
info
degth

Fig. 31 Advance of the reaction front o the surface (t1<t2<«t3)

diffusion into the near surface region. The low temperature system consists of two or three
superimposed peaks (A, B, and C); the lowest temperature peak (A) is more prominent at low

December 8, 1994 31 KC.1634.0194-CC




coverage and then saturates, while the highest temperature peak (B) appears only at higher
coverage. Itis tempting to assign them to near surface diffusion of the U overlayer and U islands
because the overlayer forms first and the islands grow on in later. However, one would have to
conclude that the overlayer dissolves before the islands do, which is not evident. At high
coverages (5.30, 6.50) either peak A disappears and a new diffusion peak (C) appears or peak A
suddenly moves to higher temperatures where it appears as peak C. We will leave a more
extensive discussion to the single crystal study because of the possible influence of grain
boundary processes on different crystal planes. The high temperature region shows one diffusion
peak (D), which is broad at low coverage but narrows and shifts to higher temperature with
increasing coverage. The high temperature shift is due to the extension of the diffusion region
(Figure 31). The narrowing is due to the increased temperature: once the reaction front reaches
the surface the drop in U concentration is faster at higher temperature.

Let us now discuss the bulk diffusion of U oxycarbide and UO2 in Pd and compare it to U metal
diffusion. We synthesized a thin layer of U oxycarbide on Pd by exposing the U overlayer to a
saturation dosage of CO (30L). Figure 33 shows the changes of the diffusion peaks as a function
of the initial U coverage. When comparing it to Figure 32 we first notice that the low
temperature peaks of Figure 32 either completely disappear (Peak A) or appear only at higher U
dosages (peak 32B could correspond to peak 33A that, however, is shifted to higher

(arbitrary units)

d (Pd MNN) / dt

0 200 400 600 800
Temperature ( °C)

Fig. 32 Diffusion curves for U-Pd as function of the initial U coverage.
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temperatures). At low U coverage CO reacts with the uranium responsible for the low
temperature peaks 32A and 32B (the U coverage is above the threshold coverage of 0.5 where
CO starts dissociating. See previous section). Because we know from a previous study that CO
reacts only with surface U4, we conclude that at low coverages U is located on the surface .
(This was already indicated by the low inelastic background in Figure 4). This again indicates
that peak 32A is due to a U overlayer. Peak 32B/33A could be attributed to island dissolution:
at low U coverage, the islands are thin and all island U reacts with CO, therefore, peak 33A is
suppressed at dosages where 32B is already present, while at higher coverages the islands
become thicker and contain U atoms that no longer are accessible to CO and produce the island
dissolution peak 33A. Peak 33C corresponds to peak 32D and is attributed to the high
temperature dissolution of UPd3. It grows with U coverage when U deposits in thick islands and
does not react with CO but with Pd (peak 33A) to form UPd3. However, it is also seen at low
coverage where apparently some of the surface U does not react with CO but stays in the U-Pd
intermetallic form (this has to be expected because of the decreased reactivity of U). Peak 33D
corresponds to the oxide decomposition peak: it coincides with the Oy, diffusion peak (Figure
34). At low coverage, where the U concentration is still high enough to produce CO
dissociation, it is already large but seems to saturate at high coverage, which is in agreement with
the formation of a mono-atomic oxide layer. Peak 33B is as yet unexplained. It might be due to
the decomposition of U carbide (we cannot follow the Cky1 AES peak because it overlaps with
intense U and Pd Auger lines).
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Fig. 33 Diffusion curves for U-Pd-CO as function of the initial U coverage. A saturation dosage of CO produced an

oxycarbide overlayer. Disappearance of the low temperature diffusion peaks of Fig. 32 shows the latter to be
due to surface U which in this experiment reacted with CO.
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Figure 35 shows the diffusion of a U overlayer that we exposed to 5 L O5. All three curves have
only one diffusion peak suggesting a single diffusion process which is coupled to oxide
decomposition (O 1 peak). All other diffusion processes (low temperature alloy formation and

form UQO».
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UPd3 decomposition) have disappeared showing the surface to be covered by UO».
results are in agreement with the UPS-study (Figure 14) and XPS-study (Figure 16) of O3
adsorption on U-Pd, both of which show O3 adsorption to result in the decomposition of the
UPd3 interdiffusion alloy and in the segregation of U to the surface where it reacts with O to
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Fig. 34 O and Pd diffusion curves for U/Pd=0.71 for CO adsorption. Peak 33D is due to oxide decomposition. (At
higher U dosages other weak Oy diffusion peaks develop at lower temperatures but peak 33D always

Fig. 35 O, Pd and U diffusion curves for U/Pd=0.71 after O, adsorption. The coincidence of all three curves shows
only one diffusion process to be active and to be associated with the decomposition of UO,.
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The above study, even though preliminary, shows our measurements of the diffusion behavior of
U to be sensitive to the different chemical forms of U on the surface. In addition, it is capable of
distinguishing several diffusion processes that may occur either simultaneously (UPds
decomposition/Oxide decomposition) or sequentially (UPd3 formation/dissolution). Even
though significant data modeling, which is more complicated than for TDS, must be done to
produce quantitative results, the technique at this stage already allows qualitative statements
about the diffusion behavior of thin surface films to be made. There are, however, weak points
in our approach. The two major ones are a) that AES does not allow us to determine exactly the
composition of the uppermost layer, but it gives a weighted sum over several layers, and b) that
because of the minute amount of material and the shallow information depth we record, the very
early stages of diffusion, which take place in the surface region, may differ from bulk diffusion
(because of surface reconstruction, lattice relaxation, enhanced grain boundary diffusion, etc.).
Therefore, the results will not always be representative of bulk diffusion, However, there are
many experimental and theoretical studies which permit us to relate surface and bulk kinetics and
thermodynamics, and there are experimental remedies which should allow us to get bulk
sensitive diffusion data even with AES (e.g., the surface accumulation method20). If we can
overcome these problems our approach may be complementary to the more classical diffusion
studies.
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5. Conclusions

Study of thin layers contributes to the scientific understanding of actinide systems. It allows
investigation of issues which are closely related to the handling and long term storage of nuclear

materials and waste. Some prominent features of our approach are:

— We can prepare non-buried actinide-substrate interfaces and use well established surface
analysis tools to study their corrosion resistance, decomposition under heat, and, on a more
fundamental level, their electronic structure and chemical reactivity.

—  We can prepare an actinide phase consisting of minute amounts of material so that even
very slow chemical reactions (e.g., diffusion at low temperatures) will yield measurable

results.

— We can prepare actinide systems with variable stoichiometry and even with compositions
which are not stable in the bulk. This should enable us to investigate chemical properties
(reaction temperature, chemisorption properties...) as a function of the actinide
concentration.

— Thin layers accentuate the narrow band properties of actinides because of the decreased
coordination. Applications lie in the fields of magnetism (enhanced surface magnetism),

superconductivity, heavy fermion systems, and catalysis.

—  The decreased reactivity of U at low concentrations make it possible to investigate its
potentially useful catalytic properties.
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6. Authors' Comments

Dr. Gouder was happy to initiate this research at Livermore with Dr. Carlos Colmenares. Itis a

scientific continuation of the PhD thesis work he did with Dr. Jochen Naegele at Karlsruhe. We
. think that the intense thin layer research in Lanthanides should have its counterpart in Actinides,
which show even more versatile chemical and physical properties that are very sensitive to the
particular environment in thin layers. As we have pointed out, thin layers may offer an
Oppbnunity to investigate long term storage of nuclear waste. Research in this field could range
from the empirical evaluation of containment materials and the study of the influence of
radiation-induced defects on bulk diffusion to a more fundamental study of the slow and early
diffusion processes themselves. Part of our data are preliminary, but we believe they show the

potential value of this research.
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