

Photosynthesis and resource allocation of three Mojave Desert grasses in response to  
elevated atmospheric CO<sub>2</sub>

Lesley A. DeFalco<sup>1,2</sup>, Carolyn K. Ivans<sup>3</sup>, Philippe Vivin<sup>4</sup>, Jeffrey R. Seemann<sup>5</sup> and  
Robert S. Nowak<sup>1</sup>

<sup>1</sup>Program in Ecology Evolution and Conservation Ecology, Department of Natural  
Resources and Environmental Science, Mail Stop 370, University of Nevada, Reno,  
Nevada 89557 USA

<sup>2</sup>US Geological Survey, Western Ecological Research Center, 160 N. Stephanie St.,  
Henderson, Nevada 89074, USA

<sup>3</sup>Eastern Kentucky University, Department of Biological Sciences, Richmond, KY 40475  
USA

<sup>4</sup>Department of Agronomy, INRA Bordeaux, 33883 Villenave d'Ornon, France

<sup>5</sup>Department of Biochemistry, University of Nevada, Reno, NV 89557 USA

Keywords: biomass and N allocation, photosynthetic acclimation, invasive species, C<sub>3</sub>/C<sub>4</sub>  
physiology

Correspondence to: L. A. DeFalco, US Geological Survey, 160 N. Stephanie St.,  
Henderson, NV 89074 USA, fax: (702) 564-4600, email: Lesley\_Defalco@usgs.gov

## Abstract

Gas exchange, biomass and N allocation were compared among three Mojave Desert grasses representing different functional types to determine if photosynthetic responses and the associated allocation of resources within the plant changed after prolonged exposure to elevated CO<sub>2</sub>. Leaf gas exchange characteristics were measured for *Bromus madritensis* ssp. *rubens* (C<sub>3</sub> invasive annual), *Achnatherum hymenoides* (C<sub>3</sub> native perennial) and *Pleuraphis rigida* (C<sub>4</sub> native perennial) exposed to 360 μmol mol<sup>-1</sup> (ambient) and 1000 μmol mol<sup>-1</sup> (elevated) CO<sub>2</sub> concentrations in a glasshouse experiment, and tissue biomass and total N pools were quantified from three harvests during development. The maximum rate of carboxylation by the N-rich enzyme Rubisco (V<sub>C<sub>max</sub></sub>), which was inferred from the relationship between net CO<sub>2</sub> assimilation (A<sub>net</sub>) and intracellular CO<sub>2</sub> concentration (c<sub>i</sub>), declined in the C<sub>3</sub> species *Bromus* and *Achnatherum* across all sampling dates, but did not change at elevated CO<sub>2</sub> for the C<sub>4</sub> *Pleuraphis*. Whole plant N remained the same between CO<sub>2</sub> treatments for all species, but patterns of allocation differed for the short- and long-lived C<sub>3</sub> species. For *Bromus*, leaf N used for photosynthesis was reallocated to reproduction at elevated CO<sub>2</sub> as inferred from the combination of lower V<sub>C<sub>max</sub></sub> and N per leaf area (NLA) at elevated CO<sub>2</sub>, but similar specific leaf area (SLA, cm<sup>2</sup> g<sup>-1</sup>), and of greater reproductive effort (RE) for the elevated CO<sub>2</sub> treatment. V<sub>C<sub>max</sub></sub>, leaf N concentration and NLA declined for the perennial *Achnatherum* at elevated CO<sub>2</sub>, potentially due to accumulation of carbohydrates or changes in leaf morphology inferred from lower SLA and greater total biomass at elevated CO<sub>2</sub>. In contrast, V<sub>C<sub>max</sub></sub> for the C<sub>4</sub> perennial *Pleuraphis* did not change at elevated CO<sub>2</sub>, and tissue biomass and total N were the same between CO<sub>2</sub> treatments. Adjustments in photosynthetic capacity at elevated CO<sub>2</sub> may optimize N allocation of C<sub>3</sub> species in the Mojave Desert, which may influence plant performance and plant-plant interactions of these co-occurring species.

## Introduction

Enhancement of net carbon assimilation is often associated with short-term exposure to elevated atmospheric CO<sub>2</sub> concentrations, but downward adjustment of photosynthetic capacity is characteristic of longer-term exposure, especially in plants that use the C<sub>3</sub> photosynthetic pathway. Net assimilation rates increase in C<sub>3</sub> plants exposed to elevated CO<sub>2</sub> because the diffusional limitation of CO<sub>2</sub> into the leaf is reduced and the concentration of CO<sub>2</sub> is enhanced at the site of carboxylation (Sharkey 1985). However, C<sub>3</sub> plants exposed to elevated CO<sub>2</sub> for hours to weeks may reduce the amount and activity of enzymes such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) because increasing leaf carbohydrate supply at elevated CO<sub>2</sub> causes a feedback limitation on the photosynthetic apparatus (Sage 1990). Rubisco is a large, N-rich enzyme and accounts for 30 to 60% of the soluble protein in leaves of C<sub>3</sub> plants and 5 to 20% in C<sub>4</sub> plants (Ku et al. 1979; Schmitt and Edwards 1981; Gutteridge and Key 1985). Thus, the reduction of Rubisco and other enzymes in C<sub>3</sub> plants is often accompanied by reduced N investment in the leaf (Sage et al. 1987, 1989; Sage 1994). This acclimatory response is generally lacking in C<sub>4</sub> plants exposed to elevated CO<sub>2</sub> because CO<sub>2</sub> concentrations at the site of carboxylation in the bundle sheath are already saturated at ambient CO<sub>2</sub> conditions (Osmond et al. 1982; Pearcy and Björkman 1983).

Down-regulation of photosynthesis can be diminished when soil water and N are limited (Huxman et al. 1998a; Huxman and Smith 2001), which may have important consequences for desert grasses whose growth and development typically coincide with rainfall pulses before the onset of water stress (DeFalco 2003). Associated with photosynthetic down-regulation is the potential investment of N away from photosynthetic enzymes into limiting processes over the life of the plant (Sage 1994). Plants optimize survival, growth and reproduction by increasing allocation to organs that will enhance acquisition of resources that are in limited supply (Acock and Pasternak 1986). Thus, under a high CO<sub>2</sub> environment, proportionally more C and N may be allocated to roots and stems than to leaves, which may consequently enhance survival (Xu et al. 1994) or influence plant-plant competition (Wolfe et al. 1998). Furthermore, allocation may differ between annual and perennial plants. Perennials need to allocate at least some resources to roots or place carbohydrate in storage organs for future growth, yet annuals will allocate toward reproduction (Hardman and Brun 1971; Havelka et al. 1984a, b; Arp and Drake 1991). Thus, the consequences of photosynthetic adjustment at elevated CO<sub>2</sub> may differ depending on plant functional type and the associated pattern of resource allocation.

In a glasshouse study, the effects of elevated CO<sub>2</sub> on photosynthesis, biomass production and N allocation in three grass species representing different functional types (C<sub>3</sub> vs. C<sub>4</sub>, annual vs. perennial) were measured. Results for the root growth and function for these species are presented elsewhere (Yoder et al. 2000). To reduce the confounding effect of phylogeny, three species within the Family Poaceae were selected.

*Achnatherum hymenoides* (Roemer & Schultes) Barkworth and *Bromus madritensis* ssp. *rubens* (L.) Husnot are C<sub>3</sub> grasses. *Pleuraphis rigida* Thurber is a C<sub>4</sub> perennial and may have little or no increase in photosynthesis when exposed to elevated atmospheric CO<sub>2</sub>. We hypothesized that a reduction in carboxylation efficiency would occur in the C<sub>3</sub> but not in the C<sub>4</sub> species, and we expected that allocation of N would differ between the annual and perennial C<sub>3</sub> species. *Achnatherum* is a perennial that has the potential to

allocate biomass and N to storage in roots before the onset of senescence thereby optimizing future growth. Conversely, *Bromus* completes its life cycle in a single season and should preferentially allocate photosynthate derived from increased CO<sub>2</sub> toward reproduction (Hunt et al. 1991), thereby potentially increasing the fitness of individuals at elevated CO<sub>2</sub>. All three species coexist in the Mojave Desert; therefore, the differential photosynthetic and developmental responses by individuals of each species may have important consequences on interactions among desert plants in the future with elevated CO<sub>2</sub>.

## Methods

Fifty-four pots were placed in each of two adjacent glasshouse rooms in the Fritz Went glasshouse facility at University of Nevada, Reno. The atmospheric CO<sub>2</sub> concentrations were maintained at ~360  $\mu\text{mol mol}^{-1}$  (ambient) in one glasshouse and 1000  $\mu\text{mol mol}^{-1}$  (elevated) in the other. Pots were constructed of 1 m tall PVC with 0.15 m diameter (volume = 17.6 L) and had a mesh bottom to allow drainage. Large pot size was selected to ensure that pot volume would not influence photosynthetic down-regulation (Thomas and Strain 1990; Arp 1991). A homogenous fill sand with approximately 2  $\mu\text{g g}^{-1}$  NO<sub>3</sub> and 10  $\mu\text{g g}^{-1}$  NH<sub>4</sub> was used as a potting substrate. In February 1997, treatments were assigned within each room: 3 species  $\times$  3 harvest dates  $\times$  6 replicates. Seeds of *Bromus*, *Achnatherum* and *Pleuraphis* were planted in monoculture, and seedlings were thinned to a density of 15 (*Bromus*), 8 (*Achnatherum*), and 5 (*Pleuraphis*) plants per pot one week after planting, which are similar to tiller densities found at the Nevada Desert FACE Facility (Jordan et al. 1999). All pots were watered twice a week to maintain soil water content near pot capacity. The three sampling dates corresponded to vegetative, anthesis and seed fill stages for *Achantherum* (45, 71 and 108 d, respectively) and *Bromus* (27, 55 and 85 d). *Pleuraphis* never flowered, thus sampling dates at 80, 122 and 161 d represent three vegetative stages.

### Leaf gas exchange

The change in net assimilation rate to incremental changes in intercellular CO<sub>2</sub> concentration (A-c<sub>i</sub> response curve) was measured for each grass species at each sampling date. Leaf-level gas exchange measurements were conducted on the most recently-expanded leaf of a single plant in three of the total of six pots per treatment. A-c<sub>i</sub> curves were generated using a programmable, open-flow gas exchange system (LI-6400, LI-COR, Lincoln, Nebraska, USA). Leaves from the elevated treatment were enclosed in a chamber, and net CO<sub>2</sub> assimilation rate (A<sub>net</sub>) was measured as cuvette CO<sub>2</sub> concentration was changed incrementally from 1000 to 1500, 2000, 1000, 700, 550, 350, 225 and 100  $\mu\text{mol mol}^{-1}$ . Similarly, A<sub>net</sub> of leaves from the ambient room was measured at cuvette CO<sub>2</sub> concentrations 350, 225, 100, 350, 550, 700, 1000, 1500 and 2000  $\mu\text{mol mol}^{-1}$ . Leaf temperature was maintained at 25°C for *Bromus* and *Achnatherum* and 30°C for *Pleuraphis*. Leaf-to-air vapor pressure deficit ranged between 1.8 to 2.0 during the early harvest and 2.4 to 2.8 during later harvests. Measurements were conducted under saturating photon flux densities (PPFD) greater than 1.0  $\text{mmol m}^{-2} \text{s}^{-1}$  as determined from light response curves, and light was supplied using a quartz-halogen projection lamp. Intercellular CO<sub>2</sub> concentration (c<sub>i</sub>) at each ambient CO<sub>2</sub> concentration (c<sub>a</sub>) was calculated using the equations of von Caemmerer and Farquhar (1981). A paper image of

the leaf was produced on photosensitive diazo paper and its area quantified in a leaf area meter (Li-3000A, LI-COR); this leaf area was used to recompute rates of gas exchange on an area basis. Maximum carboxylation efficiency of Rubisco ( $V_{C_{max}}$ ) was estimated for each replicate as determined by Farquhar et al. (1980) and modified by Harley and Sharkey (1991) and Harley et al. (1992) using Photosynthesis Assistant (Dundee Scientific v. 1.1.2, Dundee, UK).

#### *Plant mass, N and allocation*

All plant tissues were removed from pots and sorted by tissue type (roots, leaves, culms, inflorescences and dead) at each harvest date. Tissues were dried in a convection oven at 45°C to a constant mass and subsequently weighed. N concentration (mg N g<sup>-1</sup>) was determined with a Carbon-Hydrogen-Nitrogen analyzer (Perkin-Elmer 2400 Elemental Analyzer; Norwalk, Connecticut). Leaf area was determined on two individuals per pot using a Li-COR leaf area meter (Li-3000A, LI-COR). Specific leaf area (SLA, cm<sup>2</sup> g<sup>-1</sup>) was calculated as the quotient between leaf area and dry mass; content of N per unit leaf area (NLA, mg N cm<sup>-2</sup>) was calculated as the quotient between N concentration and SLA.

#### *Statistical analyses*

Leaf gas exchange responses, mass and N pools were analyzed for each species using SAS v. 6.10 (SAS, Institute, Inc., Cary, North Carolina). All responses except reproductive effort (RE) were analyzed with separate two-factor ANOVAs. CO<sub>2</sub> concentration and date were designated as fixed main effects. RE was analyzed separately for *Bromus* and *Achnatherum* in a single factor (CO<sub>2</sub>) ANOVA at the final harvest. Residual mean square error was used as the F-test denominator in all tests for main and interaction effects. Violation of the equal variance assumption was examined in residual plots and using Levene's test. When necessary, data were transformed according to Box and Cox (1964). Violation of the normality assumption was examined in normality plots and tested according to D'Agostino (1971).

### **Results**

#### *Leaf gas exchange*

Photosynthetic responses to elevated CO<sub>2</sub> derived from A-c<sub>i</sub> relationships varied among the three Mojave Desert species (Figure 1). Net assimilation rate at growth CO<sub>2</sub> concentration ( $A_{net}$ ) was greater at elevated CO<sub>2</sub> for *Bromus*, *Achnatherum* and *Pleuraphis* across all harvest dates at  $P = 0.06$  (CO<sub>2</sub> effect). The maximum carboxylation efficiency of Rubisco ( $V_{C_{max}}$ ) declined significantly for *Bromus* across all dates (CO<sub>2</sub> effect). For *Achnatherum*, the greatest decrease associated with elevated CO<sub>2</sub> occurred at the first harvest (CO<sub>2</sub> × date). In contrast,  $V_{C_{max}}$  for *Pleuraphis* declined only initially at elevated CO<sub>2</sub> (CO<sub>2</sub> × date), however significant CO<sub>2</sub>-induced reductions for this species may have been obscured by large variation coupled with small sample size. Leaf N concentrations reflected the patterns in  $V_{C_{max}}$  with significant reductions in *Bromus* and *Achnatherum* at elevated CO<sub>2</sub>, and no significant difference between CO<sub>2</sub> treatments for *Pleuraphis* (Table 1).

### Plant mass, N and allocation

Elevated CO<sub>2</sub> altered plant mass, but not plant N, with the most dramatic responses for the C<sub>3</sub> species. Plant mass increased for *Bromus* and for *Achnatherum* at elevated compared with ambient CO<sub>2</sub> across all harvest dates, but mass of *Pleuraphis* plants was not statistically different between CO<sub>2</sub> treatments (Fig. 2). Total plant N was not statistically different between CO<sub>2</sub> treatments for all species, indicating no enhanced uptake of N under elevated CO<sub>2</sub> (Fig. 2). This lack of a CO<sub>2</sub> effect does not appear to reflect a deficiency in the initial N availability as no evidence of nutrient deficiencies was observed during the study. N per unit leaf area (NLA) decreased in *Bromus* but leaf area expressed per unit mass (SLA) was not statistically different between CO<sub>2</sub> treatments (Table 1). A significant decrease in NLA for *Achnatherum* was accompanied by a decrease in SLA (Table 1). Neither NLA nor SLA was statistically different between CO<sub>2</sub> treatments for *Pleuraphis*.

Allocation patterns for plant mass and N within whole plants varied among species at elevated CO<sub>2</sub>. Root : shoot ratios did not differ significantly between CO<sub>2</sub> treatments for either *Bromus* or *Pleuraphis* but declined in *Achnatherum* (Fig. 3) due to greater proportional increases in shoots compared to increases in root biomass at elevated CO<sub>2</sub>. In addition, both *Bromus* and *Achnatherum* significantly increased reproductive effort (RE) at elevated CO<sub>2</sub>, measured as the ratio of the mass of inflorescences to total plant mass. *Pleuraphis* did not initiate flowering during this experiment, and so RE was not tested for this species.

### Discussion

Adjustment of photosynthetic capacity in response to elevated CO<sub>2</sub> was demonstrated for the two C<sub>3</sub> species, *Bromus* and *Achnatherum*, and allocation of N within the plant differed with functional type. However, photosynthetic capacity was not lower and patterns of N distribution did not change at elevated CO<sub>2</sub> for the C<sub>4</sub> grass *Pleuraphis*, even though net CO<sub>2</sub> assimilation rates were greater. While enhanced photosynthesis in C<sub>4</sub> grasses is typically attributed to indirect CO<sub>2</sub> effects on improved water relations (Rogers et al. 1983; Knapp et al. 1993; Owensby et al. 1993), pre-dawn water potentials were not statistically different between CO<sub>2</sub> treatments for *Pleuraphis* during this study (see Yoder et al. 2000). Thus, other factors related to the type of decarboxylating enzyme in the bundle sheath cells (LeCain and Morgan 1998) or taxonomic origin (Kellogg et al. 1999) may distinguish which C<sub>4</sub> grasses will respond to elevated CO<sub>2</sub>.

Patterns of A-c<sub>i</sub> response, carbon acquisition and whole plant N allocation of C<sub>3</sub> species in this study support the hypothesis that when the amount of photosynthetic enzymes is reduced as a result of acclimation to elevated CO<sub>2</sub>, "the resource-use efficiency of photosynthesis is enhanced and the pool of resources available for investment into limiting processes is greater over the life of the plant" (Sage 1994). The total increase in whole plant biomass for *Bromus* and *Achnatherum* under elevated CO<sub>2</sub> suggests that efficiency of N use in the leaf is increased by maintaining similar (*Achnatherum*) or higher (*Bromus*) rates of A<sub>net</sub>, and a repartitioning of N away from Rubisco to other N pools within the plant (Xu et al. 1994). Elevated CO<sub>2</sub> appears to redirect the investment of resources from leaves to reproductive tissues in *Bromus*, a short-lived species whose life history strategy is defined by the production of many

offspring at the expense of belowground allocation. However, under elevated CO<sub>2</sub>, the associated investment of photosynthate into reproduction may result in reduced seed quality or seedling performance (Huxman et al. 1998b, 1999, 2001). Therefore, *Bromus* will benefit from the down-regulation response if the more abundant seed production under elevated CO<sub>2</sub> is great enough to outweigh the reduced seed quality and seedling performance.

Greater allocation belowground at elevated CO<sub>2</sub> should ensure future growth and survivorship for *Achnatherum* in arid environments where the availability of water and nutrients in the rhizosphere is ephemeral and heterogeneously distributed. *Achnatherum* had similar net assimilation rates between CO<sub>2</sub> treatments and, as inferred from A-c<sub>i</sub> relationships, reduced the rate of maximum carboxylation by Rubisco while increasing tissue biomass under elevated CO<sub>2</sub>. N that is conserved and allocated away from photosynthesis could be invested in processes belowground, which in turn may help capture limiting resources and enhance growth and survival. Fine root production enhances resource acquisition but at the potential cost of greater root turnover rates (Persson 1982). As reported for this experiment in a companion paper, *Achnatherum* increased total root mass under elevated CO<sub>2</sub>, but neither root surface area nor root respiration measurements were significantly affected by CO<sub>2</sub> treatment (Yoder et al. 2000). However, N uptake on a whole root-system basis (NO<sub>3</sub> + NH<sub>4</sub> uptake capacity × root biomass) was positively influenced by elevated CO<sub>2</sub> for *Achnatherum* after anthesis. The investment of proportionately greater root biomass under an elevated CO<sub>2</sub> environment, resulting in greater uptake of N by the whole root system, could place *Achnatherum* at a competitive advantage compared with species that do not increase root-system N uptake capacity in the Mojave Desert.

Plants grown at elevated CO<sub>2</sub> that down-regulate photosynthesis may allocate N away from photosynthetic enzymes such as Rubisco toward more limited processes within the plant (Xu et al. 1994). However, we recognize that changes in N status within the leaf should be interpreted cautiously with regard to changes in specific leaf area (SLA). Leaves of *Bromus* had lower leaf N concentrations and reduced V<sub>Cmax</sub> under elevated CO<sub>2</sub>. SLA was unchanged, but NLA (N per unit leaf area) was lower under elevated CO<sub>2</sub>. Thus, *Bromus* shifted N away from leaves, and in the case of this short-lived annual species, allocated N toward reproduction. *Achnatherum* also demonstrated both lower leaf N concentration and V<sub>Cmax</sub> under elevated CO<sub>2</sub>. However, SLA for *Achnatherum* was decreased in plants grown at elevated CO<sub>2</sub> so we cannot discount that lower V<sub>Cmax</sub> arose due to carbohydrate accumulation (Bazzaz 1990; Wong 1990, Kuehny et al. 1991; Rogers et al. 1996; den Hertog et al. 1998) or changes in leaf thickness and number of cell layers in the leaf (Thomas and Harvey 1983).

Down-regulation of photosynthesis in C<sub>3</sub> species grown at elevated CO<sub>2</sub> may also reflect N deficiency (Drake et al. 1997), accelerated plant age (Coleman et al. 1993), or reduced uptake capacity of N (BassiriRad et al. 1997). As stated previously, no visible symptoms of N deficiency were detected. Plant age also does not fully explain lower N concentration at elevated CO<sub>2</sub> because leaf N expressed on a leaf area basis (NLA) did not show a significant interaction between CO<sub>2</sub> treatment and sampling date for any of the species examined. In this study, the ability of roots to take up N was unaffected by elevated CO<sub>2</sub> for both C<sub>3</sub> species at anthesis; uptake of NO<sub>3</sub> in *Achnatherum* and NH<sub>4</sub> in *Bromus* at elevated CO<sub>2</sub> was reduced during the seed fill stage only (Yoder et al. 2000).

Reduced uptake of N does not fully explain why leaves had lower N at earlier sampling dates. Therefore, N deficiency, early onset of senescence and reduced N uptake at elevated CO<sub>2</sub> did not appear to play a major role in down-regulation of photosynthesis for *Bromus* and *Achnatherum*. Thus, the reallocation of N away from photosynthesis best explains the down-regulation response to elevated CO<sub>2</sub>, at least for *Bromus*, in this study.

Our results suggest that photosynthetic down-regulation in a world with greater atmospheric CO<sub>2</sub> concentrations influences species differentially based on their pattern of internal resource partitioning. For example, our results are consistent with predictions that downward adjustment of Rubisco and N investment for photosynthesis in the two Mojave Desert C<sub>3</sub> grass species will increase whole plant performance in an elevated CO<sub>2</sub> environment, whereas Rubisco, N investment, and hence plant growth of C<sub>4</sub> perennial species is expected to change little as atmospheric CO<sub>2</sub> continues to rise. Differences among functional types in the use and internal adjustment of resources such as N will potentially influence fecundity and survival among individual plants. In turn, these differences may have major implications for species interactions, community assembly and ecosystem processes in the future as atmospheric CO<sub>2</sub> concentrations continue to rise.

### Acknowledgements

We thank numerous people who participated in this study and assisted with its success: Dianne Stortz-Lintz maintained the CO<sub>2</sub> treatments throughout the duration of the experiment. Vickie Longozo, Robin Graham, Julie Allen, Hide Nakashima, Alan Kirk, Laura Maragni and Craig Biggart helped harvest and sort all plant tissues, and conducted many hours of tedious weighing, grinding and analyzing plant tissues. Research was supported in part by the US Department of Energy (Grant #DE-FG03-96ER62292), National Science Foundation (Grant #IBN-9808753), US Geological Survey-Western Ecological Research Center, and the Nevada Agricultural Experiment Station (NAES publication number XXX).

## References

Acock B. and Pasternak D. 1986. Effects of CO<sub>2</sub> concentration on composition, anatomy and morphology of plants. In Enoch H. Z. and Kimball B. A. (eds.), Carbon dioxide enrichment of greenhouse crops. II. Physiology, yield and economics, CRC Press, Boca Raton, FL, USA, pp. 41-52.

Arp W. J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated CO<sub>2</sub>. *Plant, Cell and Environment* 14: 869-875.

Arp W. J. and Drake B. G. 1991. Increased photosynthetic capacity of *Scirpus olneyi* after 4 years of exposure to elevated CO<sub>2</sub>. *Plant, Cell and Environment* 14: 1004-1008.

Bassirirad H., Reynolds J. F., Virginia R. A. and Brunelle M. H. 1997. Growth and root NO<sub>3</sub> and PO<sub>4</sub> uptake capacity of three desert species in response to atmospheric CO<sub>2</sub> enrichment. *Australian Journal of Plant Physiology* 24: 353-358.

Bazzaz F.A. 1990. The response of natural ecosystems to the rising global CO<sub>2</sub> levels. *Annual Review of Ecology and Systematics* 21: 167-196.

Box G. E. P. and Cox D. R. 1964. An analysis of transformations. *Journal of the Royal Statistical Society B* 26: 211-243.

Coleman J. S., McConaughay K. D. M. and Bazzaz F. A. 1993. Elevated CO<sub>2</sub> and plant nitrogen-use: is reduced tissue nitrogen concentration size-dependent? *Oecologia* 93: 195-200.

D'Agostino R. B. 1971. An omnibus test of normality for moderate and large samples. *Biometrika* 57:679-681.

DeFalco L. A. 2003. Physiological ecology of the invasive annual grass *Bromus madritensis* ssp. *rubens* and its interaction with native Mojave Desert species. Ph.D. dissertation, University of Nevada, Reno. 131 pp.

Den Hertog J., Stulen I., Posthumus F. and Poorter H. 1998. Interactive effects of growth-limiting N supply and elevated atmospheric CO<sub>2</sub> concentration on growth and carbon balance of *Plantago major*. *Physiologica Plantarum* 103: 451-460.

Drake B. J., González-Meler M. A. and Long S. P. 1997. More efficient plants: a consequence of rising atmospheric CO<sub>2</sub>? *Annual Review of Plant Physiology and Plant Molecular Biology* 48: 609-639.

Farquhar G. D., Von Caemmerer S. and Berry J. A. 1980. A biochemical model of photosynthetic CO<sub>2</sub> assimilation in leaves of C3 species. *Planta* 149: 78-90.

Gutteridge S. and Key A. J. 1985. The significance of ribulose-1,5-bisphosphate carboxylase in determining the effects of environment on photosynthesis and photorespiration. In Barber J. and Baker N. R. (eds.), *Photosynthetic mechanisms and environment*, Elsevier, Amsterdam, pp. 259-285.

Hardman L. L. and Brun W. A. 1971. Effect of atmospheric carbon dioxide enrichment at different developmental stages on growth and yield components of soybeans. *Crop Science* 11: 886-888.

Harley P. C. and Sharkey T. D. 1991. An improved model of C<sub>3</sub> photosynthesis at high CO<sub>2</sub>: reversed O<sub>2</sub> sensitivity explained by lack of glycerate re-entry into the chloroplast. *Photosynthesis Research* 27: 169-178.

Harley P. C., Thomas R. B., Reynolds J. F. and Strain B. R. 1992. Modeling photosynthesis of cotton grown in elevated CO<sub>2</sub>. *Plant, Cell and Environment* 15: 271-282.

Havelka U. D., Ackerson R. C., Boyle M. G. and Wittenbach V. A. 1984a. CO<sub>2</sub> - enrichment effects on soybean physiology. I. Effects of long-term CO<sub>2</sub> exposure. *Crop Science* 24: 1146-1150.

Havelka U. D., Wittenbach V. A. and Boyle M. G. 1984b. CO<sub>2</sub>-enrichment effects on wheat yield and physiology. *Crop Science* 24: 1164-1168.

Hunt R., Hand D. W., Hannah M. A. and Neal A. M.. 1991. Responses to CO<sub>2</sub> enrichment in 27 herbaceous species. *Functional Ecology* 5: 410-421.

Huxman T. E., Hamerlynck E. P., Moore B. D., Smith S. D., Jordan D. N., Zitzer S. F., Nowak R. S., Coleman J. S. and Seemann J. R. 1998a. Photosynthetic down-regulation in *Larrea tridentata* exposed to elevated atmospheric CO<sub>2</sub>: interaction with drought under glasshouse and field (FACE) exposure. *Plant, Cell and Environment* 21: 1153-1161.

Huxman T. E., Hamerlynck E. P., Jordan D. N., Salsman K. J. and Smith S. D. 1998b. The effects of parental CO<sub>2</sub> environment on seed quality and subsequent seedling performance in *Bromus rubens*. *Oecologia* 114: 202-208.

Huxman T. E., Hamerlynck E. P. and Smith S. D. 1999. Reproductive allocation and seed production in *Bromus madritensis* ssp. *rubens* at elevated atmospheric CO<sub>2</sub>. *Functional Ecology* 13: 769-777.

Huxman T. E. and Smith S. D. 2001. Photosynthesis in an invasive grass and native forb at elevated CO<sub>2</sub> during an El Niño year in the Mojave Desert. *Oecologia* 128: 193-201.

Huxman T. E., Charlet T. N., Grant C. and Smith S. D. 2001. The effects of parental CO<sub>2</sub> and offspring nutrient environment on initial growth and photosynthesis in an annual grass. *International Journal of Plant Science* 162: 617-623.

Jordan D. N., Zitzer S. F., Hendrey G. R., Lewin K. F., Nagy J., Nowak R. S., Smith S. D., Coleman J. S. and Seemann J. R. 1999. Biotic, abiotic and performance aspects of the Nevada Desert Free-Air CO<sub>2</sub> Enrichment (FACE) Facility. *Global Change Biology* 5: 659-668.

Kellogg E. A., Farnsworth E. J., Russo E. T. and Bazzaz F. 1999. Growth responses of C<sub>4</sub> grasses of contrasting origin to elevated CO<sub>2</sub>. *Annals of Botany* 84: 279-288.

Knapp A. K., Hamerlynck E. P. and Owensby C. E. 1993. Photosynthetic and water relations responses to elevated CO<sub>2</sub> in the C<sub>4</sub> grass *Andropogon gerardii*. *International Journal of Plant Science* 154: 459-456.

Ku M. S. B., Schmitt M. R. and Edwards G. E. 1979. Quantitative determination of RuBP carboxylase-oxygenase protein in leaves of C<sub>3</sub> and C<sub>4</sub> plants. *Journal of Experimental Botany* 30: 89-98.

Kuehny J. S., Peet M. M., Nelson P. V. and Willits D. H.. 1991. Nutrient dilution by starch in CO<sub>2</sub>-enriched *Chrysanthemum*. *Journal of Experimental Botany* 42: 711-716.

LeCain D. R. and Morgan J. A. 1998. Growth, gas exchange, leaf nitrogen and carbohydrate concentrations in NAD-ME and NADP-ME C<sub>4</sub> grasses grown in elevated CO<sub>2</sub>. *Physiologia Plantarum* 102:297-306.

Osmond C. B., Winter K. and Ziegler H. 1982. Functional significance of different pathways of CO<sub>2</sub> fixation in photosynthesis. In Lange O. L., Osmond C. B. and

Ziegler H. (eds.), *Physiological plant ecology II. Water relations and carbon assimilation*, Springer-Verlag, Berlin, Germany, pp. 479-547.

Owensby C. E., Coyne P. I. and Auen L. M. 1993. Nitrogen and phosphorus dynamics of a tallgrass prairie ecosystem exposed to elevated carbon dioxide. *Plant, Cell and Environment* 16: 843-850.

Pearcy R. W. and Björkman O. 1983. In Lemon, E. R. (ed.), *CO<sub>2</sub> and plants*, American Association for the Advancement of Science, Washington, D. C., USA, pp. 65-105.

Persson A. 1982. The importance of fine roots in boreal forests. In Bohm, W., Kutschera L. and Lichtenegger E. (eds.), *Root ecology and its practical application, international symposium*, Bundesanstalt Gumpenstein, Indning, Austria pp. 595-608

Rogers G. S., Milham P. J., Thibaud M.-C. and Conroy J. P. 1996. Interactions between rising CO<sub>2</sub> concentration and nitrogen supply in cotton. I. Growth and leaf nitrogen concentration. *Australian Journal of Plant Physiology* 23: 119-125.

Rogers H. H., Bingham G. E., Cure J. D., Smith J. M. and Surano K. A. 1983. Responses of selected plant species to elevated carbon dioxide in the field. *Journal of Environmental Quality* 12: 569-574.

Sage R. F., Pearcy R. W. and Seemann J. R. 1987. The nitrogen use efficiency of C<sub>3</sub> and C<sub>4</sub> plants. III. Leaf nitrogen effects on the activity of carboxylating enzymes in *Chenopodium album* (L.) and *Amaranthus retroflexus* (L.). *Plant Physiology* 85: 355-359.

Sage R. F., Sharkey T. D. and Seemann J. R. 1989. Acclimation of photosynthesis to elevated CO<sub>2</sub> in five C<sub>3</sub> species. *Plant Physiology* 89: 590-596.

Sage R. F. 1990. A model describing the regulation of ribulose-1,5-bisphosphate carboxylase, electron transport and triosephosphate use in response to light and CO<sub>2</sub> in C<sub>3</sub> plants. *Plant Physiology* 94: 1728-1734.

Sage R. F. 1994. Acclimation of photosynthesis to increasing atmospheric CO<sub>2</sub>: The gas exchange perspective. *Photosynthesis Research* 39: 351-368.

Schmitt M. R. and Edwards G. E. 1981. Photosynthetic capacity and nitrogen use efficiency of maize, wheat, and rice: a comparison between C<sub>3</sub> and C<sub>4</sub> photosynthesis. *Journal of Experimental Botany* 32: 459-466.

Sharkey T. D. 1985. Photosynthesis in intact leaves of C<sub>3</sub> plants: physics, physiology and rate limitations. *Botanical Review* 51: 53-105.

Thomas J. F. and Harvey C. N. 1983. Leaf anatomy of four species grown under continuous CO<sub>2</sub> enrichment. *Botanical Gazette* 144: 303-309.

Thomas R. B. and Strain B. R. 1990. Root restriction as a factor in photosynthetic acclimation of cotton seedlings grown in elevated carbon dioxide. *Plant Physiology* 96: 627-634.

Von Caemmerer S. and Farquhar G. D. 1981. Some relationships between the biochemistry of photosynthesis and the gas exchange of leaves. *Planta* 153: 376-387.

Wolfe D. W., Gifford R. M., Hilbert D. and Luo Y. 1998. Integration of photosynthetic acclimation to CO<sub>2</sub> at the whole-plant level. *Global Change Biology* 4: 879-893.

Wong S. C. 1990. Elevated atmospheric partial pressure of CO<sub>2</sub> and plant growth. II. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. *Photosynthesis Research* 23: 171-180.

Xu D.-Q., Gifford R. M. and Chow W. S.. 1994. Photosynthetic acclimation in pea and soybean to high atmospheric CO<sub>2</sub> partial pressure. *Plant Physiology* 106: 661-671.

Yoder C. K., Vivin P., DeFalco L. A., Seemann J. R. and Nowak R. S. 2000. Root growth and function of three Mojave Desert grasses in response to elevated atmospheric CO<sub>2</sub> concentration. *New Phytologist* 145: 245-256.

Table 1. *P*-values and means (n=6,  $\pm$  SE) of leaf N concentration ([N], mg N g<sup>-1</sup> DW), N per unit leaf area (NLA, mmol N m<sup>-2</sup>), and specific leaf area (SLA, cm<sup>2</sup> g<sup>-1</sup>) for plants grown at ambient (360  $\mu$ mol mol<sup>-1</sup>) and elevated (1000  $\mu$ mol mol<sup>-1</sup>) atmospheric CO<sub>2</sub> concentrations.

|     |                        | <i>Bromus</i>  |                 | <i>Achnatherum</i> |                 | <i>Pleuraphis</i> |                 |
|-----|------------------------|----------------|-----------------|--------------------|-----------------|-------------------|-----------------|
|     | <i>Date</i>            | <i>Ambient</i> | <i>Elevated</i> | <i>Ambient</i>     | <i>Elevated</i> | <i>Ambient</i>    | <i>Elevated</i> |
| [N] | 1                      | 19.0 (1.4)     | 12.7 (0.4)      | 22.5 (1.2)         | 16.3 (0.5)      | 19.1 (2.0)        | 15.6 (1.7)      |
|     | 2                      | 7.9 (0.3)      | 4.7 (0.2)       | 10.5 (0.1)         | 7.4 (0.4)       | 10.6 (1.4)        | 10.6 (1.3)      |
|     | 3                      | 6.4 (0.9)      | 5.2 (0.8)       | 7.5 (0.8)          | 5.3 (0.7)       | 7.4 (0.8)         | 9.3 (1.4)       |
|     | CO <sub>2</sub>        |                | < 0.01          |                    | < 0.01          |                   | 0.65            |
|     | Date                   |                | < 0.01          |                    | < 0.01          |                   | < 0.01          |
|     | CO <sub>2</sub> × date |                | 0.02            |                    | 0.07            |                   | 0.20            |
| NLA | 1                      | 53 (6)         | 42 (4)          | 193 (12)           | 157 (4)         | 140 (17)          | 130 (22)        |
|     | 2                      | 29 (1)         | 15 (1)          | 136 (19)           | 98 (6)          | 97 (18)           | 106 (21)        |
|     | 3                      | 24 (5)         | 20 (5)          | 114 (11)           | 87 (9)          | 76 (17)           | 54 (6)          |
|     | CO <sub>2</sub>        |                | < 0.01          |                    | < 0.01          |                   | 0.59            |
|     | Date                   |                | < 0.01          |                    | < 0.01          |                   | < 0.01          |
|     | CO <sub>2</sub> × date |                | 0.54            |                    | 0.88            |                   | 0.67            |
| SLA | 1                      | 260 (15)       | 220 (16)        | 84 (3)             | 74 (3)          | 99 (3)            | 91 (11)         |
|     | 2                      | 198 (14)       | 218 (3)         | 56 (2)             | 55 (3)          | 81 (5)            | 78 (14)         |
|     | 3                      | 199 (14)       | 98 (45)         | 46 (2)             | 43 (2)          | 75 (10)           | 125 (14)        |
|     | CO <sub>2</sub>        |                | 0.62            |                    | 0.03            |                   | 0.15            |
|     | Date                   |                | 0.02            |                    | < 0.01          |                   | 0.15            |
|     | CO <sub>2</sub> × date |                | 0.11            |                    | 0.25            |                   | 0.02            |

### Figure legends

**Fig. 1.** Mean ( $\pm$  SE, n=3) net CO<sub>2</sub> assimilation rate at growth CO<sub>2</sub> concentration (A<sub>net</sub>) and maximum rate of carboxylation efficiency of Rubisco (V<sub>cmax</sub>) for three grasses exposed to 360 (clear bars) and 1000  $\mu\text{mol mol}^{-1}$  CO<sub>2</sub> (hatched bars). P values from 2-factor ANOVAs are shown in parentheses.

**Fig. 2.** Mean (n=6,  $\pm$  SE) plant mass (g ind<sup>-1</sup>) and total tissue N (mg N ind<sup>-1</sup>) for three grass species grown at 360 and 1000  $\mu\text{mol mol}^{-1}$  CO<sub>2</sub> (note different ordinate scales among species). P values from 2-factor ANOVAs are shown in parentheses.

**Fig. 3.** Mean ( $\pm$  SE, n = 6) root:shoot ratio and reproductive effort at final harvest (RE) for *Bromus* (a.), *Achnatherum* (b.) and *Pleuraphis* (c.) exposed to 360 (clear bars) and 1000  $\mu\text{mol mol}^{-1}$  CO<sub>2</sub> (hatched bars). Note different ordinate scales between C<sub>3</sub> species and *Pleuraphis*. *Pleuraphis* did not produce flowers, and thus RE is not analyzed. P-values from 2-factor ANOVAs are shown in parentheses.

Figure 1

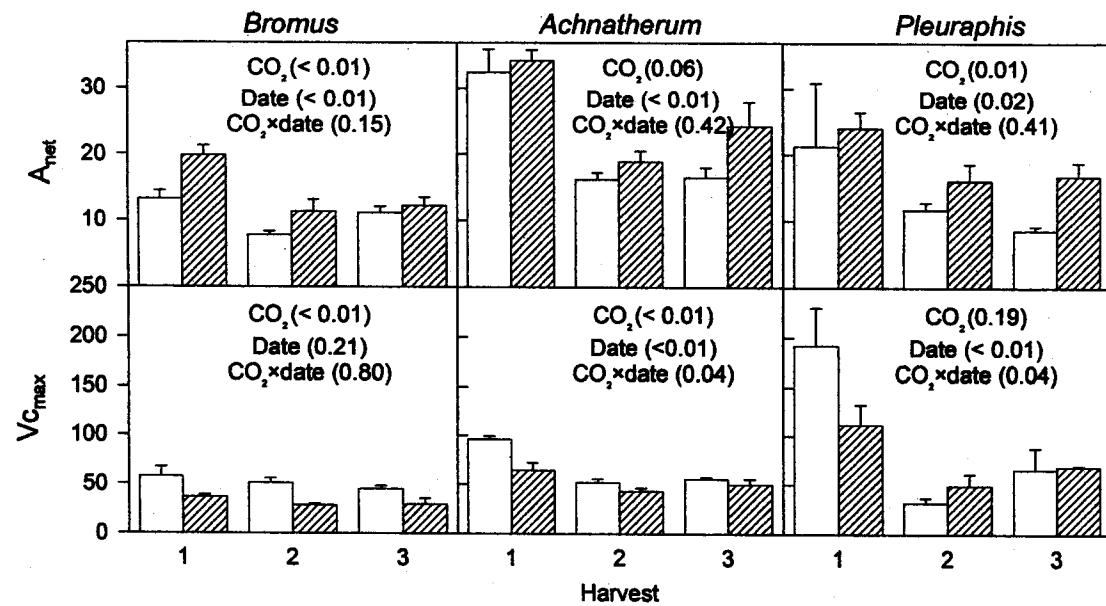



Figure 2

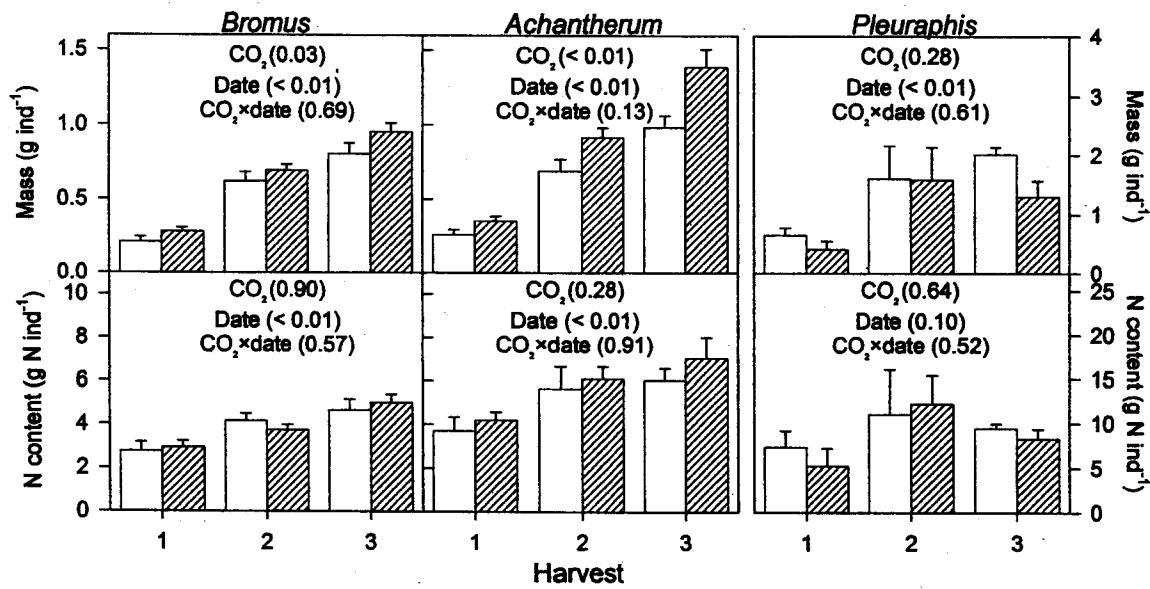
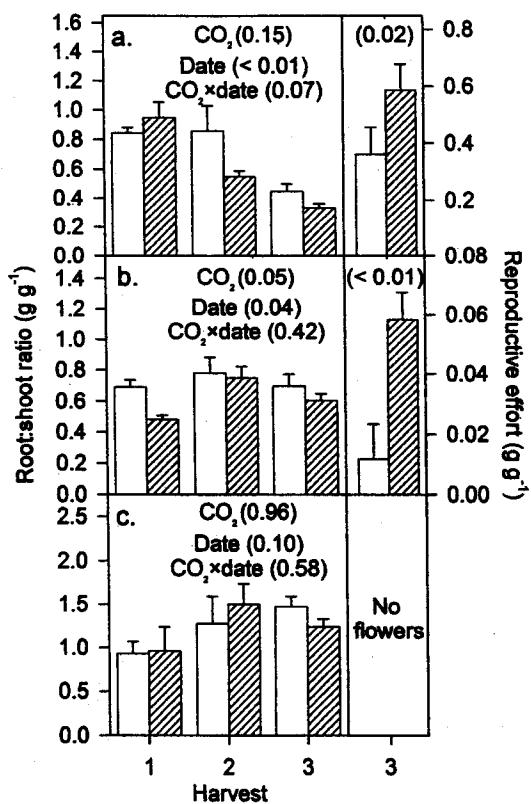




Figure 3

