Balancing a U-Shaped Assembly Line by applying
Nested Partitions Method

By
Nikhil V. Bhagwat

A Creative Component submitted to the graduate faculty
in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE

Major: Industrial Engineering

Program of Study Committee:
Dr. Sigurdur Olafsson (Major Professor)
Dr. John Jackman

Dr. Brian Mennecke

lIowa State University
Ames, lowa
2005

Acknowledgements
I would sincerely like to thank Dr. Sigurdur Olafsson (Associate Professor, Department
of Industrial and Manufacturing Systems Engineering) for guiding me through this study.
I would also like to thank Dr. John Jackman (Associate Professor, Department of
Industrial and Manufacturing Systems Engineering) and Dr. Brian Mennecke (Associate
Professor, Management Information Systems) for being on my graduation committee. I
would like to take this opportunity to thank my family members and friends for being

supportive and patient.

TABLE OF CONTENTS

INTRODUCTION ..coerrerresreasssrssssssssssrossesssssassossassossrsrsssssrsssasasesssssssnossessssssasssssssssassss 1
1.1 DEFINITION OF UALBP ...ttt e e ettt vt et eeaee s e aeea e aeeananeesmennesanesaen 1
1.2 THE NESTED PARTITIONS IMETHODcooteiiiiieereereeetereeriereesaasassesessstnersosersnasreens 3
1.3 OBIECTIVE oottt eereeeitstte s s e s sssasssaats st assebassssstsssessessrnsnnnnenessessesasaseenseeseessanne 3

TLLUSTRATION OF UALBP.....ouiittiniiisresssscessssrosssssenmmesmessesmesnssmssssssssssossesssasses 4

NESTED PARTITIONS METHODuuoiiiiieieericsisussssessssessnsmmsssosssssensesssssasssssssnses 6

PROPOSED METHOD ...occovcvverrenrensirssessssansisssssssssssssssssssssssssessasssssasssssnenssssssssssssnsos 9
4.1 BRANCH AND BOUND METHOD AS APPLIED TOUALBP ... 0
4.2 NESTED PARTITIONS METHOD AS APPLIED TOUALBP.......covnenee 13

TEST RESULTS AND ANALYSIS o cercccrsnrsresrsssvenensrsssesrnassssensesssssassanssssassss 18
5.1 TEST RESTULTS +eueerrueesutaeseesseneessessesssesesssteessstsessatsesssenessatesranresresnremrenreresrertereees 20
5.2 ANALYSIS OF RESULTS ..ooveiuriitrraerersrererssesnnsssnesssinssssssemmnnressesreessseesserserstereeseeres 23

5.2.1 Graphical comparison of Branch & Bound and Nested Partitions method...23
5.2.2 Graphical comparison of Nested Partitions method for different sets of input
PATAITIEIETSoviivrrei vt s s st a s s rreee s e e s ae e s ban e s s et s e s s ns e s nenes 25

CONCLUSIONS AND FURTHER RESEARCH.......ccocovssssucssissaossossassosssassosess .29
BIBLIOGRAPIY ...covvernvnrnsmsinsmsensesmmssmaismassisssmassissanossssssssssssassstsssssssssssss 30

Nested Partitions Method for U-Line Balancing ‘S '"T a%?(

1. Introduction

- An assembly line consists of a several stations performing various tasks repeatedly on
items moving along the line. The first assembly line was developed by Henry Ford in
1915. Since then, they have been widely used in various industries to achieve higher
productivity in mass production environments.

Line balancing is the process of assigning sets of tasks to stations to accomplish an
assembly work. The duration to perform a task is called the task time. The sum of the
times of tasks assigned tb a station is called the station time. Precedence coﬁstrainrs
specify the permissible sequences of the tasks. This sequence can be influenced by
several technological and managerial considerations. Thus, a simple assembly line

| balancing problem (SALBP) can be defined as “given a finite set of tasks, each
having a task time, and a set of precedence constraints which specify the permissible
orderings of the tasks, the problem is to assign the tasks to an ordered sequence of
stations with a pre-specified cycle time such that the precedence constraints are
satisfied and some performance measure is optimized” [2]. Typically, the
performance measure for a SALBP would be minimizing the number of stations m,

given a cycle time c.

1.1 Definition of UALBP

Although a vast amount of research has dealt with SALBP, the straight assembly lines
may have several disadvantages associated with them. Some of these include the
boredom of work requiring low-level skilled operators, the inflexibility of the
production system concerning failures and varying demand etc. These usually result
in low-motivation for operators, recurring quality problems and large inventories due

to inflexible output rates.

To overcome these drawbacks, modern production methodologies e.g. the Just-in-
time principle and flexible manufacturing technology, have been incorporated into
assembly line production by several manufacturing facilities. Such modemn assembly

lines are often organized in shape of U-line (Figure 1).

Page 1 0of 30

Nested Partitions Method for U-Line Balancing

e ol B

| My /£t 11 ?‘:u-...____‘]
1 it / L '

s, e sl S |
AP) X
2 S5~
Y, 5 4 T *1 1
Y —— 7 7 i Dos

L A b o ome — — A b e L

Figurel: U-shaped Assembly line 1
(Taken from ULINO: Optimally balancing U-Shaped JIT assembly lines, Schell & Klein, 1999)

“Both ends of the line are close together forming a rather narrow U” [4]. Stations may
be positioned along the two segments of the line facing each other simultaneously.
For example, station 1 works at the beginning and at the end of the line, i.e. it may
perform the first and the last tasks of a product unit. Operators are involved in
different aspects of the production process, thus broadening their skills. Stations are
closer together. This helps in having a better visibility of the entire production process
and also helps in enhancing communication between the operators. Furthermore,
helping each other in cases of bottlenecks and sharing machine capacities is
facilitated. As a result of this, workers acquire multiple skills thereby leading to

higher motivation, improved quality of products and increased flexibility.

“The U-line assembly balancing problem (UALBP) is an extension of SALBP with
respect to the precedence constraints” [4]. In SALBP, all predecessors tasks (direct
and indirect) of a task j performed at a station & must be assigned to one of the
stations 1... k. A task can share a station k& with an indirect predecessor or successor
task only if all intermediate tasks defining this precedence relationship are also in
station k. In UALBP, each task, in principle, can share a station with any of its
predecessors and/or any of its successors. However, all predecessors and/or
successors of a task j performed at a station & must be assigned to one of the stations
1...& “Due to these relaxed precedence constraints, the optimal line efficiency of a
SALBP instance is a lower bound on the optimal line efficiency of the corresponding

UALBP instance” [4]. In several cases, a higher efficiency is possible with UALBP

Page 2 of 30

Nested Partitions Method for U-Line Balancing

instance. Note that increasing the line efficiency has the further positive effect of
smoothing the levels of station utilization i.e. the load distribution amongst stations is

more even.

1.2 The Nested Partitions Method

Finding a single optimal solution among a finite set of alternatives is a fairly common
problem one encounters. This problem is hard to solve. In most cases, the number of
alternatives is quite large and only a handful of them can be considered. Besides,
these problems lack rich structure that can be utilized in identifying an optimal
solution. As a result, heuristic algorithms are used such as Genetic Algorithm, Tabu
Search etc. [7]. Most of these problems have multiple local optima, some of which
may have extremely poor performance as compared to the global optimum solution.
This makes it inappropriate to apply only local optimizatibn technigues. A popular
and effective approach to escape local optima is to use randomization. Nested
Partitions is a randomized method for global optimization [1]. The motivation for
this method is that some parts of the feasible region may be most likely to contain the
global optima. Hence it is efficient to concentrate the computational effort in these
regions. The Nested Partitions Method takes a global perspective and combines
global and local search techniques. This method is also motivated by solving
problems that have a finite feasible region (referred to as combinatorial optimization

problems).

1.3 Objective

The primary objective of this study was to see if near-optimal solutions could be
obtained in a reasonable amount of time by applying a meta-heuristic such as the
Nested Partitions Method to the problem of Balancing U-Shaped Assembly Lines

(UALBP) wherein the task times are deterministic.

Page 3 of 30

Nested Partitions Method for U-Line Balancing

2. INustration of UALBP

“When standardized products have to be produced in large quantiﬁes, assembly lines
are the appropriate production systems” [4]. An assembly line typically consists of a
sequence of m work stations through which the product units proceed. Each station
performs a subset of the n tasks (operations) necessary for manufacturing the
products. Due to the movement of the line, each product unit remains at a station for a
fixed amount of time referred to as the cycle time ¢. In conventional assembly lines,
stations are arranged one after the other in the form of a straight line. Each product
unit proceeds along this line and visits a station only once (except if it has to be re-
worked). However, for reasons stated above, U-shaped assembly lines have started

replacing the conventional straight assembtly lines.

Figure2: Precedence Graph
(Taken from UGLINO: Optimally balancing U-Shaped JIT assembly lines, Scholl & Klein, 1999)

The figure above shows an example of a precedence network with n = 12 tasks
wherein tasks are represented as nodes, precedence relations as arcs and task times as
node weights. Let j denote tasks required to manufacture a single product unit and ¢
indicate the deterministic task time for j”‘ task. An arc (i, /) means that task i should
be completed before task j can be started. Each task can be assigned to exactly one
station. The sets of tasks S; assigned to station k=1 ... m are called station loads. Let
the sum of all task times be designated by ;. The objective usﬁally consists of

maximizing the line efficiency given by:

t
E = %100 %
mrec)y

Page 4 0f 30

Nested Partitions Method for U-Line Balancing

Assume that the cycle time for the above problem is ¢ = 10. The figure below
illustrates an optimal solution for UALBP with six stations (stations have been

numbered consecutively from left to right).

LS |
i3 i :
Staﬂmi 53m:ion:§ D Suation3 | e L quaan 6
M i{12 \ 10
- i e Py

Figure3: Solution to the example problem for ¢ = 10
(Taken from ULINO: Optimally balancing U-Shaped JIT assembly lines, Scholl & Klein, 1999)

Let us examine station 3 which performs the tasks 3 and 9, i.e. S; = {3, 9}. Task 3 is
performed whenever a product unit crosses the station for the first time (from left to
right) after its predecessors have been performed in stations 1 and 2 respectively.
When the product unit returns to station 3 (from right to left), all predecessors of task
9 have already been performed (in stations 1-6) and task 9 can be performed.
Following this, the successors of 9 are executed in stations 2 and 1 respectively.
An optimal solution to the corresponding SALBP instance requires seven stations:

= {1}, S ={22,4},8:= {3, 5}, 84= {6, 7}, Ss = {8, 10}, Sg = {9, 11}, S5 = {12}.
Due to £, = 60, the efficiency of the U-shaped line is 100% whereas that of the
straight line is only 85.7%.

Page 5 of 30

Nested Partitions Method for U-Line Balancing

3. Nested Partitions Method
Nested Partitions method deals with problems of the following form:

6 € arg min -f(49)

Where © is the finite solution set and f: © - R is the performance function to be
optimized [1].

This problem is mathematically trivial in the sense that all we need to do is enumerate
and compare all the points to find the one with the best performance. However, the
huge number of alternatives makes this approach infeasible. Some problems have a
rich special structure that can be exploited to find an optimal solution without
checking all the alternatives, but many problems lack such structure. For these
problems, the only known method to guarantee an optimal solution is to check all the

alternatives.

In the Nested Partitions method; in each iteration of the algorithm, we assume that we
have a region, i.e. a subset of © that is considered most promising. We then partition
this promising region into M sub-regions and aggregate the entire surrounding region
into one region. In each iteration, we therefore look at M + I disjoint subsets of the
feasible region. Each of these M + 7 regions is sampled using some random sampling
scheme, and the performance function values of the randomly selected samples are
used to calculate the promising index for each region. This index determines which
region is the most promising region for the next iteration. If one of the sub-regions is
found to be the best, this region becomes the most promising region. If the
surrounding region is found to be the best, the algorithm backtracks to a larger region
containing the old most promising region. The new most promising region is then
partitioned and sampled in a similar fashion.

In the first iteration, nothing is assumed to be known about where good solutions are.
Hence we use the entire feasible region © as the most promising region. Since the
surrounding region is empty, we sample only from M region in the first iteration

where © is considered as the most promising region. It is also clear that @ is finite,

Page 6 of 30

Nested Partitions Method for U-Line Balancing

eventually there will be regions that will be singletons, that is, contain single point.
Such regions are the regions of maximum depth and generally talk about the depth of
a region. Such regions yield the complete solutions and can be considered as
terminating points for the algorithm. This is defined iteratively in the obvious manner
with © having depth of 0 and so forth.

Assume that a partitioning scheme has been fixed. This means that it has been
decided how many sub-regions there will be, and what rule is followed in partitioning
any given region info M regions. Let us call a region constructed using the
partitioning scheme as a valid region given the fixed partition. If a valid region o is
formed by partitioning a valid region #, then o is called the sub-region of region #,

and region 7 is called super-region of region o.

Let us look at the following illustration. Consider a feasible region consisting of eight
points 7y = O = {1, 2, 3,4, 5,6 7, 8} and that in each iteration, we partition the

current most promising region into M = 2 disjoint sets as shown in the figure below.

Figure4: Example of partition generated by applying NP method
(Taken from Nested Partitions Method for Global Optimization: Shi & Olafsson, 2000)

In the first iteration, the current most promising region #, is partitioned into two sub-
regions n; = {1, 2, 3, 4} and 5, = {5, 6, 7, 8}. Both #, and #; are sampled and the
promising index of each region is estimated. Assume that the estimated promising

index of #; is better than that of region #,. We then select #; as the most promising

Page 7 of 30

Nested Partitions Method for U-Line Balancing

region in the second iteration and further partition it into two sub-regions #; = {1, 2}
and 4 = {3, 4}. In the second iteration, #3, #4 and their surrounding region #; are
sampled. Assume that the estimated promising index of region #; is the best. We then
select #3 to be the most promising region in the third iteration and partition #3 further
into two sub-regions ns = {1} and 5 = {2}. Thus, in the third iteration, »;, s and
their surrounding region #y \ (s U 1) are sampled and their most promising index
values are estimated. If the estimated promising index of the surrounding region is the

best, we backtrack to a larger region containing #3. In this case, that would either be

Ho OT K.

Page 8 of 30

Nested Partitions Method for U-Line Balancing

4. Proposed Method

To meet the objectives of this study, a metaheuristic algorithm was required to be
applied to the UALBP. Nested Partitions is known to have worked well for several
practical problems such as the scheduling of tasks in a single machine environment,
scheduling parallel manufacturing systems with flexible resources [10] etc. Hence,
Nested Partitions method was chosen. As a benchmark for evaluation, Branch and
Bound method was also applied to the same problem. This section elaborates the
approach used for both the algorithms. To evaluate the performance of the two
algorithms, they were programmed in C#.Net and several tests were conducted. The
results of these tests, as well as detailed analysis of the results are presented in the
next section. Both these algorithms are based on the following assumptions:

e Each UALBP has a well-defined precedence relationship.

¢ The task times are deterministic.

e The objective function is: Determining the number of stations required to
perform all the designated tasks for a given cycle time. The smaller the
number, the better is the performance of the algorithms.

o Backtracking (if required) is permitted.

¢ The maximum task time is less that or equal to the cycle time.

4.1 Branch and Bound Method as applied to UALBP

Branch and Bound procedures are enumeration schemes. In these schemes, certain
schedules or classes of schedules are discarded by showing that the objective values
of all these schedules are higher than a provable lower bound and this lower bound is
higher than (or equal to) the value of the objective of a schedule obtained earlier.
The Branch and Bound procedure for UALBP has been constructed as follows: The
branching process is based on the fact that complete solutions are developed starting
from the beginning of the solution [7]. There is a single node at level 0, which is at
the top of the tree. At this node, none of the tasks have been assigned to any stations.
There will be branches going down n nodes at level 1 where # stands for the
number of tasks that can be assigned to current stations / new stations (if assignment

to current station is not possible). By tasks that can be assigned to stations we mean

Page 9 of 30

Nested Partitions Method for U-Line Balancing

those tasks which have already had all their predecessor (direct or indirect) /
successor (direct or indirect) tasks assigned to one of the stations: 7 ... k where kis
the current station. For level 1, since there is no station opened so far, k£ will be /.
Each node at this level will correspond to a partial solution with a specific task in the
first station. There are several arcs emanating from each node at level 1. The
precedence relationship determines the number of tasks that become available for
assignment, after the assignment of the task at level 1. It could be different for
different nodes at the same level. At level 2, the first two tasks have been assigned to
stations. The task assignment to a station is based on the assumption that there is
sufficient time available at the station after the initial assignment. The available

station time is computed as follows:
Available station time = cycle time — {sum of all the tasks assigned to the station}

A task will be assigned to a station only if the available time for the station is at least
equal to the task time; else, a new station will be created (opened) and the task will be
assigned to the new station. This task assignment will continue until all the tasks have
been assigned to stations. The depth of the tree formed thus, will always be equal to

the number of tasks in the problem.

A Depth first approach has been used for branching; i.e. one branch is traversed until
a complete solution is obtained. Remaining solutions (branches) are obtained by
backtracking. The solution obtained by traversing the first branch of the tree is
initially considered as the bounding solution. Duri'ng the branching process, a
complete solution represented by a branch is compared for quality with the bounding
solution. If the solution of the current branch has fewer stations as compared to the
bounding solution, the current branch’s solution becomes the new bounding solution;

else the branch is terminated (bound).

Page 10 of 30

Nested Partitions Method for U-Line Balancing

Consider the following illustration consisting of four tasks and the precedence
relationship as shown. For the sake of simplicity, all the four tasks are assumed to

have the same time value viz. 70. Let the cycle time ¢ be 20.

10
10

Figure5: Precedence graph for the illustration under consideration

A complete solution set for the above problem using the Branch and Bound procedure

is shown below:

Figure6: Solution set for the illustration with cycle time = 20

At the beginning, i.e. when we are at level 0, none of the tasks have been assigned to
any stations. At this point in time, task / and task 4 are available for making
assignments to stations as they do not have any unassigned predecessors or successors
respectively. Since we do not have any stations, we begin the branching process by
opening a new station / and assigning task / to this station (level /). We traverse
down this branch until we have a complete solution. Having assigned task 7 to station

I, we now have tasks 2, 3 and 4 avaiiable for the next assignment (tasks 2 and 3 are

Page 11 0of 30

Nested Partitions Method for U-Line Balancing

available for assignment as their predecessor task / has been assigned). Next, we try

assigning task 2 (level 2). The available time for station / is computed as follows:

Available time = Cycle time — Sum (All tasks assigned to the station) i.e.
Available time =20—-10=10

Since the time for task 2 is 10 (which is <= available station time), we assign task 2 to
station [itself i.e. we do not open a new station for assigning task 2. Traversing down
the branch, we are now left with tasks 3 and 4 for assignment. We assign task 3 next
(level 3). Since the available time for station 7 is zero, we open a new station 2 and
assign task 3 to this new station. We are no left with task 4. This task can be assigned
to station 2 as well since its available time (10) is equal to the time of task 4 (level 4).
We are left with no more tasks. Thus we have a complete solution. The value of the
objective function of this solution is equal to the number of stations in the solution i.e.

2. We treat the first solution as the bounding solution.

We now begin backtracking (un-assigning tasks in the reverse order in which they
were assigned) in search of a better solution. From level 4, we un-assign task 4 (the
last assigned task) and move to level 3. At this level, we check if we have any tasks
(other than 4) for making assignments. Since we do not have any such tasks, we
backtrack to level 2 by un-assigning task 3 as well. Having unassigned task 3, the
value of the partial solution becomes equal to / (station 2 is discarded as it does not
have any tasks assigned to it). We again check if we have any tasks (other than task 3
which was previously assigned at this level) for making assignments. Task 4 is the
only task that is available. However, for assigning task 4, we have to open a new
station (station 2) as station / does not have any available time. This would mean that
a complete solution obtained by making the assignment of task 4 to the new station 2
would have a objective function value of at least 2 which is not better than the value
of the bounding solution i.e. 2. Hence, we disregard this branch and continue
backtracking by un-assigning task 2. Once again, we check for the availability of
tasks (other than task 2). Tasks 3 and 4 are both available for assignment. We choose

Page 12 of 30

Nested Partitions Method for U-Line Balancing

task 3 and assign it to station / since it the available time for station is equal to the
time of task 3. This partial solution’s value is still under the bounding solution’s
value. So we continue with assignments. Next, we have tasks 2 and 4 available for
assignment. We chose task 2. At this point in time, we find that we have to assign
task 2 to a new station 2 since the available time for station ! is zero. If we make this
assignment, then we are bound to end up with a complete solution having the
objective function’s value of at least 2 which is not better than the value of that of the
bounding solution. As a result of this, we disregard this branch and continue
backtracking in order to seek a better solution.

The same procedure is continued until we exhaust all the available alternatives. If
during this backtracking, we encounter a {(complete) solution having the objective
function’s value lesser than that of the bounding solution, that solution becomes the
new bounding solution and the older solution is disregarded. At the end of all the

iterations, the bounding solution is considered as the final (best) solution.

4.2 Nested Partitions Method as applied to UALBP

Nested Partitions method is similar to Branch & Bound and Beam search methods.
Random sampling and local search techniques are used to find which node is the most
promising of all. At any given point in time, only one node (Beam Width = 1) [1] is
retained with a possibility of backtracking (if necessary). The implementation details
are given below.

The algorithm is based on the fact that complete solutions are developed starting from
the beginning of the solution. There is a single node at the top. At this node, none of
the tasks have been assigned to any stations. We begin by partitioning the available
region (most promising region) into several regions on the basis of availability of
tasks for assignment. All those tasks that have their predecessors / successors already
assigned are considered available. Referring to the illustration in figure 5, we have
tasks / and 4 available for assignment. Hence, we can partition the current most
promising region into two regions viz. region / with task 7 and region 2 with task 4 as

shown below.

Page 13 of 30

Nested Partitions Method for U-Line Balancing

o region | region 2 °

Figure7: Regions to be considered for the first iteration

At this point in time, we do not have a neighboring region. To proceed with task
assignment, one of these two regions has to be picked as the next most promising
region. To do so, we have to compare the values of the performance indices of the
two regions. The region with a better performance index is considered as the next
most promising region and the task associated with that region is assigned to a station
subject to the availability of sufficient time at the station (i.e. available time is at least
equal to the task time), else a new station is opened.

For the purpose of this study, the value of the performance index of a region is

computed as follows:

From each region, some N samples are obtained randomly. In reality, these samples
are complete solutions that are obtained by assigning the task associated with that
region to an existing / new station {(depending on the availability of sufficient time at
the station). For obtaining complete solutions, subsequent assignments are made by
choosing tasks randomly from the group of available tasks. This process of random
selection and assignment of tasks to existing / new stations continues until all task
assignments are completed. The number of stations required for each of the N sample
solutions is determined. The least value amongst these is chosen as the performance
index of that region. Similarly, the performance indices of other regions are obtained.
The values of the performance indices of all these regions are compared and the
region with the least value is chosen as the next most promising region as mentioned

earlier.

There are a several ways in which the number of samples N for a region can be

determined. For the purpose of this study, Rinott’s two-stage ranking and selection

Page 14 of 30

Nested Partitions Method for U-Line Balancing

procedure [8] has been used. In this method, initially, a few random samples
(complete solutions) are considered from the region ny. The number of these initial
samples can be chosen randomly. Then the variance S is computed for these samples.
Using the variance value and a few other parameters, the actual number of samples
required for the region N is determined. If the actual number exceeds the initial
number of samples, then a few more samples (equal to the difference) are taken from

the region. The number N is computed as follows:
h2S*
N= max{n0 g
e
Where ¢ is the indifference zone (The amount by which the difference between the
values of two solutions in a region is considered insignificant); and % is a constant

~ that is determined by 7y and the minimum probability P of correct selection. For the

purpose of this study, the following table of constants was used (Note that £ is the

number of regions for an iteration) [11].

2.283
2.583 2.514 3.101 3.003
2.747 2.669 3.258 3.150
2.870 2.785 3.377 3.260
2.969 2.878 3.472 3.349
3.051 2.954 3.551 3.422
3.121 3.019 3.619 3.484
3.182 3.182 3.679 3.539

Tablel: Values of constant 4

Coming back to the illustration, we have two regions viz. region J associated with
task / and region 2 associated with task 4. Using the sampling procedure described

above, we determine the performance indices of the two regions. The region having a

Page 15 of 30

Nested Partitions Method for U-Line Balancing

better performance index (lower in the case of this study) is selected. Assume that the
performance index of region / is lower than that of region 2. Region 7 thus becomes
the most promising region. All the other regions (region 2 in this case) become a part
of the neighboring region. The task associated with region / i.e. task / is assigned to

a new station ! since there are no stations in the beginning.

The most promising region i.e. region / is now partitioned. The number of regions is
equal to the number of tasks that have become available for assignment (since the
preceding / succeeding task/s have been assigned). Having assigned task / to station
1, tasks 2, 3 and 4 are available for subsequent assignments. Thus the number of
regions under the most promising region is 3 as shown below. However, the total

number of regions at this point in time also include the neighboring region /

associated with task 4. Thus, we have 4 regions for the second iteration.

region 2
(Neighboring Region }

region 3 - region 4 region §

Figure8: Regions to be considered for the second iteration

For each of these 4 regions, we compute the values of their respective performance
indices and compare these. Assume that region 4 (task 3 followed by task /) has the
least value of the performance index. Thus this region becomes the next most
promising region and the task associated with this region (task 3) is also assigned to a
station. Since the available time for station 7 is 10 (which is equal to the time for task

3), it is assigned to station /.

Page 16 0of 30

Nested Partitions Method for U-Line Balancing

For the next iteration, region 4 is partitioned into its sub-regions. The tasks associated
with these sub-regions are 2 and 3 (since these tasks have all their predecessors /
successors assigned to stations). The region 3, region 5 and region 2 combined
together form the new neighboring region. This process continues until there are no
more tasks available for assignment to stations. This will result in a complete solution
consisting of all the tasks assigned to some or the other station. During the execution
of this method, if the neighboring region is found to have a better (lower)
performance index, the algorithm backtracks to the previous most promising region
and the last assigned task is un-assigned from its station. If the station does not have

any more assigned tasks left, the station is removed from the solution as well.

Page 17 0of 30

Nested Partitions Method for U-Line Balancing

3. Test results and Analysis

An experiment was conducted to compare the Nested Partitions method and the

Branch & Bound method for the UALBP. In another experiment, the results obtained

for different input parameters for the Nested Partitions method were compared for the

UALBP. The objective function for the two algorithms was determining the number

of stations required for a given problem for a given cycle time. In order to get fair

comparison, both the algorithms were coded using C# language in Microsoft NET 1.1

framework. In both the cases, the same method was implemented for storing

precedence relationships. All the tests were performed on an Intel Pentium 4

processor running on Microsoft Windows XP operating system with 512 MB RAM.

For the purpose of conducting these tests, the following data sets were used:

o Talbot data set (Talbot, 1986) comprising of 64 instances with number of tasks
ranging from 8 to 111.

s Hoffmann data set (Hoffmann, (1990, 1992)) comprising of 50 instances with
number of tasks ranging from 30 to 111

¢ Scholl data set (Scholl, 1993) comprising of 168 instances with number of tasks
ranging from 25 to 297

Details of the combined data sets are given below (comp indicates if the dataset was

used in comparison of Nested Partitions and Branch & Bound}):

Page 18 of 30

Nested Partitions Method for U-Line Balancing

Arcusl 83 233 3691 75707 | 59.09 {1584 |0.73 0.73
Arcus?2 111 10 5689 150399 | 40.38 | 568.90 | 0.63 0.63
Barthold2 | 148 1 83 4234 2580 {83.00 |0.74 0.72
Bowman |8 3 17 75 75.00 |5.67 0.88 0.80
(comp)

Buxey 29 1 25 324 50.74 | 25.00 |0.74 0.78
Gunther |35 1 40 483 59.50 |[40.00 |[0.78 0.76
Hahn 53 40 1775 14026 | 83.82 |44.38 |0.63 0.63
Jackson 11 1 7 46 58.18 | 7.00 0.77 0.77
(comp)

Jaeschke |9 1 6 37 83.33 6.00 0.73 0.73
(comp)

Kilbridge | 45 3 55 552 44,55 | 1833 |0.67 0.69
Lutzl 32 100 1400 14140 |83.47 |14.00 |0.76 0.82
Lutz2 89 1 10 485 77.55 [10.00 |[0.75 0.75
Lutz3 89 1 74 1644 77.55 | 74.00 |0.75 0.75
Mansoor | 11 2 45 185 60.00 |22.50 |0.79 0.91
(comp)

Mertens | 7 1 6 29 5238 |6.00 1.00 0.78
(comp)

Mitchell | 21 1 13 105 7095 | 13.00 |0.74 0.70
Roszieg |25 1 13 125 71.67 |13.00 |0.74 0.69
Wee-Mag | 75 2 27 1499 22.67 |13.50 |[0.85 0.62

Table2: Input task data sets and their measures

The following measures were calculated for the data sets:
o Number of tasks (n)

e Minimum task time (Ty,)

Page 19 of 30

Nested Partitions Method for U-Line Balancing

¢ Maximum task time (Tmax)

e Sum of tasks times (Tsum)

® Order strength (OV) = number of all precedence relations / {n * (n-1))
e Task time variability ratio (TV) = Tmax / Tmin

* Degree of divergence of precedence graph (DIV)

¢ Degree of convergence of precedence graph (CONV)

For executing the Branch and Bound algorithm, cycle time ¢ was used as the input
parameter. For executing Nested Partitions method, cycle time ¢, indifference zone e
initial number of samples for each iteration #y and the minimum probability of correct
selection P were used as the input parameters.

The following output parameters were measured for the two heuristics:

s Number of stations (N;)

¢ Computing time (CT) in milliseconds

* Balance Efficiency (E)

* Percentage relative deviation from optimality (R %)

5.1 Test results

The ULINO algorithm was run against the datasets for obtaining the optimum number
of stations N". Table 3 summarizes the comparative results obtained by running the
two algorithms on the datasets mentioned in the table (i.e. results of experiment 1).
Table 4 summarizes the comparative results obtained by running the Nested Partitions

method for different sets of input parameters (i.e. results of experiment 2).

Page 20 of 30

Nested Partitions Method for U-Line Balancing

Bowman | 75 | 20| 4| 313| 4| 938] 297| 4| 94| 0] 1096] 0] 006] o0
71 71 11406 7| 939| 641| 8| 88| 7| 1095] 05| 599| 7
0] 5| 7813] 5| 921 62| 5| 92| 0| 2523 0 o] o
Jackson | 46 | 13| 4| 7031| 4| %85| 547| 4| 8| 0] 1047 0] 015] O
4| 4] 1250| 4| s21| 578| 4| 82| 0| 998| 0| 003] 0
2| 3| 1750] 3| 73| 63| 3| 73] 0| 1035| 0 00
| 3 | 6| 8] 8| 8| 7| 46| 8| 77| 0] 10371] 0| 003] o
18] 3| 781| 3| 685| 313| 3] 60| 0| 1211] o] 015] o0
43| 4| 3438| 4| 94| 563| 4] 96| o] 1432] o] 0iz| o
Mansoor | 185 | 62| 3| 2344 | 3| 995| 531| 4| 77| 30| 1035] 03| 751| 99
oa | 2| 65| 3| 984 469| 2| 98| 0| 1208| o] 012| o
6] 6] 469 6| 806| 34| 6| 81| 0| 1051] 0| 01z] O
71 5| 313| 5| 829 155| 5| & 0| 38078] 0] 003| 0
o | e [8] 5| #S[5| 25| | S| B 0] 14ad o 015] o
0] 3] 313] 3| 97| 1271 3| 97| 0| 32765| 0| 009] 0
5] 2| 156] 2| 967] 203| 2| 97| 0| 1407| 0| 009] 0
8] 2| 313| 2| 806| 203| 2| 81| 0| 1003| 0| 01z] 0

Table3: Comparative results for the two algorithms

Page 21 of 30

Nested Partitions Method for U-Line Balancing

0 | 66| 6 | clieoy | 11 | 188 | o1 | e9sozel 0 | 646 | 6 | sisiees | 0 | 646 | 6 | szisgel | 6 | L90L1

L | vss | st | siesszo | L | 1s8 | s1 | rsgssel 0 | w6 | vl | Sicvies | 0 | v¥6 | ¥1 | 90viL0T | ¥ | 8LENN

w1 | sz | 91 | eovover | L | £€6 | o1 | 1szsciz | vi | <8 | o1 | vwezoes | v | $18 | 91 | SU8ISIT | 1 | evLol

9 | L6 | 91 | saizvey | €1 | €88 | LI | £9069% 9 16 | 91 | sistize | €1 | zss | 41 | evelent | st | czoor | ET
¢ | ves | 61 | ciseore | < | 568 | 61 | 6ILIEIE s | s68 | 61 | cicooes | < | <68 | 61 | coovser | &1 | Lvsg

v | ¥ | 1€ | 6ovs09y | 11 | 128 | ot | swmoewiz | 11 | Tig | o5 | osiszie | 11 | 148 | of | ssigper | iz | ssis

vI | ¢28 | 8 | 69v0ps | ¥1 | su8s | 8 sev89z | #1 | si8 | 8 0sLvs | #1 | o8 | 8 | e1LiLz | L | 91801

0 | sv6 | 6 | 69b0ss 0 |svs| 6 1'5020€ 0 | sv6 | 6 | o1eiss | 0 | sv6 | 6 | vesciz | 6 | 8688

0 | 06 | o1 | ¢isers 0 | 06 | 01 | ez 0 06 | 01 | ©9siss | o | 06 | o1 | vsioiz | ot | zivs

0 | 606 | 11 | weees 0 | 606 | 11 | wmevsez 0 | 606 | 11 | e1zees | 0 | 606 | 11 | %%9piz | 11 | 145L | ysnosy
0 | zes | o | seesss 0 | 726 | 21 | vessor 0 | zze | @ 0sLgs 0 | zze | @1 | vvseor | 7l | awse

L | vee | v1 | szosss L | vee | w1 1'€S6L2 L | vze | #1 | weesvs | L | vze | vl | siso | €1 | esss

0 | Lt6 | o1 | swizos 9 | zss | L1 | ve019€ 9 | zss | L1 | stz 9 | 788 | L1 | oicesz | of | swos

0o L] v | suor 0 | L6 ¥ 1'828 0 | ti6 | ¥ <1891 0 | L6 | ¥ 6126 | b 3

0 |00 | s | tesel 0t | €58 | 9 6126 0 w1 | s 1'8L51 0 | o1 | ¢ <8 | ¢ <z

vl | 898 | 8 cL81 vl | 898 | 8 9068 v1 | 398 | 8 35651 | 1 | 898 | 8 £906 | L 31| Soizsoy
0 | Li6| 8 | &9l 71 | 598 | 6 6126 0 | 16 | 8 181 0 | Lis | 8 6126 | 8 o

1 | c68 | 01 | sevee 1L | c68 | o1 653 11 | c68 | o1 0681 11 | £68 | o1 | ostol | 6 ¥l

0 | e8| ¢ <79 0 | Les | ¢ £'87¢ 0 | Les | ¢) o | t68 | ¢ gEvE | € 6¢

o oot | ¢ 1'3L8 0 | o001 | ¢ c7ie 0 001 | ¢ 7’959 o | oo1 | ¢ 6967 | € ot

0o |gos| s £959 0 | %8| ¢ 1'82¢ 0o | w08 | ¢ 7959 0o | s08 | ¢ gere | o7

0 |01 | ¢ 609 0o |01 ¢ gEbE 0 001 g <79 o | oo1 | ¢ vese | ¢ iz | PRI
0 | s3] 8 cL89 0o | s8] 3 1'sze 0o | sus | 8 1'E0L 0 | <8 | 8 | resser | 8 51

0 | ge6 | ¢ 5795 71 | te8 | 6 839 0 | %t | 8 <79 71 | £88 | 6 BE ¥l

0 |90]| ¢ £1e 0 |vo0s| ¢ 9ST 0 | vos | ¢ £t 0 | 908 | ¢ 69% z 81

0 | 9| ¢ £1g 0 | L] ¢ 9T 0 | 96 | ¢ £lg 0 |29 | ¢ 79 z 3

0 | 496 | ¢ €1t 0 | 29 | ¢ £1e 0 | L9 | ¢ 69% 0 | £96 | £ | veolr | € TN
0 | sz | ¢ 9'0p1 0 | s | ¢ oI 0 | sz | ¢ 6% 0 | sz | s) S 3

0 | 628 | s 79 0 |6 s £1g 0 | 628 | ¢ <79 0o | 623 | 5 | 69z | ¢ L

0 | 908 | 9 69 0 |908| 9 £ig 0 | 908 | 9 1'8L 0o | 908 | o 697 9 9

¢ | ¥86 | ¢ 2'c6 0 | v86 | ¢ 69% 0 | vse | ¢ 1'3L 0 | vss | ¢) z v6

% | 90l | ¥ 8'E6 € lov | ¥ 579 € | ov. | ¢ 3'€6 € | 9vL | b I'8L ¢ 79 | sooswep
0 | ¥96 | ¥ £€6 0 |v9s| v 79 0 | v9%6 | ¥ <79 0o | v96 | ¥ T'¢6 y 8%
MG 59 0 s | ¢ £1g 0 | s%9 | ¢ <79 0 | 5891 ¢ <79 £ 81

o | L | 8 579 0 | | s 69p 0 LL 8 <79 0o | 1| s $79 g 9 SHYosaRt
0 | e | ¢ 2'c6 0 | & | ¢ 69 0 EL £ 601 0 | & | ¢ 1'sL £ 1z

0 |1]| ¥ 601 0 | 18| ¥ 69 0 1zg | ¥ 601 o | 18 | ¥ 1'8L b vl

0 | 88| ¥ €6 0 |ses| ¥ &'or 0 | <38 | ¥ $¢6 0 | cs8 | ¥ 1°82 v €1 | uospoer
0o | w | s v601 0o | % | ¢ 79 0 z6 G 601 o | % | ¢ 901 c o1

0 | §%6] ¢ sz v | 128 | 8 <79 0 | s | ¢ V601 b1 | 128 | ® 3'¢6 i} L

0 | 36| ¥ 597 0 | st | v g 0 | 8% | ¥ 579 0 | 86| ¥ 69% ¥ 07 | wewmog

Results for the Nested Partitions methoed for different input parameters

Tabled

Page 22 of 30

Nested Partitions Method for U-Line Balancing

5.2 Analysis of results

Table 3 shows that the quality of the solution obtained by applying Nested Partitions
method is almost same as that obtained by applying the Branch and Bound method
(which has provided optimum solution in all the test cases). Computation Time
comparisons show that the Nested Partitions method is a lot faster than the Branch
and Bound method, barring a few cases for relatively smaller problems. For bigger
problems, the Branch and Bound method could not complete the execution for a
sufficiently long period of time (in some cases, results were not obtained for as long
as 24 hours after which the execution was stopped.) For the same problems, the
Nested Partitions method generated good solutions in a very short amount of time.
The influence of the various input parameters on the quality of the solutions and

computation times have been summarized in the following graphs.

5.2.1 Graphical comparison of Branch & Bound and Nested Partitions method

Figures 9, 10 and 11 compare the Branch & Bound method and the Nested Partitions
method.

2000
1800
1600
1400
1200
1000
300
600
400
200

—&— Branch & Bound
» - Nested Partitions

Computation Time (CT)

7 10 13 14 21
Cycle Time

Figure9: Influence of cycle fime on computation time for Jackson’s data set

Page 23 of 30

Nested Partitions Method for U-Line Balancing

ey

=

B : —@— Branch & Bound
R 4 Nested Partitions

T

Computation Time {CT)

No. of Tasks

Figurel0: Influence of No. of tasks on computation time

In the graph above, results for only a few instances of smaller data sets have been
plotted. Concrete results for larger data sets for Branch & Bound method could not be
obtained as the computation time very well exceeded the computation time for Nested

Partitions method for the same problems (thereby outperforming the Branch & Bound
method).

100
80 4
60
40
20

B Branch & Bound
O Nested Partitions

Balance Effeciency {E}

No. of Tasks

Figurell: Influence of No. of tasks on Balance Efficiency

The balance efficiency for both the algorithms is same; the reason being that the
solutions obtained for both these algorithms are almost same and are almost always

optimal for smaller data sets.

Page 24 of 30

Nested Partitions Method for U-Line Balancing

5.2.2 Graphical comparison of Nested Partitions method for different sets of

input parameters
60000
5 50000
£ 40000 —4—P*=0.90, N0 =20, 6 = 1
[=
—f—P*=0.90, N0 = 40, e =
5 30000 0.90,NO =40, e =1
E wenis PR 0,95, NO = 20, 8 =1
5 20000 —¢—P*=0.95, N0 = 40, 0 = 1
E
S 10000
0

5853 6842 7571 8412 8898 10816
Cycle Time

. Figurel2: Influence of Cycle Time on Computation time for Arcusl data set

As is evident from the graph above, the computation time remains more or less
constant even if the cycle time varies for the four sets of input parameters. It is more

influenced by the number of tasks as is shown below.

1800
1600
1400
1200
1000
800
600
400
200

—4—P*=0.90,N0=20,e=1
~@—P*=0.90,N0=40,e=1

~P*=0.95N0=20,e=1
—%—P*=0.95N0=40,e=1

Computation Time (CT)

8 11 21 25
No. of Tasks

Figurel3: Influence of No. of tasks on Computation time

The reason behind this is that as the number of tasks increases, the time taken to
generate the random samples for each region also increases. This is due to the fact

that a random sample is a solution in itself which requires assignment of tasks to

Page 25 of 30

Nested Partitions Method for U-Line Balancing

various stations. The time taken to assign tasks to stations is directly proportional to
the number of tasks. Thus, if the number of tasks increases, the time taken to generate

random samples for the different regions also increases.

BP*=0.90,N0=20,e=1
BP*=0.90,N0=40,e=1
OpP*=0.95N0=20,e=1
OP*=0.95 N0=40,e =1

Balance Efficiency (E)

8 11 a2 25 B3 111
No. of Tasks

Figurel4: Influence of No. of tasks on Balance Efficiency

The balance efficiencies are almost always same for all the four sets of parameters
meaning that the solutions in ali 4 cases are very close. The probable reason for this
could be that we are considering a very high initial number of random samples in the

iterations (more than what is actually required). The following data reveals this trend.

095 | 5048 1 2 20 0.2631 2.453 2 8

Arcusl

0.95 | 5048 1 2 40 0.9743 2.386 6 24

Page 26 of 30

Nested Partitions Method for U-Line Balancing

Arcus2

0.90 | 10027 1 2 20 0.9473 1.896 4

16

Arcus2

0.90 | 10027 1 2 40 1.3846 1.852 5

20

.Arcus2

0.95 | 10027 1 2 20 1.2631 2453 - 8

32

Arcus?2

0.95 { 10027 1 2 40 0.9743 2.386 6

24

J acksoﬁ B

Jackson

0.90 7 1 2 40 0.5897 1.852 3

12

Jackson

095 | 7 1 2 20 0.4736 2.453 3

Jackson

0.95 7 1 2 40 0.6153 2.386 4

16

FableS: No. of samples required for various regions

In many cases, it was also observed that for a given data set, if only the initial number
of samples was varied, the quality of the solution improved marginally. The reason
behind this is that the actual number of samples required (for a given indifference
zone) was found out to be far less than the initial number of samples in each case (20
and 40). Hence, in both these cases, there was no need to consider any additional

samples. We know that larger is the number of random samples, lesser is the

Page 27 of 30

Nested Partitions Method for U-Line Balancing

probability of getting a poorer solution. Hence, we end up getting a better solution in

some test cases when the initial sample size is 40 as.compared to 20.

16 Tz
14 £
12
10

EP*=0.90,N0=20,e=1
BP*=0.90, N0 =40,e=1
OP*=0.95 N0=20,e=1
OP*=0.95 N0 =40,e=1

% Deviation from Optimality (R)

D N S

5048 5853 6842 7571 8412 8898 10816
Cycle Time

Figurel5: Influence of Cycle time on % Deviation from optimality

EIP*=0.90, N0 =20,e=1
BP*=0.90,N0=40,e=1
OP*=0095N0=20,e=1
OP*=0.95 N0=40,e=1

% Deviation from Optimality (R)

No. of Tasks

Figurel6: Influence of No. of tasks on % Deviation from optimality

As is evident from the graph above, for smaller data sets, the solutions are almost
always near optimal. However, for larger data sets, the solutions start deviating from

the optimal value (although, the deviation is not very large).

Page 28 of 30

Nested Partitions Method for U-Line Balancing

6. Conclusions and further research

In this study, we applied the Nested Partitions method to a U-line balancing problem
and conducted experiments to evaluate the application. From the results, it is quite
evident that the Nested Partitions method provided near optimal solutions (optimal in
some cases). Besides, the execution time is quite short as compared to the Branch and
Bound algorithm. However, for larger data sets, the algorithm took significantly
longer times for execution. One of the reasons could be the way in which the random
samples are generated. In the present study, a random sample is a solution in itself
which requires assignment of tasks to various stations. The time taken to assign tasks
to stations is directly proportional to the number of tasks. Thus, if fhe number of tasks
increases, the time taken to generate random samples for the different regions also

increases.

The performance index for the Nested Partitions method in the present study was the
number of stations in the random solutions {samples) generated. The total idle time
for the samples can be used as another performance index. ULINO method is known
to have used a combination of bounds to come up with good solutions. This approach
of combining different performance indices can be used to evaluate the random

samples and obtain even better solutions.

Here, we used deterministic time values for the tasks. In industries where majority of
tasks are performed manually, the stochastic version of the problem could be of vital

importance.

Experimenting with different objective functions (No. of stations was used in this
study) could be of some significance to some industries where in the cost associated
with creation of a new station is not the same. For such industries, the results obtained
by using the present approach will not be of much value. Labor costs, task
incompletion costs or a combination of those can be effectively used as alternate

objective functions.

Page 29 of 30

Nested Partitions Method for U-Line Balancing

10.

11.

Bibliography

L. Shi and S. Olafsson, May-June 2000, Nested Partitions Method for Global Optimization,
Operations Research, Volume 48, No. 3, 390-407

E. Erel, I. Sabuncuoglu and H. Sekerci, April 2005. Stochastic Assembly Line Balancing using
Beam Search, International Journal of Production Research, Volume 43, No. 7, 1411-1426

A. Scholl and R. Klein, Fall 1997. SALOME: A Bidirectional Branch-and-Bound Procedure for
Assembly Line Balancing, INFORMS Journal on Computing, Volume 9, No.4, 319-334

A. Scholl and R. Klein, 1999. ULINO: Optimally Balancing U-shaped JIT Assembly Lines,
International Journal of Production Research, Volume 37, No. 4, 721-736

R, Johnson, February 1998. Optimally Balancing Large Assembly Lines with “Fable’,
Management Science, Volume 34, No. 2, 240-253

T. Hoffmann, January 1992. Eureka: A Hybrid System for Assembly Line Balancing,
Management Science, Volume 38, No. 1, 39-47

M. Pinedo and X. Chao, 1999. Operations Scheduling with Applications in Manufacturing and
Services, Irwin/McGraw-Hill, International Editions 1999

S. Olafsson and N. Gopinath, 2000. Optimal Selection Probability in the Two-Stage Nested
Partitions Method for Simulation-Based Optimization, Proceedings of the 2000 Winter Simulation
Conference.

Y. Rinott, 1978. On two-stage selection procedures and related probability-in-equalities,
Communications in Statistics, A7: 799-811

S. Olafsson and L. Shi, November 1998. A method for scheduling in parallel manufacturing
systems with flexible resources, IIE Transactions 2000, Volume 32, No. 135-146.

A, Law and W. Kelton, Simulation Modeling and Analysis, Third edition, 2000. McGraw-Hill
Publications, 576-577

Page 30 of 30

