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1. Executive Summary 
 

1.1  Research and Development 
Approximately 68% of the aluminum produced in the United States is first cast into ingots prior to 
further processing into sheet, plate, extrusions, or foil. The direct chill (DC) semi-continuous casting 
process has been the mainstay of the aluminum industry for the production of ingots due largely to its 
robust nature and relative simplicity. Though the basic process of DC casting is in principle straight-
forward, the interaction of process parameters with heat extraction, microstructural evolution, and 
development of solidification stresses is too complex to analyze by intuition or practical experience. 
 
One issue in DC casting is the formation of stress cracks. In particular, the move toward larger ingot 
cross-sections, the use of higher casting speeds, and an ever-increasing array of mold technologies 
have increased industry efficiencies but have made it more difficult to predict the occurrence of stress 
crack defects. The Aluminum Industry Technology Roadmap [1] has recognized the challenges inher-
ent in the DC casting process and the control of stress cracks and selected the development of “funda-
mental information on solidification of alloys to predict microstructure, surface properties, and 
stresses and strains” as a high-priority research need, and the “lack of understanding of mechanisms 
of cracking as a function of alloy” and “insufficient understanding of the aluminum solidification 
process,” which is “difficult to model,” as technology barriers in aluminum casting processes. 
 
The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry 
in reducing the incidence of stress cracks from the current level of 5% to 2%. Decreasing stress crack 
incidence is important for improving product quality and consistency as well as for saving resources 
and energy, since considerable amounts of cast metal could be saved by eliminating ingot cracking, 
by reducing the scalping thickness of the ingot before rolling, and by eliminating butt sawing. Full-
scale industrial implementation of the results of the proposed research would lead to energy savings 
in excess of 6 trillion Btu by the year 2020. The research undertaken in this project aimed to achieve 
this objective by a collaboration of industry, university, and national laboratory personnel through 
Secat, Inc., a consortium of aluminum companies. During the four-year project, the industrial partners 
and the research team met in 16 quarterly meetings to discuss research results and research direction. 
The industrial partners provided guidance, facilities, and experience to the research team. The 
research team went to two industrial plants to measure temperature distributions in commercial 
60,000-lb DC casting ingot production.  
 
The project focused on the development of a fundamental understanding of ingot cracking and 
detailed models of thermal conditions, solidification, microstructural evolution, and stress develop-
ment during the initial transient in DC castings of the aluminum alloys 3004 and 5182. The micro-
structure of the DC casting ingots was systematically characterized. Carefully designed experiments 
were carried out at national laboratory and university facilities as well as at industrial production 
facilities. The advanced computational capabilities of the national laboratories were used for thermo-
dynamic and kinetic simulations of phase transformation, heat transfer and fluid flow, solidification, 
and stress-strain evolution during DC casting. The achievements of the project are the following: 
 

• Identified the nature of crack formation during DC casting. Before this project, the indus-
trial consensus was that cracking of DC castings occurs below the solidus temperature of the 
alloys. The project results indicate that cracking is hot tearing that occurs above the nonequi-
librium solidus temperature of the alloy.  



 

• Developed a novel method for determining the mechanical properties of an alloy at the 
nonequilibrium mushy zone of the alloy. Because hot tearing occurs at temperatures at 
which the alloy contains a small fraction of nonequilibrium liquid among small grains ob-
tained at high cooling rates, existing methods cannot be used for measuring the mechanical 
properties of an alloy at DC casting conditions. A new method has been developed and used 
for measuring the data not available in the literature. Using this method, a large number of 
data have been generated on the mechanical properties of alloy in the nonequilibrium mushy 
zone. 

• Measured heat transfer coefficients (HTCs) between the solidifying ingot and the cool-
ing water jet. A series of temperature measurements was carried out at the industrial produc-
tion facilities. An inverse calculation method was used to determine the HTCs from the tem-
perature measurement data. HTCs as functions of temperature and water flow rate were 
estimated.  

• Determined the material constitutive model at high temperatures. Carefully controlled 
experiments were carried out at high temperatures to determine the stress-strain relationship 
of the alloy. The material property data were obtained and fit into a constitutive model that 
can be incorporated into a stress-strain model for the simulation of stress-strain evolution in 
DC casting ingots during solidification. 

• Developed computational capabilities for the simulation of cracking formation in DC 
casting ingot. Models have been developed to simulate heat transfer, fluid flow, phase tran-
sition and evolution of the as-cast structure, and stress-strain for the prediction of solidifica-
tion, microstructure, shrinkage, ingot distortion, and stress-strain during DC casting. The 
models have been validated against the temperature measurement data using the material 
property data and HTCs obtained in this project. The validated models have been incorpo-
rated into commercial software so that they will be accessible to industry and be amenable to 
refinement in the future. Methodologies of using thermodynamic simulations for the predic-
tion of cracking susceptibility have also been developed. The relationship between the crack-
ing susceptibility and the composition of the alloy has been ascertained. 

• Developed models and a database that enables the prediction of crack formation and 
determination of the optimal conditions for DC casting. The results demonstrated that 
cracking formation is strongly affected by casting conditions and the composition of the al-
loy. Scrap rate due to crack formation can be significantly reduced by controlling the cast 
speed and the alloy concentrations.  

 
The energy and cost savings and the environmental impact of this project are significant. The U.S. 
aluminum industry produces 20 billion lb of aluminum annually [1]. Assuming that the melt loss of 
aluminum is currently at 4%, a scrap rate reduction from 5% to 2% could lead to an energy saving of 
7 trillion Btu, and a cost saving of $37 million by the year 2025. These energy and cost savings were 
estimated using the Industrial Technologies Program (ITP) energy analysis spreadsheet under as-
sumptions that annual growth of aluminum production is 2% and that the market share of the project 
results is 100%. 
 

1.2  Technology Transfer  
Intellectual property has been generated from this research project. The intellectual property includes 
(1) the predictive DC casting model that is resident at Secat and at Oak Ridge National Laboratory 
(ORNL) (the model is accessible to the aluminum industry), (2) data obtained from Wagstaff, Inc.,  
and Aleris International and the relevant HTCs, and (3) a database of the thermophysical and me-
chanical properties of aluminum alloys 3004 and 5182. To facilitate the technology transfer of the 

2 



 

project results, Secat research staff members actively participated in the modeling effort throughout 
the project period. A multiprocessor computer has been purchased for using the models at Secat. As a 
result, Secat has the required capabilities and expertise for transferring the developed technologies to 
the entire aluminum industry. 
 

1.3  Commercialization 
Project participants have used several mechanisms to inform industries of the research results and 
advance commercialization: (1) incorporating the results into a commercial solidification software 
package, ProCAST, so that the aluminum industry can obtain access to the project results; (2) launch-
ing Aluminum Answers, a Secat web site (http://www.secat.net/answers.php), partly for dissemi-
nating the latest research results to the aluminum industry; and (3) making presentations at national 
meetings organized by the Minerals, Metals, and Materials Society (TMS) and the American Society 
of Metals (ASM), and at industrial locations including Logan Aluminum and Aleris International. 
Aleris International is using the computational tools located at Secat to optimize the DC casting proc-
esses in its Newport, Kentucky, plant. Companies that have expressed interest in the research en-
deavor include the industrial partners of this project as well as Alcan and Alcoa. 
 

1.4  Recommendations 
This research project has successfully demonstrated that an increased understanding of microstructure 
formation and improved computational tools can be used for improving the DC casting process and 
for reducing the scrap rate. The project can serve as a starting point for even more sophisticated mod-
els for the prediction of crack formation.  
 
One of the issues identified in this project is the strong effect that trace elements and an unfavorable 
combination of elements in alloys can have on crack formation. Cracking due to the presence of trace 
elements or due to an unfavorable combination of elements in the alloy is a phenomenon that is not 
fully recognized and is usually explained as resulting from variations in water quality. (Water is 
sprayed on the casting, thus leading to solidification.) One recommendation of the project team as a 
future effort is the development of computational models to predict the effects of trace elements on 
the cracking tendency of an alloy. Data on thermophysical and mechanical properties of alloys as a 
function of temperature and composition are also lacking in the literature. Additional research is re-
quired to enable the prediction of cracking formation in DC ingots of other specific commercial alu-
minum alloys. 
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2. Introduction 
 
The vertical direct chill (DC) casting process is used to produce ingots that have large cross sections. 
In this technique, molten metal flows into a short, rectangular water-cooled mold, which is initially 
closed by a plug (starter or bottom block) on a movable ram. The metal freezes against the starter 
block and forms a shell on the mold surface. The ram is then steadily withdrawn, pulling the shell 
with it. As the shell exits the bottom of the mold, cold water is sprayed directly on it for cooling. In 
this manner, a cast ingot of a desired length is produced. Figure 2.1 shows the size of a commercial 
DC casting ingot [28 × 73 × 300 in. (0.7 × 1.85 × 7.6 m)]. 
 
The DC casting process has been the mainstay of 
the aluminum industry for the production of bil-
lets and ingots since the late 1930s due largely to 
its robust nature and relative simplicity. Unfortu-
nately, the process can produce distortions in the 
ingot and crack formation (starting cracks, 
edge/face cracks, stress/midway cracks, etc.)  
[2–4] owing to the non-uniform, high rate of heat 
removal imparted by the direct contact of the 
bottom block or water with the partially solidi-
fied ingot. Though the basic process of DC cast-
ing is, in principle, straightforward, the interac-
tion of heat removal and the resulting stress 
generation is of such complexity that intuition 
and practical experience alone are unable to pre-
dict and control the occurrence of crack defects. 
Stress/midway cracks are particularly damaging, 
as they may not be detected until the rolling op-
eration, and their elimination is critical for the 
aluminum industry. 
 
The start-up period of DC casting is a critical 
phase of the process during which a number of 
defects occur. High thermal gradients in the start-
up phase induce thermal stresses that deform the 
ingot, and the distortions in turn modify the heat 
extraction through the bottom block and the ingot 
surface [2–4]. Most importantly, industrial experience has shown that many crack-related defects, 
such as center cracks and surface cracks, initiate during start-up and may develop throughout the en-
tire casting process. Therefore, it is necessary to study the start-up phase of the DC casting process in 
order to predict the formation, type, location, and extent of crack-related defects. In this phase of the 
process, the development of molten metal flow, temperature fields in the ingot, deformation, and 
stress in the solid are coupled phenomena. 

Fig. 2.1. A commercial DC casting ingot being 
lifted from a casting pit. 
 

 
Although different aspects of the DC casting start-up phase have been addressed in literature [2–15], 
there are no previous studies that combine fluid flow, solidification, microstructure evolution, strain-
stress development, and crack formation. Schneider and coworkers [2–4] carried out experimental 
investigations on the effect of process parameters on the cracking tendency. Mortensen [5] developed 
a detailed model of the heat and fluid flow patterns during DC casting. Wiskel and Cockcroft [6–7] 
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carried out a heat-flow-based analysis of surface crack formation during the start-up phase of the DC 
casting process. Mathew and Brody [8]; Hannart, Cialti, and Schalkwijk [9]; Fjaer and Mo [10]; and 
Drezet and Rappaz [11] all developed models to predict the stresses, strains, and distortions that de-
velop during DC casting. These studies—in particular, those of Fjaer and Mo [10] and Drezet and 
Rappaz [11]—are very comprehensive and calculate the thermally induced stresses and strains and 
distortion during DC casting and treat the metal as an elastic viscoplastic material with temperature-
dependent properties. 
 
The main drawback of the studies reported in the literature is that none of them considers the interac-
tion of the evolving stress with the solidification microstructure, and none formulates a criterion for 
crack formation. Consequently, none of the models can be directly used by industry for a realistic 
prediction of crack formation during DC casting. This suggests a need for a model of the DC casting 
process that incorporates the thermomechanical components of the previous studies and accounts for 
the effect of solidification conditions and microstructure, incorporates a realistic criterion for crack 
prediction, and is validated for ingots produced under industrial conditions. Accordingly, a model of 
crack formation during DC casting that is directly relevant to commercial manufacturing issues 
should include (1) detailed descriptions of the extremely non-uniform heat removal at the ingot sur-
face in industrial environments; (2) simulation of the fluid flow, temperature and stress fields, and the 
evolving solidification microstructure; (3) realistic criteria for crack formation based on a fundamen-
tal understanding of the interaction between the solidification microstructure, the local stress, and 
solidification conditions; and (4) refinement and validation of the models in conjunction with com-
mercial-scale casting trials. 
 
The research in this project aimed to achieve the above objectives by a close collaboration among 
industry, university, and national laboratory personnel. The bulk of the research effort was carried out 
by national laboratory and university personnel. Industry representatives in the project provided over-
all direction, specified project deliverables, and monitored results and progress toward project objec-
tives; and Wagstaff, Inc., performed solidification trials on pilot-scale equipment. Industry also pro-
vided material for analysis, access to plant facilities, assistance in data gathering and measurement of 
process variables, assistance with data reduction and interpretation, and insights into process variables 
and results of analysis.  
 
This project was funded by DOE under the Energy Efficiency and Renewable Energy, Industrial 
Technologies Program, Aluminum IOF. The goal of the project was to assist the aluminum industry 
in reducing the incidence of stress cracks from a current level of 5% to 2%. The improvements result-
ing from this project could lead to energy savings of up to 6 trillion Btu/year. The research covered 
the following aspects:  
 

• Model geometry — Because of the non-uniformity in ingot geometry and cooling conditions, 
a three-dimensional computational geometry was required.  

• Thermal boundary conditions — In order to accurately predict the stress and strain fields in 
regions prone to crack formation, the heat transfer model needed to take into account the 
various regimes of heat transfer between the ingot and the mold, the bottom block, and the 
cooling water.  

• Crack formation — The nature of face crack were not well known. These cracks are often 
seen in the central region of the rolling face of the DC ingot. The criteria for crack formation 
needed to be developed.  

• The effect of the solidification microstructure — The microstructures of alloys in as-cast 
conditions are usually inhomogeneous and contain multiple phases. The microstructural  
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geometry and the distribution of length scales can have a profound effect on the initiation of 
fracture and the fracture path. Thus, their impact had to be taken into account. 

• Computational approach — Because of the complexity of the process, models for the predic-
tion of cracking formation must account for elastic, thermal, and inelastic effects as well as 
for the combined effects of fluid convection, heat transfer, solidification, microstructural evo-
lution, and stress and strain generation in DC casting. 

 
The energy and cost savings from this project and its environmental impact are significant. The U.S. 
aluminum industry produces 20 billion lb of aluminum annually [1]. Assuming that the melt loss of 
aluminum is 4%, a scrap rate reduction from the current 5% to a new value of 2% could lead to en-
ergy savings of 7 trillion Btu, and cost savings of $37 million by the year 2025. These energy and 
cost savings were estimated using the ITP energy analysis spreadsheet assuming that the annual 
growth of aluminum production is 2% and that the market share of the project results is 100%. 
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3. Background 
 

3.1  Project Goal and Scope 
To assist the aluminum industry in reducing the incidence of stress cracks to 2%, this project focused 
on gaining insights into the mechanisms of stress crack formation during the initial transient in the 
DC casting of aluminum alloys, developing a computational tool to aid in crack prediction, and opti-
mizing process parameters and ingot geometry. The project included the following activities: 
 

1. Conducting experimental measurements of the extremely non-uniform heat removal at the  
ingot surface under industrial conditions 

2. Characterizing ingot distortion and the solidification microstructure in detail and developing 
computer models of the DC casting process for predicting the fluid flow, temperature, and 
stress fields, and microstructural evolution 

3. Determining material properties and developing criteria for crack formation based on a fun-
damental understanding of the interaction between the solidification microstructure, the local 
stress, and solidification conditions  

4. Demonstrating and validating the models for predicting crack formation, and optimizing 
process parameters and ingot geometry for a commercial installation  

5. Implementing the models developed in the project in a commercial casting code such that the 
capability will be accessible to industry and amenable to refinement in the future 

 
The research plan was to achieve its objectives by a collaboration among industry, national labora-
tories [ORNL, Argonne National Laboratory (ANL), and Albany Research Center (ARC)], and Uni-
versity of Kentucky (UK) personnel. The project applied and built on the substantial efforts and capa-
bilities of team members in the understanding of material behavior and processing; the computer 
modeling of heat flow, fluid flow, and stress; and the characterization of microstructure and mechani-
cal properties. It leveraged the results of the significant effort already under way at ORNL in the 
modeling of porosity and microstructure in castings. 
 
This investigation was unique because it incorporated significant results from previous studies and, in 
addition, accounted for the effect of solidification conditions and microstructure, incorporated a real-
istic criterion for crack prediction, and validated the model for ingots produced under industrial con-
ditions in multiple installations. Finally, the models developed in the project have been implemented 
in a commercial casting code so that the results will be accessible to industry and amenable to refine-
ment in the future. 
 

3.2  Major Project Tasks 
The objective of this project involved completion of the following tasks: 
 

1. Characterization of heat transfer at ingot surfaces — This task involved the measurement of 
temperatures in various locations in DC ingots and the determination of HTCs in various re-
gions on the ingot surface. The measurements were required to be carried out in industry dur-
ing the casting of an ingot and involved industry, ORNL, ARC, and UK personnel. An accu-
rate description of the heat transfer from the ingot surfaces is critical for a realistic modeling 
of the DC casting process.  
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2. Characterization of the solidification microstructure of ingot — This task focused on charac-

terizing the solidification microstructure as a function of process conditions. This information 
was extremely useful for developing criteria for crack formation. Industry and ORNL person-
nel participated in the measurements.  

 
3. Modeling of fluid flow, heat transfer, solidification, microstructure, and stress and strain — 

Models were used or developed at ORNL to simulate heat transfer, fluid flow, phase change, 
the evolution of the as-cast microstructure, and stress and strain to enable the prediction of 
solidification, microstructure, shrinkage, ingot distortion, and cracks during DC casting. The 
models were validated using the results obtained in Task 2. ORNL, UK , and Secat personnel 
participated in this task.  

 
4. Determination of physical and mechanical properties and criteria for crack formation — 

This task focused on determining the thermophysical and mechanical properties of the mate-
rial in the solid and mushy regions, carrying out fundamental studies needed for developing 
the appropriate material constitutive models, and providing insights needed in the formulation 
of a criterion for crack formation. Criteria for crack formation had to be determined. The re-
sults of this task were used as inputs into the computational models developed in Task 3. 
ORNL, UK, and ANL personnel participated in this task. 

 
5. DC casting optimization — The fluid flow, heat transfer, solidification, microstructure, and 

stress models were used to optimize cooling conditions, casting parameters, and ingot geome-
try in order to allow for improved process control and product quality in production ingots. 
ORNL and industry personnel collaborated on this task. In order to enable industry  use of the 
models developed in the project, ORNL and UK personnel worked with a commercial soft-
ware vendor to implement the new DC casting model into a commercial casting code.  

 
6. Final report — A comprehensive report on all phases of the project was produced. The report 

was contains detailed instructions on the use and application of the DC casting model. 
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4. Heat Transfer at Ingot Surfaces 
 

4.1 Introduction 
The DC casting process can produce distortions in ingots, and cracks can form owing to the non-
uniform, high rate of heat removal imparted by the direct contact of the bottom block or water with a 
partially solidified ingot. An accurate estimation of heat transfer coefficients (HTCs) at the ingot sur-
face is essential in the prediction of ingot cracking during DC casting of aluminum alloys.  
 
In general, the ingot surface experiences three different heat transfer regimes: direct contact with the 
mold, the air gap region, and the water cooling region, as shown in Fig. 4.1. The water cooling region 
is usually divided into three modes—convection, nucleate boiling, and film boiling—depending on 
the temperature of the ingot surface [16]. In the film boiling mode, the surface is covered with vapor 
film, and liquid does not contact the solid, whereas nucleate boiling is a very efficient mode of heat 
transfer because of the latent heat of water. In such cases, the HTC in the water cooling region is a 
function of temperature and water flow rate. Furthermore, it also depends on parameters including 
ingot size and geometry, the casting alloy, and casting speed. Therefore, the HTCs need to be esti-
mated for each case. 
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Fig. 4.1. The three different heat transfer 
regimes commonly encountered in the DC 
casting process. 

 
In addition to the process parameters mentioned above, a number of other factors affect the heat trans-
fer rate at the ingot surface in the water cooling region. These include the change in the water tempe-
rature along the surface and water quality (via change in water’s thermophysical properties and/or 
boiling point elevation). Therefore, theoretical prediction of the HTC is possible in principle but not 
practical. This section presents the effort of the research team to determine the apparent HTC using 
transient two-dimensional (2D) inverse analysis. Temperature distributions in the DC casting ingot 
were measured at Wagstaff, Inc., and Aleris International. Figure 4.2 shows a photo of the tempera-
ture measurement activity at Aleris International’s Newport, Kentucky, plant. Based on measured 
temperatures, inverse heat transfer analyses were carried out to determine the apparent HTCs as a 
function of the surface temperature and time.  
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Fig. 4.2. A researcher placing a temperature jig into the molten 
aluminum in a DC casting mold at Aleris International’s 
Newport, Kentucky, plant. 

 

4.2  Temperature Measurement 
The objective of the experiments was to collect temperature data in industrial-sized DC cast ingots 
during casting and solidification. A combination of the methodologies of Chang and Kang [17] and 
Drezet et al. [18] was employed. Type K thermocouples were selected as the probe material to be 
inserted into the ingots while the ingots were solidifying. The thermocouples were fastened to jigs 
constructed from steel rods approximately 3 mm in diameter. The rods were welded into L-shaped 
rigid fixtures with stiffening members such that the assembly could be handled and placed into posi-
tion without significant deflection. The thermocouples themselves were heavy gauge, to avoid being 
dissolved in the molten aluminum, and were protected with an insulating fiber sheath. 
 
Thermocouple data were successfully collected for the mold, starting block, ingot surface, and ingot 
interior. Data were recorded at 20 Hz using a data acquisition system during a standard casting of 
aluminum 3004 alloy. In order to completely characterize ingot temperatures, two types of measure-
ments were conducted. The first jig contained thermocouples placed at locations close to the ingot 
surface, while a second jig contained thermocouples designed to measure temperatures in the ingot 
interior. For both the surface profile and the interior profile, multiple jigs with thermocouples at-
tached were inserted in layers. During casting, each jig was inserted into the liquid metal at a pre-
determined ingot position. After the jig was trapped in place by the solidifying metal, it moved down-
ward at the casting speed of the ingot. The interval between insertions was more frequent at the start 
of the casting and became less frequent as the casting process approached steady state, because ingot 
cracking usually occurs in the initial transient period of the casting process. Useful information was 
collected for 12 of the 15 jigs prepared.  
 
Figure 4.3 shows schematic diagrams of thermocouple locations for surface and interior temperature 
measurements. Each surface location [Fig. 4.3(a)] contained an assembly of three thermocouples 
placed 2.5 mm apart to allow extraction of the heat flux at the surface. A fourth thermocouple was 
added at locations A and D approximately 7 mm from the last thermocouple. Interior thermocouples 
were of two types. As shown in Fig. 4.3(b), locations A and D contained an assembly of four thermo-
couples, while locations B and C contained an assembly of two thermocouples. Locations further into 
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the interior in the ingot were single thermocouples. Figure 4.4 shows pictures of the thermocouple 
assembly and jig used for surface temperature measurements. 
 
A series of infrared (IR) thermographs was taken during casting to obtain 2D temperature maps of the 
ingot surface. Figure 4.5 shows an IR image of the ingot surface just below the mold. The image was 
taken at the start of the cast. The bottom part of the image shows the bottom block as indicated in the 
figure. The temperature of the bottom block is less than 100°C, a temperature much lower than that 
 

1022

340

A

B
C D

A & D: 4 thermocouples @ 1, 3.5, 6, 13 mm from the surface
B & C: 3 thermocouples @ 1, 3.5, 6 mm from the surface  

(a) 

1022

340

A

B

C D

A & D: 4 thermocouples @ 13, 25, 38, 51 mm from the surface
B & C: 2 thermocouples @ 22, 35 mm from the surface

256

102

102

Thermocouple
85

 
(b) 

Fig. 4.3. Thermocouple locations (mm) for (a) surface and 
(b) interior temperature measurements. 

 

  
(a) (b) 

Fig. 4.4. Thermocouples for surface temperature measurement, showing (a) thermocouple 
assembly and (b) closeup of thermocouple tips attached to jig. 
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Fig. 4.5. Two-dimensional temperature map of the 
ingot surface obtained by an IR camera. 

 
of the ingot surface. The ingot surface temperature is about 500°C, suggesting that heat transfer is 
occurring in a film boiling mode. It can be seen that the isothermal lines are nearly horizontal, indi-
cating that 2D simulation is also applicable to this case. 
 

4.3  The Inverse Model for HTCs 
Since inverse heat transfer analysis requires multiple computational iterations, it is highly time-
consuming. Accordingly, a 2D calculation was conducted. The computational domain used for the 
simulation is shown in Fig. 4.6. 
 
The model included heat transfer, phase change, and fluid flow. A standard set of conservation equa-
tions was solved using the commercial casting simulation package ProCAST. In the formulation, a 
source term containing the Darcy equation and permeability is included in the momentum equation to 
simulate the effect of flow in mushy regions and to drive the velocities to zero when the metal is fully 
solid. The inverse modeling module of ProCAST can determine boundary conditions from 
 
 

Fig. 4.6. Two-dimensional computational 
domain used for this study. 
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temperature measurements [19]. It uses the thermal history generated by ProCAST as an input for 
deriving boundary conditions. Figure 4.7 shows the flow chart of the inverse calculation. The first 
step of the calculation is to assume reasonable HTCs at the ingot surface. The temperature profile of 
the ingot is then calculated using the assumed HTCs, and the calculated temperatures are compared 
with the corresponding thermocouple data. The inverse module of ProCAST modifies the HTCs based 
on the difference between the calculated and measured temperatures. This process is repeated until 
the errors between the calculated and measured temperatures are reasonably small. A typical run took 
about 100 min of CPU time; 135 runs were needed to obtain converged HTCs. The total CPU time 
was about 10 days. 
 
 

Guess heat transfer coefficients
at ingot surface

Numerically calculate temperature
profiles in ProCAST

Compare the calculated temperature with
thermocouple data

Are errors small
enough?

Heat transfer coefficients
at ingot surface

Yes

No

 
 

Fig. 4.7. Flow chart of inverse calculation. 
 
Constant values were assigned to the HTCs in both the mold contact region and the air gap region 
(2000 and 200 W/m2 K, respectively). The effect of the water flow rate, W (225 L/min at the begin-
ning of the cast and 760 L/min at the end of the cast), on the HTC was taken into account as shown in 
Eq. (1): 
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⎛
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where h0 is the HTC at the water flow rate of W0. The water temperature was assumed to be constant 
(i.e., room temperature). All process parameters (casting speed, water flow rate, etc.) used in the 
simulation were the same as those of the experimental casting run for which thermocouple data was 
obtained. 
 
The first attempt used an unstructured mesh for the computation. A fine mesh was used at the loca-
tions of the surface thermocouples because the temperature at those locations is required for inverse 
analysis. As a consequence, the mesh size varied significantly in the vicinity of the surface thermo-
couples. Therefore, the predicted solidification pattern showed a significant error after the top surface 
of the ingot passed the locations of the surface thermocouples. The predicted fraction solid indicated 
that the temperature at the top surface was lower than that below the surface, which was not realistic. 
Therefore, a structured mesh was generated with a finer mesh in the region close to the ingot surface. 
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The fine mesh was generated not only at the thermocouple locations but also along the ingot surface; 
this step improved the accuracy of the computation because a large temperature gradient is present 
close to the ingot surface due to water cooling.  
 

4.4  Results and Discussion 
Figure 4.8 shows measured and computed temperature histories at two representative locations in the 
ingot: 1 mm and 12.7 mm from the ingot surface. Computed and measured temperatures show rea-
sonable agreement, suggesting that the calculated apparent HTC is reasonable. There is a larger dif-
ference between the measured and computed temperatures at 12.7 mm from the ingot surface, as the 
inverse calculation was based primarily on thermocouple data close to the surface. However, no sig-
nificant error was observed at any of the locations examined. 
 
Figure 4.9 shows the apparent HTC in the water cooling region obtained by inverse analysis. The 
HTC at water flow rates between its minimum and maximum was linearly interpolated as indicated 
by Eq. (1). The calculated HTCs are typical of those for water cooling. The peak in the data is associ-
ated with the high rates of heat transfer during nucleate boiling. The profile is consistent with data 
published in the literature [18]. 
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Fig. 4.8. Comparison between measured and computed temperatures: (a) 1 mm from ingot surface; 
(b) 12.7 mm from ingot surface. 
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Fig. 4.9. Calculated apparent HTC in the water 
cooling region at minimum (225 L/min) and 
maximum (760 L/min) water flow rates. 
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In summary, the apparent HTC at the ingot surface in the water-cooling region during DC casting was 
determined on the basis of inverse heat transfer analysis. A transient, 2D model with fluid flow, heat 
transfer, and solidification was used for the inverse analysis. A structured computational mesh with 
finer mesh in the region close to the ingot surface was generated in order to accurately simulate the 
heat transfer through the surface. Input to the analysis included temperatures at locations near the 
ingot surface and the center obtained from experimental measurements on an industrial-scale ingot. 
 
The HTCs were calculated as a function of temperature and time and covered the different regimes  
of heat transfer expected during DC casting. The calculated values were extrapolated to include the 
effect of water flow rate. 
 
The calculated HTCs had a peak at about 200°C, corresponding to the high heat transfer rates during 
nucleate boiling, and the profile was consistent with similar data published in the literature. The com-
puted temperatures showed good agreement with measured temperatures, validating the model, and 
provided further confirmation that the computed HTCs were reasonable. The distributions of tem-
perature and fraction solid in the ingot before and after the initiation of nucleate boiling showed sig-
nificant differences due to the difference in the HTC between nucleate and film boiling modes. 
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5. Nature and Formation of Surface Cracks in DC Cast Ingots 
 

5.1  Introduction 
Surface cracks are one type of crack that increases the cost and reduces the yield of the DC casting 
process. Figure 5.1 shows one quarter of a horizontal cross section of an aluminum alloy 3004 ingot 
with overall dimensions of 28 × 73 × 300 in. (0.7 × 1.85 × 7.6 m). The composition of aluminum 
alloy 3004 is given in Table 5.1. The cross section shown in Fig. 5.1 was obtained approximately 
6 in. (0.15 m) from the bottom of the ingot. Small surface cracks (marked A and B in the figure) occur 
near the middle and quarter point of the rolling surface of the ingot. Most of the surface cracks form 
during the start-up phase of ingot casting, usually at a distance approximately 6 in. from the bottom of 
the ingot. 
 
 

 

 

Table 5.1. Nominal composition 
of 3004 alloy 

Element Wt % 
Mn 1.25 
Mg 1.0 
Fe 0.7 
Si 0.3 
Zn 0.25 
Cu 0.2 
Al Balance 
  Fig. 5.1. One quarter of a horizontal cross section of a DC 

cast aluminum 3004 ingot. Surface crack locations are indicated 
by A and B. 
 

 
Research has been carried out to control the formation of surface cracks [7, 9–11], but the nature of 
the crack formation is unclear. During DC casting, the ingot surface is in direct contact with either a 
metal mold or cooling water. This often leads to expectations that the surface crack could be a cold 
crack, i.e., one that occurs below the solidus temperature of the alloy, rather than a hot tear, i.e., one 
that occurs above the solidus temperature. It is difficult to believe that the stresses and strains gener-
ated during DC casting due to the uneven shrinkage of the ingot can produce cracks in solid alumi-
num that is highly ductile at elevated temperatures. One objective of this project was to clarify the 
nature of the surface cracking—i.e., whether it is a cold crack or a hot tear. This is very important for 
the successful simulation and prediction of surface cracking, as the criteria for the formation of hot 
tear and cold crack are markedly different.  
 

5.2  Experimental Results 
Cracked samples were taken directly from the surface of the DC cast 3004 aluminum alloy ingot 
shown in Fig. 5.1. The microstructure around the crack was examined using an optical microscope. 
The samples were then fractured along the crack. The fracture surface was examined using scanning 
electron microscopy (SEM) and Auger electron spectroscopy (AES). The middle photograph in 
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Fig. 5.2 shows the entire crack. The top micrograph in Fig. 5.2 shows the crack and the microstruc-
ture near the surface of the ingot. The bottom micrograph in the figure shows the tip of the crack and 
the microstructure near the tip. The grains are equiaxed throughout the ingot due to the addition of a 
grain refiner. If the crack is tracked from the ingot surface all the way to its tip, it can be seen that the 
crack is formed along dendrites and grain boundaries. No transgranular cracking is observed. At the 
tip of the crack, small secondary cracks are evident. These secondary cracks are discontinuous but are 
also formed along dendrites and grain boundaries. 
 
 

 
Fig. 5.2. A surface crack, shown in the middle of the figure, 
with enlarged views at the top and bottom indicating the 
surrounding microstructure. Note that the crack lies between 
dendrites or along grain boundaries. 

 
If one fractures the specimen along the crack, one can observe the morphology of the crack surface 
using SEM. As shown in Fig. 5.3, dendrites are clearly visible on the fracture surface. This is 
evidence that the crack is due to hot tearing. If the fracture had occurred at temperatures below the 
solidus temperature of the alloy, the fracture would probably be transgranular. The dendritic 
morphology of the fracture surface is usually an indication that the fracture occurred near the end of 
solidification when some liquid was present in the interdendritic region, but not enough to fill or heal 
the crack. 
 

 

Fig. 5.3. Scanning electron microscopy image of a 
crack surface. Dendrites are clearly visible on the 
fracture surface. C indicates a point on a primary 
aluminum dendrite, while D indicates the eutectic 
region. 
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In order to reveal the mechanism of crack formation, AES was used to determine concentration depth 
profiles, i.e., the concentration of elements in the solid as a function of distance beneath the surface. 
Two locations on the fracture surface—C on a dendrite surface and D in the eutectic region (shown in 
Fig. 5.3)—were chosen for analysis. Figures 5.4(a) and (b) show the concentration depth profiles for 
regions C and D, respectively. At the fracture surface, a high carbon concentration was detected, 
indicating atmospheric contamination. This was expected, as a significant amount of time elapsed 
between the casting of the ingot and the analysis. When a layer approximately 0.5 μm thick was 
removed by sputtering, high concentrations of oxygen and aluminum ware detected, indicating the 
presence of Al2O3. It is likely that the oxide formed before the crack surface was contaminated and 
represents the position of the fracture surface. Further analysis of successive depths below the fracture 
surface indicated the segregation of magnesium in both locations C and D. In location C, the mag-
nesium concentration decreased rapidly with depth, consistent with what would be expected at the 
surface of a primary aluminum dendrite. In location D, the magnesium concentration was uniform 
over a depth of a few microns, consistent with what would be expected in the eutectic region. These 
results further confirm that the fracture surface corresponds to a fracture path along the interdendritic 
regions, rather than through the grains. 
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Fig. 5.4. Composition depth profiles into the fracture 
surface (a) at a primary aluminum dendrite and 
(b) in the eutectic region. 

 



 

 
The area elemental distributions, determined using AES, are shown in Fig. 5.5. The area chosen for 
measuring elemental distributions, shown in Fig. 5.5(a), was chosen such that the right-hand side 
contained dendrites and the left-hand side contained the eutectic phases in which intermetallics can be 
seen. A layer of material approximately 1 μm thick was sputtered off before the elemental distribu-
tions were obtained. Figures 5.5(b), (c), and (d) show the elemental distributions of magnesium, sili-
con, and iron, respectively. Magnesium segregates to the interdendritic region and at the surface of 
primary aluminum dendrites. Silicon and iron also segregate to the interdendritic region and, in addi-
tion, form intermetallic phases. Iron, in particular, has low solubility in aluminum and is found only 
in the interdendritic regions as intermetallic phases. Figures 5.5(c) and (d), in particular, confirm the 
presence of intermetallic phases containing silicon and iron on the fracture surface, providing strong 
confirmation that the likely fracture path is along the interdendritic region. 
 
 

  
(a) (b) 

  
(c) (d) 

Fig. 5.5. SEM (a) and AES (b,c,d) microanalysis in a selected area on the fracture surface showing (a) a 
micrograph of the selected area, (b) magnesium elemental distribution, (c) silicon distribution, and 
(d) iron elemental distribution.  
 
 
In summary, Figs. 5.2 and 5.3 provide visual indications that the fracture path is along the interden-
dritic region. Figures 5.4 and 5.5 provide evidence of significant elemental segregation and the pres-
ence of intermetallic phases on the fracture surface, confirming that the fracture surface follows a 
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dustry had believed that cracking was “cold cracking” that occurred below the nonequilibrium solidus 
temperature of the alloy. 
 

5.3  Solidification Analysis 
Another question that needs to be addressed is at what temperatures the crack might occur if the sur-
face cracking is hot tearing. The equilibrium solidus temperature of the 3004 alloy is 624°C. The 
surface temperatures of the DC ingot seldom reach such high temperatures. However, solidification is 
a nonequilibrium process, and segregation also occurs during solidification. The segregation of ele-
ments to the interdendritic regions will reduce the local solidus temperature, and the solidus tempera-
tures in these highly segregated regions will be much lower than the equilibrium solidus temperature 
of the alloy. 
 
Thermodynamic simulations were carried out to determine the solute segregation behavior and its 
effect on the solidus temperature of the alloy. Figure 5.6 shows the segregation of solute elements 
during the solidification of aluminum alloy 3004 calculated using the thermodynamic simulation 
software ThermoCalc [20] and a commercially available aluminum database [21]. The segregation 
was calculated assuming nonequilibrium Scheil conditions commonly prevalent during solidification 
(i.e., no diffusion of solute in the solid, complete mixing of solute in the liquid, and local equilibrium 
at the solid-liquid interface). In the literature, the Scheil condition has been widely shown to be 
appropriate for modeling the solidification of aluminum alloys. 
 
 

Fig. 5.6. Calculated concentrations of solute 
elements in the interdendritic liquid during 
solidification of aluminum alloy 3004. Copper, 
silicon, and magnesium segregate in the last liquid 
to solidify. 

0

5

10

15

20

25

0 0.2 0.4 0.6 0.8 1

Si%
Mg%
Cu%

C
om

po
si

tio
n 

(w
t%

)

Solid Fraction
 

 
 
 
As shown in Fig. 5.6, magnesium, silicon, and copper tend to segregate in the last regions to solidify. 
The concentration of magnesium in the liquid increases from 1 wt % to about 8 wt % when the solid 
fraction reaches 0.9. The silicon concentration increases from 0.3 wt % to more than 4 wt % in the 
last region to freeze. The copper concentration increases from 0.2 wt % to more than 20 wt % until 
Al7Cu2Fe forms. The segregation of copper, silicon, and magnesium significantly decreases the 
solidus temperature in the last region to solidify. These regions are usually dendrite or grain bounda-
ries where hot tearing is expected to occur. As shown in Figs. 5.2 and 5.3, the surface crack occurs 
along dendrite or grain boundaries. In addition, the comparison of the composition profiles in Fig. 5.6 
with those in Fig. 5.4 indicates that the high levels of magnesium measured on the crack surface are 
consistent only with a fracture path through the interdendritic region. 



 

with those in Fig. 5.4 indicates that the high levels of magnesium measured on the crack surface are 
consistent only with a fracture path through the interdendritic region. 
Figure 5.7 shows plots of the fraction solid vs temperature for aluminum alloy 3004. The top curve 
was calculated assuming equilibrium conditions (i.e., the lever rule), while the bottom curve was cal-
culated assuming nonequilibrium Scheil conditions. A comparison of the two curves in the figure 
indicates a significant difference in the calculated solidus temperature for equilibrium and the normal 
nonequilibrium Scheil-type solidification of aluminum alloy 3004. Whereas the equilibrium phase 
diagram would predict a solidus temperature of 624°C, the actual solidus temperatures in the inter-
dendritic regions are significantly lower. In fact, they could be as low as 450°C, the eutectic tempera-
ture of binary aluminum-magnesium alloys.  
 
 

Fig. 5.7. Relationship between temperature and 
solid mole fraction calculated for the 
solidification of aluminum alloy 3004. The 
solidus temperature for nonequilibrium solidification 
(Scheil type) is much lower than that for equilibrium 
conditions. 
 

 
 

5.4  Discussion 
The surface temperatures of the ingot as it is being cast can be as high as 600°C before it reaches the 
water spray impingement point [22]. This makes it possible for hot tearing to occur because the non-
equilibrium solidus temperature of the 3004 alloy can be as low as 450°C. Surface cracks usually 
occur within a distance approximately 6 in. from the bottom of the ingot, which is very close to the 
location where the secondary cooling water jets first contact the surface of the ingot. If tensile stresses 
are generated at the ingot surface, surface cracks should be able to form. Tensile stresses are likely to 
exist at the ingot surface in the start-up phase of the ingot, since heat transfer is highly non-uniform 
near the bottom of the ingot. 
 
The metallographic evidence of the crack pattern, the SEM image of the fracture surface, and an 
analysis of the solidification behavior of aluminum alloy 3004 all point to the fact that surface crack-
ing is a type of hot tearing. The experimental evidence permits us to establish a phenomenological 
model of surface cracks in DC cast ingots:  
 

1. Segregation during solidification significantly lowers the solidus temperature of the alloy.  
2. The lowered solidus temperature permits interdendritic liquid to persist for longer times dur-

ing casting, in particular when the solid fraction is close to 1. 
3. These conditions make it more likely that interdendritic liquid will be present when the sur-

face of the ingot experiences tensile stress. 
4. The presence of interdendritic liquid embrittles the alloy and promotes hot rearing. 
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The above analysis suggests that the surface cracks that occur during DC casting of aluminum alloys 
are hot tears that form above the solidus temperature, rather than cold cracks that form below the 
solidus temperature. Consequently, the prediction of surface cracking during DC ingot casting re-
quires an analysis of the stress state during casting as well as an analysis of the local solidification 
conditions—in particular, the effect of microstructure, segregation, and interdendritic liquid. 
 
In summary, surface cracks that form on the surface of a DC cast ingot within approximately 6 in. 
(0.15 m) from the bottom of the ingot are hot tears. They occur at a location just above the impinge-
ment point of the secondary cooling water jets. The cracks form along dendrite and grain boundaries, 
where solute and impurity elements are highly segregated. Segregation during solidification signifi-
cantly lowers the solidus temperature of the alloy. In fact, the temperature could be as low as 450°C, 
much lower than the equilibrium solidus temperature of the alloy (624°C). The existence of a liquid 
film between dendrites embrittles the alloy. Under these conditions, if tensile stresses are generated at 
the ingot surface due to the highly non-uniform heat transfer during the initial transient in DC casting, 
surface cracks are formed. 
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6. Mechanical Properties in the Nonequilibrium  
Mushy Zone of Alloys 

 

6.1  Introduction 
Hot tears are defects that form during the solidification of castings. The formation of hot tears is 
closely related to the mechanical properties of the alloy at small liquid fractions in the mushy zone 
[23–31]. The common approaches for measuring the mechanical properties of alloys at mushy zone 
temperatures include the heating method [24–26] and the solidification method [27–31]. The most 
widely used method is the heating method, which involves heating a specimen to the desired mushy 
zone temperature, holding the specimen at the test temperature for a certain amount of time to obtain 
a uniform temperature distribution in the gauge length of the specimen, and then measuring the prop-
erties. The method is straightforward and relatively easy to use. A fair amount of useful data has been 
generated using this method. However, there are significant limitations to the accuracy of these meth-
ods. 
 
The heating method is fairly accurate when the mushy zone is in equilibrium, but has limitations 
when the mushy zone is in nonequilibrium and the liquid fraction in the mushy zone is small. Usu-
ally, the mushy zone in an alloy is in nonequilibrium during solidification, and hot tearing occurs at 
small liquid fractions (<0.1) [30]. Duncan, Han, and Viswanathan [32] demonstrated that the liquid 
fraction decreases rapidly when a specimen is held at mushy zone temperatures due to back diffusion 
in the solid. During the heating and holding stages of the heating method, the liquid fraction in the 
specimen decreases with time. The liquid may completely disappear if the liquid fraction is small and 
the heating/holding time is long. As a result, it is inadvisable to use the heating method to measure the 
mechanical properties of alloys in the mushy zone at temperatures below the equilibrium solidus tem-
perature of the alloy. 
 
The solidification method involves cooling a specimen from liquid to solid in a mold and measuring 
the mechanical properties of the alloy during cooling [27–31]. It can be used for measuring 
mechanical properties in the nonequilibrium mushy zone, but its accuracy is influenced by 
interactions between the specimen and the mold and by the non-uniform temperature distribution in 
the specimen. In order to increase the accuracy of the method, the specimen must be solidified slowly 
in the mold, resulting in the formation of large grains. Because hot tearing is sensitive to grain size, 
the solidification method has limitations in its application to casting processes in which the cooling 
rates are high and the grains sizes are small. 
 
Thus, a new method was developed in this project, and this method was used to determine the 
mechanical properties of alloys in the nonequilibrium mushy zone at small liquid fractions.  
 

6.2  Experimental Technique 

6.2.1  Approach 
The new approach developed in this project for determining the mechanical properties of alloys at 
nonequilibrium mushy zone temperatures is shown schematically in Fig. 6.1. The liquidus tempera-
ture, TL, and solidus temperature, TS, are indicated by dashed lines. The heating and cooling methods 
are indicated by solid lines and arrows. The new method, termed the reheating-cooling method 
(RCM), is illustrated using the bold solid line. The liquid fraction variation during the heating  
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Fig. 6.1. Schematic illustration of the reheating-cooling method. 
The method combines the advantages of the reheating and solidification 
methods and is more suitable for measuring mechanical properties in 
the nonequilibrium mushy zones of alloys.  

 
 
and cooling stages of the RCM is also illustrated. In RCM, the specimen is heated to a temperature 
corresponding to a liquid fraction less than 0.5 and then cooled quickly to the desired temperature for 
mechanical property measurements. When the specimen is heated to a temperature higher than the 
nonequilibrium solidus temperature, liquid starts to form at the grain boundaries and the interdendritic 
regions. As a result, the grains become smaller, but the number of grains does not change if the liquid 
fraction is small. Both the reheating and cooling stages of the RCM have important differences com-
pared with the traditional reheating and solidification methods. During the reheating stage, the heating 
rate is high to minimize back diffusion in the solid. During the cooling stage of the new method, the 
grains grow back to their original size and even recover the solute redistribution produced during 
solidification. In contrast to the solidification method, the grain size will be small if the grain size in 
the original specimen is small. This is because the number of grains in the specimen does not change 
during the reheating and cooling stages of the experiment. Thus, RCM combines the advantages of 
the traditional reheating and solidification methods. As a result, RCM is more suitable for testing the 
mushy zone mechanical properties of fine-grained castings, such as those produced by DC and die-
casting processes. It is also experimentally simpler than the traditional solidification method. 
 

6.2.2  Apparatus 
An illustration of the experimental apparatus is shown in Fig. 6.2. Tensile tests were conducted on an 
Instron 4507 machine with a 5 kN load cell. The specimen was heated using an infrared-lamp 
furnace. The infrared lamps were chosen for their rapid heating and cooling capability. Cooling was 
accomplished by simply turning off the lamps, since the furnace housing was water-cooled. The 
furnace consisted of two rectangular water-cooled housings measuring 6 × 4 × 3.5 in. (15 × 10 × 
9 cm) each. Four IR-lamps were placed in each housing for a maximum rating of 5 kW. A 
programmable multi-segment YOKOGAWA furnace controller allowed specimens to be heated up 
and cooled according to a prescribed user program. 
 



 

 

 

 
 
 
 

 
(a) (b) 

Fig. 6.2. The mechanical testing apparatus: (a) schematic illustration of test apparatus; (b) photo of the 
infrared furnace and the tensile specimen. 
 
 
The specimen used for the tests is shown in Fig. 6.3. The specimen geometry was selected so as to 
minimize the radial temperature gradient and obtain an isothermal section in the middle of the gauge 
section. The strain was measured in the isothermal section of the specimen using an extensometer. 
The specimens were cut from the steady-state region of an aluminum alloy 3004 DC cast ingot with 
overall dimensions of 28 × 73 × 300 in. (0.7 × 1.85 × 7.6 m). The nominal composition of aluminum 
alloy 3004 is given in Table 5.1. In the region from which the samples were taken, the grain size was 
about 400 μm, and the secondary dendrite arm spacing was about 100 μm. 
 
 

 
Fig. 6.3. The specimens used for the measurement of mechanical properties in the 
nonequilibrium mushy zone temperatures. 

 

29 



 

6.2.3  Experimental Conditions 
In order to determine the experimental conditions, the temperature vs solid fraction curve for alumi-
num alloy 3004 shown in Fig. 5.7 was used. The liquidus temperature of the alloy is 649°C. The equi-
librium solidus temperature was calculated to be 624°C, while the nonequilibrium solidus tempera-
ture under Scheil condition can be as low as 450°C, the eutectic temperature of binary aluminum-
magnesium alloys. In practice, the nonequilibrium solidus temperature will depend on the cooling rate 
and the extent of back diffusion. 
 
For tensile tests in the mushy zone, the specimens were heated to 630°C, which is 6°C higher than the 
equilibrium solidus temperature and corresponds to a liquid fraction of 0.2, and then cooled to the test 
temperature. As the temperature vs solid fraction curve is relatively steep at 630°C, the margin for 
error is less than at higher temperatures. 
 

6.2.4  Temperature Control 
The temperature profile along the specimen was measured using Type K thermocouples placed at six 
locations along the specimen, as shown in Fig. 6.3. Calibration curves were obtained using the ther-
mocouple at location 3 as the control thermocouple. The thermocouple at location 6 was used for 
temperature control during the tensile tests. The data was collected using a 16-channel data acquisi-
tion unit at a sampling rate of 10 Hz.  
 
Typical temperature vs time curves obtained using location 6 as the control thermocouple are shown 
in Fig. 6.4. The center of the specimen was heated to 400°C in 30 s, held at 400°C for 3 min, then 
heated from 400 to 630°C at maximum power, and immediately cooled to the test temperature. The 
isothermal hold at 400°C was used to equilibrate the specimen. Solute diffusion at this stage should 
be negligible, since the temperature is relatively low. Heating rates from room temperature to 400°C 
were almost linear. However, heating rates from 400 to 630°C were nonlinear, due to the presence of 
latent heat of melting. Interestingly, the nonlinearity in the heating curves occurs around 450°C, sug-
gesting that the nonequilibrium solidus temperature is close to 450°C. 
 
 

 
Fig. 6.4. Temperature profiles obtained using 
location 6 as the control thermocouple. 
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The relationship between the temperature at location 6 and the temperatures at locations 2, 3, and 4 is 
plotted in Fig. 6.5. The relationship is linear. The temperature difference between locations 2, 3, and 4 
was smaller than 10°C. From Fig. 5.7 we find that when the temperature of the alloy is about 600°C, 
the liquid fraction variation is fairly small—around 2.5%, for a temperature variation of 10°C. 
Fig. 6.5 was used in experiments for temperature control. 
 
 

 
Fig. 6.5. The calibration curves used for RCM. The 
temperature differences at locations 2, 3, and 4 were 
smaller than 10°C, indicating that the temperature was 
fairly uniform in the gauge length of the tensile specimen. 

 
 

6.3  Results and Discussion 
Figure 6.6 shows three stress-strain curves obtained at 600°C under three different conditions: heat-
ing, cooling from 620°C, and cooling from 630°C. In the first case, the specimen was heated to 600°C 
in 8 min. In the other two cases (i.e., RCM) the specimens were quickly heated to mushy zone tem-
peratures and then cooled to 600°C for testing. The top curve was obtained using the heating method. 
It shows that the specimen was quite ductile. The bottom curve was obtained using RCM, which cor-
rectly captured the brittle nature of the material at 600°C, which is 24°C lower than the equilibrium 
solidus temperature of the alloy. Both the stress-to-fracture and the strain-to-fracture values using 
RCM are much smaller than those obtained using the heating method. Reheating to 620°C captured 
the low stress-to-fracture value, but the specimen was still quite ductile, possibly because there was 
insufficient liquid at 620°C, and because back diffusion is rapid at temperatures below the equilib-
rium solidus temperature of 624°C. 
 
Figure 6.7 shows the stress-strain curves obtained using RCM for a test temperature of 615°C with 
varying holding times. Specimens were reheated to 630°C, cooled to 615°C, and held at 615°C for 0, 
1, and 8 min before testing. The specimens exhibited little ductility at short holding times (0 and 
1 min) but exhibited significant ductility at long holding times (8 min). At long holding times, the 
stress-strain curves are similar to those obtained using the reheating method. This suggests that sub-
stantial back diffusion occurs in the reheating method, resulting in fictitiously high mechanical prop-
erties. The results shown in Fig. 6.7 suggest that the reheating method is unsuitable for  
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Fig. 6.6. Comparison of the stress-strain curves 
obtained using the reheating method and RCM. 
RCM (bottom curve) captured the brittle nature of the 
alloy at 600°C, while the curve obtained using the 
reheating method (top) indicated significant ductility. 
 

Fig. 6.7. Stress-strain curves obtained using RCM 
at holding times of 0, 1, and 8 min. Holding time has 
a significant effect on the resulting mechanical 
properties. 
 

 
measuring mechanical properties in the nonequilibrium mushy zones of alloys. This is because the 
holding time in the reheating method starts from the instant the temperature is equal to the nonequi-
librium solidus temperature of the alloy. In RCM, a large portion of the solid is remelted in the re-
heating stage so that back diffusion in the solid is not significant. During cooling, the grains grow 
back to their original size and even recover the original solute redistribution. Substantial back diffu-
sion can occur only after the specimen has been cooled to the test temperature. As a result, the hold-
ing time in RCM is much shorter than in the reheating method. 
 
Scanning electron microscopy (SEM) was used to observe the fracture surfaces of specimens tested at 
615°C using RCM and the reheating method. Figures 6.8(a) and (b) are low- and high-magnification 
SEM fractographs of a specimen tested using RCM. Figures 6.8(c) and (d) are SEM fractographs of a 
specimen tested using the reheating method. A comparison of (b) and (d) indicates that the RCM 
specimen failed primarily by cleavage, while the specimen tested using the reheating method failed in 
a more ductile manner. This is consistent with the mechanical testing results shown in Figs. 6.6 and 
6.7. The smooth regions in Fig. 6.8(b), which are dendrite boundaries containing a solidified layer of 
interdendritic liquid, confirm the presence of an intergranular liquid phase at the point of failure. The 
fracture surface of the specimen tested using the reheating method, shown in Fig. 6.8(d), exhibits far 
fewer smooth regions or evidence of cleavage fracture. Clearly, more liquid phase was present in the 
specimen tested using RCM than in that tested using the reheating method. This indicates that RCM 
is better at limiting the decrease in interdendritic liquid fraction due to back diffusion during heating, 
isothermal holding, and testing, and is more suitable for the measurement of mechanical properties in 
the nonequilibrium mushy zones of alloys. 
 
The reheating-cooling method developed in this project was used for measuring the mechanical prop-
erties of aluminum alloys at nonequilibrium mushy zone temperatures. Figure 6.9 shows the tensile 
strength data of aluminum 3004 alloys as function of strain rates and temperatures. The tensile 
strength of the alloy at the nonequilibrium mushy zone temperature range decreases sharply with 
increasing temperature and decreasing strain rate. The tensile strength data are used in a criterion for 
crack (hot tearing) formation during DC casting of aluminum alloys.  
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(a) (b) 

  

 
(c) (d) 

Fig. 6.8. Fracture morphologies of aluminum alloy 3004 specimens tested at 615°C 
using the reheating-cooling method (a–b) and the reheating method (c–d).  

 
 

 
Fig. 6.9. The tensile strength of aluminum alloy 3004 as a function 
of strain rate and temperature in the nonequilibrium mushy zone 
temperature. The results were obtained using the reheating-cooling 
method, newly developed in this project. 
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In summary, a new method, termed the reheating-cooling method (RCM), has been developed and 
validated for the measurement of mechanical properties in the nonequilibrium mushy zones of alloys. 
RCM consists of a reheating stage in which the alloy is heated above the equilibrium solidus tempera-
ture to remelt part of the grains, and a cooling stage in which the grains grow back to their original 
size and even recover the solute redistribution produced during solidification. The number of grains in 
the specimen does not change during the reheating and cooling stages of the experiment. As a result, 
RCM is more suitable for testing mushy-zone mechanical properties of fine-grained castings, such as 
those produced by DC and die-casting processes. It is also experimentally simpler than the traditional 
solidification method. Experiments on aluminum alloy 3004 specimens using RCM indicate that the 
method captures the brittle nature of aluminum alloys at temperatures close to the nonequilibrium 
solidus temperature, while specimens tested using the reheating method exhibit significant ductility. 
RCM has been used for determining the mechanical properties of alloys at nonequilibrium mushy 
zone temperatures. Accurate data have been obtained in this project. 
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7. Constitutive Models for Aluminum Alloy  
at High Temperatures 

7.1  Introduction 
Appropriate constitutive relations describing the mechanical behavior of alloys from the solidus tem-
perature to the ambient temperature are required for the simulation of stress-strain, and deformation in 
DC casting ingot. Few data are available in the literature on such constitutive models for aluminum 
alloys at elevated temperatures. As a result, part of the research effort was devoted to determining 
these relations. 
 
There are different types of models describing the development of stress-strain inside solidified metal. 
The elasto-viscoplastic model in ProCAST software was used in this project. In this model the mate-
rial will not return to its initial shape if loading exceeds yield strength. The stress will be a function of 
the strain and strain rate: 
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where y is the yield function, s is the deviatoric stress, K is the hardening function, and η is the vis-
cosity.  
 
The development of stress-strain behavior in solidifying metals is expected to change with changing 
temperature because of the cooling effect during solidification. Strain rate will generate as a direct 
result of the change of temperature with respect to time, as explained by the following formula: 
 

  , (7.2) 
••

•= Te α
 
where α is the coefficient of expansion. The data we have for the high temperature case were all con-
ducted under the simple test condition. In a simple tension test the deviatoric stress s is related to the 
Cauchy stress σ by  
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As a result, the constitutive models used in ProCAST yield the following relations: 
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7.2  Model Calibration from Experimental Data for Aluminum Alloy 3004 
Four variables must be determined to use this constitutive equation: m, H, Y0, and the viscosity η. The 
parameters are determined from experimental stress-strain data at different strain rates and tempera-
tures. High-temperature tests were conducted at ORNL under a wide range of temperatures and strain 
rates. Stress-strain data were used to calibrate the model. The reheating method shown in Fig. 6.1 and 
discussed in Sect. 6 of this report was used for measuring the mechanical properties at temperatures 
below the solidus temperature of the alloy.  
 
A plot of the Ln σ vs Ln ė is drawn from the experimental stress-strain data. The slope of each curve 
represents the strain rate sensitivity index, m. Figure 7.1 shows fitted linear lines for different tem-
peratures. The values of m as a function of temperature are listed in Table 7.1. 
 
 

y (550 C) = 0.1265x + 3.7858
y (500 C) = 0.0888x + 3.7857
y (450 C) = 0.1012x + 3.9315
y (400 C) = 0.1193x + 4.1436
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Fig. 7.1. Logarithmic plot of stress vs strain rate. 
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The parameter Y0 can be directly extracted from the stress-strain curve, and it represents the flow 
stress. The values of H and of the viscosity, η, are empirically found by fitting the experimental data 
to the model. Table 7.1 summarizes all the variables needed to calibrate the model for aluminum alloy 
3004 at different temperatures. 
 

Table 7.1. Values of parameters of ProCAST model 

T  
(°C) 

H 
(T) 

η 1/m Y0

400 100 5 × 1011 0.12 500 
450 100 22 × 1011 0.1 450 

21 × 1011500 100 0.088 420 
5 × 1011550 100 0.08 400 

 
 

7.3  Experimental Results and Discussion 
The experimental results are plotted against the model in Figs. 7.2–7.5 at different test temperatures. 
A reasonably good fit is achieved. As can be seen, increasing the temperature or slowing the strain 
rate tends to reduce the flow stress. In addition, at higher temperatures, the material does not exhibit 
hardening, and a drop in the flow stress with strain is an indication of softening. An interesting result 
can be seen from the graphs: at these relatively high temperatures, the ductility (elongation to failure) 
decreases by reducing the strain rate. This is due to significant cavitation developed during high-
temperature deformation. The fracture surface was examined and cavitation was seen when tests were 
conducted at temperatures higher than 400°C. The model is capable of predicting the stress-strain 
behavior at different strain rates and temperatures. 
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Fig. 7.2. Comparison of the experimental data with the model of Eq. (7.4) at 400°C. 
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Fig. 7.3. Comparison of the experimental data with the model of Eq. (7.4) at 450°C. 
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Fig. 7.4. Comparison of the experimental data with the model of Eq. (7.4) at 500°C. 
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Fig. 7.5. Comparison of the experimental data with the model of Eq. (7.4) at 550°C. 
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8. Modeling of Solidification and Stress-Strain  
Formation during DC Casting 

 

8.1  Introduction 
A three-dimensional (3D) model has been developed for the simulation of solidification and stress-
strain formation during DC casting. The modeling effort was initially begun with a code developed at 
ORNL for the solidification simulation and with ABAQUS for the stress and strain simulation. The 
purpose of the solidification simulation was to determine the effect of boundary conditions such as the 
water intrusion between the DC casting ingot and the end block and the uneven heat transfer at the 
corners of the DC casting ingot. Based on the initial simulation work, the effort was then directed 
towards the incorporation of the research results into the commercial software package ProCAST.  
 
The integrated 3D model includes  
 

• detailed descriptions of the extremely non-uniform heat removal at the ingot surface under 
industrial environments;  

• simulation of the fluid flow, temperature and stress fields, and the evolving solidification mi-
crostructure; and  

• detailed description of material behavior at elevated temperatures.  
 
In particular, the HTCs measured in this project and obtained in the literature were applied at the sur-
faces of the ingot. The constitutive relations of the mechanical behavior of the alloy were integrated 
into the stress-strain module of ProCAST. Material properties as a function of temperature were also 
predicted and incorporated into the 3D model. The model predictions were validated with the tem-
perature measurements obtained in commercial-scale casting trials. The integrated 3D model can be 
used to evaluate the influence of various parameters that affect hot tearing formation in the DC cast-
ing process. These parameters include the casting temperature, the casting speed, the flow rate of the 
cooling water, and the temperatures of the mold and the bottom block.  
 

8.2  The Solid Model 
Figure 8.1 shows the geometry and mesh of the ingot, the mold, and the bottom block. An ingot 
height of 760 mm was used for the DC casting model. Due to its symmetry, only one-quarter of the 
geometry was used as the simulation domain. Eight-noded isoperimetric brick elements were used 
for the entire mesh of the ingot, block, and mold. The total number of elements and nodes were 
40240 and 45762, respectively. 
 

8.3  Initial Conditions and Boundary Conditions 
The initial temperatures of the mold and the bottom block were set to 20 and 50°C, respectively 
based on the measured temperatures. The ingot was allowed to fill at the same rate as the casting 
speed. The initial temperature of the ingot was assumed to be 670°C, which was the same as the 
pouring temperature. 
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Fig. 8.1. The geometry and mesh of a quarter of 
an ingot, mold, and bottom block.  
 

 
A constant HTC was used to calculate the heat transfer between the liquid metal and the mold. The 
effects of the air gap formed during casting on the HTC between the bottom block and the curled 
portion of the ingot were considered in this model. A constant HTC of 100 W/m2-K was used to 
calculate the heat transfer in the air gap at the mold corner and just below the mold.  
 
Temperature-dependent HTCs were developed for water cooling based on the temperature meas-
urements performed in the commercial-scale casting facility. A 2D inverse model in ProCAST was 
used to obtain the HTCs, which are shown in Fig. 4.8. This result is close to that presented by Sen-
gupta [33], and also has the same trend as that used by Bagnoud [34]. As shown in Fig. 4.8, all of 
heat transfer features between the cooling water and the hot ingot surface during the DC casting 
process (forced convection, nucleate boiling, the Leiden frost point, and film boiling) are represented 
in the model. 
 
In the water intrusion regions, the ingot and the bottom block are in contact with a mixture of water, 
water vapor, and air. The heat flux per unit area was computed on the basis of a weighted area aver-
age of the heat fluxes due to water and air using the following relationship: 
 
   (8.1) ( )( ) ( ) ( )( ,1,, int

"
int saawcswowwc TTThfTTWWThfq −−+−= )

)

 
where  

wcf  =  fractional area in contact with water 
hw T,W int ,Wo(  =  HTC corresponding to the water intrusion flow rate, Wint , at the surface 

temperature T,  
Tsw  =  sink temperature used to compute the water heat flux 

( )Tha  HTC at the surface temperature T =  
Tsa  =  sink temperature used to compute the air heat flux.  

 
For the case in which the temperatures of the sink are taken to be the same, i.e., Tsw = Tsa = Ts , the HTC 
in water intrusion areas becomes 
 
  (8.2) hw,i T,W int ,Wo( )= fwc hw T,W int ,Wo( )+ 1− fwc( )ha T( ).
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It is now assumed that the intruding water flow rate is a fraction, fw , of the water flow rate on the 
rolling face, WR , or end face, WE , respectively: 
 

 W int t( )=
fwWR t( )water intrusion close to rolling faces,

fwWE t( )water intrusion close to end faces.

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 (8.3) 

 
At the bottom surface, it is assumed that the water intrudes from both the end and the rolling faces. As 
a first approximation, it is assumed that the HTC is the average between the HTC due to water intru-
sion from the rolling face, hw,i

R , and that from the rolling faces, : E
iwh ,

 
   (8.4) hw,i

B = fWE hw,i
E T,W int

E ,Wo( )+ 1− fWE( )hw,i
R T,W int

R ,Wo( .)
 
In this study, fwc =0.3, fw =0.3, fWE =0.8, and Ts =25.0. 
 
For the region on the bottom surface without drain holes—i.e., in the center of the ingot—only water 
from the rolling faces is considered to intrude. 
 

8.4  Material Properties 
The temperature-dependent thermal and physical properties used in the model—thermal conductivity, 
specific heat, density, coefficient of thermal expansion, latent heat, Young’s modulus, and Poisson 
ratio—were either obtained from the ASM Handbook or calculated using JMatPro software, a ther-
modynamic calculation software developed by Thermotech, Ltd [45]. The liquidus temperature, the 
nonequilibrium solidus temperature, and the fraction solid vs temperature curve shown in Fig. 5.7 
were calculated using ThermoCalc. 
 
The thermally induced strain and stress were calculated on the basis of the calculated temperature 
distribution and the thermal coefficient of the materials. The relationship between the thermally  
induced strain and stress were determined using an elasto-viscoplastic material constitutive model 
[Eq. (7.4)]. The temperature-dependent parameters such as yield stress and the isotropic hardening 
coefficient were obtained through mechanical tests that were performed in the temperature range from 
room temperature to mushy zone temperature. An ingot cracking index (ICI), which represents the 
ingot cracking propensity, was established based on the ratio of stress to strength. The stress was cal-
culated using the DC casting model, and the strength were measured from high-temperature mechani-
cal property data. 
 

8.5  Validation of 3D Casting Model 
The commercial finite element modeling code ProCAST was used to set up the 3D DC casting model. 
The model includes heat transfer, fluid flow, solidification, and stress evolution. Key DC casting fac-
tors such as the variation of HTC as a function of ingot surface temperature, air gap between the mold 
and ingot, air gap between the bottom block and solidified ingot, and edge face symmetry plane were 
also considered in this model. 
 
Figure 8.2 illustrates temperature contours (°C) 800 s after the start of pouring as predicted by the 
model. The pouting temperature was 670°C, and the liquidus and solidus temperatures were 650°C 
and 535°C, respectively. A deep liquid sump can be seen in the center of the ingot in Fig. 8.2. Also, 
the solid skin thickness is still relatively small. 
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Fig. 8.2. Temperature contours 800 s after the start 
of pouring as predicted by the model. 
 

 
 
Figure 8.3 shows measured and calculated temperatures at two locations in the ingot as a function of 
time. Location 1 (a = 8, b = 230, c = 200) is 75 mm from the surface, and location 2 (8, 87, 200) is 
close to the center and 218 mm from the surface.1 Both locations are 200 mm from the ingot bottom 
and 8 mm off the y-z center plane. The close agreement between the calculated and measured tem-
peratures demonstrates the validity of the solidification model. 
 
Figure 8.4 shows the deformation at the bottom of the ingot (DBI) for half, normal, and double cast-
ing speeds for an ingot height of 760 mm. The results indicate that the DBI increases as the casting 
speed increases. The extent of DBI could reflect the ingot hot cracking propensity for certain alloys. 
Generally, it is believed that higher casting speeds lead to a higher hot cracking propensity. This sug-
gests that the model can be used to predict the hot cracking propensity. 
 
 

                                                      
1 Coordinates given for these locations are as follows: a = distance to the center of the ingot from the  
x direction; b = distance to the center of the ingot in the y direction; c = distance to the bottom surface in the  
z direction. 
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Fig. 8.3. Calculated and measured temperature profiles at locations near 
the surface and center. Solid lines indicate measurements, and dashed lines 
indicate predications. 

 

 
Fig. 8.4. Calculated DBI distance plotted as a function of 
casting speed. 

 
 

8.6  Stress and Strain Analysis 
The stress-strain induced during casting is very complex due to the complex cooling conditions.  
Geometry also has a large effect on stress. Hot cracking usually initiates near the ingot surface and at 
mushy zone temperatures. Therefore, the stress analysis was monitored at locations near the ingot 
surface. Four locations situated 25, 50, 75, and 145 mm from the rolling surface were selected; and 
the solid fraction, temperature, stress, and strain at these locations were monitored. The coordinates of 
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these four locations were (450, 320, 200), (450, 295, 200), (450, 270, 200), and (450, 200, 200).  
Figures 8.5–8.8 show the temperature, solid fraction, stress, and strain rate, respectively, as a function 
of casting time at these four locations. Locations closer to the surface tend to cool faster. Similarly, 
the solid fraction increases faster at locations closer to the ingot surface. Overall, the stress and the 
strain rate are highest at the location closest to the ingot surface.  
 
An obvious reheating peak can be seen in Figure 8.5 at the surface location for a casting time of 300 s. 
At the same time, the solid fraction at the surface is about 0.95 (Fig. 8.6), while peaks in stress and 
strain can be seen (Figs. 8.7 and 8.8). The reheating is caused by the air gap just below the mold and 
is an important contribution to ingot cracking. The low heat transfer in the air gap reduces the solidifi-
cation rate in this area and causes reheating at locations close to the ingot surface. The reheating 
causes the material to be placed under tensile stress. Meanwhile, the material strength is greatly re-
duced at the higher temperatures. Consequently, reheating is very harmful and could cause ingot 
cracking during casting.  
 
 

 

Fig. 8.5. Calculated temperature as a 
function of casting time for locations near 
the surface. 
 

   

 

Fig. 8.6. Calculated solid fraction as a 
function of casting time for locations near 
the surface. 
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Fig. 8.7. Calculated stress as a function of 
casting time for locations near the 
surface. 
 

  

 

Fig. 8.8. Calculated strain rate as a 
function of casting time for locations near 
the surface. 

 

 
The calculated stress (Fig. 8.7) and strain (Fig. 8.8) distribution at 300 s after the start of DC casting 
indicates that high tensile stress-strain occurs at the surface of the ingot. This is true because the 
temperatures at the surface of the DC ingot are much lower than in the regions away from the sur-
face. High tensile stress and high solid fraction are a harmful combination in terms of cracking for-
mation because cracks formed at such a high solid fraction cannot be compensated for by liquid 
feeding.  
 
The stress calculated by this model is still higher than the 
mechanical properties of the alloy at the corresponding tem-
peratures, indicating inaccuracies in calculating the stress 
distribution. This is partly because the element sizes are still 
too large in the solid model. In fact, the maximum element 
number the code can handle at the moment was used. More 
accurate stress simulation will depend on advances in both 
computer software and hardware. Much finer computational 
elements of the solid model need to be used in order to ob-
tain more accurate simulations. 

High tensile stress and high 
solid fraction are a harmful 
combination in terms of 
cracking formation; cracks 
formed at such a high solid 
fraction cannot be 
compensated for by liquid 
feeding. 
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To summarize, an integrated 3D DC casting model has been developed to simulate heat transfer, fluid 
flow, solidification, and thermally induced stress-strain during casting. A temperature-dependent 
HTC between the cooling water and the ingot surface, the cooling water flow rate, and the air gap 
were coupled in this model. An elasto-viscoplastic model developed on the basis of high-temperature 
mechanical testing was used to calculate the stress during casting. The model predicts the right trend 
of stress-strain development and can be used to predict cracking propensity during in DC casting of 
ingots. 
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9. Prediction of Ingot Cracking Propensity 
 

9.1  Introduction 
Two modeling approaches were taken in this project. One uses the integrated 3D model developed in 
this project to simulate solidification and crack formation in DC casting of ingots; the other uses 
thermodynamic simulation to predict the susceptibility to hot tearing in aluminum alloys. 
 
The integrated 3D model couples heat transfer, fluid flow, microstructure evolution, and stress-strain 
formation. It is a highly sophisticated model but requires a long calculation time. The model predicts 
the right trend of stress and strain development in a DC cast ingot; thus, it can be used for evaluating 
parameters that affect hot tearing formation in the DC casting process. 
 
One issue with the 3D model is related to the lack of heat transfer data and mechanical property data. 
It is well known that the HTCs are strongly affected by the water quality of the cooling jet. The physi-
cal and mechanical properties of an alloy are also strongly affected by the composition of the alloy 
and the trace element content. In an attempt to correlate ingot cracking propensity and the composi-
tion of an alloy, thermodynamic models were used based on the fundamental understanding of hot 
tearing formation at the end of solidification.  
 

9.2  Ingot Cracking Propensity Based on Stress-Strain Simulation 
The tendency to crack is higher if the thermal stress, σT, is large and closer to or higher than the 
strength of the alloy at temperatures close to the end of solidification. Strength, σ, is defined as the 
maximum stress exhibited by the material during a tensile test at a given temperature. The strength is 
a function of temperature and strain rate. In the ideal situation, when the thermal stress in the ingot 
can be accurately calculated, a cracking criterion would be simply 
 

  σσ ≥T . (9.1) 
 
Since the 3D integrated model predicts the thermal stress only within a magnitude, an ingot cracking 
index (ICI) needs to be defined to reflect ingot cracking propensity. An ICI was established based on 
the ratio of stress to strength; it is defined as 
 

 
σ
σ TICI = . (9.2) 

 
The larger the ICI, the more likely the ingot is to crack during casting. Stress, σT, can be calculated 
using the 3D DC casting model for a specific set of casting parameters. The strength, σ, of the mate-
rial can be obtained using the new technique developed in this project. (See Sect. 6 of this report.) 
The measured results can be fit as a function of temperature and strain rate to the following equation: 
 

  ( )  , (9.3) ( DTCBTA +×+× ×= εσ &10 )
 
where T is temperature, ε is strain rate, and A, B, C, and D are materials parameters. 
 
In the DC casting model, the ICI can be calculated for every element of the solid model. Considering 
that ingot cracking usually occurs near the ingot surface and at the temperatures close to the solidus, a 
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location close to the ingot surface at a temperature of 610°C (0.95 solid fraction) was used for the ICI 
calculation. The ICI of this element is used as the index for evaluating parameters that affect cracking 
during DC casting. 
 
Figure 9.1 shows the calculated stress and strain rate from the DC casting model and the strength of 
the alloy from Eq. (9.3) for various casting speeds. The x-axis is the normalized casting speed using 
the casting speed of the industrial ingot as 1. The casting speed varies from 0.5 to 2.0 times that of the 
industrial casting speed. The results indicate that as casting speed increases, the calculated stress var-
ies slightly but the strain rate decreases sharply. The strength of the alloy also decreases sharply with 
increasing casting speed because at a given temperature the strength is a function of strain rate.  
 
Figure 9.2 shows the ICI for various casting speeds. The predicted ICI increases as the casting speed 
increases. The combination of an increase in stress and a decrease in strain rate as casting speed in-
creases causes the ICI to increase as casting speed increases. This result is consistent with observa-
tions in industrial casting practice. The results indicate that the model may be able to predict cracking 
during DC casting. It is evident that a reduction in casting speed results in a significant reduction of 
cracking propensity.  
 

Fig. 9.1. Calculated stress, strain rate, 
and strength at a single specified 
location and a temperature of 610°C for a 
range of casting speeds. 
 

  

 

Fig. 9.2. The ingot cracking index 
calculated by the DC casting model for a 
range of casting speeds. 
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In Fig. 9.2, the casting speed used by the industry is defined as 1, the speed at which the scrap rate 
due to hot tearing is about 4%. An increase in casting speed leads to an increase in ICI, and thus in-
creased cracking propensity and increased scrap rate due to hot 
tearing formation. On the other hand, a decrease in casting 
speed leads to decreased cracking propensity and decreased 
scrap rate due to hot tearing. Reducing casting speed seems to 
be one of the easy ways to reduce the scrap rate that is due to 
hot tearing.  

Reducing casting speed 
seems to be one of the easy 
ways to reduce the scrap 
rate due to hot tearing 
formation. 

 

9.3  Hot Tearing Susceptibility: Thermodynamic Predictions 

9.3.1  Background 
The predictions made using the 3D integrated model require extensive data on the physical and me-
chanical properties of the alloy as functions of temperature. These data often vary with varying com-
positions of alloys, and the alloy composition generally varies from melt to melt although the compo-
sitions are within the specification of the alloy. It has been observed for decades by the industry that 
cracking tendency varies from melt to melt. It is almost impossible to measure the physical and me-
chanical data as a function of composition and temperature. 
 
The influence of alloy composition on the formation of hot hearing has been investigated extensively 
in binary alloys. Early research suggested that the hot tearing tendency of an alloy is related to the 
solidification range/interval of the alloy [35–39]. Hot tear tendency is greater in alloys with a larger 
solidification range than in those with a smaller solidification range. The formation of hot tears is 
associated with the ease of feeding the liquid into the regions where cracking occurs [40–42]. Hot 
tears can be healed if liquid can be fed into the cracks. Numerical simulations have been carried by 
Rappaz, Drezet, and Gremaud [43] to calculate the hot tearing tendency based on ease of liquid feed-
ing. The simulation results also indicate that the hot tearing tendency of an alloy is closely related to 
the solidification range of the alloy. 
 
In multicomponent alloys, the influence of composition on hot tearing formation becomes more com-
plicated. Obviously, every element affects the solidification range of the alloy. The interaction be-
tween elements also influences the hot tearing tendency of the alloy. Han [44] examined the hot 
cracking susceptibility of a cobalt superalloy. He found that the cracking susceptibility is closely re-
lated to the solidus temperature of the alloy rather than to the solidification range, particularly in the 
case of an alloy containing elements that are highly segregated at the grain boundaries. The cracking 
tendency decreases with the increasing solidus temperature of the alloy. This is because the thermal 
and mechanical stress can be built up when the temperature in a casting reaches dendrite coherency 
point (at which a dendritic network forms). The coherency point occurs at a temperature correspond-
ing to a solid fraction of about 0.3. Since solute segregation is not substantial at small solid fractions, 
the coherency point is not affected much by the low-melting-temperature constituents (segregating 
elements). However, the solidus temperature is very sensitive to presence of segregating elements. 
Close to the solidus temperature, substantial stress can be built up in the casting, but there is still a 
small fraction of liquid present. The liquid will embrittle the alloy and thus form hot tearing in the 
region last to freeze. Aluminum alloy 3004 contains more than seven major alloying elements and a 
number of impurities.  
 
In order to understand the influence of elements on the hot tearing tendency of the alloy, ThermoCalc, 
a computational thermodynamic simulation package [20], and an aluminum alloy database, Al-3 [45], 
were used to calculate the liquidus and the solidus temperatures corresponding the composition of 
each melt. The solidification range of each melt was determined. The influence of composition on the 
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solidus temperature of the alloy was investigated. Based on the thermodynamic simulations and the 
hot tearing information obtained under industrial conditions, the dependence of hot tearing on the 
solidification range of the alloy was assessed. The results indicate that the relationship between the 
hot tearing susceptibility and the solidification range of the alloy is not linear. Hot tearing is closely 
related to the solidus temperature of the alloy. 
 

9.3.2  Theory 
The theory was developed on the basis of the argument that the cracking tendency decreases with 
increasing solidus temperature for an alloy system. It is still difficult to determine the solidus tem-
perature of an alloy without using thermodynamic simulation and the relevant database. However for 
a given alloy specification, the composition variations are rather small. Thus, the solidus temperature 
of the alloy can be estimated by [44] 
 

  ∑  (9.4) 
=

=Δ+=
N

i
iiS NiCSTT

1
0 ...1

 
where i is the ith alloying element, N is the total number of solute elements in the alloy, Ts is the 
solidus temperature of the alloy, and T0 is the solidus temperature corresponding to the mean compo-
sition of the alloy. The terms Si and ΔCi are defined as 
 

  ii
i

s
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C
TS 0=

∂
∂=  (9.5) 

 
and 
 
  , (9.6) iii CCC 0−=Δ
 
where Ci is the bulk concentration of the ith element in the melt and C0i is the mean concentration of 
the ith element in the alloy specification. From its definition, Si is the solidus slop; its value can be 
calculated using thermodynamic simulations. The mean composition of the alloy can be found in any 
handbook on aluminum alloys. By carrying out a limited number of thermodynamic simulations to 
determine the Si values of each element at its mean concentration, the solidus temperature of the alloy 
with a known composition can be easily estimated using Eq. (9.4).  
 
Equation (9.4) can also be rearranged as 
 

  ∑  (9.7) 
=

Δ=−
N

i
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1
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The ΔCi on the right-hand side of Eq. (9.7) is the composition variation of each melt with respect to 
the mean composition of the alloy. The left-hand side of this equation is the corresponding solidus 
temperature variation. For the purpose of discussing the effect of solute elements on the solidus tem-
perature, it is sufficient to use the term on the right-hand side of Eq. (9.7). 
 
When examining a single element in regard to the hot tearing susceptibility of an alloy, Eq. (9.7) can 
be rearranged as 
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Either Eq. (9.7) or (9.8) can be used for discussing the hot tearing susceptibility of an alloy. The hot 
tearing tendency of an alloy decreases with increasing solidus temperature. 
  

9.3.3  Industrial Data Analysis 
Over 50 compositions of commercial 5182 DC casting ingots and their cracking status were provided 
by industrial partners of this project. Thermodynamic simulations were carried out to determine the 
solidus temperature for each composition using ThermoCalc [20] and the aluminum database Al-3 
[45]. The solidus slope of each element for this alloy was also calculated. For industrial applications, 
either Eq. (9.7) or (9.8) can be used to calculate the solidus temperature of the alloy if ΔCi is known 
for each element in the melt/ingot. 
 
Figure 9.3 shows the calculated solidus temperatures for each ingot vs the copper content in the ingot. 
The open circles represent the DC ingots that were not cracked. The other two symbols represent the 
DC ingots that either cracked during the start-up stage of DC casting or cracked later, resulting in 
large cracks. A border line can be drawn between the region that did not crack  and the cracked region 
on the figure. The ingots with solidus temperatures higher than the border line experienced little 
cracking; the ingots with solidus temperatures below the border line were cracked. Another important 
feature shown by the graph in Fig. 9.3 is that cracking tends to occur in ingots with higher copper 
concentrations. 
 
 

 
Fig. 9.3. Relationship between calculated solidus temperature and 
copper content in commercial 5182 DC casting ingots. Cracking 
tends to occur at lower solidus temperatures and higher copper 
concentrations. 

 
 
Another element that increases the hot tearing tendency of an aluminum 5182 DC casting ingot is 
zinc. Figure 9.4 shows the calculated solidus temperature vs the zinc concentration of the ingot. The 
open circles represent the DC ingots that did not crack. The other two symbols represent the DC in-
gots that either cracked during the start-up stage of DC casting or cracked later, forming large cracks. 
A border line can also be drawn between the region not cracked and the cracked region in Fig. 9.4.  
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Fig. 9.4. Relationship between calculated solidus temperature and 
zinc content in commercial 5182 DC casting ingots. Cracking tends 
to occur at lower solidus temperature and higher zinc concentration. 

 
 
The ingots with solidus temperatures higher than the border line experienced little cracking; those 
with solidus temperature below the border line were cracked. The hot tearing susceptibility of the 
ingot increases with increasing zinc concentration in the ingot. 
 
Equations (9.7) and (9.8) and Figs. 9.3 and 9.4 are important in minimizing cracking in DC casting 
ingot for complex alloys such as aluminum alloys. These alloys contain a large number of elements 
such as Mn, Ti, Mg, and Si in addition to Cu and Zn. If the copper and zinc contents in a molten 
aluminum alloy are high, other elements can be altered so that the solidus temperature of the melt is 
high. As long as the solidus temperature of the melt is high, cracking will be unlikely to occur. These 
results provide a feasible way of reducing the cracking tendency before making the DC casting in-
got, since chemical analysis can be done quickly before a casting is made. If the chemical composi-
tion analysis results indicate that the melt may have a low solidus temperature using Eqs. (9.7) or 
(9.8), the composition can be adjusted just before making the casting. 
 
In summary, ingot cracking susceptibility can be altered in various ways based on the results of this 
project. The casting speed is an important parameter that can be used for reducing the tendency of 
cracking formation. The scrap rate for DC casting of ingots can be reduced by decreasing the casting 
speed of the ingot. Hot tearing susceptibility is also sensitive to the composition of the alloy. High 
copper and zinc contents tend to increase the tendency toward cracking. However, other elements in 
the alloy can be altered to increase the solidus temperature of the alloy and thus reduce the cracking 
susceptibility of the ingot.  
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10. Accomplishments 
 

10.1    Technical Accomplishments 
All the objectives of this project were accomplished. The major technical accomplishments in model-
ing and optimization of DC casting for aluminum 3004 and 5182 alloys are the following: 
 

• Identified the nature of crack formation during DC casting. Before this project, the indus-
trial consensus was that the cracking of DC casting occurs below the solidus temperature of 
the alloys. The project results show that cracking is the result, not of cold cracking, but of hot 
tearing that occurs above the nonequilibrium solidus temperature of the alloy. 

• Developed a novel method for determining the mechanical properties of an alloy at the 
nonequilibrium mushy zone of the alloy. Because hot tearing occurs at temperatures at 
which the alloy contains a small fraction of nonequilibrium liquid among small grains ob-
tained at high cooling rates, the prior experimental methods could not be used for measuring 
the mechanical properties of an alloy at DC casting conditions. A new method has been de-
veloped and used for measuring the data not available in the literature. Use of this method has 
allowed the generation of a large volume of data on the mechanical properties of aluminum 
3004 and 5182 alloys in the nonequilibrium mushy zone temperatures. 

• Determined heat transfer coefficients (HTCs) between the solidifying ingot and the cool-
ing water jet. A series of temperature measurements was carried out at the industrial produc-
tion facilities on full-size industrial sale ingots (60,000 lb). An inverse calculation method 
was used to determine the HTCs from the temperature measurement data. HTCs as functions 
of temperature and water flow rate were estimated. 

• Determined the material constitutive model at high temperatures. Carefully controlled 
experiments were carried out at high temperatures to determine the stress-strain relationship 
of the alloy. The material property data were obtained and fit into a constitutive model that 
can be incorporated into a stress-strain model for the simulation of stress-strain evolution in 
DC casting ingot during solidification. 

• Developed computational models for simulating crack formation in DC casting ingots. 
Computational models have been developed to simulate heat transfer, fluid flow, phase tran-
sition and evolution of the as-cast structure, and stress-strain for the prediction of solidifica-
tion, microstructure, shrinkage, ingot distortion, and stress-strain during DC casting. The 
models have been validated with respect to temperature measurement data using the material 
property data and HTCs obtained in this project. The validated models have been incorpo-
rated into commercial software so that they will be accessible to industry and be amendable 
to refinement in the future. Methodologies of using thermodynamic simulations for the pre-
diction of cracking susceptibility have also been developed. The relationship between the 
cracking susceptibility and the composition of the alloy has been ascertained. 

 
The models developed in this project can be used to minimize the formation of cracks during the DC 
casting of aluminum alloys. Energy savings have been achieved by reducing the scrap rate of alumi-
num DC casting. 
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10.2    Technology Transfer 
This project was funded in response to a call for proposals from the Aluminum Industry of the Future, 
Industrial Technologies Program (ITP) of the U.S. Department of Energy (DOE). The goal of the 
project was to assist the aluminum industry in reducing the incidence of stress cracks from a current 
level of 5% down to 2%.  
 
Project participants have used several mechanisms to inform industries of the research results and 
advance commercialization: (1) incorporating the results into a commercial solidification package, 
ProCAST, so that the aluminum industry can obtain access to the project results; (2) launching Alu-
minum Answers, a Secat web site (http://www.secat.net/answers.php), partly for disseminating the 
latest research results to the aluminum industry; and (3) making presentations at national meetings 
organized by the Minerals, Metals, and Materials Society (TMS) and the American Society of Metals 
(ASM), and at four industrial locations, including Logan Aluminum and Commonwealth Aluminum. 
Aleris International is using the computational tools located at Secat to optimize the DC casting proc-
esses in its Newport, Kentucky, plant. Companies who have expressed interest in the research en-
deavor include the industrial partners of this project as well as Alcan and Alcoa. 
 
Intellectual property has been generated from this significant research effort. The intellectual property 
includes (1) the predictive DC casting model that is resident at Secat, Inc., and at ORNL and is acces-
sible to the aluminum industry, (2) Wagstaff- and Commonwealth-specific data and the relevant 
HTCs, and (3) a database of thermophysical and mechanical properties of aluminum alloys 3004 and 
5182. To facilitate the technology transfer of the project results, Secat research staff members actively 
participated in the modeling effort throughout the project period. A multiprocessor computer has been 
purchased for using the models. As a result, Secat has the required capabilities and expertise for trans-
ferring the developed technologies to the entire aluminum industry. 
 

10.3    Publications 
Seven papers have been published as a result of this project, and a number of presentations have been 
made at national conferences, industrial companies, and universities. The publications resulting from 
the project are as follows: 
 
1. Q. Han, M. I. Hassan, S. Viswanathan, K. Saito, and S. K. Das, “The Reheating-Cooling Method: 

A Technique for Measuring Mechanical Properties in the Nonequilibrium Mushy Zones of Al-
loys,” Metallurgical and Materials Transactions A 36 (2005): 2073–2080. 

2. Q. Han, S. Viswanathan, D. L. Spainhower, and S. K. Das, “The Nature of Surface Cracking in 
Direct Chill Cast Aluminum Alloy Ingots,” Metallurgical and Materials Transactions A 32 
(2001): 2908–2910.  

3. Z. D. Long, Q. Han, S. Viswanathan, S. Ningileri, S. K. Das, K. Kuwanan, M. I. Hassan, 
M. Khraishen, A. Sabau, and K. Saito, “Integrated 3D Model to Simulate Solidification and 
Predicate Hot Cracking during DC Casting of Aluminum Alloy,” pp. 1057–1062 in Light Metals 
2005 (Warrendale, Penn.: The Minerals, Metals & Materials Society, 2005). 

4. K. Kuwana, S. Viswanathan, J. A. Clark, A. Sabau, M. I. Hassan, K. Saito, and S. Das, “Calcula-
tion of Heat Transfer Coefficients at the Ingot Surface during DC Casting,” pp. 989–993 in Light 
Metals 2005 (Warrendale, Penn.: The Minerals, Metals & Materials Society, 2005). 

5. A. Sabau, K. Kuwana, S. Viswanathan, K. Saito, and D. Lee, “Heat Transfer Boundary Condi-
tions for the Numerical Simulation of DC Casting Process,” pp. 667–672 in Light Metals 2004 
(Warrendale, Penn.: The Minerals, Metals & Materials Society, 2004). 
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6. Q. Han, M. I. Hassan, S. Viswanathan, K. Saito, and S. K. Das, “An Experimental Method for 
Determining Mechanical Properties in the Non-Equilibrium Mushy Zones of Alloys,” pp. 211–
220 in Solidification of Aluminum Alloys, ed. M. G. Chu, D. A. Granger, and Q. Han, (Warren-
dale, Penn.: The Minerals, Metals & Materials Society, 2004). 

7. Q. Han, S. Viswanathan, D. L. Spainhower, and S. K. Das, “Nature and Formation of Surface 
Cracks in DC Cast Ingots,” pp. 975–979 in Light Metals 2002 (Warrendale, Penn.: The Minerals, 
Metals & Materials Society, 2002).  

 

10.4    Presentations 
The following presentations resulted from this project: 
 
1. Z. D. Long, Q. Han, S. Viswanathan, S. Ningileri, S. K. Das, K. Kuwanan, M. I. Hassan, 

M. Khraishen, A. Sabau, and K. Saito, “Integrated 3D Model to Simulate Solidification and 
Predicate Hot Cracking during DC Casting of Aluminum Alloy,” TMS 2005 Annual Meeting, 
Moscone West Convention Center, San Francisco, CA, Feb. 13–17, 2005. 

2. K. Kuwana, S. Viswanathan, J. A. Clark, A. Sabau, M. I. Hassan, K. Saito, and S. Das, “Calcula-
tion of Heat Transfer Coefficients at the Ingot Surface during DC Casting,” TMS 2005 Annual 
Meeting, Moscone West Convention Center, San Francisco, CA, Feb. 13–17, 2005. 

3. A. Sabau, K. Kuwana, S. Viswanathan, K. Saito, and D. Lee, “Heat Transfer Boundary Condi-
tions for the Numerical Simulation of DC Casting Process,” TMS 2004 Annual Meeting, Char-
lotte Convention Center, Charlotte, NC, March 13–18, 2004. 

4. Q. Han, M. I. Hassan, S. Viswanathan, K. Saito, and S. K. Das “An Experimental Method for 
Determining Mechanical Properties in the Non-Equilibrium Mushy Zones of Alloys,” TMS 2004 
Annual Meeting, Charlotte Convention Center, Charlotte, NC, March 13–18, 2004. 

5. Q. Han, S. Viswanathan, D. L. Spainhower, and S. K. Das, “Nature and Formation of Surface 
Cracks in DC Cast Ingots,” TMS 2002 Annual Meeting, Seattle, WA, Feb. 17–21, 2002. 
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11. Summary and Conclusions 
 
A successful four-year project on the modeling and optimization of direct chill (DC) casting to reduce 
ingot cracking has been completed. The project involved close collaboration among private indus-
tries, national laboratories, and universities. During the four-year project, 16 quarterly meetings 
brought the industrial partners and the research team together for discussion of research results and 
research direction. The industrial partners provided guidance, facilities, and experience to the research 
team. The research team went to two industrial plants to measure temperature distributions in com-
mercial 60,000-lb DC casting ingot. The collaborative research resulted in several major accom-
plishments or findings: 
 

1. Surface cracks were shown to be a result of hot tearing rather than cold cracks, as was 
thought before this project. These cracks form on the surface of a DC cast ingot just above 
the impingement point of the secondary cooling water jets. The cracks form along dendrite 
and grain boundaries, where solute and impurity elements are highly segregated. This under-
standing led to the development of a new technique for determining the mechanical properties 
in the nonequilibrium mushy zone of alloys and to thermodynamic predictions of the hot tear-
ing propensity of DC cast ingots. 

 
2. The apparent heat transfer coefficient (HTC) at the ingot surface in the water cooling region 

during DC casting was determined on the basis of temperature measurements in commercial 
DC casting ingots and an inverse heat transfer analysis. HTCs were calculated as a function 
of temperature and time, and covered the different regimes of heat transfer expected during 
DC casting. The calculated values were extrapolated to include the effect of water flow rate. 
The calculated HTCs had a peak at around 200°C, corresponding to the high heat transfer 
rates during nucleate boiling, and the profile was consistent with similar data published in the 
literature.  

 
3. A new method, termed the reheating-cooling method (RCM), was developed and validated 

for measuring mechanical properties in the nonequilibrium mushy zones of alloys. The new 
method captures the brittle nature of aluminum alloys at temperatures close to the nonequilib-
rium solidus temperature, while specimens tested using the reheating method exhibit signifi-
cant ductility. The RCM has been used for determining the mechanical properties of alloys at 
nonequilibrium mushy zone temperatures. Accurate data obtained during this project show 
that the metal becomes more brittle at high temperatures and high strain rates. 

 
4. The elevated-temperature mechanical properties of the alloy were determined. Constitutive 

models relating the stress and strain relationship at elevated temperatures were also devel-
oped. The experimental data fit the model well. 

 
5. An integrated 3D DC casting model has been used to simulate heat transfer, fluid flow, so-

lidification, and thermally induced stress-strain during casting. A temperature-dependent 
HTC between the cooling water and the ingot surface, cooling water flow rate, and air gap 
were coupled in this model. An elasto-viscoplastic model based on high-temperature me-
chanical testing was used to calculate the stress during casting. The 3D integrated model can 
be used for the prediction of temperature, fluid flow, stress, and strain distribution in DC 
cast ingots. 
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6. The cracking propensity of DC cast ingots can be predicted using the 3D integrated model as 
well as thermodynamic models. Thus, an ingot cracking index based on the ratio of local 
stress to local alloy strength was established. Simulation results indicate that cracking pro-
pensity increases with increasing casting speed. The composition of the ingots also has a 
major effect on cracking formation. It was found that copper and zinc increase the cracking 
propensity of DC cast ingots. 

 
The goal of this Aluminum Industry of the Future (IOF) project was to assist the aluminum industry 
in reducing the incidence of stress cracks in DC castings from a current level of 5% down to 2%. This 
could lead to energy savings in excess of 6 trillion Btu by the year 2020 given full-scale industrial 
implementation of the results. The project indicates that ingot cracking can be minimized by reducing 
the casting speed or by controlling the composition of the alloy. These results can be incorporated 
into industrial applications to achieve significant energy savings. 
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12. Recommendations 
 
This research project has successfully demonstrated that an increased understanding of microstructure 
formation and improved computational tools can be used for improving the DC casting process for 
aluminum 3004 and 5182 alloys. The results can lead to reduced scrap rates and increased energy 
savings. The project serves as a starting point for even more sophisticated models for the prediction of 
crack formation.  
 
One of the breakthroughs of this project is having identified that an unfavorable combination of ele-
ments in alloys has a strong effect on crack formation. This is especially true when the alloy contains 
high copper and zinc contents. Cracking due to the presence of trace elements or due to an unfavor-
able combination of elements in alloys was not fully recognized in the past and was usually explained 
as being due to variations in water quality. One recommendation of the project team is that the indus-
try should improve methods of measuring and controlling the composition of alloys in order to mini-
mize crack formation. 
 
For future research, the effect of trace elements also deserves extensive research. Due to limitations in 
the thermodynamic database, this project was able to evaluate only some major elements (Al, Cu, Cr, 
Fe, Mg, Mn, Ni, Si, Ti, and Zn). More research is needed in the future to examine such impurity ele-
ments as Bi, Ca, Cd, Li, Na, Pb, Sb, Sn, and Sr in order to fully asses the effect of composition on the 
cracking propensity of aluminum alloys. This research will lead to improved energy efficiency in 
casting processing. 
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