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Introduction

Most finite-difference methods of modeling dispersion have been shown
to introduce numerical pseudodiffusion, which can be much larger than the true
diffusion in the fluid flow and can even generate negative values in the pre- '
dicted pollutant concentrations. 1 Two attempts to minimize the effect of pseudo-
diffusion are particularly notabie. In 1:_he first, SklarewZ develops the particle-
in-cell (PIC) method. In this method pollutant concentration is represented by
the number of partlcles of an assigned unit pollul:ant strength The particles
are tracked in a Lagrangian frame, and their dlsplacements during each time
step are found by multiplying the time increment by the sum of the mean wind
and diffusive velocities, The diffusive velocity is cemputed from the turbulent
eddy di’ffusivity, the pollutant concentration, and the concentration gradient.
Thel concentration in each 'grid volume is then calculated by dividing the total
pollutant, represented by the particles present in the grid volume, by the'grid
volume, 4

Egan and Mahoney3 developed a different type of numerical scheme. At
each time step, after computing the Lagrangian transport, they calculate the
first and the second moments of the pollutant concentration distribution in each
of the grid velumes. The rho’ments are then used to construct a weighting
function for distributing the pollutant from the Lagrangian grid volume to its
surreunding Eulerian grids, such thet the first and second moments remain the
same after the distribution.

The present paper replaces Sklarew's numerous particles in a grid vol-
ume, and parameterizes subgrid-scale concentration with a Gaussian puff, and
thus avoids the computation of the moments, as in the model of Egan and

3
Mahoney by parameterizing subgrid-scale concentration with a Guassian puff.,
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Description of the Model

For simplicity in demonstrating the scheme, a one-dimensional diffusion
equation will be used, i.e.,

8C , 8C _ 8 . oC
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where C is concentration, t is time, x is the spaf:ial coordinate, u is the mean
wind velocity, and D is eddy diffusivity. For an incompressible flow, the

above equation can be written as
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Equation 2 implies that thé pollutant elements in the flow can be considered to
be traveling in a Lagrangian frame with an effective velocity of u+§, as sug-
gested by Skla_rew. 2 Consequently, if a volume of pollutant originally cor-
responding to an Eulerian grid volume is folloWed in a Lagrangian frame, the
total mass is conserved and the problems of numerical instability and negative
cohcentration are ea_silfr avoided., Figure 1(a) shows the change experienced
by the pollutant in a grid volume in a conventional model. The pollutant con-
centration is uniform in the shaded grid volume. For each time step, the grid
volume is advected for the distance of uAt, and the boundary of the gfid:volume
is expanded by the diffusive velocities §+ and g- on the right and the left sides
of the volumé, respectively. In terms of a finite-difference scheme, the dif-

fusive velocities can be written as

+ Di N Di+1
g, = (C,-cC..) (4)
i (Ci + Ci+1)Ax i i+1
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i i-1 |
3 compute the first and second moments of the Lagrangian

Egan and Mahoney
grid volume and then distribute the pollutant in the Lagrangian grid volume

back to the Eulerian grid volumes inisuch a manner that these moments are
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(a) THE CONVENTIONAL MODEL

AT ¢ AT t + At ' FIG. 1.~-Graphical representa-
tions of the transport processes
l'_'"! of (a) conventional and (b) the -
+ + + ///.;-/; present models. Dashed lines
- : e 7227779 are advection without diffusion,
i- i i+ - el .
£ A €A1 shaded areas are total concen-
pl trations, and 0 is a standard

deviation of Guassian distribu-
tion. (ANL neg. 149-76-176)

(b) THE PRESENT MODEL
AT t AT t + At

N
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preserved. In addition to a uniform concentration distribution over the grid
volume, other distribution functions capable of approximating their criteria
could also be used. An obvious candidate is a Gaussian distribution function,
which has the advantage that, if one uses it as a weighting function to distri-
bute the pollutant in the Lagrangian puff to its surrounding, the moments will
automatically be preserved.. Also, the Gaussian distribution approaches an
asymptotic distribution function of the pollutant in the Lagrangian volume 1if
the time increment in.thé numerical intégration becomes very large and if there
is no péllutant surrounding the Lagrangian volume, The proposed scheme of
the present model is illustrated in Figure 1(b). The distribution tunctions of
the pollutant concentration for an Eulerian grid volume (P') and its Lagrangian
com_lntérpart (P) are 2 :
' o[ x, =, '
exp {-0.5 .————[ 1 for'x'—xiSAx
° aAX A |
P'(x 7 Xi) = :
0 - otherwise
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] zfor£=,i—1,iandi+1
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0 otherwise (7)

P‘Xl' xi) =

where o and B are constants relating the standard deviation of the Guassian
distribution to the grid length and the displacement due to diffusion. These
constants will be determined by calibrating the model against the analytical
solution of pollutant dispersion from a continuous point source in a uniform
flow. The time increment, At, should be determined with the Criterion that the
total displacement of pollutant element in one time step is smaller than thé grid
length as required in most of the numerical simulations.- This constraint
simplified computations by distributing the pollutant in the Lagrangian puff to
only a few of the Eulerian grid points which surround the Eulerian grid point
from which the Lagrangian puff o'riginated. The pollutant concentrqtion from |
~the Lagrangian puff corresponding to the Eulerian grid is distributed accordiné

to the Gaussian weighting function to the Eulerian grid points i-1, i, and i+1

oY t+1 Plx,x,) t :
AC (Xfxi)= 1 C (Xi)’ ’for{j=1—1,1andi+1. .
P(x.,x.) (8)
j=i-1 3 i : ,

The final pollutant concentration at a point of interest, x 2 is simply the sum

of the contribution from the Lagrangian puffs, i.e.,

R |
c™x)= Y ac™x,x) for 4=1,...,N , (9)
21 £ i

where N is the total number of Eulerian grid points.

The results of the numerical prediction for various combinations of a
and B show that the set « = 0.5 and B = 0.6 gives the best approximation to the
analytical solution. The relative numerical and analytical concentration pro-
files at various time steps of the integration are shown in Figure 2, Since
the plume is symmetric about its center line, only half of the profilés are

presented. The results show that excellent agreement has been achieved,
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FIG. 2,--Comparison of the concentration profiles of the analytical results
(solid) and the numerical predictions (open) of the optimal case (a,B) = (0.5, .
" 0.6) at various time steps. (ANL neg, 149-76-177)
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