

Tech-X Corporation www.txcorp.com

5621 Arapahoe Ave, Suite A

Boulder, CO 80303
phone: 303-448-0727

fax: 303-448-7756

SBIR Phase I Final Progress Report

 July 11, 2005

An Abstract Job Handling Grid Service for Dataset Analysis

Contract: DE-FG02-04ER84095

David A. Alexander, Principle Investigator
alexanda@txcorp.com

303-448-7751

Abstract

For Phase I of the Job Handling project, Tech-X has built a Grid service for processing
analysis requests, as well as a Graphical User Interface (GUI) client that uses the service.
The service is designed to generically support High-Energy Physics (HEP) experimental
analysis tasks. It has an extensible, flexible, open architecture and language. The service
uses the Solenoidal Tracker At RHIC (STAR) experiment as a working example. STAR
is an experiment at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven
National Laboratory (BNL). STAR and other experiments at BNL generate multiple
Petabytes of HEP data. The raw data is captured as millions of input files stored in a
distributed data catalog. Potentially using thousands of files as input, analysis requests are
submitted to a processing environment containing thousands of nodes. The Grid service
provides a standard interface to the processing farm. It enables researchers to run large-
scale, massively parallel analysis tasks, regardless of the computational resources
available in their location.

System Description

The major components of the system software are the Grid service and the GUI client.
All the components are written in Java, using Globus Toolkit 4.0, the industry standard
Grid implementation, as the service framework and communications layer. Globus
provides a great deal of standard functionality, including a Simple Object Access
Protocol (SOAP) message layer. All communication between the client and server occurs
via SOAP messages, which are Extensible Markup Language (XML) documents
serialized and sent over Hyper-Text Transfer Protocol (HTTP).

The GUI client is a user-friendly interface for creating and running Grid service requests.
It is built using standard Java Swing components, and so may be run on virtually any
platform. Requests are written in the Request Definition Language (RDL). RDL is a
extensible, human-readable, open language. Its format is specified by a standard XML
schema. The client obtains the schema from the service, uses it to generate and validate a
RDL request, and submits it to the service.

The RDL handling service (RDLService) runs within a Globus Web Service Resource
Framework (WSRF) container; essentially, an application server. RDLService stores,
runs, and monitors user requests. It uses the pre-existing STAR Scheduler to submit
requests to the BNL processing farm. The Scheduler is a highly configurable job engine,
able to process requests using a variety of policies, dispatchers, and queues. The
RDLService also is capable of accepting requests in Job Description Language (JDL), the
predecessor to RDL. Additional schemas may be added to the service, permitting the
definition of additional request languages.

The main software components and their relationships are shown in Figure 1. Multiple
clients can connect simultaneously, each having a separate instance of the RDLService.
The service instances share a common, persistent state object, which stores and manages
user requests. The service state also creates and manages instances of the Scheduler as
requests are run.

Figure 1: The main RDL client and service components.

Usage Example

To illustrate the functionality of the RDL service and client, a usage example is helpful.
This example outlines the typical usage of the service by one of BNL's remote
collaborators.

A researcher is designing an experimental analysis of a subset of the STAR data. He or
she picks an input dataset, which includes both files on disk and files extracted from a
data catalog. An application will be used to process the dataset. The application can be a
standard program or script, or custom software. Tasks also are defined for the application.
In this case, the researcher's application is Java, and the task is to run an algorithm
contained in a Java class. The researcher defines processing parameters, such as the
number of processing nodes to use (i.e., degree of parallelization), time and memory
constraints, and the output handling. Once the analysis is outlined, the researcher uses a
client tool to create the request. The GUI client's user-friendly point-and-click interface
can be used to define the request, or the request XML may be manually edited using a
text or XML editor.

After creating the request, the researcher uses the client to connect to the RDL service.
The service's address is a standard Universal Resource Identifier (URI), so it is accessible
from anywhere on the Internet. The service obtains and validates the user's credentials, a
US Department of Energy (DOE) security certificate. Once authorized, the user sends the
RDL request to the service. The service validates the request, stores it, and submits it to
the STAR Scheduler. The Scheduler dispatches the request to a queue and runs it. As the
request runs, the service monitors its status. The user may close the client and reconnect
later to check the status of their request, which may take seconds or hours, depending on
system load, queue status, and the size of the job. When the request finishes, the service
records its completion state. The researcher can then study the results and perform further
analysis. He or she also may modify and re-submit the original request.

Development of RDL

A key piece of this project is the development of Request Definition Language (RDL).

GUI Client

The GUI client is a tool both for creating requests and for working with the service. The
GUI interface permits request input using either standard point-and-click graphical
controls, or direct editing of the request XML. Requests can be saved in local files and
edited without a service connection. The user also can use the client to connect to the
service and run, monitor, and control requests on the Grid.

The request editing interface is a set of panes accessed by tab controls. When the client is
started, the XML Text Editor pane appears (Figure 2.) It displays the XML content of the
current RDL request. The user can manually edit the XML, or use the graphical controls
on the other panes to modify the request. The File menu is used to load and save RDL
files.

The text area below the XML Text Editor pane is separate from the tabbed panes, and is
used to display system messages such as service status. At the bottom of the GUI client
window, a status line displays the service connection state.

Figure 2: The XML Text Editor pane, showing a request's XML source.

The Request Editor pane is used to specify the top-level request attributes such as name,
description, and output handling (Figure 3.)

Figure 3: The Request Editor pane.

The Application pane lets the user specify the name of the application to be run on the
Grid nodes (Figure 4). Currently it has a single control allowing selection of an
application name, such as 'csh', 'root4star', or 'java'. Future versions could set additional
application attributes, such as installation location and version information.

Figure 4: The Application Editor pane.

The Task Editor pane lets the user specify a task for the application (Figure 5). The
nature of a task depends on the application, but it could be an embedded script, a script
name, a Java class file name, or a set of arguments. The task can set the system streams
STDIN, STDOUT, and STDERR, allowing all task output to be redirected to a specific
file.

Figure 5: The Task Editor pane.

A request has an input dataset. The user specifies the dataset on the Dataset Editor pane
(Figure 6.) A dataset may be based on a catalog query or a list of file names.

Figure 6: The Dataset Editor pane.

The Resource Editor pane (Figure 7) allows the user to specify processing resources and
parameters such as time, memory limits, and number of input or output files.

Figure 7: The Resource Editor pane.

Using the Service menu, the user can connect to the service, submit the current request,
and open the Monitor window (Figure 8). The Monitor shows the service's current set of
requests and their status, and allows the user to stop or delete requests.

Figure 8: The Monitor window, used to check service status and manage requests.

