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Introduction 

Most finite-difference methods of modeling dispersion have been shown 

to introduce numerical pseudodiffusion, which can be much larger than the true 

diffusion in the fluid flow and can even generate negative values in the pre­

dicted pollutant concentrations. 
1 

Two attempts to minimize the effect of pseudo­

diffusion are particularly notable. In the first, Sklarew
2 

develops the particle­

in-cell (PIC) method. In this method pollutant concentration is represented by 

the number of particles of an assigned unit pollutant strength. The particles 

are tracked in a Lagrangian frame, and their displacements during each time 

step are found by multiplying the time increment by the sum of' the mean wind 

and diffusive velocities. The diffusive velocity is computed from the turbulent 
/ 

eddy diffusi vity, the pollutant concentration, and the concentration gradient. 

The concentration in each grid volume is then calculated by dividing the total 

pollutant, represented by the particles present in the grid volume, by the gdd 

volume. 

Egan u.nd Mahoney
3 

developed a differen~ type of numerical scheme. At 

each time step, after computing the Lagrangian tra.m;purL, Lhey cctlculate the 

first and the second moments of the pollutant concentration distribution in flach 

of the grid volumes. The moments are then used to construct a weighting . . . . 
function for distributing the pollutant from the Lagrangian grid volume to its 

surrounding Eulerian grids I such that the first and second moments remain the 

same after the distribution. 

The present paper replaces Sklarew's numerous particles in a grid vol­

ume, and parameterizes subgrid-scale concentration with a Gaussian puff, and 

.thus avoids the computation of the moments, as in the model of Egan and 

Mahoney
3 

by parameterizing subgrid-scale concentration with a Guassian puff •. 
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Description of the Model 

For simplicity in demonstrating the scheme, a one-dimensional diffusion 

equation will be used, 1. e., 

ac + u ac = _Q. (D ac } 
at ax .. ·ax ax I 

(1} 

where C is concentration, t is time, x is the spatial coordinate, u is the mean 

wind velocity, and Dis eddy diffusivity. For an incompressible flow, the 

above equation can be written as 

ac + a (u + g } c = 0 at ax (2) 

with 
t = _ D ac 
s c ax • (3} 

Equation 2 implies that the pollutant elements in the flow can be considered to 

be traveling in a Lagrangian frame with an effective velocity of u + £ , as sug­

gested by Sklarew. 
2 

Cons·equently, if a volume of pollutant originally cor­

responding to an Eulerian grid volume is followed in a Lagrangian frame, the 

total mass is conserved and the problems of numerical instability and negative 

concentration are ea!3ilY avoided. Figure 1 (a} shows the change experienced 

by the pollutant in a grid volume in a conventional model. The pollutant con­

centration is uniform in the shaded grid volume. For e~ch time step, the grid 

volume is advected for the distance of uilt, and the boundary of the grid volume 

is expanded by the diffusive velocities £ + and £- on the right and the left sides 

of the volume, respectively. In terms of a finite-difference scheme, the dif­

fusive velocities can be written as 

D.+ D. 1 1 1+ 

(c. + c.+1}ilx 
1 1 . 

Di + Di-1 
£,= 

1 (C. +C. 1}~ 1 1-

(4} 

(C. - C. 
1

) • 
1 1-

(5} 

Egan and Mahoney3 compute the first and second moments of the Lagrangian 

grid volume and then distribute the pollutant in the Lagrangian grid volume 

back to the Eulerian grid volumes in such a manner that these moments are 
. . 
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(a) THE CONVENTIONAL MODEL 

AT t 

(b) THE PRESENT MODEL 

AT t 

u = a6x 

AT t + 6t 

AT t + 6t 

FIG. 1. --Graphical representa­
tions of the transport processes 
of (a) conventional and (b) the · 
present models. Dashed lines 
are advection without diffusion, 
shaded areas are total concen­
trations, and a is a standard 
deviation of Guassian distribu­
tion. (ANL neg. 149-76-176) 

preserved. In addition to a uniform concentration distribution over the grid 

volume, other distribution ~unctions ,capable of approxi~ating tJ:leir criteria 

could also be used. An obvious candidate is a Gaussian distribution function, 

which has the advantage that, if one uses it a.s a weighting function to distri­

bute the pollutant in the Lagrangian puff to its surrounding,· the rroments will 

automatically be preserved •. Also, the Gaussian distribution approaches an 

asymptotic distribution function of the pollutant in the Lagrangian volume if 

the time increment in. the numerical integration becomes very large and if there 

is no pollutant surrounding the Lagrangian volume. The proposed scheme of 

the present model is illustrated in Figure 1 (b). The distribution ±unctions of 

the pollutant concentration for an Eulerian 'grid volume (P 1
) and its Lagrangian 

counterpart (P) are 

exp 

0 

for lx - x.j $ .6x 
.J. 1 

otherwise 
(6) 



l [
x1 -(u~t+x.) 

exp -0.5 a~+(3(g;-+1s~)~t 
1 1 

2 

] ~for l=.i-1, i and i+1 

0 otherwise (7) 

where a and (3 are constants relating the standard deviation of the Guassian 

distribution to the grid length and the displacement due to diffusion. These 

constants will be determined by calibrating the model against the analytical 

solution of pollutant dispersion from a continuous point source in a uniform 

flow. The time increment, ~t, should be determined with the criterion that the 

total displacement of pollutant element in one time step is smaller than the grid 

length as required in most of the numerical simulations.· This constraint 

simplified computations by distributing the pollutant in the Lagrangian puff to 

only a few of the Eulerian grid points which surround the Eulerian grid point 

from which the Lagrangian puff originated. The pollutant concentration from 

the Lagrangian puff corresponding to the Eulerian grid is distributed according 

to the Gaussian weighting function to the Eulerian grid points i-1, i, and i+1 

by 
t 

C (x.), 
1 

for ftr::. i - 1, i and i + 1. 

(8) 

·The final pollutant concentration at a point of interest, x
1

, is simply the sum 

of the contribution from the Lagrangian puffs, i. e. , 
N . 

ct+l (x) = L: ~ct+1 (xn, x.) 
f i=1 X 1 

for 1= 1, ••• , N , (9) 

where N is the total number of Eulerian grid points. 

The results of the numerical prediction for various combinations of a 

and (3 show that the set a = 0. 5 and (3 = 0. 6 gives the best approximation to the 

analytical solution. The relative numerical and analytical concentration pro­

files at various time steps of the integration are shown in Figure 2. Since 

the plume is symmetric about its center line, only half of the profiles are 

presented. The results show that excellent agreement has been achieved. 
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FIG .• 2. --Comparison of the concentration profiles of the analytical results 
{solid) and the numerical predictions (open) of the optimal case (a, 13) = (0. 5,. 

· 0.6) at various time steps. {ANL neg. 149-76-177) 
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