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Objectives

The purpose of this project was to develop a fundamental understanding of the interaction
of an ultrasonic wave with complex media, with specific emphases on recrystallization
and sintering of metals. A combined analytical, numerical, and experimental research
program was implemented. Theoretical models of elastic wave propagation through these
complex materials were developed using stochastic wave field techniques. The numerical
simulations focused on finite element wave propagation solutions through complex
media. The experimental efforts were focused on corroboration of the models developed
and on the development of new experimental techniques. The analytical and numerical
research allows the experimental results to be interpreted quantitatively.

Alteration in Collaborative Arrangement

In fall 2002, the Ames Lab partner, Dr. James C. Foley, announced that he was leaving
for another position at Los Alamos National Laboratory. Dr. R. Bruce Thompson has
served as the primary contact for this collaboration since Dr. Foley departed.

Accomplishments (Recrystallization)

Analytical Modeling. Expressions for the ultrasonic attenuation in media with arbitrary
texture have been developed using stochastic wave propagation theory. Initial attempts at
deriving simple expressions for the attenuation were unsuccessful. Therefore, a modified
technique was developed that relies slightly more on numerical calculations. The method
is based on a generalized function of a single scalar variable o that characterizes the state
of texture. In this case the weighting function for the individual grains is given by

F(o,0)= L oo : (1)

e
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with @ as the grain orientation angle. Thus, when ¢ — 0 all grains are aligned and the
material is transversely isotropic at the macroscale. As ¢ — oo, all grains are randomly
oriented and the material is isotropic at the macroscale.

In terms of attenuation, the covariance of the microstructure is the primary quantity
needed for the calculation of attenuation. It is defined by
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and will be a function of ¢. The quantities needed in this expression are defined by
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in which both Egs. (2) and (3) include the grain orientation distribution function F such
that <C> and <CC> are dependent on ¢. Example results using Eq. (2) are shown in Fig.
1 for both the average elastic properties as well as quasilongitudinal slowness surfaces in
terms of ¢. The transition from transversely isotropy to complete isotropy is captured well
using the grain orientation distribution function. Example results for attenuation are
shown in Fig. 2. Again, the transition from transverse isotropy to complete isotropy is
shown. Of particular note is the peak observed in the SH attenuation when o is about 0.5.
Such information may be useful for process monitoring.
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Figure 1. Example results for the average elastic properties of a material modeled using the
grain orientation weighting function, Eq. (1). In (a), the average elastic moduli as calculated
from Eq. (2) are shown as a function of ¢. It is clear that for small &, the material is
transversely isotropic, but is isotropic for large o. In (b), the slowness surface for the
quasilongitudinal wave is shown for three values of ¢. In this case, the wavespeed anisotropy
is shown such that an isotropic material has a circular slowness surface.
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Figure 2. Example attenuation results based on the expressions in Egs. (2) and (3) using the
grain orientation distribution function F. In (a), the shear horizontal attenuation is shown as
a function of . When ¢ is small, all grains are perfectly aligned such that the material
behaves as a single crystal with no scattering attenuation. Large & corresponds to complete
isotropy with attenuation uniform with direction. In (b) the quasilongitudinal attenuation is
shown as a function of direction for several values of 6.

Progress was also made in the study of multiple scattering in slab geometries. These
results have applications associated with heterogeneous bonding and interface layers.
Two example results are shown in Fig. 3. The layer is insonified by a plane longitudinal
wave. One question in the multiple scattering regime is associated with the applicability
of the diffusion limit in such geometries. For elastic waves, the diffusion limit implies
that the longitudinal and transverse energies E; and Er, respectively, are equipartitioned.
The energies ultimately achieve the relation E, =2K°E, , where K =c¢, /¢, is the wave
speed ratio. Results associated with equipartitioning are shown in Fig. 3 for (a) steady-
state and (b) time-dependent cases. In 3(a), the ratio of E,/ 2K3EL) is plotted as a

function of depth in the layer 7 for several layer thickness value H. Thus, a value of unity
for this ratio indicates complete equipartitioning. It is clear for the thickest layer H = 100
that complete equipartitioning occurs for depths of 7 = 40 — 90. However, near the
boundaries, there is always an excess of longitudinal energy relative to the diffusion
limit. It is clear that the boundary conditions dictate this result. Also, it is clear that for
layers smaller than H = 40, that complete equipartitioning does not occur. The
implications for models based on a diffusion limit are clear. In 3(b), the ratio transverse
to longitudinal energy is shown as a function of time for a layer with A = 50 at a position
7= 50. Here it is also clear that the energy does not partition according to the diffusion
limit, even at late times, although a constant ratio of transverse to longitudinal energy is
achieved.

J. A. Turner 3 DOE-EPSCoR Final Report 2005



1.4 ‘ ‘ 10]
9 —
~ H=50
1.2 w- 8
—~ \'_ 7
|_|J_] 1 m\ - LIJ_ 6 -
o s
S g °
g 8 —H =100 x
w — 10 =
20 5 3
0.6¢ —30 c
—40 w2
4 . 2K3 = 16
0.4 : ‘ | ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 20 40 60 80 100 % 10 200 300 400 500 600 700 800
Depth, t Time, xi

(@) (b)
Figure 3. Multiple scattering results for a heterogeneous layer of thickness H. The equipartitioning
of longitudinal and transverse energy in steady state is examined in (a) as a function of depth rand
layer thickness H. In (b), the time domain equipartitioning is examined for H = 50 at a position 7=
50. Both results indicate that the diffusion limit may not be fully achieved.

The applicability of the diffusion equation to model the multiple scattering of elastic
waves in heterogeneous layers is examined in Fig. 4. In this case, the solution to a one-
dimensional diffusion equation is used to fit to the complete multiple scattering result.
Examples for two layers H = 20 and 50 are shown. The fit for H = 20 is clearly not as
adequate as the fit for # = 50. However, in both cases the best fit was achieved for values
of diffusivity and dissipation that were very different from the actual values of the
medium. The use of a diffusion model for these systems is clearly not well understood.
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Figure 4. The use of a one-dimensional diffusion equation to fit multiple scattering solutions
is examined for two layers (a) H = 20 and (b) 50. For (a), the fit is not very good for all times.
For (b), the fit is much better. However, the fit parameters of diffusivity and dissipation do
not match with the actual values of the layer. More research is needed to completely
understand the diffusion limit of elastic waves.
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Numerical Modeling. Numerical models of the elastic wave propagation in
polycrystalline media were developed by MS student G. Ghoshal as part of his MS thesis.
The first step in this process was the creation of Voronoi crystals with arbitrary
elongation and orientation. Efficient algorithms were developed within Matlab using the
method of virtual nuclei (MVN). Secondly, these numerical models were coupled with a
finite element model (FEM). Here, a commercial code (ABAQUS-Explicit) is used. The
FEM mesh, including nodal position, is overlaid on the Voronoi model and loaded into
ABAQUS. An example domain for the scattering calculations is shown in Fig. 5. The
Voronoi polycrystal is first determined, followed by the FEM discretization. The
calculations in ABAQUS are then done. An example result of the full displacement full
from ABAQUS is shown in Fig. 6 at three different time steps. The wave is excited at the
top of the sample, in this case normal to the sample. Infinite elements at the edges of the
sample allow the energy to leave the domain without returning. Time domain traces at the
top and bottom of the specimen are used for calculating the attenuation. Examples of the
multiple reflections at these locations are shown in Fig. 7. Note that the scattering from
the microstructure is diminishing the wave amplitude as it travels back and forth across
the specimen. These waveforms are used to determine the attenuation, such as the
example shown in Fig. 8. A summary of attenuation results is shown in Fig. 9 presented
in dimensionless form for a weak scattering material (aluminum) and a strong scattering
material (copper). In both cases, the numerical results are compared with theory using a
single correlation length. In general, the comparison is quite good for both cases.
However, there are deviations from the theory particularly for the high-frequency results
(small A) for copper. These results suggest that a more complex theory is needed such
that the correlation length has a frequency dependence. The development of this
generalized numerical code was a major development of this grant. The code is now
being used to examine attenuation and backscatter in textured materials and those with
elongated grains. Results created from this code will provide a strong basis for new
attenuation models under development.
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Figure 5. Numerical model for the elastic wave
scattering calculations. The domain is first divided
into VVoronoi polycrystals. These are then discretized
using finite elements. The element size is very small
relative to the grain size.

Figure 6. Example results of the full field from a finite element simulation of
an elastic wave propagating in polycrystalline aluminum. At these three time
steps, the wave packet has nearly propagated from the top the bottom of the
domain. This calculation was done with a 14 MHz tone burst applied
uniformly at the top surface with loading normal to the surface. Average grain
size in the domain is 0.64 mm for this example.
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Figure 7. Example result of successive Figure 8. Example attenuation result for copper using
multiple reflections from the frontwall (a- a5 MHz input frequency.
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Figure 9. Comparison of numerical and theoretical attenuation for a weak-scattering material
(aluminum) and a strong-scattering material (copper) over a wide range of wavelengths relative to
grain diameter. The general trends are in agreement, but the locations of deviation warrant further
investigation.

Experiments. The first set of specimens for recrystallization experiments were made in
the summer of 2002 in collaboration with Dr. James C. Foley at Ames Laboratory. A
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block of pure aluminum was cold-worked to achieve grains that are equiaxed, uniform,
and of an appropriate size. This block was then rolled to a thickness about 75% of its
original thickness. The rolling introduces grain elongation and material texture into the
sample. From the rolled plate, several specimens were cut for the ultrasonic attenuation
measurements (shown schematically in Fig. 10). One specimen (1) will be used for XRD
spectroscopy from which precise microstructural information may be extracted (currently
these measurements are not yet complete due to equipment problems). Specimens 2-4 are
chosen with specific orientations (30°, 45°, and 0°, respectively) relative to the rolling

Rolling direction ———»
4 | : >/ : ; 1

Figure 10. Schematic of the specimens cut
from a rolled plate of pure aluminum.
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Figure 11. Example experimental result of
ultrasonic attenuation (5 MHz center frequency)
measured on a sample of pure aluminum that has

been rolled. Propagation was normal to rolling.
direction such that the angular dependence of the attenuation may be studied. Initial
longitudinal and shear wave attenuation measurements were made at Ames Lab by PhD
student L. Yang. An example longitudinal attenuation measurement for the three samples
is shown in Fig. 11. The propagation direction for these results was normal to the rolling
plane. At this frequency (5 MHz), the attenuation is small and is similar for the three
samples. Additional measurements covering higher frequencies were planned, but did not
occur due to the departure of Dr. Foley from Ames Laboratory.

An additional goal of this project was for experimental expertise on ultrasonic scattering
to be developed at UNL. Such expertise is critical for future research and for the
infrastructure improvement of

the state. Toward that - T Trouneal] —Y
ultimate goal, the
experimental ~ program  at
UNL  resulted in  the
development of a Labview
program for determining
ultrasonic backscatter from
heterogeneous specimens. A
schematic of these types of
experiments is shown in Fig. Fig. 12. (a) schematic experimental setup and (b) example
12.  The transducer is measured signal acquired from 110 spatial positions.
translated spatially and time-
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domain signals are acquired a each position. The variance of the signals is the “ultrasonic
backscatter’ that is related to the microstructure. Example results from the UNL system,
compared with theory are given in Fig. 13 for two types of steel. The theoretical
expressions use the single-crystal constants of iron and the grain size measured from the
micrographs shown. The agreement between the theory and experiment is very good
indicating that the experimental system was successfully developed.

210* an

Figure 13. Comparison of experiment and theory of ultrasonic
backscatter for two types of steel (a) 1080 steel and (b) 4230 steel.

Accomplishments (Sintering)

Experiments: A set of specimens of sintered aluminum powder with varying degrees of
sintering were produced by Dr. Foley in December of 2002. Two types of experiments
are planned for these specimens. The first set will involve measurements of ultrasonic
attenuation and backscatter. These measurements will now be repeated at UNL since the
development of experimental expertise at UNL.

The other experiments on the sintered specimens are focused on the use of the atomic

force microscope (AFM). APM Spliﬁi“’diode CRS844 Lockn
The experimental setup for AFM Laser K Amplifier
the dynamic AFM
experiments (also known as ~ APM Cantile /U“msom,C S

|

'Ver \
atomic  force  acoustic m N

microscopy or AFAM) is !

shown schematically in X-Y Translation Stage B

Fig. 14. A commercial
AFM (Thermomicroscopes Figure 14. Experimental setup for atomic force acoustic
microscopy (AFAM) in which the resonant frequencies of the
Autoprobe CP) was AFM cantilevers are used to determine and image mechanical
stiffness.
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modified for these experiments. A reference specimen and an unknown specimen are
placed on a broadband ultrasonic transducer (2.25 MHz center frequency). The
transducer is mounted on the AFM stage and is excited by the function generator. The
output from the AFM photodiode is mixed with the driving signal in the lock-in
amplifier. The lock-in output and the photodiode output are both used by the AFM for
imaging. The function generator is controlled by Labview software. Once the natural
frequencies of the AFM beam are determined, a stiffness map may be made. The sample
is excited harmonically near the resonance while the AFM topography scan is made. The
resulting lock-in amplifier output is proportion to the local contact stiffness. An example
result on an aluminum sinter is shown in Fig. 15. The particles in this case were 50 um
spheres cold pressed and then sintered. The topography image shows little contrast except
artifacts from polishing. The AFAM image shows a clear region of higher stiffness
corresponding to a particle-particle interface. It is anticipated that techniques such as
AFAM will be useful for developing a better understanding the sintering process.

Vi op%aphy
0 10 20 30 40um O 10 20 30 40um
(a) (b)

Figure 15. Example (AFAM) results on aluminum sinters: (a) surface topography of one sinter
sample; (b) example AFAM scan showing stiffness variations within the sample. The particle-
particle interface is clearly observed to the the impedance contrast there.

Numerical Modeling: A numerical model of the sinters was also developed based on the
Voronoi polycrystal model described above for the recrystallization studies. The Voronoi
model was modified such that a thin layer of elements with different material properties
is concentrated at the boundaries of each particle. The material properties of the boundary
layer may differ from those of primary sinter particle. An example model is shown in Fig.
16 where the geometric parameters D and d are defined as the particle diameter and
interface thickness, respectively. The ultrasonic attenuation and backscatter are expected
to depend on these two parameters. An example finite element simulation is shown in
Fig. 17 using large density contrast. The scattering of the initial plane wave is evident in
this strong-scattering example.
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Figure 16. Model microstructure of

sintered material for numerical modeling. Figure 17. Example numerical simulation

of wave propagation through the system.

With this model of the sintered material, the attenuation for several examples of geometry
and material contrast were examined. The example shown in Fig. 17 is based on density
contrast alone (A, p are uniform throughout). The density contrast may be characterized in

terms of s = [(,o1 -p, )/ ,5]2 , where p; and p, define the densities of the two constituent
phases and p is the average density. The attenuation curves shown in Fig. 18 are for a 3

MHz incident longitudinal wave for which p; is fixed and p, is varied for two
combinations of D and d.
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Figure 18. Example attenuation results from numerical simulations on two-phase

microstructures for: (a) D = 0.45 mm, d =0.06 mm and (b) D = 0.43 mm, d = 0.08 mm, for several
different values of density contrast s. The elastic properties (4, u) of both phases are identical.

Several simulations were conducted for 3 and 5 MHz incident waves and the attenuation
results are summarized in Fig. 19 in which attenuation is plotted versus material contrast
s. The general trend is expected in that higher values of s lead to higher attenuation.
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However, models that invoke a weak-scattering assumption give a linear dependence of
attenuation on s. Thus, the results in Fig. 19 suggest that the linearity may breakdown for
certain combinations of material contrast and wavelength to diameter ratio. These results
warrant further investigation.
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Figure 19. Summary of attenuation results for several numerical simulations on two-phase
microstructures (density contrast only) for 3 MHz (a) and 5 MHz (b) input waves for several
values of D, d, and s. The trend with s is not always linear as predicted by theory.

Analytical Modeling. The numerical results presented above lead to the conclusion that
current attenuation models must be modified to account for the variations observed.
Toward that end, spatial correlation information has been examined for the two-phase
structures shown above. Attenuation models all have a dependence on the spatial
correlations of the material properties. In most cases, the dependence is truncated such
that only two-point correlation information is used, in the form of the correlation function
R(r). The attenuation is then written as a spatial convolution of the Fourier transform of R
and the Green’s function of the average medium. For polycrystalline materials, an

exponential two-point correlation function R(r)=e'* is used with L as the spatial

correlation length. Such a function was used in the examples shown above for the
modeling recrystallization. For the model of the two-phase sinters, it is clear that a single
correlation length will not suffice since the material has a minimum of two lengths scales
D and d that must be included. In order for the appropriate correlation to be determined,
numerical correlation statistics were calculated from the geometric models created (as in
Fig. 16). Example correlation statistics are shown in Fig. 20 in the form of a histogram. In
this case, R(r) defines the probability that two points separated by a distance r lie in the
same phase of the material. An appropriate function to fit the numerical histogram was
then sought. The first attempts to fit the data were based on correlation functions
proposed by Torquato and co-workers. Two of these examples are shown in Fig. 20(a) as
the solid curves. It is clear that the fit to the data is not very good although the basic
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trends are captures. The fit shown in Fig. 20(b) is a newly proposed correlation function
that fits the histogram data very well. The correlation function shown has two scales that
are related to D and d. This correlation function will be used in attenuation models for
comparison with the numerical simulation results. The technique used for determining the
correlation histogram will also be applied in the future to micrographs of two-phase
materials including sinters and concrete among others.
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Figure 20. Spatial correlation determined numerically for VVoronoi-sinter microstructure.

The solid curves in (a) correspond to the models from Torquato that do not match the data
sufficiently. The solid line in (b) is a new spatial correlation proposed.

Summary and Future Work
As a result of this project, several important outcomes have been achieved. These
outcomes include the:

e development of a generalized polycrystal model that governs the transition from
transversely isotropic to isotropic; attenuation and backscatter may be determined
from the model,

e development of a generalized numerical model for polycrystalline media and
sintered media using Voronoi polycrystals coupled with the finite element
method,

e development of analytical models for studying ultrasound propagation through
sinters,

e development of expertise at UNL for ultrasonic measurements of attenuation and
backscatter for characterization of heterogeneous media, and

e development of additional AFAM research on metallic sinters.

The results presented here also lead to several new questions related to ultrasonic
inspection of both the recrystallization and sintering processes. Research to be addressed
in the future includes:

e understanding the influence of the two-point correlation function on the
attenuation and backscatter,

e extraction of two-point spatial information from experimental measurements,
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o the robustness of inversion routines associated with recrystallization of
polycrystalline materials,

the onset and influence of multiple-scattering effects in elastic media,

the inversion of sintering parameters during processing using ultrasound,

studies using AFAM while particles are joining (AFAM at temperature), and
additional ultrasonic scattering phenomena associated with materials processing.
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Interactions. Collaborative work with Dr. Thompson of the Ames Laboratory (AL) and
others continued throughout the funding period of this grant. In March 2002, the PI and
PhD student (L. Yang) visited AL to complete the general training necessary for
conducting experiments in AL. In addition, Mr. Yang received fundamental training for
the experiments to be conducted. He returned in summer 2002 for several days to
complete a series of ultrasonic attenuation experiments on pure aluminum with rolling
texture. Dr. Foley produced a set of sintered aluminum samples in December 2002 with
varying degrees of sintering. These are being used for attenuation, backscatter, and
AFAM measurements. The PI and students made several other trips to AL and the Center
for NDE for discussions of the latest accomplishments and the research directions as part
of this grant.

Transitions. In conjunction with this research project, the analyses and calculations used
for the research are being developed into web-based calculation tools as part of an on-line
library of such tools (http://em-jaturner.unl.edu/calcs.htm). The first of these tools
calculates a two-dimensional Voronoi polycrystal as a function of user input parameters.
Currently, users may input the number of grains, the grain aspect ratio and grain
orientation angle. The information is then passed to a MATLAB program that performs
the calculations. The output is then posted in plot format in the browser frame (see
example in Fig. 21). A new tool that calculates ultrasonic backscatter given specific input
of material, transducer, and input wave is nearing completion. These tools will be
continually expanded to include other research topics as the project progresses. All tools
are included in the on-line calculation tool library.

A J.A. Turner: Yoronoi Polycrystal Calculator - Microsoft Internet Explorer

Fle Edt View Favorites Tooks Help

Qe - ) - [x] [B] @0 O seach g Favorites @ reda ) S g |-

Address | ] http:ffem-ja unl. edufy h _min, herml vIBco ks *

Voronoi Polyerystal ce-
Calculator Voronoi Polyerystal

Number of Grans:

300

Grain Aspect Ratio:

1.0

Orientation Angle (degrees):
0

Flot || calculate

Last Modified: 05/15/2002
09:36:27 Central

&] Done ® Internet

Figure 21. Output of a web-based Voronoi polycrystal
calculator developed by the PI and students (see http://em-
jaturner.unl.edu/calcs.htm for this and other tools).
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Attenuation of ultrasonic waves in rolled metals
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Scattering of ultrasonic waves in polycrystals with texture is studied in this article. The attenuations
of the three wave modes are determined as a function of dimensionless frequency and propagation
direction, respectively, for given orientation distribution coefficie@DCg. The calculation is

done in the case of a statistically orthorhombic sample made up of cubic crystallites. The wave
propagation and scattering model is formulated by the Dyson equation using an anisotropic Green’s
function approach. Within the limits of the first-order smoothing approximation, the Dyson equation

is solved in the spatial Fourier transform domain. The results presented are shown to be directional
dependent, frequency dependent, and especially dependent on the texture coef@gsfor

the quasilongitudinal and two quasishear waves. The theoretical results presented may be used to
improve the understanding of the microstructure during recrystallization processe2004€
Acoustical Society of America[DOI: 10.1121/1.1810236

PACS numbers: 43.20.Bi, 43.20.Gp, 43.35/G¢1B] Pages: 3319-3327

I. INTRODUCTION butions for cubic symmetry with uniformly distributed orien-
tations of grains were made by Hirseko(h982, 1983,
Metals and alloys are made of crystallite grains whoseStanke (1984, and Weaver(1990. The problem of wave
characteristics and arrangements can be changed by the gjtopagation and scattering in the case of polycrystalline
plication of heat processing, such as annealing. Microstrucgrains with an aligned001] axis has been examined by
tural parameters of metals determine the macroscopic mgshmed and Thompsoti1996 and Turner(1999. In that
chanical properties of a material and include the grain sizeparticular case, the average medium is statistically trans-
grain shape, and the orientation of the grains, or texture, angersely isotropic. Ahmed and Thomps¢h992, 1996 also
their distribution in the microstructure. Ultrasonic wavesstudied correlations defined by both equiaxed grains and
propagating in such aggregates lose energy due to scatterig@ains with elongation.
from the granular microstructure of these materials. This  During the recrystallization process of metals, such as
scattering is often characterized by the attenuation of th@nnealing, the microstructure may contain grains having pre-
medium. In general, the attenuation and wave velocity argerred crystallographic orientations. For rolling texture, there
dependent on the grain size, shape, and on the particulafe three orthogonal axes of symmetry which are defined as
orientation distributions of the grains. If the grains are ran-the rolling, transverse, and normal directions. Thus, the ma-
domly oriented such that the medium is statistically isotro-terial properties of this specific case may be assumed ortho-
pic, these propagation properties are independent of dire¢hombic due to the feature of the preferred orientation.
tion. However, the scattering attenuation and wave velocityHirsekorn (1985 also was one of the first to investigate the
are a function of the propagation direction if the grains haveyave scattering in polycrystals of cubic symmetry with roll-
a preferred orientation. The preferred orientation of grains, olhg texture as a function of frequency by using the perturba-
texture, is best quantitatively described by the orientationion approach. She then extended her theory to determine the
distribution function(ODF) defining a probability density directional dependence of the phase velocities and attenua-
function, which is usually expanded in a series of generaltions of the three wave types under the same assumption
ized spherical harmonicgRoe, 1965, 1966; Bunge, 1982 with fiber texture(Hirsekorn, 1986 Her discussions were
Often, most metallic materials with preferred orientation ofrestricted to waves propagating in the direction of an axis of
grains display anisotropy of material properties. Thereforesymmetry of the texture. The general formalism of the waves
knowledge of the anisotropic nature of the wave propagatiopropagating in any direction through polycrystalline metals
and scattering in textured materials such as attenuation angiith rolling texture, however, has not yet been reported. The
velocity is critical for use with ultrasonic nondestructive detailed wave velocities of the three wave types, inclusive of
techniques. Such information will provide valuable insightthe quasilongitudinal and two quasishear waves, have been
for modeling the microstructure of such complex materialsdiscussed elsewheréSayers, 1982; Johnson, 1985; Hirao
during processing. et al, 1987; Li and Thompson, 199@nder the assumption
The scattering of elastic waves by grains of polycrystalsof orthorhombic-cubic symmetry.
has received considerable attention. The most recent contri- |n this article, the more sensitive ultrasonic parameter,
scattering attenuation, is studied for waves propagating in
“Author to whom correspondence should be addressed. Electronic maifny direction through such textured media. The wave propa-
jaturner@unl.edu gation and scattering model is formulated using the Dyson
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equation studied by Frisoti968 and Weave1990 which  In Eq. (3), the quantityGP is the bare Green’s dyadic defined

is easily solved in the spatial Fourier transform domainas the ensemble average response of the medium without
within the limits of the first-order smoothing approximation fluctuations, namely, the solution to E@) when 5C;j (X)
(FOSA) or Keller (Karal and Keller, 196/ approximation. =0. The second order tensdt is the mass or self-energy
The problem is studied here using the anisotropic Green’'sperator. The Dyson equation, E®), is easily solved in the
dyadic, an approach not used previously for textured materiFourier transform domain under the assumption of statistical
als. The attenuations of the three wave types are calculatdgtbmogeneity. The assumption of statistical homogeneity en-
numerically as a function of dimensionless frequency andsures thatG®, M, and(G) are functions of a single wave
propagation direction, respectively, for given orientation dis-vector in Fourier space. The Dyson equation is then trans-
tribution coefficientgODC9 using the derived expressions. formed and solved to give the result #®(p)) of the form

The resulting attenuations are shown to be directional depen- -

dent, frequency dependent, and dependent on the texture co- (G(p))=[G°%p) *=M(p)]~ %, 4
efficients (ODCs9 for the quasilongitudinal and two quasis- ~ .
hear waves. The theoretical results presented may be usedvy(pereM is the spatial .transform of the self—engrgy. The self-
improve the understanding of the microstructure during theenergyM can be written as an expansion in powers of

recrystallization process. In addition, the present formulatior{ﬂOdull fluctuations. To first ordefFrisch, 1968; Karal and

may be used to study diffuse ultrasonic problems in aKeIIer, 1964 M is expressed aVeaver, 199p

straightforward manner. Although the present model is for, (y,2)
the case of orthorhombic-cubic symmetry, the formalism can IR
be easily modified to apply to other given symmetry cases. d a5 d
In the next section, the preliminary elastodynamics of  ~ E‘Scaﬂvﬁ(y)&_%Gyk(yvz)(9—Zi5cijk|(2)(9—zl )
elastic wave propagation and scattering is introduced in
terms of an anisotropic Green’s dyadic. The formalism of theSuch an approximation is assumed valid if the fluctuations,
attenuation is then developed for the anisotropic case ofC, are not too large. The components\fare employed to
orthorhombic-cubic symmetry. calculate the attenuation of the three wave modes. Further
details of the scattering theory can be reviewed by the reader
in the articles of Karal and Kelle1964), Frisch (1968,
Il. WAVE PROPAGATION AND SCATTERING MODEL Stanke and Kind1984), Weaver(1990, and Turner(1999.
The medium of oriented grains with rolling texture has
The equation of motion for the elastodynamic responsgythorhombic symmetry. When ultrasonic waves propagate
of an infinite, linear-elastic material to deformation is givenin sych media, the phase velocity and the associated polar-

in terms of the Green’s dyadic by ization vector are determined by the Christoffel equation.
= 5jkp<?[2+ %iCijra (X)X} Gya(X,X' ;1) The d|spers!on relations for the mean response are then given
by the solution of the Dyson equation, Bd), as
= 6,0 (x=x")8(1), (1)
95(P)=[gp(p) 1 —mg(p)]
where8%(x—x’) is the three-dimensional spatial Delta func- A p A
tion. The second-order Green’s dyad®,,(x,x’;t), defines =[w?=pic5;—mu(p)] (6)

the response at locationin the kth direction to a unit im-
pulse at locationx’ in the ath direction. The moduli are for each wave typeg, quasilongitudinal ¢P) and two qua-
considered to vary spatially and density is assumed uniforngishear S1 andqS2) waves. The expressions for the dis-
throughout. In the case of orthorhombic-cubic symmetry, thedersion relations of the mean response are written

moduli C are supposed to be spatially heterogeneous and 9 22 B

have the form Cjj(X)=Cfy +dCij(x). The material w”=p°cp—mg(p)=0, ()
properties might have global anisotropy such that the meap,
moduli are not necessarily isotropic. The covariance of th
moduli is characterized by an eighth-rank tensor

hich is solved for the wave vectqr. The attenuation of
%ach wave type is given by the imaginary partmpfThe
explicit expressions of the attenuation can be determined us-
(8C;ijki () 5Caﬁys(x’))=Eﬁﬁwﬂ(X—X')- 2 ing an approximation valid below the k}igh-frequency geo-
metric optics limit [mg(p)~mg((w/cg)p)] (Stanke and
Kino, 1984; Weaver, 1990 This approximation allows the
imaginary part ofp to be calculated directly from Ed7).
thus, the attenuations of the three wave types are calculated
as

The spatial and tensorial parts of the above covariaice,

and 7, are assumed independent. The correlation function

is also assumed a function of the difference between tw
vectors,x—x’. This assumption implies that the medium is
statistically homogeneous.

The mean respons€G), is governed by the Dyson A 1 o
equation(Weaver, 1990; Frisch, 1968 ag(p)=— 200,(0) Im mg(c—ﬁp). (8)
<Gia(X,X’)>:G?a(X,X’)+f f Gla(X.Y)Mg(y,2) The attenuations for the three wave types, which are
each defined in Eq8), are finally given in the general form
X(Gju(zX))d% d®z. (3)  (Turner, 1999
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1 {Wf e W ( o tions 775 ,(p,9) are then expressed in terms of the above

ag(P)=—51{7 S ~ 7 ~p dimensionless quantities as
TN cSa(® '\ cs(P) g
N - . L3
® kP 75— ,(P,S)= ; Y
—ms) 7 T L+ X5() +X5( ") = 2Xg( )X, (p")P-S)?
qst B, (12
- ot © for the incoming wave typ@ ang putgoing wave t_yp¢. _The
+— | d%s 7 —D inner product, p-S=C0S¢ cos¢’ sinfsin b’
4 5~ 7 p _ ) P X _ -
cop(8) | Ca(P) +sin¢gsing’ sindsin ¢’ +coshcosd’, if the unit vectorsp
o and S are generally defined byp=x;cos¢sing
_ Lg) o WP, +X, SiN ¢ SiN 6+x3 COSO and $=Xx, C0s¢' sind’
Cqp(9) o UkPsY +X,sing’ sinf +x3cosd’. The anglesd, ¢ and &', ¢’ are
4 respectively defined as Euler angles in a general coordinate
™ w w . — 5 i 4
+ _f d%s — 77< —~p system. The form of the eighth-rank tensezrﬁﬁy , Is dis-
4 Cax(9) Cs(P) cussed next for rolling texture made up of cubic crystallites.
@ A WPSy
— ~=S|= 0 9 IV. COVARIANCE AND ATTENUATION
Cqx2(S) e UPsyg

_ _ o To calculate the attenuations, the relevant inner products
whereK is defined as the polarization for the wave typ€l,  on the covariance of the moduli fluctuations are required.
2, or 3 for wave typeg|SL, qP, andqS2, respectively In The covariance of the moduli fluctuations is represented by
the above equation, the integrals are over the unit sphergn eighth-rank tensor which is given explicitly by
which is defined by unit vectas. The directionp defines the o B8 mikl nonoA oA
propagation directiors is the scattered direction, andand B p& T E aBysUpUKPaPISISsU 4 - (13
v are definedAas t@e poIariAzatioAn.dilrecti'o'ns. The dependengg,, polycrystals of cubic symmetry, the eighth-rank covari-
of tbg vectorsy onp and ofv onsis |rr'1pI|C|t.'The argument' ance,Eﬁf,“/‘s, is written as
of 7 is the difference between the incoming and outgoing
propagation directions. The inner products on the covariance 5eBY—(C.. C —{(CivMC
of the moduli fluctuations are given in terms of four unit 7= (Cuia Capyo) = (CipaX( Capyo)
vectors. In the next section, the correlation function is speci- 5 3 3
fied. =K n§=:1 ainajnaknalnnzl Aangn@yndsn

IIl. CORRELATION FUNCTION

N

3
. ) . ) —K <2 ainajnaknaln>
As shown in Eq.(2), the tensorial and spatial contribu- n=1

tions of the material covariance are assumed independent. 3
The spatial correlations are characterized jpyHere, it is _< > aanaﬁnaynaﬁn>, (14)
assumed thapy has an exponential form n=1

p(ry=e "'t (100  Where the bracketg, ), denote an ensemble average over all

orientations of grains, and=C%,— C9,— 2C9, is the single-
crystal anisotropy factor. If the polycrystal is of

g ) ah e ~ orthorhombic-cubic symmetry, only certain terms are non-
spatial correlation function is not exact for polycrystals with ;..o an example term necessary for calculating the attenu-
rolling texture for which there is grain elongation. For elon- 54415 is presented in the Appendix. Details of the other non-
gated grains, a more general spatial correlation function musta g terms may be found elsewheéang, 2003. For the

be usedAhmed and Thompson, 1982The influence of this  gacond term in Eq14), the results are given in the details of
choice of correlation function on the attenuations is left as gher articles(Sayers, 1982; Johnson, 1985: Hirabal,
subject of future investigations. In Fourier transform SPaceq9g7: Lj and Thompson, 1990

the correlation function is then given by

The correlation lengthl, is of the order of the grain radius
in polycrystals. In general, a simple exponential form of the

The forms of the attenuations presented in Ej).re-
L3 quire various inner products on the covariance tensor. These

D=5 (11)  inner products have the general form®f . ;5 , where the
m(1+L7%q7) vectorsp and S, respectively, represent the incoming and
The forms of the attenuation given above contain theoutgoing propagation directions. The vectarsand v are
difference  of two vectors, 7(q)=7([w/c,(f)]p  vectors defining the polarization directions of the particular
—[wlcy(8')]9) as the argument for covariance in B8).  waves. While waves propagate in arbitrary directions, the
Now the correlation functioné}ﬂ,y(ﬁ,é) are considered. If polarization vectors are found by the Christoffel equation.

the three nondimensional frequencies are then defined &@ubstituting the correlation function, EGL2), and the inner
Xg=wl/cg, using the expression of the spatial Fourierproducts into Eq(9), the resulting dimensionless attenua-
transform of the correlation function in E¢l1), the func- tions are given in the form
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2n

- Upsy
ag(p)L= 2 (p) f ar “KPS"i( P9 1
g 2p? 4w<1+xz<f>)+xqsl<s>—2x,g<b)xq51<§)ﬁ-é>2 Ca(d
GED)
J~ = GK’b"s’v(p! ) _ l dzé
4

w(1+x,;<p>+xqp<s) 2X4(p)Xqp(9)+)2 C3p(d)

(R

1 .
d?s g, (15)

N J‘ fJKpsAv3
4w<1+x2<ﬁ>+xqsz<s>—2xﬁ<r3>xq$(é>|6-é>2 N

whereK has the same definition as discussed in . It
should be noted that these inner products have unig.ofn
the long wavelength Rayleigh limikz;<1, Eq.(15) can be

simplified as
) = WPy
. ca(p S sy
ag(PLixi="20 % 02
B B 2 2 5
P 4m CqSl(S)
= WPy, = WPSyy
= psy, =0 psy,
+f %dszrf = S 4%
4m Cap(9) 4m Cus(9)

(16)

notationW,,,,, which are used in this discussion. In order to
carry out the calculations for the attenuations, Bdp), nu-
merical methods are employed. The procedure of numerical
methods for calculating the wave attenuations is now de-
scribed.

First, using the Christoffel equation, the eigenvalue-
eigenvector problem is solved for a given wave propagation
direction and scattering direction. Second, the covariance of
the moduli fluctuations is calculated by Ed4). Next, using
the known covariance and eigenvectors, the inner products of
each wave type are calculated numerically. Finally, the
double integration is implemented numerically by the ex-
tended trapezoidal method. Here, examples are presented to

In Eqg. (16), the dimensionless attenuation has been normaldescribe important features of the wave attenuations for sev-
ized by the fourth power of the dimensionless frequency foreral propagation directions. The examples are generated us-

the respective wave type.
In Egs. (15) and (16) the inner productsz

-upsv
“psy do

ing the methods discussed above. Since the orthorhombic
symmetry has three mutually orthogonal planes of symmetry,

not have simple analytical forms for arbitrary propagationall calculations are made for &%<90° and 0%6<90°.

direction in this orthorhombic-cubic case. Thus, these results

Convergence of the numerical integration was examined

must be calculated numerically. In the next section, examplérst. Wave attenuations of each wave type were examined

numerical results and discussions are presented.

V. NUMERICAL RESULTS AND DISCUSSIONS

for waves propagating in the rolling direction, thatg#s-0°
and#=90°, and at a dimensionless frequengy, = 1.0. The
results show fast convergence for each wave mode in nu-
merical integrations using the extended trapezoidal method

Numerical results are now presented for a 70% roIIeO(Yang, 2003. In order to achieve a balance between effi-

steel plate. The material constants of a single Crystal and th@ency and accuracy, the number of intervals in the integra-
texture coefficients of the orientation distribution function

with respect to the generalized spherical functions are given

by (Bunge, 1982

C9,=2.37x10'" Pa, C%=1.41x10" Pa,

CY%,=1.16x10" Pa, p=7850 kg/n, 17
and
=—1.47, c3°=0.46,

ci=0.50, c=2.69,

20=-1.20, cg’=0.46,
¢®=—0.14, ¢%=-0.07, (18)
c3=0.29, cg’=—0.45,
ce’=-0.47, c=-0.22.

The orientation distribution coefficient$ODC9 in
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FIG. 1. Rayleigh attenuatlomquL/xc|P as a function of propagation direc-

Bunge’s notatiorc]"" must be converted into those in Roe’s tion for P waves using the specified ODCs.
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FIG. 4. Directional dependence of the normalizgelattenuationgpl., for

FIG. 2. Rayleigh attenuatio L/x, as a function of propagation di-
yeu Wasi-Xqs1 propag frequencyx,s; = 1.0.

rection forgSl waves using the specified ODCs.

tion N= 20 is chosen for calculating the attenuations for eacithe normalized quasilongitudinal wavegR) attenuation,
wave mode in the results shown here. aqpl, as a function of azimuthal directiosp for various
First, the attenuations within the Rayleigh limit are cal- polar angles). It is seen that the attenuation is dependent on
culated using Eq(16). It is known that the attenuations de- the propagation direction as expected. Here, the attenuation
pend on the fourth power of frequency in the Rayleigh re-variation with respect to polar angi¢is around 15-30%.
gime. Thus, the normalized Rayleigh attenuatijl/x of ~ The results for the normalized shear waegSt andqS2)
each wave mode is shown with the angular dependence igttenuations are presented in Figs. 5 and 6, respectively. The
Figs. 1-3 for various propagation directions, respectively. ldirectional dependence on the propagation direction for these
is observed that in this specific case the attenuations of eaditenuations is also significant. The percent variation of the
wave mode are considerably dependent on the wave prop&Sl andgS2 attenuations in terms of polar anglés about
gation direction. For waves propagating in different direc-10—50%. These results may be contrasted with the results in
tions, the curves of the attenuations have smoothly changingie Rayleigh limit. Comparisons of the Rayleigh attenuations
shapes. The percent variations of the, qS1, and qS2 with attenuations outside the Rayleigh regime show that the
attenuations in terms of polar angleshown in Figs. 1-3 are tendency of variation is quite different with each due to the
about 25—-40%, 20—-50%, and 15%, respectively. The variagffect of frequency. In Fig. 4, thgP wave attenuation is
tion of theqS2 attenuations is more uniform than that of the observed to have the maximumdt90° for given angles.
others. In Fig. 5, the curves of thgSl wave attenuations have
Outside the Rayleigh regime, the attenuation results arémoothly changing shapes. Figure 6 shows that for propaga-
calculated using the complete integrals, Etp). The direc-  tion at polar angle#=30°, 45°, and 60°, the maximum at-
tional dependence of the attenuation is presented first for &nuation is abou$=45°, and at polar anglé=90°, there is
given dimensionless frequencyys=1.0. Figure 4 shows a minimum attenuation approximately a=45°. Further-

0.066 T T T T T T T T 0.02 T r T T T T T T
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g 0.064¢ S .
e 6-60 0.018
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FIG. 3. Rayleigh attenuatiomqszL/xgsz, as a function of propagation di- FIG. 5. Directional dependence of the normalizg8l attenuationgyglL,
rection forqS2 waves using the specified ODCs. for frequencyxqs = 1.0.
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FIG. 6. Directional dependence of the normalizgg? attenuationegol,

FIG. 8. Angular dependence of the normalizg# attenuationagel, for
for frequencyxqg = 1.0.

various frequenciessys, , at polar angleg=90°.

more, the asymmetry is observed in Fig. 6 for various polaitions as a function of frequency for several propagation di-
angles. rections. In Figs. 10-12, the normalized attenuations of the
Next, results are presented for the normalized attenua_‘hree wave modes are p|0tted versus dimensionless fre-
tion as a function of aximuthal direCtiQﬁ for four different quencylquJJ for propagation directions a|0ng the ro"ing,
frequencies at given polar angle=90°. The normalized normal, and transverse directions, respectively. For the ex-
shear wave S1) attenuationsegg L, are shown in Fig. 7 ample considered here, Fig. 11 shows @& wave attenu-
for #=90° for normalized frequencies;s;=1.0, 1.5, 2.0, ation for propagation in the rolling, normal, and transverse
and 2.5. It is seen that the attenuation curves show a Simila:ﬁrections with po'arization in the normaL transverse’ and
shape with increasing frequency for the respective polafoliing directions, respectively. Figure 12 shows th&2
angle. The results for the normalizgé attenuationseqpl,  wave attenuation propagated in the rolling, normal, and
are shown in Fig. 8 for the same frequencies. Figure 9 showgansverse directions and polarized in the transverse, rolling,
the normalizedqS2 attenuationspgsL, as a function of  and normal directions, respectively. It is observed that there
propagation direction for the same four frequenCieS. Itis Ob'is a transition region as the dimensionless frequency in-
served that the attenuation curves show a similar Shape Wifé\'eases_ ThUS, the relative order of the attenuation is
increasing frequency for each wave type as well. All curvesswitched in such a transition region for the three wave
of the attenuations have smoothly changing shapes for varinodes, respectively. The attenuations increase with the
ous frequencies. Figure 9 shows that at polar amg®0°  fourth power of frequency in the low frequency limit. After a
there is a minimum attenuation @t=45° for various fre-  transition region, the attenuations scale with the square of
quencies. There is no symmetry to be observed with increagrequency as expected. Moreover, the normalized attenuation
ing frequency as well in Fig. 9. of each wave type is plotted versus normalized frequency,
Finally, results are presented for the normalized attenquSL for propagation within thex;—x, plane for various
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FIG. 7. Angular dependence of the normalizg8l attenuationggg L, for FIG. 9. Angular dependence of the normalizggl attenuationgyslL, for
various frequenciessys; , at polar angleg=90°. various frequenciesys; , at polar angleg=90°.
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FIG. 10. NormalizedyP attenuationaqpl, as a function of dimensionless FIG. 12. Normalized)S2 attenuationegl, as a function of dimension-
frequencyx,s , for waves propagating in the rollin®RD), normal (ND) less frequencyx,s , for waves propagating in the rollingRD), normal
and transverseT(D) directions. (ND) and transverseT(D) directions.

azimuthal angles in Figs. 13—15. In the Rayleigh regime, it iopments such as this one will provide a firm basis for direct-
observed that the curves for each wave type mainly show thimg new experiments. Eventual process control of recrystal-
same shape. The variation of the attenuation of each wawézation that is quantitative will require modeling-directed
mode is about 10%. Outside the Rayleigh regime, the atteniexperimental methods. In addition to theoretical research,
ation of each wave mode in the rolling direction is about tennumerical methods will also be necessary for progress to be
times higher than that for propagation at=30°, 45°, and made. This work must also be expanded to include other
60°. This feature is thought to be the result of the weakfactors important to textured materials, such as grain size
texture for the case discussed here. distribution and grain shape.

The generalized attenuation results presented in this ar-
ticle fqr arb|trary propagation dwecfuon_ suggest that new UI_'VI. SUMMARY
trasonic techniques for characterization of texture coeffi-
cients may be possible. Further study is necessary to unravel In this article, the scattering of elastic waves in poly-
the complex relations between the ODCs and the angular arefystalline materials with texture was discussed. The en-
frequency dependence of the attenuations. Attenuation meaemble average response of the elastic waves is governed by
surements could ultimately be inverted such that the ODC#he Dyson equation within the limits of first-order smoothing
may be determined. However, such an approach must bapproximation. In contrast with previous work, here an an-
optimized by choosing measurement directions that are thisotropic Green’s dyadic approach was used. In order to cal-
most sensitive to the desired ODC. Thus, theoretical develeulate the attenuations, the relevant inner products on the

covariance of the effective moduli fluctuations were derived

10 T

- 450 6=90° . )_/"

qS1 attenuation, aqSIL

qP attenuation, o qPL

10 Dimension 10° 10 105 .
imensionless frequency, Xs1 107 10° 10

Dimensionless frequency, st
FIG. 11. NormalizedySl attenuationaggl, as a function of dimension-
less frequencyx,s, for waves propagating in the rollingR@), normal FIG. 13. Normalized) P attenuationggpel, as a function of dimensionless
(ND) and transverseT(D) directions. frequencyxqs; , for waves propagating within the, —x, plane.
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in polycrysta|s of CUbiC Symmetry W|th ro"ing texture. Com- ShipS between ultrasonic parameters such as ultrasonic at-
pact expressions for the attenuations of the quasilongitudindgnuation and materials texture must be investigated. If one
and two quasishear waves were then presented in terms kpows the relationships between the ODCs and the ultra-
integrations over the scattered directions. In general, attenigonic attenuation, the texture coefficients can be inverted
ations for each wave type are dependent on frequency, waJEom ultrasonic attenuation measurements. The ultrasonic at-
velocity, and wave propagation direction, as well as texturdenuations of sample specimens can then be measured during
coefficients which are the expansion coefficients of the oriannealing such that the ODCs can be determined during pro-
entation function with respect to the generalized spherica¢€SSIng.

functions. The results show that the attenuations of each

wave type can be comprehensively affected by those pararﬁalcK'\'OWLEDGMENTS

eters. The general formulation is also directly related to  The financial support of the U.S. Department of Energy
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makes them particularly useful for nondestructive testing aneéédged. We also thank James C. Foley, R. Bruce Thompson,
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niques for monitoring texture during processing, the relationsions.

APPENDIX

For polycrystals of cubic symmetry, the nonzero terms of the eighth-rank covarlﬁﬁﬁé‘,9 in Eq. (14), are determined.
The first term within the brackets is given as

3 3
< El ainajnaknaln 21 aanaﬁnaynaén>
n= n=

3

1 27 (27 (+1 3
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where thew is orientation distribution functiofODF). It can be expanded in a series of generalized spherical harmonics, with
the coefficientsV,,,,, defining the orientation distribution coefficient®DC9. The notationsT,,, are defined as

3
1 27 (27 [+1
Tlmn:_zf f f (E ainajnaknaln)
47Jo Jo J-1\n=1

If the polycrystal is of orthorhombic-cubic symmetry, an example teimjEk=1=1 and a=B8=y=45=1) is given as
follows:

<§3: , i , > 41 2232272 2976|572 1448,/3572 12\/2672 64/2730m2
anl aml = T ENNE
m=1

lemn(f)eiimweiimpdf dyde.

3
2 aanaﬁnaynaﬁn
n=1

105" 5005 Waom —5gg5  Wazom ~5ap5  Waaom ~1ggp Weoot ~y5p75  Wezo

n=1

128,/9172 64,/6006m2 561/3472 32,/119072 32,/130972 32\/14586r2

5005  Weat 5015 Weeot —7593 Weoom —5755  Weaot —5755 Weaom — 35255 Weso

. 164/1215572

12155 Weso-

The remaining nonzero terms necessary for the calculation are given in detail elsé\arege2003.
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ABSTRACT: In this chapter, techniques for materials characterization at the nanoscale that
combine ultrasonics and atomic force microscopy (AFM) are presented. The focus is on
dynamic methods in which ultrasonic excitations induce vibrations of the AFM cantilever.
The methods considered are restricted to those in which the tip of the cantilever remains in
contact with the specimen surface for the majority of the motion. Several aspects of coupled
ultrasonic-AFM systems are examined, including the tip-sample interaction forces, the linear
dynamics of the flexural and torsional modes, and the nonlinear dynamics of the flexural
modes. Ways in which the dynamic behavior can be used for quantitative determination of
sample stiffness and qualitative imaging of relative stiffness are then described. Both linear
cantilever spectroscopy methods and nonlinear force curve methods are discussed and
example results presented. Techniques such as these are expected to play a major role in
nanotechnology research.
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1. Introduction

The measurement of mechanical properties at small scales is motivated in part
by recent efforts to develop new nanoscale materials. Many of these materials are
entirely new structures such as nanotubes, nanofibers, and nanocomposites. Other
nanoscale applications of interest include micro- and nano-electromechanical
systems (MEMS and NEMS) that use more conventional materials (e.g., silicon).
For all of these material systems, knowledge of mechanical properties is critical in
order to predict their mechanical response and performance accurately. However,
mechanical characterization at small scales remains an especially challenging
problem. In many of these new materials, the properties can vary over nanometer
(submicrometer) length scales. Even if only conventional materials are involved, the
nanoscale materials properties usually cannot be predicted from bulk property
measurements. Dramatic differences in mechanical properties may occur as sizes
decrease and the surface-to-volume ratio increases. Thus, novel measurement
techniques are needed to characterize emerging nanoscale materials and structures.

Nanoindentation [OLI92] has proven an effective technique to determine the
indentation or plane strain modulus, which in isotropic materials is a combination of
Young’s modulus and Poisson’s ratio. However, the spatial scale of
nanoindentation, with contact radii typically on the order of several hundred
nanometers, is still too large for many nanoscale systems. In addition, it is inherently
destructive: an indent hundreds to thousands of nanometers wide is made during a
force-displacement measurement. Atomic force microscopy (AFM), on the other
hand, was originally developed to provide surface topography information with
atomistic spatial resolution [BIN86]. The deflection of the AFM cantilever plotted as
a function of surface location provides high-resolution images of surface
topography. The small contact area of the AFM tip — typically a few nanometers —
is ideally suited for nanoscale measurements of mechanical properties, provided that
effective quantitative techniques can be developed for this purpose.

Many approaches have been taken to apply AFM to the task of mechanical
characterization, including force modulation microscopy [MAI91], scanning local
acceleration microscopy [BUR96], and pulsed force microscopy [ROS97].
However, in this chapter the focus is limited to methods that exploit the dynamic
behavior of the AFM cantilever at acoustic or ultrasonic frequencies [KOL9S,
YAM99, RAB00, DINOO]. Work has shown that excitation frequencies in this range
— at or above the first contact resonance of the beam — can be used for quantitative
measurements and for stiffness imaging with little or no damage to the specimen
surface. These methods rely on the relative motion between the AFM tip and the
specimen surface as indicated in Fig. 1. The dynamic response of the AFM
cantilever beam is usually described in terms of its flexural and torsional vibration
modes. Because the frequencies of these modes range from tens of kilohertz to a few
megahertz for typical cantilevers, ultrasonic transducers are often employed as the
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excitation source. The
appeal of these techniques
lies in their potential to
achieve nanometer spatial
resolution, as determined
by  the AFM  tip
dimensions. However, the Figure 1. Schematic of the dynamic system considered here.
dynamic response of a  The AFM cantilever is held in contact with the sample surface.
vibrating AFM cantilever The surface and/or cantilever holder are oscillated normal to
or perpendicular to the undeformed cantilever plane, causing

m conta'ct with a surface' 18 the cantilever to vibrate at frequencies characteristic of the
not easily described. Tip- coupled beam-sample system.

sample interaction forces are, in general, nonlinear. When an elastic beam interacts
with these surface forces, the flexural and torsional modes may be excited in a
complex fashion, both linearly and nonlinearly. Thus, any quantitative technique for
determining the tip-sample properties that exploits the dynamics of the AFM relies
on an accurate model of this vibration system.

In this chapter, several aspects of coupled ultrasonic-AFM systems are
examined, with the focus on the dynamics of AFM cantilevers and the determination
of the specimen’s mechanical properties. In the next section, the tip-sample
interaction forces are described. Then the linear dynamics of the flexural and
torsional modes are presented. A nonlinear analysis is also given for the flexural
modes. In section 3, various experimental approaches are discussed in detail to
illustrate how the contact mechanics models and vibration analysis may be
practically implemented to determine mechanical properties. Applications involving
both single-point, quantitative measurements and qualitative contrast imaging are
described. Differences between the various approaches are noted. Finally, a
summary is presented in section 4.

2. Dynamics of AFM Cantilevers

The dynamics of an AFM beam in contact with a vibrating surface can be very
complicated. In this section, some aspects of the dynamical system are examined in
detail. A critical aspect of the dynamics, and the prime nonlinearity in this system, is
the tip-sample contact. The associated contact mechanics are discussed in section
2.1. In section 2.2, the linear flexural vibration theory that forms the basis for much
of the AFM research under consideration is described. Section 2.3 contains a
discussion of the nonlinear flexural theory with examples relevant to Hertzian
contact mechanics. Finally, the potential coupling of flexural and torsional vibration
modes is presented in section 2.4.
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2.1. Interaction Forces/Contact Mechanics

The mechanics of the AFM tip as it interacts with a specimen are complex and
generally nonlinear. Here, it is assumed that the contact is frictionless and the
contact force acts normal to the tip. For simplicity, discussion is limited to
elastically isotropic materials, although a similar analysis can be applied to
anisotropic materials. A schematic of the contact mechanics problem is shown in
Fig. 2. The goal of the contact analysis is to relate the applied force p to the
penetration depth of the tip into the specimen J. Important parameters for this
problem are the radius of the contact area a, the work of adhesion at contact w, and
the stress in the cohesive zone o, The reduced tip-sample radius of curvature,
1/R=1/R,+1/R_, accounts for curvature of both tip R; and specimen R,. Most
often, the specimen is assumed flat such that R = R, . The reduced elastic modulus £ :

is defined by
1 [1=-v 1-v]
v = + > [1]
E E E

t s

where E,, v,, E;, and v, are Young’s modulus and Poisson’s ratio of the tip and
sample, respectively. The general goal for materials characterization studies with
AFM is to measure or image the elastic modulus of the specimen. Such a procedure
involves determination of E". The material properties and geometry of the tip are
either assumed or measured directly. In this way, the indentation or plane strain
modulus of the gample, M =E_/ (1 —Vf ) in the isotropic case, can be deduced from
knowledge of E'.

(b)
Figure 2. Contact mechanics parameters. The geometry of the contact between two spheres of

different sizes is shown in (a). In (b), the contact mechanics load p, displacement 8, contact radius a
and cohesive radius ¢ are shown.

The most comprehensive tip mechanics model is that developed by Maugis
[BUR99, MAUO00]. The Maugis model captures many aspects of the contact
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mechanics observed in AFM studies through the use of fracture mechanics concepts.
Most importantly, it can account for adhesion hysteresis. The Maugis model
provides a continuous functional dependence from Hertzian or Derjaguin-Muller-
Toporov (DMT) mechanics without adhesion hysteresis [DER75], to the Johnson-
Kendall-Roberts model (JKR) limit of maximum adhesion hysteresis [JOH71].
These limiting cases are discussed below. The following dimensionless parameters

are used:
1/3
K 1
A=a , P=p —|
(ﬂszj p[ﬂCOR}
K2 1/3 R 1/3 [2]
A:‘{zz] , /Izzao(zj ,
7w R 104

where 4 is the radius of contact, P is the applied force, A is the penetration depth, 4
is the adhesion parameter, and K=4E /3. The corresponding dimensional
parameters of p, d, and « are illustrated in Fig. 2.

In terms of these parameters, several different contact mechanics models may
be described. Hertzian mechanics is given by [MAUO00]

P, =4, A, = A2, 3]

which may be written P, = A’,”. In the Hertz model, adhesion is neglected such that
there is no attractive force associated with loss of contact. The Hertzian relation
between P and A is shown in Fig. 3. The DMT model is a modified Hertz model
[DERT75]. In this case, a constant attractive force is added to the Hertzian mechanics:
P, = A® —2. However, the tip geometry is Hertzian, A D= A*. The behavior of
Pp(A) for the DMT model is also shown in Fig. 3. The Hertz and DMT models do
not include adhesion hysteresis effects. Thus, they are most applicable to AFM
research for low adhesion specimens, hard materials or small radii of curvature.

In the high adhesion limit, the JKR model is appropriate. It is given by
[JOH71]

P, = 4*— 464, A, :A2—§«/6A. [4]

This model is most applicable for high adhesion specimens, soft materials or large
radii of curvature.

The Maugis model is comprehensive in that it captures all types of tip-sample
mechanics through the introduction of an adhesion parameter 1. Attractive (tensile)
stresses are assumed to act between the tip and specimen in a cohesive zone that
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surrounds the contact area. The stress o, is assumed to be constant within an annulus
of width d. The force and deflection are given by [MAUOQ0]

4
P,=A4-14’M,, A, =A2—§A/1\/m2—1, [5]

where

M, =Nm’ —1+m’ tan"' Vm* -1. [6]

L.5

Hertz

e
(9}
T

-1.5 -1 -0.5 0 0.5 1 1.5
Penetration Depth, A

Figure 3. Force vs. penetration depth curves for several different tip-sample mechanics models. The
Hertz (green), DMT (red), and JKR (black) models. The parameters 4 are different values for
adhesion associated with the Maugis model (blue).

In Egs. [5] and [6], m = c/a is the ratio of the radius to the edge of the cohesive
zone to the radius of the contact area. The width of the cohesive zone is d = ¢ - a.
An additional equation is necessary for the Maugis mechanics. The Griffith
equilibrium equation defines the relation between A, m, and A4:
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2 2
A A, [7]
2 3

where
M, =\m* -1 +(m2 —2)tan’1 m’ -1,

(8]
M, =1-m+~ym’* —1tan>\Vm’ —1.

A comparison of the different contact models is shown in Fig. 3. The results
based on the Maugis model are noted by the adhesion parameter 1. These curves
require some interpretation. When A is positive, the sample is deflected away from
the AFM tip. A negative value for A implies that the material bulges out from an
otherwise flat surface. In the Hertz model, the AFM cantilever experiences an
upward deflection (P > 0) as soon as contact is initiated. The DMT, JKR, and
Maugis models all include some type of attractive effects, so that the cantilever
deflects downward when contact is initiated. In this case, the tensile stresses in the
cohesive annulus are greater than the compressive stresses in the contact area. The
effect of adhesion hysteresis is also observed in Fig. 3. The curves for the JKR
model and for the Maugis model with 4 = 2 bend back on themselves. These curves
have a section of positive slope when both P and A are negative. Points on this part
of the curve are unstable equilibria. Thus, when moving continuously on these
curves, loss of contact occurs when the slope becomes infinite. In addition, when
contact is reinitiated, the tensile cohesive stresses pulls the AFM tip back into
contact. This type of hysteretic behavior results when 1 is slightly less than unity.

The various contact mechanics models highlight the complexity of the AFM tip-
sample interaction. Moreover, the discussion here has been limited to the case of
idealized surfaces; in practice, sample topography such as slope and curvature can
have a critical effect on quantitative measurements. When the AFM tip is in motion,
the force and penetration depth are time dependent. For small oscillations, the curves
shown in Fig. 3 may be linearized about the initial static equilibrium position. The
slope of this linearization is a spring stiffness that may be assumed to act at the tip
location. For larger oscillations, larger portions of these curves are traversed during
each period of oscillation. For sufficiently large oscillations, the tip may even lose
contact with the specimen. In the following section, these vibrations are examined in
more detail.

2.2. Linear Flexural Vibrations

When the tip of the AFM cantilever is in contact with a sample surface, different
types of vibrations may be excited depending on the sample motion. Figure 4 shows
a schematic of the cantilever-sample system. The AFM cantilever is modeled as an
Euler-Bernoulli beam. It is assumed to be uniform and homogenous with constant
cross-section. The beam is clamped at one end. At the opposite end of the cantilever,
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a tip with a small radius of curvature is attached. The governing equation for the
linearized boundary value problem for this system is given by [TUR97]

&*wlx,1) *wlx,1)
EI : A =0, 10
a e 1ol
with boundary conditions
w(x,t]xzo =0, W’(x’t)x:() =0, 1)
w”(x,t}xz , =0,

EW"(x,t) L= Kw(x,t}x:

x=

[12]

In Egs. [10]-[12], w(x,?) defines the cantilever position relative to its initial static
deflection, y(x). The cantilever is defined by its Young’s modulus £, area moment of
inertia /, volume density p, and cross-sectional area A. Here, EI and pA are assumed
uniform over the length of the cantilever. The boundary conditions given by Eq. [11]
correspond to conditions of zero displacement and zero slope at x = 0 and zero
moment at x = L. Equation [12] defines the force balance between the beam and the
linear tip-sample stiffness. A linear spring model is used to describe the tip-sample
interaction force, such that the results are restricted to small tip displacements. The
relationship between the linear spring constant x and the tip and sample parameters,
especially the sample mechanical properties, depends on the interaction model used
(section 2.1). The chosen contact mechanics model is linearized about the initial
static applied load and the resulting slope is «.

X

" o]
w(x,t)

AFM Beam

TOffset, Zy

WSS SIS S

Static deflection, y(x)

Figure 4. Schematic of the dynamic cantilever system under consideration. The AFM tip is in
contact with the sample. Initial contact is made when the sample offset zo= 0. The static offset
causes a static beam deflection y(x). The dynamic motion w(x,?) is defined relative to y(x). The
contact forces between the tip and the sample may be discussed using different contact models.

Equations [10]-[12] define completely the linearized flexural vibration problem.
The natural frequencies of the cantilever vibrations are dependent on the linear
spring constant. The solution to Eq. [10] may be written
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wix,t) =W (x)e™. [13]

The mode shape W(x) is found by substituting Eq. [13] into Egs. [11]-[12] and by
solving the subsequent eigenvalue problem. For the boundary conditions considered
here, it may be written [TUR97]

sin kL + sinh kL (

W (x)= D| sin kx —sinh kx —
coskL +cosh kL

cos kx — cosh kx)) [14]

where k is the flexural wave number.

The characteristic equation defines the wave numbers that admit solutions to the
problem. The characteristic equation is found from the boundary condition involving
the linear spring, Eq. [12], and is given by

73(cosycosh7+1)—#@3(sinhycosy—sin;/coshy)= 0 [15]

with y= kL as the dimensionless wave number. Equation [15] is solved numerically
for the values of y. The dispersion relation

.o 1 EIIL
f—7(47[2j PAL ’ [16]

defines the natural frequencies f'in terms of the wave numbers .

It should be noted that in the discussion given here, the tip is assumed to be at the
end of the beam, that is, x = L. If the tip is not located at the end, the derivation must
be modified, altering the characteristic equation (Eq. [15]) and mode shape (Eq.
[14]) [RABOO]. The effect of a finite tip length can also be added to the analysis
described above. In this case, the boundary conditions are altered to include a
bending moment at the end of the cantilever [WRI97]. Both refinements can have a
substantial impact on the quantitative interpretation of resonant spectra, depending
on the specific experimental conditions (contact stiffness and cantilever geometry).

2.3. Nonlinear Flexural Vibrations

The linear vibration problem described in section 2.2 is limited in the sense that
the vibration amplitude must remain small over the entire period of motion.
However, the inherent nonlinear response of the tip interaction with the surface as
described in section 2.1 will also lead to nonlinear vibration behavior. In this
section, some of the phenomena associated with these nonlinear vibrations are
presented. The discussion here is focused primarily on the Hertz model. However,
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more general contact theories are expected to exhibit similar nonlinear responses in
the contact regime.

The boundary condition involving the tip-sample contact, Eq. [12], is first
rewritten in a more general form as

EIvNV”'(x,tXX:L —3%(20 /A —1)+ K0A1/2[1 - VNV()Cat)]S/2 =0, [17]

where W = ¢/A defines the beam deflection relative to the static Hertzian
deformation with K, = K JR. (K and R were defined in section 2.1.) Note that the
beam remains in contact with the surface as long as w(L,f) < 1. Finally, the term in
Eq. [17] with the 3/2 exponent is expanded in a Taylor series expansion about the
equilibrium position, W (L,f) = 0. The result is

ERV" = 0 — k" — K, W, [18]

where the linear and nonlinear spring constants are given by

K=%KOA‘/2, KlngOA”, KZZ%KOAM. [19]

The linear spring constant « is identical to that in section 2.2. The nonlinear spring
constants x; and «; arise because the contact area is a function of applied load. They
are not related to nonlinear elastic behavior in the tip or sample, since linear elastic
behavior is assumed. The error in this type of expansion is less than 1% over the
range in which the contact is not lost [TURO03]. A similar type of expansion has been
successfully used to model Hertzian contact vibrations in single-degree of freedom
systems [BRY85].

The nonlinear response is analyzed using the method of multiple scales. From a
practical standpoint, the response of interest is that of a forced system with damping.
The corresponding contact boundary condition is written as

ER" — K% — £°ci + g% W+ & %v@ =&"FcosQt » [20]

where F is the forcing amplitude and ¢ is a dimensionless parameter introduced to
order the different scales of the nonlinear problem. The forcing frequency Q is
assumed to be near to one of the natural frequencies of the system, ,,. Thus, it is the
primary resonance response that is examined here. A reduced analysis of this
nonlinear vibration problem is given here. The interested reader is referred to the
more complete description given in [TURO03]. The method of multiple scales is
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based on the premise that multiple time scales are involved in the nonlinear
vibrations. The response is expanded as

W T,,T,,...)=W,(x;T,, T,,..)+ e, (x; Ty, Ty, )+ €790, (55 T, T ), [21]

where Ty, Ty, and 7, are the different time scales of the problem, T, =¢&"t with ¢
defined as the scaling parameter. The expansion is substituted into Egs. [10], [11],
and [18] and like orders of ¢ are collected. This procedure clearly defines three
different sets of partial differential equations governing the wy, w;, and w, responses
referred to as the order &’, &', and & problems, respectively. When the response near
a resonance is examined, the solution to the ¢° problem is the linear response given
in section 2.2 with a time varying amplitude Vv(x,z) =4, (T] , T, )e[“’"’TU w, (x), for the
mth mode. The solution to the &' problem shows only that the 7} time scale is not a
part of the solution, i.e., 4 =4, (Tz) This type of result is often the case in
nonlinear problems such as these [NAYO00]. Finally, the &* problem is solved such
that the frequency shift, or detuning parameter I', as a function of excitation
amplitude is determined. The natural frequencies shift by an amount ¢’I', where I is
governed by

2
K, 2 K,
6W\2e, |- -3
(EI/EM ey 3+x/(EL/ L) EI/LJ ) 1 [aF?r [22]
L p+ -c’w

s

" 4P(kL o, " P(kL)w, \ p? "

where p is the real vibration amplitude. In Eq. [22], the functions G and P are given
by

(cos;(cosh ;()(sinh;( —sin ;()+ (cos;( —cosh ;()(sin;( + sinh )()
G(Z) =73 3Was e >
7°(1+cos ycosh y)— (K/(EI/L )Xsmh)(cos;( sin y cosh z) [23]

Ply)= 3y?(cos y +cosh y Y1+ cos  cosh ) - sin y sinh y(sin y +sinh »)

7’ (cos 7 +cosh }/)2 [24]
kK sinysinh y(cos ¥ +cosh }/)+ (1 +cos y cosh 7)(cosh ¥ —cos y)
EI/D 7*(cosy +cosh y )’ -

The dependence of the nonlinear response on the different modes is included in the
amplitude-frequency relation by the functions G and P.

Example results highlighting the nonlinear frequency shifts for this problem are
illustrated in Figs. 5 and 6. Figure 5 shows the change in amplitude as a function of
detuning parameter I" for several values of forcing level (x = 100EI/L’; ¢ = 0.2).
Both the first and second modes are shown. The nonlinear softening behavior
characterized by a decrease in frequency with amplitude is clear. For the chosen
parameters, the first mode is predicted to lose contact (p > 1) for the highest forcing
amplitudes. The second mode, however, is predicted to remain in contact for all
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values of F examined and it has a maximum value of I" of about —2. Figure 6 is an
example of the modal sensitivity to the nonlinearity. The nonlinear primary response
of the first and second modes is shown for two values of k. For the two values
chosen, the first mode frequency shift is similar, although the magnitude and loss of
contact are different. The second mode, on the other hand, has a much stronger
response to the nonlinearity when x = 400EI/L’. This type of sensitivity to the
contact has been noted for linear vibrations as well [TURO1].

Mode 1
B=100

0.8
>
,_8 0.6
=
&, 04
£

0.2

% _ 5 2 1 o 1 o

Detuning parameter, I’ Detuning parameter, I"
(a) (b)

Figure 5. Example results for the primary nonlinear response for four values of forcing amplitude
F with damping constant ¢ = 0.2. The dimensionless contact stiffness x = 100EI/L®. The (a) first and
(b) second modes are shown.

1
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EIL) = 50 Mode 2
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é 0.6 0.6
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< IEIL) = 400
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O L 0 I Il 1 1 1
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Figure 6. Nonlinear frequency shift of the (a) first and (b) second modes for two values of linear
stiffness x with ¢ = 0.2. These plots illustrate the modal sensitivity to nonlinearity.
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The expression for the detuning parameter I' includes the linear (x) and two
nonlinear (xy, ;) spring constants used in the expansion of the Hertzian contact. The
dependence on x and x; is fairly clear since these terms appear directly in Eq. [22].
The dependence on «; is less clear because it is multiplied by the factor G(y), which
is dependent on the particular mode. In order to understand the nonlinear behavior in
terms of the x; dependence, calculations for various values of x; were made. The
values used for x; correspond to multiples of the Hertzian value of (xi)y = x/4 as
given above. Here, both larger and smaller values of x; were examined. Figure 7
shows results for the first and third modes in which x; = C(x;)y, where the constant
C is one of five values, C = 0.5, 0.75, 1.0, 1.25, 1.5. This analysis is relevant for tip
mechanics models that differ from the Hertzian model. Figure 7(a) shows the
dependence of the first mode on values of x; for x = 50EI/L*, ¢ = 0.09. The
maximum frequency shift is seen to increase as x; increases. Although this type of
result may be expected, it is not guaranteed. As shown in Fig. 7(b), the nonlinear
response of the third mode is much more complicated. The degree of response is not
monotonic as is the first mode. Again, the modal sensitivity is expected to play a
role in this complicated behavior. Such nonlinear softening has been experimentally
observed [RAB99, MURO1].

Detuning parameter, I
()

Detuning parameter, I’
(b)

Figure 7. Change in response of the first mode (a) and third mode (b) for varying values of x;
relative to the Hertzian value of (k1) 4 = x/4. The curves correspond to the ratio of C = xy/(x1)n for

heuristic arguments (x = 500E1/L, ¢ = 0.025).

2.4. Flexural-Torsional Mode Coupling
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The flexural type of AFM response discussed thus far is important for a number
of applications in which the out of plane displacements are of primary interest. In
other cases, the sample is excited perpendicular to the AFM cantilever, such that
torsional modes are excited. This behavior is also important for investigating the
friction of the tip-sample contact. As the study of these flexural and torsional modes
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has progressed, some interesting dynamics have been observed. In this section, one
of those phenomena, the observed coupling between different mode types, is
examined [REIO3]. It is shown that the cantilever design controls this modal
coupling behavior.

Consider the isotropic, elastic beam
d — —
= )

of length L shown in Fig. 4. As
considered in section 2.2, it is
cantilevered at x = 0 and has a tip at x
= L. Here, a lateral tip-sample spring is
included in the problem as shown in

h
Fig. 8, an end view of the cantilever.

< AFM tip

The tip is assumed to have mass m, and AN

height h. The tip is coupled to the

specimen surface through linear X

springs of stiffness x, and x;, which

define the normal and lateral spring NN

constants, respectively. The tip is also . ) . .
Figure 8. End-view of the AFM cantilever

assumed to be offset shghtly. from the showing the normal and lateral springs attached
area center of the cross-section by an to the AFM tip.

amount d.
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The long aspect ratio of typical AFM cantilevers lends itself to a simplified
analysis. The vibrations are separated into bending and twisting motion. The motion
is described by two partial differential equations (one for flexure and one for twist)
in which the variable X is given in units of cantilever length L

""(x 1)+ pALVi(%,t) =0, [25]

%;ﬁ”(g,r)— pILP(x,1)=0. [26]

In Eqgs. [25]-[26], p is the volumetric density, 4 is the area of the cross-section, J is
the polar moment of area, £ is the Young’s modulus, and G is the shear modulus.
The torsional constant ¢ is used to describe the warping of the cross-section
[TURO1]. The boundary conditions used here are given by

w(x,1)=0, w(%,t)=0, ¢(x,1)=0, at x =0, [27]
w'(%,1)=0, atx=1,  [28]
and
W)= Bon(e0) -, Lol ) [W(x ;)_dqz(x,t)j,
El / L atT=1.  [29]
¢(x,0)=—po(,1)- (X, 1)+ ———(dLii(x, 1) - d*§(%.1))>

G§/L GEIL
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The dimensionless quantities 4, and £ are given by

K Kh

T ey

[30]

Seeking harmonic solutions of the form w()?,t): W(?c)e"”’ and ¢(x,1)= D ()™,
and substituting into Egs. [25]-[29] gives

m(—=\_ ,DAL 2 =\ _

w"(x) 210 w(x)=0, [31]
n— pJL 2 =\ _

() (x)+7G§/L @’ ®(x)=0, [32]

with boundary conditions

w(x)=0, w'(x)=0, ®(x)=0, at x=0, [33]
w"(x)=0, atx=1, [34]

2

W)= p(E)-p, L ale)- e (W<x>—dq><x>}

L 7 EID L wEo1. (5]
(%)=L 0(3)- G; LIV (%)~ g’;/’L (aLw (x)- d>o(x))

The general solutions to Egs. [31] and [32], Eq. [14] and CD(?C)zCsinifc,
respectively, satisfy all but the coupled boundary conditions (Eqs. [35]). The
flexural and torsional wave numbers, y and 7, respectively are related through the
dispersion relations

3
ot =yt EUL o GEIL
PAL pJL

[36]

The coupled boundary conditions are now written in terms of the wave numbers as

Wm()_c) = ﬂnW(J_‘)_/I}/4W(J_C)—ﬂn‘P()_c)+ /,[7/4lP(f), )
P(F)= -4 ¥ (x)+ ()= 5, %%W(f)— ¢y (), wrmh B
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where 1 =m, /(pAL), ¢ =md’ /(p]L), and l{i(g):%@(}). Substitution of the

general solutions into Eqs. [37] gives a set of two equations for C and D. The
determinant of the matrix of the coefficients on C and D gives the characteristic
equation for the natural frequencies of the system. The zeroes of this equation are
the wave numbers. The flexural and torsional wave numbers y and 7, respectively
are no longer independent as seen in Eq. [36]. This relationship is given by

77=H72 where
3
o |EUL pL 8]
AL GEIL

It is this parameter H that determines the likelihood of modal coupling.

Modal coupling that has been observed experimentally [REIO3] occurred when
the cantilever was not in contact with a specimen. For this special case, £,= =0
such that the final boundary conditions in Eqs. [37] reduce to

W (%) + iy W (%)= oy ¥ (%)= 0, ax=1.  [39]
W(x) - (%)+ g (x)=0,

The general form of the solution is substituted and the determinant of the
coefficients is set to zero. The resulting characteristic equation is

(sin y cosh ¥ — cos y sinh ;/)7/;1 cosHy’

40
+(COS]/COSh}/+1)(§H}/2 sin Hy? —cosH;/Z):O. 140]

When the tip mass is zero, u = {'= 0, and the characteristic equation reduces to
(cosycosh}/+l)cosHy2 =0, [41]

giving both the flexural and torsional solutions. When the tip offset is zero, = 0,
u # 0 and the characteristic equation is

siny cosh y —cosy sinh 7 )yu + (cos ¥ cosh y +1)|cos Hy*> =0, [42]
[ I+ )

corresponding to a multiplicative combination of the characteristic equations for a
cantilevered beam with a mass at the end and that for a torsional cantilever. From
experimental data given in [REI03], estimates on the necessary parameters may be
made to find that H = 0.025.
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The ratio of the tip mass to cantilever mass y is estimated to be less than 0.02.
The ratio of the tip inertia to cantilever inertia ¢ is simplified to

d2 2 2
p=e M 2d . zlzlud—z, [43]
PJIL PAL (a +t ) a

if a >>t. Thus, if d ~ 1 um, ¢~ 0.02u. Using these values, Eq. [40] is solved for the
wave numbers y. The frequencies are then calculated. The mode shapes are a
combination of the flexural and torsional solutions. The weighting of the combined
solutions depends on the type of and degree of coupling as well as on the excitation
method. Two modes have frequencies very near to each other. The third flexural
mode (mode 3) and the first torsional mode (mode 4) lie with 5 % of each other.
Thus, during forced vibrations, they are often excited simultaneously. Figure 8
shows an example of the types of mode shapes that can arise when these modes
couple. In this case, the combined shape is partially flexural and partially torsional.
The mode shapes shown in Fig. 9 are similar to the experimental mode shapes
measured using a laser interferometer [REI03].
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Figure 9. Profiles of the cantilever displacement for the third (top) and fourth (bottom) modes,
calculated from the flexural/torsional coupling model with H = 0.025. When the frequencies are
close together, small perturbations cause the modes to couple.

The coupling parameter H determines how close in frequency the flexural and
torsional modes will be. In the example shown in Fig. 9, H was estimated to be on
the order of 0.025. If this value is changed, the frequencies of these coupled modes
change relative to one another. Plots of the third and fourth natural frequencies as a
function of A is shown in Fig. 10(a). In the range of H plotted, the third and fourth
frequencies (third flexural and first torsional modes) come close together, but never
intersect. This type of mode veering is typical of systems with sets of orthogonal
modes. A similar type of coupling is also predicted for other values of H. Figure
10(b) shows the fourth and fifth natural frequencies for this system as a function of
H. Thus, in order to couple the fourth flexural with the first torsional, H must be
approximately 0.013. Similar mode veering behavior is seen for these modes as
well. This type of analysis is expected to be important in design of AFM cantilevers,
either to avoid this type of coupling or to enhance it.
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Figure 10. Natural frequencies as a function of the coupling parameter H. In (a), the coupling of the

third flexural mode (blue) with the first torsional mode (green) is predicted. In (b), the coupling of

the fourth flexural mode (green) with the first torsional mode (blue) is predicted. The phenomenon
of mode veering is observed in both cases.

3. Experimental Techniques

In this section, experimental techniques are described that utilize the vibration
behavior of the cantilever to characterize a sample’s elastic or mechanical
properties. As is often the case, different experimental approaches may be more or
less suited to a given set of conditions (material class, cantilever type, etc.). The
purpose here is to present each method in context with the others, such that a
knowledgeable reader can determine the best technique for a given situation. All of
these methods involve relatively simple modifications to standard AFM equipment.
The modifications typically make use of other commercially available laboratory
instruments. Access to the unprocessed output signals from the AFM apparatus is
also required.

One dynamic AFM approach uses the resonant modes of the cantilever to
distinguish surface and near-surface mechanical properties. This type of linear
spectroscopy method has been used by several groups [RAB94, YAM99, RABOO,
CROO00, HURO3]. In such experiments, the forcing amplitude is kept small enough
that a linear approximation to the force-depth curves shown in Fig. 3 may be
assumed. During one period of oscillation, the change in tip force and indentation
depth is small. In contrast, the nonlinear techniques discussed later in this section
[KOL93, YAMO94, DINOO] use forcing amplitudes that are much higher. In this case,
a relatively large portion of the force-depth curve is traversed during one period of
excitation. For both methods, the basic physical and experimental concepts are first
presented. Their use for quantitative measurements is then described and issues
relevant to imaging are discussed. It is anticipated that this section provides a
snapshot of the state of the art in dynamic AFM experiments.
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3.1. Linear Cantilever Spectroscopy Methods

Linear cantilever spectroscopy approaches use information about the cantilever’s
resonant frequencies to characterize a material’s mechanical properties. The
technique was first developed by Rabe and coworkers [RAB94, RAB95, RABO0O]
and is usually called atomic force acoustic microscopy (AFAM). A very similar
method, called ultrasonic atomic force microscopy (UAFM), has been developed by
Yamanaka et al. [YAM96, YAM99].

The basic components of a typical experimental apparatus for AFAM
measurements are illustrated in Fig. 11. As seen in the figure, the AFAM apparatus
is based on a standard AFM instrument. The specimen under study is bonded to a
commercial ultrasonic transducer or other piezoelectric element that is mounted on
the AFM translation stage. A longitudinal transducer works best for exciting flexural
modes, while a transverse (shear) transducer is well-suited for torsional modes. The
transducer response should be optimized for the range of the cantilever’s resonant
frequencies; therefore, it typically has a center frequency of ~1-2 MHz. A
continuous sine wave signal from a function generator is used to drive the
transducer. In this way, resonances are excited in the cantilever when it is in contact
with the sample. The amplitude of the cantilever deflection is monitored by the
standard AFM differential (split) photodiode. Because the photodiode signal may
contain several frequency components, various lock-in techniques have been
implemented to isolate the signal at the excitation frequency.

AFM Split Photodiode
\ Lock-in

AFM Laser K— Amplifier

AFM Cantilever \\ / .
Ultrasonic Transducer

> Function Generator Computer

X-Y Translation Stage |

Figure 11. Schematic of apparatus for cantilever spectroscopy measurements.

In UAFM, the piezoelectric excitation element is incorporated into the clamped
end of the cantilever or the cantilever holder, rather than beneath the sample. If the
existing piezoelectric element of the AFM (e.g., for cantilever “tuning”) does not
possess sufficient bandwidth for the cantilever’s range of resonant frequencies, it
may be necessary to introduce an additional piezoelectric element into the cantilever
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holder. This modification can be difficult to implement in practice due to space
constraints on the cantilever holder. However, there are certain advantages to this
arrangement. For instance, access to only one side of the specimen is needed, and
thick samples present fewer problems.

3.1.1. Quantitative Techniques

Quantitative measurements with spectroscopy techniques require information
about the cantilever’s resonant spectrum under two circumstances: when the
cantilever vibrates in free space, and when it is in contact with a sample material. In
this section we explain in detail how such information can be interpreted to obtain
elastic properties. For clarity, we will limit the discussion to the approach used in
AFAM. The specific details of the UAFM approach are somewhat different,
although equally valid [YAM98, YAM99].

The following procedure has been used for quantitative measurement of the
elastic modulus at a fixed sample position. First, the free-space resonances of the
cantilever are measured by sweeping the function generator frequency while the
cantilever remains out of contact with the sample. The transducer’s vibrations are
sufficiently transmitted through the air to excite the cantilever resonances. As shown
below, knowledge of the free-space resonances is needed to characterize the
properties of the specific cantilever in use. The cantilever tip is then brought into
contact with a “reference” (calibration) sample. Resonant spectra are acquired for
one or more values of sample offset. Measurements are typically made at three
different offsets in the range 10-50 nm. For cantilevers used in AFAM experiments
on relatively stiff materials (e.g., metals or ceramics), the corresponding applied
force is in the range 0.1-3 pN. Next, the cantilever is brought into contact with the
“test” (unknown) specimen. The resonances are measured for the same offset values.
Finally, the measurements are repeated on the reference sample in order to check for
effects such as tip wear. Examples of the resonant spectra for the first and second
flexural modes during contact with a sample of single-crystal silicon are shown in
Fig. 12.

From the experimental resonant frequencies, values are calculated for x/k., the
tip-sample contact stiffness x relative to the cantilever spring constant k., for both
the test and reference materials. The calculation is based on models for the tip-
sample contact and cantilever dynamics such as those described in section 2.
Numerical methods, such as the finite element method [HURO03], may also be used
to model the cantilever response. From values of x/k. and knowledge of the
reference material’s elastic properties, the reduced Young’s modulus E* for the test
material can be calculated [RAB02a]:

n
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where the exponent n may characterize a flat punch (#z = 1) or spherical (n = 3/2)
contact and the subscripts on E" refer to the test and reference materials. The
indentation modulus M, of the test sample is then determined from E;s . using Eq.
[1] and knowledge of the cantilever tip properties.
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Figure 12. Spectra of the (a) first and (b) second cantilever flexural resonances on single-crystal
silicon for 15, 25, and 35 nm offsets. Higher offsets cause the frequencies to shift higher due to the
increased contact stiffness. The free vibration frequencies of this cantilever were 295 and 1627 kHz.

Comparison with a reference material of known elastic properties avoids the
need for precise knowledge of the tip-sample contact area, which can be quite
difficult to determine directly. It should be noted, however, that because x/k,
depends on the contact area, the comparison method relies on the assumption that
the contact geometry is identical for the test and reference materials. The use of
multiple reference samples has been used to improve the measurement of the
unknown [PRA02, HURO3]. An alternative approach that avoids this assumption
using a tip shape estimation procedure has also been developed [YAMOO].

In theory, the frequency of any single flexural resonance could be used to
determine x/k.. In practice, the frequencies of two or more modes are measured and
x/k. is calculated for each one. This practice is partially motivated by the fact that
one mode is usually more sensitive than others to changes in x/k. [TUROI].
Moreover, the experimental values for x/k. obtained for different resonances
typically do not exactly agree. The possible reasons for this disagreement are still
under investigation. One source arises from the imprecise knowledge of the exact
location of the tip. The characteristic equation, Eq. [15], was derived assuming that
the tip position relative to the clamped end of the cantilever, x = L, is the very end
of the cantilever (i.e., L; = L). Equation [15] may be modified to include a variable
tip position L; < L [RABOO]. In this case, x/k. is plotted as a function of L, for each
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flexural mode. The value of x/k. where the curves for different modes intersect is
taken as the solution for «/k.. Thus, L; can be considered as an adjustable parameter
in this approach. Typically, L; = 0.91 — 0.99 depending on the specific cantilever
geometry and other experimental variables. It must be noted that this analytical
model should not be applied to cantilevers whose properties are not uniform over
their entire length, such as beams with a large triangular section. However, the
analytical model has been shown to compare well with more geometrically accurate
numerical models [HURO3], if the nonuniformity extends over a relatively small
portion of the beam (< 5 %).

Comparisons of AFAM results with those from other techniques for the same
sample have shown that linear spectroscopy methods can yield accurate quantitative
values. In particular, measurements by Hurley et a/. [HUR02, HURO3] on thin films
have shown very good agreement with values obtained by nano- or instrumented
indentation testing (IIT) and surface acoustic wave spectroscopy (SAWS). A subset
of those results is given in Table 1. The stated range of AFAM values appears rather
large because it includes the values calculated by different methods (analytical and
numerical) from the same measurements and includes results from two different
reference materials.

Table 1. Comparison of indentation modulus M (in GPa) for
aluminum and niobium thin films obtained by different techniques
[HURO3]. The values were calculated using » = 1 in Eq. [44].

material | literature values SAWS HT AFAM
Al 76 -81 79+1 86+4 55-81
Nb 116 - 133 121+7 97 +10 86 — 135

The work described above demonstrates the basic validity of AFAM techniques
for quantitative determination of elastic properties. However, a comprehensive
analysis of the measurement uncertainty budget has not yet been performed. To
improve the precision and accuracy of quantitative AFAM methods, several sources
of uncertainty should be more thoroughly examined. For instance, although quoted
values usually represent an average of multiple measurements, careful estimates of
measurement repeatability have not been made. Factors affecting measurement
repeatability for a given system include spatial inhomogeneities in material
properties (e.g., roughness, mechanical properties), variations in relative humidity
that might affect tip-sample contact mechanics, and variability in contact area
arising not only from tip wear but potentially also from tip nano-asperities.

As suggested above, the assumption that the tip-sample contact area is the same
for both test and reference material measurements requires careful scrutiny. The
accuracy with which M, and M, are known also impact the ultimate measurement
accuracy. On a related note, it would be valuable to develop guidelines for choosing
a suitable (that is, sensitive) cantilever for the material system under study.
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3.1.2. Imaging

The spectroscopic information used to make quantitative AFAM and UAFM
measurements at fixed sample position may also be used to create maps or images
related to local variations in the surface elastic stiffness [RAB95, YAM96]. The
spatial resolution of such images corresponds roughly to the tip-sample contact
radius, which is typically in the 10-100 nm range. Images are generally obtained
with a fixed excitation frequency, although a variable frequency-tracking approach
has also been demonstrated [YAMO1]. For fixed-frequency images, the intensity of
a given image pixel represents the amplitude of the cantilever vibration detected at
the corresponding position on the sample. The imaging frequency is chosen
according to spectral information obtained in the manner described in section 3.1.1.
The frequency is selected to fall on the shoulder of a resonant peak in a
representative region of the material. During scanning, the frequency of the resonant
peak shifts higher in regions of higher stiffness. Thus, if the imaging frequency is
lower than the average contact frequency, higher stiffness regions correspond to
lower image amplitudes. If the imaging frequency is higher than the average contact
frequency, higher stiffness corresponds to higher image amplitudes. In most cases,
topography and stiffness images may be obtained simultaneously.

Using such imaging techniques, the nanoscale mechanical properties of various
material systems have been investigated, for instance piezoelectric ceramics
[RABO2a] and carbon-fiber-reinforced polymers [YAMO98]. Figures 13 and 14
contain examples of topography and AFAM images [BUTO03, NIL02]. Figure 13
shows images corresponding to an interface of two aluminum particles that have
been partially sintered. The sinters were formed from high-purity aluminum powder
with an average particle size of 50 pm. The sample in Fig. 13 was sintered at 580 °C
for 22 minutes. Although the topography is relatively smooth, the AFAM image
reveals the interface of the particles. Knowledge of the AFAM excitation frequency
reveals that the interface is stiffer than the particle core. Figure 14 shows topography
and AFAM images for a sample of polycrystalline silicon used in
microelectromechanical system (MEMS) structures. The topography reveals
information about the grains. More importantly, the AFAM image indicates
differences in stiffness from grain to grain. In addition, stiffness variations within
grains due to twinning are observed, such as the grain shown in the lower-right-hand
corner of the image. It should be stressed that the combination of topographic and
AFAM information is needed to interpret the AFAM images appropriately.
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Figure 13. Topography (a) and AFAM (b) images of sintered aluminum particles [BUTO03].
Although the particle interface is topographically smooth, it is stiffer than the particles themselves.
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Figure 14. Topography (a) and AFAM (b) images of a polycrystalline silicon MEMS sample
[NILO02]. The amplitude variations within individual grains (e.g., the lower-right-hand grain) are
related to differences in stiffness from twinning.

These examples reveal the value of dynamic AFM imaging for enhanced
understanding of nanoscale mechanical properties. To date, imaging techniques have
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almost exclusively provided qualitative maps of relative properties only. Although
simple contrast images can be invaluable, quantitative images of absolute properties
is ultimately desired. This goal remains elusive. Partial progress has been made with
a frequency-tracking approach [YAMOI] and by time-consuming pixel-by-pixel
spectrum acquisition [RABO02b]. Regardless of the specific approach, development
of a tip-sample interaction model to calculate modulus values from the frequency
information in each image pixel is still needed. This task is not easy, due in part to
the sheer number of independent experimental parameters available that can
significantly affect the final image.

3.2. Nonlinear Force Curve Methods

The cantilever spectroscopy methods described in section 3.1 rely on information
about the vibration frequencies of an AFM cantilever when it is in contact with a
specimen. The excitation amplitude is kept small such that linear theory may be
applied. However, one can also obtain mechanical-property information using much
higher excitation amplitudes. In this section, these techniques are discussed.
Although the techniques are fundamentally based on cantilever dynamics, the
response of the AFM cantilever is very different than that described in section 3.1.

3.2.1. Measurements and Analysis

Nonlinear force curve methods represent variations of the basic ultrasonic force
microscopy (UFM) technique [KOL93, KOL98, DINO00]. The experimental
apparatus is similar to that shown in Fig. 11, but involves different excitation and
detection signals. Instead of the constant-amplitude excitation signal used in AFAM
and UAFM experiments, in UFM the ultrasonic continuous sine wave signal is
amplitude modulated. The ultrasonic oscillation frequency is typically 2 MHz or
higher, while the modulation frequency is in the 1-10 kHz range and possesses a saw
tooth, trapezoidal or other shape. An example of a modulation amplitude profile is
shown in Fig. 15(b). The force-depth curve shown in Fig. 15(a) illustrates that as the
excitation amplitude increases, the tip experiences increasingly nonlinear forces in a
single cycle. For a sufficiently large excitation amplitude a,, the cantilever tip breaks
free from the surface in each cycle. At this point, the low-frequency AFM tip
deflection signal exhibits a discontinuity (“tip jump”) as illustrated in the upper part
of Fig. 15(b). The sharpness of the discontinuity is dependent on the tip-sample
contact — harder contacts have sharper discontinuities than softer contacts (depicted
in Fig. 15(b)). The cantilever deflection can be detected either through direct
observation with a digital oscilloscope or through lock-in techniques at the
modulation frequency. It should be noted that the static forces applied in UFM
experiments are typically much lower than those used for resonant methods
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(approximately tens, versus hundreds, of nN). Therefore, the chances of damage to
the sample are reduced.

As with linear cantilever spectroscopy methods, the most direct way to obtain
quantitative information with nonlinear force curve methods requires knowledge of
the measured AFM tip profile. Such information is needed to relate the measured
contact stiffness to the material’s elastic properties. Because it is difficult to
characterize the tip directly, approaches that eliminate the need for such information
have been developed. UFM methods for obtaining quantitative elastic-property
information were investigated extensively using an approach called differential
UFM [KOL93, DINO0O]. With this method, the cantilever response was measured for
two different applied forces. The corresponding threshold amplitudes, that is, the
amplitudes at which force jumps occurred, were determined. The difference in
applied force divided by the difference in threshold amplitudes is approximately
equal to the slope of the force-depth curve between the two applied forces. This
slope can be related to the contact stiffness via an appropriate contact mechanics
model. Note that care should be taken in specifying absolute values of the applied
force. Thus, precise knowledge of k. is required, although accurate values are not
always provided by cantilever vendors.

AFM tip deflection

° /

2

it

Tip jump
Set-point l ai
Penetration Depth
/&/ Modulatjon amplitude
Pulloff +2a0—¥
-« 291 B —— .

(a) (b)

Figure 15. Schematic of nonlinear force curve principles. The force-depth curve shown in (a)
illustrates that as the excitation amplitude increases, it eventually exceeds the pull-off force and the
tip leaves the sample surface. At this point, a jump in the tip deflection signal is observed. The
modulation amplitude and corresponding AFM tip deflection are shown in (b).

An additional assumption made in UFM measurements is related to the dynamic
behavior of the AFM cantilever. The cantilever is usually regarded as a point mass
with no dynamic response at high frequencies [KOL9S8]. For a cantilevered beam,
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the linear response w(x,f) to a high frequency excitation is a superposition of all
modes given by

0

wlt)= 32 g, [45]

2 2
nml Wy — Q

n

where Q is the excitation frequency, w, and W, the resonance frequency and mode
shape of the nth mode, and B(¢) is the modulation amplitude. Because B(f) varies in
time over a relatively large portion of the force-depth curve, the effective
frequencies and mode shapes are not well defined. Their average value is related to
the integrated response over one period. In addition, if Q is close to a cantilever
resonance, the response amplitude will be very large. Q must therefore be tuned to
avoid any cantilever resonances. However, if the excitation amplitude is not near a
resonance, w(x,f) in Eq. [45] can be very small. The specifics of the cantilever
spectrum and contact behavior determine how small the linear response is and
whether it is “dynamically static” [DINOO]. Thus, it is still unclear whether the
response observed in UFM experiments is due to a linear response averaged over a
nonlinear profile or due to more complex nonlinear behavior, such as described in
section 2.3 and in [TURO3].

The application of UFM techniques for quantitative measurements of local
material stiffness is inherently dependent on many factors, but is dominated by the
behavior of the cantilever and the tip-sample contact mechanics. Data from
nonlinear force curve techniques are more difficult to quantify and interpret than
results from linear cantilever spectroscopy methods, although a value of local
stiffness can be extracted. For either approach, appropriate contact mechanics
models are needed to extract meaningful modulus information from the contact
stiffness results. Thus, the interdependency of the experimental and modeling
efforts, and the need for simultaneous development of both, cannot be
overemphasized.

3.2.2. Imaging

The UFM methods described in section 3.2.1 have also been successfully used to
obtain images related to local stiffness with nanoscale resolution. The low-frequency
tip deflection is measured in several locations for several applied static forces. Based
on this information, an applied force and excitation amplitude are chosen for
imaging. The objective in imaging is to sense small changes in local properties with
the AFM tip deflection. Thus, the largest changes in AFM tip deflection will occur
when the excitation amplitude is chosen near the value of a; in Fig. 15b. As with
linear methods, the local response to the chosen force and amplitude depends on
both the local stiffness and adhesion. UFM imaging methods have been used to
investigate applications involving a wide range of materials, including subsurface
cracking in polymer/glass nanocomposites [McGO02] and process-induced
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mechanical variations in aluminum/polymer microelectronic test structures
[GEEO2]. In addition to the basic UFM approach described here, other variations
have been developed and implemented for imaging. Among these are waveguide
UFM [INAO0O] involving very high-frequency ultrasonic vibrations (50-100 MHz),
and heterodyne UFM [CUBO00], in which excitations at two ultrasonic frequencies
are mixed and the signal at the difference frequency is detected.

4. Summary

In this chapter, atomic force microscopy (AFM) techniques for assessing
mechanical properties with nanoscale resolution have been examined. Many of these
techniques are dynamic methods coupling ultrasonic or acoustic vibrations with
basic AFM techniques. Thus, a fundamental understanding of dynamics of the AFM
cantilever beam as it interacts with the sample surface is of great importance. The
cantilever dynamics have been examined in terms of linear and nonlinear flexural
vibrations and flexural/torsional coupling. It was shown how the linearity of a given
system is determined by the tip-sample interaction as a function of vibration
amplitude. Different tip-sample interaction models were also discussed.

The practical implementation of two types of dynamic methods was also
presented. Linear cantilever spectroscopy methods rely on small-amplitude
excitation and high-frequency detection schemes. The resonances of the cantilever
in free space and in contact with a specimen are used to deduce the local contact
stiffness. Nonlinear force curve methods use a high-frequency harmonic excitation
with a low-frequency amplitude modulation. The excitation amplitude is sufficiently
large that the AFM tip is driven off the specimen surface during a portion of the
modulation. Low-frequency detection schemes are sufficient for obtaining the tip
response curve and for imaging. Both the linear and nonlinear approaches can be
implemented with relatively minor adaptations to a conventional AFM. Although
the basic apparatus is straightforward to implement, at present data acquisition and
interpretation remains challenging.

Many of the fundamental theoretical concepts and measurement principles
related to dynamic AFM methods have been presented here. From this summary, it
should be clear that further research efforts are needed to continue the advancement
of these promising methods. The measurement of mechanical properties at the
nanoscale is essential to the development of new nanoscale materials and structures.
It is anticipated that these types of dynamic AFM techniques will continue to
develop and will play a crucial role in future nanotechnology efforts. Combined
theoretical and experimental research is critical for the full potential of these
techniques to be reached for effective characterization of new nanoscale materials
and devices.
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ABSTRACT

The scattering of elastic waves in polycrystalline materials is relevant for ultrasonic materials
characterization and nondestructive evaluation (NDE). Ultrasonic attenuation is used widely to
extract the microstructural parameters such as grain size. Accurate interpretation of experi-
mental data requires robust scattering models. Such models typically assume constant density,
uniform grain size and ergodicity hypotheses. The accuracy and limits of applicability of these
models cannot be fully tested with experiments due to practical limits of real materials process-
ing. Here, this problem is examined in terms of numerical simulations using Voronoi polycrystals
that are discretized using finite elements. Wave propagation is studied by integrating the system
directly in time using a plane-strain formulation. Voronoi polycrystals with cubic symmetry
and random orientations are used making the bulk material statistically isotropic. Example
numerical results for materials with various degrees of scattering that are of common interest

are presented. Simulations are also presented for these materials. The numerical results are
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presented and compared with scattering theory for a wide range of frequencies. The numerical
results show good agreement with the theory for the examples examined with evidence that the
correlation function is frequency dependent. These results are anticipated to impact ultrasonic

NDE of polycrystalline media.

PACS numbers : 43.20.Bi, 43.20.Gp, 43.35.Cg



I INTRODUCTION

Ultrasonic techniques are widely used to extract microstructural parameters from polycrystalline
media such as grain size and grain texture. Often, these techniques rely on the scattering
behavior of the waves that interact with the heterogeneous microstructure. The amplitude of
the propagating wave reduces due to this scattering, a phenomenon called attenuation. Grain
parameters and flaws can often be inferred if the attenuation in the material is measured. The
frequency dependence of attenuation can also be related to the grain diameter. In general, there

are three distinct regions of attenuation « for a given grain size D and frequency f as'

ax f* for A>D,
aox f2 for A~D, (1)
ax1/D for A<D,

where ) is the wavelength. These scattering regimes are often denoted as the Rayleigh (A > D),

stochastic (A ~ D), and geometric optics (A < D) regimes.

Scattering theories have been developed for decades to describe the scattering attenuation.
Bhatia?-? discussed this dependence of attenuation on these parameters and developed a model
for the attenuation assuming small variations in the elastic moduli from grain to grain for the
Rayleigh regime. In this theory, it was assumed that the grains were spherical with weak
anisotropy and random orientation. Hirsekorn calculated the attenuation as a function of wave
number and grain radius without the limitation of the Rayleigh assumption,*® for different wave
types in polycrystals with any symmetry. Finally, Stanke and Kino utilized stochastic operator
methods to develop a unified theory of ultrasonic scattering that covers all frequency regimes.®

This model, and equivalent models that followed,” provided a self-consist method for determining

attenuation in polycrystalline media.

The validity of these scattering theories is often corroborated through comparison with exper-

imental attenuation data. Ultrasonic attenuatiog measurements are most often made by exciting



an ultrasonic wave at one surface of the specimen using a transducer. The same transducer is
then used to measure the material response that consists of successive reflections from the two
parallel faces of the specimen. The measured amplitude decay can then be used to deduce the loss
of energy due to scattering assuming that other factors, such as beam spreading, that may con-
tribute to the loss of amplitude are appropriately included in the data reduction. The comparison
of theoretical and experimental attenuation data is nontrivial for several reasons. Among these is
the fact that the theories usually oversimplify the material microstructure, including assumptions
of constant density, a single grain size and no texture. Real microstructures, however, include
all of these complications to some extent such that a precise comparison is seldom possible. On
the other hand, numerical models of elastic wave propagation in complex microstructures can be
developed to match precisely the assumptions of the theoretical models such that their range of

validity may be explored more thoroughly.

A variety of numerical methods have been used for examining wave propagation in hetero-
geneous media including the finite difference (FD) method,® the FD pseudospectral method,?
the boundary element method,!® and the elastodynamic finite integration technique (EFIT)!! 12
among others. Although each of these methods may be effective for certain wave problems in
heterogeneous media in general, none is specifically suited to polycrystalline media. Thus, a new

numerical model is needed for this important class of problems.

In this article, the finite element method (FEM) is used in conjunction with Voronoi polycrys-
tal geometries to analyze elastic wave propagation and scattering under assumptions of plane
strain. Numerical models with uniform-size grains with random crystal orientation are used for
the attenuation calculations. The numerical results cover a range of frequencies and materials
with various degrees of scattering, including aluminum and copper. These results are compared
with the polycrystalline scattering theory. The numerical results allow observations about the
dependence of the microstructural parameters on attenuation within the context of the scattering

theory.”? Voronoi polycrystals has been used widely for various engineering applications but
4



have never been used to study elastic wave scattering in polycrystalline materials.

In the next section, the important concepts of elastic wave scattering theory are reviewed. In
the subsequent section, the numerical model is described and the method in which the attenuation
is determined from the numerical models are discussed. Finally, the comparison between the
theoretical and numerical models is made and the results discussed. These results are anticipated

to impact ultrasonic NDE of polycrystalline media.

II THEORY

Elastic waves while propagating in an heterogeneous polycrystalline medium scatter at the bound-
aries of grains due to the mismatch in grain orientation. As a result of this scattering there is
a loss of energy in the propagating wave which is termed attenuation. The elastic wave fields
are composed of longitudinal and transverse components, each with its respective attenuation.
Stanke and Kino used stochastic operator methods to derive the attenuation and change in
phase velocity due to grain scattering for longitudinal and shear waves.® Their results are widely
applicable for media with texture as well as for materials with elongated grains. In an alterna-
tive derivation, Weaver used diagrammatic methods to derive ultrasonic attenuations and the
subsequent diffusivity for polycrystalline media.” His derivation was based on the discussions
of Frisch!* concerning the mathematical formulation of wave propagation in heterogeneous me-
dia. This approach is based on the Dyson and Bethe-Salpeter equations which govern the mean
response and covariance of the response of the field, respectively. This approach is used here
as well. In addition, the first-order smoothing (FOSA) is used to solve the Dyson equation as

outlined elsewhere.*:7

The equation of motion for the elastodynamic response of an infinite linear elastic medium is



written in terms of the Green’s dyadic as'?

02 0? 0?
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ikpw + —C’i]‘kl(x)—} Gra(x,x';t) = 5‘70153()( —x')o(t). (2)
The second-rank Green’s dyadic Gy (z,2';t) is the response to a concentrated impulsive force.
It is the response at a location x in the kth direction to a unit impulse at location 2’ in the ath

direction. Here, the density p is assumed to be uniform throughout.

For the polycrystals considered here, the modulus tensor is no longer a constant but is function

of position. It is assumed to be spatially varying and of the form
Cijii(x) = Cjpy + 6Cij (), (3)

where C7,;, = (Cijri(2)) is the average modulus tensor with the angle brackets denoting an ensemble
average. The fluctuation about the mean is given by 6C;;,; which is assumed to have zero mean

(6C;jr(x)) = 0. The covariance of the moduli, an eighth rank tensor is written
Allx =y 5 = (0Ciu(x)0Cagms(y)) = Ed5sm(x — yl). )

The covariance A consists of the tensorial component = and spatial component 5. Here, it is
assumed that n is a function of the magnitude of the difference of two vectors |x — y| rather than
x and y separately. This assumption implies that the medium is statistically homogeneous and
statistically isotropic. These two assumptions are used effectively by many® " and will form the
basis for the numerical models outlined below. The assumption of statistical isotropy implies

that the two-point correlation function 7(r) is defined as

n(r)=e""/". (5)

This function defines the probability that two points separated by a distance r lie within the

same crystal. Here, L is the correlation length, a parameter related to the grain diameter.®:7

The Green’s function G is a random function due to the random nature of the media. Thus,

the derivation of attenuation focuses on the m%an response (G) that is governed by the Dyson



equation, with the angle brackets () denoting an ensemble average. Solution of the Dyson equation
gives a dispersion equation corresponding to (G). The solution of the dispersion equation gives
the wave number which will have an imaginary part that is the attenuation of the propagating
wave. The final expressions for the longitudinal attenuation for a statistically isotropic material

may be written’

1 [« saas WP w w s sos s wd w w
= — | PP E g (p— — 85— ) d%8+= [ PRE(I-%) i E——i | p— — 8— | d?8], 6
oL 2wer, [2/ Ppss:---- czn (ch cL> +2 pps(1=5): C%C%n ch cr (6)

2 s = =001 Papidps pybrdssi is the inner product on the material covariance and 7 is the

spatial Fourier transform of the two-point correlation function given in Eq. 5. The integral is
over a unit sphere defined by 5. The directions p and é define the propagation and the scattered
directions, respectively. This expression for the attenuation is used for the theoretical curves

presented below.

Three types of material are used for the comparison between the theoretical model with
the numerical results. The properties of these material are shown in Table I. The dimensionless
anisotropy factor, v/pc2, introduced by Weaver, 7 is given for each material, with v = C;—C12—2C44
defined for the cubic crystallite structure considered here. This factor dictates the degree of
scattering for the material. From Table I, it can be seen that copper has the strongest scattering
property and aluminum the weakest among the three with the factor for copper approximately
4.5 times higher than that of aluminum. The material properties of the fictitious material are
chosen such that its scattering properties lie between copper and aluminum. These materials
are chosen such that the numerical results may be compared with theory for weakly, moderately,

and strongly scattering materials.



III NUMERICAL RESULTS

A  Numerical Model

The numerical polycrystalline models used here are constructed using the Voronoi tessellation.
Geometries based on the Voronoi cell are increasingly being used in the numerical analysis of
many practical problems, such as the study of the microstructures of materials,'® 117 liquid
structures,'® biology,'? chemistry,?’ crystallography,?' geography,?? and wireless communication
problems.?? As an example of the last application, given a set of z micro-cell substations, the
closest substation must be chosen to carry a call. Such tessellations help in searching for the clos-
est neighbor. Voronoi polycrystals have also been shown to represent closely the microstructures
of many materials. Espinosa and Zavattieri?*:2° briefly discuss the use of Voronoi tessellation
for creating a numerical model to study failure initiation in brittle materials. Ghosh, et al.'?
developed the Voronoi cell finite element method (VCFEM) for plane strain analysis of hetero-

L 16

geneous microstructures. Kumar, et al.”® presented a statistical analysis of three-dimensional

grains generated by a Poisson-Voronoi tessellation.

A Voronoi tessellation is used to subdivide a given region with each Voronoi cell having a
nucleus. The nuclei positions are created to match the relevant application. Often they are chosen
randomly. As per the definition of Voronoi diagram, any point inside a Voronoi cell V; is nearer
to the nucleus V; than to any other nucleus V; in the given region. Such a procedure produces
convex polygons in two-dimensional and convex polyhedrons in three-dimensional domains which
completely fill the given region. In the three-dimensional domain, every edge of a Voronoi cell
connects three grains and two vertices and every vertex connects four edges, six faces, and four
cells.'® Readers interested in further details of Voronoi tessellations are referred to articles 25 to
36. Although Voronoi polycrystals are widely used in other polycrystal applications, they have

not yet been used to study attenuation from grain scattering.
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Here, Voronoi polycrystals are created inside the required finite domain using a uniform
distribution. To obtain a uniform distribution of grain size, the minimum distance between
Voronoi nuclei is restricted. The statistics of the grain area are shown in Fig. 2. The fit is done
using the Gaussian function,

1 _(z=w)?

F(z) = e 202, (7)

oV 2T

where y is the mean area of crystals and ¢ is the standard deviation. A Gaussian curve fits the

data of crystal area well confirming that a normal distribution of grain size is obtained.

The two-dimensional Voronoi polycrystals are constructed and discretized into finite triangular
elements. Then the model is extruded by a depth approximately 1 to 1.5 times of the characteristic
element size. Therefore, the two-dimensional element becomes a prism element after extrusion.
The elements in the each crystal are assigned a random material orientation in the three crystal
directions. Thus, the model is not completely three-dimensional, rather it is a psuedo-three-
dimensional model. An example model is shown in Fig. 1. For clarity, Fig. 1 was created
with large crystals and elements. Plane strain boundary conditions are chosen by restricting the
displacement of all the nodes in the out-of-plane direction. Material orientation is indicated in
Fig. 1 by the local coordinate axes shown for each crystal. The use of the infinite elements at the
vertical boundaries of the model minimize reflections of the wave from these boundaries. The

boundary conditions at the top and bottom of the model are stress free.

The loading is a pressure load applied normal to the top surface to simulate an incident
longitudinal wave. A three-cycle Gaussian pulse is used as the input pressure load shown in Fig.
3. The fast Fourier transform (FFT) of the pulse is plotted in the frequency domain graph to
verify the frequency content of the input wave. It should be noted that the depth of the models
used here, 0.075 mm, is very small compared with the wavelength of the input wave. For example,

a 5 MHz incident longitudinal wave in aluminum has a wavelength \ = 1.25 mm.

Example simulations at several time steps are shown in Figs. 4 and 5 for aluminum and copper,
9



respectively. Note that the original wave form is lost in a shorter time for copper compared with
aluminum due to copper having a higher degree of scattering. Nodal displacements at the top

and bottom surfaces of the domain are stored for use in the attenuation calculations.

B Attenuation Calculation from Numerical Results

The numerical results are obtained using the procedure outlined in the previous section. The

attenuation is calculated by?¢

= R ®)

where, o is the attenuation, d is the travel length of the elastic wave, and F;(w) and Fy(w) are the
first and the second backwall reflections, respectively in the frequency domain. The reflections
are averaged over the nodes at the surfaces for each model and the attenuation is calculated.

Attenuation results are then averaged for different realizations of Voronoi polycrystals.

The materials examined here have different scattering properties as shown in Table 1. The
attenuation calculation can be difficult to perform as the noise in the echoes is higher when the
scattering is stronger. Thus, the front and backwall echoes may be difficult to identify. When
the scattering is weak, the echoes can easily be recognized. Thus, different model sizes were used
according to the scattering properties of the material. Thus models for weakly scattering media
have larger distance between frontwall and backwall than models for strongly scattering media.

The model is made wider for strongly scattering media so that more nodal data may be obtained.

The attenuation is calculated from the backwall reflections in the model. The first two reflec-
tions are used and referred to as echo E1 and echo E2. Tapered windowing and zero padding
are done on E1 and E2. Using Eq. (8), the attenuation is obtained for these responses. The at-
tenuation is also calculated in a similar manner for the same model using homogeneous material

properties. The attenuation in the homogeneous material is due to beam spreading and small

10



numerical scattering effects. The attenuation in the homogeneous material is deducted from that
of the heterogeneous material model and the final attenuation curve obtained. An example result
is shown in Fig. 6(a) and (b) for an input wave frequency of 5 MHz. The attenuation results
for frequencies far from 5 MHz are primarily noise. Attenuation results are then averaged from
models with different realizations of grains shown in Fig. 6(b). Similar attenuation data are

obtained for the models studied by varying the grain diameter and frequency of the input wave.

IV  COMPARISON OF NUMERICAL RESULTS WITH THEORY

The attenuation results are obtained for aluminum, the fictitious material and copper and are
compared with the theoretical results. In the theory, a constant correlation length L is assumed.
The theoretical attenuation values for the examples materials are calculated from the expression
given by the Eq. (6). In contrast, the numerical model includes a distribution of grain diameters
as illustrated in Fig. 2. Sixty-eight percent of the grains have diameters that fall within one o of
the mean diameter. Therefore, the results presented here are normalized to the mean diameter
D,,, as well as D,, + 0. The numerical results are compared with the theoretical results shown in
Figs. 7, 8 and 9 for aluminum, the fictitious material and copper respectively. The results cover
a wide range of normalized frequency A/D (1.5 to 6) and attenuation aD (0.5 x 1073 to 0.15). The
normalized attenuation for the three materials varies by a factor of ten when compared with one

another.

The model size for aluminum, a weakly scattering material, is 5x12x0.075 mm?. Models with
600 and 800 crystals are created inside this domain. The attenuations are obtained for input
wave frequencies of 5 MHz and 15 MHz as shown in Fig. 7. The normalized attenuation aD
and wavelength \/D, range from 0.0005 to 0.003 and 1.5 to 6 respectively. Here the attenuation
results are obtained from fifteen realizations of Voronoi crystals. The numerical results agree

well with the theory for the lower frequency range, i.e. for 5 MHz for models with 600 and 800
11



crystals shown in Fig. 7(a). The numerical results shown in Fig. 7(b) i.e., for attenuation and
wavelength normalized by (D,, — o) agree well for the higher frequency results. The agreement
for lower frequency results is best when attenuation and wavelength are normalized by (D,, + o)

where D,, is the mean grain diameter, shown in Fig. 7(c).

It may be observed that the attenuation results for aluminum have relatively large varia-
tions. These variations are the result of the small amplitude drop. The amplitude drop between
successive reflections must lie between two limits in order for the attenuation to be calculated
accurately. If the decay is too large noise dominates the signal. On the other hand if the scat-
tering is not very large, as is the case for aluminum, the amplitude ratio, Eq.(8) is very close to
unity and may have large statistical fluctuations. This concept may be quantified by examining
the amount of scattering that takes over the propagation path. The mean free path is inversely
proportional to the attenuation of the material. Therefore, the inverse of aD quantifies the min-
imum number of crystals required along the propagation path for ultrasonic scattering that is
sufficient for reduced uncertainty (i.e., the amplitude decays by e~'). Therefore, the model size
is adjusted to address this issue. In aluminum, for aD = 1072 the input wave needs to travel
through at least 1000 crystals to have sufficient scattering that the statistical fluctuations are
reduced. Thus, the fluctuations in the attenuation results for aluminum are due to an insufficient

number of crystals over the propagation path.

The models created for the fictitious material, a moderate scattering medium, are of the same
size as that of the model for aluminum. Attenuations are obtained for 600 crystals for various
input wave frequencies of 3 MHz, 5 MHz, 10 MHz and 15 MHz. The attenuation results are
obtained for aD and /D ranging from 0.025 to 0.015 and 1.5 to 4.5 respectively as shown in Fig.
8. The results obtained from different frequencies follow the same trend. For aD = 0.01, at least
100 crystals are required for sufficient scattering. Therefore, the model for this material contains

enough grains for sufficient scattering such that the attenuation fluctuations are not significant.
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Copper, a strongly scattering material compared with aluminum and the fictitious material,
was studied using a smaller model size of 5 x 6 x 0.075 mm?. Models are created with various
number of grains including 50, 100 and 200. Attenuation results for copper are shown in Fig.
9. Since copper is a strongly scattering material the noise content is the highest of the three
materials considered. Therefore wave frequencies of 5 and 8 MHz were used such that the front
and backwall echoes could be more easily identified. The attenuation values are the highest of all
media, ranging from 0.025 to 0.15 for normalized frequency ranges from 0.75 to 5.5. For aD = 0.1,
only 10 crystals are necessary for scattering sufficient for small fluctuations in the attenuation
results. For the lower frequency range the numerical results agree well with the theory, although

those at higher frequency are less than adequate.

The plots shown include a theoretical curve based on the theory described above. For theo-
retical results, the correlation function n is an exponential form shown in Eq. 5. The numerical
results show better agreement with the theory for the lower frequency ranges. Weaver” specu-
lated that at higher frequency n depends on the volume density of the grain boundary rather

than the grain volume. For low frequencies this relation is
V= /d?’re_% = 8L, (9)

where, L is the correlation length. At higher frequency the correlation length may be half of the
value calculated from Eq. 9.7 Thus, it may be assumed that L = ¢D, with ¢ a constant. Equation
(9) implies ¢ = 0.28. Here to match the numerical with the theoretical results this constant ¢ = 1.6,
1.3 and 1.1 for calculating attenuation for aluminum, fictitious material and copper respectively.
The constant ¢ for the example materials are determined by minimizing the root mean square
deviation of the error between the theoretical and numerical attenuation values. This constant
decreases as the degree of scattering in the material increases. At higher frequency for copper,
the results cannot be matched with the theory even by adjusting this value. The technical
reasons for these variations in L is out of scope of this work, but the numerical model can be

very useful for investigating this relation. The 1i§1ﬂuence of the form of the correlation function



on the interpretation of attenuation is evident from these results.

V SUMMARY

In this article, a numerical model is constructed using Voronoi polycrystals for examining longi-
tudinal attenuation in materials of general interest. The attenuation is calculated for polycrys-
talline aluminum, a fictitious material and copper which are in general weakly, moderately, and
strongly scattering materials, respectively. A large range of attenuation values are obtained from
the numerical results. Various models with different grains are constructed and the longitudinal
attenuation is calculated for a wide range of frequencies. For each attenuation calculation fifteen
realizations of Voronoi polycrystals were used. Normal pressure loading was used and infinite

boundary conditions were imposed to minimize the reflections at the sides of the model.

The numerical results for attenuation show the dependence of the correlation function chosen
for theoretical models. The results shows that different correlation lengths are needed depending
on frequency and scattering strength as speculated by other authors.® " Overall, the numerical
results agree well with the theory at lower frequencies for all the materials examined. The
attenuation calculated from various models and input wave specifications follow each other for
any particular material tested here. The results for copper at higher frequency do not match well
with the theoretical model. This result may indicate that higher-order correlations are important

for strongly scattering materials, but future research is necessary to validate this hypothesis.

The numerical model can now be used efficiently to investigate the correlation function for
various parameters in the model, input wave frequency and the material type which closely relate
to real materials. The numerical approach developed here will be used in future work for a variety
of problems, including diffuse ultrasonic scattering problems. The Voronoi polycrystal is a good

model that can be used to verify theoretical models and to design new experimental methods for

14



characterization of microstructures.
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VII TABLES

Independent Elastic | Density | Modulus Speed (m/sec) Dimensionless
Constants (GPa) (kg/m?) (GPa) | Longitudinal | Shear | Anisotropy
Cy1 | Ciy Cu p E cr, cr v/ pc2
Aluminum | 103.4 | 57.1 28.6 2760 70 6244 3094 -0.4127
Fictitious | 200.0 | 130.0 65.0 5000 160 6694 3256 -1.1321
Copper 176.2 | 124.9 81.8 8970 110 4965 2572 -1.8931

Table 1: Single-crystal properties of materials examined.
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VIII FIGURE CAPTIONS

1. Voronoi polycrystal in three-dimensional domain after extrusion in out of plane axis.

2. (a) 300 Voronoi polycrystal and (b) grain statistics for 300 Voronoi crystals inside a unit

square.
3. Input Gaussian pulse wave for 5SMHz.

4. Simulation for aluminum with heterogeneous material properties (600 crystals in a 5 mm

by 12 mm model for 5 MHz of longitudinal wave).

5. Simulation for copper with heterogeneous material properties (200 crystals in a 5 mm by 6

mm model for 5 MHz of longitudinal wave).

6. Attenuation for copper with input wave of 5 MHz for (a) one realization and (b) average

from fifteen realizations of 200 grains for a model of size 5 by 6 units.
7. Theoretical and numerical attenuation results for aluminum.
8. Theoretical and numerical attenuation results for fictitious material.

9. Theoretical and numerical attenuation results for copper.
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Figure 1: Voronoi polycrystal in three-dimensional domain after extrusion in out of plane axis.
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Figure 2: (a) 300 Voronoi polycrystal and (b) grain statistics for 300 Voronoi crystals inside a unit square.
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Figure 4: Simulation for aluminum with heterogeneous material properties (600 crystals in a 5 mm by 12 mm

model for 5 MHz of longitudinal wave).
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Figure 5: Simulation for copper with heterogeneous material properties (200 crystals in a 5 mm by 6 mm model

for 5 MHz of longitudinal wave).
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Figure 6: Attenuation for copper with input wave of 5 MHz for (a) one realization and (b) average from fifteen

realizations of 200 grains for a model of size 5 by 6 units.
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The scattering of elastic waves in polycrystalline materials is relevant for ultra-
sonic materials characterization and nondestructive evaluation (NDE). Heterogeneity in the
material ensures that ultrasonic scattering will take place, with the scattering dependent
on frequency. Ultrasonic backscatter and attenuation are used widely to extract the mi-
crostructural parameters such as grain size. Accurate interpretation of experimental data
requires robust ultrasonic scattering models. Such models typically assume constant den-
sity, uniform grain size and randomness hypotheses. The accuracy and limits of applicability
of these models cannot be fully tested with experiments due to practical limits of real ma-
terials processing. Here, this problem is examined in terms of numerical simulations using
Voronoi polycrystals.

The Voronoi diagram is used to model microstructures of polycrystalline materials.
It is a method of geometric subdivision of space that is widely used in numerous science and
engineering applications. The “Method of Virtual Nuclei” is presented to create Voronoi
polycrystals in finite domains within any arbitrary convex geometry. Algorithms are de-
veloped to construct elongated Voronoi polycrystals with a specified aspect ratio and angle
of orientation. Microstructures are presented of various processed materials such as rolled

materials and functionally graded materials. The polycrystals are created for various dis-



tributions of grain size.

The Voronoi cells are discretized using finite elements. Wave propagation is studied
by integrating the system directly in time. Six-noded prism elements are used for the
discretization. ABAQUS/Explicit is used as the finite element software package. Voronoi
polycrystals with cubic symmetry are used and given random orientations. Therefore,
the bulk material is statistically isotropic. Example numerical results are presented for
materials with various degrees of scattering that are of common interest. Simulations from
ABAQUS/CAE are also presented for these materials. The simulations provide insight into
the attenuation models relevant for polycrystalline materials. The numerical results are
presented and compared with scattering theory. The theory for elastic wave attenuation
is derived for a two-dimensional domain using elastodynamics and stochastic wave theory.
The dependence of attenuation on the frequency of the input wave and the mean grain
diameter are examined using the numerical results.

The numerical scattering results suggest that for the plane stress case the two-
dimensional theory is better for weakly scattering media, while the three-dimensional is
better for strongly scattering media. The results from plane strain agree well with the three-
dimensional theoretical model for all materials. These results are anticipated to impact

ultrasonic NDE of polycrystalline media.
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Chapter 1

Introduction

Ultrasonic techniques are widely used to extract microstructural parameters such
as grain size and grain structure. Heterogeneity in the material ensures that ultrasonic
scattering will take place, with the scattering dependent on frequency. The amplitude
of the response reduces as the wave propagates due to scattering, a phenomenon called
attenuation. Grain parameters and flaws can be inferred by knowing the attenuation in
the material. Attenuation is calculated by examining the reduction of amplitude of the
propagating wave in the media. The frequency dependence of attenuation can be related
to the grain diameter. Bhatia [1] discussed that the attenuation depends on the frequency
of the propagating wave and the grain diameter. Papadakis [2] presented the three distinct
regions of attenuation « for grain size D and frequency f as

ax f* for A> D,
ax f? for A<D, (1.1)

ax1l/D for AN D.

where A is the wavelength.



Bhatia [3] discussed the dependence of the parameters assuming negligible varia-
tion in the elastic moduli from grain to grain for a wavelength that is large compared with
the grain diameter. He also showed the attenuation due to thermal agitation resulting in
local fluctuations in the density in the material. The theory presented by Bhatia assumes
spherical grains and polycrystals that are weakly anisotropic with grains that are randomly
oriented. Hirsekorn [4] calculated the attenuation as a function of wave number and grain
radius without limitation of the Rayleigh region. She presented the theory to calculate the
velocity and attenuation of different wave types in polycrystals with any symmetry. She
also presented the theory for plane shear waves in polycrystals [5] with cubic symmetry and
randomly oriented grains.

Evans, et al. [6] presented a different approach for the attenuation expression for
the Rayleigh and stochastic regions. His approach is based on the numerical computa-
tion of the cross section and extreme-value size distributions of the predominant scatterers
assuming each scatterer is small compared with the wavelength.

The theory for attenuation in a two-dimensional domain is derived using the three-
dimensional model presented previously by Weaver [7] and Turner [8] using the elastody-
namic, stochastic theory of scattering. Their model for the attenuation includes the as-
sumption of grains with random orientation. Therefore, the bulk material is assumed to be
statistically isotropic. This assumption is also made by Weaver [7].

Analysis of experimental data is made using assumptions such as constant density,
single grain size and randomness hypotheses. These measurements are made by sending

ultrasonic waves through the media using transducers. In experiments there are also limi-



tations on the frequency ranges of the available transducers. Analytical methods cannot be
used for very complex problems. Numerical study eliminates the limitations of the exper-
iments and helps in modeling such that the material behavior at higher frequency ranges
and for complex media may be understood. These models help to understand how waves
interact and propagate in the media and the different mode conversions. Numerical models
also allow the microstructural parameters to be controlled precisely by the user. Here a
numerical model is presented for studying ultrasonic attenuation.

Different numerical methods have been used previously for modeling wave propaga-
tion in complex media. One of the methods developed is the finite difference (FD) method.
FD can be used to model the wave equation as shown by Alford, et al.[9] with fine grids.
Alford used an explicit second order difference scheme to approximate the governing wave
equation in a homogeneous region due to a line source distribution. Fornberg [10] pointed
out the errors in FD methods and improved the method. He introduced the pseudospectral
method to solve the elastic wave equation in discontinuous media with smoothing at the
interface.

Scalerandi, et al. [11] presented a new simulation method known as the Local In-
teraction Simulation Approach (LISA). This method is very convenient for utilizing parallel
computing to solve the problem. Each processor is mapped one-to-one with cells of the
discretized model. Each cell can be given different material properties since the processors
are mutually independent and the boundary nodes can be given the interface properties.
The computational time is greatly reduced since each cell is treated as homogeneous. The

problem is based on a local interaction simulation approach and Preisach-Mayergoyz (PM)



space model of Guyer and McCall [12],[13]. The PM space is a density space consisting the
mesoscopic structural features and their elastic properties. This space describes the elastic
properties of the materials.

Fellinger, et al. [14] introduced a new method known as Elastodynamic Finite
Integration Technique (EFIT) to model the elastic wave scattering in homogeneous and
heterogeneous, isotropic and anisotropic linear elastic media. EFIT uses the finite integra-
tion technique to discretize Maxwell’s equation. Schubert, et al. [15] extended EFIT in
cylindrical coordinates for cylindrical geometries system which helps to reduce it from a
three-dimensional problem to a two-dimensional one.

Lui, et al. [16] used the boundary element method (BEM) for a two-dimensional
domain for detecting cracks or inclusions in the material. A two-dimensional elastodynamic
boundary integral equation is used to solve the multiple scattering problem due to cracks and
inclusions. The computational cost increases as the number of inclusions to be discretized
increases. In this method he also pointed out that as the scattering increases the difficulties
in analyzing the results due to background noise in the signals also increase. The method
includes multiple scattering without any difficulties.

The finite element method (FEM) is used here as the numerical method to analyze
elastic wave propagation in heterogenous media. FEM is very widely used for static and
dynamic analysis. The Voronoi polycrystal is used as the basis geometry for the finite
element analysis. FEM is used to discretize the partial differential equation to obtain the
solution. Barbe, et al. [17] used a network of cubes for meshing Voronoi polycrystals and

distributed the material parameters at the Gauss points. Here prism elements are used



to mesh the Voronoi polycrystals. A MATLAB [18] code is generated to construct and
mesh the numerical model. The “Method of Virtual Nuclei” is developed to construct
Voronoi polycrystals in finite domain for any arbitrary convex geometry. The algorithms
for constructing Voronoi polycrystals are explained in detail in Chapter 2. ABAQUS is
used to obtain the FEM solutions of wave propagation in Voronoi polycrystals. ABAQUS
can formulate the plane stress model with infinite boundary conditions. These infinite
boundaries absorb the energy such that reflection is prevented. The model with plain
strain boundary conditions is also formulated by constraining the out of plane displacement
of all the nodes in the model. The FEM modeling using ABAQUS is explained in detail in
Chapter 3.

Models with various grain diameters over a range of frequencies are used here for
the attenuation calculation. The procedure for obtaining the attenuation of the material
from the numerical results is explained in detail in Chapter 4. ABAQUS simulations are
presented for visualization of the wave propagating in the model. Numerical calculations are
shown for materials with various degree of scattering. Examples results are obtained for four
materials, namely aluminum, fictitious, nickel and copper. Copper has the highest degree
of scattering and aluminum the least among the four materials. The material parameters of
the fictitious material are set to have scattering properties between aluminum and copper.

The scattering theory in two- and three-dimensional domains is explained in Chap-
ter 5. The numerical results are then compared with two-and three-dimensional theories to
verify the authenticity of the numerical model for the plane stress and plane strain cases.

The numerical results obtained are used to observe the dependence of parameters for atten-



uation and the scattering theory, authenticity and the robustness of the numerical model.
To verify the model for different boundary conditions, plane stress and plane strain analyses

are both done.



Chapter 2

Voronoi Polycrystal

2.1 Introduction

Geometries based on the Voronoi cell are increasingly being used in the numerical
analysis of many practical problems, such as the study of the microstructures of materials
[19]]20][21], liquid structures [22], biology [23], chemistry [24], crystallography [25], geogra-
phy [26], and wireless communication problems [27]. As an example of the last application,
given a set of x micro-cell substations, the closest substation must be chosen to carry a
call. Such tessellations help in searching for the closest neighbor. Voronoi polycrystals have
also been shown to represent closely the microstructures of many materials. Construction
of numerical models of such microstructures for relevant materials should be done with
efficiency. Espinosa and Zavattieri [28][29], briefly discuss the use of Voronoi tessellation
for creating a numerical model to study the failure initiation in brittle materials. Ghosh,
et al. [19] developed the Voronoi cell finite element method (VCFEM) for plane strain

analysis of heterogeneous microstructures. Kumar, et al. [20] show a statistical analysis



of three-dimensional grains generated by a Poisson-Voronoi tessellation. In many of these
applications, the polycrystalline geometry is needed in a finite domain.

A Voronoi tessellation is a method to subdivide a given region. Each Voronoi cell
has a nucleus. The nuclei positions are created to match the relevant applications. Often
they are chosen randomly. As per the definition of the Voronoi diagram, any point inside
a Voronoi cell V' is nearer to the nucleus V than to any other nucleus in the given region.
Such a procedure produces convex polygons in two-dimensional and convex polyhedrons
in three-dimensional domains which completely fill the given region. In three-dimensional
domain, every edge of a Voronoi cell connects three grains and two vertices and every vertex
connects four edges, six faces, and four cells [20].

In this chapter, the creation of uniform Voronoi polycrystals in arbitrary domains
is discussed. The focus here is on creating microstructures with elongated and oriented
grains in arbitrary domains. In the next section, the Voronoi polycrystal is discussed. In
section 3, the general algorithm, called the Method of Virtual Nuclei (MVN) is introduced.
This method is used for creating the prescribed microstructures including two-dimensional
examples for grain elongation and grain orientation. In section 4, the three-dimensional

extension of MVN is used for additional examples.

2.2 Voronoi Polycrystals

A Voronoi polycrystal is created by generating a set of points, which represent the
Voronoi nuclei. Perpendicular bisectors are drawn between neighboring pairs of nuclei in

a given space. The intersection of these perpendicular bisectors gives the vertices of each



Figure 2.1: 2-D Voronoi diagram for a set of 100 random points.

Voronoi cell. In general, nuclei at the outer edges of the space will not have neighboring
nuclei in all directions. Therefore, some of the vertices of theses cells may lie very far
away, even at infinity. Fig 2.1 shows a Voronoi diagram with 100 nuclei generated by the
above method. The dots represent the Voronoi nuclei of each cell. Generation of a Voronoi
diagram by this method does not guarantee a closed figure without vertices at infinity.
Many applications involving polycrystalline materials require finite domains.

To overcome the difficulty associated with the infinite vertices, the required ge-
ometry inside which a Voronoi diagram is to be created can be extracted from Fig. 2.1 as
shown in Fig. 2.2. One drawback with this method is that the number of Voronoi cells in
the extracted portion is not known a priori. To determine the exact number of cells inside
the chosen domain a count must be made. In addition, the boundary cells may not have
the appropriate Voronoi properties. Finally, not all polycrystals may contain nuclei. To

improve upon these limitations, a method is described in the next section that allows a
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Figure 2.2: Voronoi plot obtained by extracting a subspace from the main diagram.

Voronoi polycrystal to be created efficiently in an arbitrary domain.

2.3 Method of Virtual Nuclei

The general description for easily creating the desired Voronoi polycrystals is dis-
cussed using a two-dimensional format such that the explanation is clearer. Results using
the three-dimensional extension of this method are given in section 4. This algorithm elim-
inates the use of any other method of cutting the required domain from a Voronoi diagram.

Consider a unit square domain in which the Voronoi polycrystal is to be created.
Coordinates of Voronoi nuclei are selected within this domain. The position of these nuclei
may be chosen using any type of distribution, such as a Poisson distribution. For the case
of interest here, the nuclei positions are chosen such that the grain size is as uniform as
possible in the domain. For this example, 100 random Voronoi nuclei are selected. These

i

nuclei are referred as “real nuclei.” After the positions of the 100 real nuclei have been
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Figure 2.3: Voronoi plot with real and virtual nuclei.

determined, “virtual nuclei” are created. These nuclei are reflections in the space of the
nuclei closest to the borders of the area of interest about the respective sides of the domain.
The nuclei closest to the boundaries are the ones when joined forms a closed polygon and
all the real nuclei falls inside or on the boundary of this polygon. Perpendicular bisectors
between real and virtual nuclei are, by definition, the boundaries of the domain of interest.
Fig. 2.3 illustrates this method with 100 Voronoi nuclei inside a unit square region.

The vertices of the Voronoi cells contained inside the region (cells associated with
the real nuclei) are extracted and become the needed final polycrystal, as shown in Fig. 2.4.
Thus, a Voronoi polycrystal constructed using the method of virtual nuclei will have cells

at the boundaries containing nuclei and having appropriate properties, i.e., every edge of a
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Figure 2.4: Extracted Voronoi plot with 100 real nuclei.

Voronoi cell connects three grains and two vertices and every vertex connects four edges, six
faces, and four cells [20]. Here the exact number of cells in the unit square is also known.

The algorithm for the Method of Virtual Nuclei is given as Algorithm 1.

Algorithm 1 The Method of Virtual Nuclei

1. Construct the geometry of the chosen domain.

2. Obtain the coordinates of all “real” Voronoi nucleus within the chosen domain.

3. Reflect these points about the boundaries of the chosen domain. These are the “virtual”

Voronoi nucles.

4. Plot the Voronoi diagram for all the nuclei, both real and virtual.
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5. Extract the vertices of the Voronot cells associated with the real nucles.
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Figure 2.5: Voronoi diagram within different shapes.

A Voronoi polycrystal for an arbitrary geometry can also be obtained with this
method easily. The required geometry inside which the Voronoi polycrystal is to be created
should be closed and a convex polygon of any number of sides. The restriction to poly-
gons is due to the linear boundaries of the Voronoi cells. In Fig.2.5, four example Voronoi
polycrystals of different shapes are shown using Algorithm 1. Fig. 2.5(a) is a Voronoi poly-
crystal within a triangle; 2.55(b) is for an octagon; 2.55(c) shows the Voronoi polycrystal

for an arbitrary polygon. Fig. 2.5(d) is the Voronoi polycrystal within a polygon of 5000
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sides - an approximation of a circle. In general, Voronoi diagram has the complexity of the
order O(n?®). The computational time increases with the number of edges. The Method of
Virtual Nuclei also provides the framework for construction of more complex microstruc-
tures relevant to many engineering problems. During the processes of rolling, extruding
and pressing the grains in materials change shape and may elongate. In some cases, the
elongated crystals may have an angle of orientation relative to the boundaries. The Method
of Virtual Nuclei is now exploited to create polycrystalline structures of interest in science
and engineering: elongated grains with an arbitrary orientation. This technique widens the

areas of applicability of the Voronoi polycrystal.

2.4 Grain Elongation

The procedure for creating a Voronoi polycrystal with elongated grains essentially
involves a mapping from a stretched domain. An example is presented here for grains with
a 3 to 1 aspect ratio within a unit square. The unit square is first elongated in the direction
perpendicular to the desired major grain axis. The Voronoi polycrystal is constructed and
the rectangular box is then compressed. The resulting microstructure is that of elongated
grains. The elongated grain will not be true Voronoi cells as their boundaries no longer
remain perpendicular bisectors between the Voronoi nuclei after compression. The size of
the rectangular box depends upon the required aspect ratio.

Therefore, the required rectangle size for an aspect ratio 3 is of 1 unit by 3 units.
The Voronoi diagram is obtained as shown in Fig. 2.6. The domain shown in Fig. 2.6 is

then compressed horizontally resulting in the microstructure shown in Fig. 2.7.
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Figure 2.6: Voronoi plot within a rectangle so that when compressed the required ratio is
obtained.

Since it is compressed horizontally the horizontal coordinates of all the vertices of
the Voronoi cells are divided by the required aspect ratio. In Fig. 2.7, the aspect ratio of
3 is chosen for the Voronoi polycrystal within a unit square. Algorithm 2 summarizes the

method.

Algorithm 2 Construction of Voronoi polycrystals with elongated grains

1. Determine the geometry inside which Voronoi polycrystal is to be created.

2. Multiply the respective coordinates of the geometry by the desired grain aspect ratio.

3. Choose the Voronoi nuclei inside the elongated geometry.
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Figure 2.7: Voronoi plot of 400 elongated grains with aspect ratio of 3, obtained by com-

pressing the domain shown in Fig. 2.6.
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Figure 2.8: Voronoi plot inside the geometry determined.

2.5 Grain Orientation

Voronoi polycrystals with specified angles of orientation can also be obtained using
the Method of Virtual Nuclei as a framework. First, the unit square is rotated to the
required angle . Then the Voronoi nuclei are selected inside the parallelogram and the
Voronoi polycrystal is constructed. Finally the geometry is rotated back resulting in a
Voronoi polycrystal that has the required angle of orientation inside the unit square.

When both elongated and tilted Voronoi polycrystals are required, the geometry
is rotated and elongated simultaneously before depositing the Voronoi nuclei. The rotated
geometry is obtained such that when it compressed and rotated back, the required Voronoi
polycrystal is created for the required geometry. The general algorithm is outlined in

Algorithm 3.
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Figure 2.9: Voronoi plot of 400 elongated grains with aspect ratio 3 and angle of orientation
45°.

The required dimensions of the domain in Fig. 2.8 are determined such that the
compressed and tilted geometry gives the required geometry as shown in Fig. 2.9. Figure
2.8 is an example for 400 Voronoi cells within a unit square, with a grain aspect ratio of 3
and an angle of orientation of the cells of 45° relative to the domain boundary using this
method, as described in Algorithm 3. This procedure can be implemented for any arbitrary

geometry as well.

Algorithm 3 Construction of Voronoi polycrystals with orientated grains

1. Determine the geometry inside which Voronoi polycrystal is to be created

2. Tilt the geometry at an angle equal to the angle of orientation of the cells required.
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3. Choose the Voronoi nuclei inside the tilted geometry.

4. Reflect the “real” nuclei about the boundaries of the elongated geometry. These are

“virtual nucler” Voronot nucles.

5. Plot the Voronoi diagram inside the tilted geometry.

6. Extract all Voronoi cells corresponding to the “real” nuclei.

7. Create Voronoi polycrystal in the tilted geometry.

8. Tilt back all the voronoi vertices by the angel of orientation required.

Some more examples are shown in Fig. 2.10 for different orientation angles in
a triangular domain with an aspect ratio of the crystals of 3. Similarly, elongated and
orientated Voronoi crystals can be obtained inside any closed convex polygon using the
algorithms given above.

A model for Functionally Graded Materials (FGM) is developed as shown in the
Fig. 2.11. The model is made to have variable material and grain size distribution in a
two-dimensional domain. A uniform grain size and variable material distribution is shown
in Fig. 2.11(a). Figures 2.11(b)-(d) show quadratic grain size distribution in the horizontal,
vertical, and 45° line, respectively. Any axis can be made n'* order depending on the

variation in the model required and the direction of variation.
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Figure 2.10: Elongated and tilted Voronoi crystals inside a triangular domiain. The aspect
ratio is 3 and tilt angles of the vornoi crystals are (a) 0° (b) 30° (c) 45° (d) 90° with vertical
axis.
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Figure 2.11: Numerical model for FGM (a) uniform (b) quardradic vertical axis (c) quadratic
horizontal axis (d) quadratic vertical and horizontal axis.
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2.6 Three-Dimensional Models

The same procedures for two—dimensional domains may be extended to three—
dimensional Voronoi polycrystals as well. Figure 2.12 shows a three-dimensional Voronoi
polycrystal within four different geometries. The algorithms used to construct them are

identical as described above with an addition of one more axis.

0.5
(b) Prism

05 : . 05

(c) Octahedron prism (d) Cylinder

Figure 2.12: 3D Voronoi polycrystals within different geometry.

In three-dimensional domains, the geometric orientation of the Voronoi polycrys-

tals can be made with respect to any or all three coordinate axes. The orientation angle can
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Figure 2.13: Tilted and elongated Voronoi polycrystals inside an unit cube (a) Solid plot
(b) Contour plot of the surfaces.

also be different with respect to the respective axes. In Fig. 2.13, 200 elongated Voronoi

polycrystals with an aspect ratio 3 and oriented at 45°with respect to z-axis is shown.

2.7 Grain Statistics

In this section, statistical analysis is done for Voronoi polycrystals in a two-
dimensional domain. 300 voronoi polycrystals inside an unit square for two different random
realizations are shown in Fig 2.14. Statistics for the grain area and the number of edges are
studied. Restricting a minimum distance between any two crystals, a normal distribution
of Voronoi nuclei is obtained. The fit is done by using the Gaussian function,

1 _@w?

e 22 (2.1)

F(z) = o2

where 1 is the mean area of crystals and o is the standard deviation. A Gaussian curve fits
the data of crystal area well confirming that a normal distribution of grain size is obtained.
Kumar, et al. [20] presented the statistical analysis for a Poisson distribution of

three-dimensional Voronoi polycrystals for different parameters. Two examples of a Poisson
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Figure 2.14: Grain statistics for 300 Voronoi crystals inside a unit square.

distribution of two-dimensional Voronoi polycrystals are shown in Fig. 2.15 for two different
random realizations. The Poisson fit to the distribution is given by,

e Hu®

F(z) = (2.2)

z!

where p is the mean area of crystals and ,/p is the standard deviation.

A Poisson distribution of Voronoi nuclei is made by removing the minimum dis-
tance requirement as discussed for Gaussian distribution between any two crystals and
randomly select the Voronoi nuclei. Matlab [18] function rand, which generates uniformly

distributed random numbers in the interval [0,1], is used to generate random Voronoi nuclei.
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Figure 2.15: Grain statistics for 300 Voronoi polycrystals in a unit square with Poisson
distribution.

A normal distribution of Voronoi nuclei is used to obtain the results shown in the following
chapters. This type of distribution is used since the scattering theories typically assume
uniform grain size.

The probability distribution of edges is shown in Fig. 2.16 for varying number
of realizations with 200 crystals. The results are obtained by creating random numbers of
normally distributed 200 crystals inside a unit square of lmm by 1mm. The probability
distribution of the number of edges for a two-dimensional Voronoi polycrystal is obtained

for 5, 15, 500, 10000 realizations. Voronoi polycrystals with other types of distributions can
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also be obtained with ease. Figure 2.16 shows consistent probability for a different number

of realizations of the grains.
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Figure 2.16: Probability distribution of edges of 200 two-dimensional Voronoi polycrystals
obtained based on a different number of realizations.

2.8 Summary

In this chapter, the Method of Virtual Nuclei (MVN) has been discussed with

applications to creation of Voronoi polycrystals within arbitrary domains. Examples have

been presented for two- and three-dimensional domains. The MVN allows the creation of
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elongated grains with arbitrary orientations to be done with ease. The applications for
science and engineering problems are expected to be numerous. The general technique may
be used for two or three-dimensional domains. Statistical analysis was presented for the

two-dimensional Voronoi polycrystals.
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Chapter 3

Finite Element Modeling

The finite element method (FEM) is a numerical method for solving partial differ-
ential equations for complicated geometries and boundary conditions. It is one of the most
powerful numerical methods used to model complex mathematical problems. In Chapter 1
other numerical methods have been discussed in brief. FEM can produce an approximate
solution to a problem and the accuracy can be generally increased as desired. The general

three steps for any finite element analysis are governed by:

e Pre-processing of input data to discretization functions and equations,
e Solution of the matrix equation, and,

e Post-processing of output results, to retrieve the solution from the discretization.

Today, with supercomputers, FEM is used to solve large problems with ease and
efficiency. There are also numerous FEM commercial software packages available today to

solve complex problems, as well as softwares to mesh very complex shaped models for finite
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element analysis.

Espinosa, et al. [28] showed the implementation of finite element methods for
static analysis of microstructures using the Voronoi polycrystal. In this thesis, the finite
element method is used to model the dynamic response problem in the time domain. A
model to simulate elastic wave propagation in polycrystalline materials is constructed using
the Voronoi polycrystal as the basis for the polycrystalline geometry. ABAQUS/Explicit
[30], a commercial finite element software package is used for the numerical analysis of
elastic wave propagation in Voronoi polycrystals. The finite element method is used to
monitor the nodal displacements at the boundaries for an applied pulse pressure load. A

Matlab [18] code is developed to create and mesh the model for the finite element analysis.

3.1 Mathematical Formulation

ABAQUS was used for all FEM analyses. Here the basic equations for the math-
ematical formulation for FEM are stated for clarity. The ABAQUS [30] manuals may be
consulted for more details. The equation of motion for the dynamic response in the time
domain is given by

oiale )+ bi(a, 1) = p(a)iy(a, ), (3.1)

where p is the density, o;; is the stress, u;is the acceleration of the body and b; is the body
force. Wave propagation in a perfectly linearly elastic solid obeys Hooke’s law which states

that the stress tensor o;; is proportional to the strain tensor ey,

0ij = Cijki€kl; (3.2)
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where

1
e = 5 (uky +ug) (k,1=1,2,3), (3.3)

and c;;; is the elastic stiffness tensor. Symmetry indicates that c;ju = cjip = cpiij for oy
and ex; symmetric tensors. There are 21 independent elastic stiffness constants which refer
to a crystal which possesses no rotational symmetry. These materials are known as general
anisotropic materials. For crystal systems of higher symmetry this number is considerably
reduced. The values of the elastic constants depend on the orientation of these axes relative
to the crystal lattice. ABAQUS/Explicit [30] uses explicit integration with diagonal lumped
element mass matrices to solve dynamic problems. The equation of motion is integrated

using the explicit central difference integration rule,

‘ . (i+1) 4 4G) .
PGS MG S S i st 2“ i@, (3.4)
W) = 04 p D)

where u, u and u are displacement, velocity and acceleration respectively. The superscripts
(i) are the increment number and (i + 1) are the midincrement values. From the principle

of virtual work, the basic equations for dynamic equilibrium at time ¢ is,
i = MLFO — 10), (3.5)

where M is the diagonal lumped mass matrix, F is force vector and I is the internal
force vector. The initial inversion of the lumped mass matrix, which is tridiagonal, for
calculating the acceleration makes the calculation inexpensive. Thus, the explicit method

does not require any iterations or stiffness matrix. The initial conditions of velocity and
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acceleration can be defined by the user. Otherwise, zero is taken as the default value. For
computing the acceleration u, n operations are required where n is the degrees of freedom
of the model. This method uses a large number of small increments of time step efficiently.
The computational cost of this procedure is directly proportional to the size of the finite

element model.

3.2 Meshing

Meshing is a critical part for finite element analysis. The mesh size is proportional
to the size of the displacement vector u. The step time is proportional to the smallest

transit time of a longitudinal wave across any element in the mesh,

where Ly, is the size of the smallest element and ¢y, is the longitudinal wave speed. This
is known as the Courant-Friedrichs-Lewy condition for stability. Thus the time step must
be reduced as the size of the element decreases. The time step will also decrease if there
are only a few number of small elements compared with the whole model mesh. Therefore,
care should be taken to obtain a mesh with uniform size of elements as much as possible.
Six-noded triangular prism elements are used here to mesh the domain. The depth of the
domain is equal to the depth of the prism element. First, the model is constructed in a
two-dimensional domain and meshed using Delaunay triangulation. Then the triangular
elements are extruded to form prism elements. Therefore, the model can be approximated

as a two-dimensional as there is no scattering of elastic waves in the out of plane direction.
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Figure 3.1: Six noded triangular prism element.

The six noded triangular prism element is shown in Fig. 3.1. The depth of the
prism is generally 1.25 — 1.50 times the length of one of the side of the equilateral triangular

face denoted by Axz. The meshing is done crystal by crystal in the following way:

e The nodes are deposited at the boundaries of each crystals such that distance between
any two nodes is equal to the element size Ax. When the length of the boundaries
are not multiples of Az, then some of the elements are of different size which is

unavoidable and acceptable.

e A uniform grid of points is created inside the domain such that the particular Voronoi
polycrystal fits into the domain. The distance between any two points is made such

that a uniform mesh is obtained with element size equal to Azx.

e Each Voronoi crystal is reduced by a very small percentage and the uniform grid is
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laid over it such that they overlap each other. The points common to each Voronoi
crystal and the uniform grid are taken as the nodes inside the Voronoi polycrystal.
The uniform grid is laid over the reduced crystal so that points inside the crystal are
not too close to the boundaries of the actual crystal. Generally, the reduction ratio
is chosen in such a way, that the perpendicular distance between a reduced side and
its actual side is approximately the size of the element Az. Therefore, the crystal has

nodes on the boundaries and inside.

e These nodes are then used to form Delaunay triangulation using MATLAB. All the

crystals are meshed by looping over the number of crystals in the model.

Using this method, each crystal is meshed and assembled to form the complete
mesh of the model. Here each crystal is meshed separately to avoid errors such as one
element being shared by two or more crystals making an irregular surface for these crystals.
The procedure is shown schematically in Fig. 3.2. In Fig. 3.2(a) the crystal marked in
black is used to show the above procedure. The nodes on the boundary of a crystal are
shown in Fig. 3.2(b). Figure 3.2(c) is plotted to show the overlapping of a uniform grid in
blue dots over the reduced crystal denoted by the red polygon. The polygon in black is the
actual crystal. Figure 3.2(d) shows all the nodes used for meshing the crystal. The meshed
crystal is shown in Fig. 3.2(e). All the crystals are meshed and assembled as shown in the

Fig. 3.2(f).
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3.2.1 Infinite element

Infinite elements reduce the reflections from the side wall. These elements are often
known as “quiet” boundaries. These elements have some damping properties to absorb the
wave such that little energy is reflected. The material properties are isotropic which is
the requirement of ABAQUS. The software decides the damping values also to prevent
maximum reflections from the boundaries. There are some reflections due to numerical

errors. The infinite element is shown in the Fig. 3.3. The procedure for node numbering
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of an infinite element required by ABAQUS is shown in the figure. The theory of “quiet”

boundaries is explained in detail in the ABAQUS/Explicit [30] manuals.

Figure 3.3: Infinite element node numbering.

3.3 Material Properties

For the attenuation calculations two types of models are created. The first one
with homogeneous material properties and the second with crystal-specific heterogeneous
material properties. The infinite elements for both types have isotropic material properties.
For the heterogeneous case, the elements within each crystal are given orthotropic material
symmetry. The orthotropic elements for a given crystal have random material orientation
in all the three directions. Models are created for four types of material, namely aluminum,

fictitious, nickel and copper.
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Table 3.1: Single-crystal properties of materials examined.

| Independent Elastic Constants Density | Young’s Modulus
011 (GPa) 012 (GPa) 044 (GPa) p(Kg/m3) FE (GPa)
Aluminum 103.4 57.1 28.6 2760 70
Fictitious 200.0 130.0 65.0 5000 160
Nickel 243.6 149.4 119.6 8908 200
Copper 176.2 124.9 81.8 8970 110

Table 3.2: Material characteristics.

cr, cr v/ pcs
Aluminum | 6244 | 3094 | -0.4127
Fictitious | 6694 | 3256 | -1.1321
Nickel 5889 | 3163 | -1.6498
Copper 4965 | 2572 | -1.8931

The material properties for the materials used are shown in Table. 3.1. In Table

3.2 the longitudinal and shear wave speeds for the material are given and a dimensionless

anisotropy factor v/ ,oc%, introduced by Weaver [7], is given for the materials, where v =

C11 — C12 — 2Cy4. The dimensionless anisotropy factor dictates the degree of scattering

for the material. From Table. 3.2, it can be seen that copper has the strongest scattering

properties and aluminum the weakest among the four.

All of the materials have cubic

crystallite structure. From the Table 3.2 the dimensionless anisotropy factor for copper is

approximately 4.5 times higher than aluminum. The material properties of the fictitious

material are chosen such that its scattering properties are between copper and aluminum.

These materials are chosen such that the numerical results can be compared with strong,

weak and moderate scattering material.
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3.4 Boundary Conditions

The plane stress formulation is constructed and the boundary conditions are ap-
plied to avoid reflections from the side of the model as much as possible. The displacements
in the z-axis and y-axis at the corners are set to zero while they are free everywhere else
in the model. The model is free in the out of plane direction. The use of the infinite el-
ements minimizes reflections of the wave from the boundaries. The loading is a pressure
load normal to the surface to simulate longitudinal waves. The boundary conditions are
shown in Fig. 3.4. This plot is obtained from the ABAQUS/Explicit CAE. For simplicity,
the model shown in Fig. 3.4 has ten crystals and the element size is 200 pm. The loading
is shown in the figure by the arrows perpendicular to the top surface of the model. The
infinite elements are shown at both the sides of the model. At the bottom left-hand corner
the material orientation is shown by the yellow lines. The boundary conditions are marked
by arrow heads at the bottom right and left corner of the model in orange. For the plane
strain boundary condition the model has zero displacements in the out of plane direction

as shown in Fig. 3.5.
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Figure 3.4: Model with incident longitudinal wave and plane stress boundary conditions.
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Model with incident longitudinal wave and plane strain boundary conditions.
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The loading is done using a Gaussian pulse at the required frequency as shown in
Fig. 3.6. The y-axis of the plot is shown as LOAD for the model. The fast Fourier transform
(FFT) of the pulse is plotted in the frequency domain graph to verify the frequency of the
input wave. The depth of the model is 0.075 mm is very small compared with the wavelength
of the input wave. Typically, for a 5 MHz incident longitudinal wave the wavelength X is
1.2488 mm. Therefore, the scattering is expected to be independent of the depth of this

model with plane stress boundary conditions.

Input Wave FFT of the Wave
2 100
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60 f
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®© @
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Figure 3.6: Input Gaussian pulse wave.

3.5 Convergence

The convergence in the explicit method is guaranteed as long as the problem is sta-
ble. As the element size decreases the computational time also increases. The convergence
is checked for the optimum element size to obtain accurate attenuation results. Convergence
is checked for aluminum for an incident longitudinal wave.

Example backwall reflections are shown in Fig. 3.7 for a model with a different
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element sizes using the same distribution of grains. At the top of each subplot the element
size, Ax is noted in ym. A parameter A\/Azx is computed for each element size to define the
number of elements in a wavelength, where X is the wavelength of the input wave.

The difference of each backwall reflection is compared with that of the model with
40 pm as the element size as shown in Fig. 3.8. The z-axis of each subplot is the time in usec
and the y-axis is the displacement in ym. The displacements for the backwall reflection are
substracted from the backwall results for the model with element size 40 um. The absolute

value of the error is shown. The final subplot is the backwall response for 40 pm.
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Figure 3.7: Backwall response for heterogeneous aluminum cubic crystal.
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Figure 3.8: Error in backwall response relative to the 40 um elements for different element
size.
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The backwall results for 40 ym and 50 pym element size are shown together in Fig.
3.9. As seen from the figure there is still a small time shift. Therefore, this error may not
infer convergence with respect to the backwall of the model. The error is due to the time
shift in the echoes but the amplitude difference may be small. Calculation of the attenuation
is the main concern here, so the attenuation must be compared to confirm convergence of the
model. For calculating attenuation the amplitude is of the main concern. The attenuation
calculation involves the FFT of the backwall reflection, which is in the frequency domain.

Here, the time shift does not matter much.

10

T T
—— AX=40pm A/AX=31.22
—— AX=50pm A/AX=24.976

Displacement ( um)

8 | | | | | | |
0 1 2 3 4 5 6 7 8

Time (psec)

Figure 3.9: Comparison of backwall response for model with element size 40 pm and 50
.
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The attenuation for a 5 MHz longitudinal incident wave is shown in Fig. 3.10 as
a function of element size. Each plot is expanded in the range of interest as there is noise
before and after this frequency range. This acceptable region varies, generally taken as the
area under A/ V2 of the FFT of the wave with A as the peak value of the FFT. Most of
the energy is concentrated within this region. The attenuation coefficient can be extracted
for this region easily. The z-axis is the frequency in MHz and the y-axis is attenuation
coefficient in Np/cm for all the subplots in Fig. 3.10. The backwall reflections cannot be
differentiated from each other for the model with element size Az = 200 pm due to the
large element size because the whole signal is just noise. Therefore, attenuation cannot be

calculated and hence not plotted for the model with element size Az = 200 pm.
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Figure 3.10: Attenuation for different element size.
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The attenuation for each model at each point is now substracted from the model
with element size Az = 40 um at the same points as done before for the backwall reflection
comparison. The attenuation comparison is shown in Fig. 3.11 for the region of interest
neglecting the noise region. The absolute value of the difference is plotted. The error
decreases as the element size decreases as expected. From the graph the error also oscillates
in between the bounds. These bounds are of main interest here. The element size can now

be chosen as per the acceptable error bounds.
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Figure 3.11: Comparison of attenuation with the 40 ym element results for different element
sizes.

The attenuation results for 40 um and 50 pm elements are plotted together in
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Fig. 3.12. The error for 50 um elements is very small when compared with results 40 ym
elements. For calculating attenuation, models are created with different distributions of
grains and then the backwall reflections from all the models are used for averaging. This
averaging is required for the attenuation calculation as the model is very small and there are
few nodes at the boundaries. Here the above results are only for one realization of grains.
The error also decreases when compared with the theory if averaged over different random
realizations of grains. Thus, convergence in attenuation is achieved with Az = 50 pym with

an acceptable range of error.

3 — —— AX=50pm & A/AX=24.976 0.2 ‘ —— AX=50pm & L/AX=24.976
—— AX=40pm & AAX=31.22 i —— AX=40pm & A/AX=31.22
. __ 0157
S S
L L
z Z 01}/
c [
9 9
8 S 0.05¢7
c c
) )
Z g
: : -0.05 : : :
0 5 10 15 20 3 4 5 6 7
Frequency (MHz) Frequency (MHz)

Figure 3.12: Comparison of attenuation coefficient for element size 40 ym and 50 pm.

From the backwall reflection results for the homogeneous material, attenuation
has been observed which should not be there as per the scattering theory, since there is
no scattering in a homogeneous material. This reduction in amplitude is due to geometric
spreading of the input beam as well as small numerical attenuation due to the discretiza-

tion. The difference in attenuation between homogeneous and heterogeneous material is the
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attenuation for the material. For any attenuation, fifteen realizations are considered when

calculating the attenuation coefficient.

3.6 Summary

In this chapter the basic equations for the mathematical formulation of the wave
propagation in polycrystalline materials for finite element analysis was presented as referred
in the ABAQUS [30] manuals. The meshing procedure is explained in this chapter in detail.
Sometimes some Voronoi polycrystals have very small edges which are smaller than the
element size. These elements make the computational time costly. Different realizations
have been used to overcome this problem and eliminate the models with very small edges.
The attenuation coefficient is used for a convergence check. The error is deemed acceptable
for the attenuation calculation for an element size Ax = 50 pm and this size has been used
to mesh all the models used in this thesis. The triangles created from the uniform grid may
not be exactly equilateral but can be approximated to have the same length for all three
sides of the triangles. Therefore, the element size mentioned here is determined with this
assumption. Also, the triangles near the edges are not equilateral most of the time. This
assumption is made to refer to the element size with which other parameters can be related
easily like number of elements in a wavelength or in a crystals. Matlab codes described in
Appendix A and B, have been developed to create the input file for ABAQUS. A pressure
load at the surface of the element is introduced to simulate a longitudinal wave. In the next
chapter, the data acquisition and method to obtain the numerical attenuation results are

explained in detail.
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Chapter 4

Example Numerical Results (Plane

Stress)

The numerical results are obtained for the material of general interest with plain

stress boundary conditions. The attenuation calculated numerically is given by [31],

—ad _ |F2(w)]

© T RW)

(4.1)

where, « is the attenuation, d is the travel length of the elastic wave, and Fj(w) and Fa(w)
are the first and the second backwall reflections, respectively in the frequency domain. The
backwall reflections are averaged over the nodes at the surfaces for each model and the
attenuation is calculated. Attenuation results are then averaged for different realizations of
Voronoi polycrystals. To obtain a normal distribution of crystals in a domain a minimum
distance restriction between any two Voronoi nuclei is used. The minimum distance data

for different models for a specific number of crystals is obtained. Any kind of interpolation
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can be used to fit the data. Here a spline is used to fit to the data. Figure 4.1 shows
the spline fit to the data obtained from a unit square domain which is used as a reference
domain. For different model sizes, a linear transformation is done by considering the total

area of the reference and the current domain.
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Figure 4.1: Minimum distance required between any two crystals inside an unit square for
a normal distribution of grain size.

The materials examined here have different scattering properties as shown in Ta-
bles 3.1 and 3.2. Due to this scattering the attenuation calculation can be difficult as the
noise in the echoes increases with increase in anisotropy factor of the material. The noise in
the output signal makes the reflections of the backwall and frontwall hard to differentiate.
The frontwall displacement data for aluminum and copper are shown in Fig. 4.2. The re-

flection echoes can easily be recognized for aluminum by looking at the figure. However, for
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copper the noise is higher so the reflections cannot be differentiated from each other. This
noise is directly proportional to the length of travel of the wave. To obtain a clear waveform
with less noise different model sizes were used according to the scattering property of the
material. The models for weak scattering media are longer and for strong scattering media
they are shorter. The model is made wider for strong scattering so that more nodal data
may be obtained. Example results are shown in this chapter for models with plane stress
boundary conditions.

Aluminum Frontwall Aluminum Backwall
10 ‘ ‘ ‘ 15

Displacement ( um)
o
Displacement ( 1m)

-10 : ‘ :
0 2 4 6 8
Time (usec) Time (psec)

Copper Frontwall Copper Backwall

Displacement ( um)
o
—
Displacement ( 1tm)

0 2 4 6 8
Time (usec) Time (psec)

Figure 4.2: Frontwall and backwall responses for aluminum and copper.
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4.1 Aluminum

Aluminum is the weakest scattering media among the four materials studied here.
The model domain used for aluminum is the longest. Due to a low anisotropy factor,
the same size model with a different number of crystals with different input frequency are

constructed as shown in Table 4.1.

Table 4.1: Model specification for aluminum

No. of Model Size ‘ Diameter (um) Input Frequency D—fn
Crystals (mm?) Mean (D,,) | Std Deviation (MHz)

150 4 x 8 x0.075 512 95 3 4.0651
150 4 x 8 x 0.075 512 95 5 2.4391
150 4 x 8 x 0.075 512 95 8 1.5244
200 4 x 8 x 0.075 446 71 5 2.8001

The procedure for calculating attenuation is now explained using an example of
150 crystals for 5 MHz as the input wave frequency for a single realization of crystals. The
attenuation is calculated from the backwall reflections in the model. The backwall responses
for the homogeneous and heterogeneous cases are shown in Fig. 4.3. The attenuation is
less for the homogeneous case. Due to geometric spreading there is a small reduction in
amplitude. The backwall response shown was determined by averaging over the nodes on
the backwall. For this model there are 20 nodes over which the averaging is done. Only
nodes near the center of the wall are chosen. The nodes near the corners are avoided since
they are outside the coherent wave profile.

The first two reflections are used and referred to as Echo E1 and Echo E2 as shown
in Fig. 4.4(a) and (b), respectively. Tapered windowing and zero padding is done on E1l

and E2 as shown in Fig. 4.4(c) and (d) respectively. Figure 4.4(e) shows the FFT of the
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Figure 4.3: Backwall reflection for 150 aluminum crystals at 5 MHz.

windowed data. Using Eq. 4.1, the attenuation is obtained for these responses as shown in
Fig. 4.4(f). The attenuation in the homogeneous material is due to beam spreading and
numerical scattering. In the Fig. 4.4(e) the FFT is very smooth and the attenuation for a
region around 5 MHz is constant. Attenuation results for frequencies far from 5 MHz are
primarily noise.

The same procedure is followed for the heterogeneous case. Example results are

shown in Fig. 4.5(a)-(f). The scattering is seen to be higher in the heterogeneous case which
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Figure 4.4: Calculation of attenuation for one realization of homogeneous crystals.

is expected. The FFT is not as smooth as that of homogeneous case, shown in Fig. 4.5(e).
The echoes contain more noise from scattering than that of the homogeneous material. This
noise increases as scattering introduces more noise into the echo signals. Eq. 4.1 is used to
calculate the attenuation from the FFT data.

The attenuation for the homogeneous material is due to beam spreading and nu-
merical scattering. The same effects are also included in the results for the heterogeneous

case. The attenuation is found by substracting the homogeneous results from the heteroge-
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Figure 4.5: Attenuation calculation for one realization of randomly oriented cubic crystals.

neous results. The attenuation obtained after subtraction is shown in Fig. 4.6. This result
is the attenuation from one realization of a Voronoi polycrystal.

The attenuation for different realizations are compared so that the minimum num-
ber of realizations required to obtain accurate attenuation results may be understood. These
results are shown in Fig. 4.7(a)-(f). One of the main purposes of having different realiza-
tions is that more nodal displacement data may be used for averaging. As seen from Fig.
4.7(a), relevant frequency range without noise is 5+2 MHz. Figure 4.7(b) shows the average

attenuation values from 10, 11, 12, 13 and 14 realizations. These attenuation values are
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Figure 4.6: Attenution for one realization of aluminum crystal.

compared with 15 averaged values. The difference decreases as the number of realizations
increases as shown in Fig. 4.7(c). In Fig. 4.7(d) the average from 14 and 15 realizations
is shown. Thus, it is concluded that 15 realizations are sufficient to obtain the attenuation

values for aluminum.
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Figure 4.7: Attenuation comparison for different realizations of crystals for 150 aluminum
crystals in a 4 mm by 8 mm model for 5 MHz (a) attenuation from a 15 realizations (b)
average attenuation from 10, 11, 12, 13 and 14 realizations (c) differences the different aver-
age attenuation (d) average attenuation from 14 and 15 realizations (e) average attenuation
for 15 realization (f) average attenuation from 15 realization for the region of concern.
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Attenuation from different realizations of crystals at different frequencies are ob-
tained as shown in Fig. 4.8. The color lines in the plot are attenuation for each realization of
the crystals. Fifteen realizations are used for the attenuation calculation. The average from
all the 15 realizations is marked in black. Thus, the longitudinal attenuation for aluminum

is obtained for values of frequency over the range of A\/D.
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Figure 4.8: Longitudinal attenuation from different realization of crystal for model size of 4
mm by 8 mm and input frequency of the wave (a) 150 crystals for 3 MHz (b) 150 crystals
for 5 MHz (c) 150 crystals for 8 MHz (d)200 crystals for 5 MHz.

Simulations for the homogeneous and heterogeneous material properties models
are shown in Figs. 4.9 and 4.10. The figure shows the stress waves propagating through

the model at various times. Less attenuation is seen in the homogeneous case than the

heterogenous case.
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Figure 4.9: Simulation for aluminum with homogeneous material properties. 150 crystals
in a 4 mm by 8 mm model for 5 MHz of longitudinal wave.
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Figure 4.10: Simulation for aluminum with heterogeneous material properties. 150 crystals
in a 4 mm by 8 mm model for 5 MHz of longitudinal wave.
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4.2 Fictitious Material

Three models for the fictitious material have been created as shown in Tables 4.2 for
incident longitudinal waves. For this material different frequencies of incident longitudinal
wave have been used. The model size used is 8 mm by 6 mm with 0.075 mm depth with
512 pm as the mean grain diameter and 95 pm as the standard deviation of the mean grain
diameter. Therefore, by keeping the mean grain diameter constant for all the models, \/D
is varied. The results for attenuation are shown in Fig. 4.11 for an incident longitudinal.
As seen in the figure the scattering is higher than aluminum which is expected from theory.
Fifteen realizations of Voronoi polycrystals have been constructed. The average attenuation
from all the realizations are also shown in the figures. The numerical attenuation has a
negative region as seen in the Fig. 4.11 due to the noise in the response signal for very
low and very high frequency ranges compared with the input frequency for the model.
The negative region is outside the main frequency band of the incident wave and is thus
neglected. The attenuation values obtained are approximately in the range of 0.5 to 1.0
Np/cm for the incident longitudinal wave. The averaged attenuation curve is smoother

than a curve from any particular realization.

Table 4.2: Model specification for fictious material

No. of Model Size | Diameter (pm) Input Frequency ﬁ
Crystals (mm?) Mean (D,,) | Std Deviation (MHz)

150 4 x 8 x0.075 512 95 3 4.0651
150 4 x 8 x0.075 512 95 ) 1.5244
150 4 x 8 x0.075 512 95 8 2.8001
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Figure 4.11: Attenuation for fictious material (a) 3 MHz (b) average attenuation for 3 MHz
(c) 5 MHz (d) average attenuation for 3 MHz (e) 8 MHz (f) average attenuation for 8 MHz.
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4.3 Nickel

Nickel has a higher degree of scattering than aluminum and fictitious material.
The anisotropy factor is approximately four times more than that of aluminum. Three
models have been created of same size of 5 mm by 6 mm with 0.075 mm as the depth. The
model is made shorter such that the wave travels a lesser distance. The model is wider than
the model used for aluminum and fictitious material in order for more nodes at the surface
to be included in the response data. Twenty realizations have been created for each model
to have more data for averaging the attenuation results. Different numbers of crystals are
created. The input frequency is constant for all the models. The model specifications are
shown in Table 4.3. The \/D obtained is approximately in the range of 1.44 to 2.89. The
numerical attenuation results from different models are shown in Fig. 4.12. The scattering
is higher than what is observed for aluminum and fictitious material due to nickel having
higher anisotropy factor. The negative attenuation values of are again out of the relevant
frequency range, which is due to the noise. Figure 4.12 shows the smooth attenuation
curve near the input frequency for the models. The attenuation values for a wide range of
frequencies can be considered leaving out the noise region shown in Fig. 4.12 (b), (d) and

(f) averaged for the values obtained from twenty different realizations of each model.

Table 4.3: Model specification for nickel for longitudinal wave

No. of Model Size | Diameter (um) Input Frequency ﬁ
Crystals (mm?) Mean (D) | Std Deviation (MHz)

50 5 x 6 x 0.075 862 147 5 1.4487
100 5% 6 x 0.075 614 76 5 2.0339
200 5 x 6 x 0.075 432 70 5 2.8907
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Figure 4.12: Attenuation for nickel for different crystals. (a) & (b) 50 crystals (¢) & (d)
100 crystals (e) & (f) 200 crystals.
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4.4 Copper

Copper is the strongest scattering media among the four materials examined. Two
different sizes of model are used with 10 and 20 crystals only. Table 4.4 shows the model
specifications used for copper for a longitudinal wave. The model has fewer crystals and is
smaller in length to reduce the amplitude reduction as it depends on these parameters. The
shorter length makes the wave travel a shorter distance and also scatter less. The bigger
crystal makes the mean diameter high ranging from 1.396 mm to 1.995 mm.

The input wave propagates through approximately two to three crystals in each
model. This model is chosen such that response signal has less noise and the analysis is
possible. Here \/D ranges from 0.6260 to 0.8946. Even though the A/D is low, which implies
high attenuation is high, the response signal contains less noise than for the same model
containing more grains making the mean diameter lower and A/D high. The frequency of
the input wave is kept constant at 5 MHz. The number of realizations is increased with the
variations in the scattering properties of the material. Twenty five realizations of Voronoi
polycrystals have been constructed to have more data for averaging the attenuation results
for copper. The attenuation for copper is observed to be higher than nickel as shown in
Fig. 4.13. The figure also shows that the average attenuation curve becomes smoother.

The simulation from ABAQUS/CAE is shown in Fig. 4.14 for one model. The
figure shows high scattering as the original input wave form vanishes after few number of
time step and noise becomes more dominant. Also as the original form of input wave starts

distorting and the noise content also increases.



Table 4.4: Model specification for copper
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No. of Model Size Diameter (pum) Input Frequency ﬁ
Crystals (mm?) Mean (D,,) | Std Deviation (MHz)

10 8 x4 x 0.075 1995 323 ) 0.6260
20 8 x4 x 0.075 1396 304 ) 0.8946
10 8 x 6 x 0.075 2443 396 ) 0.6285
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Figure 4.13: Longitudinal attenuation for copper for different domains for 5 MHz as input
frequency (a) & (b) 8 mm by 4 mm model with 10 grains (c) & (d) 8 mm by 4 mm model
with 20 grains (e) & (f) 8 mm by 6 mm model with 10 grains.
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Figure 4.14: Simulation for copper with heterogeneous material properties. 20 crystals in a
8 mm by 4 mm model for 5 MHz of longitudinal wave.
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4.5 Summary

In this chapter, example numerical attenuation results for four materials have been
presented for plane stress boundary conditions. The attenuation calculation for aluminum
is the simplest as it is a weakly scattering material. The fictitious material is an imagi-
nary material having material properties such that its scattering properties lie in between
aluminum and copper. The numerical methods allow any material properties to verify
theories for fictitious material parameters which is not possible in laboratories. Obtaining
the attenuation for copper is the hardest since it is the strongest scattering media among
the four. The simulations shows that the wave scatters more for copper. The simulation
for aluminum shows the weak scattering nature expected. The simulation figures are the
output from ABAQUS/CAE. In the next chapter, the theoretical values of attenuation are
discussed in detail. The numerical results obtained here are then compared with these

theories.
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Chapter 5

Comparison of Theoretical and

Numerical Results

Elastic waves while propagating in an heterogeneous polycrystalline medium scat-
ter at the boundaries of grains due to the mismatch in grain orientation. As a result of this
scattering there is a loss of energy in the propagating wave which is termed attenuation.
The loss of energy from the main beam is governed by the length of travel of the wave in
the media.

Bhatia [1] discussed the dependence of the attenuation on A\ compared with the
average diameter D of the grains. He showed the attenuation scales with the fourth power of
frequency for A > D, a result analogous to light scattering by Rayleigh [32] and scales with
the square of frequency for A < D . At very high frequencies, i.e. A\ < D, the attenuation
becomes constant. This limit is the so-called geometric optics limit. Pao [33] presented

the integral formulas for elastic waves in isotropic and anisotropic media using the Green’s
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displacement dyadic and a second rank Green’s tensor. He derived Helmholtz and Kirchoff
type integrals for both transient and steady-state waves. Elastic wave fields are composed
of longitudinal and transverse parts that propagate at different speeds. The attenuation is a
function of propagation direction for a statistically anisotropic media. Stanke and Kino [34]
used a second-order multiple-scattering theory to determine the attenuation and change in
phase velocity due to grain scattering. Their results are applicable for media with texture
and for materials with elongated grains. Hirsekorn [35] presented the theory for calculating
the velocities and attenuation of longitudinal and shear waves in weakly anisotropic medium
which is dependent on frequency. Frisch[36] has given the mathematical formulation for
waves propagating in heterogeneous media. He has also given the basic Dyson [37][38]
equation in terms of the Green’s dyadic which governs the mean response of the field. He
introduced the first-order smoothing (FOSA) that may be used to solve the Dyson equation.

Weaver [7] introduced the Ultrasonic Radiative Transfer Equation (URTE) to
model wave propagation in heterogeneous media. Turner [8] has presented the expres-
sion for attenuation for shear horizontal, quasicompressional and quasishear wave using
the Green’s dyadic for transversely isotropic materials. The attenuation expressions for
different wave types are given as a function of direction and frequency of the propagating
wave in the media. The three-dimensional model created by Turner [8] and Weaver [7]
using elastodynamic theory and the URTE are used to model the attenuation expression
in two-dimensional domain with material orientation in three directions. Numerical results

are obtained to verify the theoretical model of attenuation.
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5.1 General Three-Dimensional Model

The three-dimensional theoretical model was developed by Weaver [7] and Turner
[8]. For completeness of this thesis and to understand the mathematical derivations for
attenuation expression given by them, their work is reviewed in this section. The equation

of motion for an elastic medium is given by
oijj + fi = pli, (5.1)
where 0;; is the stress tensor, f; the body force and p is the mass density of the material,

with i; the acceleration. Waves propagating in a linearly elastic solid obey Hooke’s law

which states that each stress component o;; is proportional to the strain component ey,
0ij = Cijkicnl, (5.2)

where e = %(ukl + ) with k,0 = 1,2,3. Cyjp is the elastic stiffness tensor with
symmetric conditions Cjjk = Cjikt = Chiij. Thus there are 21 independent elastic stiffness
constants which refer to a crystal which possesses no rotational symmetry. For crystal
systems of higher symmetry this number is considerably reduced. The values of the elastic
constants depend on the orientation of these axes relative to the crystal lattice.

Substituting Eq. (5.2) in Eq. (5.1) gives
Cijriur,j + fi = pis, (5.3)
or
—pii; + Cijriugy; = —fi,  where, f; = (f1, f2, f3). (5.4)

For a compressive load

fi = =03 (x — x)é(t), (5.5)
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where, 6%(z — ') = §(z — 2/)6(y — ¥')6(z — 2). Substituting Eq. (5.5) in Eq. (5.4) gives
—pﬁi + C’ijkluwj = 5ik63(X — X/)(S(t). (5.6)

The equation of motion is now written for the elastodynamic response in terms of

the Green’s dyadic as,

0? 0? 0?
{—5%@ + a_xicijkl<x)a_xl

} Gra (%, %X 1) = §j00%(x — x)8(2). (5.7)

The second-rank Green’s dyadic Gie(x,%';t) is the response to a concentrated
impulsive force. It is the response at a location x in the kth direction to a unit impulse at
location x’ in the ath direction. That is, Grq(x, ;) is the solution for uk(x,;t) when the
body force density is fo(x’). Here, the density is assumed to be uniform throughout. For
Eq. (5.7) the units are chosen in such a way that the density is unity.

For the polycrystals considered, the modulus tensor is no longer a constant but is

function of position. It is assumed to be spatially heterogeneous and of the form
Cijra(x) = Clijy + 8Cijpi(x). (5.8)

where C’?jkl = (Cijii(x)) is the average moduli and 6Cjjy; is the fluctuation about the mean.
The fluctuation is assumed to have a zero mean (6Cjjri(x)) = 0. The covariance of the

moduli, an eighth rank tensor is written

Alx — y)F s = (6Cjki(x)6Capqs(y)) = EF5 n(lx — yl). (5.9)

Here, the covariance A is a function of the magnitude of the difference of two vectors
|x — y| rather than x and y separately. This assumption states that the second order

statistics are homogeneous and isotropic. Therefore, the medium is assumed statistically
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homogeneous and statistically isotropic. Additionally, the grains are assumed equiaxed.
These two assumptions are made by many people [7], [8], [34]. In this case a two-point

correlation function 7(r) may be defined as [34]
n(r)=eL, (5.10)

where 7(r) is a two-points correlation function which states the probability of any two points
separated by a distance r lie on the same crystal.
For cubic symmetry the fourth-rank elastic modulus tensor is given by [7],
Cijt = MN8ijbw + p! (b + 6adjk) + v6iju, (5.11)
Clig + V8iju,
with ;511 is equal to one for ¢ = j = k = [ and to zero otherwise. )\I, ,uI and v are the
crystal properties for cubic symmetry given by
A= C1199, (5.12)
o = Ciag,

v = Chii1 — Criz2 — 2C1212.

The elastic modulus tensor may be represented with respect to the laboratory axes

)

3
Cijet = Clig + v ¥ ajajagar, (5.13)

where a' represents the elements in a transformation matrix between crystallite and labo-

ratory axes. The rotation between these two axes is represented by three Euler angles ¢, ©
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and (. The matrix is given by

—cosOsingsin( + cospcos( cosOcospsin +singpcos( sin(sin©
a= | —cosOsingsin( —cospcos( cosOcospsin{ —sinpcos( cos(sin O

sin © sin ¢ —cos O cos ¢sin cos ©

(5.14)

The ensemble average modulus is thus defined by

3 sin ©dOdpd(
— 0  _ I n.n.n.n
<C’L]k2l> = Cl]k:l = C —+ Vn§1/ai aj akal T (515)
The Voigt-average and the isotropic stiffness C’?jkl given by Weaver [7]
Czojkl = (C% — 26%)6ij6kl + C%[(Sik(sj'l -+ 5zl53k] (516)

where ¢, and cr represents the longitudinal and shear wave speeds respectively are written

in terms of the crystal properties as

4 = A+2u+uv/5, (5.17)

& = u+uv/s.
The covariance, Eq. (5.9), is an eighth-rank tensor,
afByé
A = (Capro(X)Cija(y)) — (Cagrs ()N Cigra(v)) (5.18)

The inner products given by Weaver [7] are derived in terms of two unit vectors p

and § which will be used in deriving the attenuation coefficients. Three relevant functions
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are given by

L(0ps) = E501 Papisps;pybrdsss = 200,
6 1 . A9, 18 4 . oaa, 1T 4
= (— - = . —— — : —— = 5.19
9 6 1 4
=~ 5% + o5 008 Hps + o5 008 Ops,
QB A A a A A s A a —PDS . pps 24 12 2
M(‘gps) = z]kl papzsﬂsjp'ypksésl == gng = 5152: % + % COoS epsa
=aBYE A A A A A A A A r DB 63 21 9
N(eps) = Z[]Z/ PaPiSBSjPyPES§ST = = ...Igzl = % + % COS 9ps;
where 0, is the angle between p and 8.
Using the spatial Fourier transform of A gives,
A jkl 1
A(p )103,376 /A( )Zajﬂvﬁ TPy, (5.20)

The correlation length L is of the order of the radius and proportional to the

volume of the grain. The Fourier transform of the correlation function,

ii(q) = / n(r)e=*Pd’r. (5.21)

The direction p defines the propagation direction and § is the scattered direction
and 0, is the angle between the two vectors. The two-point correlation function is defined

in the wave vector domain as

1 2 0 pm N )
~ — —X —iprcosf _: 2 929
n(q) @ /0 /0 /0 e Le sin Or“dfdrde, (5.22)

m2(1+ L2q?)?
The above expression is integrated most conveniently with respect to 6 first and then to

r. Weaver [7] showed that the main microstructural quantity at low frequency is the mean
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grain volume. At higher frequencies the correlation length may vary and may need to be
multiplied by a constant. Thus the correlation function may be related to the mean grain

volume as

=l

V:/dgre_ , (5.23)

such that

%D3 = (27)*7(0). (5.24)
Therefore, the correlation length may be related to grain diameter by,

1

L =——D.
2/6

(5.25)

The Green’s function G is a random function due to the random nature of the
media. Therefore, the statistics of G are of main concern. The statistics includes the
mean response (G) and the covariance of the response (GG*) where G* is the complex
conjugate. The angular brackets represents the ensemble averages of the quantity. Frisch
[36] used diagrammatic methods for solution of the mean response. The integral equation

for the mean response is governed by the Dyson equation [7],[8],[36],

(Gial, X)) = G, (x,%) + / / GO3(%, ¥) M (3. 2){(G a2, %)) dyd?z, (5.26)

where M is the mass or self-energy operator and G° is Green’s dyadic for the bare Voigt-
average, medium, i.e., the solution to Eq. (5.33) when 6Cjjx(x) = 0. The Dyson equation is
exact. Equation (5.26) may be solved in the spatial Fourier transform domain. The spatial

Fourier transform pair of G? is given by

1 . .
Gin(P)8(p —q) = @np / Gin(x, X)e~PXe 9 dud’t, (5.27)
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1 ) o,
Glalo) = g [ [ GRulp)o(o = e Pty (5.29)

An approximation is necessary for the equation of M. The simplest approximation
which can be based on the Dyson equation retains only the lowest order term. Frisch [36]
used a diagrammatic method to approximate M by its lowest order term and called it the

first-order smoothing approximation (FOSA). The FOSA expression for M is given by [7],

8]

0 9 9 o
Mpg;(y,z) = <—5Ca6W6(Y)—G2k(YaZ)—écijkl(z)a_%>'

Yo 0ys 0z; (5'29)

It is assumed the fluctuations 6C are small. The spatial Fourier transform of M
is given by [7] as a convolution of Green’s dyadic and Fourier transform of the covariance

of the moduli fluctuation. It is written
~ .y ijkl
Mg;(p) = / &GS, ()papisssih(p — 5) 5. (5.30)
The Fourier transform pair for the function f(¢) and f(w) are defined by
fl) = [ rea, (531)

£(t) = % / Flw)e ™t du. (5.32)

Using the Fourier transform and substituting from equation(5.8) allows Eq. (5.7)

to be written in frequency domain,

0 0 0 0
- \2 0 2. _ 3 s
{_(_W) bk + Cijkl Bz, 01 + oz; 5Cz'jkl(x) e } Gra(x,X;w) = 0jad (x — %),
0 0 0 0 . .
{w2(5jk + Cgklﬁ—xlﬁ—xl + 8—35'160%[(}()8—:1:1} Gka(x,x; w) = 6ja63(x - X). (533)
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Using Eq. (5.33) with 6Cj;ri(x) set to zero and using the Fourier transformed

G(p) allows Eq. (5.16) to be written as
{w?81i + Pp;iChiij } Gia(P) = St (5.34)
The equation is written in direct notation as,
(PP {w? —p’ci} + (I—pp) {w? —p’c}}) G =L (5.35)
The solution to Eq. (5.35) is given by [7]
G®(p) = ppg"™ (») + (1 - BP)g™ (), (5.36)

where the g°%(p) and ¢°7(p) are termed the bare longitudinal and shear propagators given

by

@) = W -pl T, (5.37)

T(p) = [W—-p’F " (5.38)

The imaginary parts of the bare propagators, used for deriving the attenuation

expressions, are given by

Img""(p) = —msgn(w)é(w® —p’c}), (5.39)

Img"(p) = -—mwsgn(w)s(w?® — p*c).

The spatial Fourier transform for G and M are given above. To solve for (G(p))

the Dyson equation can be spatially Fourier transformed, giving

(G(p)) = [G°(p)~! = M(p)] . (5.40)
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The mean response and the self-energy is expressed in terms of unit vectors p,

(G(p)) = gr(p)pd+gr(p)(I—DPH), (5.41)

M(p) = mgp(p)pd+mr(p)(I— PP). (5.42)

The solution of the Dyson Eq. (5.40) gives the dispersion relation for the mean

response as

gr(p) = g = [w* = p*c} —ms(p)] ", (5.43)

1

=W - p* —mr(p)] 7

gr(p) = g — —mr(p)]

which gives the phase velocity and attenuation of each wave type. The real part of p
defines the phase velocity and the imaginary part defines the attenuation. The solution is
generally obtained using the root finding techniques [39]. It is an iterative procedure which
starts with an estimate of the root and produces successively better approximations. The
explicit attenuation can be obtained by using an assumption valid below the high frequency
geometric optic limits. Such an approximation is sometimes known as a Born approximation
[7] [34], where the wave vector p is close to bare wave vector (w/c,)p. Therefore, by this
assumption m~(p) = my[(w/c)p|, where v is the wave type. The expression for attenuation

is then given by

1

ap = 2WCLIlrlrlrrLL(w/cL), (5.44)
1

ar = Immy(w/cr),

2wer
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where
Immp(w/cr) = z ﬁf’gé"":w—f)ﬁ f)i—é—w d*s
L L 2 Ppas.--— CE L L
5
m f)pglg....ﬁw AW . W 2 A
- (I-z)= — —8§—1)ds
+2 / pps( S) C%c%n <pCL CT) )
5
7'(' ~ A UJ UJ w
Immyp(w/c = - -y = hlp= —s— ) d?s
5
T 5\ B3 2 w w w
- I-P)YX1-8) == p— —6§— ) d°8
+4/ Tplps I3 E i (B =80

Three functions have been defined in terms of 0, the angle between the two unit

vectors p and §,

R . W .~ w
neL(Ops) = 7 (p— - s—) ; (5.45)
cr cr
N . w . w
ULT(GPS) = UTL(eps) =7 <P— - S—> )
cr, cr
R . w . w
77TT(0PS) = n (Pg - Sg) .

The final expressions for the attenuations are given by [7]

arp = apr+oarr, (5.46)
ar = arr+oaorg, (5.47)
where
20t [
cin = G [ ma®LO)n, (5.48)
CL -1
204 [l
arr = 23—5/ nrr(0)(M(0) — L(0))dp,
CLCT -1
1
ory = (er/cr)’arr,
2,4 [+
orr = T [ rn(O)(N(0) ~2M0) + L),
T p—

with ¢ = cosf. Based on this three-dimensional model the attenuation expressions are

derived for two-dimensional domains in the next section of the chapter.
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5.2 Two-Dimensional Model

The numerical model described in Chapters 3 and 4 is not truly three-dimensional.
Thus the theory described in section 5.1 must be modified. Since the numerical model has
material orientation in all three directions the elastic modulus and the covariance remains
the same as that of the three-dimensional model. The two-point correlation function in the

two-dimensional domain is defined by,

2T oo
nq) = / / e Le P lrdrdg, (5.49)
o Jo
2 L2

- d
/0 —1+ p2L2cos? ¢ — 2ipL cos ¢ 2
2rL?
(1+ 2L2)3/2"
In the low frequency limit 7(q) scales with L? as shown in Eq. (5.49). The

longitudinal to longitudinal attenuation expression is now given by

1 S5 . )
i = g [ BE M) b -s). (5.50)
S /sdsdég’?é""E’ s__T S(w—wfer) pn(p—s)
2wer, PS8 Quer ’
_ 1 I/§?§§AA-~:LKW_2W_2A 59 59 4s
2weg, 2 PPSS~ el ep c% c%n cr, cy, ’
nwd w w
— I a(pE —s¥ ) Lo)as
462 77<p L SCL> ( ) S
w3 [
= = N (6)L(0)d
o | o)L
Similarly,
I
arr = 23—4/ ner(0)(M(0) — L(9))dp, (5.51)
CLCT -1
rwd [
arr = T [ ner(O)(N(©) = 201(60) + L©)dn
.
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The correlation length L is related to the mean grain area in the two-dimensional

domain as

=l

A:/d2r6_ , (5.52)

such that

TD* = (2m)*7j(0), (5.53)
Thus, for the two-dimensional case, the correlation length is related to grain diameter by

1
——D
47r\/§

L =

where D is the mean diameter of grains.

Using the expressions for attenuation given above the theoretical attenuations for
aluminum, copper, nickel and the fictitious material are shown in Fig. 5.1 with 600 pm
as the mean diameter of the grains. The attenuation and wavelength are normalized by
the mean diameter of the grains. The longitudinal and shear attenuation for the two-
dimensional model is higher than the three-dimensional. Schubert, et al. [40] showed that
the attenuation for the two-dimensional case is higher than for a three-dimensional case
using a numerical model of concrete.

The attenuation for the fictitious material lies in between aluminum and copper
as shown in Fig. 5.1. Copper has the highest and aluminum the lowest attenuation values
among the four materials. The longitudinal attenuation for the two-dimensional model is
approximately 8 to 10 times higher than in the three-dimensional model and about 1.2 to
1.5 times higher for the shear attenuation. The numerical results from these models are

discussed in detail in the next section.



oD

0.25 :
— Al
\ a
02} | © o
: \ —— Fictitious
— Ni
0.15 \
0.1}
0.05}
0 _
0
[§) T
| — Al
st © — Cu
‘\ —— Fictitious
o | .
|
|
a
537 |
\
2r \\
0 &; .
0 1 2

82

3
— Al
‘ b
251 | (b) — Cu
‘ — Fictitious
2r | —— Ni
150 )
10\
05+
0
0 4 6
7 ‘
— Al
| d
61 “ @ — Cu
\ — Fictitious
S| — Ni
4 L
a
3
3t \\
2 L
1 L
0 ~_
0 1 2 3

Figure 5.1: Theoretical attenuation normalized by the mean grain diameter for (a) 3D

longitudinal attenuation (b) 2D longitudinal attenuation (c) 3D shear attenuation (d) 2D
shear attenuation.

5.3 Plane Stress

The numerical results for plane stress boundary conditions are compared both with

two- and three-dimensional theoretical models. The theoretical attenuations are computed

for the mean diameter and for the standard deviation of the mean grain diameter. The

numerical and theoretical attenuations are normalized by the mean grain diameter. The

theoretical attenuation scales with the correlation length L. Therefore, theoretical atten-
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uation is first normalized by the correlation length and then multiplied by the D/L ratio
so that it can be compared with the numerical results which are normalized by the grain

diameter, in the same scale.

5.3.1 Aluminum

The numerical attenuation results normalized by the mean grain diameter are
shown in Fig. 5.2 for a longitudinal wave in aluminum. The numerical results agree well with
the theory for a wide range of A\/D. The A\/D ratio ranges approximately from 1.2 to 4. The
consistency of the numerical results is observed as the numerical attenuation curves follows
each other from the different models. Frequencies ranging from 2 MHz to 8 MHz could be
used due to the low scattering in aluminum. The models have material orientation in three
directions but there is no scattering from the z-axis. Therefore, the scattering properties
should lie in between the two-dimensional and three-dimensional theoretical model.

The numerical attenuation normalized by the mean grain diameter plus and minus
one standard deviation of the diameter are shown in Figs. 5.3(a) and (b). For one standard
deviation of mean grain diameter the numerical results fits well with the theory. For 3o, 50
the length of the error bars will increase and a higher range of error bars will be obtained.
Therefore, if the results fit well for 1o it will also fit for 3o and 5¢. Thus, 1o is used here. The
numerical attenuation curves shift when normalized by the positive and negative standard
deviation of the grain diameter. The shifting of the numerical attenuation towards the
theoretical three-dimensional curve is observed for attenuation normalized by the positive

standard deviation of the mean grain diameter shown in Fig. 5.3 (b).
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Figure 5.2: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of aluminum for model size 4 mm by 8 mm.

Figure 5.3: Normalized longitudinal attenuation for aluminum for standard deviation of the
grain diameter (a) negative deviation (b) positive deviation.
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The numerical attenuation results shows good agreement with the theoretical
model for longitudinal waves. The numerical results obtained from different models are

shown in different colors in the figures.

5.3.2 Fictitious material

The model size of 4 mm by 8 mm with 0.075 mm as depth is used for the fictitious
material with same number of crystals and input frequencies of 3 MHz, 5 MHz and 8 MHz.
All the models have 150 crystals. The numerical longitudinal attenuation normalized by
the mean grain diameter is shown Fig. 5.4. The \/D ratio obtained ranges approximately
from 2 to 5. The numerical attenuation normalized by the positive and negative standard
deviation of the mean grain diameter is shown in Figure 5.5(a) and (b). The results fit well
within the standard deviation of the numerical results. Thus, the two-dimensional model

appears well-suited for these numerical results.
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Figure 5.4: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of fictitious material for model size 4 mm by 8 mm.
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Figure 5.5: Normalized longitudinal attenuation for fictitious material for standard devia-
tion of the grain diameter (a) negative deviation (b) positive deviation.
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The quality of the numerical results obtained for the fictitious material shows
the same nature as seen for aluminum. The numerical attenuation results increase as the
A/D decreases as expected from the theory. The model shows agreement with the two-

dimensional theory for this material.

5.3.3 Nickel

Nickel has higher a degree of scattering than either aluminum or the fictitious
material. Therefore, the model used is made wider and shorter than the model used for
the longitudinal attenuation calculation for aluminum and fictitious material. The model
used is 5 mm wide and 6 mm long. Three models with 50, 100 and 200 crystals are
constructed. The input frequency for all the models is 5 MHz. The numerical attenuation
normalized by the mean grain diameter is shown in Fig. 5.6. The range of A/D obtained
is approximately between 1 and 6.5. A wide range of A/D ratio is obtained for attenuation
results for the model with 200 crystals due to reduced amplitude reduction as the mean
diameter decreases. In this case the noise content in the response signal is reduced. The
numerical attenuation curve is between the two-and three-dimensional theoretical models.
The attenuation normalized by the mean diameter plus minus the standard deviation of the
mean grain diameter is shown in Figs. 5.7 (a) and (b). Twenty realizations of grains have

been used for nickel.
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Figure 5.6: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of nickel for model size 5 mm by 6 mm for 5 MHz of input frequency.
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Figure 5.7: Normalized longitudinal attenuation for fictitious material for standard devia-
tion of the grain diameter (a) negative deviation (b) positive deviation.
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The numerical results for the longitudinal attenuation of nickel are obtained for
a wide range of frequencies. Due to high scattering the slope of the numerical attenuation

curve shows more similarity with the three-dimensional theoretical model.

5.3.4 Copper

Copper shows the highest degree of scattering among the four materials from the-
ory. The numerical results also verify the same. Therefore, the model is made wider and
shorter as compared with the models used for the other three materials. Three different
models with two different sizes, 8 mm by 4 mm and 8 mm by 6 mm, are constructed for
copper. The input frequency is kept constant at 5 MHz for all the models. Twenty five real-
izations of grains are used for averaging the attenuation results. The model has fewer grains
to minimize the noise content in the response signal. The results are shown in Figs. 5.8 and
5.9. The numerical attenuation curves lie between the two-and three-dimensional models.
The slope of the numerical attenuation curves is closer to the theoretical three-dimensional
model than to the two-dimensional model. The numerical attenuation normalized by the
mean grain diameter plus minus the standard deviation also lies between the two and three-
dimensional models as shown in Fig. 5.9 (a) and (b). The A/D ratio obtained from the
numerical results ranges approximately from 0.6 to 1.7.

Copper being a strong scattering media the consistency in the numerical results
is observed from Figs. 5.8 and 5.9. Therefore, the numerical results for copper also shows

good agreement with the theory.
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Figure 5.8: Normalized longitudinal theoretical and numerical
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5.4 Plane Strain

The model is created with plane strain boundary conditions by constraining the
out of plane displacements of all the nodes in the finite element model. The rest of the
boundary conditions remains the same as the plane stress case such as the loading and
infinite elements. The data are analyzed in the same manner as explained in Chapter 4. In
this section the final attenuation results are presented and compared with the theoretical
models. Results for an incident longitudinal wave are obtained for aluminum, nickel and
copper. All of the models used in the plane stress analysis are used for the plane strain
boundary conditions. Therefore, the realization and the crystal geometry remains the same

as the models discussed in Chapter 4.

5.4.1 Aluminum

The attenuation results with plane strain boundary conditions for aluminum are
shown in Fig. 5.10. The attenuation values obtained here have large fluctuations and some
of the data are in the negative region i.e. data obtained for 3 MHz of input wave. Since
the model has zero displacement in the out of plane direction the wave scatters only in
between the crystals. The mean free path is inversely proportional to the attenuation of
the material. Therefore, the inverse of aD gives the minimum number of crystals required
in a material for sufficient ultrasonic scattering. The model has 150 and 200 crystals which
is not sufficient for enough scattering. From the Fig. 5.10 the highest value of aD is
approximately 0.0002 and its inverse is 500. Therefore, a least 500 crystals are required for

sufficient scattering. Thus the data for a 3 MHz pulse may not be representative results.
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The slope of the numerical curve is closer to the three-dimensional theoretical
model. Therefore, the two-dimensional theoretical curves are not used for comparison for
the plane strain results. The numerical attenuation results normalized by the mean grain
diameter minus the standard deviation of the diameter fits well with the three-dimensional

theoretical curve shown in Fig. 5.11.
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Figure 5.10: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of aluminum.
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Figure 5.11: Normalized longitudinal attenuation for aluminum for mean diameter plus (a)
negative deviation (b) positive deviation.

5.4.2 Nickel

The attenuation results for nickel normalized by the mean grain diameter are
shown in Fig. 5.12 and by the variation of the mean grain diameter, i.e. D,, + o are
shown in Fig. 5.13. For the minimum value of aD, 0.005 approximately 200 crystals are
required. Therefore, for higher values of aD the model has enough crystals for sufficient
scattering. The numerical results fit well with the theoretical curves for this material for
all the models. Figure 5.13(b) shows very good agreement with the theory. It is also seen
that as the number of crystals increases, the numerical results show better agreement with

the theory. In addition, the data can be obtained for a wide range of frequencies.
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Figure 5.12: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of nickel for 5 MHz of input frequency with various crystals.
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5.4.3 Copper

Copper is the strongest scattering material among the four materials. The numer-
ical curve lies below the three-dimensional theoretical curve as shown in Fig. 5.14. Only the
results for the model with 20 crystals show better agreement with the theory than the other
two models for copper. This result may be due to the fact that the other two models have

fewer crystals. The attenuation results for the mean diameter plus and minus the standard

deviation are shown in Fig. 5.15.
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Figure 5.14: Normalized longitudinal theoretical and numerical attenuation for mean diam-
eter of copper for various grain size and 5 MHz of input frequency.
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5.5 Summary

The numerical attenuation results are normalized by the mean grain diameter, and
mean grain diameter plus and minus the standard deviation of the mean grain diameter to
observe the range of the numerical attenuation curves for all the models with respect to
the theoretical attenuation curves. The numerical curves for plane stress consistently lie
between the two- and three-dimensional theoretical curves which verifies the authenticity
of the numerical models. The numerical results show the A/D ratio dependence on the
attenuation. Various ratios are obtained by varying A and D. The noise content in the
response signal increases as the input frequency increases. The slope of the numerical
attenuation curve starts to follow the slope of the three-dimensional model as the degree
of scattering increases. This nature is observed for nickel and copper more prominently

compared with aluminum and nickel which have lesser anisotropy factor.
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The numerical results agree well for the plane strain case with the three-dimensional
theoretical model. In the plane strain analysis it is also observed that the model should have
enough crystals for sufficient scattering. Therefore, better results are obtained for nickel for

the plane strain case.
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Chapter 6

Summary of Thesis

The propagation of elastic waves in polycrystalline materials have been simulated
using a numerical model of the microstructures of polycrystalline materials using Voronoi
polycrystals. The Method of Virtual Nuclei was be used to create Voronoi polycrystals
in a domain with arbitrary geometry with ease. This method also ensures the Voronoi
properties of each Voronoi polygons as seen from the statistical analysis in Chapter 2.
The statistical analysis also shows that various types of distributions of Voronoi nuclei
can be modeled. Voronoi polycrystals in three-dimensional domains were also shown in
Chapter 2. Numerical models for microstructure for different processed materials such
as rolled materials were shown in both two-and three dimensional domains. By using
MVN the creation of Voronoi polycrystals for any arbitrary domain can be obtained easily
in three-dimensions as well. Elongated and oriented grains in the model with different
aspect ratio and angle of orientation were shown. The models used for the attenuation

calculations represent materials with long grains which can be approximated as a two-
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dimensional problem.

The meshing is done by using six-noded prism element which allows the mate-
rial orientation to be in three directions even though there are no scattering in the third
axis. Each crystal is meshed separately to avoid any delinquencies of more than one crys-
tal sharing the same elements which might occur if the whole model is meshed at once.
ABAQUS/Explicit is used as the FE software package. The simulations from the finite
element analysis help to visualize the scattering in the material.

Numerical models were obtained with a uniform distribution of grain diameter.
However, in order to fill the domain, the grains had a distribution of sizes with mean
and a standard deviation. The theoretical modeling assumes a uniform diameter in a
model. Therefore, the numerical results are computed for mean grain diameter and standard
deviation of the mean grain diameter. The attenuation for the two-dimensional domain is
also derived using the three-dimensional model derived previously.

The plane stress finite element results using Voronoi polycrystals showed good
agreement with attenuation from theory. The averaged attenuation from different realiza-
tions of Voronoi polycrystals made the results more accurate. Four materials of common
interest with various anisotropy factors were used to study the accuracy of the numerical
results. The model for copper had fewer grains, i.e. larger mean diameter, due to its high
anisotropy factor. The numerical results for these material agreed well with the theory.
Using the numerical methods, attenuation for a wide range of A\/D values were obtained
and verified with the theory. The attenuation results agreed well for all the four materials

namely aluminum, fictitious, nickel and copper with a wide range of scattering degree for



100

an incident longitudinal wave. The numerical results also showed the increase in scattering
as the \/D decreases as observed in the theory.

It was also observed that averaging over different realizations of grains reduced
the fluctuations in the numerical attenuation results. The number of realizations required
also increases with increasing degree of scattering in the materials. Therefore, the maximum
number of realization were constructed for copper and the least for aluminum. The averaged
attenuation curve was smoother and more consistent compared with results from any one
realization. The model was verified for various range of A/D for different materials. The
attenuation governed by the frequency and diameter of the grain is observed for all the
numerical results.

The results for the models with plane strain boundary conditions show good agree-
ment with the three-dimensional theoretical longitudinal attenuation values. Nickel shows
the best results among the materials tested with the plane strain boundary condition, as
there are enough crystals for ultrasonic scattering in the model. The aluminum model has
fewer crystals than that required for sufficient scattering. Therefore, it can be easily ob-
served that for the plane strain case the model should have enough crystals for scattering.
Copper showed good results for a model with 20 crystals.

The work contained here has been focused on the construction of a robust and
efficient numerical model for attenuation due to scattering in polycrystals. The Voronoi
polycrystal is observed to be a good numerical model for the attenuation calculation in
polycrystalline materials. Such an analysis has not been used before for the dynamic case.

The Voronoi polycrystal can be used efficiently to model microstructures of various types.
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The distribution of the grains can also be controlled numerically with ease.

Various ultrasonic theories can be examined using the Voronoi model for various
kinds of microstructures such as grains with preferred orientations and textured media. In
this work the results are obtained for plane stress and plane strain boundary conditions.
For plane stress boundary conditions the numerical scattering results suggest that the two-
dimensional theory is better for weakly scattering media, while the three-dimensional is
better for strongly scattering media. The results from plane strain agree well with the
three-dimensional theoretical model for all the materials.

This work forms the basis for many more studies in the future. Some of these
ideas are discussed in the next chapter. The model is used for initial work on ultrasonic

backscatter which is explained briefly in the next chapter.
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Chapter 7

Future Work

A numerical model for wave propagation in polycrystalline material has been con-
structed successfully. The models can now be used to study several aspects of ultrasonic
theories in polycrystalline materials. There is much work to do both theoretically and nu-
merically. Voronoi polycrystals can now be used to model a wide range of microstructure
types for ultrasonic parameters in them which may not be easily studied analytically or

experimentally.

7.1 Three-Dimensional Model

The three-dimensional model was shown in Chapter 2 for various domains. The
meshing of a Voronoi polycrystal in a three-dimensional domain is computationally chal-
lenging. It is necessary to find the vertices of all the surfaces of a Voronoi polygon for
surface meshing. Theoretically the vertices of any particular surface lie on the same plane.

Due to numerical error and precision of the computer the vertices of any particular surface
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may lie on the same plane with small errors. These error bounds have to be kept in mind
for assuming points lying in the same plane. Convex hull concepts can be used to extract
the faces of each crystal. The vertices of the Voronoi polygon can be obtained from the
MATLAB output but the surfaces of each polygon must be found.

The second problem arises due to many very small edges for each Voronoi polygon
as it is in a three-dimensional domain. These small edges makes elongated surfaces. These
surfaces can be so elongated that they cannot be further subdivided into triangles. The
step time increases drastically due to these elongated elements because one of its side is
very small compared with the other elements in the model.

Two points which are very close to each other can be collapsed to one point which
will prevent the formulation of small edges. Overcoming the above difficulties will create a
Voronoi polycrystal in a three-dimensional domain meshed with tetrahedrons. Each crystals
in the three-dimensional model should also be meshed separately and then assembled to
avoid any delinquencies. The three-dimensional model will make the numerical results more
accurate and realistic for cases that cannot be verified in two-dimensional domains. The
theory for the three-dimensional model can then be compared directly with the numerical

results.

7.2 Backscatter

The heterogenenity in the material ensures that incident wave fields will be scat-
tered. This scattering will be wavelength dependent. The scattered energy can be used for

probing microstructural parameters and flaws in the materials. While the wave propagates
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through the medium, it scatters at the grain boundaries due to the inhomogeneity as illus-
trated in Fig. 7.1. The grains have random material orientation making it a heterogeneous
material. A portion of this scattered energy reaches the frontwall before the reflection of
the wave from the backwall. During scattering at the grain boundaries mode conversion
of the wave also takes place. In Fig. 7.1, the black arrows represent the scattering from
longitudinal to longitudinal and the red arrows represent mode conversion of longitudinal
to shear waves for a longitudinal incident pulse. The scattered energy can be quantified to
infer the microstructural parameters and flaws in the material. The nodal displacements
from the finite element analysis are used to calculate the background rms grain noise of the
model numerically. Experiments can also be carried out for backscatter measurements but

collecting data for mode conversion will be difficult due to transducer restrictions.

Incident Pulse

U
u

Figure 7.1: Scattering at the grain boundaries due to inhomogeneity for an longitudinal
incident wave.

Backscatter measurements can be used for flaw detection in the material. For
example one grain can be modeled as a harder phase to study the probability of detection.

A crack could also be introduced in the model to study the effects of cracks on backscatter.
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Margetan, et al. [41], presented the theoretical model for rms grain noise in poly-

crystalline materials. The average nodal displacement for M nodes is

1 M
b(t) = 57D _Vilt), (7.1)
=1

where V(t) is the displacement of the ith node at time ¢. The root-mean squared deviation

of the grain noise from the background is then [41],[42]

1 4 ’
n(t) = [— [Vi(t)_b(t)]z] : (7.2)

The region of interest for backscatter measurement is shown in Fig.7.2. The region

in red indicates the arrival of grain noise before the backwall echo.
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Figure 7.2: Average nodal displacement for aluminum at 5 MHz.
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The rms grain noise can also be computed for mode conversion of the wave by
using the finite element method. Backscatter results for aluminum and copper are given as
examples. The rms grain noise for aluminum is shown in Fig. 7.3. From the figure, the
rms grain noise increases as the A\/D decreases which is expected from the theory. The rms

grain noise can be compared with the theoretical model for verification of the numerical

model.
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Figure 7.3: Longitudinal to longitudinal rms grain noise for aluminum.
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The backscatter results for copper are shown in Fig. 7.4. The mode conversion
of longitudinal to shear has also been computed numerically for copper. The multiple
scattering effect is greater in copper than aluminum as seen in the rms grain noise plot
due to copper being a stronger scattering medium than aluminum. The rms grain noise is

plotted with respect to A/D. The rms grain noise is higher for mode conversion as shown

in Fig. 7.4.
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Figure 7.4: Longitudinal to longitudinal and longitudinal to shear rms grain noise for copper.

The grain noise can be modelled theoretically and verified numerical. The numer-
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ical method will help in verifying the theory for mode conversion of waves as such data
cannot be easily acquired experimentally. It is expected that Ultrasonic Radiative Transfer
(URT) theory can be used for modelling the rms grain noise and multiple scattering effects
observed. Theories for mode conversion scattering have not yet been developed but can
be modeled using URT. A numerical model can be very useful for computing backscatter

results for mode conversion of waves.

7.3 Shear Attenuation

Initial work has been done for shear attenuation calculations for plane stress
boundary conditions. Nodal displacements parallel to the surface are used to simulate
a shear wave. The nodal displacements are given using the same type of pulse wave used
for an incident longitudinal wave. Different model sizes are also used for longitudinal and
shear waves for the same material, since the shear wave attenuation is much higher. The
boundary conditions for the plane stress analysis are shown in Fig. 7.5, which is taken
from ABAQUS/CAE. For simplicity of visualization, the elements are made larger in the
model. For the shear attenuation calculation all the models have the element size of 50 ym.
The shear attenuation results are obtained for aluminum and fictitious materials for plane
stress boundary conditions. Two models are created and the same model is used for both

aluminum and fictitious material.
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Figure 7.5: Model with shear wave loading condition.
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7.3.1 Alum

A model smaller in length but wider is used for the shear wave such that more

data points at the backwall may be used for averaging. In addition, the wave travels a

shorter distance when the model is shorter. This information is shown in Table 7.1.

Table 7.1: Model specification for aluminum for shear wave
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Figure 7.6: Backwall reflection for 50 aluminum crystals at 5 MHz for incident shear wave.
The model size is 8 mm by 6 mm and the depth is 0.075 mm.

The shear wave is more difficult to analyze than the longitudinal wave due to the
higher attenuation. The procedure for determining attenuation remains the same, only the
wave speed differs. The backwall response for a shear wave is shown in Fig. 7.6. The same
procedure is applied to obtain the attenuation as outlined above. For the shear wave, 15
realizations are also used to obtain the attenuation values. The attenuation for the models
is described in Table 7.1. Two models are used to obtain the attenuation results. The
length of the model is smaller than that of longitudinal model due to higher attenuation for

the shear wave. The attenuation for the models described in Table 7.1 is shown in Fig. 7.7.
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Figure 7.7: Shear attenuation for aluminum (a) 50 crystals (b) average attenuation for 50
crystals (c) 100 crystals (d) average attenuation for 100 crystals.

The simulation for the incident shear wave is shown in Fig. 7.8. The simulation
for an incident shear wave shows more scattering. Since aluminum is a weakly scattering

medium the coherent wave does not vanish and the noise content is small.
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Figure 7.8: Simulation for aluminum with heterogeneous material properties. 100 crystals
in a 8 mm by 6 mm model for 5 MHz of shear wave.
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The numerical results can also be compared with the theoretical model. The
numerical results for shear attenuation show fluctuations as seen in Fig. 7.9. The input
frequency used for both models is 5 MHz. The results obtained for such a A/D ratio
make it difficult to comment on the slope of the numerical attenuation curve compared
with the theoretical models. At these values of A\/D the difference in slope between the
two-dimensional and the three-dimensional attenuation curves is very small. It is possible
that these fluctuations may be minimized by having more realizations. The attenuation
normalized by the standard deviation of the mean grain diameter is shown in Fig. 7.10.
The normalized numerical attenuation curves by the standard deviation of the mean grain
diameter shifts left and right when compared with the attenuation normalized by the mean

grain diameter.
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Figure 7.9: Normalized shear theoretical and numerical attenuation for mean diameter of
aluminum for model size 8 mm by 6 mm.
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Figure 7.10: Normalized shear attenuation for aluminum by the standard deviation of the
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7.3.2 Fictitious Material

The attenuation results for the fictitious material are shown in Fig. 7.11 for an
incident shear wave. The numerical attenuation goes to a negative region as seen in the Fig.
7.11 due to the noise in the response signal for very low and very high frequency ranges
compared with the input frequency for the model. The model specifications are given in
Table 7.2. For the shear wave different mean grain diameters are used keeping the frequency

constants such that \/D is varied.
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Figure 7.11: Attenuation for shear wave for (a) & (b) 50 crystals (c) & (d) 100 crystals.

The numerical shear attenuation results normalized by the mean grain diameter,
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Table 7.2: Model specification for fictious material for shear wave

No. of Model Size | Diameter (um) Input Frequency ﬁ
Crystals (mm?) Mean (D,,) | Std Deviation (MHz)

50 8 x 6 x 0.075 1092 174 ) 0.5667
100 8 x 6 x 0.075 774 112 ) 0.7995

and mean diameter plus and minus the standard deviation of the mean grain diameter are
shown in Figs. 7.12, and 7.13 respectively. The same models used for aluminum are used
here for the fictitious material. The input frequency of 5 MHz is used. The numerical

results show fluctuations as seen for the shear attenuation in aluminum.
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Figure 7.12: Normalized shear theoretical and numerical attenuation by mean diameter of
fictitious material for model size 8 mm by 6 mm.

The shear attenuation is high compared with the longitudinal attenuation of alu-

minum and fictitious material. The high attenuation increases the degree of scattering such
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Figure 7.13: Normalized shear attenuation for fictitious material for standard deviation of
the mean grain diameter (a) negative deviation (b) positive deviation.

that the response contains more noise. As the noise content in the signal increases the level

of difficulty in analyzing the signal also increases. Analysis can also be done for plane strain

formulations for an incident shear wave. The results can be obtained for a model with more

crystals and more realizations to check if the fluctuations in the numerical results decrease.
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Appendix A

Voronoi Model

A.1 VoronoiPoly2D.m

This program constructs the Voronoi polycrystal inside a regular polygon of n
sides. Uniformly distributed grains are created. The user can enter the aspect ratio and
angle of orientation for the grains.

Input Parameters

side : the length of each side of the regular polygon.
e crys : number of crystal to be constructed.
e asp_ratio : aspect ratio.

e orien : geometric orientation angle for each crystal.
Output Data

e 1 : zx-axis coordinates of the Voronoi polycrystals.

e y : y-axis coordinates of the Voronoi polycrystals.
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Appendix B

Finite Element

B.1 VorPrismABQ.m

This file constructs the Voronoi polycrystals inside a two-dimensional rectangular
domain. Subroutine similar to VoronoiPoly2D.m is written to construct Voronoi polycrys-
tals inside a rectangular domain only, without any elongation and geometric orientation of
the grains, and this subroutine is called to obtain the vertices of the Voronoi polycrystals.
The meshing and the extrusion of the model to obtain prism elements are done in this
program. Then the infinite elements are created. The connectivity table for all the ele-
ments are created. At the end the input file for ABAQUS is created for homogeneous and
heterogeneous case as the output of this program. This code returns 1 if all the procedures
are performed successfully. The directory and the input file name for ABAQUS with the
file extension are entered by the user. Subroutines are written to perform the particular
task such as to construct infinite elements, to write the input file for ABAQUS. This is the
main program within which all the subroutines are called. Batch files are created to run
the all the models one after another.

Input Parameters

e xlen : the length of the rectangle.

e ylen : the width of the rectangle.

e points : number of grains.

e elem_len : characteristic element size.

e files : number of realizations to be created.

e dirname : the directory and the filename with extension in an string array.
e density : density of the material in kg/m?3.

e E : Young’s modulus in Pa.

e cmat : elastic constants in an 1 by 3 array in Pa. (i.e. [ Ci11 Cia Cug ])
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Output Data

e 1 : if all the processes are successfully completed.

e .inp : the input file for ABAQUS.
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Appendix C

Attenuation Calculation

C.1 AttenCal.m

This program calculates attenuation for each realization of grains. The data is
acquired by running a Fortran code (the sample code is given in ABAQUS manuals). The
output data file obtained by running the Fortran code, contains the displacement informa-
tion for the nodes requested by the user. These displacement data are read and used for
attenuation calculation by the MATLAB code AttenCal.m.

Input Parameters

e wave_speed : the sound wave speed in the material.
e freq : frequency of the input wave.

e temp : number of files i.e. number of realizations.
e cry : number of crystals.

e xlen : width of the model.

e ylen : length of the model.

e filename : output data file name.
Output Data

e .txt : output file is created which contains attenuation data for different realizations.
The first column contains the frequency values in MHz and then each column for
attenuation in Np/cm for different realizations.
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The investigation of wave propagation and scattering of ultrasonic waves in heterogeneous,
anisotropic media is of substantial interest to quantitative nondestructive evaluation and
materials characterization, particularly for ultrasonic techniques. In this dissertation, mod-
els for wave propagation and scattering in statistically anisotropic media, such as cracked
media and textured media are developed. These models provide insightful information about
the wave propagation parameters and can also be used to guide experimental design for de-
termining the microstructure properties for nondestructive evaluation techniques. Compact
expressions are derived for attenuations and wave velocities of the quasilongitudinal and
two quasishear waves using stochastic wave theory in a generalized dyadic approach. Those
derivations are based upon the diagrammatic approach, in which the mean response is gov-
erned by the Dyson equation. The Dyson equation is then solved in the Fourier transform
domain within the limits of the first-order smoothing approximation (FOSA).

In cracked media, the derivation of explicit expressions of wave attenuations and
velocities in a medium with damage from randomly distributed penny-shaped microcracks
is first discussed. Under the same framework, wave propagation and scattering in a solid
medium permeated by uniaxially aligned and perfectly aligned penny-shaped cracks are then

studied, respectively. The resulting attenuations are investigated in terms of the directional,



frequency, and damage dependence.

In the case of polycrystalline media with texture, attenuations and wave veloci-
ties are developed in a general orthorhombic material made up of cubic crystallites. The
attenuations of each wave type are calculated numerically as a function of dimensionless
frequency and wave propagation direction, respectively, for given orientation distribution
coefficients (ODCs). The ODCs are, in essence, the coefficients of an expansion of crystallite
of orientation distribution function (ODF) in terms of a series of generalized spherical har-
monics. The relationship between the phase velocity and recrystallization variables, such
as annealing time, is also investigated for specific examples. Finally, numerical results are
presented and discussed in terms of the relevant dependent parameters. It is anticipated
that these models will improve the understanding of the microstructure characterization for
both cracked and textured media. Moreover, the present formulation allows the study of

backscattering problems to be examined in a straightforward manner.
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Chapter 1

Introduction

Elastic wave propagation in solid media is a very broad, interesting and compli-
cated research subject. The investigation of wave propagation and scattering of elastic
waves in heterogeneous, anisotropic media is of substantial interest to quantitative non-
destructive evaluation (QNDE) and materials characterization, particularly for ultrasonic
techniques. The corresponding results of this field have considerable and wide-ranging en-
gineering applications such as in material science, in-situ safety and reliability control of
complex structural components by acoustic emission, industrial and medical ultrasonics,
quantitative nondestructive materials testing, dynamic fracture mechanics, seismology and
geophysics.

Wave propagation in solids with cracks or texture, unlike in purely homogeneous
solids, is generally associated with diffraction, scattering, attenuation, dispersion, and local
dynamic stress concentrations. While ultrasonic waves propagate through those media, the

incident energy is dispersed in many directions due to interaction with the heterogeneities



(cracks or crystallites) within the medium. If there are a large number of scatterers in the
medium, the wave propagation will become very complicated due to multiple scattering
effects. In general, diffraction refers to the wave deviation from its original path, while
scattering may be regarded as the wave radiation from the scatterers. During the diffraction
and scattering process, a part of the incident wave energy is transformed into the energy
of diffracted and scattered waves. Although the energy of the whole system is conserved,
a heterogeneous solid is observed by an incident wave as an attenuative and dispersive
medium.

Engineering materials often contain dispersed scatterers such as microcracks in
cracked media and oriented crystallites in polycrystalline media. In the case of structural
materials such as concrete, polycrystalline metals and most composites, these scatterers
are typically induced by mechanical loading, materials processing, manufacturing, aging,
temperature variation and other conditions. The presence of cracks or texture in complex
media may significantly affect material properties, for example the stiffness and the strength
as well as the integrity of the materials. Changes in material response due to scattering
are typically inferred ultrasonically by the variation in wave velocity and the changes in
ultrasonic attenuation. In particular, distributed microcracks often give rise to a decrease
in wave velocity and an increase in attenuation. The definition of attenuation refers to the
intensity or the amplitude of the incident wave that decreases through the complex media.
In addition, the energy disturbance causes a shape distortion of the incident wave, which is
referred as dispersion, due to the frequency dependence of the effective velocity. Techniques

of quantitative nondestructive evaluation using ultrasonic waves are especially appealing



because of the direct connection between the changes of wave propagation characteristics
and microstructure properties such as crack density, crystallite distribution, location, size
and orientation. In particular, it gives a physical feeling for the process, it is easy to perform
parametric studies, and it is a good tool for the development of testing procedures and signal
processing. Thus, quantitative nondestructive evaluation by ultrasonic techniques provides
a realistic approach to the detection of microcracks and characterization of microstructures
of materials.

The basic principle of quantitative nondestructive evaluation and acoustic emission
relies on elastic wave propagation and scattering in complex solids. Besides experimental
techniques, quantitative comparisons with experimental results require a well-developed
model of the effects of the microstructure on the wave behavior. Theoretical models may
provide the direct information to design the experiment configurations and to explain the
measured data correctly. Once the microstructures have been detected and characterized,
mechanics concepts can be applied for assessing the safety and stability of existing complex
materials. Therefore, understanding how waves propagate and multiply scatter as they go
through complex media is of considerable importance to practical structural applications.

Because of the complexity of microstructures in complex media, statistical ap-
proaches are often employed to study the wave propagation and scattering through the
complex media. The scattering of elastic waves by cracks or crystallites has been studied by
a number of methods from purely numerical ones to more analytically oriented approaches.
Traditional approaches to model the randomly fluctuating field quantities, such as stress

field or strain field, are replaced by modeling certain statistical quantities, such as the sta-



tistical mean fields of the corresponding fields. It is known that these statistical approaches
do not give solutions in terms of the field quantities, but present an essential understanding
of the statistical nature of the material responses. The statistical characterization must
emphasize the universal aspects and simultaneously ignore the inconsequential details. The
precision and rigor of the selected statistical characterization of microstructure depend on
the purpose of the analysis and the required resolution of the model.

In this dissertation, the theory of elastic wave propagation and scattering using
stochastic wave field techniques in which the mean field is governed by the Dyson equation
is applied to model the attenuation phenomena in two types of statistically anisotropic me-
dia, that is the cracked media and textured media. For cracked media, the discussion is first
focused on an isotropic, homogeneous medium with damage from distributed penny-shaped
microcracks which are assumed to be randomly oriented and uniformly distributed. In the
succeeding discussions, within the same framework wave propagation and scattering in a
solid medium permeated by uniaxially aligned penny-shaped cracks and perfectly aligned
penny-shaped cracks are then studied, respectively. It is always assumed that the microc-
racks are noninteracting throughout the discussions. This assumption allows the effective
stiffness to be determined by integration over a continuous distribution of crack sizes and
orientations. Moreover, it is acceptable only for a dilute distribution or for weak scatterers.
It may not be good enough for a dense distribution or for strong scatterers.

The second medium is a polycrystalline medium with texture, which is defined as
the preferred orientation of grains. All grains to be considered are assumed to have the same

sizes and shapes, and each grain is assumed to have a different orientation. The orientation



of a given crystallite with the sample axes may then be defined uniquely by the three Euler
angles 0,1 and ¢. The crystallite orientation distribution is represented by the orientation
distribution function (ODF). In the harmonic method, which was given first by Roe [1],[2]
and Bunge [3], the ODF is expanded in generalized spherical harmonic functions. Still,
there is no correlation between material properties from grain to grain. In this case, the
differences in elastic constants from grain to grain result only from differences in orientation.
Thus, the elastic constants of a grain with arbitrary orientation can be described by the
single crystal constants with a rotation. The ensemble average elastic constants are given by
averaging over the orientation distribution function (ODF). Integrals over a grain volume
are approximately equal to the corresponding integrals over a sphere of the same volume.
In this presentation, the Voigt type averaging approximation method is employed.
Within the method of Voigt [4], uniformity of strain across the media is assumed, while in
the method of Reuss [5] uniformity of stress is assumed. As shown by Hill [6], the Voigt
and Reuss average methods provide the upper and lower bounds on the elastic constants,
respectively. Rigorous bounds have been given by Kroner [7], and these bounds usually lie

close to the average of the Voigt and Reuss values.

1.1 Previous Work

The increased complexity of the elastic wave reflection phenomena, due to mode
conversion effects, yields scattering problems in imperfect solids more complicated than in
purely homogeneous solids as elastic waves move through the media. Studies of elastic

wave propagation in cracked solid media have been continuous for at least thirty years due



to their significance. This subject of research began in the late 1960s with Mal [8],[9],
[10],[11]. He first examined the response of a penny-shaped crack embedded in an infinite
isotropic, elastic medium to an incident plane harmonic wave and demonstrated that at low
frequencies the stress intensity factors are always greater than those of the corresponding
static cases [8],[9]. In [10] and [11], Mal studied the problems of the diffraction of normally
incident longitudinal and shear elastic waves by a crack, for example a penny-shaped crack
and a Griffith crack, located in an infinite isotropic elastic medium. Meanwhile, Robertson
[12] also examined the diffraction of a plane longitudinal wave by a penny-shaped crack.
Piau [13],[14] then presented the attenuation of plane compressional waves in cracked media
with randomly distributed cracks and oriented cracks. Chatterjee and coworkers [15] gave
the results of attenuation in a cracked, fluid-saturated solid. Martin [16] obtained the
scattered displacement fields as the harmonic elastic waves move through an infinite elastic
solid containing a penny-shaped crack. Krenk and Schmidt [17] discussed the elastic wave
scattering by a circular crack. Martin and Wickham [18] presented the numerical results of
the scattered displacement fields. Sayers and Smith [19] gave the results of wave velocity
and attenuation in an epoxy matrix containing lead inclusions. It was noted that all of the
above solutions may be finally transformed into Fredholm integral equations of the second
kind, which are suitable for iteration at low frequencies.

Thereafter, the coherent wave scattering through cracked solids had been more
thoroughly investigated. Budreck and Achenbach [20] introduced the scattering results in-
duced from three-dimensional planar cracks by the boundary integral equation method.

Wave scattering from an interface crack was discussed by Yang and Bogy [21], Bostrom



[22] and Qu [23]. Sotiropoulos and Achenbach [24] presented the reflection results of elastic
waves by a distribution of coplanar cracks. Zhang and Achenbach [25] then presented an
improved approach to develop the effective phase velocity and the attenuation of ultrasonic
waves in a material containing distributed penny-shaped cracks. Extensive reviews were
presented further by Zhang and Gross [26],[27],[28]. They finally demonstrated the numeri-
cal results of wave attenuations and dispersion relations in randomly cracked solids, such as
penny-shaped cracks and slit cracks with several propagation directions. More importantly,
they presented numerically the relationships between the effective wave velocity and atten-
uation and damage density. Smyshlyaev and Willis [29] discussed the linear and nonlinear
scattering phenomena as waves propagate through cracked media. Eriksson, Bostrom and
Datta [30] also examined the problem of ultrasonic wave propagation through a cracked
solid. However, they considered the medium with a crack distribution as an effective vis-
coelastic medium and presented the attenuation results for both open and fluid-filled crack
cases. For most of those results, the Foldy [31] theory of multiple scattering had been em-
ployed to calculate the effective wave velocity and the coefficients of attenuation. Foldy in
1945 first introduced the concept of ensemble averaging and obtained a closed form expres-
sion for the complex wave number governing the coherent intensity due to an assemblage
of isotropic point scatterers (Foldy’s equation) [31]. Recently, Bostrém in 2003 presented a
review of the hypersingular integral equation method for crack scattering and applications.
In particular, he described how the integral equation approach to crack scattering can be
used as the most important part for the modeling of ultrasonic nondestructive testing [32].

It can be seen that although some important results had been obtained, the general exact



results of the wave propagation and scattering through cracked solids such as aligned cracks
are still less well developed.

Studies of elastic wave propagation in polycrystalline materials began in the late
1940s. Quantitative evaluations of material properties in polycrystalline media had relied
mostly upon the use of the coherent field, through the examinations of either wave speed
or attenuation or both. Mason and McSkimm in 1947 [33] first studied the coherent propa-
gation of ultrasound in polycrystals and demonstrated that in the Rayleigh frequency limit
the scattering attenuations are proportional to the fourth power of the frequency. During
this time period, many others [34],[35],[36],[37],[38] conducted similar research on ultrasonic
scattering. Mason and McSkimm also theorized that in the Rayleigh frequency limit the
grains would scatter energy as spherical scatterers. Bhatia [39] then improved upon this
theory by assuming the grains were isotropic with elastic properties varying slightly from
the elastic properties of the bulk medium. In the meantime, Bhatia and Moore [40] used
a perturbation approach to obtained accurate expressions for the scattered energy due to
variations in elastic constants for a general orthorhombic crystallite in the Rayleigh limit.
They demonstrated that those anisotropic results are 3.5 times larger than the isotropic
results obtained, and their expressions agreed with the results of attenuation presented by
Mason and McSkimm. Papadakis [41] also discussed many of the ultrasonic techniques
available for nondestructive evaluation with coherent fields. Correlations between the ul-
trasonic properties of wave speed and attenuation and material properties, such as yield
strength, fracture toughness, and so on, had been discovered. The general summaries were

presented in Vary’s review paper [42].



Beginning in the 1980s, the theoretical work for frequencies outside the Rayleigh
limit was studied by Hirsekorn [43],[44] first in untextured polycrystalline materials. She as-
sumed the grains were individual scatterers which scattered like a sphere and demonstrated
that the general attenuation and wave speed were a function of its wavenumber multiplied by
grain radius without the frequency limitation to the Rayleigh region using the Born approx-
imation. Because of the assumption of single-sized spheres, her results showed oscillatory
behavior with respect to frequency in the transition between the Rayleigh and stochastic
regions. It is known that this behavior is not physical for real polycrystalline materials.
Finally, Hirsekorn [45],[46] used the identical approach to examine the ultrasonic scattering
in textured polycrystals. Frequency dependence and directional dependence of scattering
coefficients were respectively investigated. The calculation was restricted to waves propa-
gating in the direction of an axis of symmetry of the texture. In particular, the directional
dependence was discussed for the polycrystalline media with fiber texture. So far her results
were only found to demonstrate the ultrasonic scattering completely in polycrystals of cubic
symmetry with rolling texture. Stanke and Kino [47] developed a unified approach to derive
the attenuation and phase velocity for different kinds of elastic waves due to grain scattering
in single-phase, polycrystalline media. Their results were valid in the Rayleigh, stochastic
and geometric regions and showed the transition phenomena between these regions. By
the use of the Keller approximation [48], their derivation was done for a particular inho-
mogeneous medium that is weakly heterogeneous, and without the assumption of spherical
scattering made by Hirsekorn [43],[44]. The general operator notation as discussed by Keller

[48] allowed the results to be applied to various physical problems in a straightforward man-
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ner. Hirsekorn in 1988 [49] then used the perturbation method to investigate the ultrasonic
scattering by multiphase polycrystals.

Because of the relevance to nondestructive characterization of microstructures, the
investigation of ultrasonic scattering in polycrystals continued. In the recent two decades,
ultrasonic inspection of random media has been expanded to use diffuse fields methods. Co-
herent methods and diffuse fields methods are very different. In particular, diffuse fields can
be investigated at higher frequencies than coherent fields. Weaver in 1990 [50] presented a
multiple scattering formulation using a mean Green’s dyadic function based on the method
of first-order smoothing approximation. He also employed a Born approximation which
limited the validity of the results to frequencies below the geometrical optics regime, and
obtained the exact diffusivity for randomly distributed orientation of all crystallites. Turner
and Weaver [51],[52],[53],[54],[55] proposed to model ultrasonic multiple scattering effects
in a medium containing randomly located discrete scatterers using radiative transfer theory
and applied that theory to polycrystalline media as well. They demonstrated that the scat-
tered intensity is angularly dependent as expected. Ahmed and Thompson [56] studied the
wave scattering in equiaxed stainless-steel polycrystals with aligned [001] axes, transversely
polycrystalline media, based on the Stanke and Kino unified approach. They showed various
results of attenuation and phase velocity with direction of propagation and frequency for
quasilongitudinal, shear horizontal, and quasishear waves. Turner [57] presented a general
wave propagation and scattering method by using an anisotropic Green’s function for mod-
eling the attenuation in statistically anisotropic media. He finally specified the formalism

for particular problem of equiaxed cubic polycrystalline media with texture. His attenu-
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ation results agreed well with the attenuation calculations of Ahmed and Thompson [56].
Many others [58],[59], [60],[61] conducted research on wave propagation phenomena during
this time period.

Experimental studies of microstructural characterization had accompanied much
of the above theoretical work. Experiments with coherent ultrasonic inspection on polycrys-
talline specimens are typically performed in a water tank using reflection and transmission
techniques. If two transducers are used, one transducer sends a wave with known amplitude
into the specimen which is received by the other transducer located on the opposite side
of the specimen. The change in amplitude of the received signal after passing through the
medium is attributed to the exponential decay caused by attenuation. If one transducer is
used, it acts as both transmitter and receiver. The wave reflects from the opposite face and
returns to the transducer. In this situation, the amplitude will be reduced due to two spec-
imen crossings. Coherent ultrasound experiments have many limitations. Particularly ab-
sorption and scattering attenuations cannot be distinguished in these types of experiments.
Diffuse field experiments are usually conducted using backscattered techniques. Because the
coherent field continues to propagate in the forward direction, the backscattered field con-
tains only diffuse energy until the coherent pulse returns after reflecting from the opposite
face. A number of researchers have discussed the use of the incoherently backscattered field
for the characterization of microstructure [62],[63],[64],[65],[66],[67],[68],(69]. Other previous
references are cited in their work.

It is the above literature review that shows that models of elastic wave propa-

gation and scattering through polycrystalline media with texture had typically focused on
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special cases of texture. For example, the attenuation through cubic polycrystalline mate-
rials with one aligned axis had been studied using several different techniques. However,
the propagation and scattering through polycrystalline media with texture, which may be
applied to any state of texture, have not been undertaken. Consequently an effort will be
taken to understand the behavior of the attenuation and phase velocity in polycrystalline
materials with general texture in Chapters 6 and 7 of this dissertation. It is anticipated
that this research may provide a few useful insights to this challenging research subject on

microstructural characterization.

1.2 Objective

The objective of this research is to develop a more comprehensive, general theo-
retical model for wave propagation and scattering in statistically anisotropic media, one of
cracked media and one of textured media, that is expected to provide insightful information
about the propagation constants and can also be used for guiding experimental design and
for determining the materials properties for nondestructive evaluation techniques. Compact
expressions will be derived for attenuations and wave velocities of the quasilongitudinal and
two quasishear waves using stochastic wave theory in a generalized dyadic approach. The
coordinate-free approach allows for nonrandom ensembles of properties to be studied with
relative ease. The analysis of expressions is limited to frequencies below the geometric
optics limit. The derivations are based upon the diagrammatic approach, in which the
mean response is governed by the Dyson equation. The Dyson equation is then solved in

the Fourier transform domain within the limits of the first-order smoothing approximation
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(FOSA), or Keller approximation [48].

For cracked media, explicit expressions of wave attenuations and velocities in a
medium with damage from randomly distributed penny-shaped microcracks will be first
discussed. Under this assumption, the average effective medium is assumed statistically
isotropic. The explicit results for the attenuations and wave velocities of longitudinal and
shear elastic waves in the isotropic case show a good comparison with previous results
developed. More importantly, this isotropic case provides the fundamentals for studying
the statistically anisotropic cases. Next, the same framework is then extended to study the
attenuation of elastic waves in solids with aligned cracks that are statistically homogeneous.
In the uniaxially aligned crack situation, the crack alignment refers the case in which the
unit normals of all cracks are randomly oriented within a plane of isotropy. Whereas,
in the perfectly aligned crack case the unit normals of all cracks to be considered are
perpendicular to the plane of isotropy. As such, the overall responses of the cracked solids
are transversely isotropic with the plane that is perpendicular to the unit normals defining
the plane of isotropy. Therefore, the attenuation is not only a function of frequency but
also a function of propagation direction. In the presentation, both exact expressions of
attenuations and wave speeds of the shear horizontal, quasilongitudinal, and quasishear
vertical waves are presented. The resulting attenuations are investigated in terms of the
directional, frequency, and damage dependence. The generalized anisotropic cases such as
the orthorhombic symmetry could be the subject of future research in this direction.

In the case of polycrystalline materials with texture, attenuations and wave ve-

locities will be developed in a general orthorhombic material made up of cubic crystallites.
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The texture, preferred orientation of grains, is best quantitatively described by the orien-
tation distribution function (ODF) defined as a probability density function, which is often
expanded in a series generalized spherical harmonics [1],[2],[3]. In this dissertation, ex-
plicit attenuations of each wave type are derived as the function of dimensionless frequency
and wave propagation directions, respectively, for given orientation distribution coefficients
(ODCs). A relationship between the phase velocity and recrystallization characteristic vari-
ables, such as annealing time, is also investigated for specific examples. Finally, numerical
results are presented and discussed in terms of the relevant dependent parameters. The
theoretical results might be used to improve the understanding of the microstructure of
polycrystals during the recrystallization process. Moreover, although the present applica-
tion is for the case of orthohombic-cubic symmetry, the formalism can be easily modified
to apply to other given symmetry cases.

This dissertation is organized in the following manner. Chapter 2 provides the
preliminary elastodynamics of the wave propagation and scattering model for statistically
anisotropic media. In Chapter 3, wave propagation and scattering in an isotropic, homo-
geneous medium with embedded microcracks which are randomly oriented are first investi-
gated. Next, wave propagation and scattering in solids with uniaxially aligned cracks that
are transverse isotropy and statistical homogeneity are examined in Chapter 4. In Chapter
5, wave attenuations in solids with perfectly aligned cracks are discussed. The exact results
of attenuations are derived and example numerical results are presented to aid in a compar-
ison with results presented by Hudson [70]. In Chapter 6, the phenomena of wave velocity

and polarization of elastic waves moving through the textured polycrystals are examined.
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The compact results of attenuations are formulated in terms of the orientation distribution
coefficients (W) in Chapter 7. For both Chapter 6 and Chapter 7, numerical results are
presented and discussed. Chapter 8 is the conclusion chapter, in which the results of the
whole dissertation are summarized and discussed. In Chapter 9, future research subjects
are addressed. The present formulation allows the study of backscattering problems to be
examined in a straightforward manner. It is anticipated that this research work will be a
valuable theoretical tool for use in ultrasonic nondestructive techniques to improve the un-
derstanding of the microstructure for both cracked and textured media in related research

areas.
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Chapter 2

Preliminary Elastodynamics

2.1 Introduction

Waves in solids are significantly important to engineering applications. Waves are a
disturbance propagating in a medium. In order to understand wave behavior, mathematical
and numerical tools are required to analyze and simulate the phenomena of waves in solids.
Using these tools can also help us construct virtual views of waves in a medium. Solids
are stressed when they are subjected to external forces or loads. Forces can be static or
dynamic. Statics deal with the mechanics of solids and structures subject to the static
loads. Solids that will experience dynamic motion under the action of dynamic forces which
vary with time must apply the principles and theories of dynamics. The dynamic motion
is often observed and noted as vibration and wave motion. It is not easy to draw exactly a
clear line between vibration and wave motion, however, in general we can say that a wave is
a localized vibration and a vibration is a motion of waves with very long wavelength. When

talking about waves, one usually pays special attenuation to the motion or propagation
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of a localized mechanical disturbance. When discussing vibration, one is concerned more
with the global motion of the entire structure. Mathematically, both vibration and wave
motion are governed by the same dynamic equations of motion, which may be derived using
Newton’s law. In this chapter, these principles and theories dealing with wave motion in
solids are discussed, especially focusing on statistically anisotropic materials.

Depending on the material properties and loading conditions, solids can be treated
as elastic meaning that the deformation in the solids disappears completely after it is un-
loaded. There are also solids that are plastic, which means that the deformation in the
solids cannot be fully recovered when unloaded. Elasticity deals with solids and structures
of elastic materials, while plasticity deals with those of plastic materials. This disserta-
tion is focused on the solids of elastic materials. Waves propagating in elastic materials
are termed elastic waves. One of the major applications of elastic waves is in the area of
nondestructive evaluation. In such an application, ultrasonic waves are usually used and
one can always keep the response level of materials within the elastic range. Otherwise, it
could be destructive. Therefore, the topics in this dissertation are fully applicable in areas
relating to nondestructive evaluation.

Materials can be regarded as isotropic or anisotropic. Isotropy means that material
property does not vary with direction, while anisotropy means that material property is a
function of direction. Deformation in an anisotropic material caused by a force applied in
a direction may be significantly different from that resulted from the same force applied
in another direction. Engineering materials such as cracked materials and polycrystalline

materials are often regarded as anisotropic. The number of material constants necessary to
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define the linear elastic response of anisotropic materials decreases with degree of anisotropy
or increasing symmetry. At the limit, isotropic materials have only two independent elastic
material constants, traditionally known as Young’s modulus and Poisson’s ratio. This
chapter is focused on the theory of wave propagation and scattering in general anisotropic
materials. All the formulations are, however, applicable to isotropic materials as a special
case. Wayves in an anisotropic material exhibit anisotropic characteristics, which means that

their properties such as velocity and attenuation have direction dependence.

2.2 Ensemble Average Response

The equation of motion for the elastodynamic response of an infinite, linear-elastic

material to deformation is given in terms of the Green’s dyadic by
{_6jk:p8t2 + (93:@-0”“ (X) 6{17[} Gk:a (X, X,; t) = éja<53 (X — X/) 1) (t) . (2.1)

where 6% (x — x') is the three-dimensional spatial Delta function. The second order Green’s
dyadic, Ggq (x,%;t), defines the response at location x in the kth direction to a unit
impulse at location x’ in the ath direction. The notation 62 is defined as 92/0t?, and dx;
is defined as 0/0x;. The moduli are considered to vary spatially and density is assumed
uniform throughout with units chosen such that density is unity [p = 1]. The moduli C are
assumed to be spatially heterogeneous and have the form Cjjx(x) = C?jkl +0C;jk1(x). Thus,
the moduli have the form of average moduli, that is C?jkl = (Cijri(x)) , plus a fluctuation
about this mean, 6Cj;j(x). The fluctuations are assumed to have zero mean (6C;;x(x)) = 0.

The brackets, (), denote the ensemble average. The material properties might have global

anisotropy, such that the mean moduli are not necessarily isotropic. The covariance of the
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moduli is characterized by an eighth-rank tensor
—aB76
(8Cij11 (%) 6Capys (X)) = ESH10 (x — ) . (2.2)

The spatial and tensorial parts of the above covariance, = and 7, are assumed independent.
The correlation function 7 is also assumed as a function of the difference between two
vectors, x — x’. This assumption implies that the medium is statistically homogeneous. For
statistically isotropic materials, however, an additional assumption must be made such that
7 is a function of |x — x/|.

The spatio-temporal Fourier transform pair for the function f(x,t) and f(p,w) is

defined as

+oo +oo . )
fpw) = / f(x,t) e™te™*P@Brdt,

1 +oo  ptoo ) )
rt) = g [ [ eee et 23)

These definitions allow Eq. (2.1) to be temporally transformed to the following form

{w26jk + C%klaial + 0;0C;11(x)01 } Ga (X, x'; w) = 6ja63 (x - x’) ) (2.4)

1,

The random nature of the medium suggests that the Green’s function, G, is of
little value as it will also be a random function. The interesting quantities are instead
those related to the statistics of the response. These statistics include the mean response,
(G), and the covariance of the response, (GG™*), with the * denoting a complex conjugate.
This dissertation is devoted to examination of the mean response with corresponding phase
velocities and attenuations.

Wave propagation and scattering problems of this sort do not lend themselves to

solution by perturbation methods. As Frisch discussed, these solutions do not converge
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[71]. Instead, Frisch used diagrammatic methods for solution of the mean response [71].

The mean response, (G), is governed by the Dyson equation [50],[71]

(Gia (x,X')) = GY, //Gw x,y) Mg; (y,2) (Gja (Z,X')>d3yd3z. (2.5)

The notation GY, (x, x') is the bare Green’s dyadic defined as the ensemble average response
of the medium (without fluctuations), namely, the solution to Eq. (2.1) when 6Cjjp(x) = 0.
The second order tensor M is the mass or self-energy operator. Equation (2.5) is easily
solved in the Fourier transform domain under the assumption of statistical homogeneity.

The spatial Fourier transform pair for G° is given by

G, (P& (p—q) = //G —ipX iaX' g3 350

G (ex) = o [ [ G @0 e ety e

The Fourier transforms which define (G(p)) and M(p) are given by expressions
similar to that defining G°(p). The assumption of statistical homogeneity ensures that G°,
M and (G) are functions of a single wave vector in Fourier space. The Dyson equation is

then transformed and solved to give the result for (G (p)) of the form

(@) =[cm) " - Mp) 27)

where M is the spatial transform of the self-energy. The Dyson equation is exact and
describes the mean response of the medium. The main difficulty in the solution of Eq. (2.7)
is the representation of M. An approximation of the self-energy M can be written as an

expansion in powers of moduli fluctuations. To first order [71],[48] M is expressed as [50]

0 0 0 0
Mpgj (y,2) ~ <6—ya§Caﬂ76 (¥) T%ng (y,2) 8—%5017‘1:1 (2) 6—zl> : (2.8)
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Such an approximation is assumed valid if the fluctuations, §C, are not too large. The
spatial Fourier transform, as defined by Eq. (2.3), of the self-energy, M, is then formulated.

Manipulation of this integration allows it to be reduced to [50]

Mg; (p) = / d*sGS(s)papisssiZig) (P — 9). (2.9)

Thus, the transform of the self-energy can be written as a convolution between the
bare Green’s dyadic and the Fourier transform of the covariance of the moduli fluctuations.
The components of M, Eq. (2.9) and the Dyson equation, Eq. (2.7), will be employed to
calculate the phase velocity and attenuation of the wave modes next. Further details of the
scattering theory can be found in the articles of Karal and Keller [48], Frisch [71], Stanke
and Kino [47], Weaver [50], and Turner [57].

When ultrasonic waves propagate in anisotropic materials, the phase velocity and
the associated polarization vector are generally determined by the Christoffel equation,
which has been discussed in the literature [72],[73]. In this approach, the dispersion relations

for the mean response are then given by the solution of the Dyson equation, Eq. (2.7), as

03(0) = [ (P) " —ms(p)] = [ 2’k —ms(p)] (2.10)

for each wave type, 3, inclusive of the quasilongitudinal (¢P) and two quasishear (¢S1 and
qS2) waves. For the transversely isotropic case, the two quasishear waves are generally called
the shear horizontal (SH) and quasishear vertical (¢SV') waves. These are the expressions
for the dispersion relation of the mean response, which defines the phase velocity and

attenuation of each wave type from solution of

w? = p*ch —mg (p) =0, (2.11)



22

for the wave vector p. The phase velocity is given by the real part of p and the attenuation
of each wave type is given by the imaginary part of p. Such solutions of Eq. (2.10) are
usually done numerically using root finding techniques [56]. However, explicit expressions of
the attenuation can be determined using an approximation valid below the high-frequency
geometric optics limit. In this case, the wave vector p within the self-energy is approximated
as being equal to the bare wave vector. Such an approximation, mg(p) ~ mg (%f)) , is
sometimes called a Born approximation [47],[50]. This approximation allows the imaginary

part of p to be calculated directly from Eq. (2.11). Thus, the attenuations of each wave

type are given by

N 1 w
ag(P) = —m Immg <%p> . (2.12)

The final step in this derivation now lies in the expression for the imaginary part of
the self-energy. The definition of the self-energy is given by Eq. (2.9). Approximate inner
products allow each component of the self-energy to be determined independently. The
wave numbers which appear in Eq. (2.9) are approximated to the same degree of the Born
approximation discussed above. The integration over the magnitude of the wave vector is
easily done due to the delta-function form of G%(s). The attenuations for the three wave

types, which are each defined in Eq. (2.12), are finally given in the general form [57],[74]

(f)) 1 ﬂ-/d2A w4 ;< w f) w §>WUKPSV1
ag = — < — § —= —~P— P
C% () | 4 0251 (8) cg(B)" cqs1(8) -l P8V,
4 g PEY,
+ 3 [ a2 E< P s) (2.13)
4 CeP (8) cg(P)”  cqp (8) -l PEV,
S

T wt - w w UK PSYs
+—/d2§5 E< —p— s> ;
4 Cos2(8)  \eg(P)™ cqs2(8) el PEV4

where K is defined as the polarization for the wave type (§ (1,2 or 3 for wave types ¢S1, qP
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and ¢S2, respectively). In the above equation, it is shown that the integrals are over the unit
sphere, which is defined by unit vector §. The direction p defines the propagation direction,
§ is the scattered direction, and @1 and v are defined as the polarization directions. The
dependence of the vectors @t on P and of ¥ on § is implicit. The argument of the correlation
is the difference between the incoming and outgoing propagation directions. The inner
products on the covariance of the moduli fluctuations are given in terms of four unit vectors.

In the next section, the correlation function is discussed.

2.3 Correlation Function

The heterogeneous internal structure of almost all natural and man-made materials
requires that any adequate theory concerning their macroscopic behavior should start with
modeling them as random media. In the most general sense, a random medium consists
of domains of different materials (phases) or the same materials in different states. In
most situations, however, the details of the microstructure are not completely known. This
knowledge naturally leads one to attempt to estimate the effective properties from partially
statistical information on the sample in the form of a spatial correlation function. This
presentation focuses attention on the instances in which the microscopic length scale is
much larger than the molecular dimensions but much smaller than the characteristic length
or correlation length of the macroscopic sample. In such circumstances, the random media
such as fiber composites, cracked media, polycrystals, cements, rocks, and so on, can be
viewed as a continuum on the microscopic scale. In order to study the statistical properties

such as attenuation, it is necessary to introduce the spatial correlation function between the
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different phases or different states in random media. Next the simplest correlation function
is introduced, particularly focusing the applications on wave scattering problems.

As discussed in Eq. (2.2), the tensorial and spatial contributions of the material
covariance are assumed independent. The spatial correlations are characterized by 7 and it

is assumed that the simplest case of 1 has an exponential form
n(r) =e "k, (2.14)

The correlation length, L, is of the order of the crack radius in cracked media or grain
radius in polycrystals. As discussed by Stanke [75] an exponential function describes the
correlation of continuous and discrete materials reasonably well. Such a model, with a single
length scale, is perhaps oversimplified for materials containing a wide range of crack sizes for
example. However, for many materials, such a model is expected to describe the statistics of
the material properties well. Other correlation functions, such as that discussed by Markov
and Willis [76], are thought to give similar results for the frequency range considered here.
The influence of this choice of correlation function on the attenuations exists to some extent,
but is left as a subject of future investigations. In Fourier transform space, the correlation

function is then given by

L3

(2.15)

The forms of the attenuation given above contain the difference of two vectors,
n(q) = N([w/c1(0)] p— [w/c2(O')]§) as the argument for the covariance in Eq. (2.2). Now
the correlation functions Wg_y (D, 8) is considered. If the three nondimensional frequencies

are then defined as g = wL/cg = kL, using the expression of the spatial Fourier transform

of the correlation function in Eq. (2.15), the functions Wﬁ,ﬁy (D,8) are then expressed in
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terms of the above dimensionless quantities as

o L3
Wi (5,8) = (2.16)

29
7 (143 () +23 (8) — 225 (B) v, (8) B §)

for the incoming wave type B and outgoing wave type <. The inner product, p-§ =

cos © cos O sin ¢ sin ¢’ + sin © sin O’ sin ¢ sin ¢’ +cospcosd’, if the unit vectors p and § are

generally defined by p = X1 cos O sin ¢ + x5 sin © sin ¢ + x3cos¢ and § = x; cos O’ sin ¢’ +

X9 sin @' sin ¢’ + x3cos¢’. The angles O, ¢, and ©’, ¢’ are, respectively, defined as Euler an-
=afv6

gles in a general coordinate system. The form of the eighth-rank tensor, E; ikl is discussed

next, respectively, for different cases in this presentation.
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Chapter 3

Scattering in Damaged Solids

3.1 Introduction

The scattering of elastic waves in complex media, particularly at ultrasonic fre-
quencies, is of importance to nondestructive testing, materials characterization and other
research areas. Information about the decay in the coherent field due to scattering attenu-
ation may often be used to infer information about the microstructure of the material [77].
The incoherent field also contains microstructural information. Quantitative comparisons
with experimental results require a well-developed model of the effects of the microstructure
on the wave behavior. If the microstructure is modified, such as through the development
of microcracks within the medium, this change in microstructure would manifest itself in
the scattered wave fields as well. In the case of structural materials such as concrete, poly-
crystalline metals and most composites, these microcracks are typically induced by loading,
materials processing, manufacturing, aging and other in-service conditions. Changes in ma-

terial response due to microcracking are typically inferred ultrasonically by the decrease
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in wave velocity or the increase in ultrasonic attenuation, both of which indicate a stiff-
ness degradation or loss of strength of the material [25]. The limits of detecting these
changes in wave behavior depend on the amount of increased scattering due to the system
of microcracks.

Damage is a continuous concept which is intuitively related to the microcracks. It
is measured by the cumulative effect which these microcracks and other microdefects have
on the macroscopic response [78],[79]. The effect of many microcracks can be described
analytically by a damage parameter only when the material is statistically homogeneous
in the neighborhood of the observed material point of the configuration. If a material is
neither statistically homogeneous nor statistically self similar, a single tensor parameter
may be used to represent the effect of many microcracks. In general, the damage may
become a cause of or lead to fracture, but it is, by no means, synonymous with it.

In this chapter, a generalized tensor-based approach is used to examine the atten-
uation of elastic waves in an isotropic, homogeneous medium with embedded microcracks.
The microcracks are assumed to be noninteracting, penny-shaped cracks that are randomly
oriented. However, the coordinate-free approach allows for nonrandom ensembles of micro-
cracks to be studied with relative ease. The topic of aligned cracks will be presented in
the subsequent two chapters. It is assumed that the constitutive behavior of the stiffness
matrix or compliance matrix in the pristine state is sufficiently characterized at the local
level by a linear elastic relation between the average stresses and average strains of the
traditional form. In standard damage mechanics theory [78],[79], the continuum model is

described by a macroscopic damage parameter attributed to the microcracks. The effective
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elastic moduli of the medium that contains many penny-shaped cracks is first presented
using techniques discussed by Nemat-Nasser and Hori [80], Kachanov et al. [81] and Kra-
jcinovic [79]. These techniques have been used to estimate the upper and lower bounds of
the material properties with distributed damage. The general inequality was presented by
Hashin and Shtrikman [82] using a variational approach. Similar ideas have been used to
estimate the effective conductivity of such media [83]. The effective Lamé constants derived
here are in agreement with previous analyses. Next, expressions for the moduli fluctuations
are derived in terms of the single crack compliance and stiffness. The fluctuations and
corresponding covariance of the moduli, which are necessary for the attenuation derivation,

are then presented.

3.2 Effective Elastic Properties

A solid is considered to be damaged if some of the bonds connecting parts of its
microstructure are missing. Bonds between the molecules in a crystallite lattice may be
ruptured and the cohesion at the fiber-matrix interface may be lost. However, this type of
damage cannot be measured in situ by nondestructive testing. Damage must, therefore, be
measured indirectly by the effect it has on the effective material properties. Damage is a
continuum concept which is intuitively related to the microcracks. It is measured by the
cumulative effect which these microcracks have on the macroscopic response. As suggested
in damage mechanics [78],[79], the rate of damage accumulation may be conveniently mea-
sured by the rate of change of the effective stiffness or compliance tensor. The present focus

is on the elastic properties weakened by a large number of microcracks which are randomly
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positioned throughout a large part of the representative volume element (RVE).

3.2.1 Linear Elastic Fracture Mechanics

Methods which make use of estimating the effective elastic properties of the sta-
tistically homogeneous elastic solids which contain a large number of microcracks were
investigated by Nemat-Nasser and Hori [80], Kachanov et al. [81] and others. The first step
in determining the effective properties of the damaged elastic solid involves consideration
of a single penny-shaped crack, which is located within an infinite, homogeneous, isotropic
and elastic continuum. In accordance with linear elastic fracture mechanics, the total, local
and average stress o and strain 7 fields hold for superposition [84]. The average stress and

strain are related by

5 = So, or o=C~, (3.1)
where
S = S+8S*
C = C-C*~. (3.2)

In Egs. (3.1)-(3.2), ¥ = (v(x)) and & = (o(x)) are the ensemble average strain and
average stress, respectively. Here S and C are the effective compliance and effective stiffness,
respectively, of the elastic solid which contains the cracks. S* is defined as the effective
compliance contributed by all cracks within the elastic solid and C* is defined as the effective
stiffness contributed by all cracks within the elastic solid. It should be noted that (C*)™* #
S*. The tensors S and C are the compliance and stiffness, respectively, of the pristine

material.
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The components of the effective compliance tensor S* can be estimated from the
contribution by the microcracks. The contributions are calculated by the complementary
strain energy in terms of the path independent integral of fracture mechanics. The strain

energy is expressed as
“ M
W= / M e, (3.3)
0 a

where 9" is the Gibb’s energy and « is the crack radius. The factor M in the integrand is
written as the line integral of the J integral (energy release rate) along the crack perimeter
L

M = fi aJdL. (3.4)

The energy release rate J is expressed in terms of the stress intensity factors K,, (m =

I, II, IIT) corresponding to the three fundamental crack modes as

1—v

T==,

1
(KT + Kf) + @K%H, (3.5)

where v and p are the Poisson’s ratio and shear modulus, respectively, of the surrounding

material. Thus, the final Gibbs’ energy is derived in compact form as

' = / [%HmnKmKndL} da. (3.6)
0
The tensor M is given by
— 1
an - ﬂ [(1 - V)(Smn + V(SmIII(SnIII] P (37)

where 0, is the Kronecker delta, and the subscript n also represents the three fundamental

cracks modes I, I, or III.
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The symmetric forms of the expressions for the stress intensity factors of a penny-

shaped crack embedded in a homogeneous, isotropic and elastic material are [85]

2
KI = —011VTa,
s

2 1 - ~ ~ ~ .

Kin = 5 Vma [(012 + 021) cosa + (013 + T31) sina] (3.8)
21 —v - ~ . ~ ~

Km = 5 U\/Wa [(G12 + 021) sina — (613 + 031) cosa]

where 0;; are the stress components in the crack coordinate system and « is the angle
defined by the orientation of a penny-shaped crack. Expressions (3.8) are valid only if the
stress component 11 normal to the crack surface is tensile. Differentiating Eq. (3.8) with

respect to the stresses leads to the following expressions

% = g\/waéiléﬂ,
00j 7r
0K 2 1 '
35,1,1 = 5 _,Vra (641652 + 6i20;1) cosar + (83103 + 8i3641) sina] (3.9)
)
0K 21—v .
G&IH = % 5 _ V\/ﬂ'a [((5@'16]‘2 + (5@'26]'1) SIino — ((5@'16]'3 + (5@'36]'1) COS&] .
1]

The stress intensity factor associated with the pure mode vanishes (K7 = 0) when the stress

component 11 normal to the crack surface is compressive.

3.2.2 Compliance Tensor Attributable to a Single Crack

The components of the compliance tensor are related to the Gibb’s energy through

S .(21 = 0?*/05;;00 (in the local coordinate system, the notation (7) is used). Thus, the

1,

compliance attributed to the presence of a single penny-shaped active crack in a represen-

tative volume V is then

o) _ 2 [ [+ OKmOK,
Sicn = 7 /0 [f{ M’”’m—aaij Ee dL| da. (3.10)
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Substituting K, into Eq. (3.10) and integrating gives the compact form [79]

(s 16 1 — g 1 ~ o~
Si(jlzl = 3y9_ gﬁag{ﬂ?jkl — UL} (3.11)

In the global coordinate system, using a coordinate transformation and assuming the normal
stress at the crack surface is tensile, the effective compliance attributable to a single, planar,
penny-shaped crack of radius a is written in the simple form

s 161—-v1
Si(jlzl = 379_ V@ag{ﬂ?jkl — v} (3.12)

The compliance of a single crack is dependent on the unit normal th, which defines the
crack orientation. This orientation is implicit in the tensors I°,I6. These tensors and other

necessary basis tensors are given in terms of unit normal vector 1 and Kronecker delta ¢;;

as [86]
L = %(5#@5]'1 + 0510k, Iy = 6456k,
By = Sigigiig, Ty = tatinSp, ISy = iy, (3.13)
If‘jkl = i(mimkéﬂ + My d i 4 MMy + 1My di).

3.2.3 Stiffness Tensor Attributable to a Single Crack

If it is assumed that the damaged medium is statistically homogeneous and statis-
tically isotropic, the effective compliance attributable to one single crack is approximately
the inverse of the effective stiffness. It is convenient to derive the attenuation in terms of
the effective stiffness attributable to one penny-shaped crack. The compliance tensor of the
pristine, undamaged elastic matrix is

1 v
I} L) (3.14)

0
£ Ty

ijkl — ﬂ(
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Then the effective compliance expression for a simple crack in a matrix can be written

~ 1 .
S=S6) 48 = —¢T 1
+ 2,u€ , (3.15)
in which
er =1, ey = — z ,  e3=e4 =0,
1—v
321 —v 4 _16v(l—-v) 4
& ="35_,% =55 0 (3.16)

where the repeated index ¢ denotes the summation convention over the range of i =1 — 6.
It should be noted that this summation convention and range are used throughout the
dissertation. To calculate the stiffness tensor, the other irreducible tensor basis J (J%,i =
1,2,...6) is used [86]. These basis tensors may be formed from the tensors I using a linear

transformation. The effective compliance tensor expressed in terms of the J basis tensors

is given by
~ 1
S =5 0" (3.17)
where
ho= % P, o= st I
f3 = % ; fa= *ﬁ, (3.18)
fs = 1+?;:Za3, fo=1.

The effective stiffness tensor may also be expanded in a similar way as
C =8"1=2ubJ, (3.19)
where the scalar coefficients b; are related to the scalar coefficients f;,

1 1
{b1,b2,b3 ba,b5.b6} = A {fL — fa, — f3, — f4’fs—A’ fe—A} , (3.20)
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with
A= -5 -3+ 17 (3.21)

If the penny-shaped crack volume is much smaller than the representative volume, the
higher order terms in the coefficients may be neglected. This truncation is used to simplify
the form of the derivation that follows and places some limits on the resulting attenuations.

In this case, the corresponding coefficients are

2—v 8(1—v)(=3v2+2v—1) 4

by = °
LTy 3 (1—20)2 “
by — v 7§(171/)(71/2721/+1)3
2T o0 -w) 3 (1—20)2 “
3v 83v(l—v)? 4
b _2 3.22
5T 91 -2w) 3 (-2 (3:22)
v 8v(l—v)? 4
by = - = a’,
2(1—2v) 3(1—2v)2
161—v 4
b5— —32_1/0,, b6—1.

Again the effective stiffness is represented in terms of the six fourth order tensors I,
C = 2uq T, (3.23)

where the coefficients ¢; are

v _EVQ(lfu)a:,,
S 1l-v 3 (1-2v)2

ca=1 ¢

16v(l—v) 4
_._ 16 ) 24
€3 =204 3 192, & (3.24)
O 3R21-v g4 _16v(1—v) 4
CT TR ST

The single crack stiffness reduces the stiffness of the pristine, undamaged elastic matrix with

stiffness C% = 2u(I* 4+ £%12). Thus, the effective stiffness of the crack in a unit volume of
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matrix is
C®) =% - C = 2ud,T', (3.25)
where the coefficients d; are
6-0 b=l
dz3 =dy = 1—; 1/1(1_—25) 2, (3.26)
b=yt =gy

3.2.4 Ensemble Average Stiffness

To estimate the ensemble average properties, an infinitely extended, homogeneous,
isotropic and elastic three-dimensional continuum is considered. The medium is assumed
to contain a large number of microcracks which do not interact with each other. The ef-
fective compliance or stiffness may be determined by the superposition of the contributions
of individual microcracks. In the case of a large number of microcracks, the summation
can be replaced by an integration over a continuous distribution of crack sizes and orien-
tations. The penny-shaped crack is characterized by its radius a and two Euler angles 6
and ¢ that define the orientation of the unit normal m as shown in Fig. 3.1. The spe-
cific distribution of the crack radii and orientations is expressed by the probability density
function W (a, 0, ¢). In some situations, the microcrack radii, shapes and orientations may
be correlated. The density function is then replaced by the probability density function
P (a,0,p) = P% (0, p) P*(ald, p). Here, however, it is assumed that the microcrack radii

and orientations are not correlated. In this case, the density function is expressed as

W(a,0,0) = A(a)C(0,¢). (3.27)
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Figure 3.1: Geometry of a penny-shaped crack.

The effective continuum properties per unit volume are expressed in terms of an ensemble

average utilizing the density function (3.27) and Eq. (3.25) such that

2m
Cii = 477/ //2 ]le ©) df sin pdp. (3.28)

In Eq. (3.28), the non-dimensional microcrack density per unit volume is defined by
at
e=N{(a*) = / A(a)a’da, (3.29)

where N is number of cracks per unit volume and the angular brackets represent the ensem-
ble average. This damage density was introduced by Walsh [87] for the case of an isotropic
distribution of the penny-shaped microcracks. A more general form of the damage factor

in terms of elliptical microcracks was given by Budiansky and O’Connell [88]

g:g<§>, (3.30)



37

where I' and P are the crack surface area and the perimeter length, respectively.

The simplest model of the microcrack distribution is assumed when their orienta-
tions are random. In this case, the normal to the microcrack plane takes every direction
with equal probability, such that the effective compliance or stiffness tensor attributable to
the presence of microcracks is isotropic. In this case, the density function in Eq. (3.27) is
given by

¢(0,p) =1. (3.31)

The effective stiffness attributable to the presence of N active microcracks per unit volume

is then derived from the Eq. (3.28)

e 2n /2 5)
ik = /0 /_7r/2 Ciiri (0, ) sinpdfdp, (3.32)

where Céj;l is given by Egs. (3.25) and (3.26). Carrying out the integration in Eq. (3.32)
gives the effective stiffness due to an isotropic distribution of penny shaped microcracks as

" 161 —v
ijkl:4_5271/

(3.33)

2 _ 160 + 19
2ﬂg{2(5u)1iljkl+”(” v19) }

(1 _ 21/)2 I’L]kl
The stiffness tensor of the homogeneous, isotropic and elastic solids in its pristine,
undamaged state is

Ciing = M + 20l (3.34)

1,

Here, the ensemble average stiffness is redefined such that the average fluctuations are
zero. Such a procedure, while not necessary, is convenient for the calculation of material
covariance and attenuation. The moduli are assumed to be spatially varying and of the
form

Cijra(x) = 6gjkl + 6Cij (%), (3.35)
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where

—0 %
Cz’jkl - Cz(')jkl - Cijkl' (3-36)

Thus, the moduli have the form of the average moduli

—0 — — _
Ciint = (Cijia(x)) = Mg + 200 (3.37)

plus the fluctuation about the mean 6€@-jkl. Hence, ﬁijkl has the average value of 6?]- i and

ééijkl represents the modulus fluctuation. The effective constants are

16 (1 — v)(v® — 16v + 19) } (3.38)

A= A[1_4:_5 2— )1 —20)

These results are identical with the results obtained by Krajcinovic [79], Kachanov et al.
[89], Budiansky and O’Connell [88] and Zimmerman [90]. The effective properties of the
damaged material are shown by Eqgs. (3.38) to be linearly related to the damage parameter
€. Thus, wave speed changes that are the result of damage will scale linearly with e as well.

The fluctuations, which are defined here to have zero average, (6C) = 0, are given

6Cijr(x) = Chipy — CEZZH(x), (3.39)
The function H(x) is defined as

1 ifxeS
H(x) = , (3.40)

0 otherwise

where S is the space occupied by the crack phase.
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3.3 Mean Response

The mean response, (G (p)), is given by the solution of the Dyson equation,
Eq.(2.7), above. The solution of (G (p)) is expressed in terms of G°(p) and M (p) . For the
statistically isotropic case, the bare Green’s dyadic, G, is the solution of Eq. (2.4) with

the modulus fluctuation equal to zero. Hence

~ A

G’ (p) = ppyL (p) + (I - PD)g7 (p), (3.41)

for propagation in the p direction. The bare longitudinal wave g% (p) and transverse wave

9% (p) propagators are denoted

A = [W-pPd] T, (3.42)

P-pir]

gr(p) = [w

where the cf, and ¢ are the average longitudinal and transverse wave speeds, respectively.
The Fourier transforms which define (G (p)) and M (p) are given by expressions similar
to those defining G (p). The spatial transform of the self-energy and the mean Green’s

dyadic have the same form as the bare Green’s dyadic. Hence, one may write

M(p) = ppmz(p)+ (I—pp)mr (p),
<@ (p)> = PPyr (p) + X —DD)gr (p), (3.43)
where
i) = — [ds BEE(hE) + Do )ie -9,

P E{ 82 (s) + A-g(s)}ii(p —s).  (3.44)



and

gL (p)

gr (p)

These are the expressions for the

[w® = p*ct +mi(p)] ",
w? = p*ct + mr(p)]

mean response.
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-1 (3.45)

They define the phase velocity and

the attenuation of longitudinal and transverse wave types in statistically isotropic me-

dia. Using Egs. (2.11) and (2.12), the attenuations in statistically isotropic media, which

are the imaginary part for each wave type, can be derived. The imaginary parts of mg

(where 0 = L or T') are determined from Eqgs. (3.44) such that the attenuations are given

by
0w (b) = T [ b=
o [ b

and
- [ ()
o [ abia-

W W w® o
=7 <pc— - s—) = d8, (3.46)
L cT CTCL
5
W Lw) W .
:77<p——s—> = 2d25
cr Cr, CLCT
5
Grm A W W W o
)= — — §—)—=-d*§, 3.47
DIEA ) (347)

~, W . w
77LL(‘9p8) = 77(ch - SCL)’
W . w
nrr(Ops) = nB— —8—), (3.48)
cr cTr
~ A W . w
77LT(‘9p8) 77TL(9p8) n(p— —8—),
cr, cr

where the direction p defines the propagation direction, § defines the scattered direction,

and 0, is the angle between these directions

(i.e., cosbps =D - 8§).
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3.4 Attenuations

To derive the attenuations, the relevant inner products on the covariance of the
effective moduli fluctuations are required. The covariance of the moduli fluctuations is
represented by an eight-order tensor which is given in Eq. (2.2). The inner product is given

explicitly by

[1]

.- ups

ABYE A A A e na s
Z.jIJ UgULDaPISi850D; (3.49)
The covariance here is given in terms of an average over all crack orientations. Thus, the

crack normal m may vary over all possible directions. In this case, the following identities

are needed
A 1
(i) = <635,
A 1
<mimjmkml> = 1—5 ((Sijékl + (Sik(sjl + (Silfsjk) ,
o 1
(ymmgmymaemg) = ﬁ(éijékléaﬂ
+ all permutations — 15 terms in all), (3.50)
o 1
<mimjmkmlmam5mym5> = %((Sijékléaﬂéfyé

+ all permutations — 105 terms in all ),

where the brackets, () , denote the ensemble average. All averages of odd numbers of 1m’s
are zero. The average of the tensorial part of the covariance over all orientations of crack

normal is defined by

1 2 /2 §) —(s
=afBys CE]I)CIC( )

B0 = — in pdpdo. 51
ijkl A7 0 _n/ apys S PP (3 5 )

Here we use the relation (H(x)H (y)) = ¢ Pr(r|0), where Pr(r|0) = (1 —¢)n (r) +¢ is defined

as the conditional probability [76]. The notation r is the magnitude of the difference between



42

two vectors. Here, the second order terms in € are neglected under the assumption that the

damage density is small. Thus, (6C;;x(x)6Cagys(y)) = en (r) Ef}i]é It is noted that

¢ = 241, (3.52)
with
- - 16X (1-v) -  321-v
d = 0, dy=———2 ds=2
! T3 a—w)? P 32—
- - 16rv(l—-v) = 16 v(1 —v)
ds = dy=— =27 .
5 SR BTy, (8.53)

Using the identities in Egs. (3.50), the general form of E is given in terms of Kronecker
deltas. Thus, the general compact form of = is expressed as
207" = T16:j6k8asb+s
+ 15 [6i6k1 (0ar085 + 0as03y) + 0apdys (Gikdji + 6ibjk)]
+ T3 (6ik0j1 + 0510k) (0ar08s + 0as0sy)
+ T4 (6500 (0yk0s1 + 04106%) + Or10ap (04i0s; + O~j0s:)
+0ij0~5 (0ak0s1 + 00108k) + Ok10+s (60ibB; + 6ajdsi)]
+ T5 [0a80ik (6~081 + 641055) + 6apbit (0408 + O4k0s;)
+8030jk (64051 + 04108:) + 00301 (64ibsk + Oykbsi)
+0,50ik (00081 + 601085) + 04850i1 (0ajOpr + Oakds;)
+0~60jk (00i0p1 + 0a108:) + 6~601 (00ib gk + Oaklsi)
+6ay0ij (6ak0s1 + 08105%) + OaryOrt (6pi0s5 + 6;0si) (3.54)
+0a60ij (081041 + 68164k) + 0as0ki (0810~ + 08j0~i)

+08,6i5 (6ardsi + 6atdsk) + 08,0k (0ails; + Oajbsi)
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+0850ij (8akby1 + 0a1Oyi) + 6880k (0aibyj + 0ajyi)]
+ T [0arOik (085051 + 081055) + Oar it (6850sk + O8K0s5)
+0ar0jk (08i0s1 + 6 3108:) + Oar0j1 (08i0sk + 0 rbsi)
+oas0ik (685011 + 0p16+5) + basbdi (6p50yk + 0prdy;)
+0a60jk (68051 + Op10+i) + basbjt (6pi0k + 0pkbyi)
+08y0ik (00081 + 6a1ds5) + 08v0i1 (Oajbsk + Oards;)
+0870k (60i0s1 + 0aibsi) + 05,01 (Oaibsk + Oandsi)
+0850ik (0ajOy1 + 6a1b~j) + 0850i1 (0ajOyk + Oakbq;)
+0850k (0aidy1 + 0a10i) + 085051 (8aibyk + Oakbyi)
+ T7 [0ai6 3j0yk061 + 00i0810~j0sk + 00i0aK0~j0s1
+0ai08k0~4105; + 00i0p10~08k + 0aib8104k05;
+0aj08i0k061 + 00j08i0~108k + 000 8K0~iOs1
+00;08K0~108i + 0aj0810k06i + 0aj0810~i0sk
+0ak03i6~j061 + 0ak08i0~106; + 0ak0s;j0~i0s1
+0ak0350~108; + 6ak0p10~i0s; + 0ak010~;0si
+0a108i0~j06k + 00108i04k06; + 00105j0~i0sk

+00108j04k05i + 0010810~i085 + 0a108K0~;05i] -

The expressions for the attenuations, in turn, involve certain inner products of E with

incoming and outgoing wave vectors. In terms of the angle between p and 8, these necessary
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inner products reduce to
2R = [Ty + 4Ty + AT7) + AT + 4T} + 32T5 + 16T + 16T7] cos? O

+ [4T5 + 16T + 4T%] cos* 0,5,

=PPSSy D288 2

=..ppss, —-popss [T4 + 2T7] + [4T5 + 4T + 4T7] COs epsy

= PPSS3 e P3P8S 2
S pPSs; — D3pss — [T4 + 415 + 416 + 6T7] + [4T3 + 167§ + 4T7] cos Hpg

— [4T3 + 16T + 4T%] cos* 0,5,
—D2P88y 2
S popss, — [T@ + 2T7] + [Tg + 31§ + 2T7] CcOs 9;08,
= P3psSy - o . 2
S pipss, [Tg + 4Ty + 4T7] + [ 4715 — 1674 4T7] [¢e}] Hps
+ [4T3 + 16T + 4T+] cos* 0,5, (3.55)

=P2P883 P3PSy _
S popss; = To.pypss, — 16 +2T7],
—PaD88y D3PSy _ [ 3
B popss. = Se.popss, = |13 — 2Ts] cos Ops + [2T5 4 4Ts) cos® O,
_ "13213§§3 o= - P3P88,y — 3
B papss, = S.pypss, — 316 €08 bps + [4Ts + 21%] cos” O,
=oPabsSy meD2oP8Sy | e PaPSSy  mPsPSS;
=-P2P883 T TP3P8S; T T-P2P8S, T TP2pss, ’

= P3P8S3 o P2DP8S3 e P3DPSS3 e P3PSSy; 0

=.--P3pss TP3ps8s3 T TP2pP883 T TP3P8Ss ’

SoPB, | mpab | e pabs | mobBS |

= DPSS, =pgps88 T TPoPs88 T T---PPSSy )

The coefficients T; are given by

B D?12 33504 — 198413 + 294612 — 2080 — 937

T p—
! 945 (1—2v)2 ’
D?v 3103 — 13902 + v + 243 D?*%(1 — 2v)?
Ty = : It =——m—>
4725 1—2v 945
D2 9 o D2I/2 )
=—(1- -1 Ty = 12 -1 217 3.56
Ts 945(1 2v)* (v 8v +63), Ty o5 (31w 66v + 217), (3.56)
D%y 9 D? 9
= - - 117), Tg=—(1—-2 —4
Ts 1890(1 2v)(14v* — 790 + 117), Tg 420( v)(7—4v),
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Figure 3.2: Geometry for scattering in the local coordinate system

with the constant D = %6%2/;. The unit vectors P, P2, P3 and §, S, 83 used in Eq.

(3.55) are defined as orthonormal triads, respectively as shown in Fig 3.2.

Using the notation

F(0ps) = Eppss
oo DPSSy | PP, | papSS | mopyps

M(0p8> = S..ppss, + =...pp8S;  -Popds + = P DS (3.57)
. '_‘f)zf)§§2 ,_‘p3f)§§3 :f)zf)§§3 - ﬁSf)géz

N(0ps) Popss, T =ity T Tpabisy T -psbis,’

ALL = 773 /nLL (HPS)F(Hps)d2S:§ 3 / N () F (0) dcos,
L L /-1
1 mwte 1m2wle [T
_ Lzt ) M (0) 5 = LT 0) M (0) d cos ),
o = o | ) M) = 3T [ i (0) M (9 deos
1 cr 2
o = 3 (%) i, (3.59)

o, 1rlwle [+
arr = g5 [ T (Ops) N (Ops) d°8 = 13 nrr (0) N () deosd,
T
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The total attenuations for the longitudinal and transverse waves are given by
ap = arr +arr, ar = arr + arf, (3.59)

The appropriate expressions for the tensorial part of the covariance, Eq. (3.55), and the
final expressions for attenuation, Eqgs. (3.58)-(3.59) are the main results of this chapter.
The attenuations are expressed as integrations on the unit circle in terms of the spatial
transform of the spatial correlation function. Most importantly, the results are expressed
in terms of the damage density . It is seen that the attenuations scale with damage factor
e. In the next section, using the correlation function 7 given in Eq. (2.14), example results

are presented.

3.5 Example Results

In this section, example results are presented in terms of the nondimensional dam-
age density ¢ for an assumed spatial correlation function. For the example case, the material
properties of the uncracked medium used are Young’s modulus F = 2.0 x 107Pa, Poisson’s
ratio v = 0.16. As discussed in Eqgs. (2.14) and (2.15), the spatial correlation is assumed
to have an exponential form. An exponential function describes the correlation of contin-
uous and discrete materials reasonably well. For the isotropic case, the transform of the

difference between two wave vectors is expressed as

L3
m2(1 422 + :c% —2xq18X)%

Nap(X) = (3.60)

where L is the spatial correlation length, L = 2 (a). The scripts, «, § denote the wave

types L or T', and x = cosf,s. The dimensionless longitudinal and transverse frequencies
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are defined as x;, = wL/cp, and xp = wL/cp. In dimensionless form, the attenuations in

Egs. (3.58) simplify to

ap L = x%B;E /+1 hi + h2X2 + h3X42 dy, (3.61)
207 Jor (14222 (1—x))
aprl = rie / Tt ma?® 4 mx! dy (3.62)
2Bp? J 4 (1 + 22 + 22 — ZxLxTx)z ’
appl, = 2IS / Tt ot nay! dy, (3.63)
W? ) (14222 (1 x))°

where B = c¢r/cy, is the wave speed ratio. The coefficients h;, m; n;(i = 1,2,3) are given as

hy = T1+4T,+4Tx,
ho = 415+ 4Ty + 3215 + 161 + 1617, (3.64)
hs = 415+ 16715 + 4717,
my = 2Ty + 4Ty + 4Ty + 817,
mo = 4T3+ 4T5 + 2015 + 8Tx, (365)
mg = —4T5— 16T — 4717,
ny = T3+ 7T+ 1077,
ng = —3T3 - 13T6 - 2T7, (366)
ng = 4T3+ 161 + 471%.

Example calculations using Egs. (3.61)-(3.63) are shown in Fig. 3.3. The dimen-

sionless longitudinal and transverse attenuations, oL and arL, respectively, are plotted

as a function of dimensionless frequency, zy, for two values of the damage parameter e.

Equations (3.61)-(3.63) are shown to scale with the linearity of £ such that other values of ¢
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Figure 3.3: Dimensionless longitudinal and transverse attenuations, ar L (solid) and arL
(dashed), as a function of dimensionless frequency, =, for damage density ¢ = 0.01 and
e = 0.05.

lead to constant shifts in these curves. The attenuations increase with the fourth power of
frequency in the low frequency limit as expected. After a transition region, the attenuations
increase with the square of frequency. However, it should be noted that the results at higher
frequencies are less accurate than those at lower frequencies. This inaccuracy is the result of
the truncation of the expansion in Egs. (3.22). The longitudinal attenuation is smaller than
the transverse attenuation in part due to the wavelengths of the respective waves. However,
when the attenuations are plotted in terms of their respective dimensionless frequency as
shown in Fig. 3.4, the transverse attenuations remained larger than the longitudinal. Thus,
the higher transverse attenuation is a combination of effects of wavelength and interaction
with the cracks. As shown in Fig. 3.3, the ratio of the longitudinal and transverse atten-

uations is a constant at low frequencies, but changes at higher frequencies. Figure 3.5 is a
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Figure 3.4: Dimensionless longitudinal attenuation, ay L (solid), as a function of dimension-
less frequency, xy, and dimensionless transverse attenuation, apL (dashed), as a function
of dimensionless frequency, xr, for damage density ¢ = 0.01 and ¢ = 0.05.

plot of the wave speed ratio B¢ = Cr/C, and C = (C7/Cr)/(CL/CL), as a function of
damage density €. As has been observed experimentally, the wave speed changes much less
than the attenuation for a given damage level [91]. Thus, the result shown in Fig. 3.5 is

not unexpected.

3.6 Conclusions

The propagation and scattering of elastic waves in a homogeneous, isotropic medium
with damage from microcracking has been investigated in this chapter. A generalized tensor-
based approach was used such that the results are coordinate free. The effective compliance
and stiffness in terms of the damage parameter was discussed. Initially, effective compliance

due to a single penny-shaped crack embedded in an infinite elastic solids was examined. The
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Figure 3.5: Wave speed ratio B¢ = Cr/Cr, and C = (CT/CT) / (CL/CL) , as a function of
damage density €.

effective properties of a homogenous, isotropic solid in which a large number of microcracks
is embedded were then determined by superposition. The modulus fluctuations were then
derived relative to the average moduli. The ensemble average covariance of the moduli
fluctuations was then derived for randomly oriented cracks. The expressions for the longi-
tudinal and transverse attenuations were derived by considering the Dyson equation, which
governs the mean elastodynamic response of the medium. The Dyson equation was solved
within the limits of first-order smoothing approximation (FOSA). The final forms of the
attenuations have a linear dependency on the damage parameter, which is expected to be
valid for low damage densities. The use of the tensor-based approach presented here for
studying elastic wave scattering in media with microcracks allowed the attenuation expres-

sions to be reduced to simple form. These results should be very useful for nondestructive
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testing and material characterization research. In particular, the study of wave interactions
with aligned cracks will be much more direct. The topic of aligned cracks is examined in the
subsequent two chapters. The general formulation is also convenient for considering other

problems such as studies of backscatter phenomena.
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Chapter 4

Uniaxially Aligned Crack

Scattering

4.1 Introduction

Analytical and experimental examinations of attenuation and wave speeds of ul-
trasonic waves in cracked solids provide a direct approach for the detection of material
damage. Material responses, which are typically evaluated ultrasonically by the decrease
in wave velocity or increase in wave attenuation, vary with microcracking changes. Both of
these phenomena are caused by the stiffness degradation of the material by the cracks. In
Chapter 3, explicit general expressions of wave attenuations and wave speeds in a medium
with damage from randomly distributed penny-shaped microcracks were derived. Under
the assumption of statistical isotropy used in that work, the attenuation is independent of

propagation direction. However, in the case of structural materials such as concrete, poly-
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crystalline metals, fiber-reinforced composites, and many others, those microcracks induced
by directional loading or temperature are typically parallel to some direction. In this case,
the effective media may acquire an anisotropy essentially due to the presence of such uniax-
ially aligned cracks. Thus, the scattering attenuation is a function of propagation direction.
The analysis of this scattering attenuation is, therefore, more complicated than that of the
isotropic case.

In this chapter, the framework used in the previous chapter is extended to study
the attenuation of elastic waves in solids with uniaxially aligned cracks that are statistically
homogeneous. Again, the microcracks are assumed to be noninteracting, penny-shaped
cracks. Here, the unit normals of all cracks are assumed to be coplanar, but random within
this plane of isotropy. Thus, the uniaxial symmetry direction is perpendicular to this plane.
It should be noted that this case is different from the case of perfect crack alignment by all
cracks, as discussed by Hudson [70] for example, which will be presented in the next chap-
ter within the same framework. The use of an anisotropic Green’s function for modeling
the scattering in anisotropic media was investigated by Turner [57]. Here, this approach
is employed as well to formulate the uniaxially aligned crack problem. In this way, the
mean response is written in terms of the Dyson equation as discussed by Frisch [71] and
Weaver [50]. The Dyson equation is solved in the spatial Fourier transform domain within
the limits of the first-order smoothing approximation (FOSA), or Keller [48] approximation.
A further approximation is also made which restricts the results to frequencies below the
high-frequency geometric optics limit. The resulting attenuations are shown to be direc-

tional dependent, frequency dependent, and damage dependent for the shear horizontal,
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quasilongitudinal, and quasishear vertical waves. In particular, the angular dependence of
the attenuations in the Rayleigh limit is obtained explicitly. Outside the Rayleigh limit,
simple expressions of the attenuations of the shear horizontal, quasilongitudinal, and qua-
sishear vertical waves are derived in terms of integrations on the unit circle. Quantitative
and qualitative comparisons with previous results by Zhang and Gross [26],[27], Zhang and
Achenbach [25], Eriksson and Datta [30], Ahmed and Thompson [56] and Turner [57] show
that the more general, direct expressions derived here are reliable and comprehensive for

practical applications of detecting damage from microcracks.

4.2 Effective Elastic Properties

The effective stiffness attributed to a single penny-shaped crack, which is located
within an infinite, homogeneous, isotropic and elastic continuum has to be considered in
order to calculate the ensemble average stiffness. As discussed in Chapter 3, the effective
stiffness attributable to a single, penny-shaped crack of radius a in a unit volume, called
the crack basis Green’s function, is given by Eq. (3.25) [92]. The stiffness of a single crack
is dependent on the unit normal m, which defines the crack orientation. This orientation
is implicit in the tensors I. These basis tensors are given in terms of unit vector m and
Kronecker delta function as shown in Eq. (3.13).

Next, the ensemble average properties contributed by all cracks are considered.
The cracks are assumed to be embedded in an infinitely extended, homogeneous, isotropic
and elastic three-dimensional continuum. The penny-shaped crack is characterized by its

radius a and two Euler angles # and ¢, which define the direction of the unit normal m as
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Figure 4.1: The distribution of microcracks parallel to the xz-axis.

shown in Fig. 3.1. It is also assumed that the microcracks do not interact with each other.
As discussed previously, the density function may be separated into independent radius and
orientation functions of the form as shown in Eq. (3.27).

It is also assumed that all microcracks are parallel to the z3 axis (@ direction) with
their unit normals (lying in the x1 — x9 plane), having a random distribution, as shown in
Fig. 4.1. In this situation, due to the symmetry about the x1 — x5 plane, the average elastic
properties are those of transverse isotropy, with the x3 axis as the uniaxial symmetry axis.
Here, the distribution of the microcracks is supposed to be dilute, and the distribution of
the crack sizes is also assumed to be independent of their orientations. The crack orientation
distribution function in Eq. (3.27), which implies that the orientation function ((6, ¢) is

independent of the angle 6, is then given by

C(0,¢) =26 (so - g) : (4.1)
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Therefore, the effective continuum material properties caused by all microcracks per unit
volume are weighted by the density function, Eq. (3.27), over the crack Green’s function,

Eq. (3.25), and are then given by
2r /2
R ~ Yo i
Gl = o= /0 / o (0 =5 ) C5h0, 0 sin pdbde. (4.2)
In Eq. (4.2), the non-dimensional microcrack density per unit volume is again defined by
at
e=N{(a*) = / A(a)a’da, (4.3)

where N is the number of cracks per unit volume and the angular brackets denote the
ensemble average. This damage density definition was introduced first by Walsh [87] for the
case of a statistically isotropic distribution of penny-shaped microcracks. A more general

form of the damage density is discussed by Budiansky [88]. The basis function C’Z(]s,z

;18
specified in Eq. (3.25). By integrating over the Euler angles in Eq. (4.2), the effective

stiffness due to the distribution of uniaxially aligned penny-shaped microcracks is derived

as
Chii = Dail, (4.4)
where the coefficients D and a; are
161 —v v
D—2€M§27V, al_l_Z’
v(15 — 20v + 4v?) v(=7+2v)
p— p— = 4-
2 81—20)2 = BTUTRA—2) (45)
as=1-"2 ag = v
5 — 27 6 — 8 .

In the tensors I used in Eq. (4.4), the orientation is that of the symmetry direction f,

rather than the direction m. It is hoped that this notation is not confusing to the reader.



57

If the original undamaged state of the material is homogeneous and isotropic, the stiffness
tensor is given in the standard form C° = \I? + 2uI".

The ensemble effective stiffness is now redefined such that the average fluctuations
are zero as done in the previous chapter for the convenience of calculating the material

covariance and attenuation. The moduli are assumed to be spatially varying and of the

form
C(x) = C" + 6C(x), (4.6)
where
c’=c-c. (4.7)
Thus, the average moduli have the form
C’ = (C(x)) = ALT? + pu T' 4+ Ty (BP4TY) 4 ToT® + T51°, (4.8)
where the effective elastic constants are
Dy(15 — 20v + 4v?) D(4—v)
Al = A— =py—-—-"=
1 8(1 — 2V)2 ) oy 2 8 )
Du(7 —2v) v 3Dv
I = —/———= I'h=D(-1+4+= I's = . 4.

The moduli fluctuations, which have zero mean, <(5€> =0, are given by
§C=C" -~ CYWH(x), (4.10)

where the function H(x) is defined in Eq. (3.40).
In the next section, a Green’s dyadic approach is developed for a transversely
isotropic medium. The elastic modulus tensor is specified for the transversely isotropic case

and expressions of the attenuation for each wave type are determined.
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4.3 Green’s Dyadic for Transversely Isotropic Media

The solution of the Dyson equation, Eq. (2.7), for the mean response requires
the Green’s dyadic for the bare medium. The bare Green’s dyadic, G, is defined as the
solution of the equation of motion, Eq. (2.4), without heterogeneities (§Cjx; (x) = 0). The
emphasis here is on anisotropic media with heterogeneities. Thus, the G required is that
for an anisotropic medium. The lowest possible anisotropic symmetry class to be considered
is that of a medium with a single symmetry axis, that is transversely isotropic. The medium
of uniaxially aligned cracks is considered to be transversely isotropic, a medium with a single
symmetry axis defined here by the unit vector fi. The fourth-rank elastic moduli tensor, C,

given in Eq. (4.8) for a transversely isotropic medium, may be written in terms of fi as

Clijki = MN16i6k + py (63051 + 6abjk) + Ty (8ijniy + 6ijning) +
Ly (0ikmjny + Sunvjfg + O5knity + 6 i) + I's nynjngny. (4.11)
The above elastic constants are defined in Eqgs. (4.9).
For propagation in the p direction as shown in Fig. 4.2, the shear horizontal wave
(SH) in a transversely isotropic medium is polarized in direction @, that is perpendicular
to the plane defined by p and fi. The angle between the p and fn is defined as ©. The
quasi-P and quasi-SV waves are polarized in directions defined by i, and 13, respectively,
both of which lie in the p-in plane. It is noted that i;, iy and tis form an orthonormal
basis such that i3 = 17 X 0ia. The vector iz is directed at an angle ¢ from the propagation
direction p. The bare Green’s dyadic G may be diagonalized by using the directions fis
and 1ig, such that I — ;07 = Giglip + Gi3lis.

Substituting the elastic stiffness tensor C into the transformed equation of motion,
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Figure 4.2: Geometry for the propagation direction P, the scattered direction §, and the
respective polarization direction @1 and v in the local coordinate system.

Eq. (2.4), gives in direct notation [57]
{t11y [w® —p® (u, +T2cos?O)]
+i0p [w? — p® (Q + Pcos® P + Reos® (O + ¢))] (4.12)
+a33 [w? — p? (Q + Psin®¢ + Rsin® (0 +¢))] } - G° (p) = L.
The quantities @), P, and R in Eq. (4.12) are defined by
Q = wi+T2(p-8)° — (14T (1-(p-8)°).
P = Al +p +T1 41y, (4.13)

R = Ty +20+T5(p-n)?.

It should also be kept in mind that the vectors Gis and i are functions of the direction of

propagation, P, relative to the material symmetry axis, ii. This dependence, ¥ = ¢ (©) will
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remain implicit throughout.

The bare Green’s dyadic may then be written in the form

G (p) = g2y (p) ity + gop (P) D2l + glgy (P) Gz, (4.14)

where the dispersion relations for the bare response of the SH, qP, and ¢SV waves are

given by

g2 () = [w?—p?(uy +T2cos?0)] "

= [w2 7p2C%H] - )

ggp (p) = [w2 —p? (Q+ P cos? 1) + Rcos® (© + V)] -
= [ —p’p] (4.15)
dhsv (p) = [ —p* (Q+ Psin® v+ Rsin® (0 +¢))]

= [w2—P2cgsv} ’

with @, P, and R defined in Eqs. (4.13).

The mean response, (G (p)), is governed by the Dyson equation, Eq. (2.7). The
solution of (G (p)) is expressed in terms of G° (p) and M (p). Similar to G, the mean
response (G (p)) and self-energy M (p) may be written in terms of the orthonormal basis

defined by 11, 0is, and {3 in the form

(G(p)) = gsm(p) iy + gep (P) G202 + gesv (P) G313,

M (p) = mgsg (p) ;g + Mgp (p) sty + MgSV (p) s, (4.16)

where it is again noted that the propagation direction p is implicit within the directions

01, G2, and 3. The attenuations for the three wave types are given in the general form,
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Eq. (2.13). In this transversely isotropic case, the notation K is defined as the polarization
for the wave type (8 (1,2 or 3 for wave types SH,qP and ¢SV, respectively). It is clear
that the above expressions of the attenuation for uniaxially aligned crack distributions are
more complicated than those for a distribution of randomly oriented cracks as discussed in

Chapter 3. In the next section, the covariance and attenuation are specified.

4.4 Attenuations

The relevant inner products on the covariance of the effective moduli fluctuations
are necessary for calculating the attenuations. The tensorial part of the covariance is rep-

resented by an eighth-rank tensor which is given explicitly by

[1]

e TIDET — ikl A A A A m oA A A
(@) apee = = ()55 UplnDaDiside0y0;. (4.17)
For the case of uniaxially aligned cracks, the covariance is dependent on the crack orienta-

tions m. To calculate the covariance, the following identities are needed

o 1
(i) = 544,
A 1
(i) = 3 (Aij A+ Aupdjr + Daljr) (4.18)
o 1
(Mimjmgmymaemg) = T [Aij A Aag

+all permutations -15 terms in all |,

o 1
<mimjmkmlmamgm7m5> = ﬁ[AijAklAaﬂAfyé

+all permutations -105 terms in all |,

where the brackets, (), denote an ensemble average, and Ay = (dpn — sy ). The unit

vector 0 is the uniaxial symmetry axis. All averages of odd numbers of m’s are zero.
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In addition to these tensorial averages, the average of the spatial part of the
covariance must be determined. As discussed in Chapter 3, the necessary relation is given
by (H(x)H(y)) = € Pr(r|0), where Pr(r|0) = (1 — )W (r) +¢, is defined as the conditional
probability [76]. Due to the assumption of small damage density, the higher order terms in
¢ may be neglected. Therefore, (6C;;x1(x)0Capsys(y)) = €W (r) EZ@‘S Averaging over all

crack orientations, the covariance is thus defined by
1 2 pm/2 o T
=ebrs _ (CikClns) 8 — 5) sin pdipd 4.19
ijkl or /0 /W/2 ijkl™~ afvyo (SO 9 ) S apav, ( : )
where the definition of 6(5) is given by Eq. (3.53) in the previous chapter. Substituting the

identities of Egs. (4.18) into Eq.(4.19), the generally compact form of = is constructed in

terms of Kronecker deltas and pairs of in’s. The general compact form of = is given by

E?ﬁ?é = T1 (635 — nin;) (01 — nk1y) (008 — Nang) (616 — Nyns)

+ To{ (635 — nin; ) Okt — nim) [(Say — namy)(8gs — ngns) + (bas — nans)(6py — ngny))

+ (6ap — 1an3) (045 — nyns)[(6s, — ning) (050 — nyny) + (6ar — nimg) (85 — nyjn)]}

+ T5[(63k — nink) (60 — nymu) + (6 — nina) (85 — mjng)]

[(bay — nany) (655 — ngns) + (8as — nans)(8py — npny)]

+ Tu{ (655 — ninj) (6ap — nang)[(6yk — nyni) (851 — nsmy) + (61 — nyng) (Ss — nsni)]

+ (0t — nikru) (8ap — nanp)[(6yi — nymi)(6s; — nsny) + (645 — nyny) (65 — nsni)
(4.20)

+ (655 — ninj) (646 — nyns)[(6ak — nank) (6p1 — ngni) + (bar — namu) (Opr — ngni)]

+ (0kt — 1) (05 — Myns)[(6ai — mami) (855 — npny) + (8aj — namy) (65 — ngni)]

+ T5{(6ap — nang) (O — nink)[(64;5 — ny1;) (651 — nsmy) + (61 — nymy) (655 — neny)]
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+(6ap — nang)(6ir — nim)[(6y; — nyn;)(6sk — nsnk) + (6yk — nynk)(8s; — nsny)]
+(0ap — nang) 0k — 1j1%)[(64 — nyni) (651 — nem) + (640 — nyny) (658 — nsny)]
+(8ap — nanp) (651 — njng)[(64i — nyni)(6sk — nsng) + (64k — nynk) (s — nsni)]
(046 — nyns) (6ik — ning) [(0aj — mamj)(8p — ngnu) + (bar — namu) (655 — ngn;)]
+(645 — nyms) (6 — nim)[(6as — nang)(Spr — ngni) + (dak — nanr)(6p; — ngny)]
+(648 — nyn6) (05 — njnk) [(0ai — nami) (081 — ngny) + (61 — namu) (68 — ngn;)]
+(8y5 — 1ym5) (850 — 157)[(80i — 1ami) (g — 1g7%) + (Sak — N ) (85 — nani)]
+(0ay — nany)(8i5 — ning)[(6pk — ngni) (651 — nemu) + (61 — ngni) (dsk — nsni)]
+(6ay — Nany) (6 — nkn)[(05: — ngni) (055 — nsny) + (055 — ngny)(8si — neny)]
+(bas — nans)(0i5 — ning)[(0gx — nank) (051 — nymi) + (6p1 — ngma) 63k — nyni)]
+(0as — nans) 0k — nen) (65 — ngni) (645 — nyny) + (65 — ngnj)(6yi — nyny)]
+(08y — ngny) (65 — ning)[(6ak — naru) (6st — nsmu) + (6ar — namu) (0sk — neni)]
+(68y — n81y) (611 — 1) [(80i — nami) (055 — nsnj) + (Oaj — nanj)(6si — nsny)]
+(685 — ngns)(6s5 — nin) [(bak — nank) (641 — nyny) + (dar — nam) (6yk — Ny
+(685 — ngns) 6k — k) [(bai — nani) (645 — nyng) + (baj — nanj) (64 — nyny)l}
+16{(8ary — nany)(6ik — ning)[(6; — ngny) (Os1 — nsnu) + (6p1 — npnu) (65 — nsny)]
+(6ary = Nany) (8 — niny)[(655 — ngn;)(der — nsny) + (Opx — npng)(6s; — nsn;)]
+(0ary = Nany) (051 — njng) (08 — ngni) (651 — nema) + (6p1 — 1) (0s; — msni)]
+(0ay — nany ) (851 — njma)[(65: — ngni) (6sk — nsnk) + (6r — ngni) (65 — nsny)]

+(0as — nans) (6i, — nink) [(0g5 — 1p15) (041 — nyny) + (651 — 1) (045 — Nymy)]
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+(0as — nans)(6a — nin)[(855 — ngn;) 6k — nynk) + 6k — ngni) (645 — nynj)]
+(6as — nans) 6k — njne)[(0pi — na1i) (041 — nyni) + (651 — ngnu) (64 — 1y
+(0as — nans) (050 — ning) (88 — ngns) (Oyk — nyni) + (0K — ngnk) (04 — nyny)|
+(08y — ngny) (6ik — nink) [(6aj — nan;) (05t — nsmu) + (6ar — nam)(0s; — nsn;)
+(88y — ngny) (651 — 1151) (6o — Mas) (b5 — nsTk) + (Bak — Nk ) (855 — M5m5)]
+(68y — ngny) (65 — nyjne) [(6ai — nana) (a1 — nsmu) + (6ar — namu)(8si — nens)]
+(68y — ngny) (850 — 11y [(6ai — nani) (S5 — nsnk) + (Oak — nan)(6si — nens)]
+(63s — ngns) (i — nink)[(6aj — nan;) (641 — nymu) + (dat — nan)(6y; — nymy)]
+(6p5 — ngns)(6ir — nim)[(8aj — nar)(byk — nynk) + (bak — nank)(6yj — nynj)]
+(685 — ngns) 6k — njni) [(6ai — nani) (041 — nyny) + (0ot — Namy) (04; — nyng)]
+(68s — ngns) (651 — njny)[(0ai — nani) (Oyk — nynk) + (Oak — Namk) (64 — nyng)] }
+T7[(6ai — nami)(8g5 — ngn;) (6, — nyng) (651 — nemu)

+(0ai — nani) (651 — 1) (645 — nynj)(Ssk — neni,)

+(6ai — nani) (6pk — ngny) (64 — nyny) (651 — nsm)

+(8ai — nani) (0pe — ngni) (641 — nymi) (655 — nen;)

+(0ai — nani) (651 — 1) (645 — nynj)(Ssk — neni,)

+(0ai — nani)(bp — ngni) (6yk — nymk) (55 — nsn;)

+(0aj — nanj)(6pi — npni) (64 — nyng) (Ss1 — nsny)

+(6aj — nan;) (6 — nni) (641 — nyni) (6sk — nenk)

+(0aj — nan;)(6px — ngnk) (6 — nyn;) (651 — nsny)
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+(0aj — namn;j)(6pr — ngnk) (641 — nyni)(8si — nsm;)

+(8aj — namny) (6 — ngn) (6 — nymy) (Osi — nemni)

+(6aj — nan;i)(6a — ngni)(6yi — nyni) (Osk — nsnk)

+(6ak — nank)(6pi — nani) (045 — nyn;) (6t — nsmu)

+(0ak — nank)(0gi — ngn;) (641 — nyny) (65 — nsn;)

+(6ak — nan)(6g; — npn;) (04 — nyng)(6s — nsm)

+(0ak — nank)(0; — ngn;) (641 — nyny)(0si — nsni)

+(bak — nann) (851 — ngn)(6yi — nyni)(8s; — nen;)

+(6ak — nank)(6p — npmu) (05 — nymj)(6si — nsni)

+(6ar — nam)(0p; — npni) (65 — nyny) (Osk — nsn)

+(0ar — nan)(68i — ngng) (04 — nynk) (655 — nsnj)

+(6ar — nam) (65 — npn;) (64i — nyni) (Osk — nsnk)

+(0ar — nan) (655 — ngnj)(Oyk — nyng) (05 — nsn;)

+(0ar — nan) (6K — ngnk) (0 — nyns) (655 — nsnj)

+(6ar = nam)(§px — ngnk) (65 — nyn ) (6si — nsmi)]-
The form of the attenuations given in Eqgs. (2.13) is dependent on various inner products
on the covariance tensor. The vectors p and §, respectively, represent the incoming and
outgoing propagation directions. The vectors @1 and ¥ are vectors defining the polarization
directions of the particular waves. These vectors are perpendicular to the plane defined by

§ or p and f (for SH waves) or they lie in this plane (for ¢P and ¢SV').

Now the necessary inner products involved in determining the attenuations are
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calculated. The attenuations will vary angularly only within the plane defined by the
propagation direction p and the crack alignment direction . Therefore, without loss of
generality, a reference plane is defined as the p-fi plane as shown in Fig. 4.2). The following

vectors are then defined with respect to a general xixox3 coordinate system as

n = Xxj,
P = X2sin® +X3c080, (4.21)
§ = X1sin® cos¢d + Xosin®' sing’ + X3 cosO'.

The polarization vectors &1 and ¥ are then defined with respect to these angles and 1 as

1,:11 = )Aclv
s = Xosinvy + X3cos7, (4.22)
3 = —Xoco0s7y+ Xzsiny,
and
V1 = Xysing’ —Xocosd,
Vo = Xysiny cos¢’ + Xosiny'sin ¢’ + X3 cos, (4.23)
V3 = —Xjcosy cosd —Kycosy sing’ 4 X3siny,

where the angles v and 4/ used hereafter are defined by
y=0+Y(0), Y =0+ (0). (4.24)

These angles, v and 7/, define the orientation angle of the ¢P wave with respect to the f

direction, for the p and § directions, respectively.
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Inserting these definitions of the relevant unit vectors into Eq. (4.19), the required

inner products are reduced to a simple form. The inner products are:

for agy

= uipsys
‘—'....ulpsv3

It

= sin? O sin? ©' [—771 cos? ¢ sin? ¢’ + 172] ,
= sin® ©sin® ©' sin® 7/ [ cos® ¢’ sin? ¢’ + 1] ,

= sin? O sin? ©' cos? 4’ [771 cos? ¢’ sin? ¢’ + 173] ,

V1 = 5in?Osin? O sin?y [171 cos? ¢’ sin? ¢’ + 773] )
= sin? Osin? ©'sin? ysin? 4/ [771 sin* ¢/ +n, sin? ¢’ + 175] ,

zgzgz = sin®©sin® ©'sin®ycos® v [, sin® ¢’ + nysin® ¢’ + ;]

1 = sin?Osin? 0’ cos? y [m cos? ¢ sin® ¢’ + 3],
= sin? ©sin? O cos? ysin? 4’ [171 sin? & +mny sin? ¢ + 775] )

= sin®©sin® © cos® ycos®y' [ sin® ¢ + nysin® ¢ + ],

where v and 7' are defined in Eq. (4.24). The coefficients 7, (¢ = 1...5) and T}

are given by

n = ATs + 16Ty + 4Ty, 1y = Ty + ATy + 4T,

Ng = Ty + 415 + 4T + 617,

Ny = 4T + 4Ty + 3215 + 1616 + 1617, ns =17 + 414 + 4717,

(4.25)

(4.26)

(4.27)

(j=1.7),

(4.28)
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and

v2(80v* — 41613 + 47202 + 184v — 235) M?

T = —
! 128(1 — 2v/)2 ’
v(1203 — 2802 4+ 127y — 184) M? v (1 — 2v)2M?
T2 = - 9 T7 = T 504
384 384
(v—4)(v—12)(1 —2v)2M? v2(10v — 23)(2v — T) M2
3 334 ) 4 334 ) ( 9)
v(1 —2v)(6v2 — 31v + 44) M> (3—2v)(1 —2v)2M?
T5 = ) T6 = )
384 96
where the constant M is defined as M = u%m The expressions given by Egs.

(4.25)-(4.27) are also directly related to the diffuse energy propagation, including backscat-
ter [52],[53],[54].

As discussed previously, the tensorial and spatial components of the covariance are
assumed to be independent and the correlation function 7 is assumed to have an exponential

/L where L is the spatial correlation length, L = 2 (a). Substituting the

form n(r) = e~
above inner products into Eqs. (2.13) and integrating over the azimuthal angle ¢', the

attenuations finally reduce to dimensionless forms

€

QSH (@)L = l‘%HZTTgH (@) Sin2@[ISH,SH
P CsH
_ 5 _ 5
c
+1sH—qpP <—_SH) + IsH—qSV <_SH) ] ; (4.30)
qu CqSV
4 € CqP 5
agp (O)L = zt,——— 3, (0)sin? Osin’~ | Ip_ <_q—)
QP( ) qP2p253P qP( ) Y |{qgP-SH s
- 5
C
+yp—gp + Igp—qsv (Eij/> ] ) (4.31)
q
4 € Casv "
agsy (O)L = 2t ——13 0)sin? O cos®~ | Igv_s <_q >
q V( ) qSV2pgc;1$V qSV( ) Y | LgSV-SH CsH

- 5
C,
+IqSV—qP ( i]SV) + IqSV—qSV] ) (432)
qu
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with the density, p, now included in the general form. The terms denoted by Iz_., within

the square brackets represent integrals defined by

[T m (6X%y_su—Yiu_su) m (2Xsa—-saYdn_ sy —3Xen_su)
Isg_sg = +
0

QYgH —SH YéH—SH (XgH—SH - YS2H—SH)1/2
T L
tope = [ |1 080 = 0X8na) | 1 XG0 = 2Xsn-oVina) )
0 2V o, Yég_o (Xig_o— YSQH—oz)l/Q
N3 XSH—a

x 2 )3/2]rg (0) Iy sin® ©'de/,
SH—a ~ *SH-a

and
Loy = /7T m (Yo sy —6X5 sy) ! (3X3 sy — 2Xa-suYa sp)
a= - 2 1/2
0 2Yo-sm Vi o (X2_gn — Y2 sm)"
Xo— .
5 2 zH 3/2] rf’gH (@/) sin® ©'dO’,

(Xa—SH o Ya—SH)

ﬂ 6X7  +Y2,)+2n,Y?
I = / m (6X3_, 6;04) Na¥s—q (4.34)

0 2V,

+"71 (4X§LaY52fa B 3X§fa) + 774)/52711 (2X5—06Y2527a T nga)

3/2
Y:S{a (nga - Y:52fa) /
X5 oY
- 15 26 e /2] r (') I, sin® ©/de,
Y;Sfa (Xéfa - )/6704)
with
X = 142%r%2(0) +22r2 (0') — 225215 (0) 7 () cos O cos O,
B—y BB vy BIyTB v
Yy = 2xg3,73(0)7r, (0)sinOsin®’, (4.35)

for the different wave types, 8 and =y. The subscripts 6 and a denote either the qP or
qSV wave type, and the notation Il,p = sin? (0’ + ¢ (0')), sy = cos® (0 + v ()

is used. In Egs. (4.30)-(4.35), the angular averaged wave speeds are defined as ¢z =
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% fgr cg (0)sin ©dO, for each wave type, 3. Three nondimensional frequencies are then de-
fined as 3 = wL/cg and the slowness surface for each wave type is defined by the dimen-
sionless quantity 73 (©) = ¢z/cg (©) . Equations (4.30)-(4.34) are the primary results of this
section.

In the long wavelength Rayleigh limit, g << 1 and these integrals become inde-
pendent of incident direction and frequency. Therefore, they reduce to a much simpler form

as

Isp-sp = / f—+772 TgH(@’)sin?’@’d@’,
0

Ist-o = / +773 r3 (0) I, sin® ©/d6/, (4.36)
0

and

Io_sy = /O (’71+n3) rip (©) sin® ©/dé,

8
Is—o = /0 <% + 1724 + 775) > (0') I, sin® ©'dO’. (4.37)

for all outgoing wave types. In the Rayleigh limit, the angular dependence of the attenuation
is explicitly seen. In the subsequent section, example numerical results and discussion are

presented.

4.5 Example Results

Numerical results are now presented for a specific case, in which the observed
anisotropy of the cracked material is essentially due to the presence of the uniaxially aligned
cracks. The material properties of the uncracked medium used are Young’s modulus F =

2.0 x 10*Pa, Poisson’s ratio v = 0.30, and density p = 7850kg /m?. Using the dispersion
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Figure 4.3: Slowness surfaces for damage densities € = 0, 0.1.

relations given in Egs. (4.15), the slowness surfaces calculated for different damage densities,
¢ = 0and 0.1, are shown in Fig. 4.3. The normalized effective wave velocity, cz(g)/cs(e = 0),
of each wave type is presented in Fig. 4.4. The effective velocities decrease with increasing
damage density ¢ within the considered frequency range. The reduction of velocity of the
SH and gP waves due to the presence of the uniaxially aligned cracks is a maximum at
© = 90°, it becomes smaller as © decreases, and the reduction reaches a minimum at
O = 0°, though the changes are not substantial. These results are in basic agreement with
those of Zhang and Gross [26] and Eriksson and Datta [30]. The ¢SV wave velocity is seen
to have a greater reduction at © = 45° than at ©® = 0° and 90°.

In the Rayleigh limit, the attenuations simplify considerably since the integrals

reduce to those given by Eqgs. (4.36) and (4.37). The attenuation depends on the fourth
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Figure 4.4: Normalized wave velocity of each wave type, cg(e)/cg(e = 0), versus damage
density € at © = 0°,45° and 90°.

power of frequency in the Rayleigh regime. Thus, the angular Rayleigh attenuation results
shown in Fig. 4.5 are given in a general form of, aL/(x*), for each wave type. In Fig.
4.5, the SH and ¢qP waves are observed to have their maxima at © = 90° — perpendicular
to the crack alignment direction fi. The ¢SV wave is observed to have zero attenuation
for propagation along the symmetry axis (© = 0°) and perpendicular to it (© = 90°). All
wave types have zero attenuation along the symmetry axis, because the material properties
do not vary in that direction. Those results are qualitatively the same as previous work
[56],[46],[57]. Zhang and Gross [26] comment that their attenuation results are not zero
for propagation along the symmetry axis. They speculate that the attenuation arises from
Poisson effects. However, such a comparison is difficult to make since the focus of their

work was at much higher frequencies. An additional feature observed for the ¢SV wave in
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Figure 4.5: Rayleigh limit as a function of direction for the SH, ¢P, and ¢SV waves for
damage density ¢ = 0.01(dashed) and ¢ = 0.05(solid). The dimensionless attenuation aL
has been normalized by the fourth power of the dimensionless frequency and damage density
for the respective wave type: agspL/(x$ye€), aqu/(:L‘;lPe), and ozqva/(x;lSVe).

Fig. 4.5, is the asymmetry that develops as ¢ increases. This peak is around © = 45°, but
shifts slightly higher as ¢ increases from 0.01 to 0.05.

Using Egs. (4.30)-(4.32), attenuation results are given in terms of the single di-
mensionless frequency xgp = wL/¢sp. Outside the Rayleigh regime, the attenuations were
calculated using the complete integrals, Eqgs. (4.33) and (4.34), by numerical integration.
In Fig. 4.6, the normalized SH wave attenuation, aggr/ksp, is presented as a function of
propagation direction for three different damage densities at frequency zgy = 1.0. The at-
tenuation for propagation perpendicular to the crack alignment direction is seen to increase
more quickly than for other directions as the damage increases. The results for the normal-

ized ¢P attenuation, oyp/kqp, are shown in Fig. 4.7. These results display similar behavior
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Figure 4.6: Angular dependence of the normalized SH attenuation, agpy/kspy for various
damage densities € at frequency zgy = 1.0.
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Figure 4.7: Angular dependence of the normalized ¢P attenuation, agp/kqp for various
damage densities € at frequency zgy = 1.0.
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Figure 4.8: Angular dependence of the normalized ¢SV attenuation, aggsv /kqsy for various
damage densities € at frequency xgsgy = 1.0.

as the SH attenuation in terms of the change with angle and damage. Analogous results
have been observed in textured polycrystals by Hirsekorn [46], Ahmed and Thompson [56],
and Turner [57]. In Fig. 4.8, the normalized ¢SV attenuation, aggy/kesv, is presented
at various damage densities for frequency gy = 1.0. The attenuation for propagation at
© = 0° and 90° is zero as discussed above. For propagation at © = 45°, the attenuation
is the largest. In addition, it is seen that the peak of maximum attenuation shifts as the
damage increases, although this shift is not significant. The direction of maximum aggsy is
dependent upon both frequency and damage. This shift is thought to be the result of the
induced anisotropy from the cracks as shown in the slowness plots in Fig. 4.3 as speculated
elsewhere [57]. However, further investigation is necessary to determine the precise reason

for this peak shift.
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Figure 4.9: Angular dependence of the normalized SH attenuation, agpy/kspy for various
frequencies, xsg, at damage density ¢ = 0.01.

In Fig. 4.9, the normalized SH wave attenuation, asg/ksm, is presented as a
function of propagation direction for three different frequencies, xgz, at damage density € =
0.01. The attenuation for propagation perpendicular to the crack alignment direction is seen
to increase more rapidly than for other directions as the frequency increases. The results for
the normalized ¢P attenuation, oyp/kqp, are shown in Fig. 4.10. These results demonstrate
similar behavior as the SH attenuation in terms of the change with angle and frequency.
Analogous results have been observed in textured polycrystals by Ahmed and Thompson [56]
and Turner [57]. In Fig. 4.11, the normalized ¢SV attenuation, agsv /kesv, is presented at
various frequencies for damage density € = 0.01. The attenuation for propagation at © = 0°
and 90° is zero as discussed above. For propagation at © = 45°, the attenuation is the

largest. In addition, it is seen that the peak of maximum attenuation shifts slightly higher
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Figure 4.10: Angular dependence of the normalized ¢P attenuation, agp/kep for various
frequencies, xgg, at damage density ¢ = 0.01.

as the frequency increases, although this shift is not significant. The direction of maximum
aysv is dependent upon both frequency and damage. This shift is thought to be the result
of the induced anisotropy from the cracks as shown in the slowness plots in Fig. 4.3 as
speculated elsewhere [57].

Finally, results are presented for the normalized attenuations as a function of
frequency for several propagation directions at damage density € = 0.01. In Figs. 4.12 and
4.13, the normalized SH and ¢P attenuations are plotted versus dimensionless frequency,
xsp, for propagation 45° 60° and 90°. The attenuations for propagation perpendicular to
the crack alignment direction are seen to increase more rapidly than for other directions
as the frequency increases. The normalized ¢SV attenuation is plotted versus, gy, for

propagation 45°,60° and 30° in Fig. 4.14. The attenuations for propagation direction at
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Figure 4.11: Angular dependence of the normalized ¢SV attenuation, agsv /kqsy for various
frequencies, xgyr, at damage density € = 0.01.
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Figure 4.12: Normalized SH attenuation, agy/ksm, as a function of dimensionless fre-
quency, gy, at damage density € = 0.01, for propagation directions of 45°,60°,90°.
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Figure 4.13: Normalized ¢P attenuation, oyp/kqp, as a function of dimensionless frequency,
rsp, at damage density € = 0.01, for propagation directions of 45°,60°, 90°.

© = 60° and 30° are not identical such that the maximum peak is not located at © = 45°
within the frequency limits considered here. This result implies that the feature of the

asymmetry is developed as frequency increases as discussed above.

4.6 Conclusions

In this chapter, wave propagation and scattering have been examined for media
with uniaxially aligned cracks. These cracks have unit normals that are randomly oriented
within a plane of isotropy. The ensemble average elastic wave response is governed by the
Dyson equation which is solved within the limits of the first-order smoothing approxima-
tion. The general Green’s dyadic for a transversely isotropic medium was employed to derive

expressions of the attenuation of the shear horizontal, quasilongitudinal and quasishear ver-
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Figure 4.14: Normalized ¢SV attenuation, aysv/kgsv, as a function of dimensionless fre-
quency, gy, at damage density € = 0.01, for propagation directions of 45°,60°, 30°.

tical waves. This dyadic approach is convenient to make the results coordinate free. Thus,
the final forms of the attenuations for the three wave types were given directly by simple
compact expressions involving integrations over the unit circle. In particular, the integrals
are simplified considerably in the Rayleigh regime. The general attenuations for each wave
type are dependent on frequency, wave velocity, wave direction and damage density. Finally,
numerical results show how the attenuations and the effective wave velocity of each wave
type are affected by those parameters. The general formulation is also directly related to
other types of elastic wave scattering such as backscatter. The simple form of the results
makes them particularly useful for nondestructive testing and materials characterization
research. However, the neglect of mutual interactions among the microcracks may have a

large influence for the scattering effects. This analysis may be investigated in future work.
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Chapter 5

Perfectly Aligned Crack Scattering

5.1 Introduction

The scattering of elastic waves by cracks in elastic media has important applica-
tions in various areas of engineering and geophysics, in particular to ultrasonic nondestruc-
tive evaluation and materials characterization. Quantitative assessment of damage using
nondestructive methods is essential for determining the structural integrity of structures
and for predicting the remaining usable life. Changes of material responses due to the
strength reduction or effective elastic stiffness drop with damage from microcracking have
a significant influence on the physical properties of the materials, e.g., on the velocities of
elastic waves and especially on the attenuation. Distributed microcracks often give rise to a
decrease in wave velocity and an increase in attenuation. Precise knowledge of attenuation
and wave velocities of ultrasonic waves in cracked media provides a direct approach for
detecting the material damage.

In the previous chapter, a theory was developed which describes the scattering of
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elastic waves by uniaxially aligned penny-shaped cracks, which often result from uniaxial
compressive loading. In that case, the unit normals of all cracks were assumed to be
coplanar, but random within the plane of isotropy. Under the assumption of transverse
isotropy used in that work, explicit general expressions of attenuations were obtained in
the limit of frequencies below the geometric optics limit. However, in the case of structural
materials subjected to uniaxial tension, the status of damage is generally defined as that
of perfectly aligned cracks. In this case, the unit normals of all cracks are perpendicular to
the plane of isotropy as studied by Hudson [70]. His investigations of wave attenuation in
cracked solids were restricted to the Rayleigh regime where the wavelength is much larger
than the characteristic length of the cracks. Outside the Rayleigh limit, wave examinations
of attenuation for this situation have not been examined. With this motivation, a detailed
analysis in solids with perfectly aligned penny-shaped cracks is examined here.

In this chapter, the analysis procedure used previously is applied to study the
attenuation of elastic waves by perfectly aligned cracks. Again, the interactions between
individual microcracks are not considered, such that the present analysis is appropriate
only for small crack densities. The effective elastic properties of a solid containing the
perfectly aligned cracks are presented in section 5.2. Explicit expressions of attenuations
of the shear horizontal, quasilongitudinal, and quasishear vertical waves are presented in
section 5.3. In particular, the angular dependence of the attenuations in the Rayleigh limit
is given explicitly. Numerical results are presented and discussed in section 5.4. Special
attention is paid to the exploration of the effects of the crack density and wave frequency

on the attenuation. In the Rayleigh limit, comparisons of numerical results obtained here



83

and those presented by Hudson [70] are particularly addressed. Finally, conclusions are

presented.

5.2 Effective Elastic Properties

The ensemble average stiffness in an initially isotropic solid weakened by an en-
semble of perfectly aligned penny-shaped microcracks is dependent on the properties of
single cracks. The effective stiffness attributable to a single, penny-shaped crack of radius
in a unit volume, which was derived under the framework discussed by Nemat-Nasser and
Hori [80], Kachanov [89], and Krajcinovic [79], is given by the Eq. (3.25). The stiffness of a
single crack is dependent on the unit normal th, which defines the crack unit normal. This
orientation is implicit in the tensors I. These basis tensors are given in terms of unit vector
m and Kronecker delta function as shown in Eq. (3.13).

The ensemble average properties contributed by all cracks are considered. The
cracks are assumed to be embedded in an infinitely extended, homogeneous, isotropic and
elastic three-dimensional continuum. The penny-shaped crack is characterized by its radius
a and two Euler angles 6 and ¢, which define the direction of the unit normal m as shown
in Fig. 3.1. It is also assumed that the microcracks do not interact with each other. As
previously discussed, the density function may be separated into independent radius and
orientation functions of the form as presented in Eq. (3.27).

For perfectly aligned cracks, it is assumed that the unit normals of all microcracks
are perpendicular to the plane of isotropy as shown in Fig. 5.1. As such, the overall

properties of the cracked solid are transversely isotropic with symmetry axis in the x3
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Figure 5.1: The distribution of microcracks aligned with the axis.

axis (1 direction). Therefore, the unit normals of all perfectly aligned cracks are defined
by the unit vector rh = (sin ¢ cos 0, sin g sin Oy, cos ), where the value of ¢, is equal
to zero under the above assumption. To make the analysis as simple as possible, the
distribution of the microcracks is assumed to be dilute, and the distribution of the crack
sizes is also assumed to be independent of their orientations. Given ¢ = 0, a unit vector
i = (sin ¢ cos B, sin psin 0, cos ) denotes the x3 direction, which defines the normal of the
plane of isotropy and the symmetry axis. The considered microcrack density distribution

in Eq. (3.27) is then given by

C(0,¢) =21 [6 (i — 1n) + 6 (i + )] . (5.1)

Therefore, the effective continuum material properties caused by all microcracks per unit

volume are weighted by the density function, Eq. (3.27), over the crack Green’s function,
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Eq. (3.25), and is then given by

ol = / ) ()¢ (1, 1ia)dC2. (5.2)

In the above equation, the non-dimensional microcrack density per unit volume is defined in
Eq. (4.3). The basis function Cz'(;lil is specified in Eq. (3.25). By performing the integration
over all orientations in Eq. (5.2), the effective stiffness due to the distribution of perfectly

aligned penny-shaped microcracks is derived as

1,

where the coefficients b; are

160%(1 —v)
I (i e
16v(1 —v)
by = ba = 2y, 5.4
32(1—v) 16v(1 —v)
bs = 2 bg = —2p—mn—— 2.
H32 =) 6= 32 =)

It should be mentioned that in the tenors used in Eq. (5.3), the symmetry orientation i,
rather than the direction rh, is implicit although these are the same from the mathematical
point of view. This implication should be kept in mind throughout this chapter. In Eq.
(5.4), the effective constants can be defined alternatively as C7;,C33,Chy, Cdg and Cis,

respectively and are expressed as

Cli = bi+by, C33=>01+0by+2b3+ b5+ bs,

1

. 11 ) \
Cu = bt Cgg=5b, Crz=by+bs. (5.5)

Substituting Eq. (5.4) into Eq. (5.5), the given results are identical with those obtained by

Hudson [70] in Eq. (21). In addition the stiffness tensor of the homogeneous, isotropic and
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elastic matrix in the uncracked state is written in the standard form
C° = \I? + 2,1, (5.6)

Thus, the ensemble average stiffness is assumed to be spatially varying and may
be represented by

C(x) = C +6C(x), (5.7)

where C° = <E(x)> = C — C* is the ensemble average modulus tensor for a transversely

isotropic medium. It is written in the form
C’ = A T2 4 T+ Ty (B4T4) + ToI° + T5T°, (5.8)

where the five effective elastic constants are

160%(1 —v) 16v(1 —v)
_ Ao ) p o g, M)
1228 12 )\J_ A W 3(1 — 2V)2 ’ 1 1% 3(1 — 21/)
32(1—v) 16v(1 —v)
ry = —ou2l—Y) Iy = 22— Y) .
The moduli fluctuations which have zero mean ((6C) = 0) are given by
§C =C* —CY¥WH(x), (5.10)

where the function H(x) is defined in Eq. (3.40).

Wave propagation and scattering in heterogeneous and anisotropic media have
been discussed in previous chapters using an anisotropic Green’s function and employed
to investigate the attenuations by uniaxially aligned cracks. The exact expressions of the
attenuation for the three wave types were given in Eq. (2.13). In the next section, the

attenuations are presented for perfectly aligned cracks.
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5.3 Attenuations

To calculate the attenuations, the relevant inner products on the covariance of
the effective moduli fluctuations are first determined. As discussed previously, for small

concentrations of microcracks, the covariance can be written
—aBy6
(8Cujk1(x)6Capys(y)) = en(r)Z5° (5.11)

The tensorial part of the covariance is represented by an eighth-rank tensor which is given

in terms of four unit vectors by

[1]

e TDEC —_ ikl A A A A A oA oA A
(Q)....EEZX == (Q)ngs UBUEPaPISiS§UyVj - (5.12)

Averaging over all crack orientations, the tensorial part of the covariance is then

given by performing the integration as

=00 = {b1/2[(0-8) (¥ P) + (P 8) (V@) +ba (P 0) (V- 8)]

+05/4[(p-¥) (A-8) (A-0) + (2-8) (V-@) (- P) (5.13)

where the coefficients b; are given by Eq. (5.4). The vectors p and §, respectively, represent
the incoming and outgoing propagation directions. The vectors i1 and ¥ are vectors defining
the polarization directions of the particular waves.

The attenuations will vary angularly only within the plane defined by the propaga-

tion direction and the symmetry direction. Therefore, without loss of generality, a reference
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plane is defined as the p — i plane as shown in Fig. 5.2. Thus, the vectors fi, p and §, and
respective polarization directions @t and v are defined with respect to a general coordinate
system, which are given by Eqs. (4.21)-(4.23). Substituting these definitions of the relevant

unit vectors into Eq. (5.13), the required inner products are for aggw,

iy PV v, o . o
B e, = 1¢ 005~ © cos ©'sin? ¢/,
e fi BET bg 9 9 , , 9 .
:-~~~ﬁig§\7§ = 16 ©°s Osin® (0" + ') cos® ¢/, (5.14)
0 P8V b% 2 2 () / 2
:~---ﬁig§\7§ =16 cos” O cos (@ + ) cos” ¢';
for agp
Z a8t b—g sin? (© + 7) cos® ©' cos? ¢’
=i PEVy 16 0 >
5325232 = {bycos(y—0O)cos (v —O') + bgcosO cosycos (y — &)
+bg cos (y — ©) cos © cosy' + bs /4sin (O + ) sin (0" ++') sin ¢/
+ (bg + bs) cos © cosy cos ©’ cos*y’}2, (5.15)
Egjgggz = {b2 cos (v — ©) sin (’Y/ - @/) + b3 cos © cos y sin (’y/ — @/)

+bg cos (y — ©) cos O siny — by /4sin (O + ) cos (' ++') sin ¢/

+ (b + bs) cos © cosy cos O’ sin’y’}2 ;

i DSV b2
:E§§§§1 = 1—% cos? (O + 7) cos® O cos? ¢/,
E::::giggg; = {bysin(y—O)cos (v — O') + bgcos Osinycos (v — ©) (5.16)

+bysin (y — ©) cos © cosy' — b /4 cos (O + ) sin (0’ + ') sin ¢/

+ (bg + bs) cos O siny cos ©’ COS")//}2 ,
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Figure 5.2: Geometry for the propagation direction p, the scattered direction §, and the
respective polarization direction @1 and v in the local coordinate system for perfectly aligned
cracks.

gzggoi = {bz sin (7 — ©) sin ('y’ — @/) + b3 cos O sin vy sin ('y’ — @/)
+bysin (y — ©) cos O siny’ + bs /4 cos (O + ) cos (' ++') sin ¢/

+ (bs + bs) cos O siny cos ©’ sin’y'}2 .

In Egs. (5.14)-(5.16), the coefficients are given in Eq. (5.4). As discussed previ-
ously, the tensorial and spatial components of the covariance are assumed independent. The
correlation function 7 is assumed to have an exponential form as presented in Eq. (2.14).
If three nondimensional frequencies are defined as x3 = wL/cg, performing the spatial
Fourier transform of the correlation function of the difference between two wave vectors,
the functions 7(P,§) are then expressed in terms of the above dimensionless frequencies by

Eq. (2.16). The inner product (p - §) is specified as P - § =sin O sin ©’ sin ¢’ + cos O cos O'.
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Substituting Eqs. (5.14)-(5.16) and Eq. (2.14) into Eq. (2.13), the resulting

dimensionless attenuations are finally given in the form

= U P8V,
+/ U PSVy 5 d2§ (5.17)
4 (1423 (B) + 225 (8) — 209 (B) 2 (3) B -8) 5 (8)
S Qg SV 224
+A 2 (& 2 3 D 3 S ’ S ‘ |
™ (143 (0) + a2y (8) — 205 () wsv (3)D-8) sy (8)

where K is defined as the polarization for the wave type 3 (1, 2,0r 3 for wave types SH, qP
and ¢SV, respectively). The density is now included in the final form of the attenuations.
Equation (5.17) is the primary result of this chapter. The phase velocities ¢ are given in
the form of Eq. (4.15) and the corresponding coefficients are given in Eq. (5.9). In the long

wavelength Rayleigh limit, 3 < 1, Eq. (5.17) can be simplified considerably and is given

by
. . :‘ﬁKf)g\*/l
ag(B)L _ c®) / 13 LY
e 2p? i Coy (3)

d?s ) . (5.18)

In Eq. (5.18), the dimensionless attenuations have been normalized by the fourth power of

the dimensionless frequency and damage density for the respective wave type.
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5.4 Numerical Results and Discussions

In this section, numerical results are now presented for a specific case, in which
the observed transversely isotropy of the cracked material is entirely due to the presence
of the perfectly aligned cracks. The material properties of the uncracked material used are
Young’s modulus E = 2.0 x 10*!Pa, Poisson’s ratio v = 0.3, and density p = 7860kg/m?3.
First, the slowness surfaces are presented at the damage density ¢ = 0.1. The slowness is
governed by Eq. (4.15), which is plotted in Fig. 5.3. The results given by Hudson [70], Egs.
(17) and (22-23), are shown as well. Exact agreement of the results for SH waves between
the present model and Hudson’s model is seen in Fig. 5.3. However, the slowness curves
of the ¢P and ¢SV waves do not agree with each other well. This discrepancy is thought
to be due to the assumption of non-varying polarization (¢» = 0) in the work of Hudson.
Thus, if the polarization shift is neglected in the present analysis, the expressions of wave
velocities are precisely the same for both models. However, it is generally known that the
deviation angle of the polarization vector is not zero.

The attenuations within the Rayleigh limit are calculated using Eq. (5.18). It
is seen that the attenuations are a function of the fourth power of frequency. Thus, the
angular dependence of three attenuations is described by the quantity agL/ (a:%s). Those
parameters for each wave type are shown in Fig. 5.4, Fig. 5.5, and Fig. 5.6, respectively.
The numerical integrations are performed by double integral function dblquad available
in the software package Matlab [93]. The attenuations for SH waves for damage density
¢ = 0.01 and ¢ = 0.05 are presented first in Fig. 5.4. It is observed that the maximum

attenuation of the SH wave is at © = 0°, parallel to the normals of cracks, and at © = 90°
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there is the zero attenuation. In order to compare the present results with those studied by
Hudson, the equivalent parameter is also shown in Fig. 5.4 (dashed line). It is seen from
Fig. 5.4 that for two different damage densities, the attenuations of Hudson’s model are
exactly the same. This feature is easily seen from Eq. (5.18) presented here and Eq. (52)
given by Hudson. In the work of Hudson [70], the velocities of uncracked solids are used
to calculate the final attenuation, rather than the velocities of cracked solids used in the
present study. Therefore, the attenuation is shown to scale linearly with the damage density,
which is usually not the case for the anisotropic property in the Rayleigh limit. In addition,
the correlation between the radiation fields of separate cracks is also neglected in Hudson’s
model. This assumption may in part result in the inaccurate results as well for the case
discussed here. In Fig. 5.5, the Rayleigh attenuations of the ¢ P wave are presented for both
present model and Hudson’s model. The difference between the two models is attributed
to the same reasons as above discussed for SH waves. The maximum attenuation is also
at © = 0°, and at © = 90° the attenuation reaches the lowest value, but does not have the
zero attenuation. The Rayleigh attenuations of the ¢SV wave are shown in Fig. 5.6. It is
seen that the maximum value is about © = 45°, and at © = 0° and © = 90° the attenuation
is lowest, but it is not equal to zero. Also, an additional feature observed in Fig. 5.6 is
the asymmetry that develops as damage density varies. The peak is around © = 45°, but
shifts as damage density changes as discussed in Chapter 4. This directional variation of the
maximum attenuation is toward the crack alignment as the damage density increases. It is
seen from Fig. 5.6, that the difference of Rayleigh attenuations of the ¢SV wave between

the present model and Hudson’s model is significant at damage density ¢ = 0.05. This
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Figure 5.5: Rayleigh attenuation, oypL/ (:E;lps) as a function of direction.

phenomenon is thought to be the result of the assumptions made in Hudson’s model as
discussed above. Thus, one could conclude that the attenuation results of the three wave
types presented by Hudson are more approximate than those determined here.

The results outside the Rayleigh regime are calculated using the complete integrals,
Eq. (5.17). The directional dependence of the attenuation as a function of damage density
is presented in terms of the single dimensionless frequency zsy = 1.0. In Fig. 5.7, the
attenuation of the SH wave, agglL, is shown as a function of propagation direction for
three damage densities ¢ = 0.05, ¢ = 0.08 and ¢ = 0.1, respectively. The attenuation for
propagation parallel to the crack alignment direction is seen to increase more rapidly than
other directions as the damage increases. This property was discussed for uniaxially aligned

crack scattering [74] and for textured polycrystals by Hirsekorn [46], Ahmed and Thompson
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Figure 5.7: Angular dependence of the attenuation, agy L, for various damage densities ¢
at frequency xzgg = 1.0.
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Figure 5.8: Angular dependence of the attenuation, aypL, for various damage densities ¢
at frequency zgg = 1.0.

[94], and Turner [57]. In Fig. 5.8, the results for the ¢P attenuation, agpL, are presented.
Similar behavior is seen upon increasing damage as discussed for the SH attenuation. The
attenuation of the ¢SV wave is shown in Fig. 5.9 at the same damage densities as Figs. 5.7
and 5.8. As discussed for the Rayleigh limit results, the direction of maximum attenuation
varies as the damage changes, and the shift from 45° to 0° is quite noticeable as shown in
Fig. 5.9. This shift is thought to be the result of the induced anisotropy from the cracks.
In general, the direction of the peak of the ¢SV attenuation is dependent on both frequency
and damage.

Finally, the results are presented for the normalized attenuations of each wave
type as a function of propagation direction for several different frequencies. These results

could be contrasted with results in the Rayleigh limit. Figures 5.10 and 5.11 show the
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Figure 5.10: Angular dependence of the attenuation, agy L, for various dimensionless fre-
quencies rgy at damage density € = 0.05.
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Figure 5.11: Angular dependence of the attenuation, a,pL, for various dimensionless fre-
quencies zgy at damage density € = 0.05.

SH and gP attenuations versus the propagation direction © for normalized frequencies
xgy of 1.0,1.5,2.0,2.5. As the frequency increases it is seen that the attenuation in the
alignment direction increases more than in other directions. In Fig. 5.12, the normalized
qSV attenuation is plotted versus the propagation direction © for the same normalized
frequencies as Figs. 5.10 and 5.11. It is seen that the peak of maximum attenuation shifts
as the frequency increases. The asymmetry that develops as frequency increases is seen to
be considerable in Fig. 5.12. This outcome is also attributed to the property of anisotropy

from microcracking.
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Figure 5.12: Angular dependence of the attenuation, oysv L, for various dimensionless
frequencies xsy at damage density € = 0.05.

5.5 Conclusions

The attenuations of elastic waves in solids with perfectly aligned cracks have been
examined within limit of frequencies below the geometric optics limit. In the case of per-
fectly aligned cracks, these cracks have unit normals that are perpendicular to the plane of
isotropy as first studied by Hudson. Approximate ensemble averaging of the elastic wave
equation resulted in the Dyson equation, governing the mean field. Explicit expressions
of the attenuation of each wave type, the shear horizontal, quasilongitudinal, quasishear
vertical waves, were derived using the general Green’s dyadic for a transversely isotropic
medium. The final forms of the attenuations for the three wave types were expressed by
simple integrations over the scattered direction. The general attenuations for each wave

type are dependent on frequency, phase velocity, propagation direction, and damage den-
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sity. In particular, the attenuations of each wave type were given in the long wavelength
Rayleigh limit as presented by Hudson. Comparisons of the present model with Hudson’s
model in the Rayleigh limit show that the results presented here are more accurate than
those presented by Hudson, due to the inclusion of the polarization direction. The gen-
eral formulation is also directly related to backscattering problem. The simple form of the

results makes them particularly useful for nondestructive testing and evaluation.
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Chapter 6

Wave Velocity and Polarization in

Textured Media

6.1 Introduction

Microstructural evolution during the heat treatment process has been a subject
of research for the past several decades. The knowledge that the material microstructure
directly affects the macroscopic material properties was a turning point in the field of ma-
terial manufacturing. The specific types of manufacturing processes are to produce the
corresponding microstructure in a controlled fashion. Many heat treatment processes, such
as annealing, are used to relieve the internal stress state that develops during cold working,
which allows the microstructure to rearrange to a state of lower energy. During such process-
ing individual crystals in a polycrystalline aggregate submit to orientation changes. Often,

the recrystallization process creates material texture, or preferred orientation of grains. The
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orientation of the recrystallized grains together with the final grain size distribution deter-
mines the final properties of polycrystalline materials. The degree and type of texture are
best described quantitatively by the orientation distribution function (ODF), which gives
the probability of a particular crystallite in the sample having a specific orientation with
respect to the sample axes. The subject of material texture is well developed by Roe [1],[2]
and Bunge [3]. In general, most of these materials with preferred crystallographic orien-
tation display anisotropy of physical properties. The anisotropic elastic response, which is
strongly induced by texture, in turn influences the formability of a polycrystalline material
[95], [96]. Ultrasonic techniques provide information about the interior microstructure due
to the penetration of ultrasonic waves. In recent years, major advances in ultrasonic moni-
toring NDE demonstrate a potential to characterize the recrystallization process in metals
because of their nondestructive nature. Thus, the texture of polycrystalline aggregates may
be monitored by ultrasonic methods during the recrystallization process. However, the de-
velopment of texture during recrystallization is not fully understood, in part due to a lack
of quantitative measurements during recrystallization [97].

Measurements of the wave velocity and attenuation may be used to infer material
texture in polycrystalline aggregates. Hence evaluation of wave phenomena in polycrys-
tals is of importance for prediction of the materials microstructure. More recently, models
of elastic wave propagation through polycrystalline materials with texture have typically
focused on special cases of texture. For example, the wave velocity through cubic polycrys-
talline materials with one aligned axis has been studied using several different techniques

[46],[56],[57]. These models were all based on appropriate averages of the stochastic elastic
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wave equation. The Voigt averaging techniques, which have been applied previously for
textured aggregates of crystals with particular symmetry [95],[98],[99],[100], [101], are used
for calculating the average elastic constants here. The knowledge of wave velocity plays an
important role in the explanation of a wide range of wave propagation behavior in polycrys-
talline materials. Ultrasonic velocities in polycrystalline aggregates have been analyzed by
Sayers [98],[102], Thompson [103],[104], Hirsekorn [46] and others. Those results were most
focused on the directional dependence of wave propagation along the symmetry axes. In
the literature discussed by Crampin and Yedlin [105], Sayers [106], Psenclk and Gajewski
[107], Mensch and Rasolofosaon [108], and Farra [109], phase velocities were investigated
in anisotropic geological media for the ¢P or ¢S wave modes. Although their discussions
did not consider the texture effects, the analyses in anisotropic media provide a valuable
insight with the texture characterization during processing.

In this chapter, wave velocity and polarization are analyzed for orthorhombic ma-
terials made up of cubic crystals. The single crystal elastic constants and the orientation
distribution function of the constituent crystals are used for this work. In particular, the
wave velocity of the three wave modes is examined during recrystallization, respectively.
In polycrystals of cubic symmetry with rolling texture, the material is assumed to have
three orthogonal axes, which are chosen as the normal direction (N D), transverse direction
(T'D), and rolling direction (RD). Upon moving through an anisotropic medium, three
elastic waves, the quasilongitudinal (¢P) and two quasishear (¢S1 and ¢S2) waves, can
propagate along any direction. The wavespeeds are dependent on the wave propagation

direction, as are the polarization directions. Thus, the polarization directions are most
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generally neither parallel nor perpendicular to the wave propagation direction. The wave
velocities and their polarization directions correspond to the eigenvalues and eigenvectors of
the so-called Christoffel matrix. Analytic expressions of the eigenvalues and the eigenvec-
tors may be obtained only for special cases with simple symmetries. For example, the exact
solutions can be derived upon propagation along any one of the three axes directions N D,
TD and RD in a polycrystalline cubic sample. For more general cases, the eigenvalues and
the eigenvectors must be found by numerical methods. Thus, the wave velocities and their
corresponding polarization directions are calculated numerically. The angular deviations of
the polarization vectors from the propagation directions are also discussed. It is shown that
the maximum angular deviation is not too large relative to the propagation direction for
waves propagating in different directions. Those results are then used to calculate the wave
attenuations induced by grains of polycrystals with a certain distribution in the subsequent
chapter.

This chapter is organized in the following manner. First, in Section 6.2 the ori-
entation distribution function is discussed such that the general principle can be followed
step by step. Discussion of the orientational averaging procedure and the general elastic
tensor with orthorhombic symmetry follows in Section 6.3. In Section 6.4 an overview of
the Christoffel equation is presented. In Section 6.5 analyses and numerical results of wave
velocities and polarization vectors are presented. In Section 6.6 the wave velocity of the
three wave types is discussed as related to the annealing process. Finally, conclusions are

presented and discussed.
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6.2 The Orientation Distribution Function

The best quantitative representation of texture of polycrystalline materials was
developed by Roe [1],]2] and Bunge [3] in the 1960s. From a mathematical point of view,
their mathematical formulation and terminology are equivalent although the notation is
different. Here, Roe’s notation will be adopted throughout. For textured materials, a
detailed description of polycrystalline material properties in the sample requires a knowledge
of the orientation distribution of all crystallites in the sample. The orientation of a given
single crystallite is specified by the three Euler angles 8,1, and ¢ as shown in Fig. 6.1.
The orientation distribution of crystalline grains with preferred directions in the sample
can be described by the orientation distribution function (ODF) w(#,1, ¢), which is the
probability density function in terms of the three Euler angles. To discuss the orientation
of a grain, a set of crystallite-fixed axes X; is chosen for a given grain, and one may clearly
choose the sample-fixed axes x; along the rolling, transverse, and normal directions of a
rolled sheet, respectively. The relation between the crystallite axes X; and the sample axes
x; can be transformed by a rotation matrix using the three Euler angles. The orientation
of the crystallite with respect to the sample axes is then given by the transformation in the
form

T = aj; X (6.1)
where the components of the rotation matrix a;; are given in terms of the Euler angles 0,1,

and @ as

aj] = —singsiny + cosycosycost,

az; = —cosysiny — singpcosycosd,
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Figure 6.1: Roe’s definition of Euler angles, 1,6, ¢, describing the orientation of the crys-
tallite coordinate system 0 — X; with respect to the global coordinate system o — z;.
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azy = cosysind,

ala = singpcosy + cospsinycosh, (6.2)
aga = COS@cosYy — sinpsiniycosh,

azy = sinysind,

a1z = cossing,

ags = singpsind,

as3 = cosf.

As discussed above, an orientation distribution function (ODF) w(§, 1, ¢), where
& =cosb, is introduced to represent uniquely the crystallite orientation distribution. Since
w(&, 1, ) is a probability density function, the integration of this density function over all

possible directions must equal unity. That is,

/Ozﬂ /027r /:lw(é,w,@dfdwdw = 1. (6.3)

The ODF w may be expanded in a series of generalized spherical harmonics as

[e%S) l l
w(fﬂﬁ,(ﬁ) = Z Z Z VVlnglmn(f)eiimweiimp, (64)

1=0 m=—In=-I

where Zp,, is the generalized associated Legendre function, which can be expressed by the

generalized Legendre function P/ (§) as [3]

with
N O § U e N ([ RPS
7O = S i)
— ntm dlfn
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The expansion coefficients W;,,,, are the orientation distribution coefficients (ODCs) in the

polycrystalline aggregate and are determined by

1 2 2w 1 . )
Wom =gz [ [ [ 060 )Zum (e ededuas. (6.

Detailed results of the Zj,,,, are discussed in the literature by Morris and Heckler [110]. The
number of ODCs in Eq. (6.4) is actually much smaller than those expressed by the forms of
the equation since for a particular aggregate the ODCs are dependent on the symmetry ex-
hibited by the crystalline grains and the statistical symmetry of the sample as well. Here, our
objective samples are assumed to have orthorhombic symmetry (rolling texture) made up of
crystallites exhibiting cubic symmetry. In the assumption of orthorhombic-cubic symmetry,
Waoo, Wazo, Wyqo are the only three nonzero, independent coefficients which are necessary
for determining the fourth-rank effective elastic stiffness tensor. For the calculation of the
material covariance and attenuation, however, nine other nonzero, independent coefficients
of interest, Weoo0, Ws20, Weao, Weeo, Wsoo, Ws20, Wsao, Wseo, Wsso, must be included. These
details will be presented in the next chapter. The Zj,,, of interest here, for [ = 4,6, and 8,
are calculated using Eq. (6.5).

Given the symmetry class of polycrystalline materials, for example aggregates
with orthorhombic symmetry and crystal that is cubic, a number of investigations into the
properties of the ODCs W,,,, and the generalized associated Legendre function Zj,, are
presented in the literature [1],[2],[3],[110]. In order to make this chapter complete, some
properties corresponding to the Wy, and Zj,,,, are summarized here. For the ODCs Wiy, -

(a) The coefficients must adhere to the following relation

I/Vlmn = VVlrhn = VVlmFL = VVanFLy (67)
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where m or n denotes —m or —n. Wi, must equal zero unless [ and m are even and
n=4k,k=0,%+1,+£2,....
(b) The coefficients W, are all real quantities. Therefore, it is often convenient
to write the Eq. (6.4) as
[e's) l l
w& Y, 0) =D Y > Wimn Zimn(§)cos(mip + ngp). (6.8)
=0 m=—In=-I
(¢) The nonzero coefficients Wy,,,,, are not all independent for the case discussed

here. In particular, the following relations are shown by Roe [2]

1
W == 9 W m0 — 07
000 4\/571_2 2m0

5 V14
Wima = —=Wimo, Wema = ————

V70

v 154 1/ 1430
Wama = ?W&nﬂa Wams = Twsmo-

For the generalized associated Legendre function Zj,,,, the following properties

hold

+1
/ Zimn(€) Zimn (€)dE = b3,

~1
Zlﬁm(é) = Zlmﬁ(f) = Zlmn(*f)a (610)

Zlmn - Zlfrm - (_1>m+nZlnm-

In the next section, the generalized elastic stiffness tensor, C, in an orthorhombic
medium is presented. Then, the effective elastic constants for rolling texture with cubic
crystal symmetry are estimated by employing a Voigt-type averaging procedure in which

the stiffness tensor is averaged by integration over the ODF w.
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6.3 The Average Elastic Stiffness for Rolling Texture

For a statistically orthorhombic medium, there are three mutually perpendicular
planes of symmetry. Without loss of generality, the sample coordinate system z; are chosen
as those of the symmetry planes of anisotropy. Thus, for a rolled plate three axes are
defined as RD, T'D, ND, respectively, which are here represented as a, b, and c. The
ensemble average polycrystalline media are characterized by the average elastic modulus
tensor, (C), which is determined by the integration of the single crystal over the ODF w.
The orientation average of a single crystal tensorial property f(&, v, ) weighted by the

ODF is then given by

2 2 +1
(f) = / / F(E 0, ©)w(E, b, 9)dedidp. (6.11)
0 0 —1

For orthorhombic symmetry, the averaged elastic stiffness (Cj;r) can be deter-
mined using Eq. (6.11) and Eq. (6.4). Therefore, the most general form for the elastic

tensor is given in terms of two independent unit vectors b and ¢ by

(Cijrt) = T'164j0k1 + T (631051 + 6ud ) + I's (di5ckcr + Opicicy)
+T4 (Gincjor + ducjcr + djkcicr + djicick) + I's cicjce
+L6 (835001 + 6kibibj) + T'7 (Sibjby + dirbjby, + 651biby + 651b;by) (6.12)
+T'g b;bbby + Lo(bibjcker + bibrejer + bibiejcy,

+bjbkcicl + bjblcick + bkblcicj).

The nine independent coefficients in Eq. (6.12) are defined in the following as nine inde-
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pendent elastic constants, C11, Cag, Cs3, Cyq, Css5, Ces, Ci2, C13, Cas, respectively

ry = % (C11 +2C4y — 2055 — 2C66 + 2C12 + 2C13 — 2C23) ,
Iy = % (C11 = Caa + Cs5 + Cp6 — C12 — C13 + Ca3) ,

s = % (=C11 — 2044 + 2C55 + 2Ce6 — 2C12 + C13 + 2Ca3) ,
Iy = % (=C11 + Cua +2C55 — Co6 + Cr2 + Cr13 — Ca3),

s = (Ci1+ Cs3 —4C55 — 2Ch3),

I'e = % (—C11 — 2044 + 2C55 + 2Ce6 + C12 — 2C13 + 2C03)
I'7 = % (—C11 + Cya — Cs5 4 2Ce6 + C12 + C13 — Ca3)

I's = (Ci1+ Coy —4Cs6 — 2C12) ,

1
Iy = 3 (C11 +2Cyy — 2C55 — 2C6 — C12 — C13 + Ca3) .

In the case of a transversely isotropic medium, it is known that C11 = Cag, Cygy = Cs5,C13 =
(3 and 2Cgg = C11 — C12. Therefore, the coefficients I'g, I'7, I's, and I'g are equal to zero.
Furthermore, the coefficients I'g, 'y and I's will be zero under the assumption of statistical
isotropy. In general, the elastic modulus tensor for a single cubic crystal is given by
3
Cijir = C96:;0m + Oy (8inbji + 6abj) + Z AinQjnQn Qin, (6.13)
n=1

where the single crystal anisotropic factor K = C; —CY, —2CY,. The notation C?j represents
the single crystal constants. The elements a, define the transformation matrix in term of
the three Euler angles given in Eq. (6.2). If the differences of the elastic constants for each

grain are only induced by a different orientation such that the grains are assumed to have
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the same grain size, the averaged elastic tensor (Cjjx) is given by Eq. (6.11) as follows:

3
(Cijit) = C6i561 + Cly (6ikbj1 + 8abji) + K <Z amajnaknaln> , (6.14)

n=1

where the term within the bracket is expressed in detail as

3 1 2 p2m 41 3
Z AinAjnAgndin ) = m /(; /(; / . Z ainajnaknalnw(§7 ¢7 @)dfdlﬁdSO (615)
n=1 —t n=1

For the case of rolling texture of orthorhombic-cubic symmetry, the nonzero aver-

aged values in Eq. (6.15) are given by

<nz_:1 afﬂ> = g + 1?:’.\5/§W2W400 - 1(;\5/57r2W420 + 8\3/53_57T2W4407
< 3 “i3> B (6.16)
n=1

<; aila1212> = é + 43—?7721/[/400 — 8\3/5375791/[/440‘

Using Eq. (6.14) and Eq. (6.16), the effective elastic constants in Eq. (6.12) can

be written as the following explicit form in the Voigt compact notation:
Cyy = CF —2kA;, Cup=0CY +kNy, Ca3=C%+ KAy,

022 = C?l — 2/€A2, 055 = 024 + I'QA5, 013 = C?Q + IiA5, (6.17)

C33 = C?l — 2I€A3, Coe = 024 + I€A6, Cia = C?Q + K;Ag,



with
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1
5

cnIH (S0 S T
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(6.18)

These results are identical with the results presented in the literature [95],[98],[99],[101].

In the case of a statistically isotropic sample, that is, the grain orientation is randomly

distributed, the ODCs Wigo,Wa20, and Wy4p are equal to zero.

As such, the ensemble

averaged properties obviously lose their directional dependence. In the next section, the

anisotropic Christoffel equation is presented.

6.4 Christoffel Equation

The propagation characteristics of elastic waves in an anisotropic medium are

determined by the elastic stiffness of the materials. When elastic waves propagate through

a homogeneous, anisotropic medium, the phase velocity V' and the associated polarization

vector u of plane waves must satisfy the Christoffel equation [73]:

(Ti, — V8ir) up, = 0,

(6.19)
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where ;1 is the Kronecker delta, and the notation T is the symmetric Christoffel tensor

given by the relation
1
Ty, = ;Cijkl DD (6.20)

Here, p is the material density, and p is the unit vector in the propagation direction,
which is often expressed by polar angle ¢ and azimuthal angle © as p = x;cosOsin¢g +
X28inOsing + xzcos¢. The summation over repeated indices is implied. Because of the
symmetry characteristics of the effective elastic tensor C, the components of the Christoffel
tensor are also symmetric. The tensor T therefore has six independent components. For
the case of the orthorhombic system, those independent terms can be written in compact

form as [72]

pTi1 = Cupi + Cesps + Cssp3,

pTos = Cespi + Cazps + Cuaps,

pTs3 = Css5pt + Caaps + Cssp3,

pTiz = (Ci2+ Cee) p1p2, (6.21)
pTis = (Ci3+ Css) p1ps,

T2z = (C23+ Cya) p2ps3.

The effective elastic constants, Eq. (6.21), in the orthorhombic-cubic symmetry
are given by Eq. (6.17). The Christoffel equation describes a standard eigenvalue (V?)-
eigenvector (u) problem for the Christoffel tensor T, which is exactly related to the wave
velocity and polarization direction vectors. The detailed eigenvalue-eigenvector problem is

discussed in the next section.
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6.5 Wave Velocity and Polarization

In the case of a statistically orthorhombic sample made up of cubic crystallites, it is
known that ultrasonic velocities depend on many factors within the polycrystal materials.
The main effects are the single grain elastic constants and mass density, and especially
the texture. Therefore, given the elastic constants and texture coefficients, and any chosen
propagation direction, the wave velocities of the three wave types can be obtained by solving
the Christoffel equation for that propagation direction. In general, the eigenvalues are
calculated by

det (Ty, — V26;,) = 0. (6.22)

The polarization vectors are equal to the eigenvectors of the Christoffel tensor T correspond-
ing to the appropriate eigenvalue. When solving the system of equations, Eq. (6.22), for
any given direction p, three positive values of the squared phase velocity V2 are obtained,
which respectively represent the quasilongitudinal (¢P),and two quasishear (¢S1 and ¢S2)
wave modes. After the eigenvalues are determined, the associated polarization vectors u
of each corresponding mode can be obtained from Eq. (6.19). Since the Christoffel tensor
T is symmetric, the polarization vectors of the three modes are always orthogonal to each
other, but none of them is necessarily parallel or perpendicular to direction p. In most cases,
the above eigenvalues and the eigenvectors have to be solved by numerical methods. How-
ever, in some situations, for example waves propagating in the symmetry planes, analytic
solutions may be found explicitly.

Given an orthorhombic model, there are always three mutually orthogonal planes

of symmetry that coincide with the coordinate planes. While a plane wave propagating
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in the 1 — z2 plane, the projection of direction p on the z3 axis disappears, that is,
p = X;c080 + x2sin@. Therefore, the phase velocities of each wave type can be explicitly

given in the form

PVq51 = Cusin®O + Cszc0s20,
20V = Q+VQ*—4R, (6.23)
20V = Q- VQ—4R,

where the quantities () and R are defined by

Q = 011COS2@ + CQQSiIl2@ ~+ Ces,
R = (0110082@ + 06681H2@) (C’ggsin2@ + 066(:082@) (6.24)

—(C12 + Cgg)?sin*Ocos’0.

The effective elastic constants are given in Eq. (6.17). In this case, the polarization
direction of the quasishear (¢S1) wave is perpendicular to the x1 — x5 plane, namely, ug = z3.
The polarization vectors of other two waves (¢P and ¢S2) are to locate within the z1 — x5
plane. Given propagation along the x; axis, i.e. ©® = 0, the phase velocities of each wave

type in Eq. (6.23) are simplified as

1 16\/_ V10
V51 13 = Ch+n [5 35 (W400 - —W420>]

1 6V2 21/10 V70
PVap—11 = Ch—2n [g 35 LS (W400 - TW@O TWMO)] ,  (6.25)

Vsz 12 = C14(1)4‘1‘77 5 35

1 442
+ iWQ (W400 - \/770W420>] .

If propagation is along the z9 axis, i.e. ©® = /2, the phase velocities of each wave type in
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Eq. (6.23) are given by

1 16v2 V10
P‘@%s*l—% = CY+n [— — 2 <W400 + TW420>] )

) 35
1 6v2 2V10 V70
PVap_as = Ch —2n [g - g?ﬁ (W400 +—5 Wi + TWMO)] ., (6.26)

Pvﬁs*z—m = C14(1)4‘1‘77 5 35

1 4v2
-+ iWQ (W400 — \/7_0W420>] .

When considering wave propagation in the x; — x3 plane, the projection of direction p on
the x9 axis vanishes, that is p = x;cos© + x3sin©. In this specific case, the phase velocities

of the three wave types can be explicitly given in the form

PVq%s*l = Cusin?0 + Cggcos20,

20Vip = P+ P2—-45, (6.27)

2pViss = P—+/P2—45,
where the quantities P and S are defined as follows:

P = CHCOS2@ + C338i112@ + Css,
S = (0110082@ + C’55Sin2@) (C’ggsin2@ + 055(:052@) (6.28)

—(C13 + Cs5)*sin®Ocos?O.

Again, the expression can be significantly simplified if one gives wave propagation along the

directions of the x1 and x3 axes. For propagation along the x; axis, the same results are



118

given in Eq. (6.25). For propagation along the x3 axis, the simplified results are given by

1 16V2 V10
PVisi 32 = Ch+n [— - 2 (W400 + TW420>] :

5 35
1 16v2
PVip_zs = Cii—2n [g 35 7T2W400] ; (6.29)
1 16v2 V10
PVisr 31 = Ch+n [g BT 2 (W400 — TW420>] -

These results of the wave propagation along the three axes are identical with the
results given by Sayers [98]. The notation (—ij) denotes the wave propagation in the x;
direction and polarization in the x; direction. It is shown that the values of these phase
velocities are equal to each other for a wave propagating in the x; direction and polarized
in the x; direction, with a wave propagating in the x; direction and polarized in the x;
direction, V;; = Vj;. This property is implied by the assumption of orthorhombic symmetry.

Finally, when considering wave propagation in the zo — x3 plane, the projection of
direction p on the z; axis vanishes, that is p = x,c080 + x3sin©. In this case, the phase

velocities of the three wave types are given by

PVq281 = (Cs5sin?0 + Cggcos’O,

20Vip = M++/M?—4N, (6.30)
20Viy = M —/M?—A4N,

where the quantities M and N are defined by
M = 022C082@ + ngsin2@ + Cy4,

N = (022(3082@ + C44sin2@) (ngsin2@ + 0440082@) (6.31)

—(Cy3 + Cy4)*sin’Ocos?O.
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Numerical results are now presented for a particular texture case. In 70% rolled

steel, the single cubic grain constants and the texture coefficients of interest are given by

[3],[45]
CY = 237x10"Pa, (CY% =1.41x 10''Pa,
Cd, = 1.16 x 10""Pa,  p= 7850 kg/m?, (6.32)
A = —147, A =-046, °=0.50.

It should be pointed out that the ODCs’ relation of the Bunge notation ¢/*" and the Roe

notation Wy, must be used for carrying out the calculation, that is

1/ 2
[, —— (-1 m—+n mn‘ )
I/Vlmn 871'2 21 41 ( ) C (6 33)

If the propagation direction is defined by p = x;c0sOsin¢g + x2sinOsin¢g + x3cos¢, where
O is azimuthal angle and ¢ is polar angle, the phase velocities may be computed using
Eq. (6.22). Since the orthorhombic symmetry has three mutually orthogonal planes of
symmetry, all calculations are made for 0° < © < 90°,and 0° < ¢ < 90°. Figure 6.2
represents the quasilongitudinal (¢P) wave velocity as a function of the azimuthal © at the
given polar angle ¢. At ¢ = 0°, the wave propagation direction is along the x3 axis; for
¢ = 90°, wave propagation direction is within the xy — z2 plane. It is observed from Fig.
6.2 that at ¢ = 0° the quasilongitudinal wave velocity has a maximum. Figure 6.3 shows
the phase velocities of two quasishear (¢5) waves as a function of the azimuthal angle ©
at the given polar angle ¢. The two quasishear waves are observed to have their minima
at ¢ = 0°, respectively. The maximum variation of the phase velocity with respect to this

specific model is at the polar angle ¢ = 90°, and ¢ = 0° for wave propagation along the x3
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Figure 6.2: ¢P wave velocity as a function of the azimuthal angle © at the polar angle
¢ = 0°,30°,45°,60° and 90°.

axis, the velocities of the three wave modes are constants as shown in Eq. (6.29).

Because of their relation to the attenuation and experimental measurements, the
angular deviations of the three wave polarization vectors must be discussed. Figure 6.4
shows the angular deviation of the g P wave polarization vector from the wave propagation
direction p. It is observed that the maximum deviation angle is about 3.5° at ¢ = 30° for
this particular texture. At ¢ = 90°, the wave propagation direction is within the z1 — x5
plane. Thus, when the wave propagates along the axes (0 = 0° and © = 90°), the gP wave
polarization vectors are still along these axes such that the deviation angles are zero. In
addition, an additional feature is observed in Fig. 6.4. There is a zero angular deviation for
propagation between the azimuthal angle © at 0° and 90°. In this situation, the polarization

vector is the same as the wave propagation direction, that is, u; = x1c080 4 x5sin®. Using
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Figure 6.3: ¢S waves velocities as a function of the azimuthal angle ©® at the polar angle
¢ =0°,30°,45°,60° and 90°.
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Figure 6.4: The angular deviation of the ¢ P wave polarization vector from the propagation
direction (degrees).
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this relation and the Christoffel equation, Eq. (6.19), the azimuthal angles © are given by

the relations:

cos® = 0,
sin®@ = 0, (6.34)
cos’@[1 —2A; —3Ag] = sin?O[1 —2A2 — 3A¢],

where A; and Ay are given in Eq. (6.18). From the first two equations, the values of ©
that are equal to 0° and 90° can be easily seen. Using the third equation, the azimuthal
angle between 0° and 90°, which is dependent on the material texture, can be calculated
if the texture coefficients are known. In this case, © = 50.03°. However, while propagating
outside the symmetry plane, this feature shown in Fig. 6.4 does not exist. The result can
be proved numerically. In Fig. 6.5, the deviation angles of the ¢S1 wave polarization vector
from the propagation direction are presented. It is shown that at ¢ = 90°, the polarization
vector is always perpendicular to the propagation plane (x; — xo plane). This physical
property is implied in the wave propagation theory [111]. The results also show that as
the polar angle increases gradually for propagation, there are some polarization vectors are
perpendicular to the associated propagation plane. Due to the complexity of the expressions,
however, closed-form can not be found. Figure 6.6 shows the angular deviation of the ¢S2
wave polarization vector from the propagation direction. Since the ¢S2 wave polarization
vector is entirely within the same plane as that of the ¢P wave, the angular deviations are
consistent with each other, which may be observed in Figs. 6.4 and 6.6.

In Fig. 6.7, the qP wave velocities are presented as a function of propagation

direction within the z1 — x2, 1 — x3, and x2 — x3 planes, respectively. In the x1; — x5 plane,
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Figure 6.6: The angular deviation of the quasishear wave (¢S2) polarization vector from
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Figure 6.7: ¢P wave velocity upon wave propagation vector within three symmetry planes.

the wave velocity is seen to increase at the beginning and reach a maximum, then decrease
as the azimuthal angle © increases. In contrast, the wave velocities in the z; — x3 and
o — x3 planes are observed to decrease first, then increase as the angle © increases for this
particular texture. Upon propagation along the three axes, there are the same velocities
as discussed previously. Figure 6.8 represents the two ¢S waves velocities when the wave
propagation vector is located within the three symmetry planes. In the z; —x3 and x5 — x3
planes, at the intersection points or singular points, the two quasishear waves have the
same velocities. The singularity of the quasishear waves velocity is a basic feature in an
anisotropic medium. Such a phenomenon was discussed for orthorhombic media in detail
by Crampin [105] and Farra [109]. It is observed from Fig. 6.8 that the ¢S1 wave velocities

have their maxima at © = 45° when propagating within the 1 — x3 and x2 — x3 planes,
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Figure 6.8: ¢S waves velocities upon wave propagation vector within three symmetry planes.

while the ¢S2 wave velocity has a minimum at ® = 45° upon propagating in the 1 — x2
plane. The results also show that the ¢S2 wave velocities have their maxima at © = 0° and
minima at © = 90° when propagating within the x1 — x5 and z2 — z3 planes, and the ¢S1
wave velocity has a maximum © = 0° and a minimum at ® = 90° for propagation in the

x1 — x2 plane. In the next section, the wave velocity during annealing is studied.

6.6 Phase Velocity during Annealing

To use ultrasonic techniques for monitoring texture during processing, the relation-
ships between ultrasonic parameters, such as ultrasonic wave velocity and materials texture
must be investigated. Liu and coworkers have presented a model to extract information

about recrystallization from such ultrasonic measurements [112]. Here, their model is used
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to discuss the ultrasonic wave velocity during annealing. It is noted that there are six ideal
texture components which are generally assumed to be present in rolled and recrystallized
aluminum [97]. In the model discussed by Liu, et al., those six ideal texture components are
supposed to evolve in time following certain function forms with some constants to be de-
termined. It is also assumed that the observed orientation distribution coefficients (ODCs),
for example Wygo, W20, Waa0, may be averagely weighted by the volume fraction of each

component. Thus, for the case of rolled and recrystallized aluminum, the ODCs are given

by [112]
Wio = —0.0077f1(t) — 0.0309f2(t) — 0.0077 [f3(t) + fa(t) + f5(t)],
Wi = —0.0244f1(t) + 0.0081f2(t) — 0.0003 f4(t) — 0.0081 f5(t), (6.35)

Wio = 0.0134f1(t) + 0.0185f5(t) — 0.0108 f3(t) — 0.0089 f4(t) — 0.0108f5(¢),

where f;(t), i = 1,2,3,4,5, are the texture components evolving in time with functional
form shown in Fig. 6.9. These respectively represent the Goss, Cube, Cu, S, B, and
Random volume fractions. The detailed discussion was reviewed in the literature [97].
During annealing, the recrystallization texture, such as the Goss and Cube components,
increases, while the rolling texture, the Cu, S, and B components, decreases. Thus, for this
particular aluminum model the ODCs versus annealing time curves based on the texture
shown in Fig. 6.9 are presented in Fig. 6.10. It is seen that during annealing the ODCs are
to keep invariant at the beginning and the end of the process, while the ODCs are suddenly
varied in the middle of the process.

Based on the above discussions, the wave velocity during annealing is presented. In

this particular rolled and recrystallized aluminum, the elastic constants of the cubic crystal
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grain used were: C¥; = 1.08 x 1011 Pa, CY, = 0.61 x 10!1Pa, C9, = 0.29 x 10*'Pa, and density
p = 2700 kg/m?3. In Fig. 6.11, the ¢P wave velocity is shown for propagation along the three
orthogonal axes, i.e., ND, RD, and T'D. The Vyp, Vrp,and Vrp are quasilongitudinal wave
velocities propagating in the normal direction, rolling direction, and transverse direction,
respectively. The ¢P wave velocities decrease as the ODCs increase during annealing. Figure
6.12 represents one quasishear (¢S1) wave velocity. Vi is the wave velocity for propagation
in the normal direction and polarization in the transverse direction and Vpp is the wave
velocity for propagation in the transverse direction and polarization in the normal direction,
and Vyp = Vpy, which is seen in Egs. (6.29) and (6.26). The Vg is the wave velocity for
propagation in the rolling direction and polarization in the normal direction. In contrast,
the ¢S1 wave velocities increase as the ODCs increase during annealing. Figure 6.13 shows
the other quasishear (¢S2) wave velocity. It is observed that the shear wave velocity of Vrp
(Vrr) is dominated by the ODC Wy, which first decreases to reach the minimum, then
increases to reach the initial value during annealing. Based on the information analyzed
above, the texture of polycrystalline aggregates may be inferred as a function of annealing
time. The ODCs, for example Wagg, Waog, Waag, can be calculated from ultrasonic velocity
measurements [112]. The ultrasonic velocities of sample specimens can be measured during

annealing. Thus, the ODCs can be determined during such processing.

6.7 Conclusions

In this chapter, the wave velocity and polarization of ultrasonic waves in rolled

and recrystallized materials have been discussed. The general elastic stiffness tensor in
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orthorhombic media was presented. For the case of rolling texture of orthorhombic-cubic
symmetry, the nine effective elastic constants were given in terms of the orientation distri-
bution coefficients (ODCs). The coefficients are quantified by the orientation distribution
function (ODF), the probability density function that is used to describe best the orienta-
tion of the grains or texture of a polycrystalline aggregate. The phase velocity V and the
associated polarization vector u of plane waves are calculated by the Christoffel equation,
which typically represents an eigenvalue and eigenvector problem. For the particular cases
of wave propagation in the symmetry planes, analytic expressions of wave velocities for the
quasilongitudinal and two quasishear waves were obtained. In general, the solutions are
found using numerical methods. The angular deviations of the three waves, qP, ¢S1,and

@S2, polarization vectors from the propagation direction were also examined. The example
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results presented here show that the value of the angular deviations is not significant. The
maximum deviation angle is about 3.5° for this particular texture. Finally, the wave veloc-
ities during the annealing process were discussed. The results analyzed show that the wave
velocities and polarization vectors of the three wave modes can be considerably affected
by texture. The results will be used to calculate the wave attenuations in the subsequent
chapter. Those analyses will provide valuable information for modeling the microstruc-
ture during the recrystallization process, particularly for use with ultrasonic nondestructive

techniques.
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Chapter 7

Attenuations in Textured Media

7.1 Introduction

Metals and alloys are made of crystallite grains whose characteristics and arrange-
ments can be changed by the application of heat processing, such as annealing. Microstruc-
tural parameters of metals that determine the macroscopic mechanical properties of a ma-
terial include the grain size, grain shape, and the orientation of the grains or texture and
their distribution in the microstructure. Ultrasonic waves propagating in such aggregates
lose energy due to scattering from the granular microstructure of these materials. This
scattering is generally characterized by the attenuation of the medium. In general, the
attenuation and wave velocity are dependent on the grain size and shape, particularly on
the orientation distribution of the grains. If the grains are randomly oriented such that the
medium is statistically isotropic, these propagation properties are independent of direction.
However, the scattering attenuation and wave velocity are a function of the propagation

direction if the grains have a preferred orientation. The preferred orientation of grains,
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or texture, is best quantitatively described by the orientation distribution function (ODF)
defining as a probability density function, which is often expanded in a series generalized
spherical harmonics [1],[2],[3]. The general description was given in Chapter 6. Often,
most metallic materials with preferred orientation of grains display anisotropy of material
properties. Therefore, knowledge of the anisotropic nature of the wave propagation and
scattering in textured materials such as attenuation and velocity is critical for use with
ultrasonic nondestructive techniques. Such information will then provide valuable insight
for modeling the microstructure of such complex materials during processing.

The scattering of elastic waves by grains of polycrystals has received considerable
attention. The most recent contributions for cubic symmetry with uniformly distributed
orientations of grains were made by Hirsekorn [43],[44] and Weaver [50]. The problem of
wave propagation and scattering in the case of polycrystalline grains with an aligned [001]
axis have been examined by Ahmed and Thompson [56] and Turner [57]. In this particular
case, the average medium is statistically transverse isotropy. Ahmed and Thompson also
studied correlations defined by both equiaxed grains and grains with elongation. During the
recrystallization process of metals such as annealing, the common microstructure may show
the grains having the preferred crystallographic orientation. The material properties of this
specific case are assumed to be orthorhombic due to the feature of the preferred orientation.
For rolled texture, there are three orthogonal axes of symmetry which are defined as the
rolling, transverse, and normal directions. Hirsekorn [45] also was one of the first to investi-
gate the wave scattering in polycrystals of cubic symmetry with rolled texture as a function

of frequency by using the perturbation approach. She then extended her theory to deter-
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mine the directional dependence of the phase velocities and attenuations of the three wave
types under the same assumption with fiber texture [46]. Her discussions were restricted
to waves propagating in the direction of an axis of symmetry of the texture. The general
formalism of the waves propagating in any direction through polycrystalline materials with
rolled texture, however, has not yet been reported. In the previous chapter, the detailed
wave velocities and polarizations of the three wave types, inclusive of the quasilongitudinal
and two quasishear waves, have been discussed under the assumption of orthorhombic-cubic
symmetry. A relationship between the phase velocity and the recrystallization characteristic
variable (annealing time) was also studied for specific examples.

In this chapter, the more sensitive ultrasonic parameter, scattering attenuation, is
studied for waves propagating in any direction through such textured media. The atten-
uations of the three wave types are calculated numerically as a function of dimensionless
frequency and propagation direction, respectively, for given orientation distribution coeffi-
cients (ODCs). The resulting attenuations are shown to be directional dependent, frequency
dependent, and dependent on the texture coefficients (ODCs) for the quasilongitudinal and
two quasishear waves. The analysis of these expressions is restricted to frequencies below
the high-frequency geometric optics limit. Those theoretical results may be used to improve
the understanding of the microstructure during the recrystallization process. In addition,
the present formulation may be used to study the backscattering problem in a straightfor-
ward manner. Although the present model is for the case of orthohombic-cubic symmetry,
the formalism can be easily modified to apply to other given symmetry cases.

The preliminary elastodynamics of elastic wave propagation and scattering has
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been introduced in terms of appropriate Green’s dyadics in the previous chapters. Using
the wave theory discussed, the formalism of the attenuations is developed for the anisotropic

case of orthorhombic-cubic symmetry in the succeeding sections.

7.2 Covariance

To calculate the attenuations, the relevant inner products on the covariance of
the effective moduli fluctuations are required. The covariance of the moduli fluctuations is

represented by an eighth-rank tensor which is given explicitly by

(1]

- TIDSV —_ i1kl A A A A A A A A
(@) apss = = (A) g5 UsUkDabidids0y0j. (7.1)

For polycrystals of cubic symmetry, the eighth-rank covariance, E?j@é, is written as

Efﬁf = (CijtiCaprs) — (Cijkr) (Caprys)

3 3
2
= K <Z inGjnQknQin Y aanaﬂna’ynaén> (7.2)

3 3
2
—K Z QinAjnAknAln Z AanABnAynAsn )

n=1 n=1
where the brackets, < >, denote an ensemble average over all orientations of grains, and
Kk = CY; —C%,—2CY, is the single crystal anisotropic factor. If the polycrystal considered here
is of orthorhombic-cubic symmetry, the nonzero terms which are necessary for calculating
the attenuations are determined in the following. For the second term in Eq. (7.2), the

results have been given in the details of the previous chapter by Eq. (6.16). The first term
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where the w is orientation distribution function (ODF) as discussed in Chapter 6, which can

be expanded in a series of generalized spherical harmonics. The Wp,,, are the orientation

distribution coefficients (ODCs). The terms T}, are defined as

2 p2m p+1
Ty = 47r2 / / Zazna]naknaln Zaanaﬂna'ynaén

xZlmn(g)e*m%*m@dgdwd@. (7.4)

Within the assumption of orthorhombic-cubic symmetry, the nonzero terms which are re-

quired for calculating the attenuations, Eq. (7.3), are given as follows:
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The Wi, are the expansion coefficients of the orientation distribution function

with respect to the generalized spherical functions.

7.3 Attenuations

As discussed previously, the tensorial and spatial components of the covariance
are assumed independent. The correlation function 7 is assumed to have an exponen-
tial form given by Eq. (2.14). If three nondimensional frequencies are defined as xzg =
wL/cg, performing the spatial Fourier transform of the correlation function of the differ-
ence between two wave vectors, the functions 7)(P,8) are specified in terms of the above
dimensionless frequencies in Eq. (2.16). The inner product (p-8§) is expressed as P -
§ =sin Osin O’ sin ¢ sin @’ + cos O cos O’ sin ¢ sin ¢’ + cos ¢ cos @'

The forms of the attenuations presented in Eq. (2.13) require various inner prod-

a
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ucts on the covariance tensor. These inner products have the general form of E , Where

the vectors p and §, respectively, represent the incoming and outgoing propagation direc-
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tions. The vectors 1t and ¥ are vectors defining the polarization directions of the particular
waves. While waves propagate in arbitrary directions, the polarization vectors are generally
solved by the Christoffel equation, Eq. (6.19). Substituting the correlation function, Eq.
(2.16), and the inner products into Eq. (2.13), the resulting dimensionless attenuations are

given in the form

xie (D)
. TP
ag(P)L = —2p2 X

= U Psvy

/ =l PEV, 223
! )

2
™ (1 +a3 (P) + a2, (8) — 225 (D) w451 (8) P S) cas1 (8

+ / LIS i 25 (7.5)
4 2 . 5
(1 B( q

<),
(L4 a3 (D)
where K is defined as the polarization for the wave type 5 (1,2,or 3 for wave types ¢S1, qP
and ¢S2, respectively). It should be noted that these inner products have the units of 2.

In the long wavelength Rayleigh limit, x5 < 1, Eq. (7.5) can be simplified as

(A) =0 PEvy
. c3\p U PSSV, 2.
ag(p)L/zh = 52 x / ———1d%38
g g 2p? 4m 0231 (8
= s, = s
4 CSP (S) 4 CZSQ (S)

In Eq. (7.6), the dimensionless attenuation has been normalized by the fourth power of

the dimensionless frequency for the respective wave type. It is known that in Eqgs. (7.5)

and (7.6) the inner products, B , do not have general analytic expressions for arbi-

< <
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ps

[t

trary propagation directions in this orthorhombic-cubic case. Thus, these results must be

calculated numerically. In the next section, example numerical results and discussions are
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presented.

7.4 Numerical Results and Discussions

Numerical results are now presented for a 70% rolled steel plate. The material
constants of a single crystal and the texture coefficients of the orientation distribution

function with respect to the generalized spherical functions are given in the following [3]

CY = 237x10"Pa, (Y% =1.41x10"Pa,
CY = 116 x 10"Pa, p= 7850 kg/m?, (7.7)
and
0 = —147, &%= -0.46,
i = 0.50, Q0 = 2.69,
2 = —1.20, 2 =046,
= —0.14, A = —-0.07, (7.8)
2 = 0.29, a0 = —0.45,
g = —047, £ =-0.22

Here, using Eq. (6.33), the orientation distribution coefficients (ODCs) in Bunge’s
notation ¢ must be converted into those in Roe’s notation Wjy,,, which are used in
this discussion throughout. In order to carry out the expressions, Eq. (7.5), numerical

methods have to be employed. The procedure of numerical methods for calculating the

wave attenuations is described in details below. First, using the Christoffel equation, Eq.
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(6.19), the eigenvalue-eigenvector problem is solved when the wave propagation direction
and scattering direction are specified. Second, the covariance of the moduli fluctuations
is calculated by Eq. (7.2). Next, using the known covariance and eigenvectors, the inner
products of each wave type are calculated numerically. Finally, the double integration is
implemented numerically by the extended trapezoidal method. In this presentation, a large
number of examples are presented to describe important features of the wave attenuations.
The examples are generated using the methods discussed above. Since the orthorhombic
symmetry has three mutually orthogonal planes of symmetry, all calculations are made for
0° <O <90° and 0° < ¢ <90°.

Before carrying out the attenuations, the convergence of the numerical integration
is discussed. Without lose of generality, wave attenuations of each wave type are examined
for waves propagating in the rolling direction, that is © = 0° and ¢ = 90°, and at dimen-
sionless frequency 451 = 1.0. The comparison of the different step sizes used to calculate
the ¢P attenuation is shown in Table 7.1. Tables 7.2 and 7.3 show a comparison of the
calculated attenuations for two quasishear waves, respectively. Here, N is the number of
intervals used in the trapezoidal rule, and A is the uniform step size. The results given in
Tables 7.1, 7.2, and 7.3 show fast convergence for each wave mode in numerical integrations
using trapezoidal method. In order to make numerical programs efficient and less error, the
number of intervals N = 20 is chosen for calculating the attenuations for each wave mode

in the following results.

First, the attenuations within the Rayleigh limit are calculated using Eq. (7.6).
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Table 7.1: Comparison of qP attenuations calculated in the rolling direction for different

step sizes
|| N || h || qP attenuation || % difference from N = 100 ||

6 /6 0.004478642 0.20949

7 /7 0.004476699 0.16602

10 | w/10 0.004471528 0.050321

20 | /20 0.004469460 0.0040498

30 | 7/30 0.004469381 0.0022822

100 | 7/100 0.004469279 0

Table 7.2: Comparison of qS1 attenuations calculated in the rolling direction for different

step sizes
| N | h | ¢S1 attenuation | % difference from N = 100 ||

6 /6 0.01328883 0.049238
7 /7 0.01328696 0.035159
10 | w/10 0.01328393 0.012347
20 | 7/20 0.01328263 0.0025597
30 | /30 0.01328230 7.5288e-5
100 | /100 0.01328229 0

Table 7.3: Comparison of qS2 attenuations calculated in the rolling direction for different

step sizes
[ N | h [ ¢S2 attenuation || % difference from N = 100 ||

6 /6 0.01487709 0.50173

7 /7 0.01481018 0.049720

10 | «/10 0.01480339 0.0038506

20 | w/20 0.01480312 0.0020266

30 | /30 0.01480284 1.3510e-4

100 | /100 0.01480282 0
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Figure 7.1: Rayleigh attenuation, a,pL /:c;lp, as a function of propagation direction.

It is seen that the attenuations depend on the fourth power of frequency in the Rayleigh
regime. Thus, the normalized Rayleigh attenuation agL/ x‘é of each wave mode is shown
with the angular dependence in Figs. 7.1, 7.2, and 7.3 for various propagation directions,
respectively. It is observed that in this specific case the attenuations of each wave mode
is considerably dependent on the wave propagation direction. For waves propagating in
different directions, the curves of the attenuations have smoothly changing shapes. In
particular, at polar angle ¢ = 0, as expected, the attenuations of the three wave modes are
independent of azimuthal angle ©.

Outside the Rayleigh regime, the attenuation results are calculated using the com-
plete integrals, Eq. (7.5). The directional dependence of the attenuation is presented first

for given dimensionless frequency, x451 = 1.0. Figure 7.4 shows the normalized quasilon-
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Figure 7.2: Rayleigh attenuation, aggs1L /:1:351, as a function of propagation direction.
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Figure 7.3: Rayleigh attenuation, aggoL /:1:352, as a function of propagation direction.
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Figure 7.4: Directional dependence of the normalized ¢P attenuation, aypL, for frequency
LgS1 = 1.0.

gitudinal wave (¢P) attenuation, agzpL, as a function of azimuthal direction © for various
polar angles ¢. It is seen that the attenuation is dramatically dependent on the propagation
direction. The attenuation varies in different directions. The results for the normalized
shear waves (¢S1 and ¢S2) attenuations are presented in Figs. 7.5 and 7.6, respectively.
The directional dependence on the propagation direction for the attenuations is also notice-
able. These results may be contrasted with the results in the Rayleigh limit. Comparisons
of the Rayleigh attenuations with attenuations outside the Rayleigh regime show that the
tendency of variation is quite different with each other due to the effect of frequency. In Fig.
7.4, the ¢P wave attenuation is observed to have the maximum at © = 90° for given angles
¢. In Fig. 7.5, the curves of the ¢S1 wave attenuation have smoothly changing shapes.

Figure 7.6 shows that for propagation at polar angle ¢ = 30°, 45° and 60°, respectively, the
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Figure 7.5: Directional dependence of the normalized ¢S1 attenuation, agg1L, for frequency
LgS1 = 1.0.

maximum attenuation is about ©® = 45°, and at polar angle ¢ = 90°, there is a minimum
attenuation at © = 45°. Furthermore, the asymmetry is observed in Fig. 7.6 for various
polar angles.

Next, results are presented for the normalized attenuation as a function of az-
imuthal direction © for four different frequencies at given polar angle ¢ = 45° and 90°,
respectively. The normalized shear wave (¢S1) attenuations, cgs1L, are shown in Figs. 7.7
and 7.8, respectively at ¢ = 45° and 90° for normalized frequency x,51 = 1.0,1.5,2.0 and
2.5. It is seen that the attenuation curves show the similar shape as increasing the frequency
for respective polar angle. The results for the normalized ¢P attenuations, ogp L, are shown
in Figs. 7.9 and 7.10 at the same frequencies as above. Figures 7.11 and 7.12 show the

normalized ¢S2 attenuations, agg2L, as a function of propagation direction for the same
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Figure 7.6: Directional dependence of the normalized ¢S2 attenuation, ags2 L, for frequency
TgS1 = 1.0.
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Figure 7.7: Angular dependence of the normalized ¢S1 attenuation, ags1L, for various
frequencies, x451, at polar angle ¢ = 45°.
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Figure 7.8: Angular dependence of the normalized ¢S1 attenuation, ags1L, for various
frequencies, x451, at polar angle ¢ = 90°.
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Figure 7.9: Angular dependence of the normalized ¢P attenuation, ogpL, for various fre-
quencies, x451, at polar angle ¢ = 45°.
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Figure 7.10: Angular dependence of the normalized gP attenuation, oypL, for various
frequencies, x4s1, at polar angle ¢ = 90°.

four different frequencies. It is observed that the attenuation curves show the similar shape
as increasing the frequency for each wave type as well. All curves of the attenuations have
smoothly changing shapes for various frequencies. In Fig. 7.11, it is seen that at polar
angle ¢ = 45° the maximum attenuation is about © = 45° for four different frequencies.
Figure 7.12 shows that at polar angle ¢ = 90° there is a minimum attenuation at © = 45°
for various frequencies. There is no symmetry to be observed as increasing the frequency
as well in Figs. 7.11 and 7.12.

Finally, results are presented for the normalized attenuations as a function of
frequency for several propagation directions. In Figs. 7.13, 7.14, and 7.15, the normalized
attenuations of the three wave modes are plotted versus dimensionless frequency, x4s1, for

propagation directions along rolling, normal and transverse directions, respectively. For
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Figure 7.11: Angular dependence of the normalized ¢S2 attenuation, ags2L, for various
frequencies, x451, at polar angle ¢ = 45°.
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Figure 7.12: Angular dependence of the normalized ¢S2 attenuation, ags2L, for various
frequencies, x451, at polar angle ¢ = 90°.
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Figure 7.13: Normalized ¢P attenuation, agpL, as a function of dimensionless frequency,
xq¢s1,for propagating in rolling (RD), normal (ND) and transverse (TD) directions.
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Figure 7.14: Normalized ¢S1 attenuation, aggs1L, as a function of dimensionless frequency,
xq¢s1,for propagating in rolling (RD), normal (ND) and transverse (TD) directions.
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Figure 7.15: Normalized ¢S2 attenuation, ags2L, as a function of dimensionless frequency,
xq¢s1,for propagating in rolling (RD), normal (ND) and transverse (TD) directions.

the example considered here, Fig. 7.14 shows the ¢S1 wave attenuation propagated in
the rolling, normal and transverse directions and polarized in the normal, transverse and
rolling directions, respectively. Figure 7.15 shows the ¢S2 wave attenuation propagated
in the rolling, normal and transverse directions and polarized in the transverse, rolling
and normal directions, respectively. It is observed that there is a transition region as the
dimensionless frequency increases. Thus, the order of the attenuation is switched in such
a transition region for the three wave modes, respectively. The attenuations increase with
the fourth power of frequency in the low frequency limit. After a transition region, the
attenuations scale with the square of frequency as expected. Moreover, the normalized
attenuation of each wave type is plotted versus normalized frequency, z4s1, for propagation

within the x; — z9 plane for various azimuthal angles in Figs. 7.16, 7.17 and 7.18. It is
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Figure 7.16: Normalized ¢P attenuation, ogpL, as a function of dimensionless frequency,
x¢51,for propagating within x1 — x2 plane.

observed that the curves for each wave type mainly show the same shape except © = (0°,
which is to propagate in the rolling direction. For propagation at © = 30°, 45° and 60°,
the attenuations of each wave mode are almost the same in the low frequency and slightly
different in the high frequency. This feature is thought to be the result of the weak texture

for the case discussed here.

7.5 Conclusions

In this chapter, the scattering of elastic waves in polycrystalline materials with
texture was discussed. The ensemble averaging of the elastic wave response is governed
by the Dyson equation within the limits of first-order smoothing approximation or Keller

approximation. In order to calculate the attenuations, the relevant inner products on the



[EEN
Q

[EEN
(e}
T

[EnN
>

[EEN
Q
)

gS1 attenuation, O!q51L

[EnN
o-b

14

16 16

Dimensionless frequenquS]

159

Figure 7.17: Normalized ¢S1 attenuation, aggs1L, as a function of dimensionless frequency,

x4s1,for propagating within x1 — x2 plane.
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Figure 7.18: Normalized ¢S2 attenuation, aggs2L, as a function of dimensionless frequency,

x4s1,for propagating within x1 — x2 plane.
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covariance of the effective moduli fluctuations were derived in polycrystals of cubic symme-
try with rolling texture. Compact expressions for the attenuations of the quasilongitudinal
and two quasishear waves were then given in terms of integrations over the scattered di-
rections. The derived expressions are limited to frequencies below the geometric optics
limit. In particular, the Rayleigh attenuation was given by simplifying the integrals in the
Rayleigh regime. The general attenuations for each wave type are dependent on frequency,
wave velocity, wave propagation direction, and especially texture coefficients, which are the
expansion coefficients of the orientation function with respect to the generalized spherical
functions. Roe’s notation was used throughout the discussion. Finally, numerical inte-
gration was performed by the extended trapezoidal method. The results show that the
attenuations of each wave type can be comprehensively affected by those parameters. The
general formulation is also directly related to backscattering problems. The simple form of
the results makes them particularly useful for nondestructive testing and materials charac-
terization research. To use ultrasonic techniques for monitoring texture during processing,
the relationships between ultrasonic parameters, such as ultrasonic attenuation and materi-
als texture must be investigated. If one knows the relationships between the ODCs and the
ultrasonic attenuation, the texture coefficients might be able to be calculated from ultra-
sonic attenuation measurements. The ultrasonic attenuations of sample specimens can be

measured during annealing. Therefore, the ODCs can be determined during processing.
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Chapter 8

Conclusions

In this dissertation, the propagation and scattering of elastic waves have been
presented for statistically anisotropic media. The research focus is on two important sta-
tistically anisotropic media, one of cracked media and one of textured media. This work
is anticipated to have practical applications to quantitative nondestructive evaluation and
materials characterization, particularly for ultrasonic techniques. The ensemble average
elastic wave response was shown to be governed by the Dyson equation. The Dyson equa-
tion was then solved in the Fourier transform domain within the limits of the first-order
smoothing approximation (FOSA), or Keller approximation. Compact expressions were
derived for attenuations and wave velocities of the quasilongitudinal and two quasishear
waves using stochastic wave theory in a generalized dyadic approach. The dyadic approach
is convenient for making the results coordinate free. The analysis of expressions is limited
to frequencies below the geometric optics limit. Thus, the final forms of the attenuations

for the three wave modes were given directly by simple compact expressions involving inte-
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grations over the scattered directions. In particular, the integrals simplify considerably in
the long wavelength Rayleigh regime.

The derivation of explicit expressions of wave attenuation and velocities in a
medium with damage from randomly distributed penny-shaped microcracks was first dis-
cussed. Under this assumption, the effective medium is assumed statistically isotropic. To
model the ensemble effective material properties induced by a large number of microcracks,
the effective compliance and stiffness due to a single penny-shaped crack embedded in an
infinite elastic solids was investigated. The ensemble average moduli were then derived.
The results of the effective Lamé constants are in agreement with those obtained in the
literature. The moduli fluctuations were expressed relative to the average moduli. The
ensemble average covariance of the moduli fluctuations, which is necessary for calculating
the attenuations, was then derived for this isotropic case. The expressions of the dimension-
less longitudinal and transverse attenuations were derived in compact form. As expected,
the attenuations are shown to scale with the fourth power of frequency and linearly with
damage density in the low frequency regime. After a transition region, the attenuations are
dependent on the square of frequency. The results showed that the longitudinal attenuation
is smaller than the transverse attenuation. The higher transverse attenuation is thought to
be a combination of effects of wavelength and interaction with the cracks. The results also
showed that the wave speed changes much less than the attenuation as has been observed
experimentally in the literature for a given damage level.

Wave propagation and scattering by aligned penny-shaped cracks were then de-

veloped. The framework used to model the statistically isotropic situation was extended
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to study the attenuations of elastic waves in two different types of aligned cracks, one of
uniaxially aligned cracks and the other of perfectly aligned cracks. For uniaxially aligned
cracks, the unit normals of all cracks were assumed to be coplanar, but random within the
plane of isotropy. Thus, the uniaxial symmetry direction is perpendicular to this plane.
The medium of uniaxially aligned cracks is then transversely isotropic. Explicit expressions
for attenuations and wave speeds of the shear horizontal (SH), quasilongitudinal (¢P), and
quasishear vertical (¢SV') waves were derived. The analysis is restricted to the limit of
noninteraction approximation among individual cracks. The resulting attenuations were
investigated in terms of the directional, frequency, and damage dependence. The results
showed that the SH and ¢P attenuations have their maxima at the direction perpendicular
to the crack alignment direction. The ¢SV attenuation has zero value for propagation along
the symmetry axis and perpendicular to it. All wave types show zero attenuation along the
symmetry axis because of the invariant material properties in that direction. Those results
are qualitatively the same as previous work. In addition, the results showed that the peak
of maximum ¢SV attenuation shifts slightly higher as the damage increases. This shift is
thought to be the result of the induced anisotropy from microcracking.

The scattering of elastic waves by perfectly aligned cracks was also presented. For
this case, the unit normals of all cracks are perpendicular to the plane of isotropy. Explicit
expressions for attenuations and wave speeds of the three wave types were also obtained.
For that development it is restricted to frequencies below the geometric optics limit. The
results showed that the attenuations are directional, frequency, and damage dependence as

well. Comparisons of the present model with Hudson’s model in the Rayleigh limit showed
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that the results presented here are more accurate than those presented in the literature
due to the inclusion of the polarization direction. Since the interactions between individual
microcracks are not considered, the present analysis is appropriate only for small crack
densities.

Wave velocity and attenuation in polycrystalline materials with texture were also
developed. For that modeling it was assumed that the polycrystal is an orthorhombic ag-
gregate made up of cubic crystallites. For orthorhombic symmetry, the most general form
for the elastic stiffness tensor was given. Wave velocities and their polarization directions
correspond to the eigenvalues and eigenvectors of the Christoffel matrix. In general, these
results must be obtained by numerical methods. For some special cases given here, analytic
expressions of wave velocities were obtained. The angular deviation of the polarization
vectors from the propagation directions was discussed. The results showed that the wave
velocities and polarization directions are dependent on the wave propagation direction. The
polarization directions are neither parallel nor perpendicular to the wave propagation direc-
tion as well. The maximum angular deviation is also not too large when waves propagate
in different directions. Moreover, a relationship between the phase velocity and recrystal-
lization variables, such as annealing time, was also investigated for specific examples.

The results obtained were then used to calculate the wave attenuations induced
by grains of polycrystals. To model the attenuations, the relevant inner products on the
covariance of the effective moduli fluctuations were derived in polycrystals of cubic symme-
try with rolling texture in Roe’s notation. Thus, compact expressions for the attenuations

of the quasilongitudinal and two quasishear waves were given in terms of integrations over
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the scattered directions. The attenuations of each wave type were performed numerically
as a function of dimensionless frequency and wave propagation direction, respectively, for
given orientation distribution coefficients (ODCs), which are, in essence, the coefficients of
an expansion of crystallite of orientation distribution function (ODF) in terms of a series of
generalized spherical harmonics. The results showed that the attenuations are dramatically
dependent on the propagation direction and frequency. For waves propagating in different
directions, the curves of attenuations mainly show the different shapes with each other. It
is hoped that the new models may improve the understanding of the microstructure for
polycrystalline materials. Moreover, the theory developed here is thought to have wide
applications for a large number of materials in various fields.

The research work presented in this dissertation is considered to be just the theoret-
ical part of the investigation of the materials microstructure in complex media by ultrasonic
techniques. Once the models had been corroborated experimentally, the extensive applica-
tions of this work will be significant. Therefore, several topics which require further investi-

gation, especially for the development of experiments are addressed in the following chapter.
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Chapter 9

Future Work

9.1 Backscattering Model

In this dissertation, explicit formulae of the attenuations for the three wave modes
have been presented in both cracked media and textured media. It is known that the
scattering attenuation is the integration of the energy that scatters in all directions within
the medium. As a result, the attenuations are calculated as integrals over all scattered
angles. The backscatter coefficient, however, represents the amount of energy that scatters
only in the backward direction. Therefore, using the models developed here and presented
in the literature [52],[113],[114], expressions for the backscatter coefficient are anticipated
to be obtained for both the assemblage of microcracks and for the textured microstructure
in future research. The ability to detect damage is dependent on the amount of scattering
due to the microcracks relative to the scattering from the heterogeneous background. The
scattering from the microcracks is assumed independent of the microstructural scattering.

Thus, the resulting models may provide a lower bound on damage detectability. It will
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perhaps provide some valuable information for developing practical experiments.

9.2 Experimental Investigations

It is evident that theoretical analyses always contain certain limitations due to
some types of assumptions. In general, a significant part of the experimental investigations
have to be employed to corroborate the theoretical models developed. Therefore, the fo-
cus of the experimental research is expected to verify the theoretical models in subsequent
research. Specific experiments will include measurements of wave speed and attenuation,
and measurement of backscattered noise for both cracked media and textured media. It is
anticipated that the ultrasonic parameters are measured experimentally over the frequency
range of 0.1MHz-15MHz. Recently, many ultrasonic experiments have been conducted for
investigating the scattering phenomena in concrete [114],[115],[116],[117],[118]. The mea-
surements of damage in concrete have also been conducted using ultrasonic techniques
[119],[120]. Experiments in polycrystalline materials have been investigated by many re-
searchers as discussed in the first chapter. The experimental literature may provide helpful
insights on future experimental investigations in cracked and textured media.

The first underlying objective of experimental investigations will be the corrobo-
ration of the theoretical research models presented in this dissertation. The microcracks
or the heterogeneous microstructure of media cause the ultrasound to scatter significantly.
Considering the ratio of the wavelength to the length scale of the microstructure grain,
it is anticipated that the ultrasonic attenuation coefficients are measured in sample spec-

imens such as concrete or aluminum as a function of frequency. Both longitudinal and
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shear source/receiver transducers are expected to be used in the future experimental mea-
surements. Often, longitudinal attenuation may be measured using immersion transducers
within a water tank, while the shear attenuation is measured utilizing contact transducers.
The raw data signal at various frequencies is saved to compute the attenuation for the
specific samples. In addition, the respective wave speeds and material density are expected
to be measured. The experimental results will be used to attest to the predictions of the
theoretical analyses.

The next objective of the experimental research will focus on backscatter measure-
ments. The works of Margetan et al. [65], Rose [64], and Turner and Weaver [53] demon-
strate that the single scattering process (backscattering) provides important microstructure
information about the specimens of interest. Those encouraging results motivate the pos-
sibility of backscattering investigations on cracked and textured materials. Generally, the
backscatter signal will be acquired using an immersion-focused transducer, which is ex-
cited with a tone burst signal at various frequencies. The single backscatter signal will be
recorded for various specimen material properties. The measurement noise level will depend
on details of the materials properties, as well as on the measurement systems. To eliminate
electronic noise from the backscattered response, spatial averaging performed at each trans-
ducer position is necessary. The required position averaging is done automatically using the
current lab equipment, which is controlled with computer software. A root-mean-squared
method discussed by Margetan et al. [65] will be used to quantify backscattered noise as a
function of time. The backscattered noise depends on two sets of quantities, the physical

properties of the measurement system such as the frequency, diameter and focal length of
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the transducer, and a material parameters that describe the capacity of material to generate
the noise. It is anticipated that the experimental results will provide significant insights

into the detection of damage and the characterization of materials microstructure.

9.3 Other Issues

The research work contained here shows the models of wave propagation and
scattering in two statistically anisotropic media. In the presentation, however, several
theoretical issues which need future investigation have also arisen. First, the influence of
grain shape should be included. In Chapter 2, the correlation function was always assumed
to have the form appropriate for equiaxed grains, n(r) = e~ "/L. The correlation length, L,
is typical of the order of the grain diameter. For the case of elongated grains, Ahmed and
Thompson [121] introduced a correlation function of a slightly more complex form given
by, n(r) = e /v sin?0+b%cos? 0 Here, b is the aspect ratio of the grains and @ defines the
angle between the two points as measured from the direction of maximum elongation. In
addition, the effects of other correlations should also be studied in subsequent research.

Second, the effect of microcrack interaction on the attenuation is not well un-
derstood. In this dissertation, the interactions between individual microcracks are not
considered such that the present analyses are appropriate only for small crack densities. At
larger concentrations of microcracks the probability of their interaction can become sub-
stantial. It becomes necessary to consider the effect of direct microcrack interaction on the
attenuation, as well as the effective stiffness. Due to the complexity of this issue, analytic

solutions may not be obtained. Therefore, numerical models must be employed to study
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the effect of microcrack interaction.

Finally, models of more complicated distributions of microcracks may be necessary
to be developed. It is known that although aligned cracks are often included in complex
materials, the effective media may acquire orthotropy entirely due to the presence of mi-
crocracks for some situations. In this case, the microcrack distribution function may be

expressed by

00 l l
w(a,0,0) =Y > > WimnZimn(§)e™ e
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Under the assumption, the damage tensor must be introduced for describing the damage
parameter. This topic is thought to be very complicated and challenging. More accurate
theoretical models that take into account all the effects of the related problems are necessary
for improved detection schemes. With continued advancements in these research areas, more

techniques may be developed in only a few years.
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