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Abstract. We describe a numerical scheme to solve 3D Arbitrary Lagrangian-
Eulerian (ALE) hydrodynamics on an unstructured mesh using a discontinuous
Galerkin method (DGM) and an explicit Runge-Kutta time discretization. Upwind-
ing is achieved through Roe’s linearized Riemann solver with the Harten-Hyman
entropy fix. For stabilization, a 3D quadratic programming generalization of van
Leer’s 1D minmod slope limiter is used along with a Lapidus type artificial viscos-
ity. This DGM scheme has been tested on a variety of hydrodynamic test problems
and appears to be robust making it the basis for the integrated 3D inertial con-
finement fusion modeling code ICF3D. For efficient code development, we use C++
object oriented programming to easily separate the complexities of an unstructured
mesh from the basic physics modules. ICF3D is fully parallelized using domain de-
composition and the MPI message passing library. It is fully portable. It runs on
uniprocessor workstations and massively parallel platforms with distributed and
shared memory.

1 The ALE Hydrodynamics Equations

The motion of a compressible fluid is described by Euler’s equations along
with an equation of state (EOS). In an ALE code the computational mesh
x;, where 1 = 1,2, 3 describes the 3D space, can move in time t:
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where z? are the “Lagrangian” coordinates and V// is an arbitrarily specified
grid velocity. Euler’s equations stated in conservation form, follow the time
evolution of p (mass density), pv; (momentum density) and pE (total energy
density). In general, the fluid can be subjected to a body force per unit mass
G; (such as gravitational acceleration). In the Lagrangian frame the fluid
equations are (in what follows summation over repeated indices is assumed)

T; = mi(z?,t), z;(t=0) = z?,
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where AY, are the conservative state variables with corresponding fluxes FJ;
and source terms SJ (a runs from 1 to 5):
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where E = I + v;v;/2 is the total energy per unit mass, I = I{p, P) is the
internal energy per unit mass and P is the pressure. The EOS gives the
explicit form for I(p, P).

The choice V7 = 0 leads to an “Eulerian” code where the mesh is fixed in
time while V! = v; leads to a “Lagrangian” code where the mesh follows the
fluid. Lagrangian codes have two basic advantages over the Eulerian version.
First, material interfaces are exactly resolved. Secondly, the implementation
of boundary conditions (specified normal velocity or pressure) is much simpler
compared to the moving boundary problems inherent to the Eulerian codes.

2 The DGM Solution of the ALE Equations

We discretize the problem domain into an arbitrary and in general unstruc-
tured set of 3D linear finite elements (tetrahedrons, pyramids, prisms, and
hexahedrons). Within each element K we use a piecewise (tri)linear approx-
imation for the coordinates z;, the body force per unit mass G;, and the
“primitive” variables B, = (p,v1,v2,v3, P):
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where ¢, (§) are the 3D finite element (tri)linear basis functions which are
equal to 1 at node n and 0 at all other nodes and n, = (4,5,6,8) is the
number of nodes in element K=(tets,pyramids,prisms,hexes). We are using
isoparametric elements and £ are the 3D isoparametric reference coordinates.
It is important to note that because we are using a piecewise linear approx-
imation for B, there is no requirement of continuity across faces between
neighboring elements, i.e. the name “discontinuous” finite elements. However
we do require the coordinates x; to be continuous across faces

To determine the vertex values B,,(t) we use a DGM whereby we take
moments of the ALE hydro equations with the n, basis functions ¢,(§) in
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each element K (the DGM equations):
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where d®*z = J9d%z°, we have integrated the flux term by parts, and 8K
denotes the surface of element K with outward unit length normal N;. An
essential aspect of our discretization is that it manifestly preserves the con-
servation properties of the continuum field equations since Y ,*; ¢, (£) = 1.
All integrals on the right hand side of the DGM equation are computed nu-
merically using Gaussian quadrature. The surface integral poses a problem as
to what to use for V;F,; since the primitive variables are in general discon-
tinuous across a face. We resolve this ambiguity by interpreting each point on
the face as a 1D Riemann initial-value (shock tube) problem. We then solve
this Riemann problem by Roe’s characteristic decomposition along with Roe
averaging generalized to arbitrary EQS:

N;FEoe = %{N Fgi+ NiF¥ + [R*sign(A")R* ™Y 4[NiF; — NiFF}

At each point on a face of an element we have two values of the normal
component of the flux: NiF;; and N;F_, corresponding to the two sides of
the face, + denoting the side from which the outward pointing normal N;
emanates. The Roe average state (denoted with *) of the + and — states is
defined through the following equations:

NiFg — NiFE = Ji(A5 — AF), J* = R A*R*™, A%y = Ndag

where Ao (V) = {Ap, A, Aoy Aoy Ao, Ao = Ni(vi = V), Ap = Ao+ ¢, A = Ao —
¢, Ay = Ao (v™) and c is the adiabatic sound speed. At boundary faces we use
an imaginary “ghost” state on the outside such that the Roe Riemann solver
for the ghost and interior states will give the desired boundary condition
(e.g. specified normal velocity, pressure). A well known defficiency of the Roe
flux is its inability to properly identify an expansion fan containing a sonic
point. To correct this we use the Harten-Hyman entropy fix that consists of
modifying |A% ] as follows:

P\Z\ - P‘Zi +mam(07€ - P‘;Da €= maz(O,)\z - A;a)‘j’; - X;x)a Ag = Aa(vi)

At this point the DGM equations reduce to a system of n,, ordinary differ-
ential equations (ODE) in time for the n, moments M,, = | K On(8) A4 d3z
for which we use an explicit time-adapting second order Runge-Kutta inte-
gration. To implement this we require, first to compute the primitive state
variables B, from the moments M, and second to determine At for stabil-
ity of the numerical scheme. We compute B, from M, by first introducing
auxiliary variables A, which are linear in each element K and such that its Ty
moments are equal to My,. In each cell, a linear representation of the primi-
tive variables B,, is obtained by using a first order Taylor series expansion of
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B, in A, around the average values < A, >=< A, >= [ Aad’z/ [ dz.
For numerical stability of the time integration we require a Courant-type
time step control: At must be smaller than the time it takes for a wave orig-
inating on a face of an element to cross it. We heuristically implement this
requirement as follows: At < CFL tcourant Where CFL = .3 [1] and

. . fK dBz
—= min
Courant = g Lo max(Ixz] Iz, [, haDdl

3 3D Shock Stabilization

In second order schemes the values of the primitive variables B, may develop
local maxima and minima behind discontinuities due to dispersive truncation
errors. These violations of physical stability constraints can usually be con-
trolled by a slope limiting technique which modifies or “stabilize” the nodal
values B,,. To this end we have generalized VanLeer’s 1D minmod slope
limiter to an unstructured 3D mesh through a quadratic programming for-
mulation. The central idea is to require each nodal value B,,, within an
element, to be bounded by the minimum and maximum of the average val-
ues < B, > of all elements surrounding the node n. In general this will not
be true. To satisfy this requirement, we replace By,withB., obtained from
a least squares formulation subject to the constraint: < B! >=< B, >.In
addition, in order to keep our scheme as second order accurate as possible,
we construct within each element a hybrid primitive state variable:
BLY = (1 = s)(rByy, + (1 = 1)BSe™™) 4 sBap, BSH™Y =< B, >

an

where r measures the strength of the shock (0 < r < 1, 7 & 0 near a very
strong shock), and s measures the adiabaticity of the solution by examining
the entropy production rate (0 < s < 1, s & 1 for small entropy production
rates). Once B"¥""¢ are obtained, the “stabilized” moments M¥*7% are con-
structed by the inverse of the algorithm used to derive the primitive variables
from the moments. M}¥b7id are then used in the next Runge-Kutta iteration.

While the hybrid stabilization works well for a variety of problems in-
volving shocks there are cases where it is insufficient. This has led us to
implement a Lapidus type artificial viscosity, i.e. adding a source term of
the type V(DL V A,) to the hydro equations. We have empirically found the
following implementation of the Lapidus flux correction to work well - in the
vicinity of shocks add the following source term to the right hand side of the
DGM equations for interior faces:

- n(6)AZd®
Bl’[< A7 >p— < AL >,) dn(8)d, < A >,= Sz $n(§As

8K fKi ¢n(§)d3$ ’

where D is an artificial diffusion coefficient that vanishes in the continuum
limit, + refers to the two elements at either side of the face, and ! is some
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length scale across the face (e.g. distance between centers of elements + and
— ). We define the Lapidus diffusion coefficient through:

DL * *
-Z—EIC)\K B AK

_ Joe max(I L 1AL A Al
faK ar

where k is a dimensionless adjustable parameter around 0.3 (for stability of
the explicit scheme) and A} is a characteristic wave speed on the face.

4 3D ALE Grid Velocity

The grid velocity V;? at node n is arbitrary in an ALE code. If V/ = 0
everywhere in the mesh one has an Eulerian code. A “Lagrangian” code would
require Vig = v;. However, v; is discontinuous across faces while we require
V¥ to be continuous. We therefore formulate an almost “Lagrangian” code
by using a “least squares” estimate of the fluid velocity at node n for V?:

Minimize Y [N, V& - Y3, 1%, Y;, = N§, V5,
{5

where the sum is over the set {f,} of all faces with vertex n. Y}, is determined
by requiring the first component of the Roe flux, the mass flux, to vanish,
i.e. N;Ffi°¢[Y; | = 0 for interior faces. For boundary faces Yy, is set to either
the prescribed normal component of the velocity or is determined from the
specified boundary pressure through the vanishing of the mass flux. While
this procedure determines V,? fully, there are instances when constraining
the grid velocity may prove beneficial in avoiding mesh tangling. Therefore,
we have implemented a set of either n. = 1,2,3 linear constraints on the
components of V5. If n. = 3, V is completely determined (e.g. a center
symmetry node may be required not to move).

5 Hydrodynamic Test Problems and the ICF3D Code

Details of the DGM algorithm, as described above, can be found in [2] and
[3]. The algorithm has been implemented in C++ using an object oriented
(OO) approach. The OO design allows us to untangle the complexities of the
unstructured mesh data structure from the basic physics algorithm modules.
Thus cells (tets,hexes..) and faces belong in separate classes and calculations
such as flux integrals become virtual functions using pointers to access nec-
cessary data. This design enables efficient code development.

We have tested the hydro code on a suite of problems relevant to iner-
tial confinement fusion (ICF). A non-exhaustive list includes: LeBlanc shock
tube problem (initial conditions of 10% density and 10° pressure ratios), Noh
problem of an initially cold (P = 0, p = 1) gas moving with unit velocity into
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a symmetry boundary, Sedov point explosion, 2D and 3D Rayleigh-Taylor in-
stability. These problems have exact analytical solutions that can be checked
against the computed ones. Qur comparisons have shown extremely good
agreement. For example, the computation of the linear growth rates for 2D
and 3D Rayleigh-Taylor instability falls within 1% of the analytical value.

The success in simulating a wide span of test problems has made the hydro
code the basis of the fully integrated three-dimensional ICF modeling code
[4], ICF3D. Besides multiple material hydro, the physics modules of ICF3D
include diffusive radiation and heat conduction transport, laser ray tracing,
and realistic EOS.

The DGM hydro algorithm is ideally suited for parallelization. Indeed all
physics modules of ICF3D have been parallelized [6] using domain decompo-
sition and the MPI message passing library.

6 Open Problems

The hybrid 3D shock stabilization we employ is applied to each of the primi-
tive variables, in particular each of the components of the 3D velocity vector.
We have noticed that for problems with symmetry the relation between the
cartesian velocity components (e.g. for cylindrical symmetry the azimuthal
and axial velocity components vanish) may be destroyed by the hybrid stabi-
lization. It is our conjecture, that understanding hybrid stabilization as the
discretization of a continuum “artificial viscosity” operator could shed some
light in devising a stabilization scheme that would maintain the symmetry re-
quirements. Until we better understand this issue, we have instead extended
our hydro code, to 3D cylindrical and spherical geometries [2], and used it in
situations where cylindrical or spherical symmetry is critically important.
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