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Abstract

We study the character of the equations in the traditional formu-
lation of one-dimensional immiscible three-phase flow with gravity, in
the limit of negligible capillarity. We restrict our analysis to co-current
flow required for a displacement process; in cases of mixed co-current
and counter-current flow, capillarity effects cannot be dropped from
the formulation. The model makes use of the classical multiphase
extension of Darcy’s equation. It is well known that, if relative per-
meabilities are taken as fixed functions of saturations, the model yields
regions in the saturation space where the system of equations is lo-
cally elliptic. We regard elliptic behavior as a nonphysical artifact
of an incomplete formulation, and derive conditions on the relative
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permeabilities that ensure strict hyperbolicity of the governing equa-
tions. The key point is to acknowledge that a Darcy-type formulation
is insufficient to capture all the physics of three-phase flow and that,
consequently, the relative permeabilities are functionals that depend
on the fluid viscosity ratio and the gravity number. The derived con-
ditions are consistent with the type of displacements that take place
in porous media. By means of an illustrative example, we show how
elliptic behavior can be removed, even when using simplistic relative
permeability models.

key words: porous media, three-phase flow, gravity, relative permeability,

strict hyperbolicity, elliptic regions

1 Introduction

Mathematical models of multiphase flow in porous media have been devel-
oped, to a large extent, by extension of models that were successful in model-
ing flow of a single fluid. This is particularly true for three-phase flow, which
has been traditionally modeled using a direct application of two-phase flow
formulations [9, 15, 45, 47] (see also [44] and the references therein). As it
turns out, three-phase flow is less forgiving than two-phase flow, and exposes
the physical and mathematical inconsistencies of the classical approach. In
our opinion, the use of the simple classical approach has been favored by
two factors: first, the limited understanding of the physics of flow of several
phases in a porous medium; and second, the challenge of posing the mathe-
matical problem in a tractable form that allows the development of predictive
tools.

The importance of two-phase flow in porous media has long been rec-
ognized in many fields [12, 14, 46, 50]. Although investigated from the very
onset [41,45], the need for quantitative predictions involving flow of three fluid
phases is more recent. However, there is now little doubt that a good descrip-
tion of three-phase flow is essential in practical applications like enhanced oil
recovery [16, 36, 38, 48] and environmental remediation of the unsaturated
zone [1–3,19,20].
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1.1 Scaling of the multiphase flow equations

One of the main difficulties in the mathematical modeling of multiphase
flow is its inherent multiscale character. In fact, we regard multiphase flow
not only as a multiscale problem —where the parameters and the variables
of interest are scale-dependent, but also a multiphysics problem —different
processes dominate at different scales: the microscale is controlled by cap-
illary forces, whereas viscous and gravity forces seem to dominate at the
macroscale. In traditional scaling of the multiphase flow equations, the ef-
fects of capillarity scale as the inverse of the length of the domain [22, 49].
As a result, capillarity effects are sometimes dropped from the field-scale
equations. This is sensible only if the solutions with capillarity converge to
the capillarity-free solution as the capillarity effects are taken to zero. In
the context of multiphase displacements, capillarity effects lead to a nonlin-
ear diffusion term in the macroscopic continuum conservation equations [15].
Here, the role of capillarity is to smear the moving fronts that arise from
the displacement of one fluid by another.1 As capillarity effects vanish, one
expects that the solution to the macroscopic equations will develop sharp
features, such as shocks and boundary layers. At a smaller scale, however,
there is a transition zone where a drastic change of saturations occur. De-
pending on the pore-scale displacement mechanisms, this transition zone will
be more or less abrupt. Indeed, the behavior of the transition zones may vary
wildly, and may depend on the wettability properties of the fluids, the fluid
viscosity ratios, the fluid density ratios, the displacement process —drainage
or imbibition—, and the displacement history that determined the pore-scale
configuration of the fluids [4,5,39,40]. To properly account for the physics of
multiphase flow, it is likely that one has to resort to a multiscale formulation.
The development of such a formulation still is an open issue and, although
several approaches have been proposed [6, 11, 23, 27, 54, 58], they yet have to
be fully explored.

1.2 Darcy’s equation

Traditional formulations of multiphase flow describe macroscopic fluid fluxes
with a straightforward extension —first proposed by Muskat [45]— of Darcy’s

1The term “smeared front” is referred to as “viscous profile” in the field of fluid me-
chanics. We have avoided this terminology because the shape of fronts in multiphase
displacements is governed by capillary forces, not viscous forces!
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equation for single-phase flow. It is well known that, unlike in the single-
phase case [26], this extension cannot be rigorously obtained from first prin-
ciples [28]. The multiphase extension of Darcy’s equation may be described
as a quasi-linear relation, because the fluid flux depends linearly on the “driv-
ing force” —which includes viscous, capillary, and gravity forces— and all
the nonlinearity is agglutinated in the relative permeabilities.

Darcy-type models do not reflect any of the small-scale considerations
described above. The only way in which they can capture at least a shadow
of the behavior of the actual displacement is through the relative permeability
functions, because these are the only “degrees of freedom” of the formulation.
Therefore, relative permeabilities cannot be understood as fixed functions of
saturation, or even saturation history. The depend intrinsically on the flow
regime and properly should be called functionals rather than functions. This
is certainly not an ideal description. The very presence of functionals is a
reflection of having an incomplete formulation [10,28].

In this paper we make use of the multiphase extension of Darcy’s equation
as a working assumption, rather than a physical law. In this context, we
regard the relative permeability as nothing else than a functional used in the
constitutive model, which may —and in fact should— be influenced by the
fluid viscosity ratios and the gravity number. It is precisely the influence
of viscosity and gravity on the relative permeabilities that allows one to
remove some of the mathematical inconsistencies of the classical formulation
of three-phase flow.

1.3 Character of the equations

When the fractional flow formalism is used, flow through porous media of
three immiscible, incompressible fluids is described by a pressure equation
—whose solution is trivial in the one-dimensional case— and a 2× 2 system
of saturation equations [15,47]. It was first shown in [13] that certain relative
permeabilities would yield a system of equations that was not strictly hyper-
bolic for all saturation states. Indeed, regions in the saturation triangle where
the system is locally elliptic —the so-called elliptic regions— are present for
most relative permeability functions used today [13, 21, 32, 34, 52, 53]. The
only models that do not display elliptic regions are those where the relative
permeability of each phase is a function of its own saturation only [43,57]. In
this case, elliptic regions shrink to isolated umbilic points, where eigenvalues
of different families are equal.
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The analysis of Shearer [52] and Holden [32] suggests that elliptic regions
are an unavoidable consequence of three-phase flow models. This important
result has had two consequences: (1) further investigation on the theory of
conservation laws for mixed elliptic/hyperbolic systems (see, e.g., the mono-
graphs [37,42] and the references therein); and (2) a widespread controversy
about whether elliptic regions are physical [33]. As for (1), although a few
qualitative aspects are known [29–31], a complete mathematical theory of
mixed elliptic/hyperbolic systems is still lacking. In particular, correct en-
tropy conditions —needed to remove nonuniqueness of the solutions— are
not yet known [7,8]. As for (2), we think that the presence of elliptic regions
should not be justified simply because they appear in a Darcy-type formu-
lation of three-phase flow with relative permeability that are fixed functions
of saturations.2 In particular, the analysis in [32, 52] assumes a particular
behavior of the relative permeabilities on the edges of the saturation triangle.

In a previous paper [35], we argued that the system describing three-phase
displacements should be strictly hyperbolic, and we identified conditions on
the relative permeabilities so that this essential feature is preserved. The
generic conditions that need to be imposed on the relative permeability func-
tions seem to be in agreement with experimental observations and pore-scale
physics. We now extend the previous analysis to incorporate gravity effects.

1.4 Effects of gravity

When gravity is included in the analysis, it was shown that a large class of
models of three-phase relative permeabilities may yield elliptic regions [57].
The effect of gravity on elliptic regions has also been illustrated elsewhere [24,
33,34,53]. In all these investigations, the usual extension of Darcy’s equation
to multiphase flow is adopted without further discussion. In addition, rela-
tive permeabilities are taken as fixed functions of saturations, independent
of the flow regime. Ellipticity of the equations arises because the “driving
force” is modified by including a dominant gravity term, while the relative
permeability functions are kept unchanged.

In [35] we conjectured that relative permeabilities would vary in such a
way that the system of equations —including the gravity term— would re-
main everywhere strictly hyperbolic. In this paper we conclude that, under

2We agree completely with Shearer and Trangenstein [53], when they say that “We
have no reason to believe that the elliptic regions are physical; rather, we believe that
they are an unintended consequence of the forms of the three-phase flow models.”
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certain physical conditions, our conjecture was correct. An essential feature
of our study is that we restrict the analysis to displacement processes, where
the role of capillarity effects is simply to smear out the moving fronts. Physi-
cally, we are limited to systems with co-current flow for all saturation states.
In situations with mixed co-current and counter-current flow, the effect of
capillarity cannot be neglected. In those situations, the capillarity-free model
is no longer valid.

To avoid misunderstanding, we want to distinguish our approach from
that of other investigations, such as those of Trangenstein [57], and Jackson
and Blunt [33]. Trangenstein [57] neglects any potential dependence of the
relative permeabilities on the flow regime, and he states this assumption
explicitly: “. . . I will assume that the relative permeabilities are only allowed
to depend on the phase saturations. Thus, given the relative permeability
functions, it will be fair game to vary the viscosities, mass densities, total
fluid velocity and reservoir dip angle in order to obtain complex characteristic
speeds.” In view of our observations above, this assumption is not realistic,
because the presence of gravity modifies pore-scale displacements which, in
turn, yield different macroscopic relative permeabilities.

Similarly, Jackson and Blunt [33] assume that relative permeabilities are
fixed functions of fluid saturations alone, and evaluate the character of the
system for large values of the gravity number. Their values are well outside
the range yielding co-current flow. Our analysis does not apply to the mixed
co-current/counter-current conditions they encounter. In fact, and this is
partly what they observe, we think that in such cases capillarity cannot be
dropped from the formulation. Jackson and Blunt [33] take a unique step in
justifying elliptic regions as physically plausible. They use a serial model of
capillary bundles to demonstrate that elliptic regions exist in a simplistic but
physically realizable porous medium. However, a three-phase displacement
process in a sequence of bundles cannot be described in the form proposed
by the authors. The constraints imposed by the fractional flow formalism
and by the proposed communication between bundles reduce their model to
a single bundle of capillary tubes. The latter model is inappropriate in the
context of a displacement process described by the volume-averaged mass and
momentum balances dominated by viscous and gravity forces. Therefore, the
relative permeabilities used in [33] should be understood as another empirical
model. The presence of elliptic regions in Jackson and Blunt’s model does
not imply that they exist in reality.
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1.5 Paper outline

Here we derive conditions the relative permeabilities must satisfy for the
system of saturation equations to be strictly hyperbolic, when gravity is in-
cluded in the formulation. The crucial point is to acknowledge that, because
a Darcy-like formulation is incomplete, the relative permeability functions
may depend on the fluid viscosity ratios and on the gravity number. It is
reasonable to think that the effect of gravity and viscosity ratios will be
most pronounced in the relative permeability to gas, which is usually the
least wetting, the least viscous, and the least dense fluid phase. By means
of an illustrative example, we show that this dependence may not be strong,
but sufficient to remove elliptic behavior. The required conditions for strict
hyperbolicity, which are derived from strictly mathematical arguments, are
then analyzed from a physical viewpoint. It is found that they are consistent
with, and may justified from, the observed behavior of fluid displacements
that take place in porous media.

This paper is organized as follows. In Section 2, we present the tradi-
tional mathematical formulation of one-dimensional, immiscible three-phase
flow, which makes use of the common multiphase extension of Darcy’s equa-
tion. We express the resulting system of equations in dimensionless form
and discuss its mathematical character. In Section 3, we derive conditions
for strict hyperbolicity of the system, and show they are closely-related to
the conditions for co-current flow. These conditions are then examined from
a physical viewpoint. In Section 4, we give an example of how to accommo-
date the abstract conditions for strict hyperbolicity for a particularly simple
relative permeability model, and illustrate the effects of removing elliptic
behavior. Finally, in Section 5, we summarize the main conclusions and
recommendations.

2 Mathematical formulation

2.1 Mass conservation equations

We study one-dimensional flow of three immiscible, incompressible fluids,
through a rigid and homogeneous porous medium. We shall denote the fluid
phases as water (w), oil (o), and gas (g). The mass conservation equation
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corresponding to the α-phase is, in the absence of source terms:

∂tmα + ∂xFα = 0, 0 < x < L, t > 0, α = w, o, g , (1)

where mα is the mass of the α-phase per unit bulk volume, Fα is the mass
flux of the α-phase, ∂t(·), ∂x(·), denote partial derivatives with respect to
time and space, respectively, and L is the length of the domain. The mass
of the α-phase per unit bulk volume is:

mα = ραSαφ, (2)

where ρα is the density of the α-phase, Sα is the saturation of the α-phase,
and φ is the porosity. Because the fluids and the medium are assumed to be
incompressible, the phase densities and the porosity are constant. The mass
flux of the α-phase takes the form:

Fα = ραvαφ, (3)

where vα is the velocity of the α-phase. A major assumption in the traditional
theory of multiphase flow is the use of Muskat’s extension [45] of Darcy’s
equation to model the fluid velocities. If capillarity effects are not included
in the formulation, the fluid velocity of the α-phase is modeled by:

vα = −k
φ

krα
µα

(∂xp+ ραg∂xz), (4)

where k is the absolute permeability, krα and µα are the relative permeabil-
ity and the dynamic viscosity of the α-phase, respectively, p is the pressure,
common to all phases, g is the gravitational acceleration, and z is the eleva-
tion. To simplify notation, we define gx := g∂xz. We also define the relative
mobility of the α-phase as

λα :=
krα
µα

. (5)

Substituting Equations (2) and (3) into Equation (1), the mass conservation
equations for the α-phase reads:

∂tSα + ∂xvα = 0, α = w, o, g. (6)

Equations (6) are not all independent from each other, because they have
to satisfy the constraint that the fluids fill up the pore space, Sw + So +
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Sg ≡ 1. The fractional flow approach decouples the problem into a “pressure
equation” and a system of “saturation equations” [15]. Summation of the
conservation equations for all phases and use of the saturation constraint
yields the pressure equation:

∂xvT = 0, (7)

where vT := vw + vo+ vg is the total velocity. The pressure equation dictates
that the total velocity vT is at most a function of time. Using the expression
of the fluid velocities in Equation (4), we express the total velocity as:

vT = −k
φ
(λT∂xp+ (ρwλw + ρoλo + ρgλg)gx), (8)

where λT := λw + λo + λg is the total mobility. With the definitions above,
the system of saturation equations governing three-phase flow is:

∂tSw + vT∂x

[

λw
λT

(

1− k

vTφ
gx
(

(ρw − ρo)λo + (ρw − ρg)λg
)

)]

= 0,

∂tSg + vT∂x

[

λg
λT

(

1 +
k

vTφ
gx
(

(ρw − ρg)λw + (ρo − ρg)λo
)

)]

= 0,

(9)

together with the saturation constraint So = 1−Sw−Sg. In what follows we
shall assume that the total velocity vT is constant, and not a generic function
of time.

2.2 Equations in dimensionless form

It is convenient to express the system (9) in dimensionless form. To this end,
we define the following variables:

xD :=
x

L
(dimensionless space), (10)

tD :=
vT t

L
(dimensionless time), (11)

ND :=
(ρo − ρg)k

µovTφ
gx (gravity number), (12)

ρD :=
ρw − ρg
ρo − ρg

(density ratio). (13)
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With definitions (10)–(13), the 2×2 system of saturation equations (9) takes
the standard form

∂

∂tD

(

Sw

Sg

)

+
∂

∂xD

(

fw
fg

)

=

(

0
0

)

, (14)

where the water and gas flux functions have the following expressions:

fw :=
λw
λT

[

1−ND

(

(ρD − 1)kro + ρD
µo
µg
krg

)]

,

fg :=
λg
λT

[

1 +ND

(

ρD
µo
µw

krw + kro

)]

,

(15)

or, alternatively,

fw :=
λw
λT

[1−M ((ρD − 1)λo + ρDλg)] ,

fg :=
λg
λT

[1 +M (ρDλw + λo)] ,

(16)

where M := NDµo. Defining the equivalent vector notation:

u :=

(

u
v

)

≡
(

Sw

Sg

)

, f :=

(

f
g

)

≡
(

fw
fg

)

, (17)

and understanding the space and time variables as their dimensionless coun-
terparts —equations (10)–(11), the system (14) can be written in its final
form:

∂tu + ∂xf = 0. (18)

After a change of variables, the vector of unknowns u can be understood as
the vector of reduced saturations, rather than actual saturations [35]. When
this renormalization is employed, the three-phase flow region —where all
three phases are mobile— covers the entire saturation triangle.

2.3 Character of the system of equations

The classification of the system (18) reduces to analyzing the behavior of the
eigenvalue problem

Ar = νr, (19)
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where

A := f ′ ≡ Duf ≡
(

f,u f,v
g,u g,v

)

(20)

is the Jacobian matrix of the system, ν is an eigenvalue, and r is a right
eigenvector. Subscripts after a comma denote differentiation (e.g., f,u ≡
∂uf). At any saturation state u, the system may be of one of the following
types [35]:

1. Strictly hyperbolic. The eigenvalue problem has two real, distinct eigen-
values. The Jacobian matrix is diagonalizable and there are two real
and linearly independent eigenvectors.

2. Elliptic. The eigenvalues are complex conjugates, and there are no real
characteristic curves.

3. Nonstrictly hyperbolic. There is a double real eigenvalue, and the Jaco-
bian matrix is diagonalizable. Every direction is characteristic, so the
system is hyperbolic (real eigenvalues and linearly independent eigen-
vectors) but not strictly hyperbolic (which requires that the eigenvalues
be distinct).

4. Parabolic. The system has a real, double eigenvalue, and the Jacobian
matrix is defective (non-diagonalizable). There is only one eigenvector
and, therefore, there is only one real characteristic direction.

The eigenvalues νi, i = 1, 2 of the Jacobian matrix (20) are given by:

ν1,2 =
1

2

[

f,u + g,v ∓
√

(f,u − g,v)2 + 4f,vg,u

]

. (21)

These eigenvalues (when they are real) are the characteristic speeds at which
waves describing changes in saturation propagate through the domain. In
the strictly hyperbolic case, there exist two distinct waves which travel at
different characteristic speeds. It is common to use the terms slow wave and
fast wave for the waves associated with the smaller and larger eigenvalue,
respectively.
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The right eigenvectors ri = [riu, riv]
t, i = 1, 2, which correspond to eigen-

values νi, i = 1, 2, respectively, are calculated by the following expressions:

r1v

r1u

=
ν1 − f,u
f,v

=
g,u

ν1 − g,v
, (22)

r2u

r2v

=
f,v

ν2 − f,u
=
ν2 − g,v
g,u

. (23)

When they are real, the right eigenvectors correspond to the directions (in
the saturation space) of admissible changes in saturation. In the strictly
hyperbolic case, the changes in saturation associated with the slow (resp. fast)
wave have a direction dictated by r1 (resp. r2) and propagate with velocity ν1

(resp. ν2).

3 Conditions for a strictly hyperbolic system

It is by now a well-known fact that the system of equations (18) describ-
ing one-dimensional three-phase flow may exhibit mixed hyperbolic/elliptic
character for most relative permeability functions used today [13, 17, 18, 21,
24,25,32,34,44,52,53]. Strict hyperbolicity of the equations is typically lost
at:

1. Elliptic regions: bounded regions of the saturation triangle, where the
eigenvalues are complex conjugates, and the system is locally elliptic.

2. Umbilic points: saturation states for which there is a double eigenvalue,
and the system is not strictly hyperbolic.

The existing literature seems to suggest that the presence of elliptic regions
and umbilic points inside the saturation triangle is an unavoidable feature
of three-phase flow models in porous media. The approach taken in previous
investigations [32,52] is to assume a particular behavior of the relative perme-
abilities and, from this assumed behavior, infer that the system of equations
cannot be strictly hyperbolic everywhere in the saturation triangle. One of
the key assumptions is the “zero-derivative” condition, which states that the
relative permeability of a phase has a zero normal derivative at the edge of
zero saturation of that phase. This condition implies, for example, that the
derivative of the gas relative mobility with respect to gas saturation is zero
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along the oil-water edge of the saturation triangle:

λg,v = 0 on v = 0, 0 < u < 1. (24)

Under this assumed behavior along the edges of the saturation triangle, it
can be shown that an elliptic region must be present inside the ternary dia-
gram [32,51,52].

When gravity is included in the formulation, it was shown that a large
class of models of three-phase relative permeabilities may yield elliptic re-
gions [57] (see also [24, 25, 33, 34, 53]). Common to all these investigations
is the use of Muskat’s multiphase flow extension of Darcy’s equation, and
relative permeabilities which are taken as fixed functions of saturations in-
dependent of the flow regime. Under these assumptions, the analysis in [57]
shows that for any relative permeability model where one or more relative
permeabilities are functions of two saturations, the system of saturation equa-
tions will have elliptic regions for some combination of viscosities, densities
and gravity numbers.

We find the mixed elliptic/hyperbolic behavior disturbing for many rea-
sons, and are of the opinion that elliptic regions are artifacts of an incorrect
mathematical model. In a previous paper [35], we have argued that strict hy-
perbolicity is an essential property of a displacement process, which should be
preserved by our three-phase flow models. From an analysis of the character
of the system of equations governing three-phase immiscible incompressible
flow we conclude that —when gravity effects are not included— it is possible
to choose relative permeability functions so that this system is strictly hyper-
bolic everywhere in the saturation triangle. Moreover, the generic conditions
that need to be imposed on the relative permeability functions to preserve
strict hyperbolicity seem to be in agreement with experimental observations
and pore-scale physics.

The question remains: is it possible to derive similar conditions when
gravity is included, so that the system of saturation equations is strictly
hyperbolic? The analysis of Trangenstein [57] suggests that the answer is
negative. His analysis is limited, however, by the fact that fixed relative per-
meability functions are used. Ellipticity of the equations arises because the
“driving force” in Equation (4) is modified by including a dominant gravity
term, while the relative permeability functions are kept unchanged. In our
opinion, using fixed relative permeability functions for all gravity numbers
is not realistic. Dominance of gravity forces modifies the displacements of
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one fluid by another which, in turn, may yield different macroscopic relative
permeabilities. Thus, in the analysis below, we adopt the opposite viewpoint
to that of previous investigations: we do not rule out the possibility that the
macroscopic relative permeabilities may depend on the gravity number. In
doing so, we acknowledge that the common extension of Darcy’s equation
does not capture all the physics of multiphase flow.

3.1 Conceptual picture of three-phase displacements

The behavior of relative permeabilities, assumed in traditional models of
three-phase flow, limits the influence of a phase on the flow of the other two
phases near the edge where that phase is immobile [32, 52]. This behavior
is expressed effectively through the eigenvectors of the Jacobian matrix of
the system of governing equations along the edges of the ternary diagram
(Figure 1):

1. The right eigenvector associated with the fast characteristic family, r2,
is parallel to the edges of the triangle of reduced saturations.

2. The fast eigenvector r2 points into the triangle, for saturation states
near the vertices.

The most relevant impact of this conceptual picture on the mathematical
character of the system is that, in general, an elliptic region must exist inside
the saturation triangle. This general result can be proved using ideas of
projective geometry [32,51,52].

Our conceptual picture of three-phase displacements differs from the tra-
ditional one. The difference, although subtle, is essential. The key observa-
tion is that, whenever gas is present as a continuous phase, the mobility of gas
is much higher than that of the other two fluids (water and oil). This implies
that the wave associated with changes in gas saturation is in fact the fast
wave, even in the neighborhood of the edge of zero reduced gas saturation.
The proposed behavior requires that the eigenvector of the fast characteristic
family (r2) is transversal —and not parallel— to the oil-water edge of the
ternary diagram (Figure 2). In [35] we showed that this conceptual picture
permits that the system of equations be strictly hyperbolic everywhere inside
the saturation triangle. The only saturation state for which strict hyperbolic-
ity is lost is the vertex of 100% reduced gas saturation, due to the additional
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Figure 1. Schematic representation of the direction of fast eigenvectors r2

along the edges of the saturation triangle for the models analyzed
by Shearer [52] and Holden [32]. For models of this type, vertices
are umbilic points, and there must be an elliptic region inside the
saturation triangle.

requirement that the eigenvectors are not allowed to rotate along the edges
of the ternary diagram.

The picture of slow and fast characteristic paths along the edges of the
saturation triangle shown in Figure 2 was developed for the case where gravity
effects were not included in the formulation [35]. We preserve this conceptual
picture when gravity effects are taken into account. This is sensible, however,
only if the three-phase flow is a displacement process. Therefore, we limit our
description of three-phase flow with gravity to situations of co-current flow,
that is, when all three phases have fluid velocities that contribute positively
to the total flow. In fact, the situation changes dramatically if flow of one of
the fluids is counter-current for certain saturation states. It is obvious that
flow cannot be counter-current in the entire saturation triangle and, there-
fore, mixed co-current and counter-current flow will take place for certain
saturation paths. In this case, capillarity effects cannot be neglected and the
three-phase displacement model analyzed here is no longer valid.
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Figure 2. Schematic representation of the direction of fast (r2) and
slow (r1) eigenvectors along the edges of the saturation triangle
for the type of models we propose. The system is strictly hy-
perbolic everywhere inside the saturation triangle, and the only
umbilic point is located at the G vertex, where the fast paths
corresponding to the OG and WG edges coalesce.

In summary, we restrict our attention to displacement processes, charac-
terized by co-current flow. In the following sections we derive mathematical
conditions for co-current flow and strict hyperbolicity of the system.

3.2 Conditions for co-current flow

The conditions for co-current flow can be expressed succinctly as follows:

f ≥ 0, (25)

g ≥ 0, (26)

1− f − g ≥ 0. (27)
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When written in terms of the relative mobilities (Equations (16)), the equa-
tions above take the following form:

1−M(ρDλg + (ρD − 1)λo) > 0, (25′)

1 +M(ρDλw + λo) > 0, (26′)

1−M(λg − (ρD − 1)λw) > 0. (27′)

Conditions (25′)–(27′) must hold for any saturation state in the ternary di-
agram. It is possible, however, to ascertain which saturation states impose
the most restrictive constraints on the gravity number.

Condition (25′) of positive water fractional flow will impose the strictest
restriction on the gravity number wherever the factor Ξw := (ρD−1)λo+ρDλg
is largest. The oil and gas relative mobilities will increase as the water
saturation decreases. Therefore, it will be sufficient to analyze the factor Ξw

on the OG edge, where the reduced water saturation is zero. Moreover,
the functions λo and λg are convex along the OG edge, so Ξw will take a
maximum value at one of the vertices, corresponding to either 100% reduced
oil saturation (the O vertex) or 100% reduced gas saturation (the G vertex).
In all practical cases, the gas viscosity is much smaller than the oil viscosity
(µg ¿ µo) and, as a result, Ξw will be largest at the G vertex. Evaluating
condition (25′) at this saturation state, one obtains:

M <
1

ρDλmax
g

, (28)

or, equivalently,

ND <
µg
µo

1

ρDkmax
rg

. (29)

Condition (27′) of positive oil fractional flow can be analyzed similarly.
In this case, the strictest restriction on the gravity number occurs at the
saturation state for which the factor Ξo := −(ρD − 1)λw + λg is largest.
Following the same arguments as above, this happens at the G vertex, where
Condition (27′) reduces to

M <
1

λmax
g

, (30)

or, equivalently,

ND <
µg
µo

1

kmax
rg

. (31)
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The condition of positive gas fractional flow requires that the inequal-
ity (26′) be satisfied. The strictest condition arises when the factor Ξg :=
ρDλw + λo reaches maximum. This will happen at one of the two vertices
on the OW edge of zero reduced gas saturation. Evaluating this condition at
both vertices, one obtains the following restriction:

M > max

{ −1
ρDλmax

w

;
−1
λmax
o

}

(32)

or, equivalently,

ND > max

{

−µw
µo

1

ρDkmax
rw

;
−1
kmax
ro

}

. (33)

Conditions (29), (31) and (33) for co-current flow can be summarized
succinctly in the following restriction on M :

max

{ −1
ρDλmax

w

;
−1
λmax
o

}

< M < min

{

1

ρDλmax
g

;
1

λmax
g

}

(34)

or, equivalently, on the gravity number ND:

max

{

−µw
µo

1

ρDkmax
rw

;
−1
kmax
ro

}

< ND < min

{

µg
µo

1

ρDkmax
rg

;
µg
µo

1

kmax
rg

}

. (35)

We restrict our analysis to the case when this condition is satisfied.

3.3 Conditions for strict hyperbolicity

The derivation of necessary conditions for strict hyperbolicity of the system of
governing equations is based on the conceptual picture expressed in Figure 2:

1. Along the oil-water (OW) edge, the eigenvector associated with the slow
characteristic family (r1) is parallel to the edge. The system is strictly
hyperbolic everywhere along the edge, including the O and W vertices.

2. Along the oil-gas (OG) and water-gas (WG) edges, the eigenvector asso-
ciated with the fast characteristic family (r2) is parallel to these edges.
The system is strictly hyperbolic everywhere along the edges except at
the G vertex, which is an umbilic point.

Along each of the three edges, two types of conditions need to be imposed:
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Table 1. Summary of conditions for strict hyperbolicity along the edges of
the saturation triangle, in terms of the fractional flow functions.

OW edge OG edge WG edge

Condition I g,u = 0 f,v = 0 f,v + g,v = f,u + g,u

Condition II g,v − f,u > 0 g,v − f,u > 0 −g,u − f,v > 0

Condition I enforces that eigenvectors of the appropriate family are par-
allel to the edge.

Condition II enforces strict hyperbolicity along the edge.

We shall not repeat the entire analysis along each of the edges of the
saturation triangle, and we refer the reader to [35] for the mathematical
considerations that lead to the conditions shown in Table 1. When these
conditions are expressed in terms of fluid relative mobilities through Equa-
tions (16), we obtain restrictions that the relative mobilities must satisfy for
the system to be strictly hyperbolic. The conditions along the edges are
summarized in Table 2, and the conditions at the vertices of the saturation
triangle are given in Table 3. The analysis is analogous to that carried out
for the case without gravity, the only difference being that the water and gas
fractional flows (f and g, respectively) have more complicated expressions
due to the gravity term.

3.4 Discussion of conditions

Several aspects of the conditions for strict hyperbolicity derived above deserve
further discussion and interpretation.

1. If the gravity number is zero, the conditions reduce to those obtained
in [35], where gravity was not included in the analysis.

2. It is interesting to see how the conditions for co-current flow relate to
the conditions for strict hyperbolicity. When specialized to each of the
three edges (that is, λg = 0 along the OW edge, λw = 0 along the
OG edge, and λo = 0 along the WG edge), relations (25′)–(27′) imply
that all the terms in square brackets in Table 2 are strictly positive.
Similarly, if the co-current flow conditions are specialized at the vertices
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Table 2. Summary of conditions for strict hyperbolicity along the edges of
the saturation triangle, in terms of the fluid relative mobilities.

Condition I

OW edge: λg,u = 0

OG edge: λw,v = 0

WG edge: λo,v = λo,u

Condition II

OW edge: (λw + λo)[1 +M(ρDλw + λo)]λg,v
> λo[1−M(ρD − 1)λo]λw,u − λw[1 +M(ρD − 1)λw]λo,u

OG edge: (λg + λo)[1−M(ρDλg + (ρD − 1)λo)]λw,u
< λo[1 +Mλo]λg,v − λg[1−Mλg]λo,v

WG edge: (λg + λw)[1−M(λg − (ρD − 1)λw)](−λo,u)
< λw[1 +MρDλw](λg,v − λg,u) + λg[1−MρDλg](λw,u − λw,v)

Table 3. Summary of conditions for strict hyperbolicity at the vertices of
the saturation triangle, in terms of the fluid relative mobilities.

Condition I

O vertex: λg,u = 0; λw,v = 0

W vertex: λg,u = 0; λo,v = λo,u
G vertex: λw,v = 0; λo,v = λo,u

Condition II

O vertex: λg,v >
1−M(ρD − 1)λo

1 +Mλo
λw,u

W vertex: λg,v >
1 +M(ρD − 1)λw

1 +MρDλw
(−λo,u)

G vertex: λw,u =
1−Mλg

1−MρDλg
(−λo,u)
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Figure 3. Schematic of the profiles of water and oil relative mobilities along
the OW edge. The value u corresponds to the reduced water
saturation for which oil and water relative mobilities are equal:
λw = λo = λ.

of the saturation triangle, it is immediate to see that both the numer-
ator and denominator of the fractions in Table 3 are strictly positive
also. These restrictions, which arise physically from limiting our study
to co-current flow, are crucial to obtaining a strictly hyperbolic model.
Indeed, only in co-current flow it is possible to satisfy the conditions
for strict hyperbolicity with finite derivatives of the relative mobilities.

3. A positive derivative of the gas relative mobility with respect to gas
saturation along the OW edge is the fundamental requirement for strict
hyperbolicity of the system. It means that the gas relative permeability
curve —as a function of its own saturation— must have a positive slope
at its endpoint saturation. This essential condition was first identified
in [35], where it was justified in terms of pore-scale fluid displacements,
and shown to be in good qualitative agreement with experimental data.

4. The condition of a positive endpoint-slope of the gas relative perme-
ability is generalized in this paper to account for gravity effects. To
better understand the influence of gravity, we study this condition at
a saturation state (u, 0) on the OW edge such that the water and the
oil relative mobilities are equal (see Figure 3), that is,

λw(u, 0) = λo(u, 0) = λ. (36)

The condition for strict hyperbolicity at this saturation state reduces
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to:

λg,v > λmin
g,v =

1

2
[λw,u − λo,u]−

Mλ

1 +M(ρD + 1)λ
[ρDλw,u − λo,u]. (37)

Since ρD > 0, it is evident that the terms enclosed in brackets in ex-
pression (37) are always positive. Because the density and viscosity of
gas are much lower than those of water and oil, it is reasonable to think
that gravity will influence the relative mobility of gas more than the
relative mobilities of oil and water. Thus, we may assume that λw,u
and λo,u do not vary greatly with the gravity number. Under this as-
sumption, we find that the minimum endpoint-slope of the gas relative
mobility, λmin

g,v , shows the following trend with the gravity number:

λmin
g,v

∣

∣

M<0
≥ λmin

g,v

∣

∣

M=0
≥ λmin

g,v

∣

∣

M>0
. (38)

5. The dependence of the minimum endpoint-slope of the gas relative
permeability on the gravity number can be interpreted and justified
from the point of view of the displacement processes taking place in
the porous medium. We may have two different cases:

(a) Increasing gas saturation. This is a drainage process, because gas
is normally the least wetting phase. For visualization, it is helpful
to understand it as a gas injection. The slope of the gas rela-
tive permeability curve will be related to the behavior of the first
percolating cluster. If flow is in the direction opposite to gravity
(M > 0), the gas displacement will tend to be less stable than
in the case of horizontal flow [38, 59]. At any given cross-section
of the porous medium, the transition between zero gas flow and
nonzero gas flow will be less abrupt. This gentler transition will
translate into a smaller endpoint-slope of the gas relative perme-
ability. On the other hand, if flow is in the direction of the gravity
force (M < 0), the displacement will be stabler than for horizontal
flow. In this case, an abrupt transition from zero to nonzero gas
flow is expected, resulting in a larger endpoint-slope of the gas
relative permeability function.

(b) Decreasing gas saturation. We associate this type of displacement
with imbibition, where fluids of higher wettability than gas —
water and oil— are injected into the porous medium. There is an
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essential difference with respect to a drainage process: because gas
is the least wetting fluid, there are now mechanisms for trapping
of the gas phase. Therefore, the behavior of the relative perme-
ability curve in the neighborhood of zero mobile gas saturation
will be determined by the last trapped cluster. In the case of flow
upwards (M > 0), gravity effects will enhance the stability of gas
displacement by water and oil [38,60], resulting in a smaller frac-
tion of “disconnected” gas clusters and a more gradual sweeping
of the gas phase. This continuous dependence of the gas flow on
the amount of gas present will translate into a smaller endpoint-
slope of the gas relative permeability. In contrast, when flow is
in the direction of gravity (M < 0), the displacement process
is less stable. It is more likely that water and oil will take the
most favorable paths, leaving behind large amounts of gas. These
paths may eventually merge and form disconnected —trapped—
gas clusters. At any given cross-section of the flow domain, the
transition between nonzero and zero gas flow may occur for very
small changes in gas saturation. It seems natural to reproduce
this behavior through a larger endpoint-slope of the gas relative
permeability.

6. It would be interesting to validate, at least qualitatively, the conditions
obtained in this paper with experiments. However, this was not pursued
here.

4 A simple model

The purpose of this section is to demonstrate it is indeed possible to devise
relative permeability models that satisfy the conditions for co-current flow
and strict hyperbolicity derived in Section 3. As a result, the system of
equations describing three-phase co-current flow with gravity will be strictly
hyperbolic everywhere inside the saturation triangle. To illustrate our anal-
ysis, we use the following model of relative mobilities:

λw = (1/µw)u
2, (39)

λg = (1/µg)
(

βgv + (1− βg)v
2
)

, (40)

λo = (1/µo)(1− u− v)(1− u)(1− v). (41)
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This model belongs to a widely used class of models [55, 56], where the wa-
ter and gas relative permeabilities depend solely on their own saturations,
whereas the oil relative permeability depends on two saturations. The most
important features of this model are:

1. The only relative permeability function whose form is allowed to change
with the viscosity ratio and the gravity number is the gas relative
permeability. This is accomplished here in the simplest possible way,
through a single parameter: the endpoint-slope βg.

2. In view of the conditions for co-current flow and strict hyperbolicity
derived in the previous section, we anticipate that the endpoint-slope
of the gas relative permeability function will be positive, that is, βg > 0.

4.1 Conditions for co-current flow

It is immediate to specialize condition (35) on the allowable range of the
gravity number ND to the simple model studied here. Because the relative
permeability functions are assumed to be normalized, we take kmax

rα = 1, α =
w, o, g. Defining the viscosity ratios:

µwD := µw
/

µo, (42)

µgD := µg
/

µo, (43)

we express the conditions for co-current flow as follows:

max

{

−µ
w
D

ρD
;−1

}

< ND < min

{

µgD
ρD

;µgD

}

. (44)

4.2 Conditions for strict hyperbolicity

It can be readily checked that the relative permeability model (39)–(41)
automatically satisfies Condition I (see Tables 1 and 2), which imposes that
eigenvectors do not rotate along the edges of the saturation triangle.

Condition II for strict hyperbolicity along the edges of the ternary dia-
gram (Table 1) reads:

How := g,v − f,u > 0 along the OW edge, (45)

Hog := g,v − f,u > 0 along the OG edge, (46)

Hwg := −g,u − f,v > 0 along the WG edge. (47)
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When gravity is not included in the analysis, it is possible to obtain closed-
form expressions on the parameter βg, so that these conditions are satis-
fied [35]. This is not viable in the present case, because gravity effects yield
much more complicated expressions.

4.2.1 Analysis along the OW edge.

Specializing the relative permeabilities to the OW edge (that is, v = 0, 0 ≤
u ≤ 1), substituting the expressions into condition (45) (see also Table 2),
and after some algebraic manipulations, we obtain:

How ∝
(

u2/
√

µwD +
√

µwD(1− u)2
)[

1 +ND(
ρD
µwD

u2 + (1− u)2)
]

√
µwD
µgD

βg

− 2
[

1−ND(ρD − 1)(1− u)2
]

(1− u)2u

− 2
[

1 +ND

ρD − 1

µwD
u2
]

u2(1− u) > 0.

(48)

The expression above translates into a condition on the endpoint-slope βg of
the gas relative permeability as a function of the dimensionless parameters:

βg > βmin
g :=

µgD√
µwD

max
0≤u≤1

{

F (u;ND, µ
w
D, ρD)

}

, (49)

where

F := 2

[

1−ND(ρD − 1)(1− u)2
]

(1− u)2u+
[

1 +ND
ρD−1

µw
D

u2
]

u2(1− u)
(

u2/
√
µwD +

√
µwD(1− u)2

)[

1 +ND(
ρD

µw
D

u2 + (1− u)2)
] .

(50)
It is worth noting that the restrictions on the gravity number due to the
co-current flow conditions imply that all terms in square brackets in Equa-
tion (50) are positive.

4.2.2 Analysis along the OG edge.

Specializing the relative mobilities at the OG edge (u = 0, 0 < v < 1),
condition (46) reads:

Hog ∝ 2

(

1− ND

µgD
v2

)

(1− v)− 2
[

1 +ND(1− v)2
]

(1− v)2v

−
(

2
ND

µgD
v(1− v)2 +

[

1 +ND(1− v)2
]

(1− v)2(1− 2v)

)

βg > 0.

(51)
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Although difficult to derive analytically, it can be checked that condition (51)
is always satisfied as long as the conditions of co-current flow are met. The
analytical calculations may be carried out in the neighborhood of the G ver-
tex. If we let v = 1− ε, the first-order Taylor expansion of Hog about ε = 0
is:

Hog ∝ 2ε+O(ε2) > 0. (52)

At ε = 0, Hog = 0, so that the G vertex is an umbilic point, as required.
For all states on the OG edge near the G vertex, Hog > 0, and the system is
strictly hyperbolic.

4.2.3 Analysis along the WG edge.

We study the strict hyperbolicity condition along the WG edge following the
same procedure. As was the case for the analysis on the OG edge, the con-
dition Hwg > 0 is difficult to verify analytically. It was found, however, that
if it is satisfied in the neighborhood of the G vertex, it is also satisfied every-
where along the edge. Therefore, we analyze this condition for a saturation
state (u, v) = (ε, 1− ε). The first-order Taylor expansion about ε = 0 reads:

Hwg ∝
(

(2− µwD)− (2ρD − µwD)ND/µ
g
D

)

ε+O(ε2) > 0. (53)

For condition (53) to be satisfied, we require that:

µwD < min{2ρD; 2}, (54)

ND < µgD
2− µwD

2ρD − µwD
. (55)

Condition (54) is a generalization of its counterpart in [35] when gravity
was not included. In general, inequality (55) may or may not be satisfied
automatically by the co-current flow conditions (44). Conditions (54)–(55)
should be understood as limits of applicability of the relative permeability

model, rather than physical restrictions on the actual values that the viscosity
ratio and the gravity number may take.

4.2.4 An example

We present a particular example where, after fixing all the dimensionless pa-
rameters, we examine the admissible range of values for the endpoint-slope βg
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of the gas relative permeability, so that the system is strictly hyperbolic. In
particular, we take:

ρD = 1.2; µwD = 0.5; µgD = 0.04. (56)

To satisfy the co-current flow condition (44), the gravity number must be
within the interval

−5/12 < ND < 3/90. (57)

Substituting the density and viscosity ratios in (56) into condition (55), the
gravity number is also restricted by:

ND < 3/95, (58)

which is less than the upper bound in (57). Therefore, the gravity number
is allowed to vary between −5/12 < ND < 3/95.

In Figure 4 we show the region of admissible values of βg such that condi-
tion (49) along the OW edge is satisfied. This condition turns out to be the
essential requirement for strict hyperbolicity of the system. It will be met
whenever βg is greater than a positive minimum endpoint-slope βmin

g , which
depends on the gravity number ND. The value β

min
g decreases with increasing

gravity number. This dependence is consistent with the physical behavior
described in Section 3.4 (see expression (38)). It is important to note that
βmin
g is a lower bound for the endpoint-slope of the gas relative permeability,

and not the required value. Therefore, the actual slope may display a wider
variation with the gravity number than that of βmin

g .
To illustrate the effect of the endpoint-slope βg of the gas relative perme-

ability on the character of the system of equation, we take a fixed value of
the gravity number,

ND = −0.4, (59)

and analyze two different values of βg, one violating condition (49), and the
other one satisfying it:

βell
g = 0, βhyp

g = 0.1. (60)

The relative permeability of gas as a function of its own reduced satu-
ration, given by Equation (40), is shown in Figure 5 for the two values of
the endpoint-slope βg above. It is noteworthy that both curves are very
close to one another and, would, in principle, match relative permeability
data equally well (or equally badly). However, the implications of using one
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Figure 4. Admissible values of the endpoint-slope βg of the gas relative
permeability as a function of the gravity number ND, for the
gravity and viscosity ratios in Equation (56). The shaded area
(βg > βmin

g ) represents the set of values of the parameter βg
for which the system is strictly hyperbolic everywhere in the
saturation triangle.

endpoint-slope or the other are far-reaching: one will yield a system of equa-
tions with mixed elliptic/hyperbolic behavior, while the other will produce a
system that is everywhere strictly hyperbolic.

In Figure 6 we plot the functions How(u) along OW, Hog(v) along OG,
and Hwg(u) along WG, for each of the two values of βg. The curves along
the OG edge and the WG edge reach a zero value for v = 1 and u = 0,
respectively, so that the G vertex is an umbilic point. Inequalities (45)–
(47) are satisfied —and the system is strictly hyperbolic— if all three curves
are positive everywhere. As expected, this condition is violated when the
value βg = 0 is used —Figure 6(a)— and it is satisfied when βg = 0.1 is
employed —Figure 6(b).

For each of these two cases we search for elliptic regions in the saturation
triangle. An elliptic region is a set of points in the saturation space where
the eigenvalues of the Jacobian matrix of the system of governing equations
are complex conjugates. Thus, the (complex) eigenvalues at any point in the
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Figure 5. Relative permeability of gas as a function of its own saturation for
two different values of the endpoint-slope: βg = 0 and βg = 0.1.

elliptic region take the form:

ν1 = <ν − i=ν,
ν2 = <ν + i=ν, (61)

where < and = indicate the real and imaginary part, respectively. Because
outside an elliptic region eigenvalues are real and distinct, and inside they
are complex conjugates, an elliptic region must be bounded by a curve along
which eigenvalues are real and equal. This observation suggests using the
quantity

δ := (ν2 − ν1)
2 (62)

to locate elliptic regions. The discriminant δ is positive for saturation states
where the system is strictly hyperbolic, and negative where the system is
elliptic. Therefore, elliptic regions are sets where δ < 0, bounded by a
contour δ = 0. Figure 7 shows a contour plot of the discriminant δ on the
entire ternary diagram for the two values of βg. Both plots are quite similar
except near the OW edge, that is, the states of low reduced gas saturation.
The contour plot for the case βg = 0 —Figure 7(a)— shows a strip near
the OW edge where the discriminant attains local minima. This range was
explored for elliptic regions. Only one elliptic region was found, located
inside the small triangle marked in the figure. On the other hand, no elliptic
regions are present in the case βg = 0.1 —Figure 7(b).
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Figure 6. Strict hyperbolicity on edges of the saturation triangle requires
that all three functions How(u), Hog(v), and Hwg(u) are positive
everywhere. This condition is: (a) violated when the value βg = 0
is used; (b) satisfied when βg = 0.1 is employed.
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2, evaluated

on the saturation triangle for the simple relative permeability
model (39)–(41) with: (a) βg = 0; and (b) βg = 0.1. The smaller
triangle (4) denotes the zoomed area, detailed in Figure 8.
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Figure 8. Fast characteristic paths evaluated on the small region indicated
in Figure 7: (a) βg = 0; and (b) βg = 0.1. The presence of an
elliptic region in (a) is accompanied by dramatic changes in the
characteristic paths.
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An i-characteristic path is an integral curve of the i-family, that is, a
curve whose tangent at any saturation state is in the direction of the i-
eigenvector ri. A detailed analysis of the characteristic paths was performed
on the small saturation triangle indicated in Figure 7. For clarity, only
the fast paths —corresponding to the 2-characteristic family— are shown in
Figure 8. The most relevant feature is, of course, the presence of an elliptic
region when βg = 0. The elliptic region is very small in size, and located close
to the edge of zero gas saturation. This is what is typically found [13,24,25,34]
when using the most common relative permeability models. The presence of
the elliptic region induces, however, a dramatic change of direction of the
characteristic saturation paths —Figure 8(a). This feature is not restricted
to the vicinity of the elliptic region but it propagates, rather, to the entire
saturation triangle. In contrast, the saturation paths for the case βg = 0.1
are smooth and slowly varying —Figure 8(b).

5 Conclusions

The main conclusion of this investigation is that it is possible to derive con-
ditions that must be satisfied by the relative permeabilities, so that the sys-
tem of equations governing one-dimensional three-phase flow with gravity
is strictly hyperbolic. The essence is to acknowledge that a Darcy-like de-
scription of multiphase fluid flow is insufficient to capture all the multiscale
features of multiphase flow. In this context, the relative permeabilities are
left with the task of accounting for all the nonlinearity and unresolved physics
of the problem. As a result, the relative permeabilities are functionals, which
should depend not only on fluid saturations and saturation history, but also
on the flow regime. They may, in principle, depend on the fluid viscosity
ratios and the gravity number. This dependence, which is recognized in this
investigation, helps elucidate why it is possible to develop strictly hyperbolic
models of three-phase flow with gravity. The conditions that need to be im-
posed on the relative permeabilities may be justified from the point of view
of the stability of displacements that take place in the porous medium. The
analysis presented here is restricted to co-current displacement processes.
In cases that involve mixed co-current and counter-current flow, capillarity
effects cannot be dropped from the formulation.

We regard elliptic behavior —in otherwise hyperbolic models of three-
phase flow— as an unintended artifact of an incomplete mathematical for-
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mulation, rather than a necessary consequence dictated by physics [35]. We
show, by means of an illustrative example, that elliptic regions induce a
dramatic change in the characteristic saturation paths. We also show that
compliance with the conditions for strict hyperbolicity derived in this pa-
per may be achieved by a small modification of the relative permeability
functions which is, nevertheless, sufficient to remove elliptic behavior.

The developments presented herein should serve as a motivation to: (1) em-
ploy sensible relative permeability models in traditional formulations of three-
phase flow, (2) develop improved descriptions of multiphase flow in porous
media, which supersede the straightforward extension of Darcy’s equation,
incorporate the inherent multiscale phenomena, and are still mathematically
tractable.
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