This work was supported by the United
States Depariment of Energy under

DISCLAIMER  sepp95/344 C

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
e{r{ployees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof, The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.

APPLICATION OF OPTIMIZATION TO THE INVERSE
PROBLEM OF FINDING THE WORST-CASE HEATING

CONFIGURATION IN A FIRE

V.J. Romero, M.S. Eldred, W.J. Bohnhoff, and D.E. Outka
Sandia National Laboratories '
Albuquerque, New Mexico, 87185, USA

ABSTRACT
Formal optimization procedures have been applied to determine the worst-case
heating boundary conditions that a safety device can be credibly subjected to. There
are many interesting aspects of this work in the areas of thermal transport, optimi-
zation, discrete modeling, and computing. The forward problem involves transient
simulations with a nonlinear 3-D finite element model solving a coupled conduc-
tion/radiation problem. Coupling to the optimizer requires that boundary conditions
in the thermal model be parameterized in terms of the optimization variables. The
optimization is carried out over a diverse multi-dimensional parameter space where
- the forward evaluations are computationally expensive and of unknown duration a
priori. The optimization problem is complicated by numerical artifacts resulting
from discrete approximation and finite computer precision, as well as theoretical
difficulties associated with navigating to a global minimum on a nonconvex objec-
tive function having a fold and several local minima. In this paper we report on the
solution of the optimization problem, discuss implications of some of the features
of this problem on selection of a suitable and efficient optimization algorithm, and
share lessons learned, fixes implemented, and research issues identified along the
way.

1. INTRODUCTION

Thermally induced failures and indeterminacies in critical structures and sys-
tems such as aircraft, weapon systems, naval vessels, and petrochemical processing
plants can put people and engineered systems at risk. It is highly desirable to design
such systems so that fire-triggered catastrophies are avoided. This requires probing
the thermal robustness of candidate designs in various credible thermal environ-
ments. Alternatively or in conjunction, it would be useful to approach the problem
from an inverse sense, where the heating scenario that a design is most vulnerable
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to is identified. Then, the relative safety of the design can be quantified under
“worst-case” conditions and design trade-off studies can be conducted.

Computer models validated by physical testing can be combined with formal
optimization procedures to determine worst-case heating scenarios. In this paper
we describe the use of optimization to solve the 2-parameter inverse problem of
finding the size and location of a circular region of fire exposure that most severely
threatens the integrity of a weapon safing component. We define the problem in an
optimization context, study the forward problem and probe the parameter space,
describe the interfaces between the optimizer module and the thermal model, report
on the optimization process and results obtained, reiterate lessons learned and fixes
implemented, and cite areas where improvements and advances are most critically
needed.

2. PROBLEM DEFINITION
2.1 Thermal Model |

Figure 1 shows an exploded view of a discretized model of the safing device.
(An assembled unit is shown in Figure 2.) The model was created with the finite-
element modeler PATRAN 2.5 [1]. It turns out that only half of the safing device
had to be modeled due to a plane of symmetry in the problem (see Section 2.3). This

lateral ™~ roof or top
wall - of device
of )

hous- SSA
ing housing

S
.

o

\
ﬁ‘ e N

v
{
\

y,
"._U_‘
o
&

@Y™ " floor or bottom
\""“' of device housing

Figure 1 Safing Device Model Geometry (exploded view)



is very fortunate because seven radiation cavities exist in the model, and halving
their sizes by symmetry decreases the size of the numerical radiation problem by a
factor of about 3 for the present geometry and discretization.

Essentially, the safing-device housing is a cylindrical thin-walled stainless steel
can with a diameter of roughly 6 inches and a height of about 2.6 inches. It is pre-
dominantly modeled with linear isoparametric quadrilateral and triangular shell!
elements. The stainless steel single stronglink assembly (SSA) mates to a hole in
the roof of the safing device via a perimeter weld. All solid (non-shell) finite ele-
ments in the model are linear isoparametric elements, either 8-node hexahedra or 6-
node wedges. The SSA plate, to which several devices are attached, fits inside a
cavity in the SSA. The physical corners of the plate (as opposed to apparent corners
created by the symmetry cut through the model) are bolted to shoulders inside the
cavity of the SSA housing. Perfect thermal conductance is assumed across all inti-
mate (bolted, welded, mounted, wound) interfaces in the model. A Mylar-and-foil
laminate is wound around the stainless-steel shell-element mandrel. This capacitor
winding has highly anisotropic properties because of its layered structure. Thus, the
finite elements making up the winding are assigned individually oriented orthotro-
pic property tensors. The top end of the mandrel, which extends just slightly
beyond the winding, is welded to the roof of the safing-device housing. There are
nearly 2000 finite elements in the model. The highly temperature-dependent prop-
erties of stainless steel and the large temperature excursions involved make the
conduction problem a fairly nonlinear one.

Because of the high temperatures involved in this problem thermal radiation is
extremely important. However, radiative transport is a very nonlinear and computa-
tionally demanding problem to solve, adding a component of difficulty to this prob-
lem that is just now beginning to be surmountable with todays fast computers and
-advanced thermal modeling and simulation packages. A system of 7 enclosures
" (1046 surfaces total) is used to account for internal radiant exchange within the saf-
ing device. Upper and lower enclosures exist inside the stronglink housing, sepa-
rated by the plate. The main enclosure includes the surfaces on: the exterior lateral
and bottom faces of the SSA, inside wall of the mandrel, bottom face of the wind-
ing, bottom plate of the safing device, and ceiling of the device between the man-
drel and SSA. The enclosure where the top and outside faces of the winding
exchange with the device housing is modeled as four 90-degree arcing enclosures
to reduce the number of view factors generated (while giving up only incremental
accuracy).

External forcing conditions (boundary conditions) are described in Section 2.3.
Approximately four man-weeks were required to construct the model from draw-
ings and apply boundary conditions. The thermal solver used in the analyses was
QTRAN [2].

1 Thermal shell elements do not support temperature variation across the element in the thick-
ness direction but do support in-plane temperature gradients. They are used to avoid numeri-
cal stiffness that can accompany the resolution of very small temperature gradients through
relatively thin, conductive walls.



2.2 Device Operation and Relation to Obiective Function

The safing device is intended to prevent operation or triggering of a weapon by
unauthorized personnel or unintended occurances. The single stronglink assembly,
which we will also call the “stronglink”, prevents the transfer of uncleared electri-
cal signals to critical operation and control components in the system. In any opera-
tional or abnormal environment it must serve its function until other components. in
the system critical for operation of the weapon are irreversibly neutralized. In par-
ticular, the capacitor winding, which we will also refer to as the “weaklink”, must
become incapable of holding an electrical charge before the stronglink succumbs.

In abnormal environments a race to time-of-failure between the weaklink and
stronglink is set up in the local confines of the safing device. This begs interesting
and important questions: What, if any, abnormal environments cause the race to be
lost by the weaklink (and thus cause the safing device to be defeated)? Can the
worst-case environment be identified so that the device can be designed to survive
it? These questions must be answered in an inverse manner, i.e. by trial and itera-
tion. Though iterative in nature, these problems can be systematically approached
within the context of optimization.

From a thermal perspective, we define failure criteria for the weak and strong
links in terms of “failure temperatures” that can in general be complex functions of
temperature history, heating rate, geometry, boundary conditions, etc. By experi-
mental testing it has been determined that, under thermal conditions in the neigh-
borhood of those to be probed in the optimization run, the status of the stronglink
becomes indeterminate when certain critical elements on the underside (bottom
face in Figure 1) of the SSA plate reach 1100°F (600° C). For the weaklink capaci-
tor it has been determined that Mylar melts at about 480°F (250°C), and begins to
shrink at significantly lower temperatures. Flow of the Mylar or separation at inclu-
sions during the shrinking process allows coalescence of the oppositely charged
aluminum foils in the winding, which shorts the capacitor, rendering it irreversibly
inoperable. Testing has shown that, in the neighborhood over which the optimiza-
tion is to be performed, a conservative failure criterion for the weaklink is a tem-
perature of S00°F (260°C). ‘ :

In our simulations we periodically scan the temperatures of all nodes on the
underside of the SSA plate-and all nodes of the winding. We define #_failg,,ngjins. 25
the elapsed time (from time zero at the beginning of the simulation) required for the
hottest node on the underside of the plate to reach a temperature of 1100°F
(600°C). Similarly, ¢_fail,,. 1ink 1S the time required for the hottest node on the
capacitor winding to reach a temperature of SO0°F (260°C). The difference
I_failgronglink - 1_faily,eqrink is @ measure of the safety margin, and will constitute
the objective function in our study. We seek a global minimum for this value over a
range of heating scenarios to be discussed next. By minimizing the value of this
function we identify increasingly threatening heating scenarios, finally arriving at
the worst-case scenario at the objective- function minimum. Thus, we solve the
inverse problem.

2.3 Two-Parameter Heating Function
The bottom of the safing device is mounted to a bulkhead and is largely isolated




vibrationally and thermally via rubber retainers. Thus, an adiabatic boundary con-

dition is applied to the bottom surface of the device. However, the lateral and top
surfaces of the device can be exposed to heat sources. Given that the weaklink has a
much lower failure threshold than the stronglink, and has much less heat capaci-

tance, uniform heating of the safing device will result in weaklink failure that pre-

cedes stronglink failure. Therefore, for our purposes, we only need concern

ourselves with those environments that heat the stronglink preferentially relative to

the weaklink. Indeed, we seek by formal optimization to maximize the degree to

which the stronglink is preferentially heated. Any element of lateral heating is to be

avoided because this heats the weaklink more directly than the stronglink. Hence,

the lateral surfaces of the safing device are kept adiabatic in our study. Localized

intense heating from the top, however, does meet our criteria. In particular, the

device appears potentially vulnerable to application of heat to the roof of the safing
device, localized to a region directly above the SSA plate.

We now bring the problem out of the abstract by imposing a form to the heating
environment. We postulate that in an accident a hydrocarbon fuel fire erupts and
irradiates a small circular region on the top of the firing set, the rest of the firing set
being completely shaded from the fire. We model the fire as a blackbody radiator at
a temperature of 1000°C (1832°F) (see [3]). We assume the device is completely
insulated except at the said irradiated region, which is assumed to fully view the
fire (view factor = 1). From geometrical and heat transfer considerations it can be
concluded that, if limited to a single circular window of exposure on the roof of the
device, the circular region should be centered on the diametral line corresponding
to the plane of symmetry of the device. (Thus a plane of symmetry exists in the
total thermal problem {geometry + boundary conditions}.)

Initial temperature has a nonlinear effect on the stronglink/weaklink race and is
-a determining factor in the worst-case heating configuration. However, it is not
" included as a free parameter in the current investigation. In our simulations the
model is initially at 25°C and the fire temperature is ramped from 25°C to 1000°C
over the first 10 seconds and held constant thereafter.

We therefore have a two-parameter description over the set of relevant and
allowable heating configurations. Radius of the circular irradiated region is one
‘parameter and location of this “spot” along the said diameter is the other. We pro-
ceed to find the optimum (worst-case) heating configuration with respect to these
two parameters. ' ‘

3. PARAMETER-SPACE SAMPLING
3.1 The Forward Problem (An Example)

The forward problem is solved to obtain the value of the objective function at
given values of the heating parameters. Figures 2 and 3 show results of a simulation
run with the thermal model for the parameter values r = spot radius = 1.020 inches
and x = 0.142 inches = distance from the center of the safing device in the positive
x direction as shown in Figure 2. These values define a region on the roof of the
device pointed to by the white arrows in the figure. Though difficult to verify by
looking at the gray-scale plot, high temperatures are concentrated about the stron-



Figure 2 Safing device temperature distribution (°F) 80 minutes after the
' start of the fire, heating parameters r=1.02 in., x=0.142 in.
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glink plate, with the capacitor winding being relatively cool. Thus, this combination
of parameters results in a highly localized heating configuration that preferentially
heats the stronglink to a high degree. This is what we are after. Figure 3 shows the
relevant weaklink and stronglink temperature responses over time. For the stated
parameters the value of the objective function is O(x = 0.142 in., r = 1.020 in.) = 56
minutes. ' :

3.2 Objective-Function Character: 1-D Parameter Studies

We can get a local indication of the variation of the objective function over the
optimization space by performing 1-D parameter studies in the optimization vari-
ables r and x. ‘

With regard to location x of the irradiated spot, it would seem that a region cen-
tered somewhere over the SSA plate (e.g. the region indicated by white arrows in
Figure 2) is most likely to constitute worst-case positioning. A parameter study in x
bears this out. Figure 4 shows the variation of the objective function as x is varied
over a particularly relevant span of its allowable range when the radius is held con-
stant at r = 1.89 inches. ‘As the irradiated spot proceeds away from the center of the
safing device a minimum point is reached somewhere over the exposed portion of
the SSA plate. As the spot proceeds further away, the objective function rises rap-
idly as the capacitor winding begins to “feel” the heat much more directly and the
SSA plate simultaneously experiences a decrease in heating. Significantly (from an
optimization perspective), a fold in the objective function exists as indicated by the
cusp point at the minimum in Figure 4 where the slope becomes discontinuous.
This occurs because an abrupt shift occurs in the location on the winding where the
failure temperature is first experienced. When the center of the irradiated spot is to
the left of the cusp point, the peak temperature on the capacitor always occurs in (-
)x half-space at the top of the winding where the plane of symmetry intersects the

" inner cylinder of the winding. On the right of the cusp, failure always first occurs at
the mirror image in (+) x half-space. Additionally, the objective function in the vis-
cinity of the cusp exhibits negative curvature, which is poorly captured by the posi-
tive-definite Hessian approximations used in many second-order optimizers.

Assuming that the irradiated spot is centered somewhere above the SSA plate,
an interesting interplay exists between the localization of heating and the amount of
thermal energy deposited to the device. As the circular region that sees the fire
decreases in size, the heating becomes more localized to the stronglink (and remote
from the weaklink), tending to worsen the severity of the event. However, a coun-
teracting effect exists in that the magnitude of heat applied to the firing set dimin-
ishes, allowing the transport mechanisms (conduction and radiation) to diffuse heat
more effectively (i.e. fast enough to avert localized concentration of heat). Thus,
we would expect that a minimum in the objective function would occur for a
medium-sized spot. This is verified by Figure 5, which presents the results of a
parameter study over spot radius r for a spot centered at x = 0.8 in. Though almost
imperceptible because of the convexity (positive curvature) in the viscinity of the
minimum, the slope of the objective function is discontinuous at the minimum due
to a switch in the nodal location where weaklink failure occurs. The figure also ver-
ifies the presence of multimodality in the objective function, which presents a diffi-
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culty in optimization because a local minimum might mistakenly be identified as
the global minimum.

3.3 Effect of Model Parameters on Optimization Process

The finite precision of numerical solutions to the forward problem can intro-
duce difficulties into the optimization process. Figure 6 is a magnification of a por-
tion of Figure 4 showing small-scale nonsmoothness that can occur for improperly
set error tolerance parameters EPSIT and EPSIT2 (see [2]) in the thermal model.
Other factors such as machine precision, code precision, relaxation parameters and
. type of time integrator used in the thermal solver, etc. also affect the result, but the
most direct control is usually afforded through specification of allowable per-time-
step errors. The driving issue is not necessarily that a numerically converged result
has not been obtained; the maximum deviation of the unsmooth curve in Figure 6
from the “smooth” curve is acceptably small. Rather, the fundamental issue is the
stochastic nature of the deviations, which can create local extrema that the opti-
mizer can converge to, or which can prevent the optimizer from converging at all.
As it turned out, none of the nonlinear programming algorithms tried could suc-
cessfully navigate the design space at the less strict set of error tolerances listed in
Figure 6, but much better success was obtained at the tighter set of tolerances.

The stricter error tolerances that smoothness demands can increase tremen-
dously the compute time per forward evaluation. In our problem the additional
CPU time varied considerably over the parameter space, but typically factors of 2
to 10 times more compute time was required to produce the data points of the




smooth curve in Figure 6 than of the unsmooth curve.
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4. THERMAL MODEL-to-OPTIMIZER INTERFACE

The thermal model for solving the forward problem was coupled with various
software packages for solving the optimization problem via an object-oriented soft-
ware environment described in reference [4]. The basic mode of operation is the fol-
lowing. The optimizer generates a parameter set (radius and location) describing a
heating configuration for which the value of the objective function must be deter-
mined. A software script translates these parameters into heat flux boundary condi-
tions for all of the affected elements on the roof of the safing device. The thermal
model is then run until the objective function can be calculated. This involves mon-
itoring the temperatures-of computational nodes on the capacitor winding and under-
side of the SSA plate, sorting to find peak temperatures, suspending the computation
after both weaklink and stronglink have reached their failure temperatures, and cal-
culating the value of the objective function from the respective failure times. Finally,
the value of the objective function is passed to the optimizer which, with the benefit
of this and previous information, comes up with a new set of heating parameters to

try.
5. OPTIMIZATION RUNS

The optimizations were performed over the parameter ranges 0 <x<2.9 and
0.5 £r <5.8 . Runs were executed on a single processor of an IBM SP2 multi-pro-
cessor computer. Several widely available optimization routines were tested, as
described below. The function evaluations with the thermal model consumed the
overwhelming proportion of computation time in the optimizations. An average
evaluation took about 20 CPU minutes on the SP2 machine.

This application was challenging from an optimization perspective due to the
nonsmoothness and nonconvexity of the design space. Several nonlinear program-
ming optimization packages were employed for the solution of this problem,



including DOTI[S5], NPSOL[6], and OPT++[7]. In general, the Newton-based opti-
mizers (NPSOL’s sequential quadratic programming algorithm, DOT’s BFGS
quasi-Newton method, and OPT++’s quasi-Newton methods) performed poorly
due to inaccuracy of the Hessian approximation caised by the nonconvexity of the
design space (i.e. negative curvature in the viscinity of the minimum). Conjugate
gradient methods (DOT’s Fletcher-Reeves conjugate gradient and OPT++’s Polak-
Ribiere conjugate gradient) were much more successful. Furthermore, choice of
finite difference step size (FDSS) for computation of gradients proved to be impor-
- tant. Table 1 shows the results for conjugate gradient optimizers with varying FDSS
for EPSIT=102 and EPSIT2=10* (see Figure 6 for effect of EPSIT tolerances). An
asterisk (*) in the function evaluations column indicates that the optimization did
not run to convergence (premature termination occurred due to search directions
that failed a descent-direction test).

Initial | Initial . .
i P #Fcn Final Values Final
Optimizer FDSS \g’h)xss I?bel Eval @ %) Obj. Fn.

OPT++P-R.CG | 4% | (14,05) | 7.2045 | 34* | (1.5812,0.75016) | 2.8293
OPT++P-R. CG 1% | (14,05) | 7.2045 | 100* | (1.6038,0.76547) | 2.5956

OPT++P-R.CG | 0.1% | (14,0.5) | 7.2045 73 (1.6086, 0.76895) | 2.5546

OPT++P-R.CG | 001% | (14,05) | 7.2045 | 28* | (1.6016,0.57370) | 4.9477

OPT++ P-R. CG 1% (1.0, 1.0) | 86.954 |. 31* | (1.9321,0.62026) | 5.9543

OPT++P.-R. CG 1% (12,09 | 34.831 106 | (2.1044, 0.50665) | 6.9526
DOTE-R.CG 1% (14,0.5) | 7.2045 34 (1.6435,0.77498) | 2.5973

DOTE-R.CG 1% (1.0, 1.0) | 86.954 40 (1.6374, 0.77591) | 2.5362

DOTE-R.CG 1% (12,09 | 34.831 38 (1.6475,0.77393) | 2.6217

Table 1 Optimization results with conjugate gradient (CG) optimizers for
EPSIT = 102, EPSIT2 = 10™*

The first four rows of Table 1 illustrate the effect of FDSS on the optimization:
FDSS should be as small as possible to allow for effective convergence to a mini-
mum (0.1% is better than 1% which is better than 4% since the gradients are less
accurate locally for larger FDSS), but still large enough that small-scale nons-
moothness does not cause erroneous gradients (0.01% is too small; the optimizer
cannot successfully navigate the design space since the FDSS is on the order of the
design space noise). The last five rows show that DOT’s conjugate gradient (CG)
optimizer was more robust and efficient than OPT++’s CG optimizer, through the
fact that DOT was successful from 3 different starting points and OPT++ from only
one, and through the lower number of function evaluations that were required. The
chief cause for these differences was not the version of conjugate gradient being
used (in fact, Polak-Ribiere is generally regarded to be superior to Fletcher-Reeves
[81), but rather was DOT’s superior line search routine. The line-search algorithm



in the OPT++ package is currently being improved.

To achieve the best answer possible, the error convérgence tolerances were
tightened 2 additional orders of magnitude (EPSIT=10%, EPSIT2=10) and the
FDSS was set to 0.1%. DOT’s Fletcher-Reeves conjugate gradient algorithm was
used to obtain the lowest objective function value of 2.5309 minutes at (r=1.6204,
x=0.78205). This safety margin is an order of magnitude lower than the result esti-
mated with adhoc trial and iteration methods traditionally applied to these types of
problems in our work! ‘

6. CONCLUSIONS AND RECOMMENDATIONS

Formal optimization was successfully applied to the difficult and computation-
ally intensive inverse problem of identifying the worst-case heating configuration
for a safing device. Our efforts to date in this and other applications involving
expensive function evaluations with large complex nonlinear mechanics codes
have been largely successful. Along the way we’ve learned many things and identi-
fied difficulties that still need to be addressed in more general and efficient ways.
We summarize our findings:

» Finite computing precision, finite discretizations in space and time, and approx-
imate methods that resolve nonlinearities inexactly (out of necessity to make
the problem tractable) are unavoidable factors that lead to stochastic numerical
nonsmoothness of the predicted objective function. If the scale of the nons-
moothness is large relative to the optimization step size and/or to the local
undulations of the “exact” objective function, then gradient-based optimizers
will have difficulties converging to true extrema. After the model has been
built, the analysis code has been picked, and the hardware has been identified
on which to run the optimization, solution-algorithm parameters such as itera-
tive convergence criteria, per-time-step error tolerances, and relaxation parame-
ters are the most convenient parameters to adjust to alleviate numerical
nonsmoothness. However, such adjustments may be extremely expensive in
terms of added computational cost. It is generally true that the extra require-
ment of smoothness that optimization brings to numerical modeling of complex
nonlinear phenomena drives the acceptability or nonacceptability of finite
errors much more than numerical convergence. Therefore, “smarter” gradient-
based techniques must be devised to look at the scale of the objective function
and its gradients, at the history of the optimization, and at other cues to enable it
to efficiently navigate response surfaces with small numerical nonsmoothness.

e When using finite difference gradients in applications with nonsmoothness, an
‘effective finite difference step size is not easily determined. It must be small
enough to allow convergence to the actual minimum, but large enough to not be
adversely affected by acceptable levels of nonsmoothness.

» Hessian inaccuracy can be a problem in nonconvex design spaces, causing poor
performance in many Newton-based methods [Trust region methods (to be
evaluated in future research) have the potential to overcome this difficulty
while maintaining the theoretical strength of second-order optimizers].

* Since conjugate gradient optimizers do not rely upon an approximate Hessian,



they remain effective in the presence of nonconvexity and reasonable nons-
moothness. While conjugate gradient optimizers are not as efficient as Newton- -
based optimizers in smooth, convex problems, approximate curvature informa-
tion can prove to be a liability in some nonsmooth applications. '

Since our application involved very expensive function evaluations and events

of unknown duration, we tried stopping the simulations at a preselected time .
and extrapolating to find the value of the objective function if necessary. How- \
ever, we found this approach to be inaccurate in some cases and wasteful in

others. We then implemented an adaptive time-stop strategy to terminate the
simulation just after the information vital to calculating the objective function

had been determined. This minimized CPU usage while maintaining solution
accuracy.
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