
C. PHASE I FINAL REPORT 
 
The budget period for our Phase I SBIR grant officially began on July 13, 2004 and ends on 
April 12, 2005.  The actual work was conducted throughout this period and will continue 
afterward due to encouraging results. The key personnel involved in the project are listed below 
in Table 2 along with the approximate hours they have worked. Although we had originally 
intended to have a postdoctoral researcher perform the labeling experiments, we were unable to 
hire anyone with the appropriate background; therefore, the principal investigator performed the 
experiments himself. These experiments were done at the University of Washington under a 
subcontract with Dr. Mary Lidstrom, in which she provided laboratory resources but no 
personnel. Upon completion of Phase I, we have developed a comprehensive genome-scale 
metabolic model of M. extorquens AM1, utilized the in silico model to predict cell metabolism, 
and demonstrated the value of a combined experimental/modeling platform for microbial 
research. It is expected that some of the flux analysis results presented here will be published in a 
joint article with Dr. Lidstrom’s group. 

 

Table 1:  Key individuals involved in the project, location of work, project role, and approximate hours. 

Name Location Project Role Approximate 
Hours Spent 

Stephen Van Dien Genomatica Principal Investigator 
M. extorquens model 
development; isotope 
labeling experiments; 
data analysis 

495 

Christophe Schilling Genomatica Technical guidance and 
consulting 

83 

Anthony Burgard * Genomatica Development of 
optimization routines 
using GAMS 

80 

Krishna Mahadevan * Genomatica Assisting with atomic 
mapping matrix 
calcualtion 

40 

 
* The work done by these individuals was beyond the allocated budget for Phase I, and although 
contributed significantly to the completion of this project was not supported under this grant. 

C.1 Aim 1: Perform 13C-labeling experiments using chemostat-grown M. 
extorquens cultures 
Six labeling experiments were performed during the course of this project, using M. extorquens 
AM1 with a single-carbon (C1) compound as the limiting nutrient. The experiments were 
designed to include growth of wild-type, deletion mutant, and overexpression strains at different 
growth rates, as well as on two different C1 compounds. Flux distributions for wild-type cells 
growing at a relatively fast rate, 80% of maximum, have already been measured and reported 
(Van Dien et al. 2003). This provides a base case for comparison of our other results. The first 
two experiments were done using the same conditions, but with reduced growth rates (“slow” 
and “medium”, corresponding to about 50% and 15% of the “fast” growth experiment). The 



objective was to see if cell physiology and metabolism is a strong function of growth rate. A 
third experiment used wild-type cells with methylamine instead of methanol as the carbon 
source. Although the metabolism of these two substrates is schematically identical after the first 
step, it is possible that the generation of excess ammonia during the oxidation of methylamine 
has an effect on downstream reactions. We next addressed the issue of heterologous protein 
production, using a strain overexpressing the haloalkane dehalogenase gene from Xanthobacter 
autotrophicus on a medium copy plasmid behind the strong, methanol-inducible promoter PmxaF 
(pDH80) (FitzGerald and Lidstrom 2003). As a control, a parallel experiment was performed 
using M. extorquens AM1 containing the parent vector pCM80 (Marx and Lidstrom 2001). 
Finally, to examine the effect of deleting pathways in central metabolism, we examined the strain 
∆fdh3, which is a mutant strain with all three formate dehydrogenase genes inactivated 
(Chistoserdova et al. 2004). Since M. extorquens AM1 normally oxidizes over 60% of the 
primary carbon source to CO2 through a pathway that includes FDH, such a strain must exhibit 
significant redirection of carbon flux compared to the wild-type. 
 
Chemostat cultivations were performed using carbon-limited mineral salts media (Attwood and 
Harder 1972) in a 1.3-L benchtop fermentor (New Brunswick Scientific, Edison, NJ) at a 
working volume of approximately 600 mL. The carbon source was used at a label fraction of 
70% 13C for each experiment, but the overall molar concentration in the growth media varied 
depending on the strain used. pH control was available but not needed, since the culture pH 
remained above 6.7. The temperature was set at 28oC, and the vessel was aerated with sterile air.  
The agitation rate was used to maintain dissolved oxygen at >95% of saturation. The vessel was 
inoculated with 50 mL of cultures already grown for several generations at the appropriate label 
concentration. Once stable optical density was reached, steady-state was insured by waiting an 
additional 3 vessel volume changes before sampling was begun. After taking each 50 mL 
sample, the vessel was immediately filled to the original volume using fresh media, and the 
system was allowed to return to steady-state (3 volume changes) before the next sample. 
Samples were harvested, total protein was extracted and hydrolyzed, and the resulting amino 
acids were derivatized and analyzed by gas chromatography-mass spectroscopy (GC-MS) as 
described previously (Van Dien et al. 2003). Each derivatized sample was injected 3 times, thus 
providing at least 9 total data points for the calculation of means and variances. Raw mass 
isotopomer data were corrected for naturally occurring 13C in the derivatization reagents and 
non-carbon isotopes in the entire fragment using a well-established method (Fischer and Sauer 
2003). It is not intended that this isotope correction procedure be incorporated into our SimPheny 
flux analysis module, so this will not be discussed further. For the work outlined in this proposal, 
it will be assumed that true experimental mass distribution vectors will be provided as inputs. 
 
The specific experimental conditions and growth data are summarized in Table 2. Culture 
supernatants were assayed for extracellular formate, but only in the ∆fdh3 strain was any formate 
detected (1.2 mM). 
 

Table 2: Summary of Chemostat Experiments 

Strain / Condition Dilution Rate 
(hr-1) 

Feed conc. 
(mM) 

Average 
OD600 

Wild-type AM1 / methanol 0.052 24.1 0.83 



Wild-type AM1 / methanol 0.017 24.1 0.65 

AM1 pCM80 / methanol 0.092 26.6 0.85 

AM1 pDH80 / methanol 0.085 26.6 1.15 

Wild-type AM1 / methylamine 0.087 25.0 0.64 

∆fdh3 / methanol 0.091 48.3 1.20 
 
The fact that the strain burdened by overexpression of a non-native protein grows better than the 
control strain containing an empty vector is cause for concern. It is likely that something went 
wrong during this “control” experiment, possibly due to a bad batch of media or contamination. 
Thus we will not consider the AM1 pCM80 experiment in the rest of the report. Due to time 
constraints of Phase I, we were unable to repeat this chemostat run. However, in Phase I we 
proposed to perform 5 experiments instead of 6, so we still fulfilled this aim even when pCM80 
is removed.  
 

C.2 Aim 2: Develop a Genome-Scale in silico Model of M. extorquens AM1 
 

C.2.1 Model Construction 
In this portion of work we developed a genome-scale metabolic model of M. extorquens AM1 in 
SimPheny, which will form the core structure for all in silico studies carried out with this 
organism. The starting point for model development was the annotated M. extorquens AM1 
genome sequence (Integrated Genomics, http://ergo.integratedgenomics.com/ERGO/), which 
was obtained from the Lidstrom laboratory as a list of open reading frames (ORFs) and the 
corresponding putative gene assignments. Most of the assignments are based on automatic 
annotation by the ERGO software, although some key genes, particularly those involved in 
methylotrophy, have been hand-curated by lab members. After uploading the gene index into 
SimPheny, the genes were divided into included and excluded genes during the model-building 
procedure. Included genes are those for which we can associate a metabolic reaction. All others 
are excluded, for reasons such as “non-metabolic”, “insufficient similarity”, “unknown 
function”, or “non-specific metabolic function”. Obvious non-metabolic genes such as 
transcription factors, replication and repair proteins, structural proteins, and housekeeping genes, 
as well as genes clearly of unknown function, were placed in the Excluded category 
immediately. Other cases were not so clear, and required BLAST analysis to determine that the 
function is non-specific or that the similarity is insufficient. Throughout the procedure, such 
genes were placed in the Excluded category when encountered. A complete model must have all 
genes either associated with a reaction, or explicitly excluded. 
 
Metabolic reconstruction, or the association of genes with metabolic reactions, was done by 
region. For a given metabolic region (for example, amino acids of the glutamate family), 
candidate genes encoding potential enzymes in the pathway were identified in the gene index 
based on annotation.  Reaction information was compiled from metabolic databases such as 
KEGG and ECOCYC. The sequence annotation for each of the predicted open reading frames 



was examined in great detail using BLAST searches against the GenBank database, and rational 
judgment on validity of the assignment was made. The decision as whether to make the gene-
reaction assignment was based on the confidence of the BLAST hit, specificity of the annotation, 
perceived essentiality of the enzyme, and number of other genes found with the same 
assignment. Invalid genes were excluded because of unknown function, insufficient similarity, or 
non-specific function. If valid, the corresponding reaction was chosen from the Universal 
Reaction Database (URDB) in SimPheny, and added to the M. extorquens AM1 reaction list. All 
of the reactions in the URDB are balanced in terms of elements and charges, and each compound 
is evaluated for its ionic state at a pH of 7.4. Each of the metabolites involved in the reactions are 
defined by their location in terms of cytosolic or extracellular. Often the URDB contains several 
reactions that could be catalyzed by the same enzyme, differing by electron acceptors, energy 
requirements, or cosubstrates. In these cases, a choice was made based on either the BLAST 
results or current knowledge of M. extorquens physiology. In absence of any such information, 
redox carriers were assumed to be NADP+/NADPH for biosynthetic reactions and NAD+/NADH 
for catabolic reactions. Finally, a confidence score of 0-4 was assigned to the reaction based on 
how much evidence there is for its existence in M. extorquens. There were a few cases (<10) in 
which the reaction was not yet included in the URDB, so it was added following in-house quality 
control procedures. 
 
The systematic gene evaluation procedure was completed by associating genes to the functional 
proteins that they encode, and then linking the protein(s) to the reaction(s) that they enable or 
catalyze. These functional links are referred to as gene-protein-reaction (GPR) associations. 
Many are simple one-to-one linear relationships, but more complex situations arise in cases of 
multiple gene candidates, subunits of a holoenzyme, and multiple reactions catalyzed by the 
same enzyme. The reactions in a pathway were then augmented with reactions that were 
introduced based on biochemical or physiological information but for which no associated gene 
was located. These reactions are termed “non-gene associated” reactions. A non-growth 
associated maintentance term of 4.8 mmol/hr-g DCW was calculated by extrapolating chemostat 
yield data to zero growth rate. Finally, a metabolic map was created for each region using the 
Atlas feature of SimPheny. The map of central metabolism is shown in Figure 1. The entire set is 
comprised of 12 maps. 
 
After completing the above procedure for the common metabolic regions, several hundred 
unevaluated genes remained in the gene index. Some of these genes may encode metabolic 
functions not part of the major pathways, or could be poorly annotated genes encoding some of 
the non-gene associated reactions created above. The genes were examined one at a time by 
BLAST analysis to determine if they should be included in the model or not. The majority were 
excluded because they could only be characterized to a broad functional category. 
 
The final step of the model building procedure was to define an expression for biomass 
synthesis. Biomass composition of wild-type M. extorquens AM1 has been measured previously 
(Van Dien and Lidstrom 2002), and except for PHB content it was assumed to be the same in all 
experiments. PHB content is known to be condition-dependent, and was measured independent 
of this project but under similar conditions. A lumped biomass reaction for M. extorquens AM1 
(called BIO_Mex) was created to include all macromolecues in a ratio dictated by the biomass 
composition. The coefficients for each component were calculated by dividing the weight 



percent composition of the macromolecule in the cell by the molecular weight of the 
macromolecule; for example, 
protein = =

gDWproteinmoles
gDWproteing

/108527
/481.0  0.00443 mmol protein / g DCW . 

The growth-associated maintenance energy requirement was assumed to be 51 mmol/g DCW, 
which is the value used in the E. coli model. A Microsoft Excel spreadsheet was created to take 
the biomass composition as an input (weight % each component) and provide coefficients for 
BIO_Mex reaction (mmol component / g DCW). The biomass equation also includes very small 
amounts (1-100 nmol/g DCW) of the following vitamins and cofactors: biotin, thiamin, CoA, 
FAD, folate, tetrahydromethanopterin, cob(I)alamin, NADP+, NAD+, protoheme, ubiquinone-8, 
PQQ, pyridoxal-5-phosphate, bacteriochlorophyll, and phytoene (as a representative carotenoid). 
Because the concentrations for most of these have never been measured the values are not 
quantitative, but the fluxes are so small that they have negligible effect on the model results. 
They were included to ensure a non-zero flux to their biosynthetic pathways. 
 
Key aspects of the M. extorquens AM1 model are summarized in the table below. 
 

Table 3:  Statistics of the M. extorquens AM1 genome scale metabolic model 

Genes 
 Total Number of Genes 7462 
  Included Genes 1143 15.32%
Proteins 
 Total Number of Proteins 631  
Intra-System Reactions 
 Total Number of Model Reactions 721  
  Gene Associated Model Reactions 648  89.88%
  Non-Gene Associated Model Reactions 73  10.12%
Metabolites 
 Total Number of Metabolites 738  
  Number of Extracellular Metabolites 55 7.45%
  Number of Intracellular Metabolites 683 92.55%
Exchange Reactions (Input/Output) 
 Total Number of Exchange Reactions 20 

 
 
We also performed a thorough “gap analysis” of the network to determine “dead-ends” in the 
network- metabolites that are only consumed or produced. This helps to identify potential sites 
where there is missing information in our metabolic knowledge of the organism, and represent 
focus areas for future model refinement. Currently, the model contains 60 metabolites that are 
produced only, and 62 that are consumed only. It is expected that the genome sequence will be 
completed within the next year, which may uncover new functionalities involving the dead-end 
metabolites. In addition, reverse BLAST against a gene encoding the missing functionality in 
another organism can be performed to identify potential missing genes. This work is outside the 
scope of this SBIR, and will be performed by the Lidstrom laboratory. 
 



C.2.2 Simulations 
The second objective of aim 2 was to use the in silico model to make predictions for the internal 
fluxes using the constraint-based approach. Methanol (or methylamine) uptake rate and cell 
growth rate (i.e., the chemostat dilution rate) were calculated from the data in Table 1 using the 
“Fermentation Module”, a SimPheny extension recently created under a separate SBIR for the 
analysis of bioprocess data. The growth rates were set to the measured dilution rates, and 
substrate uptake was minimized as the objective function. The predicted uptake rate was 
compared to that calculated from the chemostat data (Table 4). The first simulation was for wild-
type cells at the “medium” growth rate. The agreement is well within the 20% threshold imposed 
to define “accurate predictions” for Phase I, suggesting that the model is well defined and that 
the cells are near optimality when growing under these conditions. The predicted intracellular 
flux distribution for central metabolism is shown in Figure 1. For the slow growth rate 
experiment, the predicted flux distribution is identical to that in Figure 1, except with the 
absolute values scaled proportionally to the decrease in growth rate. The agreement between 
measured and predicted uptake rates in these cases is also good. In contrast, the accuracy is poor 
for the methylamine growth experiment. This suggests a systematic shift in flux modes away 
from the optimum, and will be explored using the 13C results described in the next section. 
 

Table 4: Comparison of model predictions with measurements for substrate uptake rate 

Strain / Condition Substrate Uptake 
(mmol/hr-gDCW) 

 Predicted Measured % Errora 

Wild-type AM1 / methanol 4.72 5.42 12.9 

Wild-type AM1 / methanol 2.19 2.35 6.8 

AM1 pDH80 / methanol 7.06 6.96 -1.4 

Wild-type AM1 / methylamine 7.25 11.70 38.0 

∆fdh3 / methanol 10.13 13.0 22.1 
a % error defined as 100*(measured-predicted)/measured 

 
 



 
 
Figure 1: Predicted flux distribution for wild-type M. extorquens AM1 central metabolism 
grown on methanol. Growth rate was set to the experimental dilution rate, and methanol uptake 
minimized. Briefly, methanol is oxidized to formaldehyde, which is taken up into the cytoplasm 
and coupled to one of carriers, tetrahydrofolate (H4F) and tetrahydromethanopterin (H4MPT), to 
generate methylene-folate derivatives (Chistoserdova et al. 1998). The model predicts that 
methylene-H4MPT is exclusively oxidized to formate and subsequently to CO2, generating ATP 
and NAD(P)H, while only methylene-H4F enters central metabolism via the serine cycle. For 
each pass through the serine cycle, one carbon atom enters as CO2 in addition to that from 
methylene-H4F. Other pathways such as the TCA cycle and pentose phosphate pathway are 
predicted to be used for biosynthesis only, and do not form complete cycles for energy 
production. These predictions have been confirmed experimentally (Van Dien et al. 2003). 
 



 
To simulate ∆fdh3, all three FDH reactions were constrained to zero flux. As a result, the 
primary means of formaldehyde oxidation are effectively removed, and the cell must find other 
means to generate energy and NAD(P)H from formaldehyde. Simulations for the mutant strain 
were performed by two methods. The first is identical to that used for the wild-type, except that 
the missing enzymes were removed from the model. The second approach is termed 
minimization of metabolic adjustment (MOMA), and is based on the fact that mutants are more 
likely to resist deviations in metabolic fluxes, rather than to maximize growth rate (Segre et al. 
2002). The flux distributions predicted by both methods are similar, in that the cell generates 
NADH by channeling a high flux through the TCA cycle (Figure 2). The predicted minimum 
methanol uptake rate for the applied dilution rate is reasonable, but not as accurate as for the 
wild-type. 
 



 
 
Figure 2: Predicted flux distribution for the ∆fdh3 strain grown on methanol. Growth rate was 
set to the experimental dilution rate, and methanol uptake minimized. 
 
 



C.3 Aim 3: Calculation of Intracellular Fluxes from Isotopomer Distribution 
Data 

C.3.1 Construction of a Reduced Stoichiometric Model 
The calculation of an isotopomer balance is much more complex than the overall mass balances 
done in traditional constraint-based analysis, both due to the non-linearity of the equations and 
the number of variables involved. The number of total isotopomers in the system is equal to 

 ∑
M

i

ni2  

Where M is the number of metabolites in the system and ni is the number of carbon atoms in 
metabolite i. The entire M. extorquens AM1 genome-scale model is therefore unwieldy for the 
computationally-intense process of isotopomer balancing, and there is strong incentive to reduce 
the size of the metabolic network for this procedure. For the initial Phase I study, we decided to 
simplify the network as much as possible, to include just those portions of the model involved in 
central metabolism and amino acid biosynthesis. For commercial applications, we would likely 
retain more pathways. We developed a semi-automated procedure for generating a reduced 
model containing any desired subset of the original model. This is summarized as follows 

1. Download the stoichiometric matrix from SimPheny, as well as lists of reactions and 
metabolites that correspond to each row or column. 

2. Remove all reactions contained only in excluded portions of metabolism, and delete 
corresponding columns from the stoichiometric matrix 

3. Remove all metabolites not involved in the transfer of carbon atoms, and delete 
corresponding rows from the stoichiometric matrix. These include inorganic ions, 
cofactors, and energy carriers. The formaldehyde oxidation pathways were also removed, 
since these involve exclusively one-carbon compounds and cannot be quantified using 
carbon labeling (Van Dien et al. 2003). 

4. Remove “duplicate” reactions that only differ in cofactor or direction. Merge opposite 
reactions (ex., PEP carboxylase and PEP carboxykinase) into a single reversible reaction. 

5. After above manipulations, remove any rows or columns containing only zeros from 
stoichiometric matrix, and remove corresponding reactions and metabolites from lists. 

6. Remove “dead-end” reactions, which produce a compound that is not used in any other 
reaction. 

7. Lump all reactions between branch points into a single pathway, thus reducing the size of 
the matrix without any loss of information. 

8. Construct a new biomass reaction based on the simplified network, and add as a final 
column to the stoichiometric matrix. The biomass requirements were obtained by 
observing the fluxes of the metabolites toward biosynthesis using the full SimPheny 
model. 

 
The reduced metabolic network contains 35 reactions and 32 metabolites. Since CO2 can freely 
exit the cell and is thus not constrained by a balance, there are 4 degrees of freedom; i.e., the 
network can be completely defined by specification of 4 independent fluxes. A further 
complication is introduced by reversible reaction steps, since both the forward and reverse 
reaction rates affect the observed isotopomer distribution. These are generally expressed in terms 
of the net flux and the exchange coefficient between 0 and 1 (Dauner et al. 2001; Wiechert and 



de Graaf 1997). The reduced network contains 10 reversible reactions, so these 10 exchange 
coefficients are additional adjustable parameters which are determined using the isotopomer 
model. 
 

C.3.2 An Automated Procedure for Isotopomer Mapping 
Isotopomer mapping matrices (IMMs) describe the transfer of carbon atoms from the reactants to 
products, and are a property of a given reaction independent of the particular model (Schmidt et 
al. 1997). IMMs are based on mechanistic information, but can also be predicted by finding the 
best structural match between all atoms in the reactants and products. We employed Pipeline 
PilotTM (SciTegic Inc., San Diego), a high-throughput data analysis and mining system for 
chemoinformatic applications, to predict IMMs using a structure matching algorithm. 
Consultants from SciTegic helped to create a workflow process in Pipeline Pilot specific for our 
application. The input is a list of reactions with associated reactants and products and their 
KEGG ID numbers (http://www.genome.jp/kegg/ligand.html). Pipeline Pilot then extracts the 
molecule files (.mol format) from our in-house database, and calculates the predicted IMM as 
well as a score indicating the quality of the match in the optimal and suboptimal cases. 
 
The above procedure was done for the 35 reactions in the reduced M. extorquens AM1 model, 
and checked manually based on known biochemistry. In only two cases the predictions were 
incorrect: transaldolase and transketolase. Inspection of the results show that in these two cases, 
the score for the actual solution is only slightly lower than that of the predicted (incorrect) 
solution. 
 
We therefore propose a semi-automated strategy for calculating IMMs of large sets of reactions. 
The Pipeline Pilot workflow will be run for the entire set, and for each reaction the scores of the 
best and next-best solution compared. If the optimal solution is much better, than the prediction 
will be accepted. If two or more solutions have very similar scores, then the prediction may not 
be correct, and the IMM is calculated manually. Although the procedure is not completely 
automated, it will likely reduce the manual work by over 90%. 
 

C.3.3 Calculate Bounds using Fermentation Data with Flux Variability 
Analysis 
Using the measured substrate uptake and biomass yield values from each experiment, and 
assuming 10% experimental error, we used a technique called Flux Variability Analysis (FVA) 
(Mahadevan and Schilling 2003) to calculate the range of variability that can exist in each flux in 
the network and still satisfy the imposed constraints. These ranges were used as the upper and 
lower bounds for the flux calculation. 
 

C.3.4 Perform Isotopomer Balance 
The isotopomer balance algorithm calculates the predicted set of isotopomer distribution vectors 
(IDVs) for all metabolites in the network given the flux distribution. The input is a random flux 
distribution and set of exchange coefficients that are within specified bounds and satisfy the 
overall metabolite balance S*v=0. The program was written based on previous work done by the 

http://www.genome.jp/kegg/ligand.html


principal investigator, but was generalized in anticipation of the needs to apply to systems other 
than M. extorquens AM1. Previous programs used in this step (Van Dien et al. 2003) contained 
each reaction explicitly, and were thus model-specific. In this work, we used multi-dimensional 
matrices and nested loops through both reactions and compounds to achieve generality. Through 
each iteration, the IDV of compound i was calculated as 
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where M is the total number of reactions in the network, nk is the number of substrates in 
reaction k, vk

i,out is the flux of metabolite i in reaction k if it is consumed, and vk
i,in is the flux if it 

is produced. The resulting program is model-independent. It generates the isotopomer balance 
once the stoichiometric matrix and list of IMMs are supplied, and calculates all IDVs given the 
input flux distribution and isotopomer distribution of the feed molecules (in this case, methanol 
and CO2). 
 
Mass spectrometry data do not provide the entire isotopomer distribution of a compound, but 
rather the mass distribution of each amino acid fragment analyzed.  This information is written in 
the form of a mass distribution vector (MDV), a column vector containing mole fractions of a 
group of isotopomers all with the same mass (Wittmann and Heinzle 1999). The final step of the 
isotopomer balance routine was to calculate the predicted MDVs for all observed products. The 
user supplies the set of measured MDVs, along with an identifier to indicate the compound and 
fragment type, and the program compares the MDVs calculated by isotopomer balance to the 
measurements. The objective value, used for the optimization described below, is the sum-of-
squares difference between these values, weighted by the standard deviations in order to favor 
the most accurate measurements. This function contained 167 terms for our experiments, each 
corresponding to a different mass isotopomer of an amino acid fragment detected by GC-MS. 
The isotopomer balance was coded in both Matlab (The Mathworks, Natick, MA) and GAMS 
(Brooke 1998a) for use with the different optimization routines described below. 
 

C.3.5 Optimization Algorithm 
The ultimate goal of the flux analysis routine is to find the values of fluxes and exchange 
coefficients that minimize the value of the objective function. The isotopomer balance equations 
contain bi-linear terms, so this minimization is a non-linear programming problem. Due to the 
non-convex nature of the solution space, the existence of multiple local optima is likely and 
conventional gradient-based algorithms will converge upon on of these local solutions. A 
number of algorithms exist for these types of problems, though none guarantees that the global 
optimum will be found (Ghosh et al. 2005). In this work we compared several optimization 
routines to determine which are best suited for our particular application, using as criteria the 
speed of calculation and ability to minimize the objective function. We chose the first set of data 
obtained, wild-type culture at medium growth rate, to use in the evaluation procedure. 
 
The most commonly used optimization routine for flux analysis is the genetic strategy, which 
creates diversity in a “population” of flux distributions through small changes in the parameter 



values (mutation) or combination of parameters from two different “parent” flux distributions 
(Christensen and Nielsen 2000; Gombert et al. 2001). Beginning with a randomly generated 
population, the cells with lowest objective value are selected in each generation while those with 
high objective value are removed to maintain a constant population size. In our case the initial 
population was not completely random, since each flux distribution was required to satisfy the 
overall metabolite balance S*v=0. Thus for each randomly generated set of fluxes, we chose the 
nearest feasible flux distribution as a member of the population. For the M. extorquens reduced 
network, we previously estimated a required population size of at least 10,000 to ensure 
representative sampling of the solution space (Van Dien et al. 2003). The Matlab isotopomer 
balance requires about 10 seconds per function call, so use of a population this large required 
over 24 hours computer time per generation. To reduce the time required, in the first generation 
the best 100 out of 10,000 points were chosen, and the subsequent generations were carried out 
using the population of 100. The routine consistently converged to a solution within 100 
generations, requiring 1.5-2 days. 
 
We next tried the FMINCON function in the Matlab Optimization Toolbox, which is a gradient-
based method that converges to a local optimum in about 4 hours. Alone this is not a reasonable 
option because the solution will vary depending upon the initial guess provided. To have a good 
chance of finding a global solution, we would need to run the minimization many times with 
different starting points. This would require many days, so the use of FMINCON alone was not 
explored further. However, we then considered a hybrid approach coupling FMINCON to the 
evolutionary strategy. First, this function was applied to the final result of the evolutionary 
algorithm. No improvement was made in the objective value, indicating that a local solution had 
already been found with the evolutionary algorithm. After realizing that the CONOPT2 (see 
below) was much faster than FMINCON, we abandoned this approach. 
 
The large CPU times associated with the purely genetic strategy and hybrid approach are 
expected to become even more prohibitive in future applications where larger networks will be 
investigated.  We thus explored the possibility of employing the high level modeling system, 
GAMS (Brooke 1998a; Brooke 1998b), which specializes in large-scale optimization problems. 
The entire problem was formulated in GAMS with the fluxes, IDVs, and MDVs serving as 
variables, and the isotopomer balances and mappings between the IDVs and MDVs as 
constraints. Three nonlinear solvers, BARON, CONOPT, and MINOS were tested to solve for 
the flux distribution that minimizes the value of the objective function (i.e., the sum-of-squares 
difference between the simulated and experimental mass distribution vectors).  The global 
optimization solver, BARON, was evaluated first as this solver had shown success in tackling a 
related problem for a smaller network with one experimental observable (Ghosh et al. 2005). 
However, the network size and larger number of observables present in the M. extorquens model 
rendered BARON unable to find a solution for this application. We next explored the gradient-
based solvers, MINOS and CONOPT, which require a multiple starting point procedure because 
these solvers converge to locally, not globally, optimal solutions (Figure 3). For each restart, the 
procedure employed here involves randomizing the fluxes between the upper and lower bounds 
calculated via flux variability analysis, solving for the closest feasible flux distribution, 
calculating the IDVs associated with this flux distribution, and providing the calculated fluxes 
and IDVs to MINOS or CONOPT as an initial guess. Unlike the FMINCON function in Matlab, 
both solvers accessed via GAMS are able to find locally optimal solutions on the order of 



seconds and, in most cases, take less than a few minutes of restarts to find their best solution. 
Nevertheless, 1000 restarts are provided for each case to ensure a thorough sampling of potential 
solutions. All flux distributions from this SBIR were independently calculated using the GAMS 
and Matlab-based approaches, and in no case was Matlab able to outperform (i.e., in terms of 
CPU time or smaller objective value) the GAMS-based strategy. The approach was also 
successfully applied to a more complex network (~200 reactions) for Escherichia coli with 
similar results providing evidence that the procedure is scalable for larger applications. 
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Figure 3: The presence of one, two, or multiple local optimal solutions are common in non-convex nonlinear 
optimization problems motivating the need for the multiple restart procedure. Figure (a) shows the solutions found 
for the wild-type, slow growth case, (b) wild-type, medium growth, and (c) the fdh mutant. For each case, the 
solution with the smallest objective function value was found after only a few iterations. 
 

C.3.6 Summary of Computational Procedures 
In summary, our work under this grant resulted in a number of significant improvements over the 
existing state-of-the-art computational methods in 13C flux analysis. 

1. Construction of a stoichiometric matrix specific for 13C-labeling studies directly from a 
genome-scale model. 

2. Rapid chemoinformatics-based method for calculation of isotopomer mapping matrices. 
3. Generalized isotopomer balance routine that can be applied to any stoichiometric matrix 

and set of IMMs. 
4. Found an efficient optimization strategy that can be applied to larger networks. 

Combined with an efficient optimization routine, these steps provide the framework for eventual 
implementation within the SimPheny modeling platform. 
 

C.4 Aim 4: Compare in silico Predictions with Measured Flux Distributions 
Flux distributions for each of the experiments were calculated using the methods of section C.3. 
(Table 5). Since the simplified network has 4 degrees of freedom, the entire distribution of net 
fluxes can be defined by 4 carefully chosen “free fluxes” (Wiechert et al. 1999). Thus 
comparison of these key net fluxes is a compact means to show comparison of the entire flux 
distribution. Furthermore, since the isotopomer balance does not include the formaldehyde 
oxidation pathways, fluxes are calculated relative to the total amount of carbon entering the 
serine cycle through the glycine hydroxymethyltransferase reaction (GHMT), rather than the 
total amount of methanol entering the system. Predicted fluxes were likewise normalized, so that 
all fluxes in Table 5 are in units of mmol per 10 mmol carbon flux to serine cycle. 
 



Table 5: Predicted vs. Measured Values of the “Free Fluxes”: entries are Predicted / Measured (95% Confidence 
Interval) 

Strain / Condition α-KG DH PDH ME G6P DH 

Wild-type AM1 / methanol (µ=0.052) 0 / 0 (0.06) 0 / 0 (0.09) 0 / 0 (0.11) 0 / 0 (0.04) 

Wild-type AM1 / methanol (µ=0.017) 0 / 0.83 (0.03) 0 / 0 (0.05) 0 / 0 (0.06) 0 / 0 (0.02) 

AM1 pDH80 / methanol 0 / 0.21 (0.63) 0 / 0 (1.64) 0 / 0 (1.10) 0 / 5.55 (0.43) 

Wild-type AM1 / methylamine 0 / 0 (0.48) 0 / 0.25 (0.13) 0 / 0 (0.45) 0 / 3.90 (0.15) 

∆fdh3 / methanol 7.74 / 0 (0.44) 0 / 4.81 (0.17) 0 / 0 (0.09) 0 / 3.93 (0.37) 

 
Abbreviations: α-KG DH, α-ketoglutarate (2-oxoglutarate) dehydrogenase; PDH, pyruvate 
dehydrogenase; ME, malic enzyme; G6P DH, glucose-6-phosphate dehydrogenase 
 
The objective of this section was to determine the ability of the in silico M. extorquens AM1 
model to predict the experimental results using flux balance analysis. Lack of agreement would 
indicate that such experiments are necessary to fully characterize metabolism. We defined 
agreement if the confidence intervals of the measured fluxes come within 10% of the predicted 
fluxes. Confidence intervals for key fluxes were calculated using established methods (Wiechert 
and de Graaf 1997). These intervals reflect the sensitivity of the objective function at the 
optimum to small changes in the free fluxes, as well as the standard deviations of the isotopomer 
measurements themselves, and can differ widely from one experiment to the next. It should be 
noted that we ran all simulations with both the growth rate and methanol uptake rate constrained 
to those values measured in the chemostat. The predictive power of the unconstrained models 
was already explored in section C.2. 
 
We achieved excellent agreement for the wild-type culture at medium growth rates, and 
somewhat less agreement at low growth rates. It appears that there is a slight change in 
physiology at very low growth rates, and the cell utilizes the complete TCA cycle to a small 
extent. The model does not reflect this behavior, predicting that the flux distribution should be 
just a scaled-down version of that at medium or high growth rates. 
 
Due to the poor agreement between the predicted and measured fluxes in cases other than 
the wild-type, it is clear that a purely theoretical approach is not always sufficient to 
understanding cell metabolism. This demonstrates the value of a combined 
theoretical/experimental approach to studying physiology and metabolism, and supports 
the need for developing such a capability within the SimPheny framework. The integration 
of experimental data to improve model predictions is addressed in the next section. 
 

C.5 Aim 5: Use Experimental Data as Constraints on the Network 
As the final objective of Phase I, here we demonstrate the ability to integrate experimental data 
with the constraints-based modeling techniques, for the creation of a powerful computational/ 
experimental approach to flux analysis. 



C.5.1 Incorporate Measured Fluxes as Quantitative Constraints 
Although the reduced system of equations developed for the simplified model is completely 
determined once the free fluxes are specified, such is not the case for the full model due to the 
addition of biosynthesis, formaldehyde oxidation pathways, and various energy and redox-
associated reactions. The measured free fluxes were added as constraints (upper and lower 
bounds as 95% confidence intervals), serving to reduce the size of the solution space and thus 
narrow down the range of possible phenotypes predicted by the model. In addition, constraints 
on growth rate and methanol uptake rate were set from the chemostat data as discussed in section 
C.3. As mentioned above, all free fluxes measured and shown in Table 5 are relative to a fixed 
flux of 10 mmol/hr-gDCW through GHMT, which is the reaction through which single carbon 
compounds enter central metabolism. The flux of GHMT relative to the total methanol flux is 
unknown due to the formaldehyde oxidation pathways, and is in fact something we would like to 
learn using this approach. Therefore, we fixed the ratio of free fluxes to GHMT flux to agree 
with the measurements, rather than fixing the free fluxes themselves. This complication is unique 
to methylotrophs, and would not be an issue when dealing with organisms growing on sugars or 
organic acids. 
 
Flux variablilty analysis was then applied to the constrained system, calculating a range of flux 
values for each reaction that can be adopted and still give a feasible solution. Thus bounds are set 
within which each flux must fall. It should be emphasized that these ranges are based only on the 
stoichiometry of the system and the applied constraints, and do not rely on optimization of any 
objective function. This analysis was performed for all cases, but for brevity is only reported 
here for the wild-type slow growth example. The results for the fully constrained system 
(including the flux analysis data) were compared to those in which the only constraints were 
growth rate and methanol uptake rate (Figure 4). Of particular importance are the formaldehyde 
oxidation pathways, near the bottom of the figure. Formaldehyde is produced from methanol by 
the methanol dehydrogenase complex in the periplasm, and is consumed in the cytoplasm. The 
formaldehyde in the cytoplasm reacts with two pools of folate compounds, tetrahydrofolate 
(H4F) and tetrahydromethanopterin (H4MPT), to generate methylene-folate derivatives 
(Chistoserdova et al. 1998). Each of these methylene adducts is then involved in further 
reactions, either for incorporation into cell material via the serine cycle or for energy 
metabolism, by oxidation to carbon dioxide (Chistoserdova, et al. 1998). Although these fluxes 
are not measured by 13C-label tracing analysis, it is clear from the figures that by performing 
these experiments, they can be confined to a smaller range than by using the chemostat process 
data alone. This is because they are extremely important for energy and reducing potential 
generation, and the demands for ATP and NAD(P)H are set based on the fluxes in the remaining 
portions of metabolism. 
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Figure 4: Range of possible flux distributions for wild-type M. extorquens AM1 under slow 
growth conditions (µ=0.017 hr-1), as determined by flux variability analysis. (a) constrained only 
by chemostat process measurements from Table 4; (b) constrained by both chemostat data and 
free fluxes in Table 5. Results are expressed as: minimum flux / maximum flux : range. 
 
 
 



C.5.2 Incorporate Gene Expression Data as Qualitative Constraints 
Gene expression analysis was performed under a separate project in the Lidstrom laboratory. 
Chemostat cultures of wild-type M. extorquens AM1 grown both on methanol and succinate 
were sampled, and the relative gene expression levels between the two conditions were measured 
by microarray analysis. Genomatica received data in a spreadsheet listing each gene locus 
number followed by the log10 ratio of expression on succinate relative to methanol, and 
SimPheny was used to visualize this information on a metabolic map (Figure 5). As the Gene 
Expression Module of SimPheny is not intended to be a statistical analysis package, this data had 
already been pre-processed using available tools to remove unreliable data points. The utility of 
SimPheny is in the analysis of this processed data in the context of the genome-scale model, and 
in using this data to constrain the metabolic network. In this work, relative expression data was 
used to help characterize the flux distribution in cells growing on succinate, based on what is 
already known about growth on methanol. Starting with the predicted flux distribution for 
methanol-grown cells with µ=0.052 hr-1, fluxes in the succinate simulation (using the same 
growth rate) were constrained in the changes that can occur between the two conditions. For 
example, if a gene’s expression level decreases from one condition or strain to the next, then the 
reaction flux level calculated for the first experiment will be set as the maximum flux level for 
simulation of the second experiment. The simulation was performed with minimization of 
succinate uptake as the objective (Figure 6). The predicted succinate uptake rate was 1.295 
mmol/hr-gDCW. This is in excellent agreement with a chemostat experiment performed in the 
Lidstrom lab, in which the uptake rate was measured to be 1.35 mmol/hr-gDCW. Finally, flux 
variability analysis was used to explore the constrained solution space. The results demonstrate 
that the entire flux distribution is very tightly constrained by imposing constraints from 
fermentation and gene expression data. The only fluxes of central metabolism showing any 
variability (range of 0.124 for all) are pyruvate kinase, PEP carboxykinase, malate 
dehydrogenase, and malic enzyme. 
 



 
 
Figure 5: Predicted changes in flux distribution for M. extorquens AM1 grown on succinate 
relative to methanol, derived from log10 ratios of gene expression between the two conditions. 
Triangles show directional changes in each gene, whereas colors of arrows indicate predicted 
change in flux based on the gene expression changes. Green, decrease; red, increase; yellow, no 
change. Threshold was set to 0.15, meaning that log ratios between –0.15 and 0.15 were not 
considered to be significant. 
 



 
 
Figure 6: Predicted flux distribution for succinate grown cells with µ=0.052 hr-1, after applying 
constraints derived from the relative gene expression data shown in Figure 6, with a threshold of 
0.15. Objective function was the minimization of succinate uptake rate. Formaldehyde oxidation 
pathways are not shown because the fluxes are all equal to zero. 
 
 

C.6 Summary of Phase I 
We set forth an ambitious list of tasks for Phase I, focusing on developing a computational 
strategy for the analysis of 13C-label tracing data, and demonstrating the commercial potential of 
this method in conjunction with our SimPheny modeling platform. In summery, we achieved 
everything that we had set out to do, including the following: 

Performed a series of six 13C-labeling experiments with chemostat cultures of M. 
extorquens AM1. 

• 

• 

• 

• 

Constructed a genome-scale model for M. extorquens AM1, used it to make predictions 
of growth phenotype with a variety of strain/condition combinations, and compared 
predictions to process data from the chemostat. 
Used process data as constraints to reduce the size of the feasible solution space, thus 
improving the predictive power of the model. 
Developed and optimized a computational protocol for the calculation of intracellular 
fluxes from isotopomer labeling data (see section C.3.6). 



• 

• 

Calculated intracellular fluxes and compared to predictions. In not all cases was there 
agreement, which shows that flux analysis provides information critical to 
understanding physiology and metabolism. 
Used experimental data from both isotopomer labeling experiments and microarrays to 
constrain simulations, thus improving predictive capability of the model. 
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