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Objectives 
The purpose of this project was to develop a fundamental understanding of the interaction 
of an ultrasonic wave with complex media, with specific emphases on recrystallization 
and sintering of metals. A combined analytical, numerical, and experimental research 
program was implemented. Theoretical models of elastic wave propagation through these 
complex materials were developed using stochastic wave field techniques. The numerical 
simulations focused on finite element wave propagation solutions through complex 
media. The experimental efforts were focused on corroboration of the models developed 
and on the development of new experimental techniques. The analytical and numerical 
research allows the experimental results to be interpreted quantitatively. 
 
Alteration in Collaborative Arrangement 
In fall 2002, the Ames Lab partner, Dr. James C. Foley, announced that he was leaving 
for another position at Los Alamos National Laboratory. Dr. R. Bruce Thompson has 
served as the primary contact for this collaboration since Dr. Foley departed. 
 
Accomplishments (Recrystallization) 
Analytical Modeling. Expressions for the ultrasonic attenuation in media with arbitrary 
texture have been developed using stochastic wave propagation theory. Initial attempts at 
deriving simple expressions for the attenuation were unsuccessful. Therefore, a modified 
technique was developed that relies slightly more on numerical calculations. The method 
is based on a generalized function of a single scalar variable σ that characterizes the state 
of texture. In this case the weighting function for the individual grains is given by 
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with θ as the grain orientation angle. Thus, when σ → 0 all grains are aligned and the 
material is transversely isotropic at the macroscale. As σ → ∞, all grains are randomly 
oriented and the material is isotropic at the macroscale.  
 
In terms of attenuation, the covariance of the microstructure is the primary quantity 
needed for the calculation of attenuation. It is defined by 
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and will be a function of σ. The quantities needed in this expression are defined by 
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in which both Eqs. (2) and (3) include the grain orientation distribution function F such 
that <C> and <CC> are dependent on σ. Example results using Eq. (2) are shown in Fig. 
1 for both the average elastic properties as well as quasilongitudinal slowness surfaces in 
terms of σ. The transition from transversely isotropy to complete isotropy is captured well 
using the grain orientation distribution function. Example results for attenuation are 
shown in Fig. 2. Again, the transition from transverse isotropy to complete isotropy is 
shown. Of particular note is the peak observed in the SH attenuation when σ is about 0.5. 
Such information may be useful for process monitoring. 
 

Figure 1. Example results for the average elastic properties of a material modeled using the 
grain orientation weighting function, Eq. (1). In (a), the average elastic moduli as calculated 

from Eq. (2) are shown as a function of σ. It is clear that for small σ, the material is 
transversely isotropic, but is isotropic for large σ. In (b), the slowness surface for the 

quasilongitudinal wave is shown for three values of σ. In this case, the wavespeed anisotropy 
is shown such that an isotropic material has a circular slowness surface. 
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Figure 2. Example attenuation results based on the expressions in Eqs. (2) and (3) using the 
grain orientation distribution function F. In (a), the shear horizontal attenuation is shown as 

a function of σ. When σ is small, all grains are perfectly aligned such that the material 
behaves as a single crystal with no scattering attenuation. Large σ corresponds to complete 
isotropy with attenuation uniform with direction. In (b) the quasilongitudinal attenuation is 

shown as a function of direction for several values of σ. 

(a) (b)

 
Progress was also made in the study of multiple scattering in slab geometries. These 
results have applications associated with heterogeneous bonding and interface layers. 
Two example results are shown in Fig. 3. The layer is insonified by a plane longitudinal 
wave. One question in the multiple scattering regime is associated with the applicability 
of the diffusion limit in such geometries. For elastic waves, the diffusion limit implies 
that the longitudinal and transverse energies EL and ET, respectively, are equipartitioned. 
The energies ultimately achieve the relation , where LT EKE 32= TL ccK /=  is the wave 
speed ratio. Results associated with equipartitioning are shown in Fig. 3 for (a) steady-
state and (b) time-dependent cases. In 3(a), the ratio of ( )LT EKE 32/  is plotted as a 
function of depth in the layer τ for several layer thickness value H. Thus, a value of unity 
for this ratio indicates complete equipartitioning. It is clear for the thickest layer H = 100 
that complete equipartitioning occurs for depths of τ = 40 – 90. However, near the 
boundaries, there is always an excess of longitudinal energy relative to the diffusion 
limit. It is clear that the boundary conditions dictate this result. Also, it is clear that for 
layers smaller than H = 40, that complete equipartitioning does not occur. The 
implications for models based on a diffusion limit are clear. In 3(b), the ratio transverse 
to longitudinal energy is shown as a function of time for a layer with H = 50 at a position 
τ = 50. Here it is also clear that the energy does not partition according to the diffusion 
limit, even at late times, although a constant ratio of transverse to longitudinal energy is 
achieved. 
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Figure 3. Multiple scattering results for a heterogeneous layer of thickness H. The equipartitioning 
of longitudinal and transverse energy in steady state is examined in (a) as a function of depth τ and 
layer thickness H. In (b), the time domain equipartitioning is examined for H = 50 at a position τ = 

50. Both results indicate that the diffusion limit may not be fully achieved. 

(a) (b)

 
 
The applicability of the diffusion equation to model the multiple scattering of elastic 
waves in heterogeneous layers is examined in Fig. 4. In this case, the solution to a one-
dimensional diffusion equation is used to fit to the complete multiple scattering result. 
Examples for two layers H = 20 and 50 are shown. The fit for H = 20 is clearly not as 
adequate as the fit for H = 50. However, in both cases the best fit was achieved for values 
of diffusivity and dissipation that were very different from the actual values of the 
medium. The use of a diffusion model for these systems is clearly not well understood. 
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Figure 4. The use of a one-dimensional diffusion equation to fit multiple scattering solutions 
is examined for two layers (a) H = 20 and (b) 50. For (a), the fit is not very good for all times. 
For (b), the fit is much better. However, the fit parameters of diffusivity and dissipation do 

not match with the actual values of the layer. More research is needed to completely 
understand the diffusion limit of elastic waves.   
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Numerical Modeling. Numerical models of the elastic wave propagation in 
polycrystalline media were developed by MS student G. Ghoshal as part of his MS thesis. 
The first step in this process was the creation of Voronoi crystals with arbitrary 
elongation and orientation. Efficient algorithms were developed within Matlab using the 
method of virtual nuclei (MVN). Secondly, these numerical models were coupled with a 
finite element model (FEM). Here, a commercial code (ABAQUS-Explicit) is used. The 
FEM mesh, including nodal position, is overlaid on the Voronoi model and loaded into 
ABAQUS. An example domain for the scattering calculations is shown in Fig. 5. The 
Voronoi polycrystal is first determined, followed by the FEM discretization. The 
calculations in ABAQUS are then done. An example result of the full displacement full 
from ABAQUS is shown in Fig. 6 at three different time steps. The wave is excited at the 
top of the sample, in this case normal to the sample. Infinite elements at the edges of the 
sample allow the energy to leave the domain without returning. Time domain traces at the 
top and bottom of the specimen are used for calculating the attenuation. Examples of the 
multiple reflections at these locations are shown in Fig. 7. Note that the scattering from 
the microstructure is diminishing the wave amplitude as it travels back and forth across 
the specimen. These waveforms are used to determine the attenuation, such as the 
example shown in Fig. 8. A summary of attenuation results is shown in Fig. 9 presented 
in dimensionless form for a weak scattering material (aluminum) and a strong scattering 
material (copper). In both cases, the numerical results are compared with theory using a 
single correlation length. In general, the comparison is quite good for both cases. 
However, there are deviations from the theory particularly for the high-frequency results 
(small λ) for copper. These results suggest that a more complex theory is needed such 
that the correlation length has a frequency dependence. The development of this 
generalized numerical code was a major development of this grant. The code is now 
being used to examine attenuation and backscatter in textured materials and those with 
elongated grains. Results created from this code will provide a strong basis for new 
attenuation models under development. 

J. A. Turner 5 DOE-EPSCoR Final Report 2005 
 



 
 

 
 

Figure 5. Numerical model for the elastic wave 
scattering calculations. The domain is first divided 

into Voronoi polycrystals. These are then discretized 
using finite elements. The element size is very small 

relative to the grain size. 

 
 

Figure 6. Example results of the full field from a finite element simulation of 
an elastic wave propagating in polycrystalline aluminum. At these three time 
steps, the wave packet has nearly propagated from the top the bottom of the 

domain. This calculation was done with a 14 MHz tone burst applied 
uniformly at the top surface with loading normal to the surface. Average grain 

size in the domain is 0.64 mm for this example. 
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Figure 8. Example attenuation result for copper using 
a 5 MHz input frequency. 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 7. Example result of successive 
multiple reflections from the frontwall (a-

d) and backwall (e-f) of the domain. 
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Figure 9. Comparison of numerical and theoretical attenuation for a weak-scattering material 
(aluminum) and a strong-scattering material (copper) over a wide range of wavelengths relative to 
grain diameter. The general trends are in agreement, but the locations of deviation warrant further 

investigation. 

Experiments. The first set of specimens for recrystallization experiments were made in 
the summer of 2002 in collaboration with Dr. James C. Foley at Ames Laboratory. A 
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Figure 11. Example experimental result of 
ultrasonic attenuation (5 MHz center frequency) 
measured on a sample of pure aluminum that has 
been rolled. Propagation was normal to rolling. 

Figure 10. Schematic of the specimens cut 
from a rolled plate of pure aluminum. 

 

1 2 4 3 

Rolling direction 

block of pure aluminum was cold-worked to achieve grains that are equiaxed, uniform, 
and of an appropriate size. This block was then rolled to a thickness about 75% of its 
original thickness. The rolling introduces grain elongation and material texture into the 
sample. From the rolled plate, several specimens were cut for the ultrasonic attenuation 
measurements (shown schematically in Fig. 10). One specimen (1) will be used for XRD 
spectroscopy from which precise microstructural information may be extracted (currently 
these measurements are not yet complete due to equipment problems). Specimens 2-4 are 
chosen with specific orientations (30°, 45°, and 0°, respectively) relative to the rolling 

direction such that the angular dependence of the attenuation may be studied. Initial 
longitudinal and shear wave attenuation measurements were made at Ames Lab by PhD 
student L. Yang. An example longitudinal attenuation measurement for the three samples 
is shown in Fig. 11. The propagation direction for these results was normal to the rolling 
plane. At this frequency (5 MHz), the attenuation is small and is similar for the three 
samples. Additional measurements covering higher frequencies were planned, but did not 
occur due to the departure of Dr. Foley from Ames Laboratory. 
 
An additional goal of this project was for experimental expertise on ultrasonic scattering 
to be developed at UNL. Such expertise is critical for future research and for the 
infrastructure improvement of 
the state. Toward that 
ultimate goal, the 
experimental program at 
UNL resulted in the 
development of a Labview 
program for determining 
ultrasonic backscatter from 
heterogeneous specimens. A 
schematic of these types of 
experiments is shown in Fig. 
12. The transducer is 
translated spatially and time-

Fig. 12. (a) schematic experimental setup and (b) example 
measured signal acquired from 110 spatial positions. 
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domain signals are acquired a each position. The variance of the signals is the ‘ultrasonic 
backscatter’ that is related to the microstructure. Example results from the UNL system, 
compared with theory are given in Fig. 13 for two types of steel. The theoretical 
expressions use the single-crystal constants of iron and the grain size measured from the 
micrographs shown. The agreement between the theory and experiment is very good 
indicating that the experimental system was successfully developed. 
 

Figure 13. Comparison of experiment and theory of ultrasonic 
backscatter for two types of steel (a) 1080 steel and (b) 4230 steel.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Accomplishments (Sintering) 
 
Experiments: A set of specimens of sintered aluminum powder with varying degrees of 
sintering were produced by Dr. Foley in December of 2002. Two types of experiments 
are planned for these specimens. The first set will involve measurements of ultrasonic 
attenuation and backscatter. These measurements will now be repeated at UNL since the 
development of experimental expertise at UNL. 
 
The other experiments on the sintered specimens are focused on the use of the atomic 
force microscope (AFM). 
The experimental setup for 
the dynamic AFM 
experiments (also known as 
atomic force acoustic 
microscopy or AFAM) is 
shown schematically in 
Fig. 14. A commercial 
AFM (Thermomicroscopes 
Autoprobe CP) was 

AFM Split Photodiode 

Figure 14. Experimental setup for atomic force acoustic 
microscopy (AFAM) in which the resonant frequencies of the 
AFM cantilevers are used to determine and image mechanical 

stiffness. 
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modified for these experiments. A reference specimen and an unknown specimen are 
placed on a broadband ultrasonic transducer (2.25 MHz center frequency). The 
transducer is mounted on the AFM stage and is excited by the function generator. The 
output from the AFM photodiode is mixed with the driving signal in the lock-in 
amplifier. The lock-in output and the photodiode output are both used by the AFM for 
imaging. The function generator is controlled by Labview software. Once the natural 
frequencies of the AFM beam are determined, a stiffness map may be made. The sample 
is excited harmonically near the resonance while the AFM topography scan is made. The 
resulting lock-in amplifier output is proportion to the local contact stiffness. An example 
result on an aluminum sinter is shown in Fig. 15. The particles in this case were 50 μm 
spheres cold pressed and then sintered. The topography image shows little contrast except 
artifacts from polishing. The AFAM image shows a clear region of higher stiffness 
corresponding to a particle-particle interface. It is anticipated that techniques such as 
AFAM will be useful for developing a better understanding the sintering process. 
 

0 402010 µm300 402010 µm30

Topography AFAM

interface of 
particles 

0 402010 µm300 402010 µm300 402010 µm300 402010 µm30

Topography AFAM

interface of 
particles 

0 402010 µm300 402010 µm300 402010 µm30

Topography AFAM

interface of 
particles 

Figure 15. Example (AFAM) results on aluminum sinters: (a) surface topography of one sinter 
sample; (b) example AFAM scan showing stiffness variations within the sample. The particle-

particle interface is clearly observed to the the impedance contrast there. 

(a) (b)

 
 
Numerical Modeling: A numerical model of the sinters was also developed based on the 
Voronoi polycrystal model described above for the recrystallization studies. The Voronoi 
model was modified such that a thin layer of elements with different material properties 
is concentrated at the boundaries of each particle. The material properties of the boundary 
layer may differ from those of primary sinter particle. An example model is shown in Fig. 
16 where the geometric parameters D and d are defined as the particle diameter and 
interface thickness, respectively. The ultrasonic attenuation and backscatter are expected 
to depend on these two parameters. An example finite element simulation is shown in 
Fig. 17 using large density contrast. The scattering of the initial plane wave is evident in 
this strong-scattering example. 
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Figure 16. Model microstructure of 
sintered material for numerical modeling. 

 
Figure 17. Example numerical simulation 
of wave propagation through the system. 

  
With this model of the sintered material, the attenuation for several examples of geometry 
and material contrast were examined. The example shown in Fig. 17 is based on density 
contrast alone (λ, μ are uniform throughout). The density contrast may be characterized in 
terms of 

With this model of the sintered material, the attenuation for several examples of geometry 
and material contrast were examined. The example shown in Fig. 17 is based on density 
contrast alone (λ, μ are uniform throughout). The density contrast may be characterized in 
terms of ( )( )[ ]221 /ρρρ −=s , where ρ1 and ρ2 define the densities of the two constituent 
phases and ρ  is the average density. The attenuation curves shown in Fig. 18 are for a 3 
MHz incident longitudinal wave for which ρ1 is fixed and ρ2 is varied for two 
combinations of D and d.  
 

 

Figure 18. Example attenuation results from numerical simulations on two-phase 
microstructures for: (a) D = 0.45 mm, d = 0.06 mm and (b) D = 0.43 mm, d = 0.08 mm, for several 

different values of  density contrast s. The elastic properties (λ, μ) of both phases are identical. 

(a) (b) 

 
Several simulations were conducted for 3 and 5 MHz incident waves and the attenuation 
results are summarized in Fig. 19 in which attenuation is plotted versus material contrast 
s. The general trend is expected in that higher values of s lead to higher attenuation. 
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However, models that invoke a weak-scattering assumption give a linear dependence of 
attenuation on s. Thus, the results in Fig. 19 suggest that the linearity may breakdown for 
certain combinations of material contrast and wavelength to diameter ratio. These results 
warrant further investigation. 
 
 

 

Figure 19. Summary of attenuation results for several numerical simulations on two-phase 
microstructures (density contrast only) for 3 MHz (a) and 5 MHz (b) input waves for several 

values of D, d, and s. The trend with s is not always linear as predicted by theory. 

(a) (b) 

 
 
Analytical Modeling. The numerical results presented above lead to the conclusion that 
current attenuation models must be modified to account for the variations observed. 
Toward that end, spatial correlation information has been examined for the two-phase 
structures shown above. Attenuation models all have a dependence on the spatial 
correlations of the material properties. In most cases, the dependence is truncated such 
that only two-point correlation information is used, in the form of the correlation function 
R(r). The attenuation is then written as a spatial convolution of the Fourier transform of R 
and the Green’s function of the average medium. For polycrystalline materials, an 
exponential two-point correlation function ( ) LrerR /−=  is used with L as the spatial 
correlation length. Such a function was used in the examples shown above for the 
modeling recrystallization. For the model of the two-phase sinters, it is clear that a single 
correlation length will not suffice since the material has a minimum of two lengths scales 
D and d that must be included. In order for the appropriate correlation to be determined, 
numerical correlation statistics were calculated from the geometric models created (as in 
Fig. 16). Example correlation statistics are shown in Fig. 20 in the form of a histogram. In 
this case, R(r) defines the probability that two points separated by a distance r lie in the 
same phase of the material. An appropriate function to fit the numerical histogram was 
then sought. The first attempts to fit the data were based on correlation functions 
proposed by Torquato and co-workers. Two of these examples are shown in Fig. 20(a) as 
the solid curves. It is clear that the fit to the data is not very good although the basic 
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trends are captures. The fit shown in Fig. 20(b) is a newly proposed correlation function 
that fits the histogram data very well. The correlation function shown has two scales that 
are related to D and d. This correlation function will be used in attenuation models for 
comparison with the numerical simulation results. The technique used for determining the 
correlation histogram will also be applied in the future to micrographs of two-phase 
materials including sinters and concrete among others. 
 

Figure 20. Spatial correlation determined numerically for Voronoi-sinter microstructure. 
The solid curves in (a) correspond to the models from Torquato that do not match the data 

sufficiently. The solid line in (b) is a new spatial correlation proposed. 

(a) (b)

 
 
 
Summary and Future Work 
As a result of this project, several important outcomes have been achieved. These 
outcomes include the: 

• development of a generalized polycrystal model that governs the transition from 
transversely isotropic to isotropic; attenuation and backscatter may be determined 
from the model, 

• development of a generalized numerical model for polycrystalline media and 
sintered media using Voronoi polycrystals coupled with the finite element 
method, 

• development of analytical models for studying ultrasound propagation through 
sinters, 

• development of expertise at UNL for ultrasonic measurements of attenuation and 
backscatter for characterization of heterogeneous media, and 

• development of additional AFAM research on metallic sinters. 
 
The results presented here also lead to several new questions related to ultrasonic 
inspection of both the recrystallization and sintering processes. Research to be addressed 
in the future includes: 

• understanding the influence of the two-point correlation function on the 
attenuation and backscatter, 

• extraction of two-point spatial information from experimental measurements, 
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• the robustness of inversion routines associated with recrystallization of 
polycrystalline materials, 

• the onset and influence of multiple-scattering effects in elastic media, 
• the inversion of sintering parameters during processing using ultrasound, 
• studies using AFAM while particles are joining (AFAM at temperature), and 
• additional ultrasonic scattering phenomena associated with materials processing. 
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Interactions. Collaborative work with Dr. Thompson of the Ames Laboratory (AL) and 
others continued throughout the funding period of this grant. In March 2002, the PI and 
PhD student (L. Yang) visited AL to complete the general training necessary for 
conducting experiments in AL. In addition, Mr. Yang received fundamental training for 
the experiments to be conducted. He returned in summer 2002 for several days to 
complete a series of ultrasonic attenuation experiments on pure aluminum with rolling 
texture. Dr. Foley produced a set of sintered aluminum samples in December 2002 with 
varying degrees of sintering. These are being used for attenuation, backscatter, and 
AFAM measurements. The PI and students made several other trips to AL and the Center 
for NDE for discussions of the latest accomplishments and the research directions as part 
of this grant.  
 
Transitions. In conjunction with this research project, the analyses and calculations used 
for the research are being developed into web-based calculation tools as part of an on-line 
library of such tools (http://em-jaturner.unl.edu/calcs.htm). The first of these tools 
calculates a two-dimensional Voronoi polycrystal as a function of user input parameters. 
Currently, users may input the number of grains, the grain aspect ratio and grain 
orientation angle. The information is then passed to a MATLAB program that performs 
the calculations. The output is then posted in plot format in the browser frame (see 
example in Fig. 21). A new tool that calculates ultrasonic backscatter given specific input 
of material, transducer, and input wave is nearing completion. These tools will be 
continually expanded to include other research topics as the project progresses. All tools 
are included in the on-line calculation tool library.  
 

 

Figure 21.  Output of a web-based Voronoi polycrystal 
calculator developed by the PI and students (see http://em-

jaturner.unl.edu/calcs.htm for this and other tools). 
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Attenuation of ultrasonic waves in rolled metals
Liyong Yang and Joseph A. Turnera)
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Scattering of ultrasonic waves in polycrystals with texture is studied in this article. The attenuations
of the three wave modes are determined as a function of dimensionless frequency and propagation
direction, respectively, for given orientation distribution coefficients~ODCs!. The calculation is
done in the case of a statistically orthorhombic sample made up of cubic crystallites. The wave
propagation and scattering model is formulated by the Dyson equation using an anisotropic Green’s
function approach. Within the limits of the first-order smoothing approximation, the Dyson equation
is solved in the spatial Fourier transform domain. The results presented are shown to be directional
dependent, frequency dependent, and especially dependent on the texture coefficients~ODCs! for
the quasilongitudinal and two quasishear waves. The theoretical results presented may be used to
improve the understanding of the microstructure during recrystallization processes. ©2004
Acoustical Society of America.@DOI: 10.1121/1.1810236#

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35.Cg@YHB# Pages: 3319–3327
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I. INTRODUCTION

Metals and alloys are made of crystallite grains who
characteristics and arrangements can be changed by th
plication of heat processing, such as annealing. Microst
tural parameters of metals determine the macroscopic
chanical properties of a material and include the grain s
grain shape, and the orientation of the grains, or texture,
their distribution in the microstructure. Ultrasonic wav
propagating in such aggregates lose energy due to scatt
from the granular microstructure of these materials. T
scattering is often characterized by the attenuation of
medium. In general, the attenuation and wave velocity
dependent on the grain size, shape, and on the partic
orientation distributions of the grains. If the grains are ra
domly oriented such that the medium is statistically isot
pic, these propagation properties are independent of di
tion. However, the scattering attenuation and wave velo
are a function of the propagation direction if the grains ha
a preferred orientation. The preferred orientation of grains
texture, is best quantitatively described by the orientat
distribution function ~ODF! defining a probability density
function, which is usually expanded in a series of gene
ized spherical harmonics~Roe, 1965, 1966; Bunge, 1982!.
Often, most metallic materials with preferred orientation
grains display anisotropy of material properties. Therefo
knowledge of the anisotropic nature of the wave propaga
and scattering in textured materials such as attenuation
velocity is critical for use with ultrasonic nondestructiv
techniques. Such information will provide valuable insig
for modeling the microstructure of such complex materi
during processing.

The scattering of elastic waves by grains of polycryst
has received considerable attention. The most recent co

a!Author to whom correspondence should be addressed. Electronic
jaturner@unl.edu
J. Acoust. Soc. Am. 116 (6), December 2004 0001-4966/2004/116(6)/3
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butions for cubic symmetry with uniformly distributed orien
tations of grains were made by Hirsekorn~1982, 1983!,
Stanke~1984!, and Weaver~1990!. The problem of wave
propagation and scattering in the case of polycrystall
grains with an aligned@001# axis has been examined b
Ahmed and Thompson~1996! and Turner~1999!. In that
particular case, the average medium is statistically tra
versely isotropic. Ahmed and Thompson~1992, 1996! also
studied correlations defined by both equiaxed grains
grains with elongation.

During the recrystallization process of metals, such
annealing, the microstructure may contain grains having p
ferred crystallographic orientations. For rolling texture, the
are three orthogonal axes of symmetry which are defined
the rolling, transverse, and normal directions. Thus, the m
terial properties of this specific case may be assumed or
rhombic due to the feature of the preferred orientatio
Hirsekorn~1985! also was one of the first to investigate th
wave scattering in polycrystals of cubic symmetry with ro
ing texture as a function of frequency by using the pertur
tion approach. She then extended her theory to determine
directional dependence of the phase velocities and atte
tions of the three wave types under the same assump
with fiber texture~Hirsekorn, 1986!. Her discussions were
restricted to waves propagating in the direction of an axis
symmetry of the texture. The general formalism of the wav
propagating in any direction through polycrystalline met
with rolling texture, however, has not yet been reported. T
detailed wave velocities of the three wave types, inclusive
the quasilongitudinal and two quasishear waves, have b
discussed elsewhere~Sayers, 1982; Johnson, 1985; Hira
et al., 1987; Li and Thompson, 1990! under the assumption
of orthorhombic-cubic symmetry.

In this article, the more sensitive ultrasonic parame
scattering attenuation, is studied for waves propagating
any direction through such textured media. The wave pro
gation and scattering model is formulated using the Dys
il:
3319319/9/$20.00 © 2004 Acoustical Society of America
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equation studied by Frisch~1968! and Weaver~1990! which
is easily solved in the spatial Fourier transform dom
within the limits of the first-order smoothing approximatio
~FOSA! or Keller ~Karal and Keller, 1964! approximation.
The problem is studied here using the anisotropic Gree
dyadic, an approach not used previously for textured mat
als. The attenuations of the three wave types are calcul
numerically as a function of dimensionless frequency a
propagation direction, respectively, for given orientation d
tribution coefficients~ODCs! using the derived expression
The resulting attenuations are shown to be directional dep
dent, frequency dependent, and dependent on the textur
efficients~ODCs! for the quasilongitudinal and two quasi
hear waves. The theoretical results presented may be us
improve the understanding of the microstructure during
recrystallization process. In addition, the present formulat
may be used to study diffuse ultrasonic problems in
straightforward manner. Although the present model is
the case of orthorhombic-cubic symmetry, the formalism c
be easily modified to apply to other given symmetry case

In the next section, the preliminary elastodynamics
elastic wave propagation and scattering is introduced
terms of an anisotropic Green’s dyadic. The formalism of
attenuation is then developed for the anisotropic case
orthorhombic-cubic symmetry.

II. WAVE PROPAGATION AND SCATTERING MODEL

The equation of motion for the elastodynamic respo
of an infinite, linear-elastic material to deformation is giv
in terms of the Green’s dyadic by

$2d jkr] t
21]xiCi jkl ~x!]xl%Gka~x,x8;t !

5d j ad3~x2x8!d~ t !, ~1!

whered3(x2x8) is the three-dimensional spatial Delta fun
tion. The second-order Green’s dyadic,Gka(x,x8;t), defines
the response at locationx in the kth direction to a unit im-
pulse at locationx8 in the ath direction. The moduli are
considered to vary spatially and density is assumed unif
throughout. In the case of orthorhombic-cubic symmetry,
moduli C are supposed to be spatially heterogeneous
have the form Ci jkl (x)5Ci jkl

0 1dCi jkl (x). The material
properties might have global anisotropy such that the m
moduli are not necessarily isotropic. The covariance of
moduli is characterized by an eighth-rank tensor

^dCi jkl ~x!dCabgd~x8!&5J i jkl
abgdh~x2x8!. ~2!

The spatial and tensorial parts of the above covarianceJ
andh, are assumed independent. The correlation functioh
is also assumed a function of the difference between
vectors,x2x8. This assumption implies that the medium
statistically homogeneous.

The mean response,^G&, is governed by the Dyson
equation~Weaver, 1990; Frisch, 1968!

^Gia~x,x8!&5Gia
0 ~x,x8!1E E Gib

0 ~x,y!Mb j~y,z!

3^Gj a~z,x8!&d3y d3z. ~3!
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In Eq. ~3!, the quantityG0 is the bare Green’s dyadic define
as the ensemble average response of the medium wit
fluctuations, namely, the solution to Eq.~1! whendCi jkl (x)
50. The second order tensorM is the mass or self-energ
operator. The Dyson equation, Eq.~3!, is easily solved in the
Fourier transform domain under the assumption of statist
homogeneity. The assumption of statistical homogeneity
sures thatG0, M , and ^G& are functions of a single wave
vector in Fourier space. The Dyson equation is then tra
formed and solved to give the result for^G~p!& of the form

^G~p!&5@G0~p!212M̃ ~p!#21, ~4!

whereM̃ is the spatial transform of the self-energy. The se
energy M can be written as an expansion in powers
moduli fluctuations. To first order~Frisch, 1968; Karal and
Keller, 1964! M is expressed as~Weaver, 1990!

Mb j~y,z!

' K ]

]ya
dCabgd~y!

]

]yd
Ggk

0 ~y,z!
]

]zi
dCi jkl ~z!

]

]zl
L . ~5!

Such an approximation is assumed valid if the fluctuatio
dC, are not too large. The components ofM̃ are employed to
calculate the attenuation of the three wave modes. Fur
details of the scattering theory can be reviewed by the rea
in the articles of Karal and Keller~1964!, Frisch ~1968!,
Stanke and Kino~1984!, Weaver~1990!, and Turner~1999!.

The medium of oriented grains with rolling texture h
orthorhombic symmetry. When ultrasonic waves propag
in such media, the phase velocity and the associated p
ization vector are determined by the Christoffel equatio
The dispersion relations for the mean response are then g
by the solution of the Dyson equation, Eq.~4!, as

gb~p!5@gb
0~p!212mb~p!#21

5@v22p2cb
22mb~p!#21, ~6!

for each wave type,b, quasilongitudinal (qP) and two qua-
sishear (qS1 andqS2) waves. The expressions for the di
persion relations of the mean response are written

v22p2cb
22mb~p!50, ~7!

which is solved for the wave vectorp. The attenuation of
each wave type is given by the imaginary part ofp. The
explicit expressions of the attenuation can be determined
ing an approximation valid below the high-frequency ge
metric optics limit @mb(p)'mb((v/cb)p̂)# ~Stanke and
Kino, 1984; Weaver, 1990!. This approximation allows the
imaginary part ofp to be calculated directly from Eq.~7!.
Thus, the attenuations of the three wave types are calcul
as

ab~ p̂!52
1

2vcb~ p̂!
Im mbS v

cb
p̂D . ~8!

The attenuations for the three wave types, which
each defined in Eq.~8!, are finally given in the general form
~Turner, 1999!
L. Yang and J. A. Turner: Scattering in polycrystals with texture
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ab~ p̂!5
1

cb
3~ p̂! H p

4 E d2ŝ
v4

cqS1
5 ~ ŝ!

h̃S v

cb~ p̂!
p̂

2
v

cqS1~ ŝ!
ŝD

••••ûKp̂ŝv̂1

••••ûKp̂ŝv1

1
p

4 E d2ŝ
v4

cqP
5 ~ ŝ!

h̃S v

cb~ p̂!
p̂

2
v

cqP~ ŝ!
ŝDJ

••••ûKp̂ŝv̂2

••••ûKp̂ŝv̂2

1
p

4 E d2ŝ
v4

cqS2
5 ~ ŝ!

h̃S v

cb~ p̂!
p̂

2
v

cqS2~ ŝ!
ŝDJ

••••ûKp̂ŝv̂3

••••ûKp̂ŝv̂3 J , ~9!

whereK is defined as the polarization for the wave typeb ~1,
2, or 3 for wave typesqS1, qP, andqS2, respectively!. In
the above equation, the integrals are over the unit sph
which is defined by unit vectorŝ. The directionp̂ defines the
propagation direction,ŝ is the scattered direction, andû and
v̂ are defined as the polarization directions. The depende
of the vectorsû on p̂ and ofv̂ on ŝ is implicit. The argument
of h̃ is the difference between the incoming and outgo
propagation directions. The inner products on the covaria
of the moduli fluctuations are given in terms of four un
vectors. In the next section, the correlation function is spe
fied.

III. CORRELATION FUNCTION

As shown in Eq.~2!, the tensorial and spatial contribu
tions of the material covariance are assumed independ
The spatial correlations are characterized byh. Here, it is
assumed thath has an exponential form

h~r !5e2r /L. ~10!

The correlation length,L, is of the order of the grain radiu
in polycrystals. In general, a simple exponential form of th
spatial correlation function is not exact for polycrystals w
rolling texture for which there is grain elongation. For elo
gated grains, a more general spatial correlation function m
be used~Ahmed and Thompson, 1992!. The influence of this
choice of correlation function on the attenuations is left a
subject of future investigations. In Fourier transform spa
the correlation function is then given by

h̃~q!5
L3

p2~11L2q2!2
. ~11!

The forms of the attenuation given above contain
difference of two vectors, h̃(q)5h̃(@v/c1(u)#p̂
2@v/c2(u8)# ŝ) as the argument for covariance in Eq.~2!.
Now the correlation functionsh̃b2g(p̂,ŝ) are considered. If
the three nondimensional frequencies are then define
xb5vL/cb , using the expression of the spatial Four
transform of the correlation function in Eq.~11!, the func-
J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 L
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tions h̃b2g(p̂,ŝ) are then expressed in terms of the abo
dimensionless quantities as

h̃b2g~ p̂,ŝ!5
L3

p2~11xb
2~f!1xg

2~f8!22xb~f!xg~f8!p̂"ŝ!2
,

~12!

for the incoming wave typeb and outgoing wave typeg. The
inner product, p̂"ŝ5cosf cosf8 sinu sinu8
1sinf sinf8 sinu sinu81cosu cosu8, if the unit vectorsp̂
and ŝ are generally defined by p̂5x1 cosf sinu
1x2 sinf sinu1x3 cosu and ŝ5x1 cosf8 sinu8
1x2 sinf8 sinu81x3 cosu8. The anglesu, f and u8, f8 are
respectively defined as Euler angles in a general coordi
system. The form of the eighth-rank tensor,J i jkl

abgd , is dis-
cussed next for rolling texture made up of cubic crystallit

IV. COVARIANCE AND ATTENUATION

To calculate the attenuations, the relevant inner produ
on the covariance of the moduli fluctuations are requir
The covariance of the moduli fluctuations is represented
an eighth-rank tensor which is given explicitly by

J
••••ûp̂ŝv̂
••••ûp̂ŝv̂5Jabgd

i jkl ûbûkp̂ap̂l ŝi ŝdv̂gv̂ j . ~13!

For polycrystals of cubic symmetry, the eighth-rank cova
ance,J i jkl

abgd , is written as

J i jkl
abgd5^Ci jkl Cabgd&2^Ci jkl &^Cabgd&

5k2K (
n51

3

ainajnaknaln (
n51

3

aanabnagnadnL
2k2K (

n51

3

ainajnaknalnL
2K (

n51

3

aanabnagnadnL , ~14!

where the brackets,^ &, denote an ensemble average over
orientations of grains, andk5C11

0 2C12
0 22C44

0 is the single-
crystal anisotropy factor. If the polycrystal is o
orthorhombic-cubic symmetry, only certain terms are no
zero. An example term necessary for calculating the atte
ations is presented in the Appendix. Details of the other n
zero terms may be found elsewhere~Yang, 2003!. For the
second term in Eq.~14!, the results are given in the details o
other articles~Sayers, 1982; Johnson, 1985; Hiraoet al.,
1987; Li and Thompson, 1990!.

The forms of the attenuations presented in Eq.~9! re-
quire various inner products on the covariance tensor. Th
inner products have the general form ofJ

••••ûp̂ŝv̂
••••ûp̂ŝv̂ , where the

vectors p̂ and ŝ, respectively, represent the incoming a
outgoing propagation directions. The vectorsû and v̂ are
vectors defining the polarization directions of the particu
waves. While waves propagate in arbitrary directions,
polarization vectors are found by the Christoffel equatio
Substituting the correlation function, Eq.~12!, and the inner
products into Eq.~9!, the resulting dimensionless attenu
tions are given in the form
3321. Yang and J. A. Turner: Scattering in polycrystals with texture



x4cb~ p̂! J
••••û p̂ŝv̂

••••ûKp̂ŝv̂1 ~ p̂,ŝ! 1

ab~ p̂!L5

b

2r2
3H E

4p

K 1

~11xb
2~ p̂!1xqS1

2 ~ ŝ!22xb~ p̂!xqS1~ ŝ!p̂"ŝ!2 cqS1
5 ~ ŝ!

d2ŝ

1E
4p

J
••••ûKp̂ŝv̂2

••••ûKp̂ŝv̂2 ~ p̂,ŝ!

~11xb
2~ p̂!1xqP

2 ~ ŝ!22xb~ p̂!xqP~ ŝ!p̂"ŝ!2

1

cqP
5 ~ ŝ!

d2ŝ

1E
4p

J
••••ûKp̂ŝv̂3

••••ûKp̂ŝv̂3 ~ p̂,ŝ!

~11xb
2~ p̂!1xqS2

2 ~ ŝ!22xb~ p̂!xqS2~ ŝ!p̂"ŝ!2

1

cqS2
5 ~ ŝ!

d2ŝJ , ~15!
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whereK has the same definition as discussed in Eq.~9!. It
should be noted that these inner products have units ofk2. In
the long wavelength Rayleigh limit,xb!1, Eq. ~15! can be
simplified as

ab~ p̂!L/xb
45

cb~ p̂!

2r2
3H E

4p

J
••••ûKp̂ŝv̂1

••••ûKp̂ŝv̂1

cqS1
5 ~ ŝ!

d2ŝ

1E
4p

J
••••ûKp̂ŝv̂2

••••ûKp̂ŝv̂2

cqP
5 ~ ŝ!

d2ŝ1E
4p

J
••••ûKp̂ŝv̂3

••••ûKp̂ŝv̂3

cqS2
5 ~ ŝ!

d2ŝJ .

~16!

In Eq. ~16!, the dimensionless attenuation has been norm
ized by the fourth power of the dimensionless frequency
the respective wave type.

In Eqs. ~15! and ~16! the inner products,J
••••ûp̂ŝv̂
••••ûp̂ŝv̂ , do

not have simple analytical forms for arbitrary propagati
direction in this orthorhombic-cubic case. Thus, these res
must be calculated numerically. In the next section, exam
numerical results and discussions are presented.

V. NUMERICAL RESULTS AND DISCUSSIONS

Numerical results are now presented for a 70% rol
steel plate. The material constants of a single crystal and
texture coefficients of the orientation distribution functio
with respect to the generalized spherical functions are gi
by ~Bunge, 1982!

C11
0 52.3731011 Pa, C12

0 51.4131011 Pa,
~17!

C44
0 51.1631011 Pa, r57850 kg/m3,

and

c4
00521.47, c4

2050.46,

c4
4050.50, c6

0052.69,

c6
20521.20, c6

4050.46,
~18!

c6
60520.14, c8

00520.07,

c8
2050.29, c8

40520.45,

c8
60520.47, c8

80520.22.

The orientation distribution coefficients~ODCs! in
Bunge’s notationcl

mn must be converted into those in Roe
3322 J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004
l-
r

ts
le

d
he

n

notationWlmn , which are used in this discussion. In order
carry out the calculations for the attenuations, Eq.~15!, nu-
merical methods are employed. The procedure of numer
methods for calculating the wave attenuations is now
scribed.

First, using the Christoffel equation, the eigenvalu
eigenvector problem is solved for a given wave propagat
direction and scattering direction. Second, the covarianc
the moduli fluctuations is calculated by Eq.~14!. Next, using
the known covariance and eigenvectors, the inner produc
each wave type are calculated numerically. Finally,
double integration is implemented numerically by the e
tended trapezoidal method. Here, examples are present
describe important features of the wave attenuations for s
eral propagation directions. The examples are generated
ing the methods discussed above. Since the orthorhom
symmetry has three mutually orthogonal planes of symme
all calculations are made for 0°<f<90° and 0°<u<90°.

Convergence of the numerical integration was examin
first. Wave attenuations of each wave type were exami
for waves propagating in the rolling direction, that isf50°
andu590°, and at a dimensionless frequencyxqS151.0. The
results show fast convergence for each wave mode in
merical integrations using the extended trapezoidal met
~Yang, 2003!. In order to achieve a balance between e
ciency and accuracy, the number of intervals in the integ

FIG. 1. Rayleigh attenuation,aqPL/xqP
4 , as a function of propagation direc

tion for qP waves using the specified ODCs.
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tion N520 is chosen for calculating the attenuations for ea
wave mode in the results shown here.

First, the attenuations within the Rayleigh limit are ca
culated using Eq.~16!. It is known that the attenuations de
pend on the fourth power of frequency in the Rayleigh
gime. Thus, the normalized Rayleigh attenuationabL/xb

4 of
each wave mode is shown with the angular dependenc
Figs. 1–3 for various propagation directions, respectively
is observed that in this specific case the attenuations of e
wave mode are considerably dependent on the wave pr
gation direction. For waves propagating in different dire
tions, the curves of the attenuations have smoothly chan
shapes. The percent variations of theqP, qS1, and qS2
attenuations in terms of polar angleu shown in Figs. 1–3 are
about 25–40%, 20–50%, and 15%, respectively. The va
tion of theqS2 attenuations is more uniform than that of t
others.

Outside the Rayleigh regime, the attenuation results
calculated using the complete integrals, Eq.~15!. The direc-
tional dependence of the attenuation is presented first f
given dimensionless frequency,xqS151.0. Figure 4 shows

FIG. 2. Rayleigh attenuation,aqS1L/xqS1
4 , as a function of propagation di

rection forqS1 waves using the specified ODCs.

FIG. 3. Rayleigh attenuation,aqS2L/xqS2
4 , as a function of propagation di

rection forqS2 waves using the specified ODCs.
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the normalized quasilongitudinal wave (qP) attenuation,
aqPL, as a function of azimuthal directionf for various
polar anglesu. It is seen that the attenuation is dependent
the propagation direction as expected. Here, the attenua
variation with respect to polar angleu is around 15–30%.
The results for the normalized shear wave (qS1 andqS2)
attenuations are presented in Figs. 5 and 6, respectively.
directional dependence on the propagation direction for th
attenuations is also significant. The percent variation of
qS1 andqS2 attenuations in terms of polar angleu is about
10–50%. These results may be contrasted with the resul
the Rayleigh limit. Comparisons of the Rayleigh attenuatio
with attenuations outside the Rayleigh regime show that
tendency of variation is quite different with each due to t
effect of frequency. In Fig. 4, theqP wave attenuation is
observed to have the maximum atf590° for given anglesu.
In Fig. 5, the curves of theqS1 wave attenuations hav
smoothly changing shapes. Figure 6 shows that for propa
tion at polar angleu530°, 45°, and 60°, the maximum a
tenuation is aboutf545°, and at polar angleu590°, there is
a minimum attenuation approximately atf545°. Further-

FIG. 4. Directional dependence of the normalizedqP attenuation,aqPL, for
frequencyxqS151.0.

FIG. 5. Directional dependence of the normalizedqS1 attenuation,aqS1L,
for frequencyxqS151.0.
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more, the asymmetry is observed in Fig. 6 for various po
angles.

Next, results are presented for the normalized atten
tion as a function of aximuthal directionf for four different
frequencies at given polar angleu590°. The normalized
shear wave (qS1) attenuations,aqS1L, are shown in Fig. 7
for u590° for normalized frequenciesxqS151.0, 1.5, 2.0,
and 2.5. It is seen that the attenuation curves show a sim
shape with increasing frequency for the respective po
angle. The results for the normalizedqP attenuations,aqPL,
are shown in Fig. 8 for the same frequencies. Figure 9 sh
the normalizedqS2 attenuations,aqS2L, as a function of
propagation direction for the same four frequencies. It is
served that the attenuation curves show a similar shape
increasing frequency for each wave type as well. All curv
of the attenuations have smoothly changing shapes for v
ous frequencies. Figure 9 shows that at polar angleu590°
there is a minimum attenuation atf545° for various fre-
quencies. There is no symmetry to be observed with incre
ing frequency as well in Fig. 9.

Finally, results are presented for the normalized atte

FIG. 6. Directional dependence of the normalizedqS2 attenuation,aqS2L,
for frequencyxqS151.0.

FIG. 7. Angular dependence of the normalizedqS1 attenuation,aqS1L, for
various frequencies,xqS1 , at polar angleu590°.
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ations as a function of frequency for several propagation
rections. In Figs. 10–12, the normalized attenuations of
three wave modes are plotted versus dimensionless
quency,xqS1 , for propagation directions along the rolling
normal, and transverse directions, respectively. For the
ample considered here, Fig. 11 shows theqS1 wave attenu-
ation for propagation in the rolling, normal, and transve
directions with polarization in the normal, transverse, a
rolling directions, respectively. Figure 12 shows theqS2
wave attenuation propagated in the rolling, normal, a
transverse directions and polarized in the transverse, roll
and normal directions, respectively. It is observed that th
is a transition region as the dimensionless frequency
creases. Thus, the relative order of the attenuation
switched in such a transition region for the three wa
modes, respectively. The attenuations increase with
fourth power of frequency in the low frequency limit. After
transition region, the attenuations scale with the square
frequency as expected. Moreover, the normalized attenua
of each wave type is plotted versus normalized frequen
xqS1 , for propagation within thex12x2 plane for various

FIG. 8. Angular dependence of the normalizedqP attenuation,aqPL, for
various frequencies,xqS1 , at polar angleu590°.

FIG. 9. Angular dependence of the normalizedqS2 attenuation,aqS2L, for
various frequencies,xqS1 , at polar angleu590°.
L. Yang and J. A. Turner: Scattering in polycrystals with texture



it i
th
a
n

te

a

a
ul
ffi
a
a
e
C

t
th

ve

ct-
tal-
d

rch,
be

her
ize

y-
en-
d by
g
n-

cal-
the
ed

s

s

azimuthal angles in Figs. 13–15. In the Rayleigh regime,
observed that the curves for each wave type mainly show
same shape. The variation of the attenuation of each w
mode is about 10%. Outside the Rayleigh regime, the atte
ation of each wave mode in the rolling direction is about
times higher than that for propagation atf530°, 45°, and
60°. This feature is thought to be the result of the we
texture for the case discussed here.

The generalized attenuation results presented in this
ticle for arbitrary propagation direction suggest that new
trasonic techniques for characterization of texture coe
cients may be possible. Further study is necessary to unr
the complex relations between the ODCs and the angular
frequency dependence of the attenuations. Attenuation m
surements could ultimately be inverted such that the OD
may be determined. However, such an approach mus
optimized by choosing measurement directions that are
most sensitive to the desired ODC. Thus, theoretical de

FIG. 10. NormalizedqP attenuation,aqPL, as a function of dimensionles
frequency,xqS1 , for waves propagating in the rolling (RD), normal (ND)
and transverse (TD) directions.

FIG. 11. NormalizedqS1 attenuation,aqS1L, as a function of dimension-
less frequency,xqS1 , for waves propagating in the rolling (RD), normal
(ND) and transverse (TD) directions.
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opments such as this one will provide a firm basis for dire
ing new experiments. Eventual process control of recrys
lization that is quantitative will require modeling-directe
experimental methods. In addition to theoretical resea
numerical methods will also be necessary for progress to
made. This work must also be expanded to include ot
factors important to textured materials, such as grain s
distribution and grain shape.

VI. SUMMARY

In this article, the scattering of elastic waves in pol
crystalline materials with texture was discussed. The
semble average response of the elastic waves is governe
the Dyson equation within the limits of first-order smoothin
approximation. In contrast with previous work, here an a
isotropic Green’s dyadic approach was used. In order to
culate the attenuations, the relevant inner products on
covariance of the effective moduli fluctuations were deriv

FIG. 12. NormalizedqS2 attenuation,aqS2L, as a function of dimension-
less frequency,xqS1 , for waves propagating in the rolling (RD), normal
(ND) and transverse (TD) directions.

FIG. 13. NormalizedqP attenuation,aqPL, as a function of dimensionles
frequency,xqS1 , for waves propagating within thex12x2 plane.
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in polycrystals of cubic symmetry with rolling texture. Com
pact expressions for the attenuations of the quasilongitud
and two quasishear waves were then presented in term
integrations over the scattered directions. In general, atte
ations for each wave type are dependent on frequency, w
velocity, and wave propagation direction, as well as text
coefficients which are the expansion coefficients of the
entation function with respect to the generalized spher
functions. The results show that the attenuations of e
wave type can be comprehensively affected by those par
eters. The general formulation is also directly related
backscattering problems. The simple form of the resu
makes them particularly useful for nondestructive testing
materials characterization research. To use ultrasonic t
niques for monitoring texture during processing, the relati

FIG. 14. NormalizedqS1 attenuation,aqS1L, as a function of dimension-
less frequency,xqS1 , for waves propagating within thex12x2 plane.
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ships between ultrasonic parameters such as ultrasoni
tenuation and materials texture must be investigated. If
knows the relationships between the ODCs and the ul
sonic attenuation, the texture coefficients can be inver
from ultrasonic attenuation measurements. The ultrasonic
tenuations of sample specimens can then be measured d
annealing such that the ODCs can be determined during
cessing.
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FIG. 15. NormalizedqS2 attenuation,aqS2L, as a function of dimension-
less frequency,xqS1 , for waves propagating within thex12x2 plane.
APPENDIX

For polycrystals of cubic symmetry, the nonzero terms of the eighth-rank covariance,J i jkl
abgd in Eq. ~14!, are determined.

The first term within the brackets is given as

K (
n51

3

ainajnaknaln (
n51

3

aanabnagnadnL
5

1

4p2
E

0

2pE
0

2pE
21

11S (
n51

3

ainajnaknalnD S (
n51

3

aanabnagnadnD w~j,c,w!dj dc dw

54p2H W000T0001W400FT4001
5

A70
~T4041T404̄!G1W420FT4201T42̄01

5

A70
~T4241T42̄41T424̄1T42̄4̄!G

1W440FT4401T44̄01
5

A70
~T4441T44̄41T444̄1T44̄4̄!G1W600FT6002

A14
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A14
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A14
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1W660FT6601T66̄02
A14

2
~T6641T66̄41T664̄1T66̄4̄!G1W800FT8001

A154

33
~T8041T804̄!1

A1430

66
~T8081T808̄!G
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with
1W820FT8201T82̄01
A154

33
~T8241T82̄41T824̄1T82̄4̄!1

A1430

66
~T8281T82̄81T828̄1T82̄8̄!G

1W840FT8401T84̄01
A154

33
~T8441T84̄41T844̄1T84̄4̄!1

A1430

66
~T8481T84̄81T848̄1T84̄8̄!G

1W860FT8601T86̄01
A154

33
~T8641T86̄41T864̄1T86̄4̄!1

A1430

66
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33
~T8841T88̄41T884̄1T88̄4̄!1

A1430

66
~T8881T88̄81T888̄1T88̄8̄!G J ,

where thew is orientation distribution function~ODF!. It can be expanded in a series of generalized spherical harmonics,
the coefficientsWlmn defining the orientation distribution coefficients~ODCs!. The notationsTlmn are defined as

Tlmn5
1

4p2 E0

2pE
0

2pE
21

11S (
n51

3

ainajnaknalnD S (
n51

3

aanabnagnadnD 3Zlmn~j!e2 imce2 inw dj dc dw.

If the polycrystal is of orthorhombic-cubic symmetry, an example term (i 5 j 5k5 l 51 and a5b5g5d51! is given as
follows:

K (
n51

3

an1
4 (

m51

3

am1
4 L 5

41

105
1

2232A2p2

5005
W4002

2976A5p2

5005
W4202

1448A35p2

5005
W4402

12A26p2

1001
W6001

64A2730p2

15015
W620

2
128A91p2

5005
W6401

64A6006p2

15015
W6601

56A34p2

7293
W8002

32A1190p2

12155
W8201

32A1309p2

12155
W8402

32A14586p2

36465
W860

1
16A12155p2

12155
W880.

The remaining nonzero terms necessary for the calculation are given in detail elsewhere~Yang, 2003!.
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ABSTRACT: In this chapter, techniques for materials characterization at the nanoscale that 
combine ultrasonics and atomic force microscopy (AFM) are presented. The focus is on 
dynamic methods in which ultrasonic excitations induce vibrations of the AFM cantilever. 
The methods considered are restricted to those in which the tip of the cantilever remains in 
contact with the specimen surface for the majority of the motion. Several aspects of coupled 
ultrasonic-AFM systems are examined, including the tip-sample interaction forces, the linear 
dynamics of the flexural and torsional modes, and the nonlinear dynamics of the flexural 
modes. Ways in which the dynamic behavior can be used for quantitative determination of 
sample stiffness and qualitative imaging of relative stiffness are then described. Both linear 
cantilever spectroscopy methods and nonlinear force curve methods are discussed and 
example results presented. Techniques such as these are expected to play a major role in 
nanotechnology research. 

KEY WORDS: atomic force microscopy, AFAM, flexural and torsional vibrations, linear and 
nonlinear vibrations, materials characterization, UAFM, UFM, ultrasonics, 
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1. Introduction 

The measurement of mechanical properties at small scales is motivated in part 
by recent efforts to develop new nanoscale materials. Many of these materials are 
entirely new structures such as nanotubes, nanofibers, and nanocomposites. Other 
nanoscale applications of interest include micro- and nano-electromechanical 
systems (MEMS and NEMS) that use more conventional materials (e.g., silicon). 
For all of these material systems, knowledge of mechanical properties is critical in 
order to predict their mechanical response and performance accurately. However, 
mechanical characterization at small scales remains an especially challenging 
problem. In many of these new materials, the properties can vary over nanometer 
(submicrometer) length scales. Even if only conventional materials are involved, the 
nanoscale materials properties usually cannot be predicted from bulk property 
measurements. Dramatic differences in mechanical properties may occur as sizes 
decrease and the surface-to-volume ratio increases. Thus, novel measurement 
techniques are needed to characterize emerging nanoscale materials and structures. 

 
Nanoindentation [OLI92] has proven an effective technique to determine the 

indentation or plane strain modulus, which in isotropic materials is a combination of 
Young’s modulus and Poisson’s ratio. However, the spatial scale of 
nanoindentation, with contact radii typically on the order of several hundred 
nanometers, is still too large for many nanoscale systems. In addition, it is inherently 
destructive: an indent hundreds to thousands of nanometers wide is made during a 
force-displacement measurement. Atomic force microscopy (AFM), on the other 
hand, was originally developed to provide surface topography information with 
atomistic spatial resolution [BIN86]. The deflection of the AFM cantilever plotted as 
a function of surface location provides high-resolution images of surface 
topography. The small contact area of the AFM tip — typically a few nanometers — 
is ideally suited for nanoscale measurements of mechanical properties, provided that 
effective quantitative techniques can be developed for this purpose.  

 
Many approaches have been taken to apply AFM to the task of mechanical 

characterization, including force modulation microscopy [MAI91], scanning local 
acceleration microscopy [BUR96], and pulsed force microscopy [ROS97]. 
However, in this chapter the focus is limited to methods that exploit the dynamic 
behavior of the AFM cantilever at acoustic or ultrasonic frequencies [KOL98, 
YAM99, RAB00, DIN00]. Work has shown that excitation frequencies in this range 
— at or above the first contact resonance of the beam — can be used for quantitative 
measurements and for stiffness imaging with little or no damage to the specimen 
surface. These methods rely on the relative motion between the AFM tip and the 
specimen surface as indicated in Fig. 1. The dynamic response of the AFM 
cantilever beam is usually described in terms of its flexural and torsional vibration 
modes. Because the frequencies of these modes range from tens of kilohertz to a few 
megahertz for typical cantilevers, ultrasonic transducers are often employed as the 
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excitation source. The 
appeal of these techniques 
lies in their potential to 
achieve nanometer spatial 
resolution, as determined 
by the AFM tip 
dimensions. However, the 
dynamic response of a 
vibrating AFM cantilever 
in contact with a surface is 
not easily described. Tip-
sample interaction forces are, in general, nonlinear. When an elastic beam interacts 
with these surface forces, the flexural and torsional modes may be excited in a 
complex fashion, both linearly and nonlinearly. Thus, any quantitative technique for 
determining the tip-sample properties that exploits the dynamics of the AFM relies 
on an accurate model of this vibration system. 

 
 
 
 
 
 

Figure 1. Schematic of the dynamic system considered here. 
The AFM cantilever is held in contact with the sample surface. 
The surface and/or cantilever holder are oscillated normal to 
or perpendicular to the undeformed cantilever plane, causing 

the cantilever to vibrate at frequencies characteristic of the 
coupled beam-sample system.

 
In this chapter, several aspects of coupled ultrasonic-AFM systems are 

examined, with the focus on the dynamics of AFM cantilevers and the determination 
of the specimen’s mechanical properties. In the next section, the tip-sample 
interaction forces are described. Then the linear dynamics of the flexural and 
torsional modes are presented. A nonlinear analysis is also given for the flexural 
modes. In section 3, various experimental approaches are discussed in detail to 
illustrate how the contact mechanics models and vibration analysis may be 
practically implemented to determine mechanical properties. Applications involving 
both single-point, quantitative measurements and qualitative contrast imaging are 
described. Differences between the various approaches are noted. Finally, a 
summary is presented in section 4. 

2. Dynamics of AFM Cantilevers 

The dynamics of an AFM beam in contact with a vibrating surface can be very 
complicated. In this section, some aspects of the dynamical system are examined in 
detail. A critical aspect of the dynamics, and the prime nonlinearity in this system, is 
the tip-sample contact. The associated contact mechanics are discussed in section 
2.1. In section 2.2, the linear flexural vibration theory that forms the basis for much 
of the AFM research under consideration is described. Section 2.3 contains a 
discussion of the nonlinear flexural theory with examples relevant to Hertzian 
contact mechanics. Finally, the potential coupling of flexural and torsional vibration 
modes is presented in section 2.4. 
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2.1. Interaction Forces/Contact Mechanics 

    The mechanics of the AFM tip as it interacts with a specimen are complex and 
generally nonlinear. Here, it is assumed that the contact is frictionless and the 
contact force acts normal to the tip. For simplicity, discussion is limited to 
elastically isotropic materials, although a similar analysis can be applied to 
anisotropic materials. A schematic of the contact mechanics problem is shown in 
Fig. 2. The goal of the contact analysis is to relate the applied force p to the 
penetration depth of the tip into the specimen δ. Important parameters for this 
problem are the radius of the contact area a, the work of adhesion at contact ω, and 
the stress in the cohesive zone σ0. The reduced tip-sample radius of curvature, 

st RRR /1/1/1 += , accounts for curvature of both tip Rt and specimen Rs. Most 
often, the specimen is assumed flat such that R = Rt . The reduced elastic modulus E* 
is defined by  

,111 22
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νν  [1] 

 

where Et, νt, Es, and νs are Young’s modulus and Poisson’s ratio of the tip and 
sample, respectively. The general goal for materials characterization studies with 
AFM is to measure or image the elastic modulus of the specimen. Such a procedure 
involves determination of E*. The material properties and geometry of the tip are 
either assumed or measured directly. In this way, the indentation or plane strain 
modulus of the sample, ( )21/ sss EM ν−=  in the isotropic case, can be deduced from 
knowledge of E*. 

 

 

 

 

 

 

 

 
Figure 2. Contact mechanics parameters. The geometry of the contact between two spheres of 

different sizes is shown in (a). In (b), the contact mechanics load p, displacement δ, contact radius a 
and cohesive radius c  are shown. 
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The most comprehensive tip mechanics model is that developed by Maugis 
[BUR99, MAU00]. The Maugis model captures many aspects of the contact 
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mechanics observed in AFM studies through the use of fracture mechanics concepts. 
Most importantly, it can account for adhesion hysteresis. The Maugis model 
provides a continuous functional dependence from Hertzian or Derjaguin-Muller-
Toporov (DMT) mechanics without adhesion hysteresis [DER75], to the Johnson-
Kendall-Roberts model (JKR) limit of maximum adhesion hysteresis [JOH71]. 
These limiting cases are discussed below. The following dimensionless parameters 
are used: 
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where A is the radius of contact, P is the applied force, ∆ is the penetration depth, λ 
is the adhesion parameter, and . The corresponding dimensional 
parameters of p, δ, and a are illustrated in Fig. 2. 

3/4 *EK =

    In terms of these parameters, several different contact mechanics models may 
be described. Hertzian mechanics is given by [MAU00] 

,3APH =                    ,2AH =∆ [3] 
 

which may be written . In the Hertz model, adhesion is neglected such that 
there is no attractive force associated with loss of contact. The Hertzian relation 
between P and ∆ is shown in Fig. 3. The DMT model is a modified Hertz model 
[DER75]. In this case, a constant attractive force is added to the Hertzian mechanics: 

. However, the tip geometry is Hertzian, . The behavior of 
P

2/3
HHP ∆=

23 −= APD
2AD =∆

D(∆) for the DMT model is also shown in Fig. 3. The Hertz and DMT models do 
not include adhesion hysteresis effects. Thus, they are most applicable to AFM 
research for low adhesion specimens, hard materials or small radii of curvature. 

    In the high adhesion limit, the JKR model is appropriate. It is given by 
[JOH71] 

,63 AAAPJ −=                   .6
3
22 AAJ −=∆  [4] 

 

This model is most applicable for high adhesion specimens, soft materials or large 
radii of curvature. 

    The Maugis model is comprehensive in that it captures all types of tip-sample 
mechanics through the introduction of an adhesion parameter λ. Attractive (tensile) 
stresses are assumed to act between the tip and specimen in a cohesive zone that 



122     Instrumentation, Measurement, and Metrology. Volume 3 – no 3-4/2003 

surrounds the contact area. The stress σ0 is assumed to be constant within an annulus 
of width d. The force and deflection are given by [MAU00] 

,1
23 MAAPM λ−=                   ,1

3
4 22 −−=∆ mAAM λ  [5] 

 

where 

1tan1 2122
1 −+−= − mmmM .  [6] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3. Force vs. penetration depth curves for several different tip-sample mechanics models. The 

Hertz (green), DMT (red), and JKR (black) models. The parameters λ are different values for 
adhesion associated with the Maugis model (blue). 
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In Eqs. [5] and [6], m = c/a is the ratio of the radius to the edge of the cohesive 
zone to the radius of the contact area. The width of the cohesive zone is d = c - a. 
An additional equation is necessary for the Maugis mechanics. The Griffith 
equilibrium equation defines the relation between λ, m, and A: 
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where 

( )
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,1tan21
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mmmM
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A comparison of the different contact models is shown in Fig. 3. The results 
based on the Maugis model are noted by the adhesion parameter λ. These curves 
require some interpretation. When ∆ is positive, the sample is deflected away from 
the AFM tip. A negative value for ∆ implies that the material bulges out from an  
otherwise flat surface. In the Hertz model, the AFM cantilever experiences an 
upward deflection (P > 0) as soon as contact is initiated. The DMT, JKR, and 
Maugis models all include some type of attractive effects, so that the cantilever 
deflects downward when contact is initiated. In this case, the tensile stresses in the 
cohesive annulus are greater than the compressive stresses in the contact area. The 
effect of adhesion hysteresis is also observed in Fig. 3. The curves for the JKR 
model and for the Maugis model with λ = 2 bend back on themselves. These curves 
have a section of positive slope when both P and ∆ are negative. Points on this part 
of the curve are unstable equilibria. Thus, when moving continuously on these 
curves, loss of contact occurs when the slope becomes infinite. In addition, when 
contact is reinitiated, the tensile cohesive stresses pulls the AFM tip back into 
contact. This type of hysteretic behavior results when λ is slightly less than unity. 

The various contact mechanics models highlight the complexity of the AFM tip-
sample interaction. Moreover, the discussion here has been limited to the case of 
idealized surfaces; in practice, sample topography such as slope and curvature can 
have a critical effect on quantitative measurements. When the AFM tip is in motion, 
the force and penetration depth are time dependent. For small oscillations, the curves 
shown in Fig. 3 may be linearized about the initial static equilibrium position. The 
slope of this linearization is a spring stiffness that may be assumed to act at the tip 
location. For larger oscillations, larger portions of these curves are traversed during 
each period of oscillation. For sufficiently large oscillations, the tip may even lose 
contact with the specimen. In the following section, these vibrations are examined in 
more detail. 

2.2. Linear Flexural Vibrations 

When the tip of the AFM cantilever is in contact with a sample surface, different 
types of vibrations may be excited depending on the sample motion. Figure 4 shows 
a schematic of the cantilever-sample system. The AFM cantilever is modeled as an 
Euler-Bernoulli beam. It is assumed to be uniform and homogenous with constant 
cross-section. The beam is clamped at one end. At the opposite end of the cantilever, 
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a tip with a small radius of curvature is attached. The governing equation for the 
linearized boundary value problem for this system is given by [TUR97] 

 ( ) ( ) 0,,
2

2

4

4

=
∂

∂
+

∂
∂

t
txwA

x
txwEI ρ , [10] 

 

with boundary conditions 

( ) ,0,
0
=

=x
txw                      ( ) ,0,

0
=′

=x
txw  

( ) ,0, =′′
=Lx

txw  
[11] 

( ) ( ) .,,
LxLx

txwtxwEI
==

=′′′ κ  [12] 
 

In Eqs. [10]-[12], w(x,t) defines the cantilever position relative to its initial static 
deflection, y(x). The cantilever is defined by its Young’s modulus E, area moment of 
inertia I, volume density ρ, and cross-sectional area A. Here, EI and ρA are assumed 
uniform over the length of the cantilever. The boundary conditions given by Eq. [11] 
correspond to conditions of zero displacement and zero slope at x = 0 and zero 
moment at x = L. Equation [12] defines the force balance between the beam and the 
linear tip-sample stiffness. A linear spring model is used to describe the tip-sample 
interaction force, such that the results are restricted to small tip displacements. The 
relationship between the linear spring constant κ and the tip and sample parameters, 
especially the sample mechanical properties, depends on the interaction model used 
(section 2.1). The chosen contact mechanics model is linearized about the initial 
static applied load and the resulting slope is κ. 

    
 

 

 

 

 
Figure 4. Schematic of the dynamic cantilever system under consideration. The AFM tip is in 
contact with the sample. Initial contact is made when the sample offset z0 = 0. The static offset 
causes a static beam deflection y(x). The dynamic motion w(x,t) is defined relative to y(x). The 

contact forces between the tip and the sample may be discussed using different contact models. 
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Equations [10]-[12] define completely the linearized flexural vibration problem. 
The natural frequencies of the cantilever vibrations are dependent on the linear 
spring constant. The solution to Eq. [10] may be written 
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( ) ( ) tiexWtxw ω=, . [13] 
 

The mode shape W(x) is found by substituting Eq. [13] into Eqs. [11]-[12] and by 
solving the subsequent eigenvalue problem. For the boundary conditions considered 
here, it may be written [TUR97] 

 ( ) ( )⎟
⎠
⎞

⎜
⎝
⎛ −

+
+

−−= kxkx
kLkL
kLkLkxkxDxW coshcos

coshcos
sinhsinsinhsin , [14] 

 

where k is the flexural wave number. 

The characteristic equation defines the wave numbers that admit solutions to the 
problem. The characteristic equation is found from the boundary condition involving 
the linear spring, Eq. [12], and is given by 

( ) ( 0coshsincossinh
/

1coshcos 3
3 =−−+ γγγγ )κγγγ

LEI
, [15] 

 

with γ = kL as the dimensionless wave number. Equation [15] is solved numerically 
for the values of γ. The dispersion relation 

,/
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1 3

2
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AL
LEIf

ρπ
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⎠
⎞

⎜
⎝
⎛=  [16] 

 

defines the natural frequencies f in terms of the wave numbers γ. 

It should be noted that in the discussion given here, the tip is assumed to be at the 
end of the beam, that is, x = L. If the tip is not located at the end, the derivation must 
be modified, altering the characteristic equation (Eq. [15]) and mode shape (Eq. 
[14]) [RAB00]. The effect of a finite tip length can also be added to the analysis 
described above. In this case, the boundary conditions are altered to include a 
bending moment at the end of the cantilever [WRI97]. Both refinements can have a 
substantial impact on the quantitative interpretation of resonant spectra, depending 
on the specific experimental conditions (contact stiffness and cantilever geometry). 

2.3. Nonlinear Flexural Vibrations 

The linear vibration problem described in section 2.2 is limited in the sense that 
the vibration amplitude must remain small over the entire period of motion. 
However, the inherent nonlinear response of the tip interaction with the surface as 
described in section 2.1 will also lead to nonlinear vibration behavior. In this 
section, some of the phenomena associated with these nonlinear vibrations are 
presented. The discussion here is focused primarily on the Hertz model. However, 
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more general contact theories are expected to exhibit similar nonlinear responses in 
the contact regime. 

The boundary condition involving the tip-sample contact, Eq. [12], is first 
rewritten in a more general form as 

( ) ( ) ( )[ ] 0,~11/3,~ 2/32/1
003 =−∆+−∆−′′′

=
txwKz

L
EItxwEI

Lx
, [17] 

 

where w~  = q/∆ defines the beam deflection relative to the static Hertzian 
deformation with RKK =0 . (K and R were defined in section 2.1.) Note that the 
beam remains in contact with the surface as long as w~ (L,t) ≤ 1. Finally, the term in 
Eq. [17] with the 3/2 exponent is expanded in a Taylor series expansion about the 
equilibrium position, w~ (L,t) = 0. The result is 

3
2

2
1

~~~~ wwwwEI κκκ −−=′′′ , [18] 
 

where the linear and nonlinear spring constants are given by 

,
2
3 2/1

0∆= Kκ        ,
8
3 2/1

01 ∆= Kκ        .
16
1 2/1

02 ∆= Kκ  [19] 

 

The linear spring constant κ is identical to that in section 2.2. The nonlinear spring 
constants κ1 and κ2 arise because the contact area is a function of applied load. They 
are not related to nonlinear elastic behavior in the tip or sample, since linear elastic 
behavior is assumed. The error in this type of expansion is less than 1% over the 
range in which the contact is not lost [TUR03]. A similar type of expansion has been 
successfully used to model Hertzian contact vibrations in single-degree of freedom 
systems [BRY85]. 

The nonlinear response is analyzed using the method of multiple scales. From a 
practical standpoint, the response of interest is that of a forced system with damping. 
The corresponding contact boundary condition is written as 

tFw
L

w
L

wcwwEI Ω=++−−′′′ cos~~~~~ 23
2
22212 εκεκεεκ & , [20] 

 

where F is the forcing amplitude and ε is a dimensionless parameter introduced to 
order the different scales of the nonlinear problem. The forcing frequency Ω is 
assumed to be near to one of the natural frequencies of the system, ωm. Thus, it is the 
primary resonance response that is examined here. A reduced analysis of this 
nonlinear vibration problem is given here. The interested reader is referred to the 
more complete description given in [TUR03]. The method of multiple scales is 
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based on the premise that multiple time scales are involved in the nonlinear 
vibrations. The response is expanded as 

( ) ( ) ( ) ( ),,,;~,,;~,,;~,,;~
102

2
10110010 KKKK TTxwTTxwTTxwTTxw εε ++=  [21] 

 

where T0, T1, and T2 are the different time scales of the problem, n  with ε 
defined as the scaling parameter. The expansion is substituted into Eqs. [10], [11], 
and [18] and like orders of ε are collected. This procedure clearly defines three 
different sets of partial differential equations governing the w

tT nε=

0, w1, and w2 responses 
referred to as the order ε0, ε1, and ε2 problems, respectively. When the response near 
a resonance is examined, the solution to the ε0

 problem is the linear response given 
in section 2.2 with a time varying amplitude ( ) ( ) xWeTTAtxw ( )Ti m 0,,~ ω= mm 21 , for the 
mth mode. The solution to the ε1

 problem shows only that the T1 time scale is not a 
part of the solution, i.e., ( )2mm TAA = . This type of result is often the case in 
nonlinear problems such as these [NAY00]. Finally, the ε2 problem is solved such 
that the frequency shift, or detuning parameter Γ, as a function of excitation 
amplitude is determined. The natural frequencies shift by an amount ε2Γ, where Γ is 
governed by 

( ) ( )
( ) ( ) ,41

4
/

3
//3

22
/ 22

2

2
2

3
2

3

2

1
3

1

m
mm

m

m c
p
F

kLP
p

kLP
LEILEI

G
LEI

ω
ωω

κ
κ

ωκ

−±
⎥
⎦

⎤
⎢
⎣

⎡
−

+
−⎟

⎠
⎞

⎜
⎝
⎛

=Γ  [22] 

 

where p is the real vibration amplitude. In Eq. [22], the functions G and P are given 
by 
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The dependence of the nonlinear response on the different modes is included in the 
amplitude-frequency relation by the functions G and P. 

Example results highlighting the nonlinear frequency shifts for this problem are 
illustrated in Figs. 5 and 6. Figure 5 shows the change in amplitude as a function of 
detuning parameter Γ for several values of forcing level (κ = 100EI/L3; c = 0.2). 
Both the first and second modes are shown. The nonlinear softening behavior 
characterized by a decrease in frequency with amplitude is clear. For the chosen 
parameters, the first mode is predicted to lose contact (p > 1) for the highest forcing 
amplitudes. The second mode, however, is predicted to remain in contact for all 
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values of F examined and it has a maximum value of Γ of about –2. Figure 6 is an 
example of the modal sensitivity to the nonlinearity. The nonlinear primary response 
of the first and second modes is shown for two values of κ. For the two values 
chosen, the first mode frequency shift is similar, although the magnitude and loss of 
contact are different. The second mode, on the other hand, has a much stronger 
response to the nonlinearity when κ = 400EI/L3. This type of sensitivity to the 
contact has been noted for linear vibrations as well [TUR01]. 

 

 

 

 

 

 

 

 

 

 
Figure 5. Example results for the primary nonlinear response for four values of forcing amplitude 
F with damping constant c = 0.2. The dimensionless contact stiffness κ = 100EI/L3. The (a) first and 

(b) second modes are shown. 

 

 

 

 

 

 

 

 

 

 
Figure 6. Nonlinear frequency shift of the (a) first and (b) second modes for two values of linear 

stiffness κ with c = 0.2. These plots illustrate the modal sensitivity to nonlinearity. 
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The expression for the detuning parameter Γ includes the linear (κ) and two 
nonlinear (κ1, κ2) spring constants used in the expansion of the Hertzian contact. The 
dependence on κ and κ2 is fairly clear since these terms appear directly in Eq. [22]. 
The dependence on κ1 is less clear because it is multiplied by the factor G(χ), which 
is dependent on the particular mode. In order to understand the nonlinear behavior in 
terms of the κ1 dependence, calculations for various values of κ1 were made. The 
values used for κ1 correspond to multiples of the Hertzian value of (κ1)H = κ/4 as 
given above. Here, both larger and smaller values of κ1 were examined. Figure 7 
shows results for the first and third modes in which κ1 = C(κ1)H, where the constant 
C is one of five values, C = 0.5, 0.75, 1.0, 1.25, 1.5. This analysis is relevant for tip 
mechanics models that differ from the Hertzian model. Figure 7(a) shows the 
dependence of the first mode on values of κ1 for κ = 50EI/L3, c = 0.09. The 
maximum frequency shift is seen to increase as κ1 increases. Although this type of 
result may be expected, it is not guaranteed. As shown in Fig. 7(b), the nonlinear 
response of the third mode is much more complicated. The degree of response is not 
monotonic as is the first mode. Again, the modal sensitivity is expected to play a 
role in this complicated behavior. Such nonlinear softening has been experimentally 
observed [RAB99, MUR01]. 

 

 

 

 

 

 

 

 

 
Figure 7. Change in response of the first mode (a) and third mode (b) for varying values of κ1 

relative to the Hertzian value of (κ1) H = κ/4. The curves correspond to the ratio of C  = κ1/(κ1)H  for 
C = 0.5, 0.75, 1.0, 1.25, 1.5. For the first mode (a), κ1 increases from right to left (κ = 50EI/L, c = 

0.09). For the third mode (b), the ordering of the nonlinear response does not follow simple 
heuristic arguments (κ = 500EI/L, c = 0.025). 
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2.4. Flexural-Torsional Mode Coupling 

The flexural type of AFM response discussed thus far is important for a number 
of applications in which the out of plane displacements are of primary interest. In 
other cases, the sample is excited perpendicular to the AFM cantilever, such that 
torsional modes are excited. This behavior is also important for investigating the 
friction of the tip-sample contact. As the study of these flexural and torsional modes 
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has progressed, some interesting dynamics have been observed. In this section, one 
of those phenomena, the observed coupling between different mode types, is 
examined [REI03]. It is shown that the cantilever design controls this modal 
coupling behavior. 

 
Consider the isotropic, elastic beam 

of length L shown in Fig. 4. As 
considered in section 2.2, it is 
cantilevered at x = 0 and has a tip at x 
= L. Here, a lateral tip-sample spring is 
included in the problem as shown in 
Fig. 8, an end view of the cantilever. 
The tip is assumed to have mass mt and 
height h. The tip is coupled to the 
specimen surface through linear 
springs of stiffness κn and κl, which 
define the normal and lateral spring 
constants, respectively. The tip is also 
assumed to be offset slightly from the 
area center of the cross-section by an 
amount d. 

 

 

 

 

 

 

 

 
Figure 8. End-view of the AFM cantilever 

showing the normal and lateral springs attached 
to the AFM tip. 
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The long aspect ratio of typical AFM cantilevers lends itself to a simplified 

analysis. The vibrations are separated into bending and twisting motion. The motion 
is described by two partial differential equations (one for flexure and one for twist) 
in which the variable x  is given in units of cantilever length L 
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In Eqs. [25]-[26], ρ is the volumetric density, A is the area of the cross-section, J is 
the polar moment of area, E is the Young’s modulus, and G is the shear modulus. 
The torsional constant ξ is used to describe the warping of the cross-section 
[TUR01]. The boundary conditions used here are given by 
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The dimensionless quantities βn and βl are given by 
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Seeking harmonic solutions of the form ( ) ( ) tiexWtxw ω=,  and ( ) ( ) tiextx ωφ Φ=, , 
and substituting into Eqs. [25]-[29] gives 
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with boundary conditions 
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The general solutions to Eqs. [31] and [32], Eq. [14] and ( ) xCx ηsin=Φ , 

respectively, satisfy all but the coupled boundary conditions (Eqs. [35]). The 
flexural and torsional wave numbers, γ and η, respectively are related through the 
dispersion relations 
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The coupled boundary conditions are now written in terms of the wave numbers as 
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where ( )ALmt ρµ /= , ( )JLdmt ρζ /2= , and ( ) ( )x
L
dx Φ=Ψ . Substitution of the 

general solutions into Eqs. [37] gives a set of two equations for C and D. The 
determinant of the matrix of the coefficients on C and D gives the characteristic 
equation for the natural frequencies of the system. The zeroes of this equation are 
the wave numbers. The flexural and torsional wave numbers γ and η, respectively 
are no longer independent as seen in Eq. [36]. This relationship is given by 

 where 2γη H=
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It is this parameter H that determines the likelihood of modal coupling. 
 

Modal coupling that has been observed experimentally [REI03] occurred when 
the cantilever was not in contact with a specimen. For this special case, βn = βl = 0 
such that the final boundary conditions in Eqs. [37] reduce to 
 

( ) ( ) ( ) 044 =Ψ−+′′′ xxWxW µγµγ , 

( ) ( ) ( ) 022 =+Ψ−Ψ′ xWxx ζηζη ,          
at x = 1. [39] 

 
The general form of the solution is substituted and the determinant of the 
coefficients is set to zero. The resulting characteristic equation is  
 
( ) 2cossinhcoscoshsin γγµγγγγ H−        

( )( ) 0cossin1coshcos 222 =−++ γγγζγγ HHH .   
[40] 

 
When the tip mass is zero, µ = ζ = 0, and the characteristic equation reduces to  
 

( ) 0cos1coshcos 2 =+ γγγ H , [41] 
 
giving both the flexural and torsional solutions. When the tip offset is zero, ζ = 0, 

0≠µ  and the characteristic equation is 
 

( ) ( )[ ] 0cos1coshcossinhcoscoshsin 2 =++− γγγγµγγγγ H , [42] 
 
corresponding to a multiplicative combination of the characteristic equations for a 
cantilevered beam with a mass at the end and that for a torsional cantilever. From 
experimental data given in [REI03], estimates on the necessary parameters may be 
made to find that H = 0.025. 
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The ratio of the tip mass to cantilever mass µ is estimated to be less than 0.02. 
The ratio of the tip inertia to cantilever inertia ζ is simplified to  
 

( ) 2

2

22

22

1212
a
d

ta
d

AL
m

JL
dm tt µ

ρρ
ζ ≈

+
== , [43] 

 
if a >> t. Thus, if d ≈ 1 µm, ζ ≈ 0.02µ. Using these values, Eq. [40] is solved for the 
wave numbers γ. The frequencies are then calculated. The mode shapes are a 
combination of the flexural and torsional solutions. The weighting of the combined 
solutions depends on the type of and degree of coupling as well as on the excitation 
method. Two modes have frequencies very near to each other. The third flexural 
mode (mode 3) and the first torsional mode (mode 4) lie with 5 % of each other. 
Thus, during forced vibrations, they are often excited simultaneously. Figure 8 
shows an example of the types of mode shapes that can arise when these modes 
couple. In this case, the combined shape is partially flexural and partially torsional. 
The mode shapes shown in Fig. 9 are similar to the experimental mode shapes 
measured using a laser interferometer [REI03]. 
 
 

 

 

 

 

 
Figure 9.  Profiles of the cantilever displacement for the third (top) and fourth (bottom) modes, 
calculated from the flexural/torsional coupling model with H = 0.025. When the frequencies are 

close together, small perturbations cause the modes to couple. 

  
The coupling parameter H determines how close in frequency the flexural and 

torsional modes will be. In the example shown in Fig. 9, H was estimated to be on 
the order of 0.025. If this value is changed, the frequencies of these coupled modes 
change relative to one another. Plots of the third and fourth natural frequencies as a 
function of H is shown in Fig. 10(a). In the range of H plotted, the third and fourth 
frequencies (third flexural and first torsional modes) come close together, but never 
intersect. This type of mode veering is typical of systems with sets of orthogonal 
modes. A similar type of coupling is also predicted for other values of H. Figure 
10(b) shows the fourth and fifth natural frequencies for this system as a function of 
H. Thus, in order to couple the fourth flexural with the first torsional, H must be 
approximately 0.013. Similar mode veering behavior is seen for these modes as 
well. This type of analysis is expected to be important in design of AFM cantilevers, 
either to avoid this type of coupling or to enhance it. 
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Figure 10. Natural frequencies as a function of the coupling parameter H. In (a), the coupling of the 
third flexural mode (blue) with the first torsional mode (green) is predicted. In (b), the coupling of 
the fourth flexural mode (green) with the first torsional mode (blue) is predicted. The phenomenon 

of mode veering is observed in both cases. 
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3. Experimental Techniques 

In this section, experimental techniques are described that utilize the vibration 
behavior of the cantilever to characterize a sample’s elastic or mechanical 
properties. As is often the case, different experimental approaches may be more or 
less suited to a given set of conditions (material class, cantilever type, etc.). The 
purpose here is to present each method in context with the others, such that a 
knowledgeable reader can determine the best technique for a given situation. All of 
these methods involve relatively simple modifications to standard AFM equipment. 
The modifications typically make use of other commercially available laboratory 
instruments. Access to the unprocessed output signals from the AFM apparatus is 
also required. 

 
One dynamic AFM approach uses the resonant modes of the cantilever to 

distinguish surface and near-surface mechanical properties. This type of linear 
spectroscopy method has been used by several groups [RAB94, YAM99, RAB00, 
CRO00, HUR03]. In such experiments, the forcing amplitude is kept small enough  
that a linear approximation to the force-depth curves shown in Fig. 3 may be 
assumed. During one period of oscillation, the change in tip force and indentation 
depth is small. In contrast, the nonlinear techniques discussed later in this section 
[KOL93, YAM94, DIN00] use forcing amplitudes that are much higher. In this case, 
a relatively large portion of the force-depth curve is traversed during one period of 
excitation. For both methods, the basic physical and experimental concepts are first 
presented. Their use for quantitative measurements is then described and issues 
relevant to imaging are discussed. It is anticipated that this section provides a 
snapshot of the state of the art in dynamic AFM experiments. 
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3.1. Linear Cantilever Spectroscopy Methods 

Linear cantilever spectroscopy approaches use information about the cantilever’s  
resonant frequencies to characterize a material’s mechanical properties. The 
technique was first developed by Rabe and coworkers [RAB94, RAB95, RAB00] 
and is usually called atomic force acoustic microscopy (AFAM). A very similar 
method, called ultrasonic atomic force microscopy (UAFM), has been developed by 
Yamanaka et al. [YAM96, YAM99]. 

The basic components of a typical experimental apparatus for AFAM 
measurements are illustrated in Fig. 11. As seen in the figure, the AFAM apparatus 
is based on a standard AFM instrument. The specimen under study is bonded to a 
commercial ultrasonic transducer or other piezoelectric element that is mounted on 
the AFM translation stage. A longitudinal transducer works best for exciting flexural 
modes, while a transverse (shear) transducer is well-suited for torsional modes. The 
transducer response should be optimized for the range of the cantilever’s resonant 
frequencies; therefore, it typically has a center frequency of ~1-2 MHz. A 
continuous sine wave signal from a function generator is used to drive the 
transducer. In this way, resonances are excited in the cantilever when it is in contact 
with the sample. The amplitude of the cantilever deflection is monitored by the 
standard AFM differential (split) photodiode. Because the photodiode signal may 
contain several frequency components, various lock-in techniques have been 
implemented to isolate the signal at the excitation frequency. 

 

 

 

 

 

 

 

 

Figure 11. Schematic of apparatus for cantilever spectroscopy measurements. 
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In UAFM, the piezoelectric excitation element is incorporated into the clamped 
end of the cantilever or the cantilever holder, rather than beneath the sample. If the 
existing piezoelectric element of the AFM (e.g., for cantilever “tuning”) does not 
possess sufficient bandwidth for the cantilever’s range of resonant frequencies, it 
may be necessary to introduce an additional piezoelectric element into the cantilever 
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holder. This modification can be difficult to implement in practice due to space 
constraints on the cantilever holder. However, there are certain advantages to this 
arrangement. For instance, access to only one side of the specimen is needed, and 
thick samples present fewer problems. 

 

3.1.1. Quantitative Techniques 

Quantitative measurements with spectroscopy techniques require information 
about the cantilever’s resonant spectrum under two circumstances: when the 
cantilever vibrates in free space, and when it is in contact with a sample material. In 
this section we explain in detail how such information can be interpreted to obtain 
elastic properties. For clarity, we will limit the discussion to the approach used in 
AFAM. The specific details of the UAFM approach are somewhat different, 
although equally valid [YAM98, YAM99]. 

The following procedure has been used for quantitative measurement of the 
elastic modulus at a fixed sample position. First, the free-space resonances of the 
cantilever are measured by sweeping the function generator frequency while the 
cantilever remains out of contact with the sample. The transducer’s vibrations are 
sufficiently transmitted through the air to excite the cantilever resonances. As shown 
below, knowledge of the free-space resonances is needed to characterize the 
properties of the specific cantilever in use. The cantilever tip is then brought into 
contact with a “reference” (calibration) sample. Resonant spectra are acquired for 
one or more values of sample offset. Measurements are typically made at three 
different offsets in the range 10–50 nm. For cantilevers used in AFAM experiments 
on relatively stiff materials (e.g., metals or ceramics), the corresponding applied 
force is in the range 0.1–3 µN. Next, the cantilever is brought into contact with the 
“test” (unknown) specimen. The resonances are measured for the same offset values. 
Finally, the measurements are repeated on the reference sample in order to check for 
effects such as tip wear. Examples of the resonant spectra for the first and second 
flexural modes during contact with a sample of single-crystal silicon are shown in 
Fig. 12. 

From the experimental resonant frequencies, values are calculated for κ/kc, the 
tip-sample contact stiffness κ relative to the cantilever spring constant kc, for both 
the test and reference materials. The calculation is based on models for the tip-
sample contact and cantilever dynamics such as those described in section 2. 
Numerical methods, such as the finite element method [HUR03], may also be used 
to model the cantilever response. From values of κ/kc and knowledge of the 
reference material’s elastic properties, the reduced Young’s modulus E* for the test 
material can be calculated [RAB02a]:  
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where the exponent n may characterize a flat punch (n = 1) or spherical (n = 3/2) 
contact and the subscripts on E* refer to the test and reference materials. The 
indentation modulus Mtest of the test sample is then determined from       using Eq. 
[1] and knowledge of the cantilever tip properties. 

*
testE

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12. Spectra of the (a) first and (b) second cantilever flexural resonances on single-crystal 
silicon for 15, 25, and 35 nm offsets. Higher offsets cause the frequencies to shift higher due to the 

increased contact stiffness. The free vibration frequencies of this cantilever were 295 and 1627 kHz. 
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Comparison with a reference material of known elastic properties avoids the 
need for precise knowledge of the tip-sample contact area, which can be quite 
difficult to determine directly. It should be noted, however, that because κ/kc 
depends on the contact area, the comparison method relies on the assumption that 
the contact geometry is identical for the test and reference materials. The use of 
multiple reference samples has been used to improve the measurement of the 
unknown [PRA02, HUR03]. An alternative approach that avoids this assumption 
using a tip shape estimation procedure has also been developed [YAM00].  

In theory, the frequency of any single flexural resonance could be used to 
determine κ/kc. In practice, the frequencies of two or more modes are measured and 
κ/kc is calculated for each one. This practice is partially motivated by the fact that 
one mode is usually more sensitive than others to changes in κ/kc [TUR01]. 
Moreover, the experimental values for κ/kc obtained for different resonances  
typically do not exactly agree. The possible reasons for this disagreement are still 
under investigation. One source arises from the imprecise knowledge of the exact 
location of the tip. The characteristic equation, Eq. [15], was derived assuming that 
the tip position relative to the clamped end of the cantilever, x = L1, is the very end 
of the cantilever (i.e., L1 = L). Equation [15] may be modified to include a variable 
tip position L1 < L [RAB00]. In this case, κ/kc is plotted as a function of L1 for each 
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flexural mode. The value of κ/kc where the curves for different modes intersect is 
taken as the solution for κ/kc. Thus, L1 can be considered as an adjustable parameter 
in this approach. Typically, L1 = 0.91 – 0.99 depending on the specific cantilever 
geometry and other experimental variables. It must be noted that this analytical 
model should not be applied to cantilevers whose properties are not uniform over 
their entire length, such as beams with a large triangular section. However, the 
analytical model has been shown to compare well with more geometrically accurate 
numerical models [HUR03], if the nonuniformity extends over a relatively small 
portion of the beam (< 5 %). 

Comparisons of AFAM results with those from other techniques for the same 
sample have shown that linear spectroscopy methods can yield accurate quantitative 
values. In particular, measurements by Hurley et al. [HUR02, HUR03] on thin films 
have shown very good agreement with values obtained by nano- or instrumented 
indentation testing (IIT) and surface acoustic wave spectroscopy (SAWS). A subset 
of those results is given in Table 1. The stated range of AFAM values appears rather 
large because it includes the values calculated by different methods (analytical and 
numerical) from the same measurements and includes results from two different 
reference materials.  

 

Table 1.  Comparison of indentation modulus M (in GPa) for 
aluminum and niobium thin films obtained by different techniques 

[HUR03]. The values were calculated using n = 1 in Eq. [44]. 
material literature values SAWS IIT AFAM 

Al 76 – 81 79 ± 1 86 ± 4 55 – 81 
Nb 116 – 133 121 ± 7  97 ± 10 86 – 135 

 

The work described above demonstrates the basic validity of AFAM techniques 
for quantitative determination of elastic properties. However, a comprehensive 
analysis of the measurement uncertainty budget has not yet been performed. To 
improve the precision and accuracy of quantitative AFAM methods, several sources 
of uncertainty should be more thoroughly examined. For instance, although quoted  
values usually represent an average of multiple measurements, careful estimates of 
measurement repeatability have not been made. Factors affecting measurement 
repeatability for a given system include spatial inhomogeneities in material 
properties (e.g., roughness, mechanical properties), variations in relative humidity 
that might affect tip-sample contact mechanics, and variability in contact area 
arising not only from tip wear but potentially also from tip nano-asperities.  

As suggested above, the assumption that the tip-sample contact area is the same 
for both test and reference material measurements requires careful scrutiny. The 
accuracy with which Mtip and Mref are known also impact the ultimate measurement 
accuracy. On a related note, it would be valuable to develop guidelines for choosing 
a suitable (that is, sensitive) cantilever for the material system under study.  
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3.1.2. Imaging 

The spectroscopic information used to make quantitative AFAM and UAFM 
measurements at fixed sample position may also be used to create maps or images 
related to local variations in the surface elastic stiffness [RAB95, YAM96]. The 
spatial resolution of such images corresponds roughly to the tip-sample contact 
radius, which is typically in the 10-100 nm range. Images are generally obtained 
with a fixed excitation frequency, although a variable frequency-tracking approach 
has also been demonstrated [YAM01]. For fixed-frequency images, the intensity of 
a given image pixel represents the amplitude of the cantilever vibration detected at 
the corresponding position on the sample. The imaging frequency is chosen 
according to spectral information obtained in the manner described in section 3.1.1. 
The frequency is selected to fall on the shoulder of a resonant peak in a 
representative region of the material. During scanning, the frequency of the resonant 
peak shifts higher in regions of higher stiffness. Thus, if the imaging frequency is 
lower than the average contact frequency, higher stiffness regions correspond to 
lower image amplitudes. If the imaging frequency is higher than the average contact 
frequency, higher stiffness corresponds to higher image amplitudes. In most cases, 
topography and stiffness images may be obtained simultaneously. 

Using such imaging techniques, the nanoscale mechanical properties of various 
material systems have been investigated, for instance piezoelectric ceramics 
[RAB02a] and carbon-fiber-reinforced polymers [YAM98]. Figures 13 and 14 
contain examples of topography and AFAM images [BUT03, NIL02]. Figure 13 
shows images corresponding to an interface of two aluminum particles that have 
been partially sintered. The sinters were formed from high-purity aluminum powder 
with an average particle size of 50 µm. The sample in Fig. 13 was sintered at 580 °C 
for 22 minutes. Although the topography is relatively smooth, the AFAM image 
reveals the interface of the particles. Knowledge of the AFAM excitation frequency 
reveals that the interface is stiffer than the particle core. Figure 14 shows topography 
and AFAM images for a sample of polycrystalline silicon used in 
microelectromechanical system (MEMS) structures. The topography reveals 
information about the grains. More importantly, the AFAM image indicates 
differences in stiffness from grain to grain. In addition, stiffness variations within 
grains due to twinning are observed, such as the grain shown in the lower-right-hand 
corner of the image. It should be stressed that the combination of topographic and 
AFAM information is needed to interpret the AFAM images appropriately. 
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Figure 13. Topography (a) and AFAM (b) images of sintered aluminum particles [BUT03]. 
Although the particle interface is topographically smooth, it is stiffer than the particles themselves.  
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Figure 14. Topography (a) and AFAM (b) images of a polycrystalline silicon MEMS sample 
[NIL02]. The amplitude variations within individual grains (e.g., the lower-right-hand grain) are 

related to differences in stiffness from twinning. 
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These examples reveal the value of dynamic AFM imaging for enhanced 
understanding of nanoscale mechanical properties. To date, imaging techniques have 
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almost exclusively provided qualitative maps of relative properties only. Although 
simple contrast images can be invaluable, quantitative images of absolute properties 
is ultimately desired. This goal remains elusive. Partial progress has been made with 
a frequency-tracking approach [YAM01] and by time-consuming pixel-by-pixel 
spectrum acquisition [RAB02b]. Regardless of the specific approach, development 
of a tip-sample interaction model to calculate modulus values from the frequency 
information in each image pixel is still needed. This task is not easy, due in part to 
the sheer number of independent experimental parameters available that can 
significantly affect the final image.  

3.2. Nonlinear Force Curve Methods 

The cantilever spectroscopy methods described in section 3.1 rely on information 
about the vibration frequencies of an AFM cantilever when it is in contact with a 
specimen. The excitation amplitude is kept small such that linear theory may be 
applied. However, one can also obtain mechanical-property information using much 
higher excitation amplitudes. In this section, these techniques are discussed. 
Although the techniques are fundamentally based on cantilever dynamics, the 
response of the AFM cantilever is very different than that described in section 3.1. 

3.2.1. Measurements and Analysis 

Nonlinear force curve methods represent variations of the basic ultrasonic force 
microscopy (UFM) technique [KOL93, KOL98, DIN00]. The experimental 
apparatus is similar to that shown in Fig. 11, but involves different excitation and 
detection signals. Instead of the constant-amplitude excitation signal used in AFAM 
and UAFM experiments, in UFM the ultrasonic continuous sine wave signal is 
amplitude modulated. The ultrasonic oscillation frequency is typically 2 MHz or 
higher, while the modulation frequency is in the 1-10 kHz range and possesses a saw 
tooth, trapezoidal or other shape. An example of a modulation amplitude profile is 
shown in Fig. 15(b). The force-depth curve shown in Fig. 15(a) illustrates that as the 
excitation amplitude increases, the tip experiences increasingly nonlinear forces in a 
single cycle. For a sufficiently large excitation amplitude a1, the cantilever tip breaks 
free from the surface in each cycle. At this point, the low-frequency AFM tip 
deflection signal exhibits a discontinuity (“tip jump”) as illustrated in the upper part 
of Fig. 15(b). The sharpness of the discontinuity is dependent on the tip-sample 
contact – harder contacts have sharper discontinuities than softer contacts (depicted 
in Fig. 15(b)). The cantilever deflection can be detected either through direct 
observation with a digital oscilloscope or through lock-in techniques at the 
modulation frequency. It should be noted that the static forces applied in UFM 
experiments are typically much lower than those used for resonant methods 
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(approximately tens, versus hundreds, of nN). Therefore, the chances of damage to 
the sample are reduced. 

As with linear cantilever spectroscopy methods, the most direct way to obtain 
quantitative information with nonlinear force curve methods requires knowledge of 
the measured AFM tip profile. Such information is needed to relate the measured 
contact stiffness to the material’s elastic properties. Because it is difficult to 
characterize the tip directly, approaches that eliminate the need for such information  
have been developed. UFM methods for obtaining quantitative elastic-property 
information were investigated extensively using an approach called differential 
UFM [KOL93, DIN00]. With this method, the cantilever response was measured for 
two different applied forces. The corresponding threshold amplitudes, that is, the 
amplitudes at which force jumps occurred, were determined. The difference in 
applied force divided by the difference in threshold amplitudes is approximately 
equal to the slope of the force-depth curve between the two applied forces. This 
slope can be related to the contact stiffness via an appropriate contact mechanics 
model. Note that care should be taken in specifying absolute values of the applied 
force. Thus, precise knowledge of kc is required, although accurate values are not 
always provided by cantilever vendors. 
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the linear response w(x,t) to a high frequency excitation is a superposition of all 
modes given by 
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where Ω is the excitation frequency, ωn and Wn the resonance frequency and mode 
shape of the nth mode, and B(t) is the modulation amplitude. Because B(t) varies in 
time over a relatively large portion of the force-depth curve, the effective 
frequencies and mode shapes are not well defined. Their average value is related to 
the integrated response over one period. In addition, if Ω is close to a cantilever 
resonance, the response amplitude will be very large. Ω must therefore be tuned to 
avoid any cantilever resonances. However, if the excitation amplitude is not near a 
resonance, w(x,t) in Eq. [45] can be very small. The specifics of the cantilever 
spectrum and contact behavior determine how small the linear response is and 
whether it is “dynamically static” [DIN00]. Thus, it is still unclear whether the 
response observed in UFM experiments is due to a linear response averaged over a 
nonlinear profile or due to more complex nonlinear behavior, such as described in 
section 2.3 and in [TUR03]. 

The application of UFM techniques for quantitative measurements of local 
material stiffness is inherently dependent on many factors, but is dominated by the 
behavior of the cantilever and the tip-sample contact mechanics. Data from 
nonlinear force curve techniques are more difficult to quantify and interpret than 
results from linear cantilever spectroscopy methods, although a value of local 
stiffness can be extracted. For either approach, appropriate contact mechanics 
models are needed to extract meaningful modulus information from the contact 
stiffness results. Thus, the interdependency of the experimental and modeling 
efforts, and the need for simultaneous development of both, cannot be 
overemphasized. 

 
3.2.2. Imaging 

The UFM methods described in section 3.2.1 have also been successfully used to 
obtain images related to local stiffness with nanoscale resolution. The low-frequency 
tip deflection is measured in several locations for several applied static forces. Based 
on this information, an applied force and excitation amplitude are chosen for 
imaging. The objective in imaging is to sense small changes in local properties with 
the AFM tip deflection. Thus, the largest changes in AFM tip deflection will occur 
when the excitation amplitude is chosen near the value of a1 in Fig. 15b. As with 
linear methods, the local response to the chosen force and amplitude depends on 
both the local stiffness and adhesion. UFM imaging methods have been used to 
investigate applications involving a wide range of materials, including subsurface 
cracking in polymer/glass nanocomposites [McG02] and process-induced 
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mechanical variations in aluminum/polymer microelectronic test structures 
[GEE02].  In addition to the basic UFM approach described here, other variations 
have been developed and implemented for imaging. Among these are waveguide 
UFM [INA00] involving very high-frequency ultrasonic vibrations (50-100 MHz), 
and heterodyne UFM [CUB00], in which excitations at two ultrasonic frequencies 
are mixed and the signal at the difference frequency is detected. 

4. Summary 

In this chapter, atomic force microscopy (AFM) techniques for assessing 
mechanical properties with nanoscale resolution have been examined. Many of these 
techniques are dynamic methods coupling ultrasonic or acoustic vibrations with   
basic AFM techniques. Thus, a fundamental understanding of dynamics of the AFM 
cantilever beam as it interacts with the sample surface is of great importance. The 
cantilever dynamics have been examined in terms of linear and nonlinear flexural 
vibrations and flexural/torsional coupling. It was shown how the linearity of a given 
system is determined by the tip-sample interaction as a function of vibration 
amplitude. Different tip-sample interaction models were also discussed. 

The practical implementation of two types of dynamic methods was also 
presented. Linear cantilever spectroscopy methods rely on small-amplitude 
excitation and high-frequency detection schemes. The resonances of the cantilever 
in free space and in contact with a specimen are used to deduce the local contact 
stiffness. Nonlinear force curve methods use a high-frequency harmonic excitation 
with a low-frequency amplitude modulation. The excitation amplitude is sufficiently 
large that the AFM tip is driven off the specimen surface during a portion of the 
modulation. Low-frequency detection schemes are sufficient for obtaining the tip 
response curve and for imaging. Both the linear and nonlinear approaches can be 
implemented with relatively minor adaptations to a conventional AFM. Although 
the basic apparatus is straightforward to implement, at present data acquisition and 
interpretation remains challenging. 

Many of the fundamental theoretical concepts and measurement principles 
related to dynamic AFM methods have been presented here. From this summary, it 
should be clear that further research efforts are needed to continue the advancement 
of these promising methods. The measurement of mechanical properties at the 
nanoscale is essential to the development of new nanoscale materials and structures. 
It is anticipated that these types of dynamic AFM techniques will continue to 
develop and will play a crucial role in future nanotechnology efforts. Combined 
theoretical and experimental research is critical for the full potential of these 
techniques to be reached for effective characterization of new nanoscale materials 
and devices. 
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ABSTRACT

The scattering of elastic waves in polycrystalline materials is relevant for ultrasonic materials

characterization and nondestructive evaluation (NDE). Ultrasonic attenuation is used widely to

extract the microstructural parameters such as grain size. Accurate interpretation of experi-

mental data requires robust scattering models. Such models typically assume constant density,

uniform grain size and ergodicity hypotheses. The accuracy and limits of applicability of these

models cannot be fully tested with experiments due to practical limits of real materials process-

ing. Here, this problem is examined in terms of numerical simulations using Voronoi polycrystals

that are discretized using finite elements. Wave propagation is studied by integrating the system

directly in time using a plane-strain formulation. Voronoi polycrystals with cubic symmetry

and random orientations are used making the bulk material statistically isotropic. Example

numerical results for materials with various degrees of scattering that are of common interest

are presented. Simulations are also presented for these materials. The numerical results are
∗Corresponding author. Tel: +402-472-8856. E-mail : jaturner@unl.edu. URL: www.http://em-jaturner.unl.edu
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presented and compared with scattering theory for a wide range of frequencies. The numerical

results show good agreement with the theory for the examples examined with evidence that the

correlation function is frequency dependent. These results are anticipated to impact ultrasonic

NDE of polycrystalline media.

PACS numbers : 43.20.Bi, 43.20.Gp, 43.35.Cg
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I INTRODUCTION

Ultrasonic techniques are widely used to extract microstructural parameters from polycrystalline

media such as grain size and grain texture. Often, these techniques rely on the scattering

behavior of the waves that interact with the heterogeneous microstructure. The amplitude of

the propagating wave reduces due to this scattering, a phenomenon called attenuation. Grain

parameters and flaws can often be inferred if the attenuation in the material is measured. The

frequency dependence of attenuation can also be related to the grain diameter. In general, there

are three distinct regions of attenuation α for a given grain size D and frequency f as1

α ∝ f4 for λ > D,

α ∝ f2 for λ ∼ D,

α ∝ 1/D for λ¿ D,

(1)

where λ is the wavelength. These scattering regimes are often denoted as the Rayleigh (λ > D),

stochastic (λ ∼ D), and geometric optics (λ¿ D) regimes.

Scattering theories have been developed for decades to describe the scattering attenuation.

Bhatia2 , 3 discussed this dependence of attenuation on these parameters and developed a model

for the attenuation assuming small variations in the elastic moduli from grain to grain for the

Rayleigh regime. In this theory, it was assumed that the grains were spherical with weak

anisotropy and random orientation. Hirsekorn calculated the attenuation as a function of wave

number and grain radius without the limitation of the Rayleigh assumption,4 , 5 for different wave

types in polycrystals with any symmetry. Finally, Stanke and Kino utilized stochastic operator

methods to develop a unified theory of ultrasonic scattering that covers all frequency regimes.6

This model, and equivalent models that followed,7 provided a self-consist method for determining

attenuation in polycrystalline media.

The validity of these scattering theories is often corroborated through comparison with exper-

imental attenuation data. Ultrasonic attenuation measurements are most often made by exciting
3



an ultrasonic wave at one surface of the specimen using a transducer. The same transducer is

then used to measure the material response that consists of successive reflections from the two

parallel faces of the specimen. The measured amplitude decay can then be used to deduce the loss

of energy due to scattering assuming that other factors, such as beam spreading, that may con-

tribute to the loss of amplitude are appropriately included in the data reduction. The comparison

of theoretical and experimental attenuation data is nontrivial for several reasons. Among these is

the fact that the theories usually oversimplify the material microstructure, including assumptions

of constant density, a single grain size and no texture. Real microstructures, however, include

all of these complications to some extent such that a precise comparison is seldom possible. On

the other hand, numerical models of elastic wave propagation in complex microstructures can be

developed to match precisely the assumptions of the theoretical models such that their range of

validity may be explored more thoroughly.

A variety of numerical methods have been used for examining wave propagation in hetero-

geneous media including the finite difference (FD) method,8 the FD pseudospectral method,9

the boundary element method,10 and the elastodynamic finite integration technique (EFIT)11 , 12

among others. Although each of these methods may be effective for certain wave problems in

heterogeneous media in general, none is specifically suited to polycrystalline media. Thus, a new

numerical model is needed for this important class of problems.

In this article, the finite element method (FEM) is used in conjunction with Voronoi polycrys-

tal geometries to analyze elastic wave propagation and scattering under assumptions of plane

strain. Numerical models with uniform-size grains with random crystal orientation are used for

the attenuation calculations. The numerical results cover a range of frequencies and materials

with various degrees of scattering, including aluminum and copper. These results are compared

with the polycrystalline scattering theory. The numerical results allow observations about the

dependence of the microstructural parameters on attenuation within the context of the scattering

theory.7 , 13 Voronoi polycrystals has been used widely for various engineering applications but
4



have never been used to study elastic wave scattering in polycrystalline materials.

In the next section, the important concepts of elastic wave scattering theory are reviewed. In

the subsequent section, the numerical model is described and the method in which the attenuation

is determined from the numerical models are discussed. Finally, the comparison between the

theoretical and numerical models is made and the results discussed. These results are anticipated

to impact ultrasonic NDE of polycrystalline media.

II THEORY

Elastic waves while propagating in an heterogeneous polycrystalline medium scatter at the bound-

aries of grains due to the mismatch in grain orientation. As a result of this scattering there is

a loss of energy in the propagating wave which is termed attenuation. The elastic wave fields

are composed of longitudinal and transverse components, each with its respective attenuation.

Stanke and Kino used stochastic operator methods to derive the attenuation and change in

phase velocity due to grain scattering for longitudinal and shear waves.6 Their results are widely

applicable for media with texture as well as for materials with elongated grains. In an alterna-

tive derivation, Weaver used diagrammatic methods to derive ultrasonic attenuations and the

subsequent diffusivity for polycrystalline media.7 His derivation was based on the discussions

of Frisch14 concerning the mathematical formulation of wave propagation in heterogeneous me-

dia. This approach is based on the Dyson and Bethe-Salpeter equations which govern the mean

response and covariance of the response of the field, respectively. This approach is used here

as well. In addition, the first-order smoothing (FOSA) is used to solve the Dyson equation as

outlined elsewhere.14 , 7

The equation of motion for the elastodynamic response of an infinite linear elastic medium is
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written in terms of the Green’s dyadic as13½
−δikρ ∂2

∂t2
+

∂2

∂xi
Cijkl(x)

∂2

∂xl

¾
Gkα(x,x

0; t) = δjαδ
3(x− x0)δ(t). (2)

The second-rank Green’s dyadic Gkα(x, x
0; t) is the response to a concentrated impulsive force.

It is the response at a location x in the kth direction to a unit impulse at location x0 in the αth

direction. Here, the density ρ is assumed to be uniform throughout.

For the polycrystals considered here, the modulus tensor is no longer a constant but is function

of position. It is assumed to be spatially varying and of the form

Cijkl(x) = C0ijkl + δCijkl(x), (3)

where C0ijkl = hCijkl(x)i is the average modulus tensor with the angle brackets denoting an ensemble

average. The fluctuation about the mean is given by δCijkl which is assumed to have zero mean

hδCijkl(x)i = 0. The covariance of the moduli, an eighth rank tensor is written

Λ(|x− y|)ijklαβγδ = hδCijkl(x)δCαβγδ(y)i = Ξijklαβγδη(|x− y|). (4)

The covariance Λ consists of the tensorial component Ξ and spatial component η. Here, it is

assumed that η is a function of the magnitude of the difference of two vectors |x− y| rather than

x and y separately. This assumption implies that the medium is statistically homogeneous and

statistically isotropic. These two assumptions are used effectively by many6 , 7 and will form the

basis for the numerical models outlined below. The assumption of statistical isotropy implies

that the two-point correlation function η(r) is defined as

η(r) = e−r/L. (5)

This function defines the probability that two points separated by a distance r lie within the

same crystal. Here, L is the correlation length, a parameter related to the grain diameter.6 , 7

The Green’s function G is a random function due to the random nature of the media. Thus,

the derivation of attenuation focuses on the mean response hGi that is governed by the Dyson
6



equation, with the angle brackets hi denoting an ensemble average. Solution of the Dyson equation

gives a dispersion equation corresponding to hGi. The solution of the dispersion equation gives

the wave number which will have an imaginary part that is the attenuation of the propagating

wave. The final expressions for the longitudinal attenuation for a statistically isotropic material

may be written7

αL =
1

2ωcL

·
π

2

Z
p̂p̂ŝŝ····
p̂p̂ŝŝ····Ξ

ω5

c7L
η̂

µ
p̂
ω

cL
− ŝ ω

cL

¶
d2ŝ+

π

2

Z
p̂p̂ŝ
p̂p̂ŝ(I−ŝŝ)········Ξ

ω5

c2Lc
5
T

η̂

µ
p̂
ω

cL
− ŝ ω

cT

¶
d2ŝ

¸
, (6)

where, Ξ····p̂p̂ŝŝ····p̂p̂ŝŝ = Ξ
αβγδ
ijkl p̂αp̂iŝβ ŝj p̂γ p̂kŝδ ŝl is the inner product on the material covariance and η̂ is the

spatial Fourier transform of the two-point correlation function given in Eq. 5. The integral is

over a unit sphere defined by ŝ. The directions p̂ and ŝ define the propagation and the scattered

directions, respectively. This expression for the attenuation is used for the theoretical curves

presented below.

Three types of material are used for the comparison between the theoretical model with

the numerical results. The properties of these material are shown in Table I. The dimensionless

anisotropy factor, υ/ρc2T , introduced byWeaver,
7 is given for each material, with υ = C11−C12−2C44

defined for the cubic crystallite structure considered here. This factor dictates the degree of

scattering for the material. From Table I, it can be seen that copper has the strongest scattering

property and aluminum the weakest among the three with the factor for copper approximately

4.5 times higher than that of aluminum. The material properties of the fictitious material are

chosen such that its scattering properties lie between copper and aluminum. These materials

are chosen such that the numerical results may be compared with theory for weakly, moderately,

and strongly scattering materials.
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III NUMERICAL RESULTS

A Numerical Model

The numerical polycrystalline models used here are constructed using the Voronoi tessellation.

Geometries based on the Voronoi cell are increasingly being used in the numerical analysis of

many practical problems, such as the study of the microstructures of materials,15 , 16 , 17 liquid

structures,18 biology,19 chemistry,20 crystallography,21 geography,22 and wireless communication

problems.23 As an example of the last application, given a set of x micro-cell substations, the

closest substation must be chosen to carry a call. Such tessellations help in searching for the clos-

est neighbor. Voronoi polycrystals have also been shown to represent closely the microstructures

of many materials. Espinosa and Zavattieri24 , 25 briefly discuss the use of Voronoi tessellation

for creating a numerical model to study failure initiation in brittle materials. Ghosh, et al.15

developed the Voronoi cell finite element method (VCFEM) for plane strain analysis of hetero-

geneous microstructures. Kumar, et al.16 presented a statistical analysis of three-dimensional

grains generated by a Poisson-Voronoi tessellation.

A Voronoi tessellation is used to subdivide a given region with each Voronoi cell having a

nucleus. The nuclei positions are created to match the relevant application. Often they are chosen

randomly. As per the definition of Voronoi diagram, any point inside a Voronoi cell Vi is nearer

to the nucleus Vi than to any other nucleus Vj in the given region. Such a procedure produces

convex polygons in two-dimensional and convex polyhedrons in three-dimensional domains which

completely fill the given region. In the three-dimensional domain, every edge of a Voronoi cell

connects three grains and two vertices and every vertex connects four edges, six faces, and four

cells.16 Readers interested in further details of Voronoi tessellations are referred to articles 25 to

36. Although Voronoi polycrystals are widely used in other polycrystal applications, they have

not yet been used to study attenuation from grain scattering.
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Here, Voronoi polycrystals are created inside the required finite domain using a uniform

distribution. To obtain a uniform distribution of grain size, the minimum distance between

Voronoi nuclei is restricted. The statistics of the grain area are shown in Fig. 2. The fit is done

using the Gaussian function,

F (x) =
1

σ
√
2π

e−
(x−µ)2
2σ2 , (7)

where µ is the mean area of crystals and σ is the standard deviation. A Gaussian curve fits the

data of crystal area well confirming that a normal distribution of grain size is obtained.

The two-dimensional Voronoi polycrystals are constructed and discretized into finite triangular

elements. Then the model is extruded by a depth approximately 1 to 1.5 times of the characteristic

element size. Therefore, the two-dimensional element becomes a prism element after extrusion.

The elements in the each crystal are assigned a random material orientation in the three crystal

directions. Thus, the model is not completely three-dimensional, rather it is a psuedo-three-

dimensional model. An example model is shown in Fig. 1. For clarity, Fig. 1 was created

with large crystals and elements. Plane strain boundary conditions are chosen by restricting the

displacement of all the nodes in the out-of-plane direction. Material orientation is indicated in

Fig. 1 by the local coordinate axes shown for each crystal. The use of the infinite elements at the

vertical boundaries of the model minimize reflections of the wave from these boundaries. The

boundary conditions at the top and bottom of the model are stress free.

The loading is a pressure load applied normal to the top surface to simulate an incident

longitudinal wave. A three-cycle Gaussian pulse is used as the input pressure load shown in Fig.

3. The fast Fourier transform (FFT) of the pulse is plotted in the frequency domain graph to

verify the frequency content of the input wave. It should be noted that the depth of the models

used here, 0.075 mm, is very small compared with the wavelength of the input wave. For example,

a 5 MHz incident longitudinal wave in aluminum has a wavelength λ = 1.25 mm.

Example simulations at several time steps are shown in Figs. 4 and 5 for aluminum and copper,
9



respectively. Note that the original wave form is lost in a shorter time for copper compared with

aluminum due to copper having a higher degree of scattering. Nodal displacements at the top

and bottom surfaces of the domain are stored for use in the attenuation calculations.

B Attenuation Calculation from Numerical Results

The numerical results are obtained using the procedure outlined in the previous section. The

attenuation is calculated by26

e−αd =
|F2(ω)|
|F1(ω)| , (8)

where, α is the attenuation, d is the travel length of the elastic wave, and F1(ω) and F2(ω) are the

first and the second backwall reflections, respectively in the frequency domain. The reflections

are averaged over the nodes at the surfaces for each model and the attenuation is calculated.

Attenuation results are then averaged for different realizations of Voronoi polycrystals.

The materials examined here have different scattering properties as shown in Table I. The

attenuation calculation can be difficult to perform as the noise in the echoes is higher when the

scattering is stronger. Thus, the front and backwall echoes may be difficult to identify. When

the scattering is weak, the echoes can easily be recognized. Thus, different model sizes were used

according to the scattering properties of the material. Thus models for weakly scattering media

have larger distance between frontwall and backwall than models for strongly scattering media.

The model is made wider for strongly scattering media so that more nodal data may be obtained.

The attenuation is calculated from the backwall reflections in the model. The first two reflec-

tions are used and referred to as echo E1 and echo E2. Tapered windowing and zero padding

are done on E1 and E2. Using Eq. (8), the attenuation is obtained for these responses. The at-

tenuation is also calculated in a similar manner for the same model using homogeneous material

properties. The attenuation in the homogeneous material is due to beam spreading and small
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numerical scattering effects. The attenuation in the homogeneous material is deducted from that

of the heterogeneous material model and the final attenuation curve obtained. An example result

is shown in Fig. 6(a) and (b) for an input wave frequency of 5 MHz. The attenuation results

for frequencies far from 5 MHz are primarily noise. Attenuation results are then averaged from

models with different realizations of grains shown in Fig. 6(b). Similar attenuation data are

obtained for the models studied by varying the grain diameter and frequency of the input wave.

IV COMPARISON OF NUMERICAL RESULTS WITH THEORY

The attenuation results are obtained for aluminum, the fictitious material and copper and are

compared with the theoretical results. In the theory, a constant correlation length L is assumed.

The theoretical attenuation values for the examples materials are calculated from the expression

given by the Eq. (6). In contrast, the numerical model includes a distribution of grain diameters

as illustrated in Fig. 2. Sixty-eight percent of the grains have diameters that fall within one σ of

the mean diameter. Therefore, the results presented here are normalized to the mean diameter

Dm, as well as Dm ± σ. The numerical results are compared with the theoretical results shown in

Figs. 7, 8 and 9 for aluminum, the fictitious material and copper respectively. The results cover

a wide range of normalized frequency λ/D (1.5 to 6) and attenuation αD
¡
0.5× 10−3 to 0.15¢. The

normalized attenuation for the three materials varies by a factor of ten when compared with one

another.

The model size for aluminum, a weakly scattering material, is 5x12x0.075 mm3. Models with

600 and 800 crystals are created inside this domain. The attenuations are obtained for input

wave frequencies of 5 MHz and 15 MHz as shown in Fig. 7. The normalized attenuation αD

and wavelength λ/D, range from 0.0005 to 0.003 and 1.5 to 6 respectively. Here the attenuation

results are obtained from fifteen realizations of Voronoi crystals. The numerical results agree

well with the theory for the lower frequency range, i.e. for 5 MHz for models with 600 and 800
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crystals shown in Fig. 7(a). The numerical results shown in Fig. 7(b) i.e., for attenuation and

wavelength normalized by (Dm − σ) agree well for the higher frequency results. The agreement

for lower frequency results is best when attenuation and wavelength are normalized by (Dm + σ)

where Dm is the mean grain diameter, shown in Fig. 7(c).

It may be observed that the attenuation results for aluminum have relatively large varia-

tions. These variations are the result of the small amplitude drop. The amplitude drop between

successive reflections must lie between two limits in order for the attenuation to be calculated

accurately. If the decay is too large noise dominates the signal. On the other hand if the scat-

tering is not very large, as is the case for aluminum, the amplitude ratio, Eq.(8) is very close to

unity and may have large statistical fluctuations. This concept may be quantified by examining

the amount of scattering that takes over the propagation path. The mean free path is inversely

proportional to the attenuation of the material. Therefore, the inverse of αD quantifies the min-

imum number of crystals required along the propagation path for ultrasonic scattering that is

sufficient for reduced uncertainty (i.e., the amplitude decays by e−1). Therefore, the model size

is adjusted to address this issue. In aluminum, for αD = 10−3 the input wave needs to travel

through at least 1000 crystals to have sufficient scattering that the statistical fluctuations are

reduced. Thus, the fluctuations in the attenuation results for aluminum are due to an insufficient

number of crystals over the propagation path.

The models created for the fictitious material, a moderate scattering medium, are of the same

size as that of the model for aluminum. Attenuations are obtained for 600 crystals for various

input wave frequencies of 3 MHz, 5 MHz, 10 MHz and 15 MHz. The attenuation results are

obtained for αD and λ/D ranging from 0.025 to 0.015 and 1.5 to 4.5 respectively as shown in Fig.

8. The results obtained from different frequencies follow the same trend. For αD = 0.01, at least

100 crystals are required for sufficient scattering. Therefore, the model for this material contains

enough grains for sufficient scattering such that the attenuation fluctuations are not significant.

12



Copper, a strongly scattering material compared with aluminum and the fictitious material,

was studied using a smaller model size of 5 × 6 × 0.075 mm3. Models are created with various

number of grains including 50, 100 and 200. Attenuation results for copper are shown in Fig.

9. Since copper is a strongly scattering material the noise content is the highest of the three

materials considered. Therefore wave frequencies of 5 and 8 MHz were used such that the front

and backwall echoes could be more easily identified. The attenuation values are the highest of all

media, ranging from 0.025 to 0.15 for normalized frequency ranges from 0.75 to 5.5. For αD = 0.1,

only 10 crystals are necessary for scattering sufficient for small fluctuations in the attenuation

results. For the lower frequency range the numerical results agree well with the theory, although

those at higher frequency are less than adequate.

The plots shown include a theoretical curve based on the theory described above. For theo-

retical results, the correlation function η is an exponential form shown in Eq. 5. The numerical

results show better agreement with the theory for the lower frequency ranges. Weaver7 specu-

lated that at higher frequency η depends on the volume density of the grain boundary rather

than the grain volume. For low frequencies this relation is

V̄ =

Z
d3re−

r
L = 8πL3, (9)

where, L is the correlation length. At higher frequency the correlation length may be half of the

value calculated from Eq. 9.7 Thus, it may be assumed that L = cD, with c a constant. Equation

(9) implies c = 0.28. Here to match the numerical with the theoretical results this constant c = 1.6,

1.3 and 1.1 for calculating attenuation for aluminum, fictitious material and copper respectively.

The constant c for the example materials are determined by minimizing the root mean square

deviation of the error between the theoretical and numerical attenuation values. This constant

decreases as the degree of scattering in the material increases. At higher frequency for copper,

the results cannot be matched with the theory even by adjusting this value. The technical

reasons for these variations in L is out of scope of this work, but the numerical model can be

very useful for investigating this relation. The influence of the form of the correlation function
13



on the interpretation of attenuation is evident from these results.

V SUMMARY

In this article, a numerical model is constructed using Voronoi polycrystals for examining longi-

tudinal attenuation in materials of general interest. The attenuation is calculated for polycrys-

talline aluminum, a fictitious material and copper which are in general weakly, moderately, and

strongly scattering materials, respectively. A large range of attenuation values are obtained from

the numerical results. Various models with different grains are constructed and the longitudinal

attenuation is calculated for a wide range of frequencies. For each attenuation calculation fifteen

realizations of Voronoi polycrystals were used. Normal pressure loading was used and infinite

boundary conditions were imposed to minimize the reflections at the sides of the model.

The numerical results for attenuation show the dependence of the correlation function chosen

for theoretical models. The results shows that different correlation lengths are needed depending

on frequency and scattering strength as speculated by other authors.6 , 7 Overall, the numerical

results agree well with the theory at lower frequencies for all the materials examined. The

attenuation calculated from various models and input wave specifications follow each other for

any particular material tested here. The results for copper at higher frequency do not match well

with the theoretical model. This result may indicate that higher-order correlations are important

for strongly scattering materials, but future research is necessary to validate this hypothesis.

The numerical model can now be used efficiently to investigate the correlation function for

various parameters in the model, input wave frequency and the material type which closely relate

to real materials. The numerical approach developed here will be used in future work for a variety

of problems, including diffuse ultrasonic scattering problems. The Voronoi polycrystal is a good

model that can be used to verify theoretical models and to design new experimental methods for

14



characterization of microstructures.
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VII TABLES

Independent Elastic Density Modulus Speed (m/sec) Dimensionless

Constants (GPa) (kg/m3) (GPa) Longitudinal Shear Anisotropy

C11 C12 C44 ρ E cL cT υ/ρc2T

Aluminum 103.4 57.1 28.6 2760 70 6244 3094 -0.4127

Fictitious 200.0 130.0 65.0 5000 160 6694 3256 -1.1321

Copper 176.2 124.9 81.8 8970 110 4965 2572 -1.8931

Table 1: Single-crystal properties of materials examined.
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VIII FIGURE CAPTIONS

1. Voronoi polycrystal in three-dimensional domain after extrusion in out of plane axis.

2. (a) 300 Voronoi polycrystal and (b) grain statistics for 300 Voronoi crystals inside a unit

square.

3. Input Gaussian pulse wave for 5MHz.

4. Simulation for aluminum with heterogeneous material properties (600 crystals in a 5 mm

by 12 mm model for 5 MHz of longitudinal wave).

5. Simulation for copper with heterogeneous material properties (200 crystals in a 5 mm by 6

mm model for 5 MHz of longitudinal wave).

6. Attenuation for copper with input wave of 5 MHz for (a) one realization and (b) average

from fifteen realizations of 200 grains for a model of size 5 by 6 units.

7. Theoretical and numerical attenuation results for aluminum.

8. Theoretical and numerical attenuation results for fictitious material.

9. Theoretical and numerical attenuation results for copper.
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Figure 1: Voronoi polycrystal in three-dimensional domain after extrusion in out of plane axis.
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Figure 2: (a) 300 Voronoi polycrystal and (b) grain statistics for 300 Voronoi crystals inside a unit square.
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Figure 4: Simulation for aluminum with heterogeneous material properties (600 crystals in a 5 mm by 12 mm

model for 5 MHz of longitudinal wave).
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Figure 5: Simulation for copper with heterogeneous material properties (200 crystals in a 5 mm by 6 mm model

for 5 MHz of longitudinal wave).
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Figure 6: Attenuation for copper with input wave of 5 MHz for (a) one realization and (b) average from fifteen

realizations of 200 grains for a model of size 5 by 6 units.
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Figure 7: Theoretical and numerical attenuation results for aluminum.
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Figure 8: Theoretical and numerical attenuation results for fictitous material.
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The scattering of elastic waves in polycrystalline materials is relevant for ultra-

sonic materials characterization and nondestructive evaluation (NDE). Heterogeneity in the

material ensures that ultrasonic scattering will take place, with the scattering dependent

on frequency. Ultrasonic backscatter and attenuation are used widely to extract the mi-

crostructural parameters such as grain size. Accurate interpretation of experimental data

requires robust ultrasonic scattering models. Such models typically assume constant den-

sity, uniform grain size and randomness hypotheses. The accuracy and limits of applicability

of these models cannot be fully tested with experiments due to practical limits of real ma-

terials processing. Here, this problem is examined in terms of numerical simulations using

Voronoi polycrystals.

The Voronoi diagram is used to model microstructures of polycrystalline materials.

It is a method of geometric subdivision of space that is widely used in numerous science and

engineering applications. The “Method of Virtual Nuclei” is presented to create Voronoi

polycrystals in finite domains within any arbitrary convex geometry. Algorithms are de-

veloped to construct elongated Voronoi polycrystals with a specified aspect ratio and angle

of orientation. Microstructures are presented of various processed materials such as rolled

materials and functionally graded materials. The polycrystals are created for various dis-



tributions of grain size.

The Voronoi cells are discretized using finite elements. Wave propagation is studied

by integrating the system directly in time. Six-noded prism elements are used for the

discretization. ABAQUS/Explicit is used as the finite element software package. Voronoi

polycrystals with cubic symmetry are used and given random orientations. Therefore,

the bulk material is statistically isotropic. Example numerical results are presented for

materials with various degrees of scattering that are of common interest. Simulations from

ABAQUS/CAE are also presented for these materials. The simulations provide insight into

the attenuation models relevant for polycrystalline materials. The numerical results are

presented and compared with scattering theory. The theory for elastic wave attenuation

is derived for a two-dimensional domain using elastodynamics and stochastic wave theory.

The dependence of attenuation on the frequency of the input wave and the mean grain

diameter are examined using the numerical results.

The numerical scattering results suggest that for the plane stress case the two-

dimensional theory is better for weakly scattering media, while the three-dimensional is

better for strongly scattering media. The results from plane strain agree well with the three-

dimensional theoretical model for all materials. These results are anticipated to impact

ultrasonic NDE of polycrystalline media.
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Chapter 1

Introduction

Ultrasonic techniques are widely used to extract microstructural parameters such

as grain size and grain structure. Heterogeneity in the material ensures that ultrasonic

scattering will take place, with the scattering dependent on frequency. The amplitude

of the response reduces as the wave propagates due to scattering, a phenomenon called

attenuation. Grain parameters and flaws can be inferred by knowing the attenuation in

the material. Attenuation is calculated by examining the reduction of amplitude of the

propagating wave in the media. The frequency dependence of attenuation can be related

to the grain diameter. Bhatia [1] discussed that the attenuation depends on the frequency

of the propagating wave and the grain diameter. Papadakis [2] presented the three distinct

regions of attenuation α for grain size D and frequency f as

α ∝ f4 for λ > D,

α ∝ f2 for λ < D,

α ∝ 1/D for λ¿ D.

(1.1)

where λ is the wavelength.
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Bhatia [3] discussed the dependence of the parameters assuming negligible varia-

tion in the elastic moduli from grain to grain for a wavelength that is large compared with

the grain diameter. He also showed the attenuation due to thermal agitation resulting in

local fluctuations in the density in the material. The theory presented by Bhatia assumes

spherical grains and polycrystals that are weakly anisotropic with grains that are randomly

oriented. Hirsekorn [4] calculated the attenuation as a function of wave number and grain

radius without limitation of the Rayleigh region. She presented the theory to calculate the

velocity and attenuation of different wave types in polycrystals with any symmetry. She

also presented the theory for plane shear waves in polycrystals [5] with cubic symmetry and

randomly oriented grains.

Evans, et al. [6] presented a different approach for the attenuation expression for

the Rayleigh and stochastic regions. His approach is based on the numerical computa-

tion of the cross section and extreme-value size distributions of the predominant scatterers

assuming each scatterer is small compared with the wavelength.

The theory for attenuation in a two-dimensional domain is derived using the three-

dimensional model presented previously by Weaver [7] and Turner [8] using the elastody-

namic, stochastic theory of scattering. Their model for the attenuation includes the as-

sumption of grains with random orientation. Therefore, the bulk material is assumed to be

statistically isotropic. This assumption is also made by Weaver [7].

Analysis of experimental data is made using assumptions such as constant density,

single grain size and randomness hypotheses. These measurements are made by sending

ultrasonic waves through the media using transducers. In experiments there are also limi-
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tations on the frequency ranges of the available transducers. Analytical methods cannot be

used for very complex problems. Numerical study eliminates the limitations of the exper-

iments and helps in modeling such that the material behavior at higher frequency ranges

and for complex media may be understood. These models help to understand how waves

interact and propagate in the media and the different mode conversions. Numerical models

also allow the microstructural parameters to be controlled precisely by the user. Here a

numerical model is presented for studying ultrasonic attenuation.

Different numerical methods have been used previously for modeling wave propaga-

tion in complex media. One of the methods developed is the finite difference (FD) method.

FD can be used to model the wave equation as shown by Alford, et al.[9] with fine grids.

Alford used an explicit second order difference scheme to approximate the governing wave

equation in a homogeneous region due to a line source distribution. Fornberg [10] pointed

out the errors in FD methods and improved the method. He introduced the pseudospectral

method to solve the elastic wave equation in discontinuous media with smoothing at the

interface.

Scalerandi, et al. [11] presented a new simulation method known as the Local In-

teraction Simulation Approach (LISA). This method is very convenient for utilizing parallel

computing to solve the problem. Each processor is mapped one-to-one with cells of the

discretized model. Each cell can be given different material properties since the processors

are mutually independent and the boundary nodes can be given the interface properties.

The computational time is greatly reduced since each cell is treated as homogeneous. The

problem is based on a local interaction simulation approach and Preisach-Mayergoyz (PM)
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space model of Guyer and McCall [12],[13]. The PM space is a density space consisting the

mesoscopic structural features and their elastic properties. This space describes the elastic

properties of the materials.

Fellinger, et al. [14] introduced a new method known as Elastodynamic Finite

Integration Technique (EFIT) to model the elastic wave scattering in homogeneous and

heterogeneous, isotropic and anisotropic linear elastic media. EFIT uses the finite integra-

tion technique to discretize Maxwell’s equation. Schubert, et al. [15] extended EFIT in

cylindrical coordinates for cylindrical geometries system which helps to reduce it from a

three-dimensional problem to a two-dimensional one.

Lui, et al. [16] used the boundary element method (BEM) for a two-dimensional

domain for detecting cracks or inclusions in the material. A two-dimensional elastodynamic

boundary integral equation is used to solve the multiple scattering problem due to cracks and

inclusions. The computational cost increases as the number of inclusions to be discretized

increases. In this method he also pointed out that as the scattering increases the difficulties

in analyzing the results due to background noise in the signals also increase. The method

includes multiple scattering without any difficulties.

The finite element method (FEM) is used here as the numerical method to analyze

elastic wave propagation in heterogenous media. FEM is very widely used for static and

dynamic analysis. The Voronoi polycrystal is used as the basis geometry for the finite

element analysis. FEM is used to discretize the partial differential equation to obtain the

solution. Barbe, et al. [17] used a network of cubes for meshing Voronoi polycrystals and

distributed the material parameters at the Gauss points. Here prism elements are used
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to mesh the Voronoi polycrystals. A MATLAB [18] code is generated to construct and

mesh the numerical model. The “Method of Virtual Nuclei” is developed to construct

Voronoi polycrystals in finite domain for any arbitrary convex geometry. The algorithms

for constructing Voronoi polycrystals are explained in detail in Chapter 2. ABAQUS is

used to obtain the FEM solutions of wave propagation in Voronoi polycrystals. ABAQUS

can formulate the plane stress model with infinite boundary conditions. These infinite

boundaries absorb the energy such that reflection is prevented. The model with plain

strain boundary conditions is also formulated by constraining the out of plane displacement

of all the nodes in the model. The FEM modeling using ABAQUS is explained in detail in

Chapter 3.

Models with various grain diameters over a range of frequencies are used here for

the attenuation calculation. The procedure for obtaining the attenuation of the material

from the numerical results is explained in detail in Chapter 4. ABAQUS simulations are

presented for visualization of the wave propagating in the model. Numerical calculations are

shown for materials with various degree of scattering. Examples results are obtained for four

materials, namely aluminum, fictitious, nickel and copper. Copper has the highest degree

of scattering and aluminum the least among the four materials. The material parameters of

the fictitious material are set to have scattering properties between aluminum and copper.

The scattering theory in two- and three-dimensional domains is explained in Chap-

ter 5. The numerical results are then compared with two-and three-dimensional theories to

verify the authenticity of the numerical model for the plane stress and plane strain cases.

The numerical results obtained are used to observe the dependence of parameters for atten-
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uation and the scattering theory, authenticity and the robustness of the numerical model.

To verify the model for different boundary conditions, plane stress and plane strain analyses

are both done.
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Chapter 2

Voronoi Polycrystal

2.1 Introduction

Geometries based on the Voronoi cell are increasingly being used in the numerical

analysis of many practical problems, such as the study of the microstructures of materials

[19][20][21], liquid structures [22], biology [23], chemistry [24], crystallography [25], geogra-

phy [26], and wireless communication problems [27]. As an example of the last application,

given a set of x micro-cell substations, the closest substation must be chosen to carry a

call. Such tessellations help in searching for the closest neighbor. Voronoi polycrystals have

also been shown to represent closely the microstructures of many materials. Construction

of numerical models of such microstructures for relevant materials should be done with

efficiency. Espinosa and Zavattieri [28][29], briefly discuss the use of Voronoi tessellation

for creating a numerical model to study the failure initiation in brittle materials. Ghosh,

et al. [19] developed the Voronoi cell finite element method (VCFEM) for plane strain

analysis of heterogeneous microstructures. Kumar, et al. [20] show a statistical analysis
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of three-dimensional grains generated by a Poisson-Voronoi tessellation. In many of these

applications, the polycrystalline geometry is needed in a finite domain.

A Voronoi tessellation is a method to subdivide a given region. Each Voronoi cell

has a nucleus. The nuclei positions are created to match the relevant applications. Often

they are chosen randomly. As per the definition of the Voronoi diagram, any point inside

a Voronoi cell V is nearer to the nucleus V than to any other nucleus in the given region.

Such a procedure produces convex polygons in two-dimensional and convex polyhedrons

in three-dimensional domains which completely fill the given region. In three-dimensional

domain, every edge of a Voronoi cell connects three grains and two vertices and every vertex

connects four edges, six faces, and four cells [20].

In this chapter, the creation of uniform Voronoi polycrystals in arbitrary domains

is discussed. The focus here is on creating microstructures with elongated and oriented

grains in arbitrary domains. In the next section, the Voronoi polycrystal is discussed. In

section 3, the general algorithm, called the Method of Virtual Nuclei (MVN) is introduced.

This method is used for creating the prescribed microstructures including two-dimensional

examples for grain elongation and grain orientation. In section 4, the three-dimensional

extension of MVN is used for additional examples.

2.2 Voronoi Polycrystals

A Voronoi polycrystal is created by generating a set of points, which represent the

Voronoi nuclei. Perpendicular bisectors are drawn between neighboring pairs of nuclei in

a given space. The intersection of these perpendicular bisectors gives the vertices of each
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Figure 2.1: 2-D Voronoi diagram for a set of 100 random points.

Voronoi cell. In general, nuclei at the outer edges of the space will not have neighboring

nuclei in all directions. Therefore, some of the vertices of theses cells may lie very far

away, even at infinity. Fig 2.1 shows a Voronoi diagram with 100 nuclei generated by the

above method. The dots represent the Voronoi nuclei of each cell. Generation of a Voronoi

diagram by this method does not guarantee a closed figure without vertices at infinity.

Many applications involving polycrystalline materials require finite domains.

To overcome the difficulty associated with the infinite vertices, the required ge-

ometry inside which a Voronoi diagram is to be created can be extracted from Fig. 2.1 as

shown in Fig. 2.2. One drawback with this method is that the number of Voronoi cells in

the extracted portion is not known a priori. To determine the exact number of cells inside

the chosen domain a count must be made. In addition, the boundary cells may not have

the appropriate Voronoi properties. Finally, not all polycrystals may contain nuclei. To

improve upon these limitations, a method is described in the next section that allows a
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Figure 2.2: Voronoi plot obtained by extracting a subspace from the main diagram.

Voronoi polycrystal to be created efficiently in an arbitrary domain.

2.3 Method of Virtual Nuclei

The general description for easily creating the desired Voronoi polycrystals is dis-

cussed using a two-dimensional format such that the explanation is clearer. Results using

the three-dimensional extension of this method are given in section 4. This algorithm elim-

inates the use of any other method of cutting the required domain from a Voronoi diagram.

Consider a unit square domain in which the Voronoi polycrystal is to be created.

Coordinates of Voronoi nuclei are selected within this domain. The position of these nuclei

may be chosen using any type of distribution, such as a Poisson distribution. For the case

of interest here, the nuclei positions are chosen such that the grain size is as uniform as

possible in the domain. For this example, 100 random Voronoi nuclei are selected. These

nuclei are referred as “real nuclei.” After the positions of the 100 real nuclei have been
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Figure 2.3: Voronoi plot with real and virtual nuclei.

determined, “virtual nuclei” are created. These nuclei are reflections in the space of the

nuclei closest to the borders of the area of interest about the respective sides of the domain.

The nuclei closest to the boundaries are the ones when joined forms a closed polygon and

all the real nuclei falls inside or on the boundary of this polygon. Perpendicular bisectors

between real and virtual nuclei are, by definition, the boundaries of the domain of interest.

Fig. 2.3 illustrates this method with 100 Voronoi nuclei inside a unit square region.

The vertices of the Voronoi cells contained inside the region (cells associated with

the real nuclei) are extracted and become the needed final polycrystal, as shown in Fig. 2.4.

Thus, a Voronoi polycrystal constructed using the method of virtual nuclei will have cells

at the boundaries containing nuclei and having appropriate properties, i.e., every edge of a
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Figure 2.4: Extracted Voronoi plot with 100 real nuclei.

Voronoi cell connects three grains and two vertices and every vertex connects four edges, six

faces, and four cells [20]. Here the exact number of cells in the unit square is also known.

The algorithm for the Method of Virtual Nuclei is given as Algorithm 1.

Algorithm 1 The Method of Virtual Nuclei

1. Construct the geometry of the chosen domain.

2. Obtain the coordinates of all “real” Voronoi nucleus within the chosen domain.

3. Reflect these points about the boundaries of the chosen domain. These are the “virtual”

Voronoi nuclei.

4. Plot the Voronoi diagram for all the nuclei, both real and virtual.
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5. Extract the vertices of the Voronoi cells associated with the real nuclei.
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Figure 2.5: Voronoi diagram within different shapes.

A Voronoi polycrystal for an arbitrary geometry can also be obtained with this

method easily. The required geometry inside which the Voronoi polycrystal is to be created

should be closed and a convex polygon of any number of sides. The restriction to poly-

gons is due to the linear boundaries of the Voronoi cells. In Fig.2.5, four example Voronoi

polycrystals of different shapes are shown using Algorithm 1. Fig. 2.5(a) is a Voronoi poly-

crystal within a triangle; 2.55(b) is for an octagon; 2.55(c) shows the Voronoi polycrystal

for an arbitrary polygon. Fig. 2.5(d) is the Voronoi polycrystal within a polygon of 5000
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sides - an approximation of a circle. In general, Voronoi diagram has the complexity of the

order O(n3). The computational time increases with the number of edges. The Method of

Virtual Nuclei also provides the framework for construction of more complex microstruc-

tures relevant to many engineering problems. During the processes of rolling, extruding

and pressing the grains in materials change shape and may elongate. In some cases, the

elongated crystals may have an angle of orientation relative to the boundaries. The Method

of Virtual Nuclei is now exploited to create polycrystalline structures of interest in science

and engineering: elongated grains with an arbitrary orientation. This technique widens the

areas of applicability of the Voronoi polycrystal.

2.4 Grain Elongation

The procedure for creating a Voronoi polycrystal with elongated grains essentially

involves a mapping from a stretched domain. An example is presented here for grains with

a 3 to 1 aspect ratio within a unit square. The unit square is first elongated in the direction

perpendicular to the desired major grain axis. The Voronoi polycrystal is constructed and

the rectangular box is then compressed. The resulting microstructure is that of elongated

grains. The elongated grain will not be true Voronoi cells as their boundaries no longer

remain perpendicular bisectors between the Voronoi nuclei after compression. The size of

the rectangular box depends upon the required aspect ratio.

Therefore, the required rectangle size for an aspect ratio 3 is of 1 unit by 3 units.

The Voronoi diagram is obtained as shown in Fig. 2.6. The domain shown in Fig. 2.6 is

then compressed horizontally resulting in the microstructure shown in Fig. 2.7.
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Figure 2.6: Voronoi plot within a rectangle so that when compressed the required ratio is
obtained.

Since it is compressed horizontally the horizontal coordinates of all the vertices of

the Voronoi cells are divided by the required aspect ratio. In Fig. 2.7, the aspect ratio of

3 is chosen for the Voronoi polycrystal within a unit square. Algorithm 2 summarizes the

method.

Algorithm 2 Construction of Voronoi polycrystals with elongated grains

1. Determine the geometry inside which Voronoi polycrystal is to be created.

2. Multiply the respective coordinates of the geometry by the desired grain aspect ratio.

3. Choose the Voronoi nuclei inside the elongated geometry.
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Figure 2.7: Voronoi plot of 400 elongated grains with aspect ratio of 3, obtained by com-
pressing the domain shown in Fig. 2.6.

4. Reflect the “real” nuclei about the boundaries of the elongated geometry. These are

the “virtual” Voronoi nuclei.

5. Plot the voronoi diagram inside the elongated geometry.

6. Extract all Voronoi cells corresponding to the “real” nuclei.

7. Create Voronoi polycrystal in the elongated geometry.

8. Divide all respective coordinates of the extracted Voronoi vertices by the aspect ratio.
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Figure 2.8: Voronoi plot inside the geometry determined.

2.5 Grain Orientation

Voronoi polycrystals with specified angles of orientation can also be obtained using

the Method of Virtual Nuclei as a framework. First, the unit square is rotated to the

required angle θ. Then the Voronoi nuclei are selected inside the parallelogram and the

Voronoi polycrystal is constructed. Finally the geometry is rotated back resulting in a

Voronoi polycrystal that has the required angle of orientation inside the unit square.

When both elongated and tilted Voronoi polycrystals are required, the geometry

is rotated and elongated simultaneously before depositing the Voronoi nuclei. The rotated

geometry is obtained such that when it compressed and rotated back, the required Voronoi

polycrystal is created for the required geometry. The general algorithm is outlined in

Algorithm 3.
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Figure 2.9: Voronoi plot of 400 elongated grains with aspect ratio 3 and angle of orientation
45◦.

The required dimensions of the domain in Fig. 2.8 are determined such that the

compressed and tilted geometry gives the required geometry as shown in Fig. 2.9. Figure

2.8 is an example for 400 Voronoi cells within a unit square, with a grain aspect ratio of 3

and an angle of orientation of the cells of 45◦ relative to the domain boundary using this

method, as described in Algorithm 3. This procedure can be implemented for any arbitrary

geometry as well.

Algorithm 3 Construction of Voronoi polycrystals with orientated grains

1. Determine the geometry inside which Voronoi polycrystal is to be created

2. Tilt the geometry at an angle equal to the angle of orientation of the cells required.
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3. Choose the Voronoi nuclei inside the tilted geometry.

4. Reflect the “real” nuclei about the boundaries of the elongated geometry. These are

“virtual nuclei” Voronoi nuclei.

5. Plot the Voronoi diagram inside the tilted geometry.

6. Extract all Voronoi cells corresponding to the “real” nuclei.

7. Create Voronoi polycrystal in the tilted geometry.

8. Tilt back all the voronoi vertices by the angel of orientation required.

Some more examples are shown in Fig. 2.10 for different orientation angles in

a triangular domain with an aspect ratio of the crystals of 3. Similarly, elongated and

orientated Voronoi crystals can be obtained inside any closed convex polygon using the

algorithms given above.

A model for Functionally Graded Materials (FGM) is developed as shown in the

Fig. 2.11. The model is made to have variable material and grain size distribution in a

two-dimensional domain. A uniform grain size and variable material distribution is shown

in Fig. 2.11(a). Figures 2.11(b)-(d) show quadratic grain size distribution in the horizontal,

vertical, and 45◦ line, respectively. Any axis can be made nth order depending on the

variation in the model required and the direction of variation.
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Figure 2.10: Elongated and tilted Voronoi crystals inside a triangular domiain. The aspect
ratio is 3 and tilt angles of the vornoi crystals are (a) 0◦ (b) 30◦ (c) 45◦ (d) 90◦ with vertical
axis.
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Figure 2.11: Numerical model for FGM (a) uniform (b) quardradic vertical axis (c) quadratic
horizontal axis (d) quadratic vertical and horizontal axis.
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2.6 Three-Dimensional Models

The same procedures for two—dimensional domains may be extended to three—

dimensional Voronoi polycrystals as well. Figure 2.12 shows a three-dimensional Voronoi

polycrystal within four different geometries. The algorithms used to construct them are

identical as described above with an addition of one more axis.

0
0.5

1

0
0.5

1

0

0.5

1

(a) Cube 0
0.5

1

0
0.5

1

0

0.5

1

(b) Prism

0
0.5

1

0

0.5

1

0

0.5

1

(c) Octahedron prism 0
0.5

1

0

0.5

1

0

0.5

1

(d) Cylinder 

Figure 2.12: 3D Voronoi polycrystals within different geometry.

In three-dimensional domains, the geometric orientation of the Voronoi polycrys-

tals can be made with respect to any or all three coordinate axes. The orientation angle can
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Figure 2.13: Tilted and elongated Voronoi polycrystals inside an unit cube (a) Solid plot
(b) Contour plot of the surfaces.

also be different with respect to the respective axes. In Fig. 2.13, 200 elongated Voronoi

polycrystals with an aspect ratio 3 and oriented at 45◦with respect to x-axis is shown.

2.7 Grain Statistics

In this section, statistical analysis is done for Voronoi polycrystals in a two-

dimensional domain. 300 voronoi polycrystals inside an unit square for two different random

realizations are shown in Fig 2.14. Statistics for the grain area and the number of edges are

studied. Restricting a minimum distance between any two crystals, a normal distribution

of Voronoi nuclei is obtained. The fit is done by using the Gaussian function,

F (x) =
1

σ
√
2π
e−

(x−µ)2
2σ2 , (2.1)

where µ is the mean area of crystals and σ is the standard deviation. A Gaussian curve fits

the data of crystal area well confirming that a normal distribution of grain size is obtained.

Kumar, et al. [20] presented the statistical analysis for a Poisson distribution of

three-dimensional Voronoi polycrystals for different parameters. Two examples of a Poisson
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Figure 2.14: Grain statistics for 300 Voronoi crystals inside a unit square.

distribution of two-dimensional Voronoi polycrystals are shown in Fig. 2.15 for two different

random realizations. The Poisson fit to the distribution is given by,

F (x) =
e−µµx

x!
, (2.2)

where µ is the mean area of crystals and
√
µ is the standard deviation.

A Poisson distribution of Voronoi nuclei is made by removing the minimum dis-

tance requirement as discussed for Gaussian distribution between any two crystals and

randomly select the Voronoi nuclei. Matlab [18] function rand, which generates uniformly

distributed random numbers in the interval [0,1], is used to generate random Voronoi nuclei.
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Figure 2.15: Grain statistics for 300 Voronoi polycrystals in a unit square with Poisson
distribution.

A normal distribution of Voronoi nuclei is used to obtain the results shown in the following

chapters. This type of distribution is used since the scattering theories typically assume

uniform grain size.

The probability distribution of edges is shown in Fig. 2.16 for varying number

of realizations with 200 crystals. The results are obtained by creating random numbers of

normally distributed 200 crystals inside a unit square of 1mm by 1mm. The probability

distribution of the number of edges for a two-dimensional Voronoi polycrystal is obtained

for 5, 15, 500, 10000 realizations. Voronoi polycrystals with other types of distributions can
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also be obtained with ease. Figure 2.16 shows consistent probability for a different number

of realizations of the grains.
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Figure 2.16: Probability distribution of edges of 200 two-dimensional Voronoi polycrystals
obtained based on a different number of realizations.

2.8 Summary

In this chapter, the Method of Virtual Nuclei (MVN) has been discussed with

applications to creation of Voronoi polycrystals within arbitrary domains. Examples have

been presented for two- and three-dimensional domains. The MVN allows the creation of
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elongated grains with arbitrary orientations to be done with ease. The applications for

science and engineering problems are expected to be numerous. The general technique may

be used for two or three-dimensional domains. Statistical analysis was presented for the

two-dimensional Voronoi polycrystals.
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Chapter 3

Finite Element Modeling

The finite element method (FEM) is a numerical method for solving partial differ-

ential equations for complicated geometries and boundary conditions. It is one of the most

powerful numerical methods used to model complex mathematical problems. In Chapter 1

other numerical methods have been discussed in brief. FEM can produce an approximate

solution to a problem and the accuracy can be generally increased as desired. The general

three steps for any finite element analysis are governed by:

• Pre-processing of input data to discretization functions and equations,

• Solution of the matrix equation, and,

• Post-processing of output results, to retrieve the solution from the discretization.

Today, with supercomputers, FEM is used to solve large problems with ease and

efficiency. There are also numerous FEM commercial software packages available today to

solve complex problems, as well as softwares to mesh very complex shaped models for finite
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element analysis.

Espinosa, et al. [28] showed the implementation of finite element methods for

static analysis of microstructures using the Voronoi polycrystal. In this thesis, the finite

element method is used to model the dynamic response problem in the time domain. A

model to simulate elastic wave propagation in polycrystalline materials is constructed using

the Voronoi polycrystal as the basis for the polycrystalline geometry. ABAQUS/Explicit

[30], a commercial finite element software package is used for the numerical analysis of

elastic wave propagation in Voronoi polycrystals. The finite element method is used to

monitor the nodal displacements at the boundaries for an applied pulse pressure load. A

Matlab [18] code is developed to create and mesh the model for the finite element analysis.

3.1 Mathematical Formulation

ABAQUS was used for all FEM analyses. Here the basic equations for the math-

ematical formulation for FEM are stated for clarity. The ABAQUS [30] manuals may be

consulted for more details. The equation of motion for the dynamic response in the time

domain is given by

σij,i(x, t) + bj(x, t) = ρ(x)
..
uj(x, t), (3.1)

where ρ is the density, σij is the stress,
..
uj is the acceleration of the body and bj is the body

force. Wave propagation in a perfectly linearly elastic solid obeys Hooke’s law which states

that the stress tensor σij is proportional to the strain tensor εkl,

σij = cijklεkl, (3.2)
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where

εkl =
1

2
(uk,l + ul,k) (k, l = 1, 2, 3), (3.3)

and cijkl is the elastic stiffness tensor. Symmetry indicates that cijkl = cjikl = cklij for σij

and εkl symmetric tensors. There are 21 independent elastic stiffness constants which refer

to a crystal which possesses no rotational symmetry. These materials are known as general

anisotropic materials. For crystal systems of higher symmetry this number is considerably

reduced. The values of the elastic constants depend on the orientation of these axes relative

to the crystal lattice. ABAQUS/Explicit [30] uses explicit integration with diagonal lumped

element mass matrices to solve dynamic problems. The equation of motion is integrated

using the explicit central difference integration rule,

.
u
(i+ 1

2
)
=

.
u
(i− 1

2
)
+
M t(i+1) + t(i)

2

..
u
(i)
, (3.4)

u(i+1) = u(i)+ M t(i+1) .u(i+
1
2
)
,

where u,
.
u and

..
u are displacement, velocity and acceleration respectively. The superscripts

(i) are the increment number and (i± 1
2) are the midincrement values. From the principle

of virtual work, the basic equations for dynamic equilibrium at time t is,

..
u
(i)
=M−1(F(i) − I(i)), (3.5)

where M is the diagonal lumped mass matrix, F is force vector and I is the internal

force vector. The initial inversion of the lumped mass matrix, which is tridiagonal, for

calculating the acceleration makes the calculation inexpensive. Thus, the explicit method

does not require any iterations or stiffness matrix. The initial conditions of velocity and
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acceleration can be defined by the user. Otherwise, zero is taken as the default value. For

computing the acceleration
..
u, n operations are required where n is the degrees of freedom

of the model. This method uses a large number of small increments of time step efficiently.

The computational cost of this procedure is directly proportional to the size of the finite

element model.

3.2 Meshing

Meshing is a critical part for finite element analysis. The mesh size is proportional

to the size of the displacement vector u. The step time is proportional to the smallest

transit time of a longitudinal wave across any element in the mesh,

∆t ≈ Lmin
cL

, (3.6)

where Lmin is the size of the smallest element and cL is the longitudinal wave speed. This

is known as the Courant-Friedrichs-Lewy condition for stability. Thus the time step must

be reduced as the size of the element decreases. The time step will also decrease if there

are only a few number of small elements compared with the whole model mesh. Therefore,

care should be taken to obtain a mesh with uniform size of elements as much as possible.

Six-noded triangular prism elements are used here to mesh the domain. The depth of the

domain is equal to the depth of the prism element. First, the model is constructed in a

two-dimensional domain and meshed using Delaunay triangulation. Then the triangular

elements are extruded to form prism elements. Therefore, the model can be approximated

as a two-dimensional as there is no scattering of elastic waves in the out of plane direction.
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Figure 3.1: Six noded triangular prism element.

The six noded triangular prism element is shown in Fig. 3.1. The depth of the

prism is generally 1.25−1.50 times the length of one of the side of the equilateral triangular

face denoted by ∆x. The meshing is done crystal by crystal in the following way:

• The nodes are deposited at the boundaries of each crystals such that distance between

any two nodes is equal to the element size ∆x. When the length of the boundaries

are not multiples of ∆x, then some of the elements are of different size which is

unavoidable and acceptable.

• A uniform grid of points is created inside the domain such that the particular Voronoi

polycrystal fits into the domain. The distance between any two points is made such

that a uniform mesh is obtained with element size equal to ∆x.

• Each Voronoi crystal is reduced by a very small percentage and the uniform grid is
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laid over it such that they overlap each other. The points common to each Voronoi

crystal and the uniform grid are taken as the nodes inside the Voronoi polycrystal.

The uniform grid is laid over the reduced crystal so that points inside the crystal are

not too close to the boundaries of the actual crystal. Generally, the reduction ratio

is chosen in such a way, that the perpendicular distance between a reduced side and

its actual side is approximately the size of the element ∆x. Therefore, the crystal has

nodes on the boundaries and inside.

• These nodes are then used to form Delaunay triangulation using MATLAB. All the

crystals are meshed by looping over the number of crystals in the model.

Using this method, each crystal is meshed and assembled to form the complete

mesh of the model. Here each crystal is meshed separately to avoid errors such as one

element being shared by two or more crystals making an irregular surface for these crystals.

The procedure is shown schematically in Fig. 3.2. In Fig. 3.2(a) the crystal marked in

black is used to show the above procedure. The nodes on the boundary of a crystal are

shown in Fig. 3.2(b). Figure 3.2(c) is plotted to show the overlapping of a uniform grid in

blue dots over the reduced crystal denoted by the red polygon. The polygon in black is the

actual crystal. Figure 3.2(d) shows all the nodes used for meshing the crystal. The meshed

crystal is shown in Fig. 3.2(e). All the crystals are meshed and assembled as shown in the

Fig. 3.2(f).
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Figure 3.2: Steps to mesh the model (a)Voronoi plot (b) Nodes on the boundaries of a grain
(c) Unifrom grid over a grain (d) Nodes obtained from the unifrom grid (e) Mesh the grain
(f) Completed mesh of the model.

3.2.1 Infinite element

Infinite elements reduce the reflections from the side wall. These elements are often

known as “quiet” boundaries. These elements have some damping properties to absorb the

wave such that little energy is reflected. The material properties are isotropic which is

the requirement of ABAQUS. The software decides the damping values also to prevent

maximum reflections from the boundaries. There are some reflections due to numerical

errors. The infinite element is shown in the Fig. 3.3. The procedure for node numbering
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of an infinite element required by ABAQUS is shown in the figure. The theory of “quiet”

boundaries is explained in detail in the ABAQUS/Explicit [30] manuals.
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Figure 3.3: Infinite element node numbering.

3.3 Material Properties

For the attenuation calculations two types of models are created. The first one

with homogeneous material properties and the second with crystal-specific heterogeneous

material properties. The infinite elements for both types have isotropic material properties.

For the heterogeneous case, the elements within each crystal are given orthotropic material

symmetry. The orthotropic elements for a given crystal have random material orientation

in all the three directions. Models are created for four types of material, namely aluminum,

fictitious, nickel and copper.
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Table 3.1: Single-crystal properties of materials examined.

Independent Elastic Constants Density Young’s Modulus
C11 (GPa) C12 (GPa) C44 (GPa) ρ(Kg/m3) E (GPa)

Aluminum 103.4 57.1 28.6 2760 70

Fictitious 200.0 130.0 65.0 5000 160

Nickel 243.6 149.4 119.6 8908 200

Copper 176.2 124.9 81.8 8970 110

Table 3.2: Material characteristics.

cL cT υ/ρc2T
Aluminum 6244 3094 -0.4127

Fictitious 6694 3256 -1.1321

Nickel 5889 3163 -1.6498

Copper 4965 2572 -1.8931

The material properties for the materials used are shown in Table. 3.1. In Table

3.2 the longitudinal and shear wave speeds for the material are given and a dimensionless

anisotropy factor υ/ρc2T , introduced by Weaver [7], is given for the materials, where υ =

C11 − C12 − 2C44. The dimensionless anisotropy factor dictates the degree of scattering

for the material. From Table. 3.2, it can be seen that copper has the strongest scattering

properties and aluminum the weakest among the four. All of the materials have cubic

crystallite structure. From the Table 3.2 the dimensionless anisotropy factor for copper is

approximately 4.5 times higher than aluminum. The material properties of the fictitious

material are chosen such that its scattering properties are between copper and aluminum.

These materials are chosen such that the numerical results can be compared with strong,

weak and moderate scattering material.
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3.4 Boundary Conditions

The plane stress formulation is constructed and the boundary conditions are ap-

plied to avoid reflections from the side of the model as much as possible. The displacements

in the x-axis and y-axis at the corners are set to zero while they are free everywhere else

in the model. The model is free in the out of plane direction. The use of the infinite el-

ements minimizes reflections of the wave from the boundaries. The loading is a pressure

load normal to the surface to simulate longitudinal waves. The boundary conditions are

shown in Fig. 3.4. This plot is obtained from the ABAQUS/Explicit CAE. For simplicity,

the model shown in Fig. 3.4 has ten crystals and the element size is 200 µm. The loading

is shown in the figure by the arrows perpendicular to the top surface of the model. The

infinite elements are shown at both the sides of the model. At the bottom left-hand corner

the material orientation is shown by the yellow lines. The boundary conditions are marked

by arrow heads at the bottom right and left corner of the model in orange. For the plane

strain boundary condition the model has zero displacements in the out of plane direction

as shown in Fig. 3.5.
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Figure 3.4: Model with incident longitudinal wave and plane stress boundary conditions.
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Figure 3.5: Model with incident longitudinal wave and plane strain boundary conditions.



40

The loading is done using a Gaussian pulse at the required frequency as shown in

Fig. 3.6. The y-axis of the plot is shown as LOAD for the model. The fast Fourier transform

(FFT) of the pulse is plotted in the frequency domain graph to verify the frequency of the

input wave. The depth of the model is 0.075 mm is very small compared with the wavelength

of the input wave. Typically, for a 5 MHz incident longitudinal wave the wavelength λ is

1.2488 mm. Therefore, the scattering is expected to be independent of the depth of this

model with plane stress boundary conditions.
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Figure 3.6: Input Gaussian pulse wave.

3.5 Convergence

The convergence in the explicit method is guaranteed as long as the problem is sta-

ble. As the element size decreases the computational time also increases. The convergence

is checked for the optimum element size to obtain accurate attenuation results. Convergence

is checked for aluminum for an incident longitudinal wave.

Example backwall reflections are shown in Fig. 3.7 for a model with a different
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element sizes using the same distribution of grains. At the top of each subplot the element

size, ∆x is noted in µm. A parameter λ/∆x is computed for each element size to define the

number of elements in a wavelength, where λ is the wavelength of the input wave.

The difference of each backwall reflection is compared with that of the model with

40 µm as the element size as shown in Fig. 3.8. The x-axis of each subplot is the time in µsec

and the y-axis is the displacement in µm. The displacements for the backwall reflection are

substracted from the backwall results for the model with element size 40 µm. The absolute

value of the error is shown. The final subplot is the backwall response for 40 µm.

0 2 4 6 8
-2

-1

0

1

2

Time (µsec)

D
is

pl
ac

em
en

t (
µ m

)

∆X=200,λ/∆X=6.244

0 2 4 6 8
-10

-5

0

5

10

Time (µsec)

D
is

pl
ac

em
en

t (
µ m

)
∆X=100,λ/∆X=12.488

0 2 4 6 8
-10

-5

0

5

10

Time (µsec)

D
is

pl
ac

em
en

t (
µ m

)

∆X=75,λ/∆X=16.6507

0 2 4 6 8
-10

-5

0

5

10

Time (µsec)

D
is

pl
ac

em
en

t (
µ m

)

∆X=60,λ/∆X=20.8133

0 2 4 6 8
-10

-5

0

5

10

Time (µsec)

D
is

pl
ac

em
en

t (
µ m

)

∆X=50,λ/∆X=24.976

0 2 4 6 8
-10

-5

0

5

10

Time (µsec)

D
is

pl
ac

em
en

t (
µ m

)

∆X=40,λ/∆X=31.22

Figure 3.7: Backwall response for heterogeneous aluminum cubic crystal.
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Figure 3.8: Error in backwall response relative to the 40 µm elements for different element
size.
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The backwall results for 40 µm and 50 µm element size are shown together in Fig.

3.9. As seen from the figure there is still a small time shift. Therefore, this error may not

infer convergence with respect to the backwall of the model. The error is due to the time

shift in the echoes but the amplitude difference may be small. Calculation of the attenuation

is the main concern here, so the attenuation must be compared to confirm convergence of the

model. For calculating attenuation the amplitude is of the main concern. The attenuation

calculation involves the FFT of the backwall reflection, which is in the frequency domain.

Here, the time shift does not matter much.
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Figure 3.9: Comparison of backwall response for model with element size 40 µm and 50
µm.
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The attenuation for a 5 MHz longitudinal incident wave is shown in Fig. 3.10 as

a function of element size. Each plot is expanded in the range of interest as there is noise

before and after this frequency range. This acceptable region varies, generally taken as the

area under A/
√
2 of the FFT of the wave with A as the peak value of the FFT. Most of

the energy is concentrated within this region. The attenuation coefficient can be extracted

for this region easily. The x -axis is the frequency in MHz and the y-axis is attenuation

coefficient in Np/cm for all the subplots in Fig. 3.10. The backwall reflections cannot be

differentiated from each other for the model with element size ∆x = 200 µm due to the

large element size because the whole signal is just noise. Therefore, attenuation cannot be

calculated and hence not plotted for the model with element size ∆x = 200 µm.
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Figure 3.10: Attenuation for different element size.
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The attenuation for each model at each point is now substracted from the model

with element size ∆x = 40 µm at the same points as done before for the backwall reflection

comparison. The attenuation comparison is shown in Fig. 3.11 for the region of interest

neglecting the noise region. The absolute value of the difference is plotted. The error

decreases as the element size decreases as expected. From the graph the error also oscillates

in between the bounds. These bounds are of main interest here. The element size can now

be chosen as per the acceptable error bounds.
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Figure 3.11: Comparison of attenuation with the 40 µm element results for different element
sizes.

The attenuation results for 40 µm and 50 µm elements are plotted together in
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Fig. 3.12. The error for 50 µm elements is very small when compared with results 40 µm

elements. For calculating attenuation, models are created with different distributions of

grains and then the backwall reflections from all the models are used for averaging. This

averaging is required for the attenuation calculation as the model is very small and there are

few nodes at the boundaries. Here the above results are only for one realization of grains.

The error also decreases when compared with the theory if averaged over different random

realizations of grains. Thus, convergence in attenuation is achieved with ∆x = 50 µm with

an acceptable range of error.
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Figure 3.12: Comparison of attenuation coefficient for element size 40 µm and 50 µm.

From the backwall reflection results for the homogeneous material, attenuation

has been observed which should not be there as per the scattering theory, since there is

no scattering in a homogeneous material. This reduction in amplitude is due to geometric

spreading of the input beam as well as small numerical attenuation due to the discretiza-

tion. The difference in attenuation between homogeneous and heterogeneous material is the
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attenuation for the material. For any attenuation, fifteen realizations are considered when

calculating the attenuation coefficient.

3.6 Summary

In this chapter the basic equations for the mathematical formulation of the wave

propagation in polycrystalline materials for finite element analysis was presented as referred

in the ABAQUS [30] manuals. The meshing procedure is explained in this chapter in detail.

Sometimes some Voronoi polycrystals have very small edges which are smaller than the

element size. These elements make the computational time costly. Different realizations

have been used to overcome this problem and eliminate the models with very small edges.

The attenuation coefficient is used for a convergence check. The error is deemed acceptable

for the attenuation calculation for an element size ∆x = 50 µm and this size has been used

to mesh all the models used in this thesis. The triangles created from the uniform grid may

not be exactly equilateral but can be approximated to have the same length for all three

sides of the triangles. Therefore, the element size mentioned here is determined with this

assumption. Also, the triangles near the edges are not equilateral most of the time. This

assumption is made to refer to the element size with which other parameters can be related

easily like number of elements in a wavelength or in a crystals. Matlab codes described in

Appendix A and B, have been developed to create the input file for ABAQUS. A pressure

load at the surface of the element is introduced to simulate a longitudinal wave. In the next

chapter, the data acquisition and method to obtain the numerical attenuation results are

explained in detail.
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Chapter 4

Example Numerical Results (Plane

Stress)

The numerical results are obtained for the material of general interest with plain

stress boundary conditions. The attenuation calculated numerically is given by [31],

e−αd =
|F2(ω)|
|F1(ω)| (4.1)

where, α is the attenuation, d is the travel length of the elastic wave, and F1(ω) and F2(ω)

are the first and the second backwall reflections, respectively in the frequency domain. The

backwall reflections are averaged over the nodes at the surfaces for each model and the

attenuation is calculated. Attenuation results are then averaged for different realizations of

Voronoi polycrystals. To obtain a normal distribution of crystals in a domain a minimum

distance restriction between any two Voronoi nuclei is used. The minimum distance data

for different models for a specific number of crystals is obtained. Any kind of interpolation
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can be used to fit the data. Here a spline is used to fit to the data. Figure 4.1 shows

the spline fit to the data obtained from a unit square domain which is used as a reference

domain. For different model sizes, a linear transformation is done by considering the total

area of the reference and the current domain.
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Figure 4.1: Minimum distance required between any two crystals inside an unit square for
a normal distribution of grain size.

The materials examined here have different scattering properties as shown in Ta-

bles 3.1 and 3.2. Due to this scattering the attenuation calculation can be difficult as the

noise in the echoes increases with increase in anisotropy factor of the material. The noise in

the output signal makes the reflections of the backwall and frontwall hard to differentiate.

The frontwall displacement data for aluminum and copper are shown in Fig. 4.2. The re-

flection echoes can easily be recognized for aluminum by looking at the figure. However, for
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copper the noise is higher so the reflections cannot be differentiated from each other. This

noise is directly proportional to the length of travel of the wave. To obtain a clear waveform

with less noise different model sizes were used according to the scattering property of the

material. The models for weak scattering media are longer and for strong scattering media

they are shorter. The model is made wider for strong scattering so that more nodal data

may be obtained. Example results are shown in this chapter for models with plane stress

boundary conditions.
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Figure 4.2: Frontwall and backwall responses for aluminum and copper.
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4.1 Aluminum

Aluminum is the weakest scattering media among the four materials studied here.

The model domain used for aluminum is the longest. Due to a low anisotropy factor,

the same size model with a different number of crystals with different input frequency are

constructed as shown in Table 4.1.

Table 4.1: Model specification for aluminum

No. of Model Size Diameter (µm) Input Frequency λ
Dm

Crystals (mm3) Mean (Dm) Std Deviation (MHz)

150 4× 8× 0.075 512 95 3 4.0651

150 4× 8× 0.075 512 95 5 2.4391

150 4× 8× 0.075 512 95 8 1.5244

200 4× 8× 0.075 446 71 5 2.8001

The procedure for calculating attenuation is now explained using an example of

150 crystals for 5 MHz as the input wave frequency for a single realization of crystals. The

attenuation is calculated from the backwall reflections in the model. The backwall responses

for the homogeneous and heterogeneous cases are shown in Fig. 4.3. The attenuation is

less for the homogeneous case. Due to geometric spreading there is a small reduction in

amplitude. The backwall response shown was determined by averaging over the nodes on

the backwall. For this model there are 20 nodes over which the averaging is done. Only

nodes near the center of the wall are chosen. The nodes near the corners are avoided since

they are outside the coherent wave profile.

The first two reflections are used and referred to as Echo E1 and Echo E2 as shown

in Fig. 4.4(a) and (b), respectively. Tapered windowing and zero padding is done on E1

and E2 as shown in Fig. 4.4(c) and (d) respectively. Figure 4.4(e) shows the FFT of the
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Figure 4.3: Backwall reflection for 150 aluminum crystals at 5 MHz.

windowed data. Using Eq. 4.1, the attenuation is obtained for these responses as shown in

Fig. 4.4(f). The attenuation in the homogeneous material is due to beam spreading and

numerical scattering. In the Fig. 4.4(e) the FFT is very smooth and the attenuation for a

region around 5 MHz is constant. Attenuation results for frequencies far from 5 MHz are

primarily noise.

The same procedure is followed for the heterogeneous case. Example results are

shown in Fig. 4.5(a)-(f). The scattering is seen to be higher in the heterogeneous case which
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Figure 4.4: Calculation of attenuation for one realization of homogeneous crystals.

is expected. The FFT is not as smooth as that of homogeneous case, shown in Fig. 4.5(e).

The echoes contain more noise from scattering than that of the homogeneous material. This

noise increases as scattering introduces more noise into the echo signals. Eq. 4.1 is used to

calculate the attenuation from the FFT data.

The attenuation for the homogeneous material is due to beam spreading and nu-

merical scattering. The same effects are also included in the results for the heterogeneous

case. The attenuation is found by substracting the homogeneous results from the heteroge-
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Figure 4.5: Attenuation calculation for one realization of randomly oriented cubic crystals.

neous results. The attenuation obtained after subtraction is shown in Fig. 4.6. This result

is the attenuation from one realization of a Voronoi polycrystal.

The attenuation for different realizations are compared so that the minimum num-

ber of realizations required to obtain accurate attenuation results may be understood. These

results are shown in Fig. 4.7(a)-(f). One of the main purposes of having different realiza-

tions is that more nodal displacement data may be used for averaging. As seen from Fig.

4.7(a), relevant frequency range without noise is 5±2 MHz. Figure 4.7(b) shows the average

attenuation values from 10, 11, 12, 13 and 14 realizations. These attenuation values are
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Figure 4.6: Attenution for one realization of aluminum crystal.

compared with 15 averaged values. The difference decreases as the number of realizations

increases as shown in Fig. 4.7(c). In Fig. 4.7(d) the average from 14 and 15 realizations

is shown. Thus, it is concluded that 15 realizations are sufficient to obtain the attenuation

values for aluminum.
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Figure 4.7: Attenuation comparison for different realizations of crystals for 150 aluminum
crystals in a 4 mm by 8 mm model for 5 MHz (a) attenuation from a 15 realizations (b)
average attenuation from 10, 11, 12, 13 and 14 realizations (c) differences the different aver-
age attenuation (d) average attenuation from 14 and 15 realizations (e) average attenuation
for 15 realization (f) average attenuation from 15 realization for the region of concern.
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Attenuation from different realizations of crystals at different frequencies are ob-

tained as shown in Fig. 4.8. The color lines in the plot are attenuation for each realization of

the crystals. Fifteen realizations are used for the attenuation calculation. The average from

all the 15 realizations is marked in black. Thus, the longitudinal attenuation for aluminum

is obtained for values of frequency over the range of λ/D.
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Figure 4.8: Longitudinal attenuation from different realization of crystal for model size of 4
mm by 8 mm and input frequency of the wave (a) 150 crystals for 3 MHz (b) 150 crystals
for 5 MHz (c) 150 crystals for 8 MHz (d)200 crystals for 5 MHz.

Simulations for the homogeneous and heterogeneous material properties models

are shown in Figs. 4.9 and 4.10. The figure shows the stress waves propagating through

the model at various times. Less attenuation is seen in the homogeneous case than the

heterogenous case.
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Figure 4.9: Simulation for aluminum with homogeneous material properties. 150 crystals
in a 4 mm by 8 mm model for 5 MHz of longitudinal wave.
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Figure 4.10: Simulation for aluminum with heterogeneous material properties. 150 crystals
in a 4 mm by 8 mm model for 5 MHz of longitudinal wave.
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4.2 Fictitious Material

Three models for the fictitious material have been created as shown in Tables 4.2 for

incident longitudinal waves. For this material different frequencies of incident longitudinal

wave have been used. The model size used is 8 mm by 6 mm with 0.075 mm depth with

512 µm as the mean grain diameter and 95 µm as the standard deviation of the mean grain

diameter. Therefore, by keeping the mean grain diameter constant for all the models, λ/D

is varied. The results for attenuation are shown in Fig. 4.11 for an incident longitudinal.

As seen in the figure the scattering is higher than aluminum which is expected from theory.

Fifteen realizations of Voronoi polycrystals have been constructed. The average attenuation

from all the realizations are also shown in the figures. The numerical attenuation has a

negative region as seen in the Fig. 4.11 due to the noise in the response signal for very

low and very high frequency ranges compared with the input frequency for the model.

The negative region is outside the main frequency band of the incident wave and is thus

neglected. The attenuation values obtained are approximately in the range of 0.5 to 1.0

Np/cm for the incident longitudinal wave. The averaged attenuation curve is smoother

than a curve from any particular realization.

Table 4.2: Model specification for fictious material

No. of Model Size Diameter (µm) Input Frequency λ
Dm

Crystals (mm3) Mean (Dm) Std Deviation (MHz)

150 4× 8× 0.075 512 95 3 4.0651

150 4× 8× 0.075 512 95 5 1.5244

150 4× 8× 0.075 512 95 8 2.8001
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Figure 4.11: Attenuation for fictious material (a) 3 MHz (b) average attenuation for 3 MHz
(c) 5 MHz (d) average attenuation for 3 MHz (e) 8 MHz (f) average attenuation for 8 MHz.
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4.3 Nickel

Nickel has a higher degree of scattering than aluminum and fictitious material.

The anisotropy factor is approximately four times more than that of aluminum. Three

models have been created of same size of 5 mm by 6 mm with 0.075 mm as the depth. The

model is made shorter such that the wave travels a lesser distance. The model is wider than

the model used for aluminum and fictitious material in order for more nodes at the surface

to be included in the response data. Twenty realizations have been created for each model

to have more data for averaging the attenuation results. Different numbers of crystals are

created. The input frequency is constant for all the models. The model specifications are

shown in Table 4.3. The λ/D obtained is approximately in the range of 1.44 to 2.89. The

numerical attenuation results from different models are shown in Fig. 4.12. The scattering

is higher than what is observed for aluminum and fictitious material due to nickel having

higher anisotropy factor. The negative attenuation values of are again out of the relevant

frequency range, which is due to the noise. Figure 4.12 shows the smooth attenuation

curve near the input frequency for the models. The attenuation values for a wide range of

frequencies can be considered leaving out the noise region shown in Fig. 4.12 (b), (d) and

(f) averaged for the values obtained from twenty different realizations of each model.

Table 4.3: Model specification for nickel for longitudinal wave

No. of Model Size Diameter (µm) Input Frequency λ
Dm

Crystals (mm3) Mean (Dm) Std Deviation (MHz)

50 5× 6× 0.075 862 147 5 1.4487

100 5× 6× 0.075 614 76 5 2.0339

200 5× 6× 0.075 432 70 5 2.8907
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Figure 4.12: Attenuation for nickel for different crystals. (a) & (b) 50 crystals (c) & (d)
100 crystals (e) & (f) 200 crystals.
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4.4 Copper

Copper is the strongest scattering media among the four materials examined. Two

different sizes of model are used with 10 and 20 crystals only. Table 4.4 shows the model

specifications used for copper for a longitudinal wave. The model has fewer crystals and is

smaller in length to reduce the amplitude reduction as it depends on these parameters. The

shorter length makes the wave travel a shorter distance and also scatter less. The bigger

crystal makes the mean diameter high ranging from 1.396 mm to 1.995 mm.

The input wave propagates through approximately two to three crystals in each

model. This model is chosen such that response signal has less noise and the analysis is

possible. Here λ/D ranges from 0.6260 to 0.8946. Even though the λ/D is low, which implies

high attenuation is high, the response signal contains less noise than for the same model

containing more grains making the mean diameter lower and λ/D high. The frequency of

the input wave is kept constant at 5 MHz. The number of realizations is increased with the

variations in the scattering properties of the material. Twenty five realizations of Voronoi

polycrystals have been constructed to have more data for averaging the attenuation results

for copper. The attenuation for copper is observed to be higher than nickel as shown in

Fig. 4.13. The figure also shows that the average attenuation curve becomes smoother.

The simulation from ABAQUS/CAE is shown in Fig. 4.14 for one model. The

figure shows high scattering as the original input wave form vanishes after few number of

time step and noise becomes more dominant. Also as the original form of input wave starts

distorting and the noise content also increases.
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Table 4.4: Model specification for copper

No. of Model Size Diameter (µm) Input Frequency λ
Dm

Crystals (mm3) Mean (Dm) Std Deviation (MHz)

10 8× 4× 0.075 1995 323 5 0.6260

20 8× 4× 0.075 1396 304 5 0.8946

10 8× 6× 0.075 2443 396 5 0.6285
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Figure 4.13: Longitudinal attenuation for copper for different domains for 5 MHz as input
frequency (a) & (b) 8 mm by 4 mm model with 10 grains (c) & (d) 8 mm by 4 mm model
with 20 grains (e) & (f) 8 mm by 6 mm model with 10 grains.
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Figure 4.14: Simulation for copper with heterogeneous material properties. 20 crystals in a
8 mm by 4 mm model for 5 MHz of longitudinal wave.
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4.5 Summary

In this chapter, example numerical attenuation results for four materials have been

presented for plane stress boundary conditions. The attenuation calculation for aluminum

is the simplest as it is a weakly scattering material. The fictitious material is an imagi-

nary material having material properties such that its scattering properties lie in between

aluminum and copper. The numerical methods allow any material properties to verify

theories for fictitious material parameters which is not possible in laboratories. Obtaining

the attenuation for copper is the hardest since it is the strongest scattering media among

the four. The simulations shows that the wave scatters more for copper. The simulation

for aluminum shows the weak scattering nature expected. The simulation figures are the

output from ABAQUS/CAE. In the next chapter, the theoretical values of attenuation are

discussed in detail. The numerical results obtained here are then compared with these

theories.
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Chapter 5

Comparison of Theoretical and

Numerical Results

Elastic waves while propagating in an heterogeneous polycrystalline medium scat-

ter at the boundaries of grains due to the mismatch in grain orientation. As a result of this

scattering there is a loss of energy in the propagating wave which is termed attenuation.

The loss of energy from the main beam is governed by the length of travel of the wave in

the media.

Bhatia [1] discussed the dependence of the attenuation on λ compared with the

average diameterD of the grains. He showed the attenuation scales with the fourth power of

frequency for λÀ D, a result analogous to light scattering by Rayleigh [32] and scales with

the square of frequency for λ < D . At very high frequencies, i.e. λ¿ D, the attenuation

becomes constant. This limit is the so-called geometric optics limit. Pao [33] presented

the integral formulas for elastic waves in isotropic and anisotropic media using the Green’s
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displacement dyadic and a second rank Green’s tensor. He derived Helmholtz and Kirchoff

type integrals for both transient and steady-state waves. Elastic wave fields are composed

of longitudinal and transverse parts that propagate at different speeds. The attenuation is a

function of propagation direction for a statistically anisotropic media. Stanke and Kino [34]

used a second-order multiple-scattering theory to determine the attenuation and change in

phase velocity due to grain scattering. Their results are applicable for media with texture

and for materials with elongated grains. Hirsekorn [35] presented the theory for calculating

the velocities and attenuation of longitudinal and shear waves in weakly anisotropic medium

which is dependent on frequency. Frisch[36] has given the mathematical formulation for

waves propagating in heterogeneous media. He has also given the basic Dyson [37][38]

equation in terms of the Green’s dyadic which governs the mean response of the field. He

introduced the first-order smoothing (FOSA) that may be used to solve the Dyson equation.

Weaver [7] introduced the Ultrasonic Radiative Transfer Equation (URTE) to

model wave propagation in heterogeneous media. Turner [8] has presented the expres-

sion for attenuation for shear horizontal, quasicompressional and quasishear wave using

the Green’s dyadic for transversely isotropic materials. The attenuation expressions for

different wave types are given as a function of direction and frequency of the propagating

wave in the media. The three-dimensional model created by Turner [8] and Weaver [7]

using elastodynamic theory and the URTE are used to model the attenuation expression

in two-dimensional domain with material orientation in three directions. Numerical results

are obtained to verify the theoretical model of attenuation.
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5.1 General Three-Dimensional Model

The three-dimensional theoretical model was developed by Weaver [7] and Turner

[8]. For completeness of this thesis and to understand the mathematical derivations for

attenuation expression given by them, their work is reviewed in this section. The equation

of motion for an elastic medium is given by

σij,j + fi = ρüi, (5.1)

where σij is the stress tensor, fi the body force and ρ is the mass density of the material,

with üi the acceleration. Waves propagating in a linearly elastic solid obey Hooke’s law

which states that each stress component σij is proportional to the strain component εkl

σij = Cijklεkl, (5.2)

where εkl =
1
2(uk,l + ul,k) with k, l = 1, 2, 3. Cijkl is the elastic stiffness tensor with

symmetric conditions Cijkl = Cjikl = Cklij . Thus there are 21 independent elastic stiffness

constants which refer to a crystal which possesses no rotational symmetry. For crystal

systems of higher symmetry this number is considerably reduced. The values of the elastic

constants depend on the orientation of these axes relative to the crystal lattice.

Substituting Eq. (5.2) in Eq. (5.1) gives

Cijkluk,lj + fi = ρüi, (5.3)

or

−ρüi + Cijkluk,lj = −fi, where, fi = (f1, f2, f3). (5.4)

For a compressive load

fi = −δikδ3(x− x0)δ(t), (5.5)
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where, δ3(x− x0) = δ(x− x0)δ(y − y0)δ(z − z0). Substituting Eq. (5.5) in Eq. (5.4) gives

−ρüi + Cijkluk,lj = δikδ
3(x− x0)δ(t). (5.6)

The equation of motion is now written for the elastodynamic response in terms of

the Green’s dyadic as,

½
−δik ∂

2

∂t2
+

∂2

∂xi
Cijkl(x)

∂2

∂xl

¾
Gkα(x,x

0; t) = δjαδ
3(x− x0)δ(t). (5.7)

The second-rank Green’s dyadic Gkα(x,x
0; t) is the response to a concentrated

impulsive force. It is the response at a location x in the kth direction to a unit impulse at

location x0 in the αth direction. That is, Gkα(x,x0; t) is the solution for uk(x, ; t) when the

body force density is fα(x
0). Here, the density is assumed to be uniform throughout. For

Eq. (5.7) the units are chosen in such a way that the density is unity.

For the polycrystals considered, the modulus tensor is no longer a constant but is

function of position. It is assumed to be spatially heterogeneous and of the form

Cijkl(x) = C
0
ijkl + δCijkl(x). (5.8)

where C0ijkl = hCijkl(x)i is the average moduli and δCijkl is the fluctuation about the mean.

The fluctuation is assumed to have a zero mean hδCijkl(x)i = 0. The covariance of the

moduli, an eighth rank tensor is written

Λ(|x− y|)ijklαβγδ = hδCijkl(x)δCαβγδ(y)i = Ξijklαβγδη(|x− y|). (5.9)

Here, the covariance Λ is a function of the magnitude of the difference of two vectors

|x− y| rather than x and y separately. This assumption states that the second order

statistics are homogeneous and isotropic. Therefore, the medium is assumed statistically
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homogeneous and statistically isotropic. Additionally, the grains are assumed equiaxed.

These two assumptions are made by many people [7], [8], [34]. In this case a two-point

correlation function η(r) may be defined as [34]

η(r) = e−
r
L , (5.10)

where η(r) is a two-points correlation function which states the probability of any two points

separated by a distance r lie on the same crystal.

For cubic symmetry the fourth-rank elastic modulus tensor is given by [7],

Cijkl = λIδijδkl + µ
I(δikδjl + δilδjk) + νδijkl, (5.11)

= CIijkl + νδijkl,

with δijkl is equal to one for i = j = k = l and to zero otherwise. λI , µI and ν are the

crystal properties for cubic symmetry given by

λI = C1122, (5.12)

µI = C1212,

ν = C1111 −C1122 − 2C1212.

The elastic modulus tensor may be represented with respect to the laboratory axes

by

Cijkl = C
I
ijkl + ν

3
Σ
n=1
ani a

n
j a
n
ka
n
l , (5.13)

where ani represents the elements in a transformation matrix between crystallite and labo-

ratory axes. The rotation between these two axes is represented by three Euler angles φ,Θ
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and ζ. The matrix is given by

a =


− cosΘ sinφ sin ζ + cosφ cos ζ cosΘ cosφ sin ζ + sinφ cos ζ sin ζ sinΘ

− cosΘ sinφ sin ζ − cosφ cos ζ cosΘ cosφ sin ζ − sinφ cos ζ cos ζ sinΘ

sinΘ sinφ − cosΘ cosφ sin ζ cosΘ

 .
(5.14)

The ensemble average modulus is thus defined by

hCijkli ≡ C0ijkl = CI + ν
3
Σ
n=1

Z
ani a

n
j a
n
ka
n
l

sinΘdΘdφdζ

8π2
. (5.15)

The Voigt-average and the isotropic stiffness C0ijkl given by Weaver [7]

C0ijkl ≡ (c2L − 2c2T )δijδkl + c2T [δikδjl + δilδjk]. (5.16)

where cL and cT represents the longitudinal and shear wave speeds respectively are written

in terms of the crystal properties as

c2L = λ+ 2µ+ ν/5, (5.17)

c2T = µ+ ν/5.

The covariance, Eq. (5.9), is an eighth-rank tensor,

Λαβγδ
ijkl ≡ hCαβγδ(x)Cijkl(y)i− hCαβγδ(x)ihCijkl(y)i (5.18)

The inner products given by Weaver [7] are derived in terms of two unit vectors p̂

and ŝ which will be used in deriving the attenuation coefficients. Three relevant functions
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are given by

L(θps) = Ξαβγδijkl p̂αp̂iŝβ ŝj p̂γ p̂kŝδ ŝl = Ξ
····p̂p̂ŝŝ
····p̂p̂ŝŝ,

= (
6

105
− 1

25
) + (p̂ · ŝ)2( 18

105
− 4

25
) + (p̂ · ŝ)4( 17

105
− 4

25
), (5.19)

=
9

525
+

6

525
cos2 θps +

1

525
cos4 θps,

M(θps) = Ξαβγδijkl p̂αp̂iŝβ ŝj p̂γ p̂kŝδ ŝl = Ξ
····p̂p̂ŝ
····p̂p̂ŝI = Ξ

····
····I

p̂p̂ŝ
p̂p̂ŝ =

24

525
+
12

525
cos2 θps,

N(θps) = Ξαβγδijkl p̂αp̂iŝβ ŝj p̂γ p̂kŝδ ŝl = Ξ
····
····I

p̂ŝ
p̂ŝI =

63

525
+
21

525
cos2 θps,

where θps is the angle between p̂ and ŝ.

Using the spatial Fourier transform of Λ gives,

eΛ(p)ijklαβγδ =

Z
Λ(r)ijklαβγδe

−ir·pd3r. (5.20)

The correlation length L is of the order of the radius and proportional to the

volume of the grain. The Fourier transform of the correlation function,

eη(q) = Z η(r)e−ir·pd3r. (5.21)

The direction p̂ defines the propagation direction and ŝ is the scattered direction

and θps is the angle between the two vectors. The two-point correlation function is defined

in the wave vector domain as

eη(q) =
1

(2π)3

Z 2π

0

Z θ

0

Z π

0
e−

r
L e−ipr cos θ sin θr2dθdrdφ, (5.22)

=
L3

π2(1 + L2q2)2
.

The above expression is integrated most conveniently with respect to θ first and then to

r. Weaver [7] showed that the main microstructural quantity at low frequency is the mean
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grain volume. At higher frequencies the correlation length may vary and may need to be

multiplied by a constant. Thus the correlation function may be related to the mean grain

volume as

V =

Z
d3re−

r
L , (5.23)

such that

π

6
D3 = (2π)3 eη(0). (5.24)

Therefore, the correlation length may be related to grain diameter by,

L =
1

2 3
√
6
D. (5.25)

The Green’s function G is a random function due to the random nature of the

media. Therefore, the statistics of G are of main concern. The statistics includes the

mean response hGi and the covariance of the response hGG∗i where G∗ is the complex

conjugate. The angular brackets represents the ensemble averages of the quantity. Frisch

[36] used diagrammatic methods for solution of the mean response. The integral equation

for the mean response is governed by the Dyson equation [7],[8],[36],

hGiα(x, x́)i = G0iα(x, x́) +
ZZ

G0iβ(x,y)Mβj(y, z)hGjα(z, x́)id3yd3z, (5.26)

where M is the mass or self-energy operator and G0 is Green’s dyadic for the bare Voigt-

average, medium, i.e., the solution to Eq. (5.33) when δCijkl(x) = 0. The Dyson equation is

exact. Equation (5.26) may be solved in the spatial Fourier transform domain. The spatial

Fourier transform pair of G0 is given by

G0iα(p)δ
3(p− q) = 1

(2π)3

ZZ
G0iα(x, x́)e

−ip.xe−iq.x́d3xd3x́, (5.27)
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G0iα(x, x́) =
1

(2π)3

ZZ
G0iα(p)δ

3(p− q)e−ip.xe−iq.x́d3pd3q. (5.28)

An approximation is necessary for the equation ofM. The simplest approximation

which can be based on the Dyson equation retains only the lowest order term. Frisch [36]

used a diagrammatic method to approximate M by its lowest order term and called it the

first-order smoothing approximation (FOSA). The FOSA expression for M is given by [7],

[8]

Mβj(y, z) ≈ h ∂

∂yα
δCαβγδ(y)

∂

∂yδ
G0γk(y, z)

∂

∂zi
δCijkl(z)

∂

∂zl
i. (5.29)

It is assumed the fluctuations δC are small. The spatial Fourier transform of M

is given by [7] as a convolution of Green’s dyadic and Fourier transform of the covariance

of the moduli fluctuation. It is written

M̃βj(p) =

Z
d3sG0γk(s)pαplsδsi

eΛ(p− s)ijklαβγδ. (5.30)

The Fourier transform pair for the function f(t) and f̃(ω) are defined by

f̃(ω) =

Z
f(t)eiωtdt, (5.31)

f(t) =
1

2π

Z
f̃(ω)e−iωtdω. (5.32)

Using the Fourier transform and substituting from equation(5.8) allows Eq. (5.7)

to be written in frequency domain,

½
−(−iω)2δjk + C0ijkl

∂

∂xi

∂

∂xl
+

∂

∂xi
δCijkl(x)

∂

∂xl

¾
Gkα(x, x́;ω) = δjαδ

3(x− x́),
½
ω2δjk + C

0
ijkl

∂

∂xi

∂

∂xl
+

∂

∂xi
δCijkl(x)

∂

∂xl

¾
Gkα(x, x́;ω) = δjαδ

3(x− x́). (5.33)
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Using Eq. (5.33) with δCijkl(x) set to zero and using the Fourier transformed

G0(p) allows Eq. (5.16) to be written as

©
ω2δli + pkpjC

0
klij

ª
G0iα(p) = δlα. (5.34)

The equation is written in direct notation as,

(p̂p̂
©
ω2 − p2c2L

ª
+ (I− p̂p̂)©ω2 − p2c2Tª) ·G0 = I. (5.35)

The solution to Eq. (5.35) is given by [7]

G0(p) = p̂p̂g0L(p) + (I− p̂p̂)g0T (p), (5.36)

where the g0L(p) and g0T (p) are termed the bare longitudinal and shear propagators given

by

g0L(p) = [ω2 − p2c2L]−1, (5.37)

g0T (p) = [ω2 − p2c2T ]−1. (5.38)

The imaginary parts of the bare propagators, used for deriving the attenuation

expressions, are given by

Im g0L(p) = −πsgn(ω)δ(ω2 − p2c2L), (5.39)

Im g0T (p) = −πsgn(ω)δ(ω2 − p2c2T ).

The spatial Fourier transform for G and M are given above. To solve for hG(p)i

the Dyson equation can be spatially Fourier transformed, giving

hG(p)i = [G0(p)−1 − M̃(p)]−1. (5.40)



78

The mean response and the self-energy is expressed in terms of unit vectors p̂,

hG(p)i = gL(p)p̂p̂+gT (p)(I− p̂p̂), (5.41)

M̃(p) = mL(p)p̂p̂+mT (p)(I− p̂p̂). (5.42)

The solution of the Dyson Eq. (5.40) gives the dispersion relation for the mean

response as

gL(p) = [goL(p)−1 −mL(p)]−1 = [ω2 − p2c2L −mL(p)]−1, (5.43)

gT (p) = [goT (p)−1 −mT (p)]
−1 = [ω2 − p2c2T −mT (p)]

−1,

which gives the phase velocity and attenuation of each wave type. The real part of p̂

defines the phase velocity and the imaginary part defines the attenuation. The solution is

generally obtained using the root finding techniques [39]. It is an iterative procedure which

starts with an estimate of the root and produces successively better approximations. The

explicit attenuation can be obtained by using an assumption valid below the high frequency

geometric optic limits. Such an approximation is sometimes known as a Born approximation

[7] [34], where the wave vector p is close to bare wave vector (ω/cγ)p̂. Therefore, by this

assumption mγ(p) ≈ mγ [(ω/c)p̂], where γ is the wave type. The expression for attenuation

is then given by

αL =
1

2ωcL
ImmL(ω/cL), (5.44)

αT =
1

2ωcT
ImmT (ω/cL),
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where

ImmL(ω/cL) =
π

2

Z
p̂p̂ŝŝ····
p̂p̂ŝŝ····Ξ

ω5

c7L
η̂

µ
p̂
ω

cL
− ŝ ω

cL

¶
d2ŝ

+
π

2

Z
p̂p̂ŝ
p̂p̂ŝ(I−ŝŝ)········Ξ

ω5

c2Lc
5
T

η̂

µ
p̂
ω

cL
− ŝ ω

cT

¶
d2ŝ,

ImmT (ω/cT ) =
π

4

Z
(I−p̂p̂)p̂ŝŝ····p̂ŝŝ····Ξ

ω5

c5Lc
2
T

η̂

µ
p̂
ω

cT
− ŝ ω

cL

¶
d2ŝ

+
π

4

Z
(I−p̂p̂)p̂ŝp̂ŝ(I−ŝŝ)········Ξ

ω5

c7T
η̂

µ
p̂
ω

cT
− ŝ ω

cT

¶
d2ŝ.

Three functions have been defined in terms of θps, the angle between the two unit

vectors p̂ and ŝ,

ηLL(θps) = η̂

µ
p̂
ω

cL
− ŝ ω

cL

¶
, (5.45)

ηLT (θps) = ηTL(θps) = η̂

µ
p̂
ω

cL
− ŝ ω

cT

¶
,

ηTT (θps) = η̂

µ
p̂
ω

cT
− ŝ ω

cT

¶
.

The final expressions for the attenuations are given by [7]

αL = αLL + αLT , (5.46)

αT = αTT + αTL, (5.47)

where

αLL =
π2ω4

2c8L

Z +1

−1
ηLL(θ)L(θ)dµ, (5.48)

αLT =
π2ω4

2c3Lc
5
T

Z +1

−1
ηLT (θ)(M(θ)− L(θ))dµ,

αTL =
1

2
(cT /cL)

2αLT ,

αTT =
π2ω4

4c8T

Z +1

−1
ηTT (θ)(N(θ)− 2M(θ) + L(θ))dµ,

with µ = cos θ. Based on this three-dimensional model the attenuation expressions are

derived for two-dimensional domains in the next section of the chapter.
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5.2 Two-Dimensional Model

The numerical model described in Chapters 3 and 4 is not truly three-dimensional.

Thus the theory described in section 5.1 must be modified. Since the numerical model has

material orientation in all three directions the elastic modulus and the covariance remains

the same as that of the three-dimensional model. The two-point correlation function in the

two-dimensional domain is defined by,

eη(q) =

Z 2π

0

Z ∞

0
e−

r
L e−ipr cosφrdrdφ, (5.49)

= −
Z 2π

0

L2

−1 + p2L2 cos2 φ− 2ipL cosφdφ,

=
2πL2

(1 + q2L2)3/2
.

In the low frequency limit eη(q) scales with L2 as shown in Eq. (5.49). The

longitudinal to longitudinal attenuation expression is now given by

αLL = − 1

2ωcL

Z
d2s p̂p̂ŝ····p̂p̂ŝ····Ξ

·
·
n
ŝ
ŝg
oL(s)

o
η̂ (p− s) , (5.50)

= − 1

2ωcL

Z
sdsdŝp̂p̂ŝ····p̂p̂ŝ····Ξ

·
·

½
ŝ
ŝ −

π

2ωcL
δ (ω − ω/cL)

¾
η̂ (p− s) ,

=
1

2ωcL

π

2

Z
p̂p̂ŝŝ····
p̂p̂ŝŝ····Ξ

1

ωcL

ω

cL

ω2

c2L

ω2

c2L
η̂

µ
p̂
ω

cL
− ŝ ω

cL

¶
dŝ,

=
πω3

4c7L

Z
η̂

µ
p̂
ω

cL
− ŝ ω

cL

¶
L(θ)dŝ,

=
πω3

4c7L

Z +1

−1
η̂LL(θ)L(θ)dµ.

Similarly,

αLT =
πω3

2c3Lc
4
T

Z +1

−1
ηLT (θ)(M(θ)− L(θ))dµ, (5.51)

αTT =
πω3

4c7T

Z +1

−1
ηTT (θ)(N(θ)− 2M(θ) + L(θ))dµ.
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The correlation length L is related to the mean grain area in the two-dimensional

domain as

A =

Z
d2re−

r
L , (5.52)

such that

π

4
D2 = (2π)2 eη(0), (5.53)

Thus, for the two-dimensional case, the correlation length is related to grain diameter by

L =
1

4π
√
2
D

where D is the mean diameter of grains.

Using the expressions for attenuation given above the theoretical attenuations for

aluminum, copper, nickel and the fictitious material are shown in Fig. 5.1 with 600 µm

as the mean diameter of the grains. The attenuation and wavelength are normalized by

the mean diameter of the grains. The longitudinal and shear attenuation for the two-

dimensional model is higher than the three-dimensional. Schubert, et al. [40] showed that

the attenuation for the two-dimensional case is higher than for a three-dimensional case

using a numerical model of concrete.

The attenuation for the fictitious material lies in between aluminum and copper

as shown in Fig. 5.1. Copper has the highest and aluminum the lowest attenuation values

among the four materials. The longitudinal attenuation for the two-dimensional model is

approximately 8 to 10 times higher than in the three-dimensional model and about 1.2 to

1.5 times higher for the shear attenuation. The numerical results from these models are

discussed in detail in the next section.
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Figure 5.1: Theoretical attenuation normalized by the mean grain diameter for (a) 3D
longitudinal attenuation (b) 2D longitudinal attenuation (c) 3D shear attenuation (d) 2D
shear attenuation.

5.3 Plane Stress

The numerical results for plane stress boundary conditions are compared both with

two- and three-dimensional theoretical models. The theoretical attenuations are computed

for the mean diameter and for the standard deviation of the mean grain diameter. The

numerical and theoretical attenuations are normalized by the mean grain diameter. The

theoretical attenuation scales with the correlation length L. Therefore, theoretical atten-



83

uation is first normalized by the correlation length and then multiplied by the D/L ratio

so that it can be compared with the numerical results which are normalized by the grain

diameter, in the same scale.

5.3.1 Aluminum

The numerical attenuation results normalized by the mean grain diameter are

shown in Fig. 5.2 for a longitudinal wave in aluminum. The numerical results agree well with

the theory for a wide range of λ/D. The λ/D ratio ranges approximately from 1.2 to 4. The

consistency of the numerical results is observed as the numerical attenuation curves follows

each other from the different models. Frequencies ranging from 2 MHz to 8 MHz could be

used due to the low scattering in aluminum. The models have material orientation in three

directions but there is no scattering from the z-axis. Therefore, the scattering properties

should lie in between the two-dimensional and three-dimensional theoretical model.

The numerical attenuation normalized by the mean grain diameter plus and minus

one standard deviation of the diameter are shown in Figs. 5.3(a) and (b). For one standard

deviation of mean grain diameter the numerical results fits well with the theory. For 3σ, 5σ

the length of the error bars will increase and a higher range of error bars will be obtained.

Therefore, if the results fit well for 1σ it will also fit for 3σ and 5σ. Thus, 1σ is used here. The

numerical attenuation curves shift when normalized by the positive and negative standard

deviation of the grain diameter. The shifting of the numerical attenuation towards the

theoretical three-dimensional curve is observed for attenuation normalized by the positive

standard deviation of the mean grain diameter shown in Fig. 5.3 (b).



84

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

λ/D

α
D

2D Theory
3D Theory
200 Cry 5 Mhz
150 Cry 3 Mhz
150 Cry 5 Mhz
150 Cry 8 Mhz

Figure 5.2: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of aluminum for model size 4 mm by 8 mm.
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Figure 5.3: Normalized longitudinal attenuation for aluminum for standard deviation of the
grain diameter (a) negative deviation (b) positive deviation.
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The numerical attenuation results shows good agreement with the theoretical

model for longitudinal waves. The numerical results obtained from different models are

shown in different colors in the figures.

5.3.2 Fictitious material

The model size of 4 mm by 8 mm with 0.075 mm as depth is used for the fictitious

material with same number of crystals and input frequencies of 3 MHz, 5 MHz and 8 MHz.

All the models have 150 crystals. The numerical longitudinal attenuation normalized by

the mean grain diameter is shown Fig. 5.4. The λ/D ratio obtained ranges approximately

from 2 to 5. The numerical attenuation normalized by the positive and negative standard

deviation of the mean grain diameter is shown in Figure 5.5(a) and (b). The results fit well

within the standard deviation of the numerical results. Thus, the two-dimensional model

appears well-suited for these numerical results.
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Figure 5.4: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of fictitious material for model size 4 mm by 8 mm.
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Figure 5.5: Normalized longitudinal attenuation for fictitious material for standard devia-
tion of the grain diameter (a) negative deviation (b) positive deviation.
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The quality of the numerical results obtained for the fictitious material shows

the same nature as seen for aluminum. The numerical attenuation results increase as the

λ/D decreases as expected from the theory. The model shows agreement with the two-

dimensional theory for this material.

5.3.3 Nickel

Nickel has higher a degree of scattering than either aluminum or the fictitious

material. Therefore, the model used is made wider and shorter than the model used for

the longitudinal attenuation calculation for aluminum and fictitious material. The model

used is 5 mm wide and 6 mm long. Three models with 50, 100 and 200 crystals are

constructed. The input frequency for all the models is 5 MHz. The numerical attenuation

normalized by the mean grain diameter is shown in Fig. 5.6. The range of λ/D obtained

is approximately between 1 and 6.5. A wide range of λ/D ratio is obtained for attenuation

results for the model with 200 crystals due to reduced amplitude reduction as the mean

diameter decreases. In this case the noise content in the response signal is reduced. The

numerical attenuation curve is between the two-and three-dimensional theoretical models.

The attenuation normalized by the mean diameter plus minus the standard deviation of the

mean grain diameter is shown in Figs. 5.7 (a) and (b). Twenty realizations of grains have

been used for nickel.
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Figure 5.6: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of nickel for model size 5 mm by 6 mm for 5 MHz of input frequency.
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Figure 5.7: Normalized longitudinal attenuation for fictitious material for standard devia-
tion of the grain diameter (a) negative deviation (b) positive deviation.
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The numerical results for the longitudinal attenuation of nickel are obtained for

a wide range of frequencies. Due to high scattering the slope of the numerical attenuation

curve shows more similarity with the three-dimensional theoretical model.

5.3.4 Copper

Copper shows the highest degree of scattering among the four materials from the-

ory. The numerical results also verify the same. Therefore, the model is made wider and

shorter as compared with the models used for the other three materials. Three different

models with two different sizes, 8 mm by 4 mm and 8 mm by 6 mm, are constructed for

copper. The input frequency is kept constant at 5 MHz for all the models. Twenty five real-

izations of grains are used for averaging the attenuation results. The model has fewer grains

to minimize the noise content in the response signal. The results are shown in Figs. 5.8 and

5.9. The numerical attenuation curves lie between the two-and three-dimensional models.

The slope of the numerical attenuation curves is closer to the theoretical three-dimensional

model than to the two-dimensional model. The numerical attenuation normalized by the

mean grain diameter plus minus the standard deviation also lies between the two and three-

dimensional models as shown in Fig. 5.9 (a) and (b). The λ/D ratio obtained from the

numerical results ranges approximately from 0.6 to 1.7.

Copper being a strong scattering media the consistency in the numerical results

is observed from Figs. 5.8 and 5.9. Therefore, the numerical results for copper also shows

good agreement with the theory.
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Figure 5.8: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of copper for 5 MHz of input frequency.
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Figure 5.9: Normalized longitudinal attenuation for copper for standard deviation of the
grain diameter (a) negative deviation (b) positive deviation.
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5.4 Plane Strain

The model is created with plane strain boundary conditions by constraining the

out of plane displacements of all the nodes in the finite element model. The rest of the

boundary conditions remains the same as the plane stress case such as the loading and

infinite elements. The data are analyzed in the same manner as explained in Chapter 4. In

this section the final attenuation results are presented and compared with the theoretical

models. Results for an incident longitudinal wave are obtained for aluminum, nickel and

copper. All of the models used in the plane stress analysis are used for the plane strain

boundary conditions. Therefore, the realization and the crystal geometry remains the same

as the models discussed in Chapter 4.

5.4.1 Aluminum

The attenuation results with plane strain boundary conditions for aluminum are

shown in Fig. 5.10. The attenuation values obtained here have large fluctuations and some

of the data are in the negative region i.e. data obtained for 3 MHz of input wave. Since

the model has zero displacement in the out of plane direction the wave scatters only in

between the crystals. The mean free path is inversely proportional to the attenuation of

the material. Therefore, the inverse of αD gives the minimum number of crystals required

in a material for sufficient ultrasonic scattering. The model has 150 and 200 crystals which

is not sufficient for enough scattering. From the Fig. 5.10 the highest value of αD is

approximately 0.0002 and its inverse is 500. Therefore, a least 500 crystals are required for

sufficient scattering. Thus the data for a 3 MHz pulse may not be representative results.
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The slope of the numerical curve is closer to the three-dimensional theoretical

model. Therefore, the two-dimensional theoretical curves are not used for comparison for

the plane strain results. The numerical attenuation results normalized by the mean grain

diameter minus the standard deviation of the diameter fits well with the three-dimensional

theoretical curve shown in Fig. 5.11.
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Figure 5.10: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of aluminum.
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Figure 5.11: Normalized longitudinal attenuation for aluminum for mean diameter plus (a)
negative deviation (b) positive deviation.

5.4.2 Nickel

The attenuation results for nickel normalized by the mean grain diameter are

shown in Fig. 5.12 and by the variation of the mean grain diameter, i.e. Dm ± σ are

shown in Fig. 5.13. For the minimum value of αD, 0.005 approximately 200 crystals are

required. Therefore, for higher values of αD the model has enough crystals for sufficient

scattering. The numerical results fit well with the theoretical curves for this material for

all the models. Figure 5.13(b) shows very good agreement with the theory. It is also seen

that as the number of crystals increases, the numerical results show better agreement with

the theory. In addition, the data can be obtained for a wide range of frequencies.
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Figure 5.12: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of nickel for 5 MHz of input frequency with various crystals.
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Figure 5.13: Normalized longitudinal attenuation for nickel for mean diameter plus (a)
negative deviation (b) positive deviation.
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5.4.3 Copper

Copper is the strongest scattering material among the four materials. The numer-

ical curve lies below the three-dimensional theoretical curve as shown in Fig. 5.14. Only the

results for the model with 20 crystals show better agreement with the theory than the other

two models for copper. This result may be due to the fact that the other two models have

fewer crystals. The attenuation results for the mean diameter plus and minus the standard

deviation are shown in Fig. 5.15.
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Figure 5.14: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of copper for various grain size and 5 MHz of input frequency.
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Figure 5.15: Normalized longitudinal attenuation for aluminum for mean diameter plus (a)
negative deviation (b) positive deviation.

5.5 Summary

The numerical attenuation results are normalized by the mean grain diameter, and

mean grain diameter plus and minus the standard deviation of the mean grain diameter to

observe the range of the numerical attenuation curves for all the models with respect to

the theoretical attenuation curves. The numerical curves for plane stress consistently lie

between the two- and three-dimensional theoretical curves which verifies the authenticity

of the numerical models. The numerical results show the λ/D ratio dependence on the

attenuation. Various ratios are obtained by varying λ and D. The noise content in the

response signal increases as the input frequency increases. The slope of the numerical

attenuation curve starts to follow the slope of the three-dimensional model as the degree

of scattering increases. This nature is observed for nickel and copper more prominently

compared with aluminum and nickel which have lesser anisotropy factor.
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The numerical results agree well for the plane strain case with the three-dimensional

theoretical model. In the plane strain analysis it is also observed that the model should have

enough crystals for sufficient scattering. Therefore, better results are obtained for nickel for

the plane strain case.



98

Chapter 6

Summary of Thesis

The propagation of elastic waves in polycrystalline materials have been simulated

using a numerical model of the microstructures of polycrystalline materials using Voronoi

polycrystals. The Method of Virtual Nuclei was be used to create Voronoi polycrystals

in a domain with arbitrary geometry with ease. This method also ensures the Voronoi

properties of each Voronoi polygons as seen from the statistical analysis in Chapter 2.

The statistical analysis also shows that various types of distributions of Voronoi nuclei

can be modeled. Voronoi polycrystals in three-dimensional domains were also shown in

Chapter 2. Numerical models for microstructure for different processed materials such

as rolled materials were shown in both two-and three dimensional domains. By using

MVN the creation of Voronoi polycrystals for any arbitrary domain can be obtained easily

in three-dimensions as well. Elongated and oriented grains in the model with different

aspect ratio and angle of orientation were shown. The models used for the attenuation

calculations represent materials with long grains which can be approximated as a two-
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dimensional problem.

The meshing is done by using six-noded prism element which allows the mate-

rial orientation to be in three directions even though there are no scattering in the third

axis. Each crystal is meshed separately to avoid any delinquencies of more than one crys-

tal sharing the same elements which might occur if the whole model is meshed at once.

ABAQUS/Explicit is used as the FE software package. The simulations from the finite

element analysis help to visualize the scattering in the material.

Numerical models were obtained with a uniform distribution of grain diameter.

However, in order to fill the domain, the grains had a distribution of sizes with mean

and a standard deviation. The theoretical modeling assumes a uniform diameter in a

model. Therefore, the numerical results are computed for mean grain diameter and standard

deviation of the mean grain diameter. The attenuation for the two-dimensional domain is

also derived using the three-dimensional model derived previously.

The plane stress finite element results using Voronoi polycrystals showed good

agreement with attenuation from theory. The averaged attenuation from different realiza-

tions of Voronoi polycrystals made the results more accurate. Four materials of common

interest with various anisotropy factors were used to study the accuracy of the numerical

results. The model for copper had fewer grains, i.e. larger mean diameter, due to its high

anisotropy factor. The numerical results for these material agreed well with the theory.

Using the numerical methods, attenuation for a wide range of λ/D values were obtained

and verified with the theory. The attenuation results agreed well for all the four materials

namely aluminum, fictitious, nickel and copper with a wide range of scattering degree for
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an incident longitudinal wave. The numerical results also showed the increase in scattering

as the λ/D decreases as observed in the theory.

It was also observed that averaging over different realizations of grains reduced

the fluctuations in the numerical attenuation results. The number of realizations required

also increases with increasing degree of scattering in the materials. Therefore, the maximum

number of realization were constructed for copper and the least for aluminum. The averaged

attenuation curve was smoother and more consistent compared with results from any one

realization. The model was verified for various range of λ/D for different materials. The

attenuation governed by the frequency and diameter of the grain is observed for all the

numerical results.

The results for the models with plane strain boundary conditions show good agree-

ment with the three-dimensional theoretical longitudinal attenuation values. Nickel shows

the best results among the materials tested with the plane strain boundary condition, as

there are enough crystals for ultrasonic scattering in the model. The aluminum model has

fewer crystals than that required for sufficient scattering. Therefore, it can be easily ob-

served that for the plane strain case the model should have enough crystals for scattering.

Copper showed good results for a model with 20 crystals.

The work contained here has been focused on the construction of a robust and

efficient numerical model for attenuation due to scattering in polycrystals. The Voronoi

polycrystal is observed to be a good numerical model for the attenuation calculation in

polycrystalline materials. Such an analysis has not been used before for the dynamic case.

The Voronoi polycrystal can be used efficiently to model microstructures of various types.
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The distribution of the grains can also be controlled numerically with ease.

Various ultrasonic theories can be examined using the Voronoi model for various

kinds of microstructures such as grains with preferred orientations and textured media. In

this work the results are obtained for plane stress and plane strain boundary conditions.

For plane stress boundary conditions the numerical scattering results suggest that the two-

dimensional theory is better for weakly scattering media, while the three-dimensional is

better for strongly scattering media. The results from plane strain agree well with the

three-dimensional theoretical model for all the materials.

This work forms the basis for many more studies in the future. Some of these

ideas are discussed in the next chapter. The model is used for initial work on ultrasonic

backscatter which is explained briefly in the next chapter.
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Chapter 7

Future Work

A numerical model for wave propagation in polycrystalline material has been con-

structed successfully. The models can now be used to study several aspects of ultrasonic

theories in polycrystalline materials. There is much work to do both theoretically and nu-

merically. Voronoi polycrystals can now be used to model a wide range of microstructure

types for ultrasonic parameters in them which may not be easily studied analytically or

experimentally.

7.1 Three-Dimensional Model

The three-dimensional model was shown in Chapter 2 for various domains. The

meshing of a Voronoi polycrystal in a three-dimensional domain is computationally chal-

lenging. It is necessary to find the vertices of all the surfaces of a Voronoi polygon for

surface meshing. Theoretically the vertices of any particular surface lie on the same plane.

Due to numerical error and precision of the computer the vertices of any particular surface
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may lie on the same plane with small errors. These error bounds have to be kept in mind

for assuming points lying in the same plane. Convex hull concepts can be used to extract

the faces of each crystal. The vertices of the Voronoi polygon can be obtained from the

MATLAB output but the surfaces of each polygon must be found.

The second problem arises due to many very small edges for each Voronoi polygon

as it is in a three-dimensional domain. These small edges makes elongated surfaces. These

surfaces can be so elongated that they cannot be further subdivided into triangles. The

step time increases drastically due to these elongated elements because one of its side is

very small compared with the other elements in the model.

Two points which are very close to each other can be collapsed to one point which

will prevent the formulation of small edges. Overcoming the above difficulties will create a

Voronoi polycrystal in a three-dimensional domain meshed with tetrahedrons. Each crystals

in the three-dimensional model should also be meshed separately and then assembled to

avoid any delinquencies. The three-dimensional model will make the numerical results more

accurate and realistic for cases that cannot be verified in two-dimensional domains. The

theory for the three-dimensional model can then be compared directly with the numerical

results.

7.2 Backscatter

The heterogenenity in the material ensures that incident wave fields will be scat-

tered. This scattering will be wavelength dependent. The scattered energy can be used for

probing microstructural parameters and flaws in the materials. While the wave propagates
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through the medium, it scatters at the grain boundaries due to the inhomogeneity as illus-

trated in Fig. 7.1. The grains have random material orientation making it a heterogeneous

material. A portion of this scattered energy reaches the frontwall before the reflection of

the wave from the backwall. During scattering at the grain boundaries mode conversion

of the wave also takes place. In Fig. 7.1, the black arrows represent the scattering from

longitudinal to longitudinal and the red arrows represent mode conversion of longitudinal

to shear waves for a longitudinal incident pulse. The scattered energy can be quantified to

infer the microstructural parameters and flaws in the material. The nodal displacements

from the finite element analysis are used to calculate the background rms grain noise of the

model numerically. Experiments can also be carried out for backscatter measurements but

collecting data for mode conversion will be difficult due to transducer restrictions.

Incident Pulse

Figure 7.1: Scattering at the grain boundaries due to inhomogeneity for an longitudinal
incident wave.

Backscatter measurements can be used for flaw detection in the material. For

example one grain can be modeled as a harder phase to study the probability of detection.

A crack could also be introduced in the model to study the effects of cracks on backscatter.
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Margetan, et al. [41], presented the theoretical model for rms grain noise in poly-

crystalline materials. The average nodal displacement for M nodes is

b(t) =
1

M

MX
i=1

Vi(t), (7.1)

where Vi(t) is the displacement of the ith node at time t. The root-mean squared deviation

of the grain noise from the background is then [41],[42]

n(t) =

"
1

M

MX
i=1

[Vi(t)− b(t)]2
#2
. (7.2)

The region of interest for backscatter measurement is shown in Fig.7.2. The region

in red indicates the arrival of grain noise before the backwall echo.
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Figure 7.2: Average nodal displacement for aluminum at 5 MHz.
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The rms grain noise can also be computed for mode conversion of the wave by

using the finite element method. Backscatter results for aluminum and copper are given as

examples. The rms grain noise for aluminum is shown in Fig. 7.3. From the figure, the

rms grain noise increases as the λ/D decreases which is expected from the theory. The rms

grain noise can be compared with the theoretical model for verification of the numerical

model.
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Figure 7.3: Longitudinal to longitudinal rms grain noise for aluminum.
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The backscatter results for copper are shown in Fig. 7.4. The mode conversion

of longitudinal to shear has also been computed numerically for copper. The multiple

scattering effect is greater in copper than aluminum as seen in the rms grain noise plot

due to copper being a stronger scattering medium than aluminum. The rms grain noise is

plotted with respect to λ/D. The rms grain noise is higher for mode conversion as shown

in Fig. 7.4.
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Figure 7.4: Longitudinal to longitudinal and longitudinal to shear rms grain noise for copper.

The grain noise can be modelled theoretically and verified numerical. The numer-
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ical method will help in verifying the theory for mode conversion of waves as such data

cannot be easily acquired experimentally. It is expected that Ultrasonic Radiative Transfer

(URT) theory can be used for modelling the rms grain noise and multiple scattering effects

observed. Theories for mode conversion scattering have not yet been developed but can

be modeled using URT. A numerical model can be very useful for computing backscatter

results for mode conversion of waves.

7.3 Shear Attenuation

Initial work has been done for shear attenuation calculations for plane stress

boundary conditions. Nodal displacements parallel to the surface are used to simulate

a shear wave. The nodal displacements are given using the same type of pulse wave used

for an incident longitudinal wave. Different model sizes are also used for longitudinal and

shear waves for the same material, since the shear wave attenuation is much higher. The

boundary conditions for the plane stress analysis are shown in Fig. 7.5, which is taken

from ABAQUS/CAE. For simplicity of visualization, the elements are made larger in the

model. For the shear attenuation calculation all the models have the element size of 50 µm.

The shear attenuation results are obtained for aluminum and fictitious materials for plane

stress boundary conditions. Two models are created and the same model is used for both

aluminum and fictitious material.
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Figure 7.5: Model with shear wave loading condition.

7.3.1 Aluminum

A model smaller in length but wider is used for the shear wave such that more

data points at the backwall may be used for averaging. In addition, the wave travels a

shorter distance when the model is shorter. This information is shown in Table 7.1.

Table 7.1: Model specification for aluminum for shear wave

No. of Model Size Diameter (µm) Input Frequency λ
Dm

Crystals (mm3) Mean (Dm) Std Deviation (MHz)

50 8× 6× 0.075 1092 174 5 0.5667

100 8× 6× 0.075 774 112 5 0.7995
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Figure 7.6: Backwall reflection for 50 aluminum crystals at 5 MHz for incident shear wave.
The model size is 8 mm by 6 mm and the depth is 0.075 mm.

The shear wave is more difficult to analyze than the longitudinal wave due to the

higher attenuation. The procedure for determining attenuation remains the same, only the

wave speed differs. The backwall response for a shear wave is shown in Fig. 7.6. The same

procedure is applied to obtain the attenuation as outlined above. For the shear wave, 15

realizations are also used to obtain the attenuation values. The attenuation for the models

is described in Table 7.1. Two models are used to obtain the attenuation results. The

length of the model is smaller than that of longitudinal model due to higher attenuation for

the shear wave. The attenuation for the models described in Table 7.1 is shown in Fig. 7.7.
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Figure 7.7: Shear attenuation for aluminum (a) 50 crystals (b) average attenuation for 50
crystals (c) 100 crystals (d) average attenuation for 100 crystals.

The simulation for the incident shear wave is shown in Fig. 7.8. The simulation

for an incident shear wave shows more scattering. Since aluminum is a weakly scattering

medium the coherent wave does not vanish and the noise content is small.
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Figure 7.8: Simulation for aluminum with heterogeneous material properties. 100 crystals
in a 8 mm by 6 mm model for 5 MHz of shear wave.
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The numerical results can also be compared with the theoretical model. The

numerical results for shear attenuation show fluctuations as seen in Fig. 7.9. The input

frequency used for both models is 5 MHz. The results obtained for such a λ/D ratio

make it difficult to comment on the slope of the numerical attenuation curve compared

with the theoretical models. At these values of λ/D the difference in slope between the

two-dimensional and the three-dimensional attenuation curves is very small. It is possible

that these fluctuations may be minimized by having more realizations. The attenuation

normalized by the standard deviation of the mean grain diameter is shown in Fig. 7.10.

The normalized numerical attenuation curves by the standard deviation of the mean grain

diameter shifts left and right when compared with the attenuation normalized by the mean

grain diameter.
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Figure 7.9: Normalized shear theoretical and numerical attenuation for mean diameter of
aluminum for model size 8 mm by 6 mm.
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Figure 7.10: Normalized shear attenuation for aluminum by the standard deviation of the
grain diameter (a) negative deviation (b) positive deviation.
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7.3.2 Fictitious Material

The attenuation results for the fictitious material are shown in Fig. 7.11 for an

incident shear wave. The numerical attenuation goes to a negative region as seen in the Fig.

7.11 due to the noise in the response signal for very low and very high frequency ranges

compared with the input frequency for the model. The model specifications are given in

Table 7.2. For the shear wave different mean grain diameters are used keeping the frequency

constants such that λ/D is varied.
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Figure 7.11: Attenuation for shear wave for (a) & (b) 50 crystals (c) & (d) 100 crystals.

The numerical shear attenuation results normalized by the mean grain diameter,
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Table 7.2: Model specification for fictious material for shear wave

No. of Model Size Diameter (µm) Input Frequency λ
Dm

Crystals (mm3) Mean (Dm) Std Deviation (MHz)

50 8× 6× 0.075 1092 174 5 0.5667

100 8× 6× 0.075 774 112 5 0.7995

and mean diameter plus and minus the standard deviation of the mean grain diameter are

shown in Figs. 7.12, and 7.13 respectively. The same models used for aluminum are used

here for the fictitious material. The input frequency of 5 MHz is used. The numerical

results show fluctuations as seen for the shear attenuation in aluminum.
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Figure 7.12: Normalized shear theoretical and numerical attenuation by mean diameter of
fictitious material for model size 8 mm by 6 mm.

The shear attenuation is high compared with the longitudinal attenuation of alu-

minum and fictitious material. The high attenuation increases the degree of scattering such
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Figure 7.13: Normalized shear attenuation for fictitious material for standard deviation of
the mean grain diameter (a) negative deviation (b) positive deviation.

that the response contains more noise. As the noise content in the signal increases the level

of difficulty in analyzing the signal also increases. Analysis can also be done for plane strain

formulations for an incident shear wave. The results can be obtained for a model with more

crystals and more realizations to check if the fluctuations in the numerical results decrease.
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Appendix A

Voronoi Model

A.1 VoronoiPoly2D.m

This program constructs the Voronoi polycrystal inside a regular polygon of n
sides. Uniformly distributed grains are created. The user can enter the aspect ratio and
angle of orientation for the grains.

Input Parameters

• side : the length of each side of the regular polygon.
• crys : number of crystal to be constructed.
• asp ratio : aspect ratio.
• orien : geometric orientation angle for each crystal.

Output Data

• x : x -axis coordinates of the Voronoi polycrystals.
• y : y-axis coordinates of the Voronoi polycrystals.
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Appendix B

Finite Element

B.1 VorPrismABQ.m

This file constructs the Voronoi polycrystals inside a two-dimensional rectangular
domain. Subroutine similar to VoronoiPoly2D.m is written to construct Voronoi polycrys-
tals inside a rectangular domain only, without any elongation and geometric orientation of
the grains, and this subroutine is called to obtain the vertices of the Voronoi polycrystals.
The meshing and the extrusion of the model to obtain prism elements are done in this
program. Then the infinite elements are created. The connectivity table for all the ele-
ments are created. At the end the input file for ABAQUS is created for homogeneous and
heterogeneous case as the output of this program. This code returns 1 if all the procedures
are performed successfully. The directory and the input file name for ABAQUS with the
file extension are entered by the user. Subroutines are written to perform the particular
task such as to construct infinite elements, to write the input file for ABAQUS. This is the
main program within which all the subroutines are called. Batch files are created to run
the all the models one after another.

Input Parameters

• xlen : the length of the rectangle.
• ylen : the width of the rectangle.
• points : number of grains.
• elem len : characteristic element size.

• files : number of realizations to be created.
• dirname : the directory and the filename with extension in an string array.
• density : density of the material in kg/m3.
• E : Young’s modulus in Pa.
• cmat : elastic constants in an 1 by 3 array in Pa. ¡i.e. £ C11 C12 C44

¤¢



126

Output Data

• 1 : if all the processes are successfully completed.
• .inp : the input file for ABAQUS.
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Appendix C

Attenuation Calculation

C.1 AttenCal.m

This program calculates attenuation for each realization of grains. The data is
acquired by running a Fortran code (the sample code is given in ABAQUS manuals). The
output data file obtained by running the Fortran code, contains the displacement informa-
tion for the nodes requested by the user. These displacement data are read and used for
attenuation calculation by the MATLAB code AttenCal.m.

Input Parameters

• wave speed : the sound wave speed in the material.
• freq : frequency of the input wave.
• temp : number of files i.e. number of realizations.
• cry : number of crystals.
• xlen : width of the model.
• ylen : length of the model.
• filename : output data file name.

Output Data

• .txt : output file is created which contains attenuation data for different realizations.
The first column contains the frequency values in MHz and then each column for
attenuation in Np/cm for different realizations.
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The investigation of wave propagation and scattering of ultrasonic waves in heterogeneous,

anisotropic media is of substantial interest to quantitative nondestructive evaluation and

materials characterization, particularly for ultrasonic techniques. In this dissertation, mod-

els for wave propagation and scattering in statistically anisotropic media, such as cracked

media and textured media are developed. These models provide insightful information about

the wave propagation parameters and can also be used to guide experimental design for de-

termining the microstructure properties for nondestructive evaluation techniques. Compact

expressions are derived for attenuations and wave velocities of the quasilongitudinal and

two quasishear waves using stochastic wave theory in a generalized dyadic approach. Those

derivations are based upon the diagrammatic approach, in which the mean response is gov-

erned by the Dyson equation. The Dyson equation is then solved in the Fourier transform

domain within the limits of the first-order smoothing approximation (FOSA).

In cracked media, the derivation of explicit expressions of wave attenuations and

velocities in a medium with damage from randomly distributed penny-shaped microcracks

is first discussed. Under the same framework, wave propagation and scattering in a solid

medium permeated by uniaxially aligned and perfectly aligned penny-shaped cracks are then

studied, respectively. The resulting attenuations are investigated in terms of the directional,



frequency, and damage dependence.

In the case of polycrystalline media with texture, attenuations and wave veloci-

ties are developed in a general orthorhombic material made up of cubic crystallites. The

attenuations of each wave type are calculated numerically as a function of dimensionless

frequency and wave propagation direction, respectively, for given orientation distribution

coefficients (ODCs). The ODCs are, in essence, the coefficients of an expansion of crystallite

of orientation distribution function (ODF) in terms of a series of generalized spherical har-

monics. The relationship between the phase velocity and recrystallization variables, such

as annealing time, is also investigated for specific examples. Finally, numerical results are

presented and discussed in terms of the relevant dependent parameters. It is anticipated

that these models will improve the understanding of the microstructure characterization for

both cracked and textured media. Moreover, the present formulation allows the study of

backscattering problems to be examined in a straightforward manner.
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Chapter 1

Introduction

Elastic wave propagation in solid media is a very broad, interesting and compli-

cated research subject. The investigation of wave propagation and scattering of elastic

waves in heterogeneous, anisotropic media is of substantial interest to quantitative non-

destructive evaluation (QNDE) and materials characterization, particularly for ultrasonic

techniques. The corresponding results of this field have considerable and wide-ranging en-

gineering applications such as in material science, in-situ safety and reliability control of

complex structural components by acoustic emission, industrial and medical ultrasonics,

quantitative nondestructive materials testing, dynamic fracture mechanics, seismology and

geophysics.

Wave propagation in solids with cracks or texture, unlike in purely homogeneous

solids, is generally associated with diffraction, scattering, attenuation, dispersion, and local

dynamic stress concentrations. While ultrasonic waves propagate through those media, the

incident energy is dispersed in many directions due to interaction with the heterogeneities
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(cracks or crystallites) within the medium. If there are a large number of scatterers in the

medium, the wave propagation will become very complicated due to multiple scattering

effects. In general, diffraction refers to the wave deviation from its original path, while

scattering may be regarded as the wave radiation from the scatterers. During the diffraction

and scattering process, a part of the incident wave energy is transformed into the energy

of diffracted and scattered waves. Although the energy of the whole system is conserved,

a heterogeneous solid is observed by an incident wave as an attenuative and dispersive

medium.

Engineering materials often contain dispersed scatterers such as microcracks in

cracked media and oriented crystallites in polycrystalline media. In the case of structural

materials such as concrete, polycrystalline metals and most composites, these scatterers

are typically induced by mechanical loading, materials processing, manufacturing, aging,

temperature variation and other conditions. The presence of cracks or texture in complex

media may significantly affect material properties, for example the stiffness and the strength

as well as the integrity of the materials. Changes in material response due to scattering

are typically inferred ultrasonically by the variation in wave velocity and the changes in

ultrasonic attenuation. In particular, distributed microcracks often give rise to a decrease

in wave velocity and an increase in attenuation. The definition of attenuation refers to the

intensity or the amplitude of the incident wave that decreases through the complex media.

In addition, the energy disturbance causes a shape distortion of the incident wave, which is

referred as dispersion, due to the frequency dependence of the effective velocity. Techniques

of quantitative nondestructive evaluation using ultrasonic waves are especially appealing
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because of the direct connection between the changes of wave propagation characteristics

and microstructure properties such as crack density, crystallite distribution, location, size

and orientation. In particular, it gives a physical feeling for the process, it is easy to perform

parametric studies, and it is a good tool for the development of testing procedures and signal

processing. Thus, quantitative nondestructive evaluation by ultrasonic techniques provides

a realistic approach to the detection of microcracks and characterization of microstructures

of materials.

The basic principle of quantitative nondestructive evaluation and acoustic emission

relies on elastic wave propagation and scattering in complex solids. Besides experimental

techniques, quantitative comparisons with experimental results require a well-developed

model of the effects of the microstructure on the wave behavior. Theoretical models may

provide the direct information to design the experiment configurations and to explain the

measured data correctly. Once the microstructures have been detected and characterized,

mechanics concepts can be applied for assessing the safety and stability of existing complex

materials. Therefore, understanding how waves propagate and multiply scatter as they go

through complex media is of considerable importance to practical structural applications.

Because of the complexity of microstructures in complex media, statistical ap-

proaches are often employed to study the wave propagation and scattering through the

complex media. The scattering of elastic waves by cracks or crystallites has been studied by

a number of methods from purely numerical ones to more analytically oriented approaches.

Traditional approaches to model the randomly fluctuating field quantities, such as stress

field or strain field, are replaced by modeling certain statistical quantities, such as the sta-
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tistical mean fields of the corresponding fields. It is known that these statistical approaches

do not give solutions in terms of the field quantities, but present an essential understanding

of the statistical nature of the material responses. The statistical characterization must

emphasize the universal aspects and simultaneously ignore the inconsequential details. The

precision and rigor of the selected statistical characterization of microstructure depend on

the purpose of the analysis and the required resolution of the model.

In this dissertation, the theory of elastic wave propagation and scattering using

stochastic wave field techniques in which the mean field is governed by the Dyson equation

is applied to model the attenuation phenomena in two types of statistically anisotropic me-

dia, that is the cracked media and textured media. For cracked media, the discussion is first

focused on an isotropic, homogeneous medium with damage from distributed penny-shaped

microcracks which are assumed to be randomly oriented and uniformly distributed. In the

succeeding discussions, within the same framework wave propagation and scattering in a

solid medium permeated by uniaxially aligned penny-shaped cracks and perfectly aligned

penny-shaped cracks are then studied, respectively. It is always assumed that the microc-

racks are noninteracting throughout the discussions. This assumption allows the effective

stiffness to be determined by integration over a continuous distribution of crack sizes and

orientations. Moreover, it is acceptable only for a dilute distribution or for weak scatterers.

It may not be good enough for a dense distribution or for strong scatterers.

The second medium is a polycrystalline medium with texture, which is defined as

the preferred orientation of grains. All grains to be considered are assumed to have the same

sizes and shapes, and each grain is assumed to have a different orientation. The orientation
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of a given crystallite with the sample axes may then be defined uniquely by the three Euler

angles θ, ψ and ϕ. The crystallite orientation distribution is represented by the orientation

distribution function (ODF). In the harmonic method, which was given first by Roe [1],[2]

and Bunge [3], the ODF is expanded in generalized spherical harmonic functions. Still,

there is no correlation between material properties from grain to grain. In this case, the

differences in elastic constants from grain to grain result only from differences in orientation.

Thus, the elastic constants of a grain with arbitrary orientation can be described by the

single crystal constants with a rotation. The ensemble average elastic constants are given by

averaging over the orientation distribution function (ODF). Integrals over a grain volume

are approximately equal to the corresponding integrals over a sphere of the same volume.

In this presentation, the Voigt type averaging approximation method is employed.

Within the method of Voigt [4], uniformity of strain across the media is assumed, while in

the method of Reuss [5] uniformity of stress is assumed. As shown by Hill [6], the Voigt

and Reuss average methods provide the upper and lower bounds on the elastic constants,

respectively. Rigorous bounds have been given by Kröner [7], and these bounds usually lie

close to the average of the Voigt and Reuss values.

1.1 Previous Work

The increased complexity of the elastic wave reflection phenomena, due to mode

conversion effects, yields scattering problems in imperfect solids more complicated than in

purely homogeneous solids as elastic waves move through the media. Studies of elastic

wave propagation in cracked solid media have been continuous for at least thirty years due
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to their significance. This subject of research began in the late 1960s with Mal [8],[9],

[10],[11]. He first examined the response of a penny-shaped crack embedded in an infinite

isotropic, elastic medium to an incident plane harmonic wave and demonstrated that at low

frequencies the stress intensity factors are always greater than those of the corresponding

static cases [8],[9]. In [10] and [11], Mal studied the problems of the diffraction of normally

incident longitudinal and shear elastic waves by a crack, for example a penny-shaped crack

and a Griffith crack, located in an infinite isotropic elastic medium. Meanwhile, Robertson

[12] also examined the diffraction of a plane longitudinal wave by a penny-shaped crack.

Piau [13],[14] then presented the attenuation of plane compressional waves in cracked media

with randomly distributed cracks and oriented cracks. Chatterjee and coworkers [15] gave

the results of attenuation in a cracked, fluid-saturated solid. Martin [16] obtained the

scattered displacement fields as the harmonic elastic waves move through an infinite elastic

solid containing a penny-shaped crack. Krenk and Schmidt [17] discussed the elastic wave

scattering by a circular crack. Martin and Wickham [18] presented the numerical results of

the scattered displacement fields. Sayers and Smith [19] gave the results of wave velocity

and attenuation in an epoxy matrix containing lead inclusions. It was noted that all of the

above solutions may be finally transformed into Fredholm integral equations of the second

kind, which are suitable for iteration at low frequencies.

Thereafter, the coherent wave scattering through cracked solids had been more

thoroughly investigated. Budreck and Achenbach [20] introduced the scattering results in-

duced from three-dimensional planar cracks by the boundary integral equation method.

Wave scattering from an interface crack was discussed by Yang and Bogy [21], Boström
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[22] and Qu [23]. Sotiropoulos and Achenbach [24] presented the reflection results of elastic

waves by a distribution of coplanar cracks. Zhang and Achenbach [25] then presented an

improved approach to develop the effective phase velocity and the attenuation of ultrasonic

waves in a material containing distributed penny-shaped cracks. Extensive reviews were

presented further by Zhang and Gross [26],[27],[28]. They finally demonstrated the numeri-

cal results of wave attenuations and dispersion relations in randomly cracked solids, such as

penny-shaped cracks and slit cracks with several propagation directions. More importantly,

they presented numerically the relationships between the effective wave velocity and atten-

uation and damage density. Smyshlyaev and Willis [29] discussed the linear and nonlinear

scattering phenomena as waves propagate through cracked media. Eriksson, Boström and

Datta [30] also examined the problem of ultrasonic wave propagation through a cracked

solid. However, they considered the medium with a crack distribution as an effective vis-

coelastic medium and presented the attenuation results for both open and fluid-filled crack

cases. For most of those results, the Foldy [31] theory of multiple scattering had been em-

ployed to calculate the effective wave velocity and the coefficients of attenuation. Foldy in

1945 first introduced the concept of ensemble averaging and obtained a closed form expres-

sion for the complex wave number governing the coherent intensity due to an assemblage

of isotropic point scatterers (Foldy’s equation) [31]. Recently, Boström in 2003 presented a

review of the hypersingular integral equation method for crack scattering and applications.

In particular, he described how the integral equation approach to crack scattering can be

used as the most important part for the modeling of ultrasonic nondestructive testing [32].

It can be seen that although some important results had been obtained, the general exact
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results of the wave propagation and scattering through cracked solids such as aligned cracks

are still less well developed.

Studies of elastic wave propagation in polycrystalline materials began in the late

1940s. Quantitative evaluations of material properties in polycrystalline media had relied

mostly upon the use of the coherent field, through the examinations of either wave speed

or attenuation or both. Mason and McSkimm in 1947 [33] first studied the coherent propa-

gation of ultrasound in polycrystals and demonstrated that in the Rayleigh frequency limit

the scattering attenuations are proportional to the fourth power of the frequency. During

this time period, many others [34],[35],[36],[37],[38] conducted similar research on ultrasonic

scattering. Mason and McSkimm also theorized that in the Rayleigh frequency limit the

grains would scatter energy as spherical scatterers. Bhatia [39] then improved upon this

theory by assuming the grains were isotropic with elastic properties varying slightly from

the elastic properties of the bulk medium. In the meantime, Bhatia and Moore [40] used

a perturbation approach to obtained accurate expressions for the scattered energy due to

variations in elastic constants for a general orthorhombic crystallite in the Rayleigh limit.

They demonstrated that those anisotropic results are 3.5 times larger than the isotropic

results obtained, and their expressions agreed with the results of attenuation presented by

Mason and McSkimm. Papadakis [41] also discussed many of the ultrasonic techniques

available for nondestructive evaluation with coherent fields. Correlations between the ul-

trasonic properties of wave speed and attenuation and material properties, such as yield

strength, fracture toughness, and so on, had been discovered. The general summaries were

presented in Vary’s review paper [42].
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Beginning in the 1980s, the theoretical work for frequencies outside the Rayleigh

limit was studied by Hirsekorn [43],[44] first in untextured polycrystalline materials. She as-

sumed the grains were individual scatterers which scattered like a sphere and demonstrated

that the general attenuation and wave speed were a function of its wavenumber multiplied by

grain radius without the frequency limitation to the Rayleigh region using the Born approx-

imation. Because of the assumption of single-sized spheres, her results showed oscillatory

behavior with respect to frequency in the transition between the Rayleigh and stochastic

regions. It is known that this behavior is not physical for real polycrystalline materials.

Finally, Hirsekorn [45],[46] used the identical approach to examine the ultrasonic scattering

in textured polycrystals. Frequency dependence and directional dependence of scattering

coefficients were respectively investigated. The calculation was restricted to waves propa-

gating in the direction of an axis of symmetry of the texture. In particular, the directional

dependence was discussed for the polycrystalline media with fiber texture. So far her results

were only found to demonstrate the ultrasonic scattering completely in polycrystals of cubic

symmetry with rolling texture. Stanke and Kino [47] developed a unified approach to derive

the attenuation and phase velocity for different kinds of elastic waves due to grain scattering

in single-phase, polycrystalline media. Their results were valid in the Rayleigh, stochastic

and geometric regions and showed the transition phenomena between these regions. By

the use of the Keller approximation [48], their derivation was done for a particular inho-

mogeneous medium that is weakly heterogeneous, and without the assumption of spherical

scattering made by Hirsekorn [43],[44]. The general operator notation as discussed by Keller

[48] allowed the results to be applied to various physical problems in a straightforward man-
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ner. Hirsekorn in 1988 [49] then used the perturbation method to investigate the ultrasonic

scattering by multiphase polycrystals.

Because of the relevance to nondestructive characterization of microstructures, the

investigation of ultrasonic scattering in polycrystals continued. In the recent two decades,

ultrasonic inspection of random media has been expanded to use diffuse fields methods. Co-

herent methods and diffuse fields methods are very different. In particular, diffuse fields can

be investigated at higher frequencies than coherent fields. Weaver in 1990 [50] presented a

multiple scattering formulation using a mean Green’s dyadic function based on the method

of first-order smoothing approximation. He also employed a Born approximation which

limited the validity of the results to frequencies below the geometrical optics regime, and

obtained the exact diffusivity for randomly distributed orientation of all crystallites. Turner

and Weaver [51],[52],[53],[54],[55] proposed to model ultrasonic multiple scattering effects

in a medium containing randomly located discrete scatterers using radiative transfer theory

and applied that theory to polycrystalline media as well. They demonstrated that the scat-

tered intensity is angularly dependent as expected. Ahmed and Thompson [56] studied the

wave scattering in equiaxed stainless-steel polycrystals with aligned [001] axes, transversely

polycrystalline media, based on the Stanke and Kino unified approach. They showed various

results of attenuation and phase velocity with direction of propagation and frequency for

quasilongitudinal, shear horizontal, and quasishear waves. Turner [57] presented a general

wave propagation and scattering method by using an anisotropic Green’s function for mod-

eling the attenuation in statistically anisotropic media. He finally specified the formalism

for particular problem of equiaxed cubic polycrystalline media with texture. His attenu-
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ation results agreed well with the attenuation calculations of Ahmed and Thompson [56].

Many others [58],[59], [60],[61] conducted research on wave propagation phenomena during

this time period.

Experimental studies of microstructural characterization had accompanied much

of the above theoretical work. Experiments with coherent ultrasonic inspection on polycrys-

talline specimens are typically performed in a water tank using reflection and transmission

techniques. If two transducers are used, one transducer sends a wave with known amplitude

into the specimen which is received by the other transducer located on the opposite side

of the specimen. The change in amplitude of the received signal after passing through the

medium is attributed to the exponential decay caused by attenuation. If one transducer is

used, it acts as both transmitter and receiver. The wave reflects from the opposite face and

returns to the transducer. In this situation, the amplitude will be reduced due to two spec-

imen crossings. Coherent ultrasound experiments have many limitations. Particularly ab-

sorption and scattering attenuations cannot be distinguished in these types of experiments.

Diffuse field experiments are usually conducted using backscattered techniques. Because the

coherent field continues to propagate in the forward direction, the backscattered field con-

tains only diffuse energy until the coherent pulse returns after reflecting from the opposite

face. A number of researchers have discussed the use of the incoherently backscattered field

for the characterization of microstructure [62],[63],[64],[65],[66],[67],[68],[69]. Other previous

references are cited in their work.

It is the above literature review that shows that models of elastic wave propa-

gation and scattering through polycrystalline media with texture had typically focused on
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special cases of texture. For example, the attenuation through cubic polycrystalline mate-

rials with one aligned axis had been studied using several different techniques. However,

the propagation and scattering through polycrystalline media with texture, which may be

applied to any state of texture, have not been undertaken. Consequently an effort will be

taken to understand the behavior of the attenuation and phase velocity in polycrystalline

materials with general texture in Chapters 6 and 7 of this dissertation. It is anticipated

that this research may provide a few useful insights to this challenging research subject on

microstructural characterization.

1.2 Objective

The objective of this research is to develop a more comprehensive, general theo-

retical model for wave propagation and scattering in statistically anisotropic media, one of

cracked media and one of textured media, that is expected to provide insightful information

about the propagation constants and can also be used for guiding experimental design and

for determining the materials properties for nondestructive evaluation techniques. Compact

expressions will be derived for attenuations and wave velocities of the quasilongitudinal and

two quasishear waves using stochastic wave theory in a generalized dyadic approach. The

coordinate-free approach allows for nonrandom ensembles of properties to be studied with

relative ease. The analysis of expressions is limited to frequencies below the geometric

optics limit. The derivations are based upon the diagrammatic approach, in which the

mean response is governed by the Dyson equation. The Dyson equation is then solved in

the Fourier transform domain within the limits of the first-order smoothing approximation
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(FOSA), or Keller approximation [48].

For cracked media, explicit expressions of wave attenuations and velocities in a

medium with damage from randomly distributed penny-shaped microcracks will be first

discussed. Under this assumption, the average effective medium is assumed statistically

isotropic. The explicit results for the attenuations and wave velocities of longitudinal and

shear elastic waves in the isotropic case show a good comparison with previous results

developed. More importantly, this isotropic case provides the fundamentals for studying

the statistically anisotropic cases. Next, the same framework is then extended to study the

attenuation of elastic waves in solids with aligned cracks that are statistically homogeneous.

In the uniaxially aligned crack situation, the crack alignment refers the case in which the

unit normals of all cracks are randomly oriented within a plane of isotropy. Whereas,

in the perfectly aligned crack case the unit normals of all cracks to be considered are

perpendicular to the plane of isotropy. As such, the overall responses of the cracked solids

are transversely isotropic with the plane that is perpendicular to the unit normals defining

the plane of isotropy. Therefore, the attenuation is not only a function of frequency but

also a function of propagation direction. In the presentation, both exact expressions of

attenuations and wave speeds of the shear horizontal, quasilongitudinal, and quasishear

vertical waves are presented. The resulting attenuations are investigated in terms of the

directional, frequency, and damage dependence. The generalized anisotropic cases such as

the orthorhombic symmetry could be the subject of future research in this direction.

In the case of polycrystalline materials with texture, attenuations and wave ve-

locities will be developed in a general orthorhombic material made up of cubic crystallites.
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The texture, preferred orientation of grains, is best quantitatively described by the orien-

tation distribution function (ODF) defined as a probability density function, which is often

expanded in a series generalized spherical harmonics [1],[2],[3]. In this dissertation, ex-

plicit attenuations of each wave type are derived as the function of dimensionless frequency

and wave propagation directions, respectively, for given orientation distribution coefficients

(ODCs). A relationship between the phase velocity and recrystallization characteristic vari-

ables, such as annealing time, is also investigated for specific examples. Finally, numerical

results are presented and discussed in terms of the relevant dependent parameters. The

theoretical results might be used to improve the understanding of the microstructure of

polycrystals during the recrystallization process. Moreover, although the present applica-

tion is for the case of orthohombic-cubic symmetry, the formalism can be easily modified

to apply to other given symmetry cases.

This dissertation is organized in the following manner. Chapter 2 provides the

preliminary elastodynamics of the wave propagation and scattering model for statistically

anisotropic media. In Chapter 3, wave propagation and scattering in an isotropic, homo-

geneous medium with embedded microcracks which are randomly oriented are first investi-

gated. Next, wave propagation and scattering in solids with uniaxially aligned cracks that

are transverse isotropy and statistical homogeneity are examined in Chapter 4. In Chapter

5, wave attenuations in solids with perfectly aligned cracks are discussed. The exact results

of attenuations are derived and example numerical results are presented to aid in a compar-

ison with results presented by Hudson [70]. In Chapter 6, the phenomena of wave velocity

and polarization of elastic waves moving through the textured polycrystals are examined.
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The compact results of attenuations are formulated in terms of the orientation distribution

coefficients (Wlmn) in Chapter 7. For both Chapter 6 and Chapter 7, numerical results are

presented and discussed. Chapter 8 is the conclusion chapter, in which the results of the

whole dissertation are summarized and discussed. In Chapter 9, future research subjects

are addressed. The present formulation allows the study of backscattering problems to be

examined in a straightforward manner. It is anticipated that this research work will be a

valuable theoretical tool for use in ultrasonic nondestructive techniques to improve the un-

derstanding of the microstructure for both cracked and textured media in related research

areas.
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Chapter 2

Preliminary Elastodynamics

2.1 Introduction

Waves in solids are significantly important to engineering applications. Waves are a

disturbance propagating in a medium. In order to understand wave behavior, mathematical

and numerical tools are required to analyze and simulate the phenomena of waves in solids.

Using these tools can also help us construct virtual views of waves in a medium. Solids

are stressed when they are subjected to external forces or loads. Forces can be static or

dynamic. Statics deal with the mechanics of solids and structures subject to the static

loads. Solids that will experience dynamic motion under the action of dynamic forces which

vary with time must apply the principles and theories of dynamics. The dynamic motion

is often observed and noted as vibration and wave motion. It is not easy to draw exactly a

clear line between vibration and wave motion, however, in general we can say that a wave is

a localized vibration and a vibration is a motion of waves with very long wavelength. When

talking about waves, one usually pays special attenuation to the motion or propagation
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of a localized mechanical disturbance. When discussing vibration, one is concerned more

with the global motion of the entire structure. Mathematically, both vibration and wave

motion are governed by the same dynamic equations of motion, which may be derived using

Newton’s law. In this chapter, these principles and theories dealing with wave motion in

solids are discussed, especially focusing on statistically anisotropic materials.

Depending on the material properties and loading conditions, solids can be treated

as elastic meaning that the deformation in the solids disappears completely after it is un-

loaded. There are also solids that are plastic, which means that the deformation in the

solids cannot be fully recovered when unloaded. Elasticity deals with solids and structures

of elastic materials, while plasticity deals with those of plastic materials. This disserta-

tion is focused on the solids of elastic materials. Waves propagating in elastic materials

are termed elastic waves. One of the major applications of elastic waves is in the area of

nondestructive evaluation. In such an application, ultrasonic waves are usually used and

one can always keep the response level of materials within the elastic range. Otherwise, it

could be destructive. Therefore, the topics in this dissertation are fully applicable in areas

relating to nondestructive evaluation.

Materials can be regarded as isotropic or anisotropic. Isotropy means that material

property does not vary with direction, while anisotropy means that material property is a

function of direction. Deformation in an anisotropic material caused by a force applied in

a direction may be significantly different from that resulted from the same force applied

in another direction. Engineering materials such as cracked materials and polycrystalline

materials are often regarded as anisotropic. The number of material constants necessary to
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define the linear elastic response of anisotropic materials decreases with degree of anisotropy

or increasing symmetry. At the limit, isotropic materials have only two independent elastic

material constants, traditionally known as Young’s modulus and Poisson’s ratio. This

chapter is focused on the theory of wave propagation and scattering in general anisotropic

materials. All the formulations are, however, applicable to isotropic materials as a special

case. Waves in an anisotropic material exhibit anisotropic characteristics, which means that

their properties such as velocity and attenuation have direction dependence.

2.2 Ensemble Average Response

The equation of motion for the elastodynamic response of an infinite, linear-elastic

material to deformation is given in terms of the Green’s dyadic by

{
−δjkρ∂

2
t + ∂xiCijkl (x)∂xl

}
Gkα

(
x,x′; t

)
= δjαδ

3
(
x− x′

)
δ (t) . (2.1)

where δ3 (x− x′) is the three-dimensional spatial Delta function. The second order Green’s

dyadic, Gkα (x,x′; t) , defines the response at location x in the kth direction to a unit

impulse at location x′ in the αth direction. The notation ∂2t is defined as ∂2/∂t2, and ∂xi

is defined as ∂/∂xi. The moduli are considered to vary spatially and density is assumed

uniform throughout with units chosen such that density is unity [ρ = 1]. The moduli C are

assumed to be spatially heterogeneous and have the form Cijkl(x) = C0ijkl +δCijkl(x). Thus,

the moduli have the form of average moduli, that is C0ijkl = 〈Cijkl(x)〉 , plus a fluctuation

about this mean, δCijkl(x). The fluctuations are assumed to have zero mean 〈δCijkl(x)〉 = 0.

The brackets, 〈〉 , denote the ensemble average. The material properties might have global

anisotropy, such that the mean moduli are not necessarily isotropic. The covariance of the



19

moduli is characterized by an eighth-rank tensor

〈
δCijkl (x) δCαβγδ

(
x′
)〉

= Ξ
αβγδ
ijkl η

(
x− x′

)
. (2.2)

The spatial and tensorial parts of the above covariance, Ξ and η, are assumed independent.

The correlation function η is also assumed as a function of the difference between two

vectors, x− x′. This assumption implies that the medium is statistically homogeneous. For

statistically isotropic materials, however, an additional assumption must be made such that

η is a function of |x− x′|.

The spatio-temporal Fourier transform pair for the function f(x,t) and f̃(p,ω) is

defined as

f̃ (p, ω) =

∫ +∞

−∞

∫ +∞

−∞

f (x, t) eiωte−ix·pd3xdt,

f (x, t) =
1

(2π)4

∫ +∞

−∞

∫ +∞

−∞

f̃ (p, ω) e−iωteix·pd3pdω. (2.3)

These definitions allow Eq. (2.1) to be temporally transformed to the following form

{ω2δjk +C0ijkl∂i∂l + ∂iδCijkl(x)∂l}Gkα

(
x,x′;ω

)
= δjαδ

3
(
x− x′

)
. (2.4)

The random nature of the medium suggests that the Green’s function, G, is of

little value as it will also be a random function. The interesting quantities are instead

those related to the statistics of the response. These statistics include the mean response,

〈G〉 , and the covariance of the response, 〈GG∗〉 , with the ∗ denoting a complex conjugate.

This dissertation is devoted to examination of the mean response with corresponding phase

velocities and attenuations.

Wave propagation and scattering problems of this sort do not lend themselves to

solution by perturbation methods. As Frisch discussed, these solutions do not converge
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[71]. Instead, Frisch used diagrammatic methods for solution of the mean response [71].

The mean response, 〈G〉 , is governed by the Dyson equation [50],[71]

〈
Giα

(
x,x′

)〉
= G0iα

(
x,x′

)
+

∫ ∫
G0iβ (x,y)Mβj (y, z)

〈
Gjα

(
z,x′

)〉
d3yd3z. (2.5)

The notation G0iα(x,x′) is the bare Green’s dyadic defined as the ensemble average response

of the medium (without fluctuations), namely, the solution to Eq. (2.1) when δCijkl(x) = 0.

The second order tensor M is the mass or self-energy operator. Equation (2.5) is easily

solved in the Fourier transform domain under the assumption of statistical homogeneity.

The spatial Fourier transform pair for G0 is given by

G0iα (p) δ3 (p− q) =
1

(2π)3

∫ ∫
G0iα

(
x,x′

)
e−ip·xeiq·x

′

d3xd3x′,

G0iα
(
x,x′

)
=

1

(2π)3

∫ ∫
G0iα (p) δ3 (p− q) eip·xe−iq·x′d3pd3q. (2.6)

The Fourier transforms which define 〈G(p)〉 and M̃(p) are given by expressions

similar to that defining G0(p). The assumption of statistical homogeneity ensures that G0,

M and 〈G〉 are functions of a single wave vector in Fourier space. The Dyson equation is

then transformed and solved to give the result for 〈G (p)〉 of the form

〈G (p)〉 =
[
G0 (p)−1 − M̃ (p)

]−1
, (2.7)

where M̃ is the spatial transform of the self-energy. The Dyson equation is exact and

describes the mean response of the medium. The main difficulty in the solution of Eq. (2.7)

is the representation of M. An approximation of the self-energy M can be written as an

expansion in powers of moduli fluctuations. To first order [71],[48] M is expressed as [50]

Mβj (y, z) ≈
〈
∂

∂yα
δCαβγδ (y)

∂

∂yδ
G0γk (y, z)

∂

∂zi
δCijkl (z)

∂

∂zl

〉
. (2.8)
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Such an approximation is assumed valid if the fluctuations, δC, are not too large. The

spatial Fourier transform, as defined by Eq. (2.3), of the self-energy, M, is then formulated.

Manipulation of this integration allows it to be reduced to [50]

M̃βj (p) =

∫
d3sG0γk(s)pαplsδsiΞ

αβγδ
ijkl η̃(p− s). (2.9)

Thus, the transform of the self-energy can be written as a convolution between the

bare Green’s dyadic and the Fourier transform of the covariance of the moduli fluctuations.

The components of M̃, Eq. (2.9) and the Dyson equation, Eq. (2.7), will be employed to

calculate the phase velocity and attenuation of the wave modes next. Further details of the

scattering theory can be found in the articles of Karal and Keller [48], Frisch [71], Stanke

and Kino [47], Weaver [50], and Turner [57].

When ultrasonic waves propagate in anisotropic materials, the phase velocity and

the associated polarization vector are generally determined by the Christoffel equation,

which has been discussed in the literature [72],[73]. In this approach, the dispersion relations

for the mean response are then given by the solution of the Dyson equation, Eq. (2.7), as

gβ (p) =
[
g0β (p)−1 −mβ (p)

]−1
=
[
ω2 − p2c2β −mβ (p)

]−1
, (2.10)

for each wave type, β, inclusive of the quasilongitudinal (qP ) and two quasishear (qS1 and

qS2) waves. For the transversely isotropic case, the two quasishear waves are generally called

the shear horizontal (SH) and quasishear vertical (qSV ) waves. These are the expressions

for the dispersion relation of the mean response, which defines the phase velocity and

attenuation of each wave type from solution of

ω2 − p2c2β −mβ (p) = 0, (2.11)
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for the wave vector p. The phase velocity is given by the real part of p and the attenuation

of each wave type is given by the imaginary part of p. Such solutions of Eq. (2.10) are

usually done numerically using root finding techniques [56]. However, explicit expressions of

the attenuation can be determined using an approximation valid below the high-frequency

geometric optics limit. In this case, the wave vector p within the self-energy is approximated

as being equal to the bare wave vector. Such an approximation, mβ (p) ≈ mβ

(
ω
cβ
p̂
)
, is

sometimes called a Born approximation [47],[50]. This approximation allows the imaginary

part of p to be calculated directly from Eq. (2.11). Thus, the attenuations of each wave

type are given by

αβ (p̂) = − 1

2ωcβ (p̂)
Immβ

(
ω

cβ
p̂

)
. (2.12)

The final step in this derivation now lies in the expression for the imaginary part of

the self-energy. The definition of the self-energy is given by Eq. (2.9). Approximate inner

products allow each component of the self-energy to be determined independently. The

wave numbers which appear in Eq. (2.9) are approximated to the same degree of the Born

approximation discussed above. The integration over the magnitude of the wave vector is

easily done due to the delta-function form of G0(s). The attenuations for the three wave

types, which are each defined in Eq. (2.12), are finally given in the general form [57],[74]

αβ (p̂) =
1

c3β (p̂)

{
π

4

∫
d2ŝ

ω4

c5qS1 (̂s)
Ξ̃

(
ω

cβ (p̂)
p̂− ω

cqS1 (̂s)
ŝ

)····ûKp̂ŝv̂1

····ûKp̂ŝv̂1

+
π

4

∫
d2ŝ

ω4

c5qP (̂s)
Ξ̃

(
ω

cβ (p̂)
p̂− ω

cqP (̂s)
ŝ

)····ûKp̂ŝv̂2

····ûKp̂ŝv̂2

(2.13)

+
π

4

∫
d2ŝ

ω4

c5qS2 (̂s)
Ξ̃

(
ω

cβ (p̂)
p̂− ω

cqS2 (̂s)
ŝ

)····ûKp̂ŝv̂3

····ûKp̂ŝv̂3

}
,

where K is defined as the polarization for the wave type β (1, 2 or 3 for wave types qS1, qP
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and qS2, respectively). In the above equation, it is shown that the integrals are over the unit

sphere, which is defined by unit vector ŝ. The direction p̂ defines the propagation direction,

ŝ is the scattered direction, and û and v̂ are defined as the polarization directions. The

dependence of the vectors û on p̂ and of v̂ on ŝ is implicit. The argument of the correlation

is the difference between the incoming and outgoing propagation directions. The inner

products on the covariance of the moduli fluctuations are given in terms of four unit vectors.

In the next section, the correlation function is discussed.

2.3 Correlation Function

The heterogeneous internal structure of almost all natural and man-made materials

requires that any adequate theory concerning their macroscopic behavior should start with

modeling them as random media. In the most general sense, a random medium consists

of domains of different materials (phases) or the same materials in different states. In

most situations, however, the details of the microstructure are not completely known. This

knowledge naturally leads one to attempt to estimate the effective properties from partially

statistical information on the sample in the form of a spatial correlation function. This

presentation focuses attention on the instances in which the microscopic length scale is

much larger than the molecular dimensions but much smaller than the characteristic length

or correlation length of the macroscopic sample. In such circumstances, the random media

such as fiber composites, cracked media, polycrystals, cements, rocks, and so on, can be

viewed as a continuum on the microscopic scale. In order to study the statistical properties

such as attenuation, it is necessary to introduce the spatial correlation function between the
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different phases or different states in random media. Next the simplest correlation function

is introduced, particularly focusing the applications on wave scattering problems.

As discussed in Eq. (2.2), the tensorial and spatial contributions of the material

covariance are assumed independent. The spatial correlations are characterized by η and it

is assumed that the simplest case of η has an exponential form

η(r) = e−r/L. (2.14)

The correlation length, L, is of the order of the crack radius in cracked media or grain

radius in polycrystals. As discussed by Stanke [75] an exponential function describes the

correlation of continuous and discrete materials reasonably well. Such a model, with a single

length scale, is perhaps oversimplified for materials containing a wide range of crack sizes for

example. However, for many materials, such a model is expected to describe the statistics of

the material properties well. Other correlation functions, such as that discussed by Markov

and Willis [76], are thought to give similar results for the frequency range considered here.

The influence of this choice of correlation function on the attenuations exists to some extent,

but is left as a subject of future investigations. In Fourier transform space, the correlation

function is then given by

η̃(q) =
L3

π2(1 + L2q2)2
. (2.15)

The forms of the attenuation given above contain the difference of two vectors,

η̃(q) = η̃([ω/c1(Θ)] p̂− [ω/c2(Θ
′)] ŝ) as the argument for the covariance in Eq. (2.2). Now

the correlation functions W̃β−γ (p̂, ŝ) is considered. If the three nondimensional frequencies

are then defined as xβ = ωL/cβ = kL, using the expression of the spatial Fourier transform

of the correlation function in Eq. (2.15), the functions W̃β−γ (p̂, ŝ) are then expressed in
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terms of the above dimensionless quantities as

W̃β−γ (p̂, ŝ) =
L3

π2
(

1 + x2β (p̂) + x2γ (̂s)− 2xβ (p̂)xγ (̂s) p̂ · ŝ
)2 , (2.16)

for the incoming wave type β and outgoing wave type γ. The inner product, p̂ · ŝ =

cos Θ cos Θ′ sinφ sinφ′ + sin Θ sin Θ′ sinφ sinφ′+cosφcosφ′, if the unit vectors p̂ and ŝ are

generally defined by p̂ = x1 cos Θ sinφ + x2 sin Θ sinφ + x3cosφ and ŝ = x1 cos Θ′ sinφ′ +

x2 sin Θ′ sinφ′ +x3cosφ′. The angles Θ, φ, and Θ′, φ′ are, respectively, defined as Euler an-

gles in a general coordinate system. The form of the eighth-rank tensor, Ξαβγδ
ijkl , is discussed

next, respectively, for different cases in this presentation.
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Chapter 3

Scattering in Damaged Solids

3.1 Introduction

The scattering of elastic waves in complex media, particularly at ultrasonic fre-

quencies, is of importance to nondestructive testing, materials characterization and other

research areas. Information about the decay in the coherent field due to scattering attenu-

ation may often be used to infer information about the microstructure of the material [77].

The incoherent field also contains microstructural information. Quantitative comparisons

with experimental results require a well-developed model of the effects of the microstructure

on the wave behavior. If the microstructure is modified, such as through the development

of microcracks within the medium, this change in microstructure would manifest itself in

the scattered wave fields as well. In the case of structural materials such as concrete, poly-

crystalline metals and most composites, these microcracks are typically induced by loading,

materials processing, manufacturing, aging and other in-service conditions. Changes in ma-

terial response due to microcracking are typically inferred ultrasonically by the decrease
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in wave velocity or the increase in ultrasonic attenuation, both of which indicate a stiff-

ness degradation or loss of strength of the material [25]. The limits of detecting these

changes in wave behavior depend on the amount of increased scattering due to the system

of microcracks.

Damage is a continuous concept which is intuitively related to the microcracks. It

is measured by the cumulative effect which these microcracks and other microdefects have

on the macroscopic response [78],[79]. The effect of many microcracks can be described

analytically by a damage parameter only when the material is statistically homogeneous

in the neighborhood of the observed material point of the configuration. If a material is

neither statistically homogeneous nor statistically self similar, a single tensor parameter

may be used to represent the effect of many microcracks. In general, the damage may

become a cause of or lead to fracture, but it is, by no means, synonymous with it.

In this chapter, a generalized tensor-based approach is used to examine the atten-

uation of elastic waves in an isotropic, homogeneous medium with embedded microcracks.

The microcracks are assumed to be noninteracting, penny-shaped cracks that are randomly

oriented. However, the coordinate-free approach allows for nonrandom ensembles of micro-

cracks to be studied with relative ease. The topic of aligned cracks will be presented in

the subsequent two chapters. It is assumed that the constitutive behavior of the stiffness

matrix or compliance matrix in the pristine state is sufficiently characterized at the local

level by a linear elastic relation between the average stresses and average strains of the

traditional form. In standard damage mechanics theory [78],[79], the continuum model is

described by a macroscopic damage parameter attributed to the microcracks. The effective
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elastic moduli of the medium that contains many penny-shaped cracks is first presented

using techniques discussed by Nemat-Nasser and Hori [80], Kachanov et al. [81] and Kra-

jcinovic [79]. These techniques have been used to estimate the upper and lower bounds of

the material properties with distributed damage. The general inequality was presented by

Hashin and Shtrikman [82] using a variational approach. Similar ideas have been used to

estimate the effective conductivity of such media [83]. The effective Lamé constants derived

here are in agreement with previous analyses. Next, expressions for the moduli fluctuations

are derived in terms of the single crack compliance and stiffness. The fluctuations and

corresponding covariance of the moduli, which are necessary for the attenuation derivation,

are then presented.

3.2 Effective Elastic Properties

A solid is considered to be damaged if some of the bonds connecting parts of its

microstructure are missing. Bonds between the molecules in a crystallite lattice may be

ruptured and the cohesion at the fiber-matrix interface may be lost. However, this type of

damage cannot be measured in situ by nondestructive testing. Damage must, therefore, be

measured indirectly by the effect it has on the effective material properties. Damage is a

continuum concept which is intuitively related to the microcracks. It is measured by the

cumulative effect which these microcracks have on the macroscopic response. As suggested

in damage mechanics [78],[79], the rate of damage accumulation may be conveniently mea-

sured by the rate of change of the effective stiffness or compliance tensor. The present focus

is on the elastic properties weakened by a large number of microcracks which are randomly
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positioned throughout a large part of the representative volume element (RVE).

3.2.1 Linear Elastic Fracture Mechanics

Methods which make use of estimating the effective elastic properties of the sta-

tistically homogeneous elastic solids which contain a large number of microcracks were

investigated by Nemat-Nasser and Hori [80], Kachanov et al. [81] and others. The first step

in determining the effective properties of the damaged elastic solid involves consideration

of a single penny-shaped crack, which is located within an infinite, homogeneous, isotropic

and elastic continuum. In accordance with linear elastic fracture mechanics, the total, local

and average stress σ and strain γ fields hold for superposition [84]. The average stress and

strain are related by

γ = Sσ, or σ=Cγ, (3.1)

where

S = S+ S∗,

C = C−C∗. (3.2)

In Eqs. (3.1)-(3.2), γ = 〈γ(x)〉 and σ = 〈σ(x)〉 are the ensemble average strain and

average stress, respectively. Here S and C are the effective compliance and effective stiffness,

respectively, of the elastic solid which contains the cracks. S∗ is defined as the effective

compliance contributed by all cracks within the elastic solid and C∗ is defined as the effective

stiffness contributed by all cracks within the elastic solid. It should be noted that (C∗)−1 
=

S∗. The tensors S and C are the compliance and stiffness, respectively, of the pristine

material.
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The components of the effective compliance tensor S∗ can be estimated from the

contribution by the microcracks. The contributions are calculated by the complementary

strain energy in terms of the path independent integral of fracture mechanics. The strain

energy is expressed as

ψ∗ =

∫ a

0

M

a
da, (3.3)

where ψ∗ is the Gibb’s energy and a is the crack radius. The factor M in the integrand is

written as the line integral of the J integral (energy release rate) along the crack perimeter

L

M =

∮

L
aJdL. (3.4)

The energy release rate J is expressed in terms of the stress intensity factors Km (m =

I, II, III) corresponding to the three fundamental crack modes as

J =
1− ν

2µ
(K2

I +K2
II) +

1

2µ
K2
III, (3.5)

where ν and µ are the Poisson’s ratio and shear modulus, respectively, of the surrounding

material. Thus, the final Gibbs’ energy is derived in compact form as

ψ∗ =

∫ a

0

[∮
MmnKmKndL

]
da. (3.6)

The tensor M̄ is given by

Mmn =
1

2µ
[(1− ν)δmn + νδmIIIδnIII] , (3.7)

where δmn is the Kronecker delta, and the subscript n also represents the three fundamental

cracks modes I, II, or III.
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The symmetric forms of the expressions for the stress intensity factors of a penny-

shaped crack embedded in a homogeneous, isotropic and elastic material are [85]

KI =
2

π
σ̃11
√
πa,

KII =
2

π

1

2− ν
√
πa [(σ̃12 + σ̃21) cosα+ (σ̃13 + σ̃31) sinα] , (3.8)

KIII =
2

π

1− ν
2− ν

√
πa [(σ̃12 + σ̃21) sinα− (σ̃13 + σ̃31) cosα] ,

where σ̃ij are the stress components in the crack coordinate system and α is the angle

defined by the orientation of a penny-shaped crack. Expressions (3.8) are valid only if the

stress component σ̃11 normal to the crack surface is tensile. Differentiating Eq. (3.8) with

respect to the stresses leads to the following expressions

∂KI
∂σ̃ij

=
2

π

√
πaδi1δj1,

∂KII
∂σ̃ij

=
2

π

1

2− ν
√
πa [(δi1δj2 + δi2δj1) cosα+ (δi1δj3 + δi3δj1) sinα] , (3.9)

∂KIII
∂σ̃ij

=
2

π

1− ν
2− ν

√
πa [(δi1δj2 + δi2δj1) sinα− (δi1δj3 + δi3δj1) cosα] .

The stress intensity factor associated with the pure mode vanishes (KI = 0) when the stress

component σ̃11 normal to the crack surface is compressive.

3.2.2 Compliance Tensor Attributable to a Single Crack

The components of the compliance tensor are related to the Gibb’s energy through

S̃
(s)
ijkl = ∂2ψ∗/∂σ̃ij∂σ̃kl (in the local coordinate system, the notation (˜) is used). Thus, the

compliance attributed to the presence of a single penny-shaped active crack in a represen-

tative volume V is then

S̃
(s)
ijkl =

2

V

∫ a

0

[∮
Mmn

∂Km

∂σ̃ij

∂Kn

∂σ̃kl
dL

]
da. (3.10)
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Substituting Km into Eq. (3.10) and integrating gives the compact form [79]

S̃
(s)
ijkl =

16

3V

1− ν̃
2− ν̃

1

2µ̃
a3{2Ĩ5ijkl − ν̃Ĩ6ijkl}. (3.11)

In the global coordinate system, using a coordinate transformation and assuming the normal

stress at the crack surface is tensile, the effective compliance attributable to a single, planar,

penny-shaped crack of radius a is written in the simple form

S
(s)
ijkl =

16

3V

1− ν
2− ν

1

2µ
a3{2I5ijkl − νI6ijkl}. (3.12)

The compliance of a single crack is dependent on the unit normal m̂, which defines the

crack orientation. This orientation is implicit in the tensors I5, I6. These tensors and other

necessary basis tensors are given in terms of unit normal vector m̂ and Kronecker delta δij

as [86]

I1ijkl =
1

2
(δikδjl + δilδjk), I2ijkl = δijδkl,

I3ijkl = δijm̂km̂l, I
4
ijkl = m̂im̂jδkl, I6ijkl = m̂im̂jm̂km̂l, (3.13)

I5ijkl =
1

4
(m̂im̂kδjl + m̂im̂lδjk + m̂jm̂kδil + m̂jm̂lδik).

3.2.3 Stiffness Tensor Attributable to a Single Crack

If it is assumed that the damaged medium is statistically homogeneous and statis-

tically isotropic, the effective compliance attributable to one single crack is approximately

the inverse of the effective stiffness. It is convenient to derive the attenuation in terms of

the effective stiffness attributable to one penny-shaped crack. The compliance tensor of the

pristine, undamaged elastic matrix is

S0ijkl =
1

2µ
(I1ijkl −

ν

1 + ν
I2ijkl). (3.14)
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Then the effective compliance expression for a simple crack in a matrix can be written

Ŝ = S(s) + S0 =
1

2µ
eiI

i, (3.15)

in which

e1 = 1, e2 = − ν

1− ν , e3 = e4 = 0,

e5 =
32

3

1− ν
2− ν a

3, e6 = −16

3

ν(1− ν)
2− ν a3, (3.16)

where the repeated index i denotes the summation convention over the range of i = 1− 6.

It should be noted that this summation convention and range are used throughout the

dissertation. To calculate the stiffness tensor, the other irreducible tensor basis J (J i, i =

1, 2, ...6) is used [86]. These basis tensors may be formed from the tensors I using a linear

transformation. The effective compliance tensor expressed in terms of the J basis tensors

is given by

Ŝ =
1

2µ
fiJ

i, (3.17)

where

f1 =
2− ν

2(1 + ν)
+

8

3
(1− ν)a3, f2 =

ν

2(1 + ν)
+

8

3
(1− ν)a3,

f3 = − 3ν

2(1 + ν)
, f4 = − ν

2(1 + ν)
, (3.18)

f5 = 1 +
16

3

1− ν
2− ν a

3, f6 = 1.

The effective stiffness tensor may also be expanded in a similar way as

Ĉ = Ŝ−1 = 2µbiJ
i, (3.19)

where the scalar coefficients bi are related to the scalar coefficients fi,

{b1,b2,b3,b4,b5,b6} = ∆

{
f1, − f2, − f3, − f4,

1

f5∆
,

1

f6∆

}
, (3.20)
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with

∆−1 = f21 − f22 − f23 + f24 . (3.21)

If the penny-shaped crack volume is much smaller than the representative volume, the

higher order terms in the coefficients may be neglected. This truncation is used to simplify

the form of the derivation that follows and places some limits on the resulting attenuations.

In this case, the corresponding coefficients are

b1 =
2− ν

2(1− 2ν)
+

8

3

(1− ν)(−3ν2 + 2ν − 1)

(1− 2ν)2
a3,

b2 = − ν

2(1− 2ν)
− 8

3

(1− ν)(−ν2 − 2ν + 1)

(1− 2ν)2
a3,

b3 =
3ν

2(1− 2ν)
− 8

3

3ν(1− ν)2

(1− 2ν)2
a3, (3.22)

b4 =
ν

2(1− 2ν)
− 8

3

ν(1− ν)2
(1− 2ν)2

a3,

b5 = 1− 16

3

1− ν
2− ν a

3, b6 = 1.

Again the effective stiffness is represented in terms of the six fourth order tensors I,

Ĉ = 2µciI
i, (3.23)

where the coefficients ci are

c1 = 1, c2 =
ν

1− ν −
16

3

ν2(1− ν)

(1− 2ν)2
a3

c3 = c4 = −16

3

ν(1− ν)
1− 2ν

a3, (3.24)

c5 = −32

3

1− ν
2− ν a

3, c6 =
16

3

ν(1− ν)

2− ν a3.

The single crack stiffness reduces the stiffness of the pristine, undamaged elastic matrix with

stiffness C0 = 2µ(I1 + ν
1−ν I

2). Thus, the effective stiffness of the crack in a unit volume of
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matrix is

C(s) = C0 − Ĉ = 2µdiI
i, (3.25)

where the coefficients di are

d1 = 0, d2 =
16

3

ν2(1− ν)

(1− 2ν)2
a3,

d3 = d4 =
16

3

ν(1− ν)

1− 2ν
a3, (3.26)

d5 =
32

3

1− ν
2− ν a

3, d6 = −16

3

ν(1− ν)

2− ν a3.

3.2.4 Ensemble Average Stiffness

To estimate the ensemble average properties, an infinitely extended, homogeneous,

isotropic and elastic three-dimensional continuum is considered. The medium is assumed

to contain a large number of microcracks which do not interact with each other. The ef-

fective compliance or stiffness may be determined by the superposition of the contributions

of individual microcracks. In the case of a large number of microcracks, the summation

can be replaced by an integration over a continuous distribution of crack sizes and orien-

tations. The penny-shaped crack is characterized by its radius a and two Euler angles θ

and ϕ that define the orientation of the unit normal m̂ as shown in Fig. 3.1. The spe-

cific distribution of the crack radii and orientations is expressed by the probability density

function W (a, θ, ϕ). In some situations, the microcrack radii, shapes and orientations may

be correlated. The density function is then replaced by the probability density function

P (a, θ, ϕ) = P θϕ (θ, ϕ)P a (a|θ, ϕ). Here, however, it is assumed that the microcrack radii

and orientations are not correlated. In this case, the density function is expressed as

W (a, θ, ϕ) = A (a) ζ (θ, ϕ) . (3.27)
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Figure 3.1: Geometry of a penny-shaped crack.

The effective continuum properties per unit volume are expressed in terms of an ensemble

average utilizing the density function (3.27) and Eq. (3.25) such that

C∗ijkl =
ε

4π

∫ 2π

0

∫ π/2

−π/2
C
(s)
ijklζ (θ, ϕ) dθ sinϕdϕ. (3.28)

In Eq. (3.28), the non-dimensional microcrack density per unit volume is defined by

ε = N
〈
a3
〉

=

∫ a+

a−
A(a)a3da, (3.29)

where N is number of cracks per unit volume and the angular brackets represent the ensem-

ble average. This damage density was introduced by Walsh [87] for the case of an isotropic

distribution of the penny-shaped microcracks. A more general form of the damage factor

in terms of elliptical microcracks was given by Budiansky and O’Connell [88]

ε =
2N

π

〈
Γ2

P

〉
, (3.30)
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where Γ and P are the crack surface area and the perimeter length, respectively.

The simplest model of the microcrack distribution is assumed when their orienta-

tions are random. In this case, the normal to the microcrack plane takes every direction

with equal probability, such that the effective compliance or stiffness tensor attributable to

the presence of microcracks is isotropic. In this case, the density function in Eq. (3.27) is

given by

ζ(θ, ϕ) = 1. (3.31)

The effective stiffness attributable to the presence of N active microcracks per unit volume

is then derived from the Eq. (3.28)

C∗ijkl =
ε

4π

∫ 2π

0

∫ π/2

−π/2
C
(s)
ijkl(θ, ϕ) sinϕdθdϕ, (3.32)

where C
(s)
ijkl is given by Eqs. (3.25) and (3.26). Carrying out the integration in Eq. (3.32)

gives the effective stiffness due to an isotropic distribution of penny shaped microcracks as

C∗ijkl =
16

45

1− ν
2− ν 2µε

{
2(5− ν)I1ijkl +

ν(ν2 − 16ν + 19)

(1− 2ν)2
I2ijkl

}
. (3.33)

The stiffness tensor of the homogeneous, isotropic and elastic solids in its pristine,

undamaged state is

C0ijkl = λI2ijkl + 2µI1ijkl. (3.34)

Here, the ensemble average stiffness is redefined such that the average fluctuations are

zero. Such a procedure, while not necessary, is convenient for the calculation of material

covariance and attenuation. The moduli are assumed to be spatially varying and of the

form

Cijkl(x) = C
0
ijkl + δCijkl(x), (3.35)
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where

C
0
ijkl = C0ijkl −C∗ijkl. (3.36)

Thus, the moduli have the form of the average moduli

C
0
ijkl =

〈
Cijkl(x)

〉
= λI2ijkl + 2µI1ijkl. (3.37)

plus the fluctuation about the mean δCijkl. Hence, Cijkl has the average value of C
0
ijkl and

δCijkl represents the modulus fluctuation. The effective constants are

µ = µ

[
1− 32

45

(1− ν)(5− ν)

2− ν ε

]
,

λ = λ

[
1− 16

45

(1− ν)(ν2 − 16ν + 19)

(2− ν)(1− 2ν)
ε

]
. (3.38)

These results are identical with the results obtained by Krajcinovic [79], Kachanov et al.

[89], Budiansky and O’Connell [88] and Zimmerman [90]. The effective properties of the

damaged material are shown by Eqs. (3.38) to be linearly related to the damage parameter

ε. Thus, wave speed changes that are the result of damage will scale linearly with ε as well.

The fluctuations, which are defined here to have zero average,
〈
δC

〉
= 0, are given

by

δCijkl(x) = C∗ijkl −C
(s)
ijklH(x), (3.39)

The function H(x) is defined as

H(x) =





1 if x ∈ S

0 otherwise

, (3.40)

where S is the space occupied by the crack phase.
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3.3 Mean Response

The mean response, 〈G (p)〉 , is given by the solution of the Dyson equation,

Eq.(2.7), above. The solution of 〈G (p)〉 is expressed in terms of G0(p) and M̃ (p) . For the

statistically isotropic case, the bare Green’s dyadic, G0, is the solution of Eq. (2.4) with

the modulus fluctuation equal to zero. Hence

G0 (p) = p̂p̂g0L (p) + (I− p̂p̂)g0T (p) , (3.41)

for propagation in the p̂ direction. The bare longitudinal wave g0L (p) and transverse wave

g0T (p) propagators are denoted

g0L (p) =
[
ω2 − p2c2L

]−1
, (3.42)

g0T (p) =
[
ω2 − p2c2T

]−1
,

where the cL and cT are the average longitudinal and transverse wave speeds, respectively.

The Fourier transforms which define 〈G (p)〉 and M̃ (p) are given by expressions similar

to those defining G0 (p). The spatial transform of the self-energy and the mean Green’s

dyadic have the same form as the bare Green’s dyadic. Hence, one may write

M̃ (p) = p̂p̂mL (p) + (I− p̂p̂)mT (p) ,

〈
G̃ (p)

〉
= p̂p̂gL (p) + (I− p̂p̂)gT (p) , (3.43)

where

mL(p) = −
∫
d3s p̂p̂ŝ···

p̂p̂p̂···Ξ
·

·{ ŝŝg0L(s) + (I−ŝŝ)g0T (s)}η̃(p− s),

mT (p) = −1

2

∫
d3s (I−p̂

p̂
) p̂ŝ···
p̂p̂···

Ξ··{ ŝŝg0L(s) + (I−ŝŝ)g0T (s)}η̃(p− s). (3.44)
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and

gL (p) = [ω2 − p2c2L +mL(p)]−1,

gT (p) = [ω2 − p2c2T +mT (p)]−1. (3.45)

These are the expressions for the mean response. They define the phase velocity and

the attenuation of longitudinal and transverse wave types in statistically isotropic me-

dia. Using Eqs. (2.11) and (2.12), the attenuations in statistically isotropic media, which

are the imaginary part for each wave type, can be derived. The imaginary parts of mβ

(where β = L or T ) are determined from Eqs. (3.44) such that the attenuations are given

by

αL (p̂) =
π

4ωcL

∫
p̂p̂ŝ̂s····
p̂p̂ŝ̂s····

Ξη̃

(
p̂
ω

cL
− ŝ

ω

cL

)
ω5

c7L
d2ŝ

+
π

4ωcT

∫
p̂p̂ŝ
p̂p̂ŝ

(I−ŝŝ)········Ξ η̃
(
p̂
ω

cL
− ŝ

ω

cT

)
ω5

c5T c
2
L

d2ŝ, (3.46)

and

αT (p̂) =
π

8ωcL

∫ (
I−p̂p̂

)p̂ŝŝ····
p̂ŝŝ····

Ξ η̃

(
p̂
ω

cT
− ŝ

ω

cL

)
ω5

c5Lc
2
T

d2ŝ

+
π

8ωcT

∫
(I−p̂p̂)p̂ŝp̂ŝ(I−ŝŝ)········Ξ η̃(p̂

ω

cT
− ŝ

ω

cT
)
ω5

c7T
d2ŝ, (3.47)

where the integrals are over the unit sphere ŝ. Three additional functions are defined as

ηLL(θps) = η̃(p̂
ω

cL
− ŝ

ω

cL
),

ηTT (θps) = η̃(p̂
ω

cT
− ŝ

ω

cT
), (3.48)

ηLT (θps) = ηTL(θps) = η̃(p̂
ω

cL
− ŝ

ω

cT
),

where the direction p̂ defines the propagation direction, ŝ defines the scattered direction,

and θps is the angle between these directions (i.e., cos θps = p̂ · ŝ).
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3.4 Attenuations

To derive the attenuations, the relevant inner products on the covariance of the

effective moduli fluctuations are required. The covariance of the moduli fluctuations is

represented by an eight-order tensor which is given in Eq. (2.2). The inner product is given

explicitly by

Ξ
····ûp̂ŝv̂
····ûp̂ŝv̂ = Ξ

αβγδ
ijkl ûβûkp̂αp̂lŝiŝδv̂γ v̂j (3.49)

The covariance here is given in terms of an average over all crack orientations. Thus, the

crack normal m̂ may vary over all possible directions. In this case, the following identities

are needed

〈m̂im̂j〉 =
1

3
δij ,

〈m̂im̂jm̂km̂l〉 =
1

15
(δijδkl + δikδjl + δilδjk) ,

〈m̂im̂jm̂km̂lm̂αm̂β〉 =
1

105
(δijδklδαβ

+ all permutations — 15 terms in all), (3.50)

〈m̂im̂jm̂km̂lm̂αm̂βm̂γm̂δ〉 =
1

945
(δijδklδαβδγδ

+ all permutations — 105 terms in all ),

where the brackets, 〈〉 , denote the ensemble average. All averages of odd numbers of m̂’s

are zero. The average of the tensorial part of the covariance over all orientations of crack

normal is defined by

Ξ
αβγδ
ijkl =

1

4π

∫ 2π

0

∫ π/2

−π/2
C
(s)
ijklC

(s)
αβγδ sinϕdϕdθ. (3.51)

Here we use the relation 〈H(x)H(y)〉 = εPr(r|0), where Pr(r|0) = (1−ε)η (r)+ε is defined

as the conditional probability [76]. The notation r is the magnitude of the difference between
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two vectors. Here, the second order terms in ε are neglected under the assumption that the

damage density is small. Thus, 〈δCijkl(x)δCαβγδ(y)〉 = εη (r)Ξαβγδ
ijkl . It is noted that

C
(s)

= 2µdiI
i, (3.52)

with

d1 = 0, d2 =
16

3

ν2(1− ν)

(1− 2ν)2
, d5 =

32

3

1− ν
2− ν ,

d3 = d4 =
16

3

ν(1− ν)

1− 2ν
, d6 = −16

3

ν(1− ν)
2− ν . (3.53)

Using the identities in Eqs. (3.50), the general form of Ξ is given in terms of Kronecker

deltas. Thus, the general compact form of Ξ is expressed as

Ξ
αβγδ
ijkl = T1δijδklδαβδγδ

+ T2 [δijδkl (δαγδβδ + δαδδβγ) + δαβδγδ (δikδjl + δilδjk)]

+ T3 (δikδjl + δilδjk) (δαγδβδ + δαδδβγ)

+ T4 [δijδαβ (δγkδδl + δγlδδk) + δklδαβ (δγiδδj + δγjδδi)

+δijδγδ (δαkδβl + δαlδβk) + δklδγδ (δαiδβj + δαjδβi)]

+ T5 [δαβδik (δγjδδl + δγlδδj) + δαβδil (δγjδδk + δγkδδj)

+δαβδjk (δγiδδl + δγlδδi) + δαβδjl (δγiδδk + δγkδδi)

+δγδδik (δαjδβl + δαlδβj) + δγδδil (δαjδβk + δαkδβj)

+δγδδjk (δαiδβl + δαlδβi) + δγδδjl (δαiδβk + δαkδβi)

+δαγδij (δβkδδl + δβlδδk) + δαγδkl (δβiδδj + δβjδδi) (3.54)

+δαδδij (δβkδγl + δβlδγk) + δαδδkl (δβiδγj + δβjδγi)

+δβγδij (δαkδδl + δαlδδk) + δβγδkl (δαiδδj + δαjδδi)



43

+δβδδij (δαkδγl + δαlδγk) + δβδδkl (δαiδγj + δαjδγi)]

+ T6 [δαγδik (δβjδδl + δβlδδj) + δαγδil (δβjδδk + δβkδδj)

+δαγδjk (δβiδδl + δβlδδi) + δαγδjl (δβiδδk + δβkδδi)

+δαδδik (δβjδγl + δβlδγj) + δαδδil (δβjδγk + δβkδγj)

+δαδδjk (δβiδγl + δβlδγi) + δαδδjl (δβiδγk + δβkδγi)

+δβγδik (δαjδδl + δαlδδj) + δβγδil (δαjδδk + δαkδδj)

+δβγδjk (δαiδδl + δαlδδi) + δβγδjl (δαiδδk + δαkδδi)

+δβδδik (δαjδγl + δαlδγj) + δβδδil (δαjδγk + δαkδγj)

+δβδδjk (δαiδγl + δαlδγi) + δβδδjl (δαiδγk + δαkδγi)]

+ T7 [δαiδβjδγkδδl + δαiδβlδγjδδk + δαiδβkδγjδδl

+δαiδβkδγlδδj + δαiδβlδγjδδk + δαiδβlδγkδδj

+δαjδβiδγkδδl + δαjδβiδγlδδk + δαjδβkδγiδδl

+δαjδβkδγlδδi + δαjδβlδγkδδi + δαjδβlδγiδδk

+δαkδβiδγjδδl + δαkδβiδγlδδj + δαkδβjδγiδδl

+δαkδβjδγlδδi + δαkδβlδγiδδj + δαkδβlδγjδδi

+δαlδβiδγjδδk + δαlδβiδγkδδj + δαlδβjδγiδδk

+δαlδβjδγkδδi + δαlδβkδγiδδj + δαlδβkδγjδδi] .

The expressions for the attenuations, in turn, involve certain inner products of Ξ with

incoming and outgoing wave vectors. In terms of the angle between p̂ and ŝ, these necessary
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inner products reduce to

Ξ
····p̂p̂ŝ̂s
····p̂p̂ŝ̂s = [T1 + 4T4 + 4T7] + [4T2 + 4T4 + 32T5 + 16T6 + 16T7] cos2 θps

+ [4T3 + 16T6 + 4T7] cos4 θps,

Ξ
····p̂p̂ŝŝ2
····p̂p̂ŝŝ2

= Ξ
····p̂2p̂ŝŝ
····p̂2p̂ŝŝ

= [T4 + 2T7] + [4T5 + 4T6 + 4T7] cos2 θps,

Ξ
····p̂p̂ŝŝ3
····p̂p̂ŝŝ3

= Ξ
····p̂3p̂ŝŝ
····p̂3p̂ŝŝ

= [T4 + 4T5 + 4T6 + 6T7] + [4T3 + 16T6 + 4T7] cos2 θps

− [4T3 + 16T6 + 4T7] cos4 θps,

Ξ
····p̂2p̂ŝŝ2
····p̂2p̂ŝŝ2

= [T6 + 2T7] + [T3 + 3T6 + 2T7] cos2 θps,

Ξ
····p̂3p̂ŝŝ3
····p̂3p̂ŝŝ3

= [T3 + 4T6 + 4T7] + [−4T3 − 16T6 − 4T7] cos2 θps

+ [4T3 + 16T6 + 4T7] cos4 θps, (3.55)

Ξ
····p̂2p̂ŝŝ3
····p̂2p̂ŝŝ3

= Ξ
····p̂3p̂ŝŝ2
····p̂3p̂ŝŝ2

= [T6 + 2T7] ,

Ξ
····p̂2p̂ŝŝ2
····p̂3p̂ŝŝ3

= Ξ
····p̂3p̂ŝŝ3
····p̂2p̂ŝŝ2

= [−T3 − 2T6] cos θps + [2T3 + 4T6] cos3 θps,

Ξ
····p̂2p̂ŝŝ3
····p̂3p̂ŝŝ2

= Ξ
····p̂3p̂ŝŝ2
····p̂2p̂ŝŝ3

= −3T6 cos θps + [4T6 + 2T7] cos3 θps,

Ξ
····p̂2p̂ŝŝ2
····p̂2p̂ŝŝ3

= Ξ
····p̂2p̂ŝŝ2
····p̂3p̂ŝŝ2

= Ξ
····p̂2p̂ŝŝ3
····p̂2p̂ŝŝ2

= Ξ
····p̂3p̂ŝŝ2
····p̂2p̂ŝŝ2

= 0,

Ξ
····p̂3p̂ŝŝ3
····p̂3p̂ŝŝ2

= Ξ
····p̂2p̂ŝŝ3
····p̂3p̂ŝŝ3

= Ξ
····p̂3p̂ŝŝ3
····p̂2p̂ŝŝ3

= Ξ
····p̂3p̂ŝŝ2
····p̂3p̂ŝŝ3

= 0,

Ξ
····p̂p̂ŝŝ3
····p̂p̂ŝŝ2

= Ξ
····p̂2p̂ŝŝ
····p̂3p̂ŝŝ

= Ξ
····p̂3p̂ŝŝ
····p̂2p̂ŝŝ

= Ξ
····p̂p̂ŝ̂s2
····p̂p̂ŝ̂s3

= 0.

The coefficients Ti are given by

T1 = −D
2ν2

945

335ν4 − 1984ν3 + 2946ν2 − 208ν − 937

(1− 2ν)2
,

T2 =
D2ν

4725

31ν3 − 139ν2 + ν + 243

1− 2ν
, T7 =

D2ν2(1− 2ν)2

945
,

T3 =
D2

945
(1− 2ν)2(ν2 − 18ν + 63), T4 =

D2ν2

945
(31ν2 − 166ν + 217), (3.56)

T5 =
D2ν

1890
(1− 2ν)(14ν2 − 79ν + 117), T6 =

D2

420
(1− 2ν)2(7− 4ν),
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Figure 3.2: Geometry for scattering in the local coordinate system

with the constant D = 16
3

1−ν
(2−ν)(1−2ν)2µ. The unit vectors p̂, p̂2, p̂3 and ŝ, ŝ2, ŝ3 used in Eq.

(3.55) are defined as orthonormal triads, respectively as shown in Fig 3.2.

Using the notation

F (θps) = Ξ····p̂p̂ŝŝ
····p̂p̂ŝŝ,

M(θps) = Ξ
····p̂p̂ŝŝ2
····p̂p̂ŝŝ2

+ Ξ
····p̂p̂ŝŝ3
····p̂p̂ŝŝ3

= Ξ····p̂2p̂ŝŝ
····p̂2p̂ŝŝ

+ Ξ····p̂3p̂ŝŝ
····p̂3p̂ŝŝ

, (3.57)

N(θps) = Ξ
····p̂2p̂ŝŝ2
····p̂2p̂ŝŝ2

+ Ξ
····p̂3p̂ŝŝ3
····p̂3p̂ŝŝ3

+ Ξ
····p̂2p̂ŝŝ3
····p̂2p̂ŝŝ3

+ Ξ
····p̂3p̂ŝ̂s2
····p̂3p̂ŝ̂s2

,

allows the attenuations to be reduced to the form

αLL =
1

4

πω4ε

c8L

∫
ηLL (θps)F (θps)d2ŝ =

1

2

π2ω4ε

c8L

∫ +1

−1
ηLL (θ)F (θ)d cos θ,

αLT =
1

4

πω4ε

c3Lc
5
T

∫
ηLT (θps)M (θps) d

2ŝ =
1

2

π2ω4ε

c3Lc
5
T

∫ +1

−1
ηLT (θ)M (θ)d cos θ,

αTL =
1

2

(
cT
cL

)2
αLT , (3.58)

αTT =
1

8

πω4ε

c8T

∫
ηTT (θps)N (θps) d2ŝ =

1

4

π2ω4ε

c8T

∫ +1

−1
ηTT (θ)N (θ) d cos θ,
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The total attenuations for the longitudinal and transverse waves are given by

αL = αLL + αLT , αT = αTT + αTL. (3.59)

The appropriate expressions for the tensorial part of the covariance, Eq. (3.55), and the

final expressions for attenuation, Eqs. (3.58)-(3.59) are the main results of this chapter.

The attenuations are expressed as integrations on the unit circle in terms of the spatial

transform of the spatial correlation function. Most importantly, the results are expressed

in terms of the damage density ε. It is seen that the attenuations scale with damage factor

ε. In the next section, using the correlation function η given in Eq. (2.14), example results

are presented.

3.5 Example Results

In this section, example results are presented in terms of the nondimensional dam-

age density ε for an assumed spatial correlation function. For the example case, the material

properties of the uncracked medium used are Young’s modulus E = 2.0× 107Pa, Poisson’s

ratio ν = 0.16. As discussed in Eqs. (2.14) and (2.15), the spatial correlation is assumed

to have an exponential form. An exponential function describes the correlation of contin-

uous and discrete materials reasonably well. For the isotropic case, the transform of the

difference between two wave vectors is expressed as

ηαβ(χ) =
L3

π2(1 + x2α + x2β − 2xαxβχ)2
. (3.60)

where L is the spatial correlation length, L = 2 〈a〉 . The scripts, α, β denote the wave

types L or T , and χ = cos θps. The dimensionless longitudinal and transverse frequencies
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are defined as xL = ωL/cL and xT = ωL/cT . In dimensionless form, the attenuations in

Eqs. (3.58) simplify to

αLLL =
x4LB

4ε

2µ2

∫ +1

−1

h1 + h2χ2 + h3χ4(
1 + 2x2L (1− χ)

)2dχ, (3.61)

αLTL =
x4Lε

2Bµ2

∫ +1

−1

m1 +m2χ
2 +m3χ

4

(
1 + x2L + x2T − 2xLxTχ

)2 dχ, (3.62)

αTTL =
x4T ε

4µ2

∫ +1

−1

n1 + n2χ
2 + n3χ

4

(
1 + 2x2T (1− χ)

)2 dχ, (3.63)

where B = cT/cL is the wave speed ratio. The coefficients hi,mi,ni(i = 1, 2, 3) are given as

h1 = T1 + 4T4 + 4T7,

h2 = 4T2 + 4T4 + 32T5 + 16T6 + 16T7, (3.64)

h3 = 4T3 + 16T6 + 4T7,

m1 = 2T4 + 4T5 + 4T6 + 8T7,

m2 = 4T3 + 4T5 + 20T6 + 8T7, (3.65)

m3 = −4T3 − 16T6 − 4T7,

n1 = T3 + 7T6 + 10T7,

n2 = −3T3 − 13T6 − 2T7, (3.66)

n3 = 4T3 + 16T6 + 4T7.

Example calculations using Eqs. (3.61)-(3.63) are shown in Fig. 3.3. The dimen-

sionless longitudinal and transverse attenuations, αLL and αTL, respectively, are plotted

as a function of dimensionless frequency, xL, for two values of the damage parameter ε.

Equations (3.61)-(3.63) are shown to scale with the linearity of ε such that other values of ε
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Figure 3.3: Dimensionless longitudinal and transverse attenuations, αLL (solid) and αTL
(dashed), as a function of dimensionless frequency, xL, for damage density ε = 0.01 and
ε = 0.05.

lead to constant shifts in these curves. The attenuations increase with the fourth power of

frequency in the low frequency limit as expected. After a transition region, the attenuations

increase with the square of frequency. However, it should be noted that the results at higher

frequencies are less accurate than those at lower frequencies. This inaccuracy is the result of

the truncation of the expansion in Eqs. (3.22). The longitudinal attenuation is smaller than

the transverse attenuation in part due to the wavelengths of the respective waves. However,

when the attenuations are plotted in terms of their respective dimensionless frequency as

shown in Fig. 3.4, the transverse attenuations remained larger than the longitudinal. Thus,

the higher transverse attenuation is a combination of effects of wavelength and interaction

with the cracks. As shown in Fig. 3.3, the ratio of the longitudinal and transverse atten-

uations is a constant at low frequencies, but changes at higher frequencies. Figure 3.5 is a
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Figure 3.4: Dimensionless longitudinal attenuation, αLL (solid), as a function of dimension-
less frequency, xL, and dimensionless transverse attenuation, αTL (dashed), as a function
of dimensionless frequency, xT , for damage density ε = 0.01 and ε = 0.05.

plot of the wave speed ratio Be = CT/CL and C = (CT/CT )/(CL/CL), as a function of

damage density ε. As has been observed experimentally, the wave speed changes much less

than the attenuation for a given damage level [91]. Thus, the result shown in Fig. 3.5 is

not unexpected.

3.6 Conclusions

The propagation and scattering of elastic waves in a homogeneous, isotropic medium

with damage from microcracking has been investigated in this chapter. A generalized tensor-

based approach was used such that the results are coordinate free. The effective compliance

and stiffness in terms of the damage parameter was discussed. Initially, effective compliance

due to a single penny-shaped crack embedded in an infinite elastic solids was examined. The



50

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Damage Factor,       ε

W
av

e 
S

pe
ed

 R
at

io
,  

   
   

  
B

e (S
ol

id
),  

  C
(D

as
he

d)

Figure 3.5: Wave speed ratio Be = C̄T/C̄L and C =
(
C̄T/CT

)
/
(
C̄L/CL

)
, as a function of

damage density ε.

effective properties of a homogenous, isotropic solid in which a large number of microcracks

is embedded were then determined by superposition. The modulus fluctuations were then

derived relative to the average moduli. The ensemble average covariance of the moduli

fluctuations was then derived for randomly oriented cracks. The expressions for the longi-

tudinal and transverse attenuations were derived by considering the Dyson equation, which

governs the mean elastodynamic response of the medium. The Dyson equation was solved

within the limits of first-order smoothing approximation (FOSA). The final forms of the

attenuations have a linear dependency on the damage parameter, which is expected to be

valid for low damage densities. The use of the tensor-based approach presented here for

studying elastic wave scattering in media with microcracks allowed the attenuation expres-

sions to be reduced to simple form. These results should be very useful for nondestructive
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testing and material characterization research. In particular, the study of wave interactions

with aligned cracks will be much more direct. The topic of aligned cracks is examined in the

subsequent two chapters. The general formulation is also convenient for considering other

problems such as studies of backscatter phenomena.
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Chapter 4

Uniaxially Aligned Crack

Scattering

4.1 Introduction

Analytical and experimental examinations of attenuation and wave speeds of ul-

trasonic waves in cracked solids provide a direct approach for the detection of material

damage. Material responses, which are typically evaluated ultrasonically by the decrease

in wave velocity or increase in wave attenuation, vary with microcracking changes. Both of

these phenomena are caused by the stiffness degradation of the material by the cracks. In

Chapter 3, explicit general expressions of wave attenuations and wave speeds in a medium

with damage from randomly distributed penny-shaped microcracks were derived. Under

the assumption of statistical isotropy used in that work, the attenuation is independent of

propagation direction. However, in the case of structural materials such as concrete, poly-
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crystalline metals, fiber-reinforced composites, and many others, those microcracks induced

by directional loading or temperature are typically parallel to some direction. In this case,

the effective media may acquire an anisotropy essentially due to the presence of such uniax-

ially aligned cracks. Thus, the scattering attenuation is a function of propagation direction.

The analysis of this scattering attenuation is, therefore, more complicated than that of the

isotropic case.

In this chapter, the framework used in the previous chapter is extended to study

the attenuation of elastic waves in solids with uniaxially aligned cracks that are statistically

homogeneous. Again, the microcracks are assumed to be noninteracting, penny-shaped

cracks. Here, the unit normals of all cracks are assumed to be coplanar, but random within

this plane of isotropy. Thus, the uniaxial symmetry direction is perpendicular to this plane.

It should be noted that this case is different from the case of perfect crack alignment by all

cracks, as discussed by Hudson [70] for example, which will be presented in the next chap-

ter within the same framework. The use of an anisotropic Green’s function for modeling

the scattering in anisotropic media was investigated by Turner [57]. Here, this approach

is employed as well to formulate the uniaxially aligned crack problem. In this way, the

mean response is written in terms of the Dyson equation as discussed by Frisch [71] and

Weaver [50]. The Dyson equation is solved in the spatial Fourier transform domain within

the limits of the first-order smoothing approximation (FOSA), or Keller [48] approximation.

A further approximation is also made which restricts the results to frequencies below the

high-frequency geometric optics limit. The resulting attenuations are shown to be direc-

tional dependent, frequency dependent, and damage dependent for the shear horizontal,
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quasilongitudinal, and quasishear vertical waves. In particular, the angular dependence of

the attenuations in the Rayleigh limit is obtained explicitly. Outside the Rayleigh limit,

simple expressions of the attenuations of the shear horizontal, quasilongitudinal, and qua-

sishear vertical waves are derived in terms of integrations on the unit circle. Quantitative

and qualitative comparisons with previous results by Zhang and Gross [26],[27], Zhang and

Achenbach [25], Eriksson and Datta [30], Ahmed and Thompson [56] and Turner [57] show

that the more general, direct expressions derived here are reliable and comprehensive for

practical applications of detecting damage from microcracks.

4.2 Effective Elastic Properties

The effective stiffness attributed to a single penny-shaped crack, which is located

within an infinite, homogeneous, isotropic and elastic continuum has to be considered in

order to calculate the ensemble average stiffness. As discussed in Chapter 3, the effective

stiffness attributable to a single, penny-shaped crack of radius a in a unit volume, called

the crack basis Green’s function, is given by Eq. (3.25) [92]. The stiffness of a single crack

is dependent on the unit normal m̂, which defines the crack orientation. This orientation

is implicit in the tensors I. These basis tensors are given in terms of unit vector m̂ and

Kronecker delta function as shown in Eq. (3.13).

Next, the ensemble average properties contributed by all cracks are considered.

The cracks are assumed to be embedded in an infinitely extended, homogeneous, isotropic

and elastic three-dimensional continuum. The penny-shaped crack is characterized by its

radius a and two Euler angles θ and ϕ, which define the direction of the unit normal m̂ as
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Figure 4.1: The distribution of microcracks parallel to the x3-axis.

shown in Fig. 3.1. It is also assumed that the microcracks do not interact with each other.

As discussed previously, the density function may be separated into independent radius and

orientation functions of the form as shown in Eq. (3.27).

It is also assumed that all microcracks are parallel to the x3 axis (n̂ direction) with

their unit normals (lying in the x1 − x2 plane), having a random distribution, as shown in

Fig. 4.1. In this situation, due to the symmetry about the x1−x2 plane, the average elastic

properties are those of transverse isotropy, with the x3 axis as the uniaxial symmetry axis.

Here, the distribution of the microcracks is supposed to be dilute, and the distribution of

the crack sizes is also assumed to be independent of their orientations. The crack orientation

distribution function in Eq. (3.27), which implies that the orientation function ζ(θ, ϕ) is

independent of the angle θ, is then given by

ζ(θ, ϕ) = 2δ
(
ϕ− π

2

)
. (4.1)
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Therefore, the effective continuum material properties caused by all microcracks per unit

volume are weighted by the density function, Eq. (3.27), over the crack Green’s function,

Eq. (3.25), and are then given by

C∗ijkl =
ε

2π

∫ 2π

0

∫ π/2

−π/2
δ
(
ϕ− π

2

)
C
(s)
ijkl(θ, ϕ) sinϕdθdϕ. (4.2)

In Eq. (4.2), the non-dimensional microcrack density per unit volume is again defined by

ε = N
〈
a3
〉

=

∫ a+

a−
A(a)a3da, (4.3)

where N is the number of cracks per unit volume and the angular brackets denote the

ensemble average. This damage density definition was introduced first by Walsh [87] for the

case of a statistically isotropic distribution of penny-shaped microcracks. A more general

form of the damage density is discussed by Budiansky [88]. The basis function C
(s)
ijkl is

specified in Eq. (3.25). By integrating over the Euler angles in Eq. (4.2), the effective

stiffness due to the distribution of uniaxially aligned penny-shaped microcracks is derived

as

C∗ijkl = DaiI
i, (4.4)

where the coefficients D and ai are

D = 2εµ
16

3

1− ν
2− ν , a1 = 1− ν

4
,

a2 =
ν(15− 20ν + 4ν2)

8(1− 2ν)2
, a3 = a4 =

ν(−7 + 2ν)

8(1− 2ν)
, (4.5)

a5 = 1− ν
2
, a6 = −3ν

8
.

In the tensors I used in Eq. (4.4), the orientation is that of the symmetry direction n̂,

rather than the direction m̂. It is hoped that this notation is not confusing to the reader.
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If the original undamaged state of the material is homogeneous and isotropic, the stiffness

tensor is given in the standard form C0 = λI2 + 2µI1.

The ensemble effective stiffness is now redefined such that the average fluctuations

are zero as done in the previous chapter for the convenience of calculating the material

covariance and attenuation. The moduli are assumed to be spatially varying and of the

form

C(x) = C
0

+ δC(x), (4.6)

where

C
0

= C0 −C∗. (4.7)

Thus, the average moduli have the form

C
0

=
〈
C(x)

〉
= λ⊥I

2 + µ⊥I
1 + Γ1(I

3+I4) + Γ2I
5 + Γ3I

6, (4.8)

where the effective elastic constants are

λ⊥ = λ− Dν(15− 20ν + 4ν2)

8(1− 2ν)2
, µ⊥ = µ− D(4− ν)

8
,

Γ1 =
Dν(7− 2ν)

8(1− 2ν)
, Γ2 = D(−1 +

ν

2
), Γ3 =

3Dν

8
. (4.9)

The moduli fluctuations, which have zero mean,
〈
δC

〉
= 0, are given by

δC = C∗ −C(s)H(x), (4.10)

where the function H(x) is defined in Eq. (3.40).

In the next section, a Green’s dyadic approach is developed for a transversely

isotropic medium. The elastic modulus tensor is specified for the transversely isotropic case

and expressions of the attenuation for each wave type are determined.
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4.3 Green’s Dyadic for Transversely Isotropic Media

The solution of the Dyson equation, Eq. (2.7), for the mean response requires

the Green’s dyadic for the bare medium. The bare Green’s dyadic, G0, is defined as the

solution of the equation of motion, Eq. (2.4), without heterogeneities (δCijkl (x) = 0). The

emphasis here is on anisotropic media with heterogeneities. Thus, the G0 required is that

for an anisotropic medium. The lowest possible anisotropic symmetry class to be considered

is that of a medium with a single symmetry axis, that is transversely isotropic. The medium

of uniaxially aligned cracks is considered to be transversely isotropic, a medium with a single

symmetry axis defined here by the unit vector n̂. The fourth-rank elastic moduli tensor, C,

given in Eq. (4.8) for a transversely isotropic medium, may be written in terms of n̂ as

Cijkl = λ⊥δijδkl + µ⊥ (δikδjl + δilδjk) + Γ1 (δijn̂kn̂l + δijn̂in̂j) +

Γ2 (δikn̂jn̂l + δiln̂jn̂k + δjkn̂in̂l + δjln̂in̂k) + Γ3 n̂in̂jn̂kn̂l. (4.11)

The above elastic constants are defined in Eqs. (4.9).

For propagation in the p̂ direction as shown in Fig. 4.2, the shear horizontal wave

(SH) in a transversely isotropic medium is polarized in direction û1, that is perpendicular

to the plane defined by p̂ and n̂. The angle between the p̂ and n̂ is defined as Θ. The

quasi-P and quasi-SV waves are polarized in directions defined by û2 and û3, respectively,

both of which lie in the p̂-n̂ plane. It is noted that û1, û2 and û3 form an orthonormal

basis such that û3 = û1× û2. The vector û2 is directed at an angle ψ from the propagation

direction p̂. The bare Green’s dyadic G0 may be diagonalized by using the directions û2

and û3, such that I− û1û1 = û2û2 + û3û3.

Substituting the elastic stiffness tensor C into the transformed equation of motion,
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Figure 4.2: Geometry for the propagation direction p̂, the scattered direction ŝ, and the
respective polarization direction û and v̂ in the local coordinate system.

Eq. (2.4), gives in direct notation [57]

{
û1û1

[
ω2 − p2

(
µ⊥ + Γ2 cos2 Θ

)]

+û2û2
[
ω2 − p2

(
Q+ P cos2 ψ +R cos2 (Θ + ψ)

)]
(4.12)

+û3û3
[
ω2 − p2

(
Q+ P sin2 ψ +R sin2 (Θ + ψ)

)]}
·G0 (p) = I.

The quantities Q, P, and R in Eq. (4.12) are defined by

Q = µ⊥ + Γ2 (p̂ · n̂)2 − (Γ1 + Γ2)
(

1− (p̂ · n̂)2
)
,

P = λ⊥ + µ⊥ + Γ1 + Γ2, (4.13)

R = Γ1 + 2Γ2 + Γ3 (p̂ · n̂)2 .

It should also be kept in mind that the vectors û2 and û3 are functions of the direction of

propagation, p̂, relative to the material symmetry axis, n̂. This dependence, ψ = ψ (Θ) will
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remain implicit throughout.

The bare Green’s dyadic may then be written in the form

G0 (p) = g0SH (p) û1û1 + g0qP (p) û2û2 + g0qSV (p) û3û3, (4.14)

where the dispersion relations for the bare response of the SH, qP, and qSV waves are

given by

g0SH (p) =
[
ω2 − p2

(
µ⊥ + Γ2 cos2Θ

)]−1

=
[
ω2 − p2c2SH

]−1
,

g0qP (p) =
[
ω2 − p2

(
Q+ P cos2 ψ +R cos2 (Θ + ψ)

)]−1

=
[
ω2 − p2c2qP

]−1
, (4.15)

g0qSV (p) =
[
ω2 − p2

(
Q+ P sin2 ψ +R sin2 (Θ + ψ)

)]−1

=
[
ω2 − p2c2qSV

]−1
,

with Q, P , and R defined in Eqs. (4.13).

The mean response, 〈G (p)〉 , is governed by the Dyson equation, Eq. (2.7). The

solution of 〈G (p)〉 is expressed in terms of G0 (p) and M̃ (p) . Similar to G0, the mean

response 〈G (p)〉 and self-energy M̃ (p) may be written in terms of the orthonormal basis

defined by û1, û2, and û3 in the form

〈G (p)〉 = gSH (p) û1û1 + gqP (p) û2û2 + gqSV (p) û3û3,

M̃ (p) = mSH (p) û1û1 +mqP (p) û2û2 +mqSV (p) û3û3, (4.16)

where it is again noted that the propagation direction p̂ is implicit within the directions

û1, û2, and û3. The attenuations for the three wave types are given in the general form,
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Eq. (2.13). In this transversely isotropic case, the notation K is defined as the polarization

for the wave type β (1, 2 or 3 for wave types SH, qP and qSV, respectively). It is clear

that the above expressions of the attenuation for uniaxially aligned crack distributions are

more complicated than those for a distribution of randomly oriented cracks as discussed in

Chapter 3. In the next section, the covariance and attenuation are specified.

4.4 Attenuations

The relevant inner products on the covariance of the effective moduli fluctuations

are necessary for calculating the attenuations. The tensorial part of the covariance is rep-

resented by an eighth-rank tensor which is given explicitly by

Ξ (q)····ûp̂ŝv̂
····ûp̂ŝv̂ = Ξ (q)ijkl

αβγδ ûβ ûkp̂αp̂lŝiŝδv̂γ v̂j . (4.17)

For the case of uniaxially aligned cracks, the covariance is dependent on the crack orienta-

tions m̂. To calculate the covariance, the following identities are needed

〈m̂im̂j〉 =
1

2
∆ij,

〈m̂im̂jm̂km̂l〉 =
1

8
(∆ij∆kl + ∆ik∆jl + ∆il∆jk) , (4.18)

〈m̂im̂jm̂km̂lm̂αm̂β〉 =
1

48
[∆ij∆kl∆αβ

+all permutations -15 terms in all ] ,

〈m̂im̂jm̂km̂lm̂αm̂βm̂γm̂δ〉 =
1

384
[∆ij∆kl∆αβ∆γδ

+all permutations -105 terms in all ] ,

where the brackets, 〈〉, denote an ensemble average, and ∆MN = (δMN − n̂M n̂N ). The unit

vector n̂ is the uniaxial symmetry axis. All averages of odd numbers of m̂’s are zero.
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In addition to these tensorial averages, the average of the spatial part of the

covariance must be determined. As discussed in Chapter 3, the necessary relation is given

by 〈H(x)H(y)〉 = εPr(r|0), where Pr(r|0) = (1− ε)W (r) + ε, is defined as the conditional

probability [76]. Due to the assumption of small damage density, the higher order terms in

ε may be neglected. Therefore, 〈δCijkl(x)δCαβγδ(y)〉 = εW (r)Ξαβγδ
ijkl . Averaging over all

crack orientations, the covariance is thus defined by

Ξ
αβγδ
ijkl =

1

2π

∫ 2π

0

∫ π/2

−π/2

(
C
(s)
ijklC

(s)
αβγδ

)
δ(ϕ− π

2
) sinϕdϕdθ, (4.19)

where the definition of C
(s)

is given by Eq. (3.53) in the previous chapter. Substituting the

identities of Eqs. (4.18) into Eq.(4.19), the generally compact form of Ξ is constructed in

terms of Kronecker deltas and pairs of n̂’s. The general compact form of Ξ is given by

Ξ
αβγδ
ijkl = T1(δij − ninj)(δkl − nknl)(δαβ − nαnβ)(δγδ − nγnδ)

+ T2{(δij − ninj)(δkl − nknl)[(δαγ − nαnγ)(δβδ − nβnδ) + (δαδ − nαnδ)(δβγ − nβnγ)]

+ (δαβ − nαnβ)(δγδ − nγnδ)[(δik − nink)(δjl − njnl) + (δil − ninl)(δjk − njnk)]}

+ T3[(δik − nink)(δjl − njnl) + (δil − ninl)(δjk − njnk)]

· [(δαγ − nαnγ)(δβδ − nβnδ) + (δαδ − nαnδ)(δβγ − nβnγ)]

+ T4{(δij − ninj)(δαβ − nαnβ)[(δγk − nγnk)(δδl − nδnl) + (δγl − nγnl)(δδk − nδnk)]

+ (δkl − nknl)(δαβ − nαnβ)[(δγi − nγni)(δδj − nδnj) + (δγj − nγnj)(δδi − nδni)]

(4.20)

+ (δij − ninj)(δγδ − nγnδ)[(δαk − nαnk)(δβl − nβnl) + (δαl − nαnl)(δβk − nβnk)]

+ (δkl − nknl)(δγδ − nγnδ)[(δαi − nαni)(δβj − nβnj) + (δαj − nαnj)(δβi − nβni)]

+ T5{(δαβ − nαnβ)(δik − nink)[(δγj − nγnj)(δδl − nδnl) + (δγl − nγnl)(δδj − nδnj)]
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+(δαβ − nαnβ)(δil − ninl)[(δγj − nγnj)(δδk − nδnk) + (δγk − nγnk)(δδj − nδnj)]

+(δαβ − nαnβ)(δjk − njnk)[(δγi − nγni)(δδl − nδnl) + (δγl − nγnl)(δδi − nδni)]

+(δαβ − nαnβ)(δjl − njnl)[(δγi − nγni)(δδk − nδnk) + (δγk − nγnk)(δδi − nδni)]

+(δγδ − nγnδ)(δik − nink)[(δαj − nαnj)(δβl − nβnl) + (δαl − nαnl)(δβj − nβnj)]

+(δγδ − nγnδ)(δil − ninl)[(δαj − nαnj)(δβk − nβnk) + (δαk − nαnk)(δβj − nβnj)]

+(δγδ − nγnδ)(δjk − njnk)[(δαi − nαni)(δβl − nβnl) + (δαl − nαnl)(δβi − nβni)]

+(δγδ − nγnδ)(δjl − njnl)[(δαi − nαni)(δβk − nβnk) + (δαk − nαnk)(δβi − nβni)]

+(δαγ − nαnγ)(δij − ninj)[(δβk − nβnk)(δδl − nδnl) + (δβl − nβnl)(δδk − nδnk)]

+(δαγ − nαnγ)(δkl − nknl)[(δβi − nβni)(δδj − nδnj) + (δβj − nβnj)(δδi − nδni)]

+(δαδ − nαnδ)(δij − ninj)[(δβk − nβnk)(δγl − nγnl) + (δβl − nβnl)(δγk − nγnk)]

+(δαδ − nαnδ)(δkl − nknl)[(δβi − nβni)(δγj − nγnj) + (δβj − nβnj)(δγi − nγni)]

+(δβγ − nβnγ)(δij − ninj)[(δαk − nαnk)(δδl − nδnl) + (δαl − nαnl)(δδk − nδnk)]

+(δβγ − nβnγ)(δkl − nknl)[(δαi − nαni)(δδj − nδnj) + (δαj − nαnj)(δδi − nδni)]

+(δβδ − nβnδ)(δij − ninj)[(δαk − nαnk)(δγl − nγnl) + (δαl − nαnl)(δγk − nγnk)]

+(δβδ − nβnδ)(δkl − nknl)[(δαi − nαni)(δγj − nγnj) + (δαj − nαnj)(δγi − nγni)]}

+T6{(δαγ − nαnγ)(δik − nink)[(δβj − nβnj)(δδl − nδnl) + (δβl − nβnl)(δδj − nδnj)]

+(δαγ − nαnγ)(δil − ninl)[(δβj − nβnj)(δδk − nδnk) + (δβk − nβnk)(δδj − nδnj)]

+(δαγ − nαnγ)(δjk − njnk)[(δβi − nβni)(δδl − nδnl) + (δβl − nβnl)(δδi − nδni)]

+(δαγ − nαnγ)(δjl − njnl)[(δβi − nβni)(δδk − nδnk) + (δβk − nβnk)(δδi − nδni)]

+(δαδ − nαnδ)(δik − nink)[(δβj − nβnj)(δγl − nγnl) + (δβl − nβnl)(δγj − nγnj)]
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+(δαδ − nαnδ)(δil − ninl)[(δβj − nβnj)(δγk − nγnk) + (δβk − nβnk)(δγj − nγnj)]

+(δαδ − nαnδ)(δjk − njnk)[(δβi − nβni)(δγl − nγnl) + (δβl − nβnl)(δγi − nγni)]

+(δαδ − nαnδ)(δjl − njnl)[(δβi − nβni)(δγk − nγnk) + (δβk − nβnk)(δγi − nγni)]

+(δβγ − nβnγ)(δik − nink)[(δαj − nαnj)(δδl − nδnl) + (δαl − nαnl)(δδj − nδnj)]

+(δβγ − nβnγ)(δil − ninl)[(δαj − nαnj)(δδk − nδnk) + (δαk − nαnk)(δδj − nδnj)]

+(δβγ − nβnγ)(δjk − njnk)[(δαi − nαni)(δδl − nδnl) + (δαl − nαnl)(δδi − nδni)]

+(δβγ − nβnγ)(δjl − njnl)[(δαi − nαni)(δδk − nδnk) + (δαk − nαnk)(δδi − nδni)]

+(δβδ − nβnδ)(δik − nink)[(δαj − nαnj)(δγl − nγnl) + (δαl − nαnl)(δγj − nγnj)]

+(δβδ − nβnδ)(δil − ninl)[(δαj − nαnj)(δγk − nγnk) + (δαk − nαnk)(δγj − nγnj)]

+(δβδ − nβnδ)(δjk − njnk)[(δαi − nαni)(δγl − nγnl) + (δαl − nαnl)(δγi − nγni)]

+(δβδ − nβnδ)(δjl − njnl)[(δαi − nαni)(δγk − nγnk) + (δαk − nαnk)(δγi − nγni)]}

+T7[(δαi − nαni)(δβj − nβnj)(δγk − nγnk)(δδl − nδnl)

+(δαi − nαni)(δβl − nβnl)(δγj − nγnj)(δδk − nδnk)

+(δαi − nαni)(δβk − nβnk)(δγj − nγnj)(δδl − nδnl)

+(δαi − nαni)(δβk − nβnk)(δγl − nγnl)(δδj − nδnj)

+(δαi − nαni)(δβl − nβnl)(δγj − nγnj)(δδk − nδnk)

+(δαi − nαni)(δβl − nβnl)(δγk − nγnk)(δδj − nδnj)

+(δαj − nαnj)(δβi − nβni)(δγk − nγnk)(δδl − nδnl)

+(δαj − nαnj)(δβi − nβni)(δγl − nγnl)(δδk − nδnk)

+(δαj − nαnj)(δβk − nβnk)(δγi − nγni)(δδl − nδnl)
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+(δαj − nαnj)(δβk − nβnk)(δγl − nγnl)(δδi − nδni)

+(δαj − nαnj)(δβl − nβnl)(δγk − nγnk)(δδi − nδni)

+(δαj − nαnj)(δβl − nβnl)(δγi − nγni)(δδk − nδnk)

+(δαk − nαnk)(δβi − nβni)(δγj − nγnj)(δδl − nδnl)

+(δαk − nαnk)(δβi − nβni)(δγl − nγnl)(δδj − nδnj)

+(δαk − nαnk)(δβj − nβnj)(δγi − nγni)(δδl − nδnl)

+(δαk − nαnk)(δβj − nβnj)(δγl − nγnl)(δδi − nδni)

+(δαk − nαnk)(δβl − nβnl)(δγi − nγni)(δδj − nδnj)

+(δαk − nαnk)(δβl − nβnl)(δγj − nγnj)(δδi − nδni)

+(δαl − nαnl)(δβi − nβni)(δγj − nγnj)(δδk − nδnk)

+(δαl − nαnl)(δβi − nβni)(δγk − nγnk)(δδj − nδnj)

+(δαl − nαnl)(δβj − nβnj)(δγi − nγni)(δδk − nδnk)

+(δαl − nαnl)(δβj − nβnj)(δγk − nγnk)(δδi − nδni)

+(δαl − nαnl)(δβk − nβnk)(δγi − nγni)(δδj − nδnj)

+(δαl − nαnl)(δβk − nβnk)(δγj − nγnj)(δδi − nδni)].

The form of the attenuations given in Eqs. (2.13) is dependent on various inner products

on the covariance tensor. The vectors p̂ and ŝ, respectively, represent the incoming and

outgoing propagation directions. The vectors û and v̂ are vectors defining the polarization

directions of the particular waves. These vectors are perpendicular to the plane defined by

ŝ or p̂ and n̂ (for SH waves) or they lie in this plane (for qP and qSV ).

Now the necessary inner products involved in determining the attenuations are
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calculated. The attenuations will vary angularly only within the plane defined by the

propagation direction p̂ and the crack alignment direction n̂. Therefore, without loss of

generality, a reference plane is defined as the p̂-n̂ plane as shown in Fig. 4.2). The following

vectors are then defined with respect to a general x1x2x3 coordinate system as

n̂ = x̂3,

p̂ = x̂2 sin Θ + x̂3 cos Θ, (4.21)

ŝ = x̂1 sin Θ′ cosφ′ + x̂2 sin Θ′ sinφ′ + x̂3 cos Θ′.

The polarization vectors û and v̂ are then defined with respect to these angles and ψ as

û1 = x̂1,

û2 = x̂2 sinγ + x̂3 cos γ, (4.22)

û3 = −x̂2 cos γ + x̂3 sin γ,

and

v̂1 = x̂1 sinφ′ − x̂2 cosφ′,

v̂2 = x̂1 sin γ′ cosφ′ + x̂2 sinγ′ sinφ′ + x̂3 cos γ′, (4.23)

v̂3 = −x̂1 cos γ′ cosφ′ − x̂2 cos γ′ sinφ′ + x̂3 sin γ′,

where the angles γ and γ′ used hereafter are defined by

γ = Θ + ψ (Θ) , γ′ = Θ′ + ψ
(
Θ′
)
. (4.24)

These angles, γ and γ′, define the orientation angle of the qP wave with respect to the n̂

direction, for the p̂ and ŝ directions, respectively.
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Inserting these definitions of the relevant unit vectors into Eq. (4.19), the required

inner products are reduced to a simple form. The inner products are:

for αSH

Ξ····û1p̂ŝv̂1
····û1p̂ŝv̂1

= sin2Θ sin2Θ′
[
−η1 cos2 φ′ sin2 φ′ + η2

]
,

Ξ····û1p̂ŝv̂2
····û1p̂ŝv̂2

= sin2Θ sin2Θ′ sin2 γ′
[
η1 cos2 φ′ sin2 φ′ + η3

]
, (4.25)

Ξ····û1p̂ŝv̂3
····û1p̂ŝv̂3

= sin2Θ sin2Θ′ cos2 γ′
[
η1 cos2 φ′ sin2 φ′ + η3

]
,

for αqP

Ξ····û2p̂ŝv̂1
····û2p̂ŝv̂1

= sin2Θ sin2Θ′ sin2 γ
[
η1 cos2 φ′ sin2 φ′ + η3

]
,

Ξ····û2p̂ŝv̂2
····û2p̂ŝv̂2

= sin2Θ sin2Θ′ sin2 γ sin2 γ′
[
η1 sin4 φ′ + η4 sin2 φ′ + η5

]
, (4.26)

Ξ····û2p̂ŝv̂3
····û2p̂ŝv̂3

= sin2Θ sin2Θ′ sin2 γ cos2 γ′
[
η1 sin4 φ′ + η4 sin2 φ′ + η5

]
,

and for αqSV

Ξ····û3p̂ŝv̂1
····û3p̂ŝv̂1

= sin2Θ sin2Θ′ cos2 γ
[
η1 cos2 φ′ sin2 φ′ + η3

]
,

Ξ····û3p̂ŝv̂2
····û3p̂ŝv̂2

= sin2Θ sin2Θ′ cos2 γ sin2 γ′
[
η1 sin4 φ′ + η4 sin2 φ′ + η5

]
, (4.27)

Ξ····û3p̂ŝv̂3
····û3p̂ŝv̂3

= sin2Θ sin2Θ′ cos2 γ cos2 γ′
[
η1 sin4 φ′ + η4 sin2 φ′ + η5

]
,

where γ and γ′ are defined in Eq. (4.24). The coefficients ηi (i = 1...5) and Tj (j = 1...7),

are given by

η1 = 4T3 + 16T6 + 4T7, η2 = T3 + 4T6 + 4T7,

η3 = T4 + 4T5 + 4T6 + 6T7, (4.28)

η4 = 4T2 + 4T4 + 32T5 + 16T6 + 16T7, η5 = T1 + 4T4 + 4T7,
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and

T1 = −ν
2(80ν4 − 416ν3 + 472ν2 + 184ν − 235)M2

128(1− 2ν)2
,

T2 = −ν(12ν3 − 28ν2 + 127ν − 184)M2

384
, T7 =

ν2(1− 2ν)2M2

384
,

T3 =
(ν − 4)(ν − 12)(1− 2ν)2M2

384
, T4 =

ν2(10ν − 23)(2ν − 7)M2

384
, (4.29)

T5 =
ν(1− 2ν)(6ν2 − 31ν + 44)M2

384
, T6 =

(3− 2ν)(1− 2ν)2M2

96
,

where the constant M is defined as M = µ323
1−ν

(2−ν)(1−2ν) . The expressions given by Eqs.

(4.25)-(4.27) are also directly related to the diffuse energy propagation, including backscat-

ter [52],[53],[54].

As discussed previously, the tensorial and spatial components of the covariance are

assumed to be independent and the correlation function η is assumed to have an exponential

form η (r) = e−r/L, where L is the spatial correlation length, L = 2 〈a〉. Substituting the

above inner products into Eqs. (2.13) and integrating over the azimuthal angle φ′, the

attenuations finally reduce to dimensionless forms

αSH (Θ)L = x4SH

ε

2ρ2c̄4SH

r3SH (Θ) sin2Θ [ISH−SH

+ISH−qP

(
c̄SH

c̄qP

)5
+ ISH−qSV

(
c̄SH

c̄qSV

)5]
, (4.30)

αqP (Θ)L = x4qP

ε

2ρ2c̄4qP

r3qP (Θ) sin2 Θ sin2 γ

[
IqP−SH

(
c̄qP

c̄SH

)5

+IqP−qP + IqP−qSV

(
c̄qP

c̄qSV

)5]
, (4.31)

αqSV (Θ)L = x4qSV

ε

2ρ2c̄4qSV

r3qSV (Θ) sin2 Θ cos2 γ

[
IqSV−SH

(
c̄qSV

c̄SH

)5

+IqSV−qP

(
c̄qSV

c̄qP

)5
+ IqSV−qSV

]
, (4.32)
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with the density, ρ, now included in the general form. The terms denoted by Iβ−γ within

the square brackets represent integrals defined by

ISH−SH =

∫ π

0

[
η1
(
6X2

SH−SH − Y 2SH−SH

)

2Y 2SH−SH

+
η1
(
2XSH−SHY

2
SH−SH − 3X2

SH−SH

)

Y 4SH−SH

(
X2

SH−SH − Y 2SH−SH

)1/2

η2XSH−SH(
X2

SH−SH − Y 2SH−SH

)3/2

]
r5SH

(
Θ′
)

sin3Θ′dΘ′,

ISH−α =

∫ π

0

[
η1
(
Y 2SH−α − 6X2

SH−α

)

2Y 2SH−α

+
η1
(
3X2

SH−α − 2XSH−αY
2

SH−α

)

Y 4SH−α

(
X2

SH−α − Y 2SH−α

)1/2 (4.33)

η3XSH−α(
X2

SH−α − Y 2SH−α

)3/2

]
r5α
(
Θ′
)

Πα sin3 Θ′dΘ′,

and

Iα−SH =

∫ π

0

[
η1
(
Y 2α−SH − 6X2

α−SH

)

2Y 2α−SH

+
η1
(
3X2

α−SH − 2Xα−SHY
2

α−SH

)

Y 4α−SH

(
X2

α−SH − Y 2α−SH

)1/2

η2Xα−SH(
X2

α−SH − Y 2α−SH

)3/2

]
r5SH

(
Θ′
)

sin3Θ′dΘ′,

Iδ−α =

∫ π

0

[
η1
(
6X2

δ−α + Y 2δ−α

)
+ 2η4Y

2
δ−α

2Y 4δ−α

(4.34)

+
η1
(
4X3

δ−αY
2

δ−α − 3X5
δ−α

)
+ η4Y

2
δ−α

(
2Xδ−αY

2
δ−α −X3

δ−α

)

Y 4δ−α

(
X2

δ−α − Y 2δ−α

)3/2

+
η5Xδ−αY

4
δ−α

Y 4δ−α

(
X2

δ−α − Y 2δ−α

)3/2

]
r5α
(
Θ′
)

Πα sin3Θ′dΘ′,

with

Xβ−γ = 1 + x2βr
2
β (Θ) + x2γr

2
γ

(
Θ′
)
− 2xβxγrβ (Θ) rγ

(
Θ′
)

cos Θ cos Θ′,

Yβ−γ = 2xβxγrβ (Θ) rγ
(
Θ′
)

sin Θ sin Θ′, (4.35)

for the different wave types, β and γ. The subscripts δ and α denote either the qP or

qSV wave type, and the notation ΠqP = sin2 (Θ′ + ψ (Θ′)) , ΠqSV = cos2 (Θ′ + ψ (Θ′))

is used. In Eqs. (4.30)-(4.35), the angular averaged wave speeds are defined as c̄β =
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1
2

∫ π
0 cβ (Θ) sin ΘdΘ, for each wave type, β. Three nondimensional frequencies are then de-

fined as xβ = ωL/c̄β and the slowness surface for each wave type is defined by the dimen-

sionless quantity rβ (Θ) = c̄β/cβ (Θ) . Equations (4.30)-(4.34) are the primary results of this

section.

In the long wavelength Rayleigh limit, xβ << 1 and these integrals become inde-

pendent of incident direction and frequency. Therefore, they reduce to a much simpler form

as

ISH−SH =

∫ π

0

(
−η1

8
+ η2

)
r5SH

(
Θ′
)

sin3Θ′dΘ′,

ISH−α =

∫ π

0

(η1
8

+ η3

)
r5α
(
Θ′
)

Πα sin3 Θ′dΘ′, (4.36)

and

Iα−SH =

∫ π

0

(η1
8

+ η3

)
r5SH

(
Θ′
)

sin3Θ′dΘ′,

Iδ−α =

∫ π

0

(
3η1
8

+
η4
2

+ η5

)
r5α
(
Θ′
)

Πα sin3Θ′dΘ′. (4.37)

for all outgoing wave types. In the Rayleigh limit, the angular dependence of the attenuation

is explicitly seen. In the subsequent section, example numerical results and discussion are

presented.

4.5 Example Results

Numerical results are now presented for a specific case, in which the observed

anisotropy of the cracked material is essentially due to the presence of the uniaxially aligned

cracks. The material properties of the uncracked medium used are Young’s modulus E =

2.0× 1011Pa, Poisson’s ratio ν = 0.30, and density ρ = 7850 kg /m3 . Using the dispersion
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Figure 4.3: Slowness surfaces for damage densities ε = 0, 0.1.

relations given in Eqs. (4.15), the slowness surfaces calculated for different damage densities,

ε = 0 and 0.1, are shown in Fig. 4.3. The normalized effective wave velocity, cβ(ε)/cβ(ε = 0),

of each wave type is presented in Fig. 4.4. The effective velocities decrease with increasing

damage density ε within the considered frequency range. The reduction of velocity of the

SH and qP waves due to the presence of the uniaxially aligned cracks is a maximum at

Θ = 90◦, it becomes smaller as Θ decreases, and the reduction reaches a minimum at

Θ = 0◦, though the changes are not substantial. These results are in basic agreement with

those of Zhang and Gross [26] and Eriksson and Datta [30]. The qSV wave velocity is seen

to have a greater reduction at Θ = 45◦ than at Θ = 0◦ and 90◦.

In the Rayleigh limit, the attenuations simplify considerably since the integrals

reduce to those given by Eqs. (4.36) and (4.37). The attenuation depends on the fourth
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Figure 4.4: Normalized wave velocity of each wave type, cβ(ε)/cβ(ε = 0), versus damage
density ε at Θ = 0◦, 45◦ and 90◦.

power of frequency in the Rayleigh regime. Thus, the angular Rayleigh attenuation results

shown in Fig. 4.5 are given in a general form of, αL/(x4ε), for each wave type. In Fig.

4.5, the SH and qP waves are observed to have their maxima at Θ = 90◦ – perpendicular

to the crack alignment direction n̂. The qSV wave is observed to have zero attenuation

for propagation along the symmetry axis (Θ = 0◦) and perpendicular to it (Θ = 90◦). All

wave types have zero attenuation along the symmetry axis, because the material properties

do not vary in that direction. Those results are qualitatively the same as previous work

[56],[46],[57]. Zhang and Gross [26] comment that their attenuation results are not zero

for propagation along the symmetry axis. They speculate that the attenuation arises from

Poisson effects. However, such a comparison is difficult to make since the focus of their

work was at much higher frequencies. An additional feature observed for the qSV wave in
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Fig. 4.5, is the asymmetry that develops as ε increases. This peak is around Θ = 45◦, but

shifts slightly higher as ε increases from 0.01 to 0.05.

Using Eqs. (4.30)-(4.32), attenuation results are given in terms of the single di-

mensionless frequency xSH = ωL/c̄SH . Outside the Rayleigh regime, the attenuations were

calculated using the complete integrals, Eqs. (4.33) and (4.34), by numerical integration.

In Fig. 4.6, the normalized SH wave attenuation, αSH/kSH , is presented as a function of

propagation direction for three different damage densities at frequency xSH = 1.0. The at-

tenuation for propagation perpendicular to the crack alignment direction is seen to increase

more quickly than for other directions as the damage increases. The results for the normal-

ized qP attenuation, αqP /kqP , are shown in Fig. 4.7. These results display similar behavior
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Figure 4.6: Angular dependence of the normalized SH attenuation, αSH/kSH for various
damage densities ε at frequency xSH = 1.0.
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as the SH attenuation in terms of the change with angle and damage. Analogous results

have been observed in textured polycrystals by Hirsekorn [46], Ahmed and Thompson [56],

and Turner [57]. In Fig. 4.8, the normalized qSV attenuation, αqSV /kqSV , is presented

at various damage densities for frequency xSH = 1.0. The attenuation for propagation at

Θ = 0◦ and 90◦ is zero as discussed above. For propagation at Θ = 45◦, the attenuation

is the largest. In addition, it is seen that the peak of maximum attenuation shifts as the

damage increases, although this shift is not significant. The direction of maximum αqSV is

dependent upon both frequency and damage. This shift is thought to be the result of the

induced anisotropy from the cracks as shown in the slowness plots in Fig. 4.3 as speculated

elsewhere [57]. However, further investigation is necessary to determine the precise reason

for this peak shift.
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frequencies, xSH , at damage density ε = 0.01.

In Fig. 4.9, the normalized SH wave attenuation, αSH/kSH , is presented as a

function of propagation direction for three different frequencies, xSH , at damage density ε =

0.01. The attenuation for propagation perpendicular to the crack alignment direction is seen

to increase more rapidly than for other directions as the frequency increases. The results for

the normalized qP attenuation, αqP /kqP , are shown in Fig. 4.10. These results demonstrate

similar behavior as the SH attenuation in terms of the change with angle and frequency.

Analogous results have been observed in textured polycrystals by Ahmed and Thompson [56]

and Turner [57]. In Fig. 4.11, the normalized qSV attenuation, αqSV /kqSV , is presented at

various frequencies for damage density ε = 0.01. The attenuation for propagation at Θ = 0◦

and 90◦ is zero as discussed above. For propagation at Θ = 45◦, the attenuation is the

largest. In addition, it is seen that the peak of maximum attenuation shifts slightly higher
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Figure 4.10: Angular dependence of the normalized qP attenuation, αqP/kqP for various
frequencies, xSH , at damage density ε = 0.01.

as the frequency increases, although this shift is not significant. The direction of maximum

αqSV is dependent upon both frequency and damage. This shift is thought to be the result

of the induced anisotropy from the cracks as shown in the slowness plots in Fig. 4.3 as

speculated elsewhere [57].

Finally, results are presented for the normalized attenuations as a function of

frequency for several propagation directions at damage density ε = 0.01. In Figs. 4.12 and

4.13, the normalized SH and qP attenuations are plotted versus dimensionless frequency,

xSH , for propagation 45◦, 60◦ and 90◦. The attenuations for propagation perpendicular to

the crack alignment direction are seen to increase more rapidly than for other directions

as the frequency increases. The normalized qSV attenuation is plotted versus, xSH , for

propagation 45◦, 60◦ and 30◦ in Fig. 4.14. The attenuations for propagation direction at
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Figure 4.11: Angular dependence of the normalized qSV attenuation, αqSV /kqSV for various
frequencies, xSH , at damage density ε = 0.01.
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Figure 4.13: Normalized qP attenuation, αqP /kqP , as a function of dimensionless frequency,
xSH , at damage density ε = 0.01, for propagation directions of 45◦, 60◦, 90◦.

Θ = 60◦ and 30◦ are not identical such that the maximum peak is not located at Θ = 45◦

within the frequency limits considered here. This result implies that the feature of the

asymmetry is developed as frequency increases as discussed above.

4.6 Conclusions

In this chapter, wave propagation and scattering have been examined for media

with uniaxially aligned cracks. These cracks have unit normals that are randomly oriented

within a plane of isotropy. The ensemble average elastic wave response is governed by the

Dyson equation which is solved within the limits of the first-order smoothing approxima-

tion. The general Green’s dyadic for a transversely isotropic medium was employed to derive

expressions of the attenuation of the shear horizontal, quasilongitudinal and quasishear ver-
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Figure 4.14: Normalized qSV attenuation, αqSV /kqSV , as a function of dimensionless fre-
quency, xSH , at damage density ε = 0.01, for propagation directions of 45◦, 60◦, 30◦.

tical waves. This dyadic approach is convenient to make the results coordinate free. Thus,

the final forms of the attenuations for the three wave types were given directly by simple

compact expressions involving integrations over the unit circle. In particular, the integrals

are simplified considerably in the Rayleigh regime. The general attenuations for each wave

type are dependent on frequency, wave velocity, wave direction and damage density. Finally,

numerical results show how the attenuations and the effective wave velocity of each wave

type are affected by those parameters. The general formulation is also directly related to

other types of elastic wave scattering such as backscatter. The simple form of the results

makes them particularly useful for nondestructive testing and materials characterization

research. However, the neglect of mutual interactions among the microcracks may have a

large influence for the scattering effects. This analysis may be investigated in future work.
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Chapter 5

Perfectly Aligned Crack Scattering

5.1 Introduction

The scattering of elastic waves by cracks in elastic media has important applica-

tions in various areas of engineering and geophysics, in particular to ultrasonic nondestruc-

tive evaluation and materials characterization. Quantitative assessment of damage using

nondestructive methods is essential for determining the structural integrity of structures

and for predicting the remaining usable life. Changes of material responses due to the

strength reduction or effective elastic stiffness drop with damage from microcracking have

a significant influence on the physical properties of the materials, e.g., on the velocities of

elastic waves and especially on the attenuation. Distributed microcracks often give rise to a

decrease in wave velocity and an increase in attenuation. Precise knowledge of attenuation

and wave velocities of ultrasonic waves in cracked media provides a direct approach for

detecting the material damage.

In the previous chapter, a theory was developed which describes the scattering of
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elastic waves by uniaxially aligned penny-shaped cracks, which often result from uniaxial

compressive loading. In that case, the unit normals of all cracks were assumed to be

coplanar, but random within the plane of isotropy. Under the assumption of transverse

isotropy used in that work, explicit general expressions of attenuations were obtained in

the limit of frequencies below the geometric optics limit. However, in the case of structural

materials subjected to uniaxial tension, the status of damage is generally defined as that

of perfectly aligned cracks. In this case, the unit normals of all cracks are perpendicular to

the plane of isotropy as studied by Hudson [70]. His investigations of wave attenuation in

cracked solids were restricted to the Rayleigh regime where the wavelength is much larger

than the characteristic length of the cracks. Outside the Rayleigh limit, wave examinations

of attenuation for this situation have not been examined. With this motivation, a detailed

analysis in solids with perfectly aligned penny-shaped cracks is examined here.

In this chapter, the analysis procedure used previously is applied to study the

attenuation of elastic waves by perfectly aligned cracks. Again, the interactions between

individual microcracks are not considered, such that the present analysis is appropriate

only for small crack densities. The effective elastic properties of a solid containing the

perfectly aligned cracks are presented in section 5.2. Explicit expressions of attenuations

of the shear horizontal, quasilongitudinal, and quasishear vertical waves are presented in

section 5.3. In particular, the angular dependence of the attenuations in the Rayleigh limit

is given explicitly. Numerical results are presented and discussed in section 5.4. Special

attention is paid to the exploration of the effects of the crack density and wave frequency

on the attenuation. In the Rayleigh limit, comparisons of numerical results obtained here
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and those presented by Hudson [70] are particularly addressed. Finally, conclusions are

presented.

5.2 Effective Elastic Properties

The ensemble average stiffness in an initially isotropic solid weakened by an en-

semble of perfectly aligned penny-shaped microcracks is dependent on the properties of

single cracks. The effective stiffness attributable to a single, penny-shaped crack of radius

in a unit volume, which was derived under the framework discussed by Nemat-Nasser and

Hori [80], Kachanov [89], and Krajcinovic [79], is given by the Eq. (3.25). The stiffness of a

single crack is dependent on the unit normal m̂, which defines the crack unit normal. This

orientation is implicit in the tensors I. These basis tensors are given in terms of unit vector

m̂ and Kronecker delta function as shown in Eq. (3.13).

The ensemble average properties contributed by all cracks are considered. The

cracks are assumed to be embedded in an infinitely extended, homogeneous, isotropic and

elastic three-dimensional continuum. The penny-shaped crack is characterized by its radius

a and two Euler angles θ and ϕ, which define the direction of the unit normal m̂ as shown

in Fig. 3.1. It is also assumed that the microcracks do not interact with each other. As

previously discussed, the density function may be separated into independent radius and

orientation functions of the form as presented in Eq. (3.27).

For perfectly aligned cracks, it is assumed that the unit normals of all microcracks

are perpendicular to the plane of isotropy as shown in Fig. 5.1. As such, the overall

properties of the cracked solid are transversely isotropic with symmetry axis in the x3
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Figure 5.1: The distribution of microcracks aligned with the axis.

axis ( n̂ direction). Therefore, the unit normals of all perfectly aligned cracks are defined

by the unit vector m̂ = (sinϕ0 cos θ0, sinϕ0 sin θ0, cosϕ0), where the value of ϕ0 is equal

to zero under the above assumption. To make the analysis as simple as possible, the

distribution of the microcracks is assumed to be dilute, and the distribution of the crack

sizes is also assumed to be independent of their orientations. Given ϕ = 0, a unit vector

n̂ = (sinϕ cos θ, sinϕ sin θ, cosϕ) denotes the x3 direction, which defines the normal of the

plane of isotropy and the symmetry axis. The considered microcrack density distribution

in Eq. (3.27) is then given by

ζ(θ, ϕ) = 2π [δ (n̂− m̂) + δ (n̂ + m̂)] . (5.1)

Therefore, the effective continuum material properties caused by all microcracks per unit

volume are weighted by the density function, Eq. (3.27), over the crack Green’s function,



85

Eq. (3.25), and is then given by

C∗ijkl =
ε

4π

∫

Ω
C
(s)
ijkl(m̂)ζ(n̂, m̂)dΩ. (5.2)

In the above equation, the non-dimensional microcrack density per unit volume is defined in

Eq. (4.3). The basis function C
(s)
ijkl is specified in Eq. (3.25). By performing the integration

over all orientations in Eq. (5.2), the effective stiffness due to the distribution of perfectly

aligned penny-shaped microcracks is derived as

C∗ijkl = εbiI
i, (5.3)

where the coefficients bi are

b1 = 0, b2 = 2µ
16ν2(1− ν)

3(1− 2ν)2
,

b3 = b4 = 2µ
16ν(1− ν)

3(1− 2ν)
, (5.4)

b5 = 2µ
32(1− ν)
3(2− ν)

, b6 = −2µ
16ν(1− ν)

3(2− ν) .

It should be mentioned that in the tenors used in Eq. (5.3), the symmetry orientation n̂,

rather than the direction m̂, is implicit although these are the same from the mathematical

point of view. This implication should be kept in mind throughout this chapter. In Eq.

(5.4), the effective constants can be defined alternatively as C∗11, C
∗
33, C

∗
44, C

∗
66 and C∗13,

respectively and are expressed as

C∗11 = b1 + b2, C∗33 = b1 + b2 + 2b3 + b5 + b6,

C∗44 =
1

2
b1 +

1

4
b5, C∗66 =

1

2
b1, C∗13 = b2 + b3. (5.5)

Substituting Eq. (5.4) into Eq. (5.5), the given results are identical with those obtained by

Hudson [70] in Eq. (21). In addition the stiffness tensor of the homogeneous, isotropic and
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elastic matrix in the uncracked state is written in the standard form

C0 = λI2 + 2µI1. (5.6)

Thus, the ensemble average stiffness is assumed to be spatially varying and may

be represented by

C(x) = C
0

+ δC(x), (5.7)

where C
0

=
〈
C(x)

〉
= C0 −C∗ is the ensemble average modulus tensor for a transversely

isotropic medium. It is written in the form

C
0

= λ⊥I
2 + µ⊥I

1 + Γ1(I
3+I4) + Γ2I

5 + Γ3I
6, (5.8)

where the five effective elastic constants are

µ⊥ = 2µ, λ⊥ = λ− 2µ
16ν2(1− ν)

3(1− 2ν)2
, Γ1 = −2µ

16ν(1− ν)

3(1− 2ν)

Γ2 = −2µ
32(1− ν)

3(2− ν) , Γ3 = 2µ
16ν(1− ν)

3(2− ν)
. (5.9)

The moduli fluctuations which have zero mean
(〈
δC

〉
= 0

)
are given by

δC = C∗ −C(s)H(x), (5.10)

where the function H(x) is defined in Eq. (3.40).

Wave propagation and scattering in heterogeneous and anisotropic media have

been discussed in previous chapters using an anisotropic Green’s function and employed

to investigate the attenuations by uniaxially aligned cracks. The exact expressions of the

attenuation for the three wave types were given in Eq. (2.13). In the next section, the

attenuations are presented for perfectly aligned cracks.
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5.3 Attenuations

To calculate the attenuations, the relevant inner products on the covariance of

the effective moduli fluctuations are first determined. As discussed previously, for small

concentrations of microcracks, the covariance can be written

〈δCijkl(x)δCαβγδ(y)〉 = εη(r)Ξαβγδ
ijkl . (5.11)

The tensorial part of the covariance is represented by an eighth-rank tensor which is given

in terms of four unit vectors by

Ξ (q)····ûp̂ŝv̂
····ûp̂ŝv̂ = Ξ (q)ijkl

αβγδ ûβ ûkp̂αp̂lŝiŝδv̂γ v̂j . (5.12)

Averaging over all crack orientations, the tensorial part of the covariance is then

given by performing the integration as

Ξαβγδ
ijkl = {b1/2 [(û · ŝ) (v̂ · p̂) + (p̂ · ŝ) (v̂ · û) + b2 (p̂ · û) (v̂ · ŝ)]

+b3 (v̂ · ŝ) (n̂ · û) (n̂ · p̂) + b4 (p̂ · û) (n̂ · ŝ) (n̂ · v̂)

+b5/4 [(p̂ · v̂) (n̂ · ŝ) (n̂ · û) + (n̂ · ŝ) (v̂ · û) (n̂ · p̂) (5.13)

+ (p̂ · ŝ) (n̂ · v̂) (n̂ · û) + (n̂ · v̂) (n̂ · p̂) (û · ŝ)]

+b6 (n̂ · ŝ) (n̂ · v̂) (n̂ · û) (n̂ · p̂)}2 ,

where the coefficients bi are given by Eq. (5.4). The vectors p̂ and ŝ, respectively, represent

the incoming and outgoing propagation directions. The vectors û and v̂ are vectors defining

the polarization directions of the particular waves.

The attenuations will vary angularly only within the plane defined by the propaga-

tion direction and the symmetry direction. Therefore, without loss of generality, a reference
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plane is defined as the p̂− n̂ plane as shown in Fig. 5.2. Thus, the vectors n̂, p̂ and ŝ, and

respective polarization directions û and v̂ are defined with respect to a general coordinate

system, which are given by Eqs. (4.21)-(4.23). Substituting these definitions of the relevant

unit vectors into Eq. (5.13), the required inner products are for αSH ,

Ξ····û1p̂ŝv̂1
····û1p̂ŝv̂1

=
b25
16

cos2 Θ cos2 Θ′ sin2 φ′,

Ξ····û1p̂ŝv̂2
····û1p̂ŝv̂2

=
b25
16

cos2 Θ sin2
(
Θ′ + γ′

)
cos2 φ′, (5.14)

Ξ····û1p̂ŝv̂3
····û1p̂ŝv̂3

=
b25
16

cos2 Θ cos2
(
Θ′ + γ′

)
cos2 φ′;

for αqP

Ξ····û2p̂ŝv̂1
····û2p̂ŝv̂1

=
b25
16

sin2 (Θ + γ) cos2Θ′ cos2 φ′,

Ξ····û2p̂ŝv̂2
····û2p̂ŝv̂2

=
{
b2 cos (γ −Θ) cos

(
γ′ −Θ′

)
+ b3 cos Θ cos γ cos

(
γ′ −Θ′

)

+b4 cos (γ −Θ) cos Θ′ cos γ′ + b5/4 sin (Θ + γ) sin
(
Θ′ + γ′

)
sinφ′

+ (b4 + b5) cos Θ cos γ cos Θ′ cos γ′
}2
, (5.15)

Ξ····û2p̂ŝv̂3
····û2p̂ŝv̂3

=
{
b2 cos (γ −Θ) sin

(
γ′ −Θ′

)
+ b3 cos Θ cos γ sin

(
γ′ −Θ′

)

+b4 cos (γ −Θ) cos Θ′ sin γ′ − b5/4 sin (Θ + γ) cos
(
Θ′ + γ′

)
sinφ′

+ (b4 + b5) cos Θ cos γ cos Θ′ sinγ′
}2

;

and, for αqSV

Ξ····û3p̂ŝv̂1
····û3p̂ŝv̂1

=
b25
16

cos2 (Θ + γ) cos2 Θ′ cos2 φ′,

Ξ····û3p̂ŝv̂2
····û3p̂ŝv̂2

=
{
b2 sin (γ −Θ) cos

(
γ′ −Θ′

)
+ b3 cos Θ sinγ cos

(
γ′ −Θ′

)
(5.16)

+b4 sin (γ −Θ) cos Θ′ cos γ′ − b5/4 cos (Θ + γ) sin
(
Θ′ + γ′

)
sinφ′

+ (b4 + b5) cos Θ sinγ cos Θ′ cos γ′
}2
,
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Figure 5.2: Geometry for the propagation direction p̂, the scattered direction ŝ, and the
respective polarization direction û and v̂ in the local coordinate system for perfectly aligned
cracks.

Ξ····û3p̂ŝv̂3
····û3p̂ŝv̂3

=
{
b2 sin (γ −Θ) sin

(
γ′ −Θ′

)
+ b3 cos Θ sin γ sin

(
γ′ −Θ′

)

+b4 sin (γ −Θ) cos Θ′ sin γ′ + b5/4 cos (Θ + γ) cos
(
Θ′ + γ′

)
sinφ′

+ (b4 + b5) cos Θ sinγ cos Θ′ sinγ′
}2
.

In Eqs. (5.14)-(5.16), the coefficients are given in Eq. (5.4). As discussed previ-

ously, the tensorial and spatial components of the covariance are assumed independent. The

correlation function η is assumed to have an exponential form as presented in Eq. (2.14).

If three nondimensional frequencies are defined as xβ = ωL/cβ, performing the spatial

Fourier transform of the correlation function of the difference between two wave vectors,

the functions η̃(p̂, ŝ) are then expressed in terms of the above dimensionless frequencies by

Eq. (2.16). The inner product (p̂ · ŝ) is specified as p̂ · ŝ = sin Θ sin Θ′ sinφ′ + cos Θ cos Θ′.
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Substituting Eqs. (5.14)-(5.16) and Eq. (2.14) into Eq. (2.13), the resulting

dimensionless attenuations are finally given in the form

αβ (p̂)L =
x4βcβ(p̂)ε

2ρ2
×





∫

4π

Ξ
····ûKp̂ŝv̂1
····ûKp̂ŝv̂1(

1 + x2β (p̂) + x2SH (̂s)− 2xβ (p̂)xSH (̂s) p̂ · ŝ
)2
c5SH (̂s)

d2ŝ

+

∫

4π

Ξ
····ûKp̂ŝv̂2
····ûKp̂ŝv̂2(

1 + x2β (p̂) + x2qP (̂s)− 2xβ (p̂)xqP (̂s) p̂ · ŝ
)2
c5qP (̂s)

d2ŝ (5.17)

+

∫

4π

Ξ
····ûK p̂ŝv̂3
····ûK p̂ŝv̂3(

1 + x2β (p̂) + x2qSV (̂s)− 2xβ (p̂)xqSV (̂s) p̂ · ŝ
)2
c5qSV (̂s)

d2ŝ




,

where K is defined as the polarization for the wave type β (1, 2,or 3 for wave types SH, qP

and qSV, respectively). The density is now included in the final form of the attenuations.

Equation (5.17) is the primary result of this chapter. The phase velocities cβ are given in

the form of Eq. (4.15) and the corresponding coefficients are given in Eq. (5.9). In the long

wavelength Rayleigh limit, xβ ≪ 1, Eq. (5.17) can be simplified considerably and is given

by

αβ (p̂)L

x4βε
=

cβ(p̂)

2ρ2
×





∫

4π

Ξ
····ûKp̂ŝv̂1
····ûKp̂ŝv̂1

c5SH (̂s)
d2ŝ

+

∫

4π

Ξ
····ûK p̂ŝv̂2
····ûK p̂ŝv̂2

c5qP (̂s)
d2ŝ+

∫

4π

Ξ
····ûKp̂ŝv̂3
····ûKp̂ŝv̂3

c5qSV (̂s)
d2ŝ



 . (5.18)

In Eq. (5.18), the dimensionless attenuations have been normalized by the fourth power of

the dimensionless frequency and damage density for the respective wave type.
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5.4 Numerical Results and Discussions

In this section, numerical results are now presented for a specific case, in which

the observed transversely isotropy of the cracked material is entirely due to the presence

of the perfectly aligned cracks. The material properties of the uncracked material used are

Young’s modulus E = 2.0 × 1011Pa, Poisson’s ratio ν = 0.3, and density ρ = 7860kg/m3.

First, the slowness surfaces are presented at the damage density ε = 0.1. The slowness is

governed by Eq. (4.15), which is plotted in Fig. 5.3. The results given by Hudson [70], Eqs.

(17) and (22-23), are shown as well. Exact agreement of the results for SH waves between

the present model and Hudson’s model is seen in Fig. 5.3. However, the slowness curves

of the qP and qSV waves do not agree with each other well. This discrepancy is thought

to be due to the assumption of non-varying polarization (ψ = 0) in the work of Hudson.

Thus, if the polarization shift is neglected in the present analysis, the expressions of wave

velocities are precisely the same for both models. However, it is generally known that the

deviation angle of the polarization vector is not zero.

The attenuations within the Rayleigh limit are calculated using Eq. (5.18). It

is seen that the attenuations are a function of the fourth power of frequency. Thus, the

angular dependence of three attenuations is described by the quantity αβL/
(
x4βε

)
. Those

parameters for each wave type are shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6, respectively.

The numerical integrations are performed by double integral function dblquad available

in the software package Matlab [93]. The attenuations for SH waves for damage density

ε = 0.01 and ε = 0.05 are presented first in Fig. 5.4. It is observed that the maximum

attenuation of the SH wave is at Θ = 0◦, parallel to the normals of cracks, and at Θ = 90◦
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Figure 5.3: Slowness surfaces for damage density ε = 0.1.
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as a function of direction.
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there is the zero attenuation. In order to compare the present results with those studied by

Hudson, the equivalent parameter is also shown in Fig. 5.4 (dashed line). It is seen from

Fig. 5.4 that for two different damage densities, the attenuations of Hudson’s model are

exactly the same. This feature is easily seen from Eq. (5.18) presented here and Eq. (52)

given by Hudson. In the work of Hudson [70], the velocities of uncracked solids are used

to calculate the final attenuation, rather than the velocities of cracked solids used in the

present study. Therefore, the attenuation is shown to scale linearly with the damage density,

which is usually not the case for the anisotropic property in the Rayleigh limit. In addition,

the correlation between the radiation fields of separate cracks is also neglected in Hudson’s

model. This assumption may in part result in the inaccurate results as well for the case

discussed here. In Fig. 5.5, the Rayleigh attenuations of the qP wave are presented for both

present model and Hudson’s model. The difference between the two models is attributed

to the same reasons as above discussed for SH waves. The maximum attenuation is also

at Θ = 0◦, and at Θ = 90◦ the attenuation reaches the lowest value, but does not have the

zero attenuation. The Rayleigh attenuations of the qSV wave are shown in Fig. 5.6. It is

seen that the maximum value is about Θ = 45◦, and at Θ = 0◦ and Θ = 90◦ the attenuation

is lowest, but it is not equal to zero. Also, an additional feature observed in Fig. 5.6 is

the asymmetry that develops as damage density varies. The peak is around Θ = 45◦, but

shifts as damage density changes as discussed in Chapter 4. This directional variation of the

maximum attenuation is toward the crack alignment as the damage density increases. It is

seen from Fig. 5.6, that the difference of Rayleigh attenuations of the qSV wave between

the present model and Hudson’s model is significant at damage density ε = 0.05. This
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Figure 5.5: Rayleigh attenuation, αqPL/
(
x4qP ε

)
as a function of direction.

phenomenon is thought to be the result of the assumptions made in Hudson’s model as

discussed above. Thus, one could conclude that the attenuation results of the three wave

types presented by Hudson are more approximate than those determined here.

The results outside the Rayleigh regime are calculated using the complete integrals,

Eq. (5.17). The directional dependence of the attenuation as a function of damage density

is presented in terms of the single dimensionless frequency xSH = 1.0. In Fig. 5.7, the

attenuation of the SH wave, αSHL, is shown as a function of propagation direction for

three damage densities ε = 0.05, ε = 0.08 and ε = 0.1, respectively. The attenuation for

propagation parallel to the crack alignment direction is seen to increase more rapidly than

other directions as the damage increases. This property was discussed for uniaxially aligned

crack scattering [74] and for textured polycrystals by Hirsekorn [46], Ahmed and Thompson



95

0 10 20 30 40 50 60 70 80 90
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Propagation direction         Θ (degrees)

R
ay

le
ig

h 
at

te
nu

at
io

n 
   

   
   

 
α qS

VL
/(

x4 ε
)

ε=0.05 

ε=0.01 

___Present Model    
-----Hudson's Model 

Figure 5.6: Rayleigh attenuation, αqSV L/
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)
as a function of direction.
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at frequency xSH = 1.0.
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Figure 5.8: Angular dependence of the attenuation, αqPL, for various damage densities ε
at frequency xSH = 1.0.

[94], and Turner [57]. In Fig. 5.8, the results for the qP attenuation, αqPL, are presented.

Similar behavior is seen upon increasing damage as discussed for the SH attenuation. The

attenuation of the qSV wave is shown in Fig. 5.9 at the same damage densities as Figs. 5.7

and 5.8. As discussed for the Rayleigh limit results, the direction of maximum attenuation

varies as the damage changes, and the shift from 45◦ to 0◦ is quite noticeable as shown in

Fig. 5.9. This shift is thought to be the result of the induced anisotropy from the cracks.

In general, the direction of the peak of the qSV attenuation is dependent on both frequency

and damage.

Finally, the results are presented for the normalized attenuations of each wave

type as a function of propagation direction for several different frequencies. These results

could be contrasted with results in the Rayleigh limit. Figures 5.10 and 5.11 show the
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Figure 5.9: Angular dependence of the attenuation, αqSV L, for various damage densities ε
at frequency xSH = 1.0.
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Figure 5.10: Angular dependence of the attenuation, αSHL, for various dimensionless fre-
quencies xSH at damage density ε = 0.05.



98

0 10 20 30 40 50 60 70 80 90
0

0.02

0.04

0.06

0.08

0.1

0.12

Propagation direction         Θ (degrees)

qP
 a

tt
en

ua
ti

on
   

   
   

 
α qP

L
1.0=xSH
2.5
2.0
1.5

Figure 5.11: Angular dependence of the attenuation, αqPL, for various dimensionless fre-
quencies xSH at damage density ε = 0.05.

SH and qP attenuations versus the propagation direction Θ for normalized frequencies

xSH of 1.0, 1.5, 2.0, 2.5. As the frequency increases it is seen that the attenuation in the

alignment direction increases more than in other directions. In Fig. 5.12, the normalized

qSV attenuation is plotted versus the propagation direction Θ for the same normalized

frequencies as Figs. 5.10 and 5.11. It is seen that the peak of maximum attenuation shifts

as the frequency increases. The asymmetry that develops as frequency increases is seen to

be considerable in Fig. 5.12. This outcome is also attributed to the property of anisotropy

from microcracking.
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Figure 5.12: Angular dependence of the attenuation, αqSV L, for various dimensionless
frequencies xSH at damage density ε = 0.05.

5.5 Conclusions

The attenuations of elastic waves in solids with perfectly aligned cracks have been

examined within limit of frequencies below the geometric optics limit. In the case of per-

fectly aligned cracks, these cracks have unit normals that are perpendicular to the plane of

isotropy as first studied by Hudson. Approximate ensemble averaging of the elastic wave

equation resulted in the Dyson equation, governing the mean field. Explicit expressions

of the attenuation of each wave type, the shear horizontal, quasilongitudinal, quasishear

vertical waves, were derived using the general Green’s dyadic for a transversely isotropic

medium. The final forms of the attenuations for the three wave types were expressed by

simple integrations over the scattered direction. The general attenuations for each wave

type are dependent on frequency, phase velocity, propagation direction, and damage den-
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sity. In particular, the attenuations of each wave type were given in the long wavelength

Rayleigh limit as presented by Hudson. Comparisons of the present model with Hudson’s

model in the Rayleigh limit show that the results presented here are more accurate than

those presented by Hudson, due to the inclusion of the polarization direction. The gen-

eral formulation is also directly related to backscattering problem. The simple form of the

results makes them particularly useful for nondestructive testing and evaluation.
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Chapter 6

Wave Velocity and Polarization in

Textured Media

6.1 Introduction

Microstructural evolution during the heat treatment process has been a subject

of research for the past several decades. The knowledge that the material microstructure

directly affects the macroscopic material properties was a turning point in the field of ma-

terial manufacturing. The specific types of manufacturing processes are to produce the

corresponding microstructure in a controlled fashion. Many heat treatment processes, such

as annealing, are used to relieve the internal stress state that develops during cold working,

which allows the microstructure to rearrange to a state of lower energy. During such process-

ing individual crystals in a polycrystalline aggregate submit to orientation changes. Often,

the recrystallization process creates material texture, or preferred orientation of grains. The
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orientation of the recrystallized grains together with the final grain size distribution deter-

mines the final properties of polycrystalline materials. The degree and type of texture are

best described quantitatively by the orientation distribution function (ODF), which gives

the probability of a particular crystallite in the sample having a specific orientation with

respect to the sample axes. The subject of material texture is well developed by Roe [1],[2]

and Bunge [3]. In general, most of these materials with preferred crystallographic orien-

tation display anisotropy of physical properties. The anisotropic elastic response, which is

strongly induced by texture, in turn influences the formability of a polycrystalline material

[95], [96]. Ultrasonic techniques provide information about the interior microstructure due

to the penetration of ultrasonic waves. In recent years, major advances in ultrasonic moni-

toring NDE demonstrate a potential to characterize the recrystallization process in metals

because of their nondestructive nature. Thus, the texture of polycrystalline aggregates may

be monitored by ultrasonic methods during the recrystallization process. However, the de-

velopment of texture during recrystallization is not fully understood, in part due to a lack

of quantitative measurements during recrystallization [97].

Measurements of the wave velocity and attenuation may be used to infer material

texture in polycrystalline aggregates. Hence evaluation of wave phenomena in polycrys-

tals is of importance for prediction of the materials microstructure. More recently, models

of elastic wave propagation through polycrystalline materials with texture have typically

focused on special cases of texture. For example, the wave velocity through cubic polycrys-

talline materials with one aligned axis has been studied using several different techniques

[46],[56],[57]. These models were all based on appropriate averages of the stochastic elastic
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wave equation. The Voigt averaging techniques, which have been applied previously for

textured aggregates of crystals with particular symmetry [95],[98],[99],[100], [101], are used

for calculating the average elastic constants here. The knowledge of wave velocity plays an

important role in the explanation of a wide range of wave propagation behavior in polycrys-

talline materials. Ultrasonic velocities in polycrystalline aggregates have been analyzed by

Sayers [98],[102], Thompson [103],[104], Hirsekorn [46] and others. Those results were most

focused on the directional dependence of wave propagation along the symmetry axes. In

the literature discussed by Crampin and Yedlin [105], Sayers [106], Pšenč́lk and Gajewski

[107], Mensch and Rasolofosaon [108], and Farra [109], phase velocities were investigated

in anisotropic geological media for the qP or qS wave modes. Although their discussions

did not consider the texture effects, the analyses in anisotropic media provide a valuable

insight with the texture characterization during processing.

In this chapter, wave velocity and polarization are analyzed for orthorhombic ma-

terials made up of cubic crystals. The single crystal elastic constants and the orientation

distribution function of the constituent crystals are used for this work. In particular, the

wave velocity of the three wave modes is examined during recrystallization, respectively.

In polycrystals of cubic symmetry with rolling texture, the material is assumed to have

three orthogonal axes, which are chosen as the normal direction (ND), transverse direction

(TD), and rolling direction (RD). Upon moving through an anisotropic medium, three

elastic waves, the quasilongitudinal (qP ) and two quasishear (qS1 and qS2) waves, can

propagate along any direction. The wavespeeds are dependent on the wave propagation

direction, as are the polarization directions. Thus, the polarization directions are most
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generally neither parallel nor perpendicular to the wave propagation direction. The wave

velocities and their polarization directions correspond to the eigenvalues and eigenvectors of

the so-called Christoffel matrix. Analytic expressions of the eigenvalues and the eigenvec-

tors may be obtained only for special cases with simple symmetries. For example, the exact

solutions can be derived upon propagation along any one of the three axes directions ND,

TD and RD in a polycrystalline cubic sample. For more general cases, the eigenvalues and

the eigenvectors must be found by numerical methods. Thus, the wave velocities and their

corresponding polarization directions are calculated numerically. The angular deviations of

the polarization vectors from the propagation directions are also discussed. It is shown that

the maximum angular deviation is not too large relative to the propagation direction for

waves propagating in different directions. Those results are then used to calculate the wave

attenuations induced by grains of polycrystals with a certain distribution in the subsequent

chapter.

This chapter is organized in the following manner. First, in Section 6.2 the ori-

entation distribution function is discussed such that the general principle can be followed

step by step. Discussion of the orientational averaging procedure and the general elastic

tensor with orthorhombic symmetry follows in Section 6.3. In Section 6.4 an overview of

the Christoffel equation is presented. In Section 6.5 analyses and numerical results of wave

velocities and polarization vectors are presented. In Section 6.6 the wave velocity of the

three wave types is discussed as related to the annealing process. Finally, conclusions are

presented and discussed.
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6.2 The Orientation Distribution Function

The best quantitative representation of texture of polycrystalline materials was

developed by Roe [1],[2] and Bunge [3] in the 1960s. From a mathematical point of view,

their mathematical formulation and terminology are equivalent although the notation is

different. Here, Roe’s notation will be adopted throughout. For textured materials, a

detailed description of polycrystalline material properties in the sample requires a knowledge

of the orientation distribution of all crystallites in the sample. The orientation of a given

single crystallite is specified by the three Euler angles θ, ψ, and ϕ as shown in Fig. 6.1.

The orientation distribution of crystalline grains with preferred directions in the sample

can be described by the orientation distribution function (ODF) w(θ, ψ, ϕ), which is the

probability density function in terms of the three Euler angles. To discuss the orientation

of a grain, a set of crystallite-fixed axes Xi is chosen for a given grain, and one may clearly

choose the sample-fixed axes xi along the rolling, transverse, and normal directions of a

rolled sheet, respectively. The relation between the crystallite axes Xi and the sample axes

xi can be transformed by a rotation matrix using the three Euler angles. The orientation

of the crystallite with respect to the sample axes is then given by the transformation in the

form

xi = aijXj, (6.1)

where the components of the rotation matrix aij are given in terms of the Euler angles θ, ψ,

and ϕ as

a11 = −sinϕsinψ + cosϕcosψcosθ,

a21 = −cosϕsinψ − sinϕcosψcosθ,
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Figure 6.1: Roe’s definition of Euler angles, ψ, θ, ϕ, describing the orientation of the crys-
tallite coordinate system 0−Xi with respect to the global coordinate system o− xi.
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a31 = cosψsinθ,

a12 = sinϕcosψ + cosϕsinψcosθ, (6.2)

a22 = cosϕcosψ − sinϕsinψcosθ,

a32 = sinψsinθ,

a13 = cosϕsinθ,

a23 = sinϕsinθ,

a33 = cosθ.

As discussed above, an orientation distribution function (ODF) w(ξ, ψ, ϕ), where

ξ =cosθ, is introduced to represent uniquely the crystallite orientation distribution. Since

w(ξ, ψ, ϕ) is a probability density function, the integration of this density function over all

possible directions must equal unity. That is,

∫ 2π

0

∫ 2π

0

∫ +1

−1
w(ξ, ψ, ϕ)dξdψdϕ = 1. (6.3)

The ODF w may be expanded in a series of generalized spherical harmonics as

w(ξ, ψ, ϕ) =
∞∑

l=0

l∑

m=−l

l∑

n=−l

WlmnZlmn(ξ)e−imψe−inϕ, (6.4)

where Zlmn is the generalized associated Legendre function, which can be expressed by the

generalized Legendre function Pmn
l (ξ) as [3]

Zlmn = in−m

√
2l + 1

2
Pmn

l (ξ), (6.5)

with

Pmn
l (ξ) =

(−1)l−min−m

2l(l −m)!

[
(l −m)!(l + n)!

(l +m)!(l − n)!

] 1
2

×(1− ξ)−n−m
2 (1 + ξ)−

n+m
2
dl−n

dξl−n

[
(1− ξ)l−m(1 + ξ)l+m

]
.
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The expansion coefficients Wlmn are the orientation distribution coefficients (ODCs) in the

polycrystalline aggregate and are determined by

Wlmn =
1

4π2

∫ 2π

0

∫ 2π

0

∫ +1

−1
w(ξ, ψ, ϕ)Zlmn(ξ)eimψeinϕdξdψdϕ. (6.6)

Detailed results of the Zlmn are discussed in the literature by Morris and Heckler [110]. The

number of ODCs in Eq. (6.4) is actually much smaller than those expressed by the forms of

the equation since for a particular aggregate the ODCs are dependent on the symmetry ex-

hibited by the crystalline grains and the statistical symmetry of the sample as well. Here, our

objective samples are assumed to have orthorhombic symmetry (rolling texture) made up of

crystallites exhibiting cubic symmetry. In the assumption of orthorhombic-cubic symmetry,

W400,W420,W440 are the only three nonzero, independent coefficients which are necessary

for determining the fourth-rank effective elastic stiffness tensor. For the calculation of the

material covariance and attenuation, however, nine other nonzero, independent coefficients

of interest, W600,W620,W640,W660,W800,W820,W840,W860,W880, must be included. These

details will be presented in the next chapter. The Zlmn of interest here, for l = 4, 6, and 8,

are calculated using Eq. (6.5).

Given the symmetry class of polycrystalline materials, for example aggregates

with orthorhombic symmetry and crystal that is cubic, a number of investigations into the

properties of the ODCs Wlmn and the generalized associated Legendre function Zlmn are

presented in the literature [1],[2],[3],[110]. In order to make this chapter complete, some

properties corresponding to theWlmn and Zlmn are summarized here. For the ODCsWlmn :

(a) The coefficients must adhere to the following relation

Wlmn =Wlm̄n =Wlmn̄ =Wlm̄n̄, (6.7)
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where m̄ or n̄ denotes −m or −n. Wlmn must equal zero unless l and m are even and

n = 4k, k = 0,±1,±2, ... .

(b) The coefficients Wlmn are all real quantities. Therefore, it is often convenient

to write the Eq. (6.4) as

w(ξ, ψ, ϕ) =
∞∑

l=0

l∑

m=−l

l∑

n=−l

WlmnZlmn(ξ)cos(mψ + nϕ). (6.8)

(c) The nonzero coefficients Wlmn are not all independent for the case discussed

here. In particular, the following relations are shown by Roe [2]

W000 =
1

4
√

2π2
, W2m0 = 0,

W4m4 =
5√
70
W4m0, W6m4 = −

√
14

2
W6m0, (6.9)

W8m4 =

√
154

33
W8m0, W8m8 =

√
1430

66
W8m0.

For the generalized associated Legendre function Zlmn, the following properties

hold

∫ +1

−1
Zlmn(ξ)Zkmn(ξ)dξ = δkl,

Zlm̄n(ξ) = Zlmn̄(ξ) = Zlmn(−ξ), (6.10)

Zlmn = Zlm̄n̄ = (−1)m+nZlnm.

In the next section, the generalized elastic stiffness tensor, C, in an orthorhombic

medium is presented. Then, the effective elastic constants for rolling texture with cubic

crystal symmetry are estimated by employing a Voigt-type averaging procedure in which

the stiffness tensor is averaged by integration over the ODF w.
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6.3 The Average Elastic Stiffness for Rolling Texture

For a statistically orthorhombic medium, there are three mutually perpendicular

planes of symmetry. Without loss of generality, the sample coordinate system xi are chosen

as those of the symmetry planes of anisotropy. Thus, for a rolled plate three axes are

defined as RD, TD, ND, respectively, which are here represented as a, b, and c. The

ensemble average polycrystalline media are characterized by the average elastic modulus

tensor, 〈C〉 , which is determined by the integration of the single crystal over the ODF w.

The orientation average of a single crystal tensorial property f(ξ, ψ, ϕ) weighted by the

ODF is then given by

〈f〉 =

∫ 2π

0

∫ 2π

0

∫ +1

−1
f(ξ, ψ, ϕ)w(ξ, ψ, ϕ)dξdψdϕ. (6.11)

For orthorhombic symmetry, the averaged elastic stiffness 〈Cijkl〉 can be deter-

mined using Eq. (6.11) and Eq. (6.4). Therefore, the most general form for the elastic

tensor is given in terms of two independent unit vectors b and c by

〈Cijkl〉 = Γ1δijδkl + Γ2 (δikδjl + δilδjk) + Γ3 (δijckcl + δklcicj)

+Γ4 (δikcjcl + δilcjck + δjkcicl + δjlcick) + Γ5 cicjckcl

+Γ6 (δijbkbl + δklbibj) + Γ7 (δikbjbl + δilbjbk + δjkbibl + δjlbibk) (6.12)

+Γ8 bibjbkbl + Γ9(bibjckcl + bibkcjcl + biblcjck

+bjbkcicl + bjblcick + bkblcicj).

The nine independent coefficients in Eq. (6.12) are defined in the following as nine inde-
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pendent elastic constants, C11, C22, C33, C44, C55, C66, C12, C13, C23, respectively

Γ1 =
1

3
(C11 + 2C44 − 2C55 − 2C66 + 2C12 + 2C13 − 2C23) ,

Γ2 =
1

3
(C11 −C44 +C55 +C66 −C12 −C13 +C23) ,

Γ3 =
1

3
(−C11 − 2C44 + 2C55 + 2C66 − 2C12 +C13 + 2C23) ,

Γ4 =
1

3
(−C11 +C44 + 2C55 −C66 +C12 +C13 −C23) ,

Γ5 = (C11 +C33 − 4C55 − 2C13) ,

Γ6 =
1

3
(−C11 − 2C44 + 2C55 + 2C66 +C12 − 2C13 + 2C23) ,

Γ7 =
1

3
(−C11 +C44 −C55 + 2C66 +C12 +C13 −C23) ,

Γ8 = (C11 +C22 − 4C66 − 2C12) ,

Γ9 =
1

3
(C11 + 2C44 − 2C55 − 2C66 −C12 −C13 +C23) .

In the case of a transversely isotropic medium, it is known that C11 = C22, C44 = C55, C13 =

C23 and 2C66 = C11 −C12. Therefore, the coefficients Γ6, Γ7, Γ8, and Γ9 are equal to zero.

Furthermore, the coefficients Γ3, Γ4 and Γ5 will be zero under the assumption of statistical

isotropy. In general, the elastic modulus tensor for a single cubic crystal is given by

Cijkl = C012δijδkl +C044 (δikδjl + δilδjk) + κ
3∑

n=1

ainajnaknaln, (6.13)

where the single crystal anisotropic factor κ = C011−C012−2C044. The notation C0ij represents

the single crystal constants. The elements akn define the transformation matrix in term of

the three Euler angles given in Eq. (6.2). If the differences of the elastic constants for each

grain are only induced by a different orientation such that the grains are assumed to have
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the same grain size, the averaged elastic tensor 〈Cijkl〉 is given by Eq. (6.11) as follows:

〈Cijkl〉 = C012δijδkl +C044 (δikδjl + δilδjk) + κ

〈
3∑

n=1

ainajnaknaln

〉
, (6.14)

where the term within the bracket is expressed in detail as

〈
3∑

n=1

ainajnaknaln

〉
=

1

4π2

∫ 2π

0

∫ 2π

0

∫ +1

−1

3∑

n=1

ainajnaknalnw(ξ, ψ, ϕ)dξdψdϕ. (6.15)

For the case of rolling texture of orthorhombic-cubic symmetry, the nonzero aver-

aged values in Eq. (6.15) are given by

〈
3∑

n=1

a4n1

〉
=

3

5
+

12
√

2

35
π2W400 −

16
√

5

35
π2W420 +

8
√

35

35
π2W440,

〈
3∑

n=1

a4n2

〉
=

3

5
+

12
√

2

35
π2W400 +

16
√

5

35
π2W420 +

8
√

35

35
π2W440,

〈
3∑

n=1

a4n3

〉
=

3

5
+

32
√

2

35
π2W400, (6.16)

〈
3∑

n=1

a2n2a
2
n3

〉
=

1

5
− 16

√
2

35
π2W400 −

16
√

5

35
π2W420,

〈
3∑

n=1

a2n1a
2
n3

〉
=

1

5
− 16

√
2

35
π2W400 +

16
√

5

35
π2W420,

〈
3∑

n=1

a2n1a
2
n2

〉
=

1

5
+

4
√

2

35
π2W400 −

8
√

35

35
π2W440.

Using Eq. (6.14) and Eq. (6.16), the effective elastic constants in Eq. (6.12) can

be written as the following explicit form in the Voigt compact notation:

C11 = C011 − 2κΛ1, C44 = C044 + κΛ4, C23 = C012 + κΛ4,

C22 = C011 − 2κΛ2, C55 = C044 + κΛ5, C13 = C012 + κΛ5, (6.17)

C33 = C011 − 2κΛ3, C66 = C044 + κΛ6, C12 = C012 + κΛ6,
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with

Λ1 =
1

5
− 6

√
2

35
π2

[
W400 −

2
√

10

3
W420 +

√
70

3
W440

]
,

Λ2 =
1

5
− 6

√
2

35
π2

[
W400 +

2
√

10

3
W420 +

√
70

3
W440

]
,

Λ3 =
1

5
− 16

√
2

35
π2W400,

Λ4 =
1

5
− 16

√
2

35
π2

[
W400 +

√
10

2
W420

]
, (6.18)

Λ5 =
1

5
− 16

√
2

35
π2

[
W400 −

√
10

2
W420

]
,

Λ6 =
1

5
+

4
√

2

35
π2
[
W400 −

√
70W420

]
.

These results are identical with the results presented in the literature [95],[98],[99],[101].

In the case of a statistically isotropic sample, that is, the grain orientation is randomly

distributed, the ODCs W400,W420, and W440 are equal to zero. As such, the ensemble

averaged properties obviously lose their directional dependence. In the next section, the

anisotropic Christoffel equation is presented.

6.4 Christoffel Equation

The propagation characteristics of elastic waves in an anisotropic medium are

determined by the elastic stiffness of the materials. When elastic waves propagate through

a homogeneous, anisotropic medium, the phase velocity V and the associated polarization

vector u of plane waves must satisfy the Christoffel equation [73]:

(
Tik − V 2δik

)
uk = 0, (6.19)
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where δik is the Kronecker delta, and the notation T is the symmetric Christoffel tensor

given by the relation

Tik =
1

ρ
Cijkl pjpl. (6.20)

Here, ρ is the material density, and p is the unit vector in the propagation direction,

which is often expressed by polar angle φ and azimuthal angle Θ as p = x1cosΘsinφ +

x2sinΘsinφ + x3cosφ. The summation over repeated indices is implied. Because of the

symmetry characteristics of the effective elastic tensor C, the components of the Christoffel

tensor are also symmetric. The tensor T therefore has six independent components. For

the case of the orthorhombic system, those independent terms can be written in compact

form as [72]

ρT11 = C11p
2
1 +C66p

2
2 +C55p

2
3,

ρT22 = C66p
2
1 +C22p

2
2 +C44p

2
3,

ρT33 = C55p
2
1 +C44p

2
2 +C33p

2
3,

ρT12 = (C12 +C66) p1p2, (6.21)

ρT13 = (C13 +C55) p1p3,

ρT23 = (C23 +C44) p2p3.

The effective elastic constants, Eq. (6.21), in the orthorhombic-cubic symmetry

are given by Eq. (6.17). The Christoffel equation describes a standard eigenvalue
(
V 2

)
-

eigenvector (u) problem for the Christoffel tensor T, which is exactly related to the wave

velocity and polarization direction vectors. The detailed eigenvalue-eigenvector problem is

discussed in the next section.
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6.5 Wave Velocity and Polarization

In the case of a statistically orthorhombic sample made up of cubic crystallites, it is

known that ultrasonic velocities depend on many factors within the polycrystal materials.

The main effects are the single grain elastic constants and mass density, and especially

the texture. Therefore, given the elastic constants and texture coefficients, and any chosen

propagation direction, the wave velocities of the three wave types can be obtained by solving

the Christoffel equation for that propagation direction. In general, the eigenvalues are

calculated by

det
(
Tik − V 2δik

)
= 0. (6.22)

The polarization vectors are equal to the eigenvectors of the Christoffel tensor T correspond-

ing to the appropriate eigenvalue. When solving the system of equations, Eq. (6.22), for

any given direction p, three positive values of the squared phase velocity V 2 are obtained,

which respectively represent the quasilongitudinal (qP ),and two quasishear (qS1 and qS2)

wave modes. After the eigenvalues are determined, the associated polarization vectors u

of each corresponding mode can be obtained from Eq. (6.19). Since the Christoffel tensor

T is symmetric, the polarization vectors of the three modes are always orthogonal to each

other, but none of them is necessarily parallel or perpendicular to direction p. In most cases,

the above eigenvalues and the eigenvectors have to be solved by numerical methods. How-

ever, in some situations, for example waves propagating in the symmetry planes, analytic

solutions may be found explicitly.

Given an orthorhombic model, there are always three mutually orthogonal planes

of symmetry that coincide with the coordinate planes. While a plane wave propagating
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in the x1 − x2 plane, the projection of direction p on the x3 axis disappears, that is,

p = x1cosΘ + x2sinΘ. Therefore, the phase velocities of each wave type can be explicitly

given in the form

ρV 2qS1 = C44sin
2Θ +C55cos2Θ,

2ρV 2qP = Q+
√
Q2 − 4R, (6.23)

2ρV 2qS2 = Q−
√
Q2 − 4R,

where the quantities Q and R are defined by

Q = C11cos2Θ +C22sin
2Θ +C66,

R =
(
C11cos2Θ +C66sin

2Θ
) (
C22sin

2Θ +C66cos2Θ
)

(6.24)

−(C12 +C66)
2sin2Θcos2Θ.

The effective elastic constants are given in Eq. (6.17). In this case, the polarization

direction of the quasishear (qS1) wave is perpendicular to the x1−x2 plane, namely, u3 = x3.

The polarization vectors of other two waves (qP and qS2) are to locate within the x1 − x2

plane. Given propagation along the x1 axis, i.e. Θ = 0, the phase velocities of each wave

type in Eq. (6.23) are simplified as

ρV 2qS1−13 = C044 + η

[
1

5
− 16

√
2

35
π2

(
W400 −

√
10

2
W420

)]
,

ρV 2qP−11 = C011 − 2η

[
1

5
− 6

√
2

35
π2

(
W400 −

2
√

10

3
W420 +

√
70

3
W440

)]
, (6.25)

ρV 2qS2−12 = C044 + η

[
1

5
+

4
√

2

35
π2
(
W400 −

√
70W420

)]
.

If propagation is along the x2 axis, i.e. Θ = π/2, the phase velocities of each wave type in
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Eq. (6.23) are given by

ρV 2qS1−23 = C044 + η

[
1

5
− 16

√
2

35
π2

(
W400 +

√
10

2
W420

)]
,

ρV 2qP−22 = C011 − 2η

[
1

5
− 6

√
2

35
π2

(
W400 +

2
√

10

3
W420 +

√
70

3
W440

)]
, (6.26)

ρV 2qS2−21 = C044 + η

[
1

5
+

4
√

2

35
π2
(
W400 −

√
70W420

)]
.

When considering wave propagation in the x1 − x3 plane, the projection of direction p on

the x2 axis vanishes, that is p = x1cosΘ +x3sinΘ. In this specific case, the phase velocities

of the three wave types can be explicitly given in the form

ρV 2qS1 = C44sin
2Θ +C66cos2Θ,

2ρV 2qP = P +
√
P 2 − 4S, (6.27)

2ρV 2qS2 = P −
√
P 2 − 4S,

where the quantities P and S are defined as follows:

P = C11cos2Θ +C33sin
2Θ +C55,

S =
(
C11cos2Θ +C55sin

2Θ
) (
C33sin

2Θ +C55cos2Θ
)

(6.28)

−(C13 +C55)
2sin2Θcos2Θ.

Again, the expression can be significantly simplified if one gives wave propagation along the

directions of the x1 and x3 axes. For propagation along the x1 axis, the same results are
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given in Eq. (6.25). For propagation along the x3 axis, the simplified results are given by

ρV 2qS1−32 = C044 + η

[
1

5
− 16

√
2

35
π2

(
W400 +

√
10

2
W420

)]
,

ρV 2qP−33 = C011 − 2η

[
1

5
− 16

√
2

35
π2W400

]
, (6.29)

ρV 2qS2−31 = C044 + η

[
1

5
− 16

√
2

35
π2

(
W400 −

√
10

2
W420

)]
.

These results of the wave propagation along the three axes are identical with the

results given by Sayers [98]. The notation (−ij) denotes the wave propagation in the xi

direction and polarization in the xj direction. It is shown that the values of these phase

velocities are equal to each other for a wave propagating in the xi direction and polarized

in the xj direction, with a wave propagating in the xj direction and polarized in the xi

direction, Vij = Vji. This property is implied by the assumption of orthorhombic symmetry.

Finally, when considering wave propagation in the x2−x3 plane, the projection of

direction p on the x1 axis vanishes, that is p = x2cosΘ + x3sinΘ. In this case, the phase

velocities of the three wave types are given by

ρV 2qS1 = C55sin
2Θ +C66cos2Θ,

2ρV 2qP = M +
√
M2 − 4N, (6.30)

2ρV 2qS2 = M −
√
M2 − 4N,

where the quantities M and N are defined by

M = C22cos2Θ +C33sin
2Θ +C44,

N =
(
C22cos2Θ +C44sin

2Θ
) (
C33sin

2Θ +C44cos2Θ
)

(6.31)

−(C23 +C44)
2sin2Θcos2Θ.
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Numerical results are now presented for a particular texture case. In 70% rolled

steel, the single cubic grain constants and the texture coefficients of interest are given by

[3],[45]

C011 = 2.37× 1011Pa, C012 = 1.41× 1011Pa,

C044 = 1.16× 1011Pa, ρ = 7850 kg/m3, (6.32)

c004 = −1.47, c204 = −0.46, c404 = 0.50.

It should be pointed out that the ODCs’ relation of the Bunge notation cmn
l and the Roe

notation Wlmn must be used for carrying out the calculation, that is

Wlmn =
1

8π2

√
2

2l + 1
· (−1)m+ncmn

l . (6.33)

If the propagation direction is defined by p = x1cosΘsinφ + x2sinΘsinφ + x3cosφ, where

Θ is azimuthal angle and φ is polar angle, the phase velocities may be computed using

Eq. (6.22). Since the orthorhombic symmetry has three mutually orthogonal planes of

symmetry, all calculations are made for 0◦ ≤ Θ ≤ 90◦,and 0◦ ≤ φ ≤ 90◦. Figure 6.2

represents the quasilongitudinal (qP ) wave velocity as a function of the azimuthal Θ at the

given polar angle φ. At φ = 0◦, the wave propagation direction is along the x3 axis; for

φ = 90◦, wave propagation direction is within the x1 − x2 plane. It is observed from Fig.

6.2 that at φ = 0◦ the quasilongitudinal wave velocity has a maximum. Figure 6.3 shows

the phase velocities of two quasishear (qS) waves as a function of the azimuthal angle Θ

at the given polar angle φ. The two quasishear waves are observed to have their minima

at φ = 0◦, respectively. The maximum variation of the phase velocity with respect to this

specific model is at the polar angle φ = 90◦, and φ = 0◦ for wave propagation along the x3
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Figure 6.2: qP wave velocity as a function of the azimuthal angle Θ at the polar angle
φ = 0◦, 30◦, 45◦, 60◦ and 90◦.

axis, the velocities of the three wave modes are constants as shown in Eq. (6.29).

Because of their relation to the attenuation and experimental measurements, the

angular deviations of the three wave polarization vectors must be discussed. Figure 6.4

shows the angular deviation of the qP wave polarization vector from the wave propagation

direction p. It is observed that the maximum deviation angle is about 3.5◦ at φ = 30◦ for

this particular texture. At φ = 90◦, the wave propagation direction is within the x1 − x2

plane. Thus, when the wave propagates along the axes (Θ = 0◦ and Θ = 90◦), the qP wave

polarization vectors are still along these axes such that the deviation angles are zero. In

addition, an additional feature is observed in Fig. 6.4. There is a zero angular deviation for

propagation between the azimuthal angle Θ at 0◦ and 90◦. In this situation, the polarization

vector is the same as the wave propagation direction, that is, u1 = x1cosΘ +x2sinΘ. Using
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Figure 6.4: The angular deviation of the qP wave polarization vector from the propagation
direction (degrees).
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this relation and the Christoffel equation, Eq. (6.19), the azimuthal angles Θ are given by

the relations:

cosΘ = 0,

sinΘ = 0, (6.34)

cos2Θ [1− 2Λ1 − 3Λ6] = sin2Θ [1− 2Λ2 − 3Λ6] ,

where Λ1 and Λ2 are given in Eq. (6.18). From the first two equations, the values of Θ

that are equal to 0◦ and 90◦ can be easily seen. Using the third equation, the azimuthal

angle between 0◦ and 90◦, which is dependent on the material texture, can be calculated

if the texture coefficients are known. In this case, Θ = 50.03◦. However, while propagating

outside the symmetry plane, this feature shown in Fig. 6.4 does not exist. The result can

be proved numerically. In Fig. 6.5, the deviation angles of the qS1 wave polarization vector

from the propagation direction are presented. It is shown that at φ = 90◦, the polarization

vector is always perpendicular to the propagation plane (x1 − x2 plane). This physical

property is implied in the wave propagation theory [111]. The results also show that as

the polar angle increases gradually for propagation, there are some polarization vectors are

perpendicular to the associated propagation plane. Due to the complexity of the expressions,

however, closed-form can not be found. Figure 6.6 shows the angular deviation of the qS2

wave polarization vector from the propagation direction. Since the qS2 wave polarization

vector is entirely within the same plane as that of the qP wave, the angular deviations are

consistent with each other, which may be observed in Figs. 6.4 and 6.6.

In Fig. 6.7, the qP wave velocities are presented as a function of propagation

direction within the x1−x2, x1−x3, and x2−x3 planes, respectively. In the x1−x2 plane,
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Figure 6.5: The angular deviation of the quasishear wave (qS1) polarization vector from
the propagation direction (degrees).
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Figure 6.7: qP wave velocity upon wave propagation vector within three symmetry planes.

the wave velocity is seen to increase at the beginning and reach a maximum, then decrease

as the azimuthal angle Θ increases. In contrast, the wave velocities in the x1 − x3 and

x2−x3 planes are observed to decrease first, then increase as the angle Θ increases for this

particular texture. Upon propagation along the three axes, there are the same velocities

as discussed previously. Figure 6.8 represents the two qS waves velocities when the wave

propagation vector is located within the three symmetry planes. In the x1−x3 and x2−x3

planes, at the intersection points or singular points, the two quasishear waves have the

same velocities. The singularity of the quasishear waves velocity is a basic feature in an

anisotropic medium. Such a phenomenon was discussed for orthorhombic media in detail

by Crampin [105] and Farra [109]. It is observed from Fig. 6.8 that the qS1 wave velocities

have their maxima at Θ = 45◦ when propagating within the x1 − x3 and x2 − x3 planes,
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Figure 6.8: qS waves velocities upon wave propagation vector within three symmetry planes.

while the qS2 wave velocity has a minimum at Θ = 45◦ upon propagating in the x1 − x2

plane. The results also show that the qS2 wave velocities have their maxima at Θ = 0◦ and

minima at Θ = 90◦ when propagating within the x1 − x3 and x2 − x3 planes, and the qS1

wave velocity has a maximum Θ = 0◦ and a minimum at Θ = 90◦ for propagation in the

x1 − x2 plane. In the next section, the wave velocity during annealing is studied.

6.6 Phase Velocity during Annealing

To use ultrasonic techniques for monitoring texture during processing, the relation-

ships between ultrasonic parameters, such as ultrasonic wave velocity and materials texture

must be investigated. Liu and coworkers have presented a model to extract information

about recrystallization from such ultrasonic measurements [112]. Here, their model is used
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to discuss the ultrasonic wave velocity during annealing. It is noted that there are six ideal

texture components which are generally assumed to be present in rolled and recrystallized

aluminum [97]. In the model discussed by Liu, et al., those six ideal texture components are

supposed to evolve in time following certain function forms with some constants to be de-

termined. It is also assumed that the observed orientation distribution coefficients (ODCs),

for example W400,W420,W440, may be averagely weighted by the volume fraction of each

component. Thus, for the case of rolled and recrystallized aluminum, the ODCs are given

by [112]

W400 = −0.0077f1(t)− 0.0309f2(t)− 0.0077 [f3(t) + f4(t) + f5(t)] ,

W420 = −0.0244f1(t) + 0.0081f2(t)− 0.0003f4(t)− 0.0081f5(t), (6.35)

W440 = 0.0134f1(t) + 0.0185f2(t)− 0.0108f3(t)− 0.0089f4(t)− 0.0108f5(t),

where fi(t), i = 1, 2, 3, 4, 5, are the texture components evolving in time with functional

form shown in Fig. 6.9. These respectively represent the Goss, Cube, Cu, S, B, and

Random volume fractions. The detailed discussion was reviewed in the literature [97].

During annealing, the recrystallization texture, such as the Goss and Cube components,

increases, while the rolling texture, the Cu, S, and B components, decreases. Thus, for this

particular aluminum model the ODCs versus annealing time curves based on the texture

shown in Fig. 6.9 are presented in Fig. 6.10. It is seen that during annealing the ODCs are

to keep invariant at the beginning and the end of the process, while the ODCs are suddenly

varied in the middle of the process.

Based on the above discussions, the wave velocity during annealing is presented. In

this particular rolled and recrystallized aluminum, the elastic constants of the cubic crystal
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grain used were: C011 = 1.08×1011Pa, C012 = 0.61×1011Pa, C044 = 0.29×1011Pa, and density

ρ = 2700 kg/m3. In Fig. 6.11, the qP wave velocity is shown for propagation along the three

orthogonal axes, i.e., ND,RD, and TD. The VND, VRD,and VTD are quasilongitudinal wave

velocities propagating in the normal direction, rolling direction, and transverse direction,

respectively. The qP wave velocities decrease as the ODCs increase during annealing. Figure

6.12 represents one quasishear (qS1) wave velocity. VNT is the wave velocity for propagation

in the normal direction and polarization in the transverse direction and VTN is the wave

velocity for propagation in the transverse direction and polarization in the normal direction,

and VNT = VTN , which is seen in Eqs. (6.29) and (6.26). The VRN is the wave velocity for

propagation in the rolling direction and polarization in the normal direction. In contrast,

the qS1 wave velocities increase as the ODCs increase during annealing. Figure 6.13 shows

the other quasishear (qS2) wave velocity. It is observed that the shear wave velocity of VRT

(VTR) is dominated by the ODC W420, which first decreases to reach the minimum, then

increases to reach the initial value during annealing. Based on the information analyzed

above, the texture of polycrystalline aggregates may be inferred as a function of annealing

time. The ODCs, for example W400,W420,W440, can be calculated from ultrasonic velocity

measurements [112]. The ultrasonic velocities of sample specimens can be measured during

annealing. Thus, the ODCs can be determined during such processing.

6.7 Conclusions

In this chapter, the wave velocity and polarization of ultrasonic waves in rolled

and recrystallized materials have been discussed. The general elastic stiffness tensor in
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Figure 6.13: qS2 wave velocity versus annealing time when wave propagating in the
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orthorhombic media was presented. For the case of rolling texture of orthorhombic-cubic

symmetry, the nine effective elastic constants were given in terms of the orientation distri-

bution coefficients (ODCs). The coefficients are quantified by the orientation distribution

function (ODF), the probability density function that is used to describe best the orienta-

tion of the grains or texture of a polycrystalline aggregate. The phase velocity V and the

associated polarization vector u of plane waves are calculated by the Christoffel equation,

which typically represents an eigenvalue and eigenvector problem. For the particular cases

of wave propagation in the symmetry planes, analytic expressions of wave velocities for the

quasilongitudinal and two quasishear waves were obtained. In general, the solutions are

found using numerical methods. The angular deviations of the three waves, qP, qS1,and

qS2, polarization vectors from the propagation direction were also examined. The example
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results presented here show that the value of the angular deviations is not significant. The

maximum deviation angle is about 3.5◦ for this particular texture. Finally, the wave veloc-

ities during the annealing process were discussed. The results analyzed show that the wave

velocities and polarization vectors of the three wave modes can be considerably affected

by texture. The results will be used to calculate the wave attenuations in the subsequent

chapter. Those analyses will provide valuable information for modeling the microstruc-

ture during the recrystallization process, particularly for use with ultrasonic nondestructive

techniques.
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Chapter 7

Attenuations in Textured Media

7.1 Introduction

Metals and alloys are made of crystallite grains whose characteristics and arrange-

ments can be changed by the application of heat processing, such as annealing. Microstruc-

tural parameters of metals that determine the macroscopic mechanical properties of a ma-

terial include the grain size, grain shape, and the orientation of the grains or texture and

their distribution in the microstructure. Ultrasonic waves propagating in such aggregates

lose energy due to scattering from the granular microstructure of these materials. This

scattering is generally characterized by the attenuation of the medium. In general, the

attenuation and wave velocity are dependent on the grain size and shape, particularly on

the orientation distribution of the grains. If the grains are randomly oriented such that the

medium is statistically isotropic, these propagation properties are independent of direction.

However, the scattering attenuation and wave velocity are a function of the propagation

direction if the grains have a preferred orientation. The preferred orientation of grains,
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or texture, is best quantitatively described by the orientation distribution function (ODF)

defining as a probability density function, which is often expanded in a series generalized

spherical harmonics [1],[2],[3]. The general description was given in Chapter 6. Often,

most metallic materials with preferred orientation of grains display anisotropy of material

properties. Therefore, knowledge of the anisotropic nature of the wave propagation and

scattering in textured materials such as attenuation and velocity is critical for use with

ultrasonic nondestructive techniques. Such information will then provide valuable insight

for modeling the microstructure of such complex materials during processing.

The scattering of elastic waves by grains of polycrystals has received considerable

attention. The most recent contributions for cubic symmetry with uniformly distributed

orientations of grains were made by Hirsekorn [43],[44] and Weaver [50]. The problem of

wave propagation and scattering in the case of polycrystalline grains with an aligned [001]

axis have been examined by Ahmed and Thompson [56] and Turner [57]. In this particular

case, the average medium is statistically transverse isotropy. Ahmed and Thompson also

studied correlations defined by both equiaxed grains and grains with elongation. During the

recrystallization process of metals such as annealing, the common microstructure may show

the grains having the preferred crystallographic orientation. The material properties of this

specific case are assumed to be orthorhombic due to the feature of the preferred orientation.

For rolled texture, there are three orthogonal axes of symmetry which are defined as the

rolling, transverse, and normal directions. Hirsekorn [45] also was one of the first to investi-

gate the wave scattering in polycrystals of cubic symmetry with rolled texture as a function

of frequency by using the perturbation approach. She then extended her theory to deter-
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mine the directional dependence of the phase velocities and attenuations of the three wave

types under the same assumption with fiber texture [46]. Her discussions were restricted

to waves propagating in the direction of an axis of symmetry of the texture. The general

formalism of the waves propagating in any direction through polycrystalline materials with

rolled texture, however, has not yet been reported. In the previous chapter, the detailed

wave velocities and polarizations of the three wave types, inclusive of the quasilongitudinal

and two quasishear waves, have been discussed under the assumption of orthorhombic-cubic

symmetry. A relationship between the phase velocity and the recrystallization characteristic

variable (annealing time) was also studied for specific examples.

In this chapter, the more sensitive ultrasonic parameter, scattering attenuation, is

studied for waves propagating in any direction through such textured media. The atten-

uations of the three wave types are calculated numerically as a function of dimensionless

frequency and propagation direction, respectively, for given orientation distribution coeffi-

cients (ODCs). The resulting attenuations are shown to be directional dependent, frequency

dependent, and dependent on the texture coefficients (ODCs) for the quasilongitudinal and

two quasishear waves. The analysis of these expressions is restricted to frequencies below

the high-frequency geometric optics limit. Those theoretical results may be used to improve

the understanding of the microstructure during the recrystallization process. In addition,

the present formulation may be used to study the backscattering problem in a straightfor-

ward manner. Although the present model is for the case of orthohombic-cubic symmetry,

the formalism can be easily modified to apply to other given symmetry cases.

The preliminary elastodynamics of elastic wave propagation and scattering has
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been introduced in terms of appropriate Green’s dyadics in the previous chapters. Using

the wave theory discussed, the formalism of the attenuations is developed for the anisotropic

case of orthorhombic-cubic symmetry in the succeeding sections.

7.2 Covariance

To calculate the attenuations, the relevant inner products on the covariance of

the effective moduli fluctuations are required. The covariance of the moduli fluctuations is

represented by an eighth-rank tensor which is given explicitly by

Ξ (q)····ûp̂ŝv̂
····ûp̂ŝv̂ = Ξ (q)ijkl

αβγδ ûβ ûkp̂αp̂lŝiŝδv̂γ v̂j . (7.1)

For polycrystals of cubic symmetry, the eighth-rank covariance, Ξαβγδ
ijkl , is written as

Ξ
αβγδ
ijkl = 〈CijklCαβγδ〉 − 〈Cijkl〉 〈Cαβγδ〉

= κ2

〈
3∑

n=1

ainajnaknaln

3∑

n=1

aαnaβnaγnaδn

〉
(7.2)

−κ2
〈

3∑

n=1

ainajnaknaln

〉〈
3∑

n=1

aαnaβnaγnaδn

〉
,

where the brackets, < >, denote an ensemble average over all orientations of grains, and

κ = C011−C012−2C044 is the single crystal anisotropic factor. If the polycrystal considered here

is of orthorhombic-cubic symmetry, the nonzero terms which are necessary for calculating

the attenuations are determined in the following. For the second term in Eq. (7.2), the

results have been given in the details of the previous chapter by Eq. (6.16). The first term
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within the brackets in Eq. (7.2) is given as

〈
3∑

n=1

ainajnaknaln

3∑

n=1

aαnaβnaγnaδn

〉

=
1

4π2

∫ 2π

0

∫ 2π

0

∫ +1

−1

(
3∑

n=1

ainajnaknaln

)(
3∑

n=1

aαnaβnaγnaδn

)
w(ξ, ψ, ϕ)dξdψdϕ

= 4π2
{
W000T000 +W400

[
T400 +

5√
70

(T404 + T404̄)

]

+W420

[
T420 + T42̄0 +

5√
70

(T424 + T42̄4 + T424̄ + T42̄4̄)

]

+W440

[
T440 + T44̄0 +

5√
70

(T444 + T44̄4 + T444̄ + T44̄4̄)

]

+W600

[
T600 −

√
14

2
(T604 + T604̄)

]

+W620

[
T620 + T62̄0 −

√
14

2
(T624 + T62̄4 + T624̄ + T62̄4̄)
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+W640

[
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√
14

2
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]

+W660

[
T660 + T66̄0 −

√
14

2
(T664 + T66̄4 + T664̄ + T66̄4̄)

]
(7.3)

+W800
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√
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√
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]

+W820
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+W840

[
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√
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√
1430

66
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+W860

[
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√
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(T864 + T86̄4 + T864̄ + T86̄4̄)

+

√
1430
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+W880

[
T880 + T88̄0 +

√
154

33
(T884 + T88̄4 + T884̄ + T88̄4̄)

+

√
1430

66
(T888 + T88̄8 + T888̄ + T88̄8̄)

]}
,

where the w is orientation distribution function (ODF) as discussed in Chapter 6, which can

be expanded in a series of generalized spherical harmonics. The Wlmn are the orientation

distribution coefficients (ODCs). The terms Tlmn are defined as

Tlmn =
1

4π2

∫ 2π

0

∫ 2π

0

∫ +1

−1

(
3∑

n=1

ainajnaknaln

)(
3∑

n=1

aαnaβnaγnaδn

)

×Zlmn(ξ)e−imψe−inϕdξdψdϕ. (7.4)

Within the assumption of orthorhombic-cubic symmetry, the nonzero terms which are re-

quired for calculating the attenuations, Eq. (7.3), are given as follows:
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√

26π2

1001
W600 −

64
√

2730π2

15015
W620 −

128
√

91π2

5005
W640

+
64
√

6006π2

15015
W660 +

56
√

34π2

7293
W800 +

32
√

1190π2

12155
W820

+
32
√

1309π2

12155
W840 +

32
√

14586π2

36465
W860 +

16
√

12155π2

12155
W880,

〈
3∑

n=1

a4n3

3∑

m=1

a4m3

〉
=

41

105
+

5952
√

2π2

5005
W400 +

1024
√

26π2

15015
W600 +

1024
√

34π2

36465
W800,
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〈
3∑

n=1

a4n2

3∑

m=1

a4m3

〉
=

13

35
+

564
√

2π2

715
W400 +

16
√

5π2

65
W420 +

776
√

35π2

5005
W440

+
128
√

26π2

5005
W600 −

256
√

91π2

5005
W640 +

128
√

34π2

12155
W800

+
256
√

1190π2

85085
W820 +

128
√

1309π2

85085
W840,

〈
3∑

n=1

a4n1

3∑

m=1

a4m3

〉
=

13

35
+

564
√

2π2

715
W400 −

16
√

5π2

65
W420 +

776
√

35π2

5005
W440

+
128
√

26π2

5005
W600 −

256
√

91π2

5005
W640 +

128
√

34π2

12155
W800

−256
√

1190π2

85085
W820 +

128
√

1309π2

85085
W840,

〈
3∑

n=1

a4n1

3∑

m=1

a4m2

〉
=

13

35
+

344
√

2π2

715
W400 +

1392
√

35π2

5005
W440 +

128
√

26π2

5005
W600

−256
√

91π2

5005
W640 +

8
√

34π2

12155
W800 −

32
√

1309π2

85085
W840

+
16
√

12155π2

12155
W880,

〈
3∑

n=1

a4n1

3∑

m=1

a2m1a
2
m2

〉
=

11

105
+

512
√

2π2

5005
W400 −

272
√

5π2

5005
W420 −

96
√

35π2

1001
W440

+
32
√

26π2

3003
W600 −

32
√

2730π2

15015
W620 +

64
√

91π2

5005
W640

−32
√

6006π2

15015
W660 +

8
√

34π2

7293
W800 −

16
√

1190π2

85085
W820

−32
√

1309π2

85085
W840 −

16
√

14586π2

36465
W860 −

16
√

12155π2

12155
W880,

〈
3∑

n=1

a4n1

3∑

m=1

a2m1a
2
m3

〉
=

11

105
− 1028

√
2π2

5005
W400 +

192
√

5π2

1001
W420 +

136
√

35π2

5005
W440

+
32
√

26π2

3003
W600 −

32
√

2730π2

15015
W620 +

64
√

91π2

5005
W640

−32
√

6006π2

15015
W660 −

64
√

34π2

7293
W800 +

48
√

1190π2

17017
W820

−192
√

1309π2

85085
W840 +

16
√

14586π2

36465
W860,
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〈
3∑

n=1

a4n1

3∑

m=1

a2m2a
2
m3

〉
=

13

105
− 172

√
2π2

715
W400 −

288
√

5π2

715
W420 +

232
√

35π2

5005
W440

−544
√

26π2

15015
W600 +

32
√

2730π2

15015
W620 +

192
√

91π2

5005
W640

+
32
√

6006π2

15015
W660 −

64
√

34π2

36465
W800 +

16
√

1190π2

85085
W820

+
64
√

1309π2

85085
W840 −

16
√

14586π2

36465
W860,

〈
3∑

n=1

a4n2

3∑

m=1

a2m1a
2
m2

〉
=

11

105
+

512
√

2π2

5005
W400 +

272
√

5π2

5005
W420 −

96
√

35π2

1001
W440

+
32
√

26π2

3003
W600 +

32
√

2730π2

15015
W620 +

64
√

91π2

5005
W640

+
32
√

6006π2

15015
W660 +

8
√

34π2

7293
W800 +

16
√

1190π2

85085
W820

−32
√

1309π2

85085
W840 −

16
√

14586π2

36465
W860 −

16
√

12155π2

12155
W880,

〈
3∑

n=1

a4n2

3∑

m=1

a2m1a
2
m3

〉
=

13

105
− 172

√
2π2

715
W400 +

288
√

5π2

715
W420 +

232
√

35π2

5005
W440

−544
√

26π2

15015
W600 −

32
√

2730π2

15015
W620 +

192
√

91π2

5005
W640

−32
√

6006π2

15015
W660 −

64
√

34π2

36465
W800 −

16
√

1190π2

85085
W820

+
64
√

1309π2

85085
W840 +

16
√

14586π2

36465
W860,

〈
3∑

n=1

a4n2

3∑

m=1

a2m2a
2
m3

〉
=

11

105
− 1028

√
2π2

5005
W400 −

192
√

5π2

1001
W420 +

136
√

35π2

5005
W440

+
32
√

26π2

3003
W600 +

32
√

2730π2

15015
W620 +

64
√

91π2

5005
W640

+
32
√

6006π2

15015
W660 −

64
√

34π2

7293
W800 −

48
√

1190π2

17017
W820

−192
√

1309π2

85085
W840 −

16
√

14586π2

36465
W860,

〈
3∑

n=1

a4n3

3∑

m=1

a2m1a
2
m2

〉
=

13

105
+

188
√

2π2

715
W400 −

776
√

35π2

5005
W440 +

128
√

26π2

15015
W600

+
256
√

91π2

5005
W640 −

128
√

34π2

36465
W800 −

128
√

1309π2

85085
W840,
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〈
3∑

n=1

a4n3

3∑

m=1

a2m1a
2
m3

〉
=

11

105
− 688

√
2π2

5005
W400 +

16
√

5π2

65
W420 −

512
√

26π2

15015
W600

−512
√

34π2

36465
W800 +

256
√

1190π2

85085
W820,

〈
3∑

n=1

a4n3

3∑

m=1

a2m2a
2
m3

〉
=

11

105
− 688

√
2π2

5005
W400 −

16
√

5π2

65
W420 −

512
√

26π2

15015
W600

−512
√

34π2

36465
W800 −

256
√

1190π2

85085
W820,

〈
3∑

n=1

a2n2a
2
n3

3∑

m=1

a2m2a
2
m3

〉
=

2

35
− 888

√
2π2

5005
W400 −

96
√

5π2

455
W420 +

48
√

35π2

5005
W440

−32
√

26π2

5005
W600 +

64
√

91π2

5005
W640 +

128
√

34π2

12155
W800

+
256
√

1190π2

85085
W820 +

128
√

1309π2

85085
W840,

〈
3∑

n=1

a2n2a
2
n3

3∑

m=1

a2m1a
2
m3

〉
=

4

105
− 712

√
2π2

5005
W400 −

48
√

35π2

5005
W440 +

608
√

26π2

15015
W600

−64
√

91π2

5005
W640 +

128
√

34π2

36465
W800 −

128
√

1309π2

85085
W840,

〈
3∑

n=1

a2n2a
2
n3

3∑

m=1

a2m1a
2
m2

〉
=

4

105
− 372

√
2π2

5005
W400 −

272
√

5π2

5005
W420 −

184
√

35π2

5005
W440

−64
√

26π2

15015
W600 −

32
√

2730π2

15015
W620 −

128
√

91π2

5005
W640

−32
√

6006π2

15015
W660 −

64
√

34π2

36465
W800 −

16
√

1190π2

85085
W820

+
64
√

1309π2

85085
W840 +

16
√

14586π2

36465
W860,

〈
3∑

n=1

a2n1a
2
n2

3∑

m=1

a2m1a
2
m2

〉
=

2

35
− 432

√
2π2

5005
W400 −

96
√

35π2

1001
W440 −

32
√

26π2

5005
W600

+
64
√

91π2

5005
W640 +

8
√

34π2

12155
W800 −

32
√

1309π2

85085
W840

16
√

12155π2

12155
W880,
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〈
3∑

n=1

a2n1a
2
n2

3∑

m=1

a2m1a
2
m3

〉
=

4

105
− 372

√
2π2

5005
W400 +

272
√

5π2

5005
W420 −

184
√

35π2

5005
W440

−64
√

26π2

15015
W600 +

32
√

2730π2

15015
W620 −

128
√

91π2

5005
W640

+
32
√

6006π2

15015
W660 −

64
√

34π2

36465
W800 +

16
√

1190π2

85085
W820

+
64
√

1309π2

85085
W840 −

16
√

14586π2

36465
W860,

〈
3∑

n=1

a2n1a
2
n3

3∑

m=1

a2m1a
2
m3

〉
=

2

35
− 888

√
2π2

5005
W400 +

96
√

5π2

455
W420 +

48
√

35π2

5005
W440

−32
√

26π2

5005
W600 +

64
√

91π2

5005
W640 +

128
√

34π2

12155
W800

−256
√

1190π2

85085
W820 +

128
√

1309π2

85085
W840,

〈
3∑

n=1

a3n1an2

3∑

m=1

a3m1am2

〉
=

2

105
+

174
√

2π2

5005
W400 −

24
√

5π2

715
W420 −

12
√

35π2

5005
W440

−40
√

26π2

3003
W600 +

32
√

2730π2

15015
W620 −

16
√

91π2

5005
W640

−32
√

6006π2

15015
W660 +

8
√

34π2

7293
W800 −

16
√

1190π2

85085
W820

−32
√

1309π2

85085
W840 +

16
√

14586π2

36465
W860 −

16
√

12155π2

12155
W880,

〈
3∑

n=1

an1a
3
n2

3∑

m=1

am1a
3
m2

〉
=

2

105
+

174
√

2π2

5005
W400 +

24
√

5π2

715
W420 −

12
√

35π2

5005
W440

−40
√

26π2

3003
W600 −

32
√

2730π2

15015
W620 −

16
√

91π2

5005
W640

+
32
√

6006π2

15015
W660 +

8
√

34π2

7293
W800 +

16
√

1190π2

85085
W820

−32
√

1309π2

85085
W840 −

16
√

14586π2

36465
W860 −

16
√

12155π2

12155
W880,
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〈
3∑

n=1

a3n1an3

3∑

m=1

a3m1am3

〉
=

2

105
− 6

√
2π2

455
W400 +

24
√

5π2

5005
W420 +

12
√

35π2

715
W440

+
4
√

26π2

273
W600 −

12
√

2730π2

5005
W620 +

24
√

91π2

5005
W640

+
4
√

6006π2

2145
W660 −

64
√

34π2

7293
W800 +

48
√

1190π2

17017
W820

−192
√

1309π2

85085
W840 +

16
√

14586π2

36465
W860,

〈
3∑

n=1

an1a
3
n3

3∑

m=1

am1a
3
m3

〉
=

2

105
+

144
√

2π2

5005
W400 +

192
√

5π2

5005
W420 −

32
√

26π2

15015
W600

+
64
√

2730π2

15015
W620 −

512
√

34π2

36465
W800 +

256
√

1190π2

85085
W820,

〈
3∑

n=1

a3n2an3

3∑

m=1

a3m2am3

〉
=

2

105
− 6

√
2π2

455
W400 −

24
√

5π2

5005
W420 +

12
√

35π2

715
W440

+
4
√

26π2

273
W600 +

12
√

2730π2

5005
W620 +

24
√

91π2

5005
W640

−4
√

6006π2

2145
W660 −

64
√

34π2

7293
W800 −

48
√

1190π2

17017
W820

−192
√

1309π2

85085
W840 −

16
√

14586π2

36465
W860,

〈
3∑

n=1

an2a
3
n3

3∑

m=1

am2a
3
m3

〉
=

2

105
+

144
√

2π2

5005
W400 −

192
√

5π2

5005
W420 −

32
√

26π2

15015
W600

−64
√

2730π2

15015
W620 −

512
√

34π2

36465
W800 −

256
√

1190π2

85085
W820,

〈
3∑

n=1

a3n1an2

3∑

m=1

am1a
3
m2

〉
= − 1

70
− 218

√
2π2

5005
W400 −

12
√

35π2

5005
W440 +

8
√

26π2

5005
W600

−16
√

91π2

5005
W640 +

8
√

34π2

12155
W800 −

32
√

1309π2

85085
W840

+
16
√

12155π2

12155
W880,
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〈
3∑

n=1

a3n1an3

3∑

m=1

am1a
3
m3

〉
= − 1

70
− 108

√
2π2

5005
W400 −

8
√

5π2

455
W420 −

8
√

35π2

715
W440

+
8
√

26π2

5005
W600 −

16
√

91π2

5005
W640 +

128
√

34π2

12155
W800

−256
√

1190π2

85085
W820 +

128
√

1309π2

85085
W840,

〈
3∑

n=1

a3n2an3

3∑

m=1

am2a
3
m3

〉
= − 1

70
− 108

√
2π2

5005
W400 +

8
√

5π2

455
W420 −

8
√

35π2

715
W440

+
8
√

26π2

5005
W600 −

16
√

91π2

5005
W640 +

128
√

34π2

12155
W800

+
256
√

1190π2

85085
W820 +

128
√

1309π2

85085
W840.

The Wlmn are the expansion coefficients of the orientation distribution function

with respect to the generalized spherical functions.

7.3 Attenuations

As discussed previously, the tensorial and spatial components of the covariance

are assumed independent. The correlation function η is assumed to have an exponen-

tial form given by Eq. (2.14). If three nondimensional frequencies are defined as xβ =

ωL/cβ, performing the spatial Fourier transform of the correlation function of the differ-

ence between two wave vectors, the functions η̃(p̂, ŝ) are specified in terms of the above

dimensionless frequencies in Eq. (2.16). The inner product (p̂ · ŝ) is expressed as p̂ ·

ŝ = sin Θ sin Θ′ sinφ sinφ′ + cos Θ cos Θ′ sinφ sinφ′ + cosφ cosφ′.

The forms of the attenuations presented in Eq. (2.13) require various inner prod-

ucts on the covariance tensor. These inner products have the general form of Ξ····ûp̂ŝv̂
····ûp̂ŝv̂, where

the vectors p̂ and ŝ, respectively, represent the incoming and outgoing propagation direc-
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tions. The vectors û and v̂ are vectors defining the polarization directions of the particular

waves. While waves propagate in arbitrary directions, the polarization vectors are generally

solved by the Christoffel equation, Eq. (6.19). Substituting the correlation function, Eq.

(2.16), and the inner products into Eq. (2.13), the resulting dimensionless attenuations are

given in the form

αβ (p̂)L =
x4βcβ(p̂)

2ρ2
×





∫

4π

Ξ
····ûK p̂ŝv̂1
····ûK p̂ŝv̂1(

1 + x2β (p̂) + x2qS1 (̂s)− 2xβ (p̂)xqS1 (̂s) p̂ · ŝ
)2
c5qS1 (̂s)

d2ŝ

+

∫

4π

Ξ
····ûK p̂ŝv̂2
····ûK p̂ŝv̂2(

1 + x2β (p̂) + x2qP (̂s)− 2xβ (p̂)xqP (̂s) p̂ · ŝ
)2
c5qP (̂s)

d2ŝ (7.5)

+

∫

4π

Ξ
····ûK p̂ŝv̂3
····ûK p̂ŝv̂3(

1 + x2β (p̂) + x2qS2 (̂s)− 2xβ (p̂)xqS2 (̂s) p̂ · ŝ
)2
c5qS2 (̂s)

d2ŝ




,

where K is defined as the polarization for the wave type β (1, 2,or 3 for wave types qS1, qP

and qS2, respectively). It should be noted that these inner products have the units of κ2.

In the long wavelength Rayleigh limit, xβ ≪ 1, Eq. (7.5) can be simplified as

αβ (p̂)L/x4β =
cβ(p̂)

2ρ2
×





∫

4π

Ξ
····ûK p̂ŝv̂1
····ûK p̂ŝv̂1

c5qS1 (̂s)
d2ŝ

+

∫

4π

Ξ
····ûKp̂ŝv̂2
····ûKp̂ŝv̂2

c5qP (̂s)
d2ŝ+

∫

4π

Ξ
····ûK p̂ŝv̂3
····ûK p̂ŝv̂3

c5qS2 (̂s)
d2ŝ



 . (7.6)

In Eq. (7.6), the dimensionless attenuation has been normalized by the fourth power of

the dimensionless frequency for the respective wave type. It is known that in Eqs. (7.5)

and (7.6) the inner products, Ξ····ûp̂ŝv̂
····ûp̂ŝv̂, do not have general analytic expressions for arbi-

trary propagation directions in this orthorhombic-cubic case. Thus, these results must be

calculated numerically. In the next section, example numerical results and discussions are
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presented.

7.4 Numerical Results and Discussions

Numerical results are now presented for a 70% rolled steel plate. The material

constants of a single crystal and the texture coefficients of the orientation distribution

function with respect to the generalized spherical functions are given in the following [3]

C011 = 2.37× 1011Pa, C012 = 1.41× 1011Pa,

C044 = 1.16× 1011Pa, ρ = 7850 kg/m3, (7.7)

and

c004 = −1.47, c204 = −0.46,

c404 = 0.50, c006 = 2.69,

c206 = −1.20, c406 = 0.46,

c606 = −0.14, c008 = −0.07, (7.8)

c208 = 0.29, c408 = −0.45,

c608 = −0.47, c808 = −0.22.

Here, using Eq. (6.33), the orientation distribution coefficients (ODCs) in Bunge’s

notation cmn
l must be converted into those in Roe’s notation Wlmn, which are used in

this discussion throughout. In order to carry out the expressions, Eq. (7.5), numerical

methods have to be employed. The procedure of numerical methods for calculating the

wave attenuations is described in details below. First, using the Christoffel equation, Eq.
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(6.19), the eigenvalue-eigenvector problem is solved when the wave propagation direction

and scattering direction are specified. Second, the covariance of the moduli fluctuations

is calculated by Eq. (7.2). Next, using the known covariance and eigenvectors, the inner

products of each wave type are calculated numerically. Finally, the double integration is

implemented numerically by the extended trapezoidal method. In this presentation, a large

number of examples are presented to describe important features of the wave attenuations.

The examples are generated using the methods discussed above. Since the orthorhombic

symmetry has three mutually orthogonal planes of symmetry, all calculations are made for

0◦ ≤ Θ ≤ 90◦, and 0◦ ≤ φ ≤ 90◦.

Before carrying out the attenuations, the convergence of the numerical integration

is discussed. Without lose of generality, wave attenuations of each wave type are examined

for waves propagating in the rolling direction, that is Θ = 0◦ and φ = 90◦, and at dimen-

sionless frequency xqS1 = 1.0. The comparison of the different step sizes used to calculate

the qP attenuation is shown in Table 7.1. Tables 7.2 and 7.3 show a comparison of the

calculated attenuations for two quasishear waves, respectively. Here, N is the number of

intervals used in the trapezoidal rule, and h is the uniform step size. The results given in

Tables 7.1, 7.2, and 7.3 show fast convergence for each wave mode in numerical integrations

using trapezoidal method. In order to make numerical programs efficient and less error, the

number of intervals N = 20 is chosen for calculating the attenuations for each wave mode

in the following results.

First, the attenuations within the Rayleigh limit are calculated using Eq. (7.6).
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Table 7.1: Comparison of qP attenuations calculated in the rolling direction for different
step sizes

N h qP attenuation % difference from N = 100

6 π/6 0.004478642 0.20949

7 π/7 0.004476699 0.16602

10 π/10 0.004471528 0.050321

20 π/20 0.004469460 0.0040498

30 π/30 0.004469381 0.0022822

100 π/100 0.004469279 0

Table 7.2: Comparison of qS1 attenuations calculated in the rolling direction for different
step sizes

N h qS1 attenuation % difference from N = 100

6 π/6 0.01328883 0.049238

7 π/7 0.01328696 0.035159

10 π/10 0.01328393 0.012347

20 π/20 0.01328263 0.0025597

30 π/30 0.01328230 7.5288e-5

100 π/100 0.01328229 0

Table 7.3: Comparison of qS2 attenuations calculated in the rolling direction for different
step sizes

N h qS2 attenuation % difference from N = 100

6 π/6 0.01487709 0.50173

7 π/7 0.01481018 0.049720

10 π/10 0.01480339 0.0038506

20 π/20 0.01480312 0.0020266

30 π/30 0.01480284 1.3510e-4

100 π/100 0.01480282 0
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Figure 7.1: Rayleigh attenuation, αqPL/x
4
qP , as a function of propagation direction.

It is seen that the attenuations depend on the fourth power of frequency in the Rayleigh

regime. Thus, the normalized Rayleigh attenuation αβL/x
4
β of each wave mode is shown

with the angular dependence in Figs. 7.1, 7.2, and 7.3 for various propagation directions,

respectively. It is observed that in this specific case the attenuations of each wave mode

is considerably dependent on the wave propagation direction. For waves propagating in

different directions, the curves of the attenuations have smoothly changing shapes. In

particular, at polar angle φ = 0, as expected, the attenuations of the three wave modes are

independent of azimuthal angle Θ.

Outside the Rayleigh regime, the attenuation results are calculated using the com-

plete integrals, Eq. (7.5). The directional dependence of the attenuation is presented first

for given dimensionless frequency, xqS1 = 1.0. Figure 7.4 shows the normalized quasilon-
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Figure 7.2: Rayleigh attenuation, αqS1L/x
4
qS1, as a function of propagation direction.

0 10 20 30 40 50 60 70 80 90
0.054

0.056

0.058

0.06

0.062

0.064

0.066

Incidence angle  Θ (degrees)

R
al

ei
gh

 a
tte

nu
at

io
n 

  α
qS

2L
/x

4 qS
2

φ=90o 

φ=30o 

φ=45o 

φ=60o 

φ=0o 

Figure 7.3: Rayleigh attenuation, αqS2L/x
4
qS2, as a function of propagation direction.
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Figure 7.4: Directional dependence of the normalized qP attenuation, αqPL, for frequency
xqS1 = 1.0.

gitudinal wave (qP ) attenuation, αqPL, as a function of azimuthal direction Θ for various

polar angles φ. It is seen that the attenuation is dramatically dependent on the propagation

direction. The attenuation varies in different directions. The results for the normalized

shear waves (qS1 and qS2) attenuations are presented in Figs. 7.5 and 7.6, respectively.

The directional dependence on the propagation direction for the attenuations is also notice-

able. These results may be contrasted with the results in the Rayleigh limit. Comparisons

of the Rayleigh attenuations with attenuations outside the Rayleigh regime show that the

tendency of variation is quite different with each other due to the effect of frequency. In Fig.

7.4, the qP wave attenuation is observed to have the maximum at Θ = 90◦ for given angles

φ. In Fig. 7.5, the curves of the qS1 wave attenuation have smoothly changing shapes.

Figure 7.6 shows that for propagation at polar angle φ = 30◦, 45◦ and 60◦, respectively, the
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Figure 7.5: Directional dependence of the normalized qS1 attenuation, αqS1L, for frequency
xqS1 = 1.0.

maximum attenuation is about Θ = 45◦, and at polar angle φ = 90◦, there is a minimum

attenuation at Θ = 45◦. Furthermore, the asymmetry is observed in Fig. 7.6 for various

polar angles.

Next, results are presented for the normalized attenuation as a function of az-

imuthal direction Θ for four different frequencies at given polar angle φ = 45◦ and 90◦,

respectively. The normalized shear wave (qS1) attenuations, αqS1L, are shown in Figs. 7.7

and 7.8, respectively at φ = 45◦ and 90◦ for normalized frequency xqS1 = 1.0, 1.5, 2.0 and

2.5. It is seen that the attenuation curves show the similar shape as increasing the frequency

for respective polar angle. The results for the normalized qP attenuations, αqPL, are shown

in Figs. 7.9 and 7.10 at the same frequencies as above. Figures 7.11 and 7.12 show the

normalized qS2 attenuations, αqS2L, as a function of propagation direction for the same



152

0 10 20 30 40 50 60 70 80 90
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

Incidence angle  Θ (degrees)

qS
2 

at
te

nu
at

io
n 

  α
qS

2L

φ=90o 

φ=60o 
φ=45o 

φ=30o

φ=0o 

Figure 7.6: Directional dependence of the normalized qS2 attenuation, αqS2L, for frequency
xqS1 = 1.0.
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Figure 7.7: Angular dependence of the normalized qS1 attenuation, αqS1L, for various
frequencies, xqS1, at polar angle φ = 45◦.
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Figure 7.8: Angular dependence of the normalized qS1 attenuation, αqS1L, for various
frequencies, xqS1, at polar angle φ = 90◦.
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Figure 7.9: Angular dependence of the normalized qP attenuation, αqPL, for various fre-
quencies, xqS1, at polar angle φ = 45◦.
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Figure 7.10: Angular dependence of the normalized qP attenuation, αqPL, for various
frequencies, xqS1, at polar angle φ = 90◦.

four different frequencies. It is observed that the attenuation curves show the similar shape

as increasing the frequency for each wave type as well. All curves of the attenuations have

smoothly changing shapes for various frequencies. In Fig. 7.11, it is seen that at polar

angle φ = 45◦ the maximum attenuation is about Θ = 45◦ for four different frequencies.

Figure 7.12 shows that at polar angle φ = 90◦ there is a minimum attenuation at Θ = 45◦

for various frequencies. There is no symmetry to be observed as increasing the frequency

as well in Figs. 7.11 and 7.12.

Finally, results are presented for the normalized attenuations as a function of

frequency for several propagation directions. In Figs. 7.13, 7.14, and 7.15, the normalized

attenuations of the three wave modes are plotted versus dimensionless frequency, xqS1, for

propagation directions along rolling, normal and transverse directions, respectively. For
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Figure 7.11: Angular dependence of the normalized qS2 attenuation, αqS2L, for various
frequencies, xqS1, at polar angle φ = 45◦.
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Figure 7.12: Angular dependence of the normalized qS2 attenuation, αqS2L, for various
frequencies, xqS1, at polar angle φ = 90◦.
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Figure 7.13: Normalized qP attenuation, αqPL, as a function of dimensionless frequency,
xqS1,for propagating in rolling (RD), normal (ND) and transverse (TD) directions.
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Figure 7.14: Normalized qS1 attenuation, αqS1L, as a function of dimensionless frequency,
xqS1,for propagating in rolling (RD), normal (ND) and transverse (TD) directions.
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Figure 7.15: Normalized qS2 attenuation, αqS2L, as a function of dimensionless frequency,
xqS1,for propagating in rolling (RD), normal (ND) and transverse (TD) directions.

the example considered here, Fig. 7.14 shows the qS1 wave attenuation propagated in

the rolling, normal and transverse directions and polarized in the normal, transverse and

rolling directions, respectively. Figure 7.15 shows the qS2 wave attenuation propagated

in the rolling, normal and transverse directions and polarized in the transverse, rolling

and normal directions, respectively. It is observed that there is a transition region as the

dimensionless frequency increases. Thus, the order of the attenuation is switched in such

a transition region for the three wave modes, respectively. The attenuations increase with

the fourth power of frequency in the low frequency limit. After a transition region, the

attenuations scale with the square of frequency as expected. Moreover, the normalized

attenuation of each wave type is plotted versus normalized frequency, xqS1, for propagation

within the x1 − x2 plane for various azimuthal angles in Figs. 7.16, 7.17 and 7.18. It is
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Figure 7.16: Normalized qP attenuation, αqPL, as a function of dimensionless frequency,
xqS1,for propagating within x1 − x2 plane.

observed that the curves for each wave type mainly show the same shape except Θ = 0◦,

which is to propagate in the rolling direction. For propagation at Θ = 30◦, 45◦ and 60◦,

the attenuations of each wave mode are almost the same in the low frequency and slightly

different in the high frequency. This feature is thought to be the result of the weak texture

for the case discussed here.

7.5 Conclusions

In this chapter, the scattering of elastic waves in polycrystalline materials with

texture was discussed. The ensemble averaging of the elastic wave response is governed

by the Dyson equation within the limits of first-order smoothing approximation or Keller

approximation. In order to calculate the attenuations, the relevant inner products on the
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Figure 7.17: Normalized qS1 attenuation, αqS1L, as a function of dimensionless frequency,
xqS1,for propagating within x1 − x2 plane.
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Figure 7.18: Normalized qS2 attenuation, αqS2L, as a function of dimensionless frequency,
xqS1,for propagating within x1 − x2 plane.
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covariance of the effective moduli fluctuations were derived in polycrystals of cubic symme-

try with rolling texture. Compact expressions for the attenuations of the quasilongitudinal

and two quasishear waves were then given in terms of integrations over the scattered di-

rections. The derived expressions are limited to frequencies below the geometric optics

limit. In particular, the Rayleigh attenuation was given by simplifying the integrals in the

Rayleigh regime. The general attenuations for each wave type are dependent on frequency,

wave velocity, wave propagation direction, and especially texture coefficients, which are the

expansion coefficients of the orientation function with respect to the generalized spherical

functions. Roe’s notation was used throughout the discussion. Finally, numerical inte-

gration was performed by the extended trapezoidal method. The results show that the

attenuations of each wave type can be comprehensively affected by those parameters. The

general formulation is also directly related to backscattering problems. The simple form of

the results makes them particularly useful for nondestructive testing and materials charac-

terization research. To use ultrasonic techniques for monitoring texture during processing,

the relationships between ultrasonic parameters, such as ultrasonic attenuation and materi-

als texture must be investigated. If one knows the relationships between the ODCs and the

ultrasonic attenuation, the texture coefficients might be able to be calculated from ultra-

sonic attenuation measurements. The ultrasonic attenuations of sample specimens can be

measured during annealing. Therefore, the ODCs can be determined during processing.
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Chapter 8

Conclusions

In this dissertation, the propagation and scattering of elastic waves have been

presented for statistically anisotropic media. The research focus is on two important sta-

tistically anisotropic media, one of cracked media and one of textured media. This work

is anticipated to have practical applications to quantitative nondestructive evaluation and

materials characterization, particularly for ultrasonic techniques. The ensemble average

elastic wave response was shown to be governed by the Dyson equation. The Dyson equa-

tion was then solved in the Fourier transform domain within the limits of the first-order

smoothing approximation (FOSA), or Keller approximation. Compact expressions were

derived for attenuations and wave velocities of the quasilongitudinal and two quasishear

waves using stochastic wave theory in a generalized dyadic approach. The dyadic approach

is convenient for making the results coordinate free. The analysis of expressions is limited

to frequencies below the geometric optics limit. Thus, the final forms of the attenuations

for the three wave modes were given directly by simple compact expressions involving inte-
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grations over the scattered directions. In particular, the integrals simplify considerably in

the long wavelength Rayleigh regime.

The derivation of explicit expressions of wave attenuation and velocities in a

medium with damage from randomly distributed penny-shaped microcracks was first dis-

cussed. Under this assumption, the effective medium is assumed statistically isotropic. To

model the ensemble effective material properties induced by a large number of microcracks,

the effective compliance and stiffness due to a single penny-shaped crack embedded in an

infinite elastic solids was investigated. The ensemble average moduli were then derived.

The results of the effective Lamé constants are in agreement with those obtained in the

literature. The moduli fluctuations were expressed relative to the average moduli. The

ensemble average covariance of the moduli fluctuations, which is necessary for calculating

the attenuations, was then derived for this isotropic case. The expressions of the dimension-

less longitudinal and transverse attenuations were derived in compact form. As expected,

the attenuations are shown to scale with the fourth power of frequency and linearly with

damage density in the low frequency regime. After a transition region, the attenuations are

dependent on the square of frequency. The results showed that the longitudinal attenuation

is smaller than the transverse attenuation. The higher transverse attenuation is thought to

be a combination of effects of wavelength and interaction with the cracks. The results also

showed that the wave speed changes much less than the attenuation as has been observed

experimentally in the literature for a given damage level.

Wave propagation and scattering by aligned penny-shaped cracks were then de-

veloped. The framework used to model the statistically isotropic situation was extended
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to study the attenuations of elastic waves in two different types of aligned cracks, one of

uniaxially aligned cracks and the other of perfectly aligned cracks. For uniaxially aligned

cracks, the unit normals of all cracks were assumed to be coplanar, but random within the

plane of isotropy. Thus, the uniaxial symmetry direction is perpendicular to this plane.

The medium of uniaxially aligned cracks is then transversely isotropic. Explicit expressions

for attenuations and wave speeds of the shear horizontal (SH), quasilongitudinal (qP ), and

quasishear vertical (qSV ) waves were derived. The analysis is restricted to the limit of

noninteraction approximation among individual cracks. The resulting attenuations were

investigated in terms of the directional, frequency, and damage dependence. The results

showed that the SH and qP attenuations have their maxima at the direction perpendicular

to the crack alignment direction. The qSV attenuation has zero value for propagation along

the symmetry axis and perpendicular to it. All wave types show zero attenuation along the

symmetry axis because of the invariant material properties in that direction. Those results

are qualitatively the same as previous work. In addition, the results showed that the peak

of maximum qSV attenuation shifts slightly higher as the damage increases. This shift is

thought to be the result of the induced anisotropy from microcracking.

The scattering of elastic waves by perfectly aligned cracks was also presented. For

this case, the unit normals of all cracks are perpendicular to the plane of isotropy. Explicit

expressions for attenuations and wave speeds of the three wave types were also obtained.

For that development it is restricted to frequencies below the geometric optics limit. The

results showed that the attenuations are directional, frequency, and damage dependence as

well. Comparisons of the present model with Hudson’s model in the Rayleigh limit showed
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that the results presented here are more accurate than those presented in the literature

due to the inclusion of the polarization direction. Since the interactions between individual

microcracks are not considered, the present analysis is appropriate only for small crack

densities.

Wave velocity and attenuation in polycrystalline materials with texture were also

developed. For that modeling it was assumed that the polycrystal is an orthorhombic ag-

gregate made up of cubic crystallites. For orthorhombic symmetry, the most general form

for the elastic stiffness tensor was given. Wave velocities and their polarization directions

correspond to the eigenvalues and eigenvectors of the Christoffel matrix. In general, these

results must be obtained by numerical methods. For some special cases given here, analytic

expressions of wave velocities were obtained. The angular deviation of the polarization

vectors from the propagation directions was discussed. The results showed that the wave

velocities and polarization directions are dependent on the wave propagation direction. The

polarization directions are neither parallel nor perpendicular to the wave propagation direc-

tion as well. The maximum angular deviation is also not too large when waves propagate

in different directions. Moreover, a relationship between the phase velocity and recrystal-

lization variables, such as annealing time, was also investigated for specific examples.

The results obtained were then used to calculate the wave attenuations induced

by grains of polycrystals. To model the attenuations, the relevant inner products on the

covariance of the effective moduli fluctuations were derived in polycrystals of cubic symme-

try with rolling texture in Roe’s notation. Thus, compact expressions for the attenuations

of the quasilongitudinal and two quasishear waves were given in terms of integrations over
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the scattered directions. The attenuations of each wave type were performed numerically

as a function of dimensionless frequency and wave propagation direction, respectively, for

given orientation distribution coefficients (ODCs), which are, in essence, the coefficients of

an expansion of crystallite of orientation distribution function (ODF) in terms of a series of

generalized spherical harmonics. The results showed that the attenuations are dramatically

dependent on the propagation direction and frequency. For waves propagating in different

directions, the curves of attenuations mainly show the different shapes with each other. It

is hoped that the new models may improve the understanding of the microstructure for

polycrystalline materials. Moreover, the theory developed here is thought to have wide

applications for a large number of materials in various fields.

The research work presented in this dissertation is considered to be just the theoret-

ical part of the investigation of the materials microstructure in complex media by ultrasonic

techniques. Once the models had been corroborated experimentally, the extensive applica-

tions of this work will be significant. Therefore, several topics which require further investi-

gation, especially for the development of experiments are addressed in the following chapter.
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Chapter 9

Future Work

9.1 Backscattering Model

In this dissertation, explicit formulae of the attenuations for the three wave modes

have been presented in both cracked media and textured media. It is known that the

scattering attenuation is the integration of the energy that scatters in all directions within

the medium. As a result, the attenuations are calculated as integrals over all scattered

angles. The backscatter coefficient, however, represents the amount of energy that scatters

only in the backward direction. Therefore, using the models developed here and presented

in the literature [52],[113],[114], expressions for the backscatter coefficient are anticipated

to be obtained for both the assemblage of microcracks and for the textured microstructure

in future research. The ability to detect damage is dependent on the amount of scattering

due to the microcracks relative to the scattering from the heterogeneous background. The

scattering from the microcracks is assumed independent of the microstructural scattering.

Thus, the resulting models may provide a lower bound on damage detectability. It will
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perhaps provide some valuable information for developing practical experiments.

9.2 Experimental Investigations

It is evident that theoretical analyses always contain certain limitations due to

some types of assumptions. In general, a significant part of the experimental investigations

have to be employed to corroborate the theoretical models developed. Therefore, the fo-

cus of the experimental research is expected to verify the theoretical models in subsequent

research. Specific experiments will include measurements of wave speed and attenuation,

and measurement of backscattered noise for both cracked media and textured media. It is

anticipated that the ultrasonic parameters are measured experimentally over the frequency

range of 0.1MHz-15MHz. Recently, many ultrasonic experiments have been conducted for

investigating the scattering phenomena in concrete [114],[115],[116],[117],[118]. The mea-

surements of damage in concrete have also been conducted using ultrasonic techniques

[119],[120]. Experiments in polycrystalline materials have been investigated by many re-

searchers as discussed in the first chapter. The experimental literature may provide helpful

insights on future experimental investigations in cracked and textured media.

The first underlying objective of experimental investigations will be the corrobo-

ration of the theoretical research models presented in this dissertation. The microcracks

or the heterogeneous microstructure of media cause the ultrasound to scatter significantly.

Considering the ratio of the wavelength to the length scale of the microstructure grain,

it is anticipated that the ultrasonic attenuation coefficients are measured in sample spec-

imens such as concrete or aluminum as a function of frequency. Both longitudinal and
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shear source/receiver transducers are expected to be used in the future experimental mea-

surements. Often, longitudinal attenuation may be measured using immersion transducers

within a water tank, while the shear attenuation is measured utilizing contact transducers.

The raw data signal at various frequencies is saved to compute the attenuation for the

specific samples. In addition, the respective wave speeds and material density are expected

to be measured. The experimental results will be used to attest to the predictions of the

theoretical analyses.

The next objective of the experimental research will focus on backscatter measure-

ments. The works of Margetan et al. [65], Rose [64], and Turner and Weaver [53] demon-

strate that the single scattering process (backscattering) provides important microstructure

information about the specimens of interest. Those encouraging results motivate the pos-

sibility of backscattering investigations on cracked and textured materials. Generally, the

backscatter signal will be acquired using an immersion-focused transducer, which is ex-

cited with a tone burst signal at various frequencies. The single backscatter signal will be

recorded for various specimen material properties. The measurement noise level will depend

on details of the materials properties, as well as on the measurement systems. To eliminate

electronic noise from the backscattered response, spatial averaging performed at each trans-

ducer position is necessary. The required position averaging is done automatically using the

current lab equipment, which is controlled with computer software. A root-mean-squared

method discussed by Margetan et al. [65] will be used to quantify backscattered noise as a

function of time. The backscattered noise depends on two sets of quantities, the physical

properties of the measurement system such as the frequency, diameter and focal length of
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the transducer, and a material parameters that describe the capacity of material to generate

the noise. It is anticipated that the experimental results will provide significant insights

into the detection of damage and the characterization of materials microstructure.

9.3 Other Issues

The research work contained here shows the models of wave propagation and

scattering in two statistically anisotropic media. In the presentation, however, several

theoretical issues which need future investigation have also arisen. First, the influence of

grain shape should be included. In Chapter 2, the correlation function was always assumed

to have the form appropriate for equiaxed grains, η(r) = e−r/L. The correlation length, L,

is typical of the order of the grain diameter. For the case of elongated grains, Ahmed and

Thompson [121] introduced a correlation function of a slightly more complex form given

by, η(r) = e−r/L
√
sin2 θ+b2 cos2 θ. Here, b is the aspect ratio of the grains and θ defines the

angle between the two points as measured from the direction of maximum elongation. In

addition, the effects of other correlations should also be studied in subsequent research.

Second, the effect of microcrack interaction on the attenuation is not well un-

derstood. In this dissertation, the interactions between individual microcracks are not

considered such that the present analyses are appropriate only for small crack densities. At

larger concentrations of microcracks the probability of their interaction can become sub-

stantial. It becomes necessary to consider the effect of direct microcrack interaction on the

attenuation, as well as the effective stiffness. Due to the complexity of this issue, analytic

solutions may not be obtained. Therefore, numerical models must be employed to study
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the effect of microcrack interaction.

Finally, models of more complicated distributions of microcracks may be necessary

to be developed. It is known that although aligned cracks are often included in complex

materials, the effective media may acquire orthotropy entirely due to the presence of mi-

crocracks for some situations. In this case, the microcrack distribution function may be

expressed by

w(a, θ, ϕ) =
∞∑

l=0

l∑

m=−l

l∑

n=−l

WlmnZlmn(ξ)e−imθe−inϕ.

Under the assumption, the damage tensor must be introduced for describing the damage

parameter. This topic is thought to be very complicated and challenging. More accurate

theoretical models that take into account all the effects of the related problems are necessary

for improved detection schemes. With continued advancements in these research areas, more

techniques may be developed in only a few years.
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[107] I. Pšenćık and D. Gajewski, “Polarization, Phase Velocity and NMO Velocity of qP

Waves in Arbitrary Weakly Anisotropic Media,” Geophysics 63, 1754—1766 (1998).



183

[108] T. Mensch and V. Farra, “Computation of P-Wave Rays, Traveltimes and Slowness

in Orthorhombic Media,” Geophys. J. Int. 138, 244—256 (1999).

[109] V. Farra, “Higher-Order Perturbations of the Phase Velocity and Polarization of qP

and qS Waves in Anisotropic Media,” Geophys. J. Int. 147, 93—104 (2001).

[110] P. R. Morris and A. J. Heckler, “Crystallite Orientation Analysis for Rolled Cubic

Materials,” Adv. X-Ray Anal. 11, 454—472 (1968).

[111] J. D. Achenbach, Wave Propagation in Elastic Solids (North-Holland, Amsterdam,

1973).

[112] G. Liu, D. K. Rehbein, J. C. Foley, and R. B. Thompson, Review of Progress in

Quantitative NDE, Edited by D. O. Thompson and D. E. Chimenti (2000).

[113] J. A. Turner and P. Anugonda, “Scattering of Elastic Waves in Heterogeneous Media

with Local Isotropy,” J. Acoust. Soc. Am. 109, 1787—1795 (2001).

[114] P. Anugonda, J. S. Wiehn, and J. A. Turner, “Diffusion of Ultrasound in Concrete,”

Ultrasonics 39, 429—435 (2001).

[115] J. O. Owino and L. J. Jacobs, “Attenuation Measurements in Cement-Based Materials

Using Laser Ultrasonics,” J. Eng. Mechs. 125, 637—647 (1999).

[116] L. J. Jacobs and R. W. Whitcomb, “Laser Generation and Detection of Ultrasound

in Concrete,” J. Nondestr. Eval. 16, 57—65 (1997).

[117] K. Komlos, S. Popovics, T. Nurnbergerova, B. Babal, and J. S. Popovics, “Compar-



184

ison of Five Standards on Ultrasonic Pulse Velocity Testing of Concrete,” Cement,

Concrete, and Aggregates 18, 42—48 (1996).

[118] J. S. Popovics and J. L. Rose, “A Survey of Developments in Ultrasonic NDE of

Concrete,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

41, 140—143 (1994).

[119] Y. Berthaud, “Damage Measurements in Concrete Via an Ultrasonic Technique. Part

I Experiment,” Cement and Concrete Research 21, 73—82 (1991).

[120] W. Suaris and V. Fernando, “Ultrasonic Pulse Attenuation as a Measure of Damage

Growth During Cyclic Loading of Concrete,” ACI Materials Journal 84, 185—193

(1987).

[121] S. Ahmed and R. B. Thompson, “Effects of Preferred Grain Orientation and Grain

Elongation on Ultrasonic Wave Propagation in Stainless Steel,” In Review of Progress

in Quantitative NDE, D. O. Thompson and D. E. Chimenti, eds.,11, 1999—2006

(Plenum, New York, 1992).


	Objectives 
	I2M_JAT_DCH_Final.pdf
	Ultrasonic Methods in Contact Atomic Force Microscopy


