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PART I: ADAPTIVE NEUTRON TRANSPORT METHODS IN PARCS
1. Introduction

The diffusion approximation has successfully been used for the analysis of the current
generation of Light Water Reactors (LWRS) because the transport equation is very costly to
solve for reactor core-sized problems. During the past twenty years advanced nodal methods
such as the nodal expansion method (NEM) [Finnemann, 1977], the analytic nodal method
(ANM) or the nodal integration method (NIM) [Fischer, 1981], and the analytic function
expansion method (AFEN) [Noh, 1995] have been successfully developed to spatially discretize
the diffusion equation. These coarse-mesh or nodal approaches were preferred in order to save
CPU time and memory. Considerable effort had been invested in improving the accuracy of
nodal methods and these advanced nodal methods became capable of estimating an eigenvalue
within tens of pcm with a fuel assembly size of nodes. During the past few years, however, there
has been some concern that the methods that have been developed for uranium fueled LWRs do
not perform satisfactorily when applied to the same cores fueled with Mixed Oxide (MOX), or
more generally to cores with very heterogeneous loadings. Severa researchers carefully
examined the source of the large errors in modeling heterogeneous core configurations.

The specific approximations which contribute to the errors observed in noda diffusion
methods can be identified into four primary effects. a spatial discretization effect, a spatial
homogenization effect, a group collapsing effect, and a transport effect. The quantification
analysis of the four effects under various possible environments is very important to isolate the
source of errors and to provide direction for improving in core calculations. In the analysis here
the spatial discretization effect is not included since it has been well investigated by many
researchers. Instead, the analysis will focus on group, transport, and spatial homogenization
effects.

2. Background Study

In order to analyze the three effects, TWODANT, the Los Alamos discrete ordinate
transport code [Alcouffe, 1995], is utilized. The conventional diffusion and simplified P; (SP3)
methods are also used for comparison, which will be described in detail later. Fuel combinations
such as UOX/UOX show small spectrum changes, and the diffusion approximation is still
accurate in these configurations. In this thesis very different materials in characteristics are used
such as MOX, reflector (water) or UOX with large amounts of neutron absorber. The various
geometry configurations used are shown in Figs. 2.1 through 2.5. The compositions and
geometries tested are mainly based on possible combinations of the KAIST benchmark problem
which will be discussed in detail in Chapter 8. The geometry in Fig. 2.1 is somehow not
realistic, but it will assist in verifying what happens in core peripheries where there are interfaces
between fuels and reflector. In Fig. 2.2, MOX and UOX are neighboring as often seen in MOX



loaded reactors, and in Fig. 2.3 the same geometry is used as in a diagonal direction of the
KAIST benchmark core. Fig. 2.4 is the same as Fig. 2.3 except that it is composed of many
different pins. The two-dimensional configuration in Fig. 2.5 will be used to examine the spatial
heterogeneity effect.
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The tests performed here are summarized in Table 2.1. For the transport effect, Cases A
through D have been tested changing the order of the angular approximation in the Sy and Py
methods. For the group effect, 7-group cross sections are condensed to 4 and 2 groups in single
fuel assembly calculations with zero-current boundary conditions, which is a conventional
method of homogenization. For the spatial homogenization, two-dimensional heterogeneous fuel
assemblies (FAs) shown in Fig. 2.5 are homogenized in the same manner used for the group
homogenization. The assembly discontinuity factor (ADF) is aso calculated to account for the
discrepancy between homogeneous and heterogeneous configurations, which is aso one of the
conventional procedures. Note that since there is no theoretical discrepancy between Py and SPy
in one-dimensional geometry, SPy is meaningful only for Case E.
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Figure 2.5 2-D Geometry Configuration of Case E



Table 2.1 Test Cases for Separate Effects

Effect Description Case
Change the order of angles only
Transport A,B,CD
P (S, P, SPy)
(7-G homogeneous cross sections)
Group Change the number of groups only B
Homogenization (Sie) (w/ different

(2, 4, 7 groups homogeneous cross
sections)

Change the spatial configurations only E
(Si6, P1, SP3)

(7-G  homogeneous,
Cross sections)

composition)

Spatial
Homogenization heterogeneous

Transport Effect

Brantley and Larsen performed some tests with the modified OECD-L336 MOX benchmark
problem for the transport effect and showed ~33 pcm and 1.68 % errors between S;6 and P in
eigenvalue and average assembly power, respectively; ~11 pcm and 0.16 % between S;s and SP;
[Brantley, 2000]. According to their results, the transport effect, which can be estimated from the
errors between S;g and Py, is not that large, but it showed that SP; has very good agreement with
Sss.

Assummarized in Table 2.2, the difference of eigenvalues between S;g and Py isover 840 pcmin
Cases A and D and are 50 pcm and 68 pcm in Cases B and C, respectively. These differences
are reduced to less than 100 pcm or afew pcm when using Ps. Even though Cases A and D show
much larger deviations in P, calculations, it should be noted that these conditions are somewhat
different from practical conditions. Pin powers resulting from SP; are also reduced to one-half
or one-third of the P; results. Figs. 2.6, 2.7, and 2.8 show power distributions and differences of
P1 and P; from Sy for the cases discussed here.
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Figure 2.6 Power Difference of P; and SP; Methods againt Sy (Case A)

)

Relative Power
L 1

0.6 L 1 L L 1
1] 5 10 15 20 25 30 35
1.5
1k
—_
O 05F
st
s
@
0
=}
&
=05
-1 L 1 L L 1 J
] 5 10 15 20 5 30 35

mesh

Figure 2.7 Power Difference of P; and SP; Methods againt Sy (Case B)
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Figure 2.8 Power Difference of P, and SP; Methods againt S;s (Case C)

Table 2.2 Comparison of Eigenvalue and Powers for Transport Effects

CASE Eigenvalue % Error of Local Power
(A pcm) RMS Maximum
S16 1.07110 - -
CASEA | p, ( -879) 0.9 2.9
SPs ( -47) 0.2 -0.7
S16 1.18499 - -
CASEB | p, ( -50) 0.7 1.1
SP; ( -9 0.1 0.5
S16 1.17265 - -
CASEC | p, ( -68) 0.7 2.7




sp, (-2 0.3 0.9
Sis | 0.81368 ; :

CASED | p ( -840) 4.1 12.6
SP, | ( -121) 13 5.2

* 7-group calculation

Group Effect
Palmtag discussed energy group homogenization in his thesis and quantified the

errors caused by the spectra differences between UOX and MOX [Pamtag, 1997].
According to his results, eigenvalue errors ranged from 200 to 500 pcm; assembly
power errors between 1 % and 2 %, and pin-power errors between 2.6 % and 4.6 % in
2-group calculations. The similar tests have been performed here with Case B changing
enrichments. The trends shown in Tables 2.3 and 2.4 are somehow consistent to his
results even though the magnitude of errorsisalittle smaller. In Table 2.3, 97-group S,
calculations are used as references for 8-group, 4-group, and 2-group calculations. Note
that a 8-group structure is used just for this analysis instead of a 7-group one because 7
group results are often not distinguishable from 2-group results. Fig. 2.9 illustrates the
energy cutoffs used in condensing groups here. Eigenvalue errors are ranging from 100
to 300 pcm in 2-group calculations. In Table 2.4 in which the configuration of Case B is
used asit is, group condensing is performed from 7 to 2 groups using S;¢ 7-group fluxes
of single fuel assembly geometry with zero-current boundary condition. Since thisis a
specific case in which a FA with 2.0 w/o UOX and a FA zoned with 4.3 w/o, 7.3 w/o
and 8.7 w/o Pu-total are neighboring, it shows an eigenvalue difference of 73 pcm and
RMS and maximum pin power errors of 1.2 % and 2.4 %, respectively, in 2-group
calculations.

Spatial Homogenization Effect

The spatial homogenization effect can be seen in Table 2.5. In order to see the
gpatial homogenization effect only, the same number of energy groups (7 groups) is
used for both heterogeneous and homogeneous calculations. The results show that just
the spatial homogenization causes an error of 500 ~ 800 pcm without any consideration
of the assembly discontinuity factor (ADF). However, when the ADF is used, the
eigenvalue error is reduced to less than 100 pcm and assembly power errors become
very smaller, especially, in the SP; calculation. The discontinuity factor was first
proposed by Koebke to preserve the reaction rates between heterogeneous and
homogeneous geometries based upon the equivalence theory [Keobke, 1980], and it
was later generalized to the assembly discontinuity factor [Smith, 1986]. The results



note that the ADF is essential to preserving good accuracy when using homogenized
cross sections. It is well defined for the diffusion approximation, but not for the SPy
approximation. Details of the ADF for the SPy approximation will also be discussed in
Appendix B. The results show that P; or SP; calculation with the ADF has very good
agreement in terms of eigenvalue and assembly power. Even though they are not shown
in the table, the error of local pin powers reconstructed by the modulation technique
should be discussed together with assembly average power.
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Figure 2.9 Energy Cutoffs for Group Condensation



Table 2.3 Comparison of Eigenvalue with Change of MOX and UOX Enrichments

Energy UOX Mox
4 w/o 8 w/o 12 w/o
2 wio 34" 55 39
8-Group 3 w/o 13 37 44
4 wlo 51 51 57
5wlo 65 60 58
2 w/o 22 26 2
4-Group 3 wlo 55 26 28
4 w/o 82 60 63
5 wlo 107 80 76
2 w/o 87 138 188
2-Group 3 w/o 157 141 212
4 w/o 222 194 261
5wlo 271 229 285

* Apem from 97-group S; calculation

Table 2.4 Comparison of Eigenvalue and Powers for Group Effects (Case B)

Group Eigenvalue % Error of Local Power
(Ak-eff, pem) RMS Maximum

7 1.14319 - -

2 ( 73) 1.2 24

* Si6 calculation
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Table 2.5 Comparison of Spatial Homogenization Effects (Case E)

Configuration Eigenvalue % Error of FA Average Power
(Ak-eff, pem) | paps Maximum
S16 1.03373 - -
HET (-1009) - -
= HOM (No ADF) | ( -786) 5.6 7.2
HOM (ADF) ( -90) 0.9 1.1
HET (52 - -
SP; | HOM (No ADF) | ( -490) 3.7 4.8
HOM (ADF) ( 60) 0.01 -0.01

* HET: Heterogeneous cross section, HOM: Homgeneous cross section
* difference : pcm

2.2 Motivation

According to the qualitative analyses for MOX-loaded test problems performed in the
previous section it can be concluded that group homogenization and transport effects cause
substantial errors in terms of eigenvalue and power, and spatial homogenization is more related
to the loss of accuracy in estimating local pin powers. Therefore, the transport, group, and spatial
homogeni zation effects need to be more accurately approximated in very heterogeneous cores.
Even though there have been many ad-hoc methods to reduce errors, more fundamental remedies
are necessary to effectively treat various core conditions. One possibility is to explicitly use the
multigroup transport equation with heterogeneous geometry. As shown in the results, the SP;
approximation includes most of the transport effect. Other researchers have also shown the
simililar results with respect to the SPs; approximation [Larsen, 1996], [Brantley, 2000],
[Mengelle, 1999], [Tatsumi, 2000]. Therefore, with current computational power, the
multigroup SP; approximation with heterogeneous geometry can be considered as a viable option
to achieve the most accurate results within reasonable computation time. Even though the
accuracy gain from the multigroup pin-by-pin SP; calculation is small for some cases, it would
still be meaningful in that the near-reference solution for steady-state and transient conditions
can be achived.

However, the multigroup pin-by-pin SP; calculation is still very costly particularly when
solving the transient problem. The motivation of the work here is to identify methods that make
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it practical to perform steady-state and transient caculations using the multigroup SP;
approximation with heterogeneous geometry.

The conventional methods to solve the multigroup pin-by-pin equation are the fine-mesh
finite difference method (FDM) with efficient linear solvers such as Krylov subspace methods
and some acceleration methods such as Chebyshev, coarse-mesh rebalacing (CMR), and multi-
grid methods. In the work here, the multi-level acceleration based upon the global/local iteration
is introduced and coupled with the multigroup pin-by-pin SP; formulation to show better
performance compared to the conventional methods.

3. NEUTRON TRANSPORT EQUATION

The methods used to solve the transport equations can be categorized as either stochastic
or deterministic methods. While a stochastic method implies using the Monte Calro method, a
deterministic method can involve either differential or integral methods depending upon the
manner to deal with the angular variable. There are severa alternative methods in integra
transport methods: collision probability method, characteristics method, etc. The differenial
transport method typically implies either the spherical hamonics method (Py) or the discrete
ordinate method (Sy). Each method has some advantages and disadvantages, but among them
the differential transport methods are most commomly used for practical large-scale reactor
problems due to computational efficiency.

In this section, the Py method is briefly introduced; it starts with one-dimensional
geometry since it is useful to obtain analytic insight in the nature of the solution of the transport
equation.

3.1 Px Method

The Boltzmann transport equation was proposed more than one century ago to describe
dilute gases. It is also very useful to describe neutron transport behavior [Duderstadt, 1979]. The
following is the Boltzmann neutron transport equation without an external neutron source in the
steady state:

Q-Vy(r,QE)+Z,(r,E)y(r,QQ,E)

3.1
=de'jdE'zs(r,Q'—>Q,E'—>E)y/(r,Q',E’)+4isf(r,E), (31)
T

where S, (r,E) :;((E)IdE'vZf (r,E(r,E"), ¢(r,E) =IdQ'w(r,Q’,E).
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The equation above can be solved with the spherical harmonics method (Py) which is developed
by expansion of the angular flux and the differential scattering cross sections in Legendre
polynomials [Henry, 1975]:

v QE) =Y Y er(rnEN, (@), (3.2)

n=0 m=—n

(2n+2)(n—m)!
(n+m)!

where Y."(Q) =Y." (0,p) = { } P, (1) exp(img)

P." (1) = associated Legendre polynomials, x = cosé .

Using the orthogonal property of the spherical harmonics, the coefficients of Eqg. (3.2) are
determined as:

¢7'(r.E) = [dQY,"(Qy(r.Q.E). (33)

Since the angular flux is independent of the azimuthal angle in a one-dimensional geometry, the
angular flux can be expressed as:

Q'Vl//(r,Q,E)—)ﬂgl//(r,Q,E), (3.9

Therefore, the form of the Py method can be easily introduced using a one-dimensiona form
written asfollows:

ow(x,u,E
ﬂt//(u)

+3, (X, E)y(x, 4,E) =
OX

. (3.5)
de’jdE' 2, (90, E' > E)y(x, 4/, E)+ 28 (%),

where S, (x,E) = ;((E)J'dE’ v, (X,E"¢(x,E"),

Q'Q = u, = cosd, = cosd cosd’ —sindsind’ cos(p — ') .
And the following coefficients are determined by using the orthogonal property of Legendre
polynomials:
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$, (X, E) = [duy (x, s, E)P, (1), (36)

g (G E' = E) = 27 dutgT, (X, o, E' > E)P, (110), (37)

where P, (1) = P, ()P, (1) + Zi% P (1) P (1) cos(m(p — ")) .

Therefore, Eq.(3.5) is rewritten using moments and L egendre polynomials as:

o0 (2n+1 N (2n+1
”&Z( > )Pn(ﬂ)¢n(x, E)+2, (X, E)Z( 5 )Pn(ﬂ)¢n(X,E) _
n=0 n=0

(3.8)

N
J'dErZ (2r12+1)2Sn (X,E"—> E)P, (1)¢, (X, E") +%Sf (x,E).
n=0
Using the recursion relationship of the Legendre polynomials:
@n+D P, () =(n+DP,, () +nP, (1), (3.9

One can arive at (N+1) sets of coupled partial differential equations for the expansion
coefficients ¢, (x,E):

(n +1) a¢n+1(xi E) + n a¢n—1(xi E)

(Zn + 1) OX (2n + 1) OX + ZI (X’ E)¢n (X, E)

(3.10)

:jdE'zsn (X,E' = E)g, (x,E") + 55“ S, (x,E).
For convenience in deriving multi-group one-dimensional Py equations, the energy ranges are

divided into G discrete intervals. Eq. (3.10) can be rewritten with these discrete groups:

(n + 1) d¢n+1g (X) + n d¢n—1g (X)
(2n+1)  dx (2n+1)  dx

+ z:Ing (X)¢ng (X)

(3.12)
5;” S fg (X)7

=Zzsngg’ (X)¢ng' (X) +
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[Z.(x.E)¢, (x,E)dE
h = [¢, (X, E)dE, Z,4(x)="
where 4, (x) j #1 (% E) (x) ey

jdEjzsn (x,E’' > E)g, (x,E")dE’ jvzf (x, E)é(x, E)dE

g (0= Vg (x) =

9y (X)

While all cross sections in the first Py equation are flux weighted, an exact calculation of total
and scattering cross sections of the higher Py equations requires that ¢, (x,E) with n>0 be

known. Instead of introducing different total cross sections in al moment equations, X, ,

which is weighted by flux, is used in the left hand side of the higher moment equations.
Modification of diagonal elements of scattering cross sections is then required:

z:‘sngg (X) = z:sngg (X) - (Ztng (X) - ZIOg (X)) . (312)
Then, Eqg. (3.11) can be written as:

(n + 1) d¢n+1g (X) n n d¢n—lg (X)
@n+1)  dx (@n+D)  dx

+ 2 g (X) g (X)

(3.13)
%05 ().

= zzsngg' (X)¢ng' (X) +

9'#9

where 2rng (X) = ZtOg (X) - 2'sngg (X) :

A reflective boundary condition obviously requires that all odd moments of the flux
vanish:

¢,(x;,E)=0, forodd n, (3.14)

where X, is x at asurface.

The exact interface condition of continuity of angular flux cannot be satisfied exactly by the flux
approximation for infinite N. Therefore, the first N+1 Legendre moments of this relation are
required to be satisfied:

¢,(x;,E)=9¢,(X;,E),n=012,..,N, (3.15)
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where x; and x, are x fromright or left side of a surface s, respectively.

3.2 Multidimensional Simplified Px Method

The original approach of the SPy approximation is a ssmple generalization of the one-
dimensional Py equations to the multidimensional Py equations. The result is (N+1)-coupled SPy
equations in the three-dimensional geometry. First of al, a procedure for producing three-
dimensional P, equations from the one-dimensional P; equations can be defined as follows:

1) Replace the operator 0/0x in the one-dimensional n =0 equation with the divergence
operator V,

2) Replace the operator 0/0x in the one-dimensional n=1 equation with the gradient
operator V,

3) Consider the zeroth-order Legendre moment of the angular flux ¢, asascalar,

4) Consider the first-order Legendre moment of the angular flux ¢, asavector.

For the SPy equations, the relations of P; between one-dimensional and muilti-
dimensional geometries are extrapolated to Py when N > 1.

1) Replace the operator 0/0x in the one-dimensiona equation for even n with the
divergence operator V ,

2) Replace the operator 0/0x in the one-dimensional equation for odd n with the gradient
operator V,

3) Consider the even-order Legendre moments of the angular flux as scalars,

4) Consider the odd-order Legendre moments of the angular flux as vectors.

With the procedure above, the final formis obtained as:

(n+1) n

V. V. >.¢ =S, Nn=even, 3.16a

(2n+1) ¢n+l+ (2n+1) ¢n—l+ t¢n n ( )
(n+21 n _

\Y4 +—V +X. 4 =S, n=odd. 3.16b

(2n + 1) ¢n+l (2n + 1) ¢n—1 t¢n n ( )

The general matrix form of the SPy equations is shown in Eq. (3.17). Their boundary conditions
can also be obtained from those for the one-dimensional Py equations. The advantages of the
SPy equations are that inspite of some approximations in their formulation they have
significantly improved computational efficiency compared to the Sy method or the original Py
method, and they maintain the rotational invariance of the Py equations which the Sy egautions
do not have.
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iro \ . FNEBES
§V Zu EV ¢ Sy
2 3
VT LV b2 | |52
§V s ﬂV ?s S3
7 7
4 5 s S4
§V' Ly §V' 4 7| s (3.17)
EV " Ev
11 11
_N_ V T, N SN
] 2N +1 | A

Note that N is normally odd, and accordingly N-1 becomes even. The number of first-order
differential equations is reduced by one-half in second-order differential equations with the
assumption of s, =0 (i>1). For simplicity, Eqg. (3.17) can be reduced to (N+1)/2 number of

second-order differential equations as shown in Eq. (3.18).

It should be noted that the general SPy equations are asymptotic corrections to the P;
theory. For planar geometry problems, these corrections exactly reduce to the Py equations. In
practice, the SPy equations are most accurate for problems that are reasonably close to being
diffusive in nature or for problems that have strong transport regions in which the solution
behaves nearly one-dimensionally and has weak tangential derivatives at material interfaces.
However, for problems that have strong multidimensional transport effects, such as voids,
streaming regions, or geometically complex spatial inhomogeneous, the SPy solutions are less
accurate [Larsen, 1996].
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be  Co 1 Po So
a b, G 9, 0
a, b, €, P, 0

' o=l 3.18

a'n bn Cn ¢n 0 ( )

ay_g bN—l__¢N—1_ 0

where b, =-D,V*+X , ¢, =-2D,V?,

2 4 3 4
a, :—g D1V2, b, Z—(ng"'gDsjvz +2, C = _EDSVZ’

2
a, =- ! Dn—lvz’ bn == ! Dn—1+ N+l Dn+1 VZ +2tn’
2n-1 (2n+1(n-1) 2n+1
C, :_LZDm-lvz’
2n+1
m

D, =————, m=odd number, n=even number.
2m+Dx,

4. NONLINEAR FORMULATION OF THE SP; EQUATION

4.1 Nonlinear Approach

Smith first introduced the nonlinear iteration method to reduce the computer memory
storage requirement and to increase the computationa efficiency [Smith, 1983]. The global
problem is solved with the coarse-mesh finite difference (CMFD) method while the local
calculation is performed based on the “two-node” problem. From the higher-order acurate
solution with the “two-node” problem, the correction factor can be computed at every node
interface to construct the following CMFD formulation:

J ig,]i+l = _651”1 (¢iil - ¢ig ) - [3i€,;i+l (¢iil + ¢ig ) ’ (4-1)



19

2Di Di+1

where D¢ , A=nodesize.
||+1 (DI +Di+1)A

D A

i+l
g

Figure 4.1 Two-Node Calculation

Aragones and Ahnert proposed an interesting idea which is basically the same as Smith
but uses the interface flux discontinuity factor (IFDF) instead of the additive correction term
shown in Eq. (4.1) [Aragones, 1986]. Their CMFD formulation is somewhat different:

‘]l i1 = ||+1( i+l |+l ¢ ) (42)

fo 2D9D¢,

where %, = al
g 1 i+l T 0,9 g
f (DI | i+1 + D|+1)

i+1
The IFDF here accounts for the difference between coarse mesh and fine mesh, the so-called
coarse-mesh effect, as well as the difference between the homogeneous geometry and the
heterogeneous geometry, the so-called heterogeneity effect. Another distinction from the
Smith’s formulation is that the local problem is constructed not with “two-node” but with “one-
node’. They have a correction factor per interface in common.

Recently, Moon, et al. suggested the so-called “two-node two-factor” approach which
uses two correction factors from each side at an interface [Moon, 1999]. The correction factors
are calculated based on the “two-node” problem which uses the higher-order solution.

'Jig,]i+1 i |+1( i+1 ¢g) D|g|+l( 1+1 + ¢ig) ’ (43)

2(Df DY, + BB,

(D? + D¢, —D? + D¢

i+1

2(DSDY, + DD

i+1

(D? +Dg, - Ijig + Dig+1)A .

U»

where Dg

||+l

i |+l

)A

Thisis similar to the Smith’s idea in the sense of using the “two-node” problem and is similar to
the Aragones' ideain the way that it defines the two correction factors.



20

Shin, et al. presented the “ one-node two-factor” idea which is based on the same equation
asin Eq. (4.3) [Shin, 1999]. The distinction from the Moon’s approach is that the two correction
factors for each interface are calculated based on the “one-node’ problem instead of the “two-
node” problem, which is similar to the Aragones formulation. However, this is distinguished
from the Aragones’ approach in that it uses the partial incoming currents as boundary conditions
for the “one-node” problem.

To summarize nonlinear formulations historically, they are basically the same in the
sense that they are correcting the neutron current term so that the CMFD current is equivalent to
the reference current which is determined by the higher-order nodal methods or the fine-mesh
finite difference methods. The principle distinction among the formulations is that some use one
correction factor and some use two correction factors, and some calculate corrections factors
with the “one-node” problem and some obtain correction factors with the “two-node” problem.
Of course, the boundary condition for the local problem is different depending upon the type of
local problem used (i.e. “one-node” or “two-node”’). No matter which method is used in the local
problem, it is obvious that they all construct a simple CMFD matrix in the global problem which
can be easily solved with higher-order accuracy. Each hasits own advantages and disadvantages
compared to the others. For example, the “one-node” as alocal problem is better than the “two-
node” in terms of computation efficiency, but it is relatively less stable compared to the “two-
node” in terms of convergence. One correction factor might be better than two factors in that the
“one-factor” equation, Eqg. (4.1), requires a smaller number of floating operations and has a
smaller number of degrees of freedom to determine the CMFD diffusion coefficients compared
to the “two-factor” equation. However, even though the “two-node” approach is free to use
either the “one-factor” method or the “two-factor” method, the “one-node” approach is limited to
using the two correction factors because the partia current boundary condition should be
determined with two degrees of freedoms. In this report, the “one-node two-factor” approach is
chosen since it provides a convenient combination of computational efficiency for the
implementation of SP; as will be described in the next section.

However, it is first worthwhile to first examine Aragones nonlinear formulation in more
detail. Even though it appearsto use the “one-node one-factor” approach, it actually employsthe
“one-node two-factor” approach to provide the interface flux boundary conditions in the loca
problem as in Shin's formulation. As mentioned already, the differences between the two
approaches are a form of correction factors which yield a different form of the CMFD current
equation and boundary conditions for the local problem. In his paper, Aragones discussed a
linear discontinuous finite difference formulation which allows the accurate and stable reduction
in directions (transport to diffusion), spatial mesh (fine to coarse mesh), and groups (multigroup
to few or one group). Unlike other approaches, the IFDF is used to correct the current instead of
the additional corrective term, which includes both the coarse-mesh effect and the heterogeneity
effect.
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It is also interesting to examine the stability condition for the interface correction factors.
The IFDF is defined as:

r_q _ ¢ig_hi‘Ji§,Ji+1/2Dig
M9 4n 39 [2D9.

i+1 i+1Y i+l i+1

(4.9

Based on the concept that convergence and stability of the iterative solution of the linear
equations are preserved as long as the diagonal dominance is preserved, « of Eq. (4.2) and r.¢

i,i+1
of Eqg. (4.4) should be non-negative and bounded:

9 g
aia>0, iy

>0. (4.5)
As aresult, the following condition can be imposed as a lower bound for the averaged diffusion
coefficients for each node and group:

D > o e3¢0 35,0, (@)

where J? ; = current for group g at aleft surface of anode i,
J;?

.1 = current for group g at aright surface of anode i .

It is noted in the Aragones paper that the lower bound for diffusion coefficients with respect
to currents and fluxes are aways fulfilled in PWR calculations. This bounding anaysis of
diffusion coefficients can be applied to the other approaches as will be discussed later for SPs.

Overall, the correction factors are defined depending upon the global and local
configurations, as shown in Fig. 4.2. For example, the correction factor, f,, connects a
heterogenous geometry to a homogeneous one; f,, fine-mesh to coarse-mesh; f,, many groups
to a few groups; f,, transport to diffusion. In the conventional two-group calculation, normally
the heterogeneity and group factors, f,* f , are caculated off-line in a single fuel assembly
configuration with the name of the assembly discontinuity factor (ADF). The spatial correction
factor, f., is calculated on-line during the global/local iteration for acceleration, which
correspondsto D in the previous discussion.

The nonlinear global/local method has been successfully applied to the diffusion equation
by several other researchers. In this report, the application is expanded to the transport problem.
In the following sections, the formulations of the multidimensional SP; method are briefly
discribed for steady-state and transient conditions, and then the nonlinear formulations are
discussed on the basis of the “one-node two-factor” approach.



Parameter Configuration Correction Factor
Heterogeneity <:> f,
heterogeneous homogeneous
Space @ f
fine-mesh or higher-order One-mesh
Group Multi- <:> Few-group f,
Angle BitHRoN f.
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4.2 Two-Dimensional SP; Equation
4.2.1 Steady State Equation

The governing equations of the multidimensional SP; equation can be written as discussed in
Section 3.2 with truncation of orders higher than three:

V- ¢1g + ng ¢Og = SOg ) (47a)
2 1
§v¢29 +§v¢09 +Ztrg¢1g = O’ (47b)
3 2
2V iy + 20y 42y =0, @70
3
7v;»zg +Z gy =0, (4.7d)

X
where sy, = > 2 do, +k—ngng.¢og, :
=~

eff @'
The most common methods used for a direct solution for the SPy equations involve the
elimination of odd-order angular moments to yield a set of coupled diffusion-like equations as
shown below in a matrix-equation form in a given group:

~-D,V?+3, -2D,V?
Pl o |1
2 3. 4 =S,| |, (4.8)

—ngvz —(ED?,+ED1JVZ+2t &, 0
where D, = 1 , D;= 3 .
3, 7z,

These are simply two coupled diffusion equations that can readily be solved with standard
diffusion computer codes with appropriately defined diffusion coefficients.

For SP; boundary conditions, the Marshark boundary condition can be used in the same
way asin P;. For example, the equations for aright boundary become:

i = [duP v o), i = [duP@w(x, ), (4.9)

2 +1)
2

where x, =right surface, z//(x,,u):i P ()¢, (X),
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Pu() =1, P = a1, Py(k) = (30" =), Pu(u) = (5" ~3).

Applying P, and P, to Eqg. (4.9) leads to the relationship between partial currents, surface fluxes
and net currents:

L1 1 5 .. b 1
h :Z¢05i§J1+E¢2s’ Js =0t

1
6 = Pos (4.10)

=) -
2% 16

which have the additional contribution of the other moment unlike the boundary conditions of
the P, equation.

4.2.2 Transient Equation

The time-dependent SP; equations are basicaly the same as Eq. (4.7) except for the
additional time derivative termsin each equation:

104
- 609 +V iy +Z b0y = Sog (4.11a)
104y, 2 1
; 6tg _v¢29 +§V¢Og +Ztrg¢1g :O’ (411b)
104 2
LIV gy o v ‘g +Z gy =0, (4.11c)
v 6t
3
. t 7v¢zg +2 gy =0, (4.11d)
9, _ -ACy +— 2vzfg¢og, (4.11€)
dt keff g'
Lo

where s, =Y S do, +
=

dc i
dtk = _/1ka +G;VZ fg'¢0g' .

Similarly in the steady-state equation, inserting Eq. (4.11b) into Eg. (4.114a), and Egs. (4.11b) and
(4.11d) into Eq. (4.11c) yields the two time-dependent 2™-order differential equations:

" (1- ﬂ)ZVZ 19Pog + Xag zﬁ“kck ,
eff g' k*

1 0 194,
v at( ¢19) atg —V'(2D09V¢29 + D09V¢09 )+ng¢09 = sOtg ’ (412&)

trg
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g v (4.12b)
4 2

3
—V~(g D2v¢29 +gD09v¢Zg +EDOQV¢OQJ+Z@¢29 =0

Asindicated in Eq. (4.12), time derivatives of divergences of the 15- and 3"*-moments, which are
the change of leakages of 0"- and 2™-moments with time, are additional terms to be considered,
compared to the conventional time-dependent diffusion equation.

In an actual calculation, the following equations are used with appropriate time

discretization. Together with inserting the time derivative term(8/vdt)""into X, the term sy,

on the right hand side is also modified with the time derivative term (6/uat) . Using the fully
implicit method with the time indices, Eq. (4.11) can then be written as:

V. ¢”*1+2rg¢”*1 Sor + Oog - (4.133)
—v¢”+1+ v¢”+1+ztrg¢”+l Ogy » (4.13b)
_v ¢”+1+ Vgt +Z bt = oy (4.13c)
—v¢"+1 + X bay =03y (4.13d)
. 1 1 &5,
where . =% _+—, g =——~,
% DAt % v At

n+ n+ Z n+ n+
smg1 = ¢Og +Zzsgg¢ A ﬂ)szfgqﬁ 1+znglka b
x

Eqg. (4.13) can be reduced to the two second order differential equations similar to the steady-
state equations:

V¢“+1 ~ q1g J + ngqﬁ”” sgt;; +0gg - (4.143)
trg

trg

_ V V ¢ n+1
3ztrg T
3

1 2 1
__v n+1__* n __v n+l n+l_T n
5 (72 Vo2 s q"’gJ 5 [3ztrg Vi g Vi T OllgJ(4.14b)

(] trg trg

* n+l _
+ z:tg ¢0g q2g
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The equations above can be expressed in a simple matrix equation form without a group index to
compare with the steady-state equation in Eq. (4.8):

-D,V?+%, -2D,V® i gy —3D,V-q; +s5™
2 * 3 * 4 * * 0 = n 6 * n 7 * n ,(4.15)
—ngvz —(5D3+§D1JV2+Zt { 34 qz—ngv-ql —ED3V-q3
where D; = 1* : D;zi*,ZZ:ZaJri,qi”:lﬂ,n:timeindex.
= LAt v At

tr

The terms, V.q; (i=13), are additionally considered compared to the time-dependent
diffusion equation, which correspond to the terms, a(V.qﬁig )/at (i=13), of Eqg. (4.12). Since
the terms V-q;; are the change of leakages with time, their contribution is relatively small
compared to the change of the 0"- and 2™-moments with time.

t

4.3 Nonlinear Formulation of the SP; Equation

While Smith first introduced the idea of nonlinear approach into the steady-state
eigenvalue problem, it was Al-Chalabi and Joo that showed the nonlinear method was very
efficient for transient fixed source problem, especially when used with the analytic nodal and the
nodal expansion methods [Al-Chalabi, 1993], [Joo, 1997]. The conventional expression for the

nonlinear CMFD method uses one correction factor as in Eq. (4.1). While 5;"*1 is ssimply

calculated based on properties of adjacent nodes, D'** is determined by comparing the CMFD

currents with higher-order solution currents. The conventional approach for the nonlinear
method is based on the “two-node” problem shown in Fig. 4.1 where the node average fluxes of
adjacent nodes serve as boundary conditions.

For practical core problems, “two-node” problems for every surface would be solved to
obtain higher-order solution currents. One of the higher-order solvers such as ANM, NEM,
AFEN, fine-mesh finite difference method (FMFD), etc., can be used to solve the “two-node”
problem and to provide higher-order accurate currents for the given boundary conditions.

For the application of the nonlinear method to the SP; equation Moon’ s approach [Moon,
1999] for the P; equation is useful in which he uses two correction factors when applying the
nonlinear CMFD method to the AFEN method. In his approach the correction factors are
determined by solving a “one-node” problem with a higher-order method. The advantage of this
approach is to achieve better computational efficiency compared to the conventional method
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which uses one correction factor based on a “two-node” problem because higher-order currents
at all surfaces are determined at atime.

There are severa variations to formulate the nonlinear “one-node” equation. The first is
to define current and surface correction factors for each interface as follows:

\]g _ _Scig+l(¢|+l ¢ ) DI |+1(¢|+1 n ¢ ) (4168.)
_ DciJ+l¢siJ+1 + Dg¢g f)i,i+l i+1 i 4.16b
¢sg - D;l + Dé — Mg (¢g + ¢g) , ( - )

where ¢, = surface flux for group g,
Iﬁcg = current correction factor for group g,

A

D,, = surface correction factor for group g.

The other is to introduce different current correction factors for two sides at each interface:

I =D -, - B ), @173
Jig%=—Dé (¢ —44) — D} (Bge +2}). (4.17b)

where | and r denote left and right surface, respectively. Since J, '*1 = Eq. (4.17) can be

rg’

written as:
J||+l D||+1(¢|+l_¢ ) D||+1(¢|+l+¢ ) (4188.)
g (05 +5,)g;" + (0; - By Jg, (4.180)
B
where D. i DDy +DyD;Y) i XDy D" +D,D;")

A(D'*1+ D -Di*+D})  ° - A(D)*+ D} -Di"+D})

The two correction factors, f); and 6;*1, at the same surface are used to calculate currents and

surface fluxes which are used to provide partial current boundary conditions for a “one-node”
problem.
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As shown in Fig. 4.3, partial incoming currents become boundary conditions of
a“one-node” problem. The two approaches have the same number of degree of freedom
in common, which means that both approaches should basically give the same answers.

Figure 4.3 One-Node Calculation

Of many higher-order methods, the fine-mesh finite difference method has an advantage
of being ableto directly use a heterogeneous configuration, which means that there is no need for
dehomogenization to obtain fuel pin fluxes and powers. When using the FMFD as a higher-
order solver, it is necessary to connect the CMFD solutions to the FMFD quantities. Since the
CMFD solutions are node- or surface-average values and the FMFD method requires local
information, the boundary conditions of the “one-node” problem can be generated as follows:

jg 0=y T(x), (4.19)

where ]g” = face-averaged partial incoming current from CMFD,
j;”(x) = local distribution of partial incoming currents to be used for boundary

conditions of FMFD,
f (x) = shape function normalized to the average incoming current.

LT )
N335 pa Ty o
::E:H: :H:§<_ Jér; ‘]_3g ¢Zg
T 4 4 A
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Figure 4.4 Local Boundary Conditions from CMFD Global Values

The procedure for the global/local iteration methods is as follows:

1) Run CMFD (global calculation).

2) Provide the incoming partial currents for every node.

3) Convert average quantities to local ones with the shape function for boundary conditions
of “one-node” problems. Then, the local flux shape of the previous iteration can be used
for the shape function.

4) Given the incoming partial currents, solve FMFD in each “one-node” problem (local
calculation).

5) Sequentially sweep node by node using the outgoing partial currents of a node as the
incoming boundary conditions of neighboring nodes.

6) Using the resulting surface currents and fluxes, calculate correction factors and
homogenized cross sections.

7) Go back to 1) with updated correction factors and homogenized cross sections.

8) Repeat 2) through 6) until achieving the convergence criterion.

Since the global CMFD calculation is very efficient, the number of the local calculations
constitutes the largest fraction of the computational time.

Since the nonlinear formulation has been applied to the P; equation, it should be
straightforward to extend it to the Ps; equations in multidimensional geometry. However, the
guestion arises about how to treat the higher-moment terms within the framework of the
nonlinear formulation. For simplicity, the SP; equation shown in EQ. (4.8) is used in two-
dimensional x-y geometry with the relationships between the odd and even moments:

1 3
¢1g = _32 vcI)g , ¢39 = _av¢29 ’ (420)

trg

where @ =g, + 24, .
Similarly to Eq. (4.18), first and third moments can be written with the definitions of f)lig*l and

A i+l .
DL

Jli,gi+l _ _Sli,gi+1(q)ig+l —CDig)— Bli,gi+1(cpig+l+(big)' (4.212)

35 = By g - gl )~ DE g+ g, ), (4.21b)
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e Dir+ DB )gid + (D), - B, g,
¢059 N i+1 i Nit | Ni ' (4.21c)
Dlg + D1g — Dlg + D1g

o (Dif 4 BE gt + (D3, - Bl )i,

Posg = : o S : (4.21d)
= Di + DI, — Dt + DY,
X 5“*1 X Dlig Dligl + Dlig Dligl) IV Dlig Dl‘;l + Dlig Dl‘gl)
where g — i+1 i [i+l |, [Ni )] g i+1 i Ritl , R~y ]
A(Dlg + D1g - Dlg + Dlg) A(D1g + D1g - Dlg + Dlg)
s.a_ 2DLDL+DLBL) 5. D)0l +05,D%)
39 i+ i Nivl |, [/ Y39 T i+ i NETEYES
? A(Dy'+ Dy, - Dyt + D)) ? A(D;'+Dj, - Dy +Dy)
i 1 i 3
Dy =i Dy =i
oy [

In order to determine D} and D} for the CMFD calculation at al node interfaces,

the “one-node” problem can be solved, as shown below in Fig. 4.6, based on Eqg. (4.21) with the
incoming partial moment boundary conditions.

i
||
o vy
J1. —1 R J::_n
jéﬂ R e —— jén
$1
]
i

Figure 4.6 One-Node SP; Calculation

The incoming partial currents for the second moments can be determined by Eq. (4.10). Note that
unlike 0"-moments, 2"*-moments are not always positive.

This nonlinear global/local formulation can also be applied to the Sy method to accelerate
convergence since the source iteration of the Sy method has poor convergence when the
scattering ratio is close to unity. The nonlinear formulation for the simplified even-parity Sy
method (SEPSy) is briefly described in Appendix A. It should be closely investigated in
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comparison with some other conventional acceleration methods such as the diffusion synthesis
acceleration method (DSA) [Alcouffe, 1977] which works very efficiently for the Sy method.
Even though the global/local approach is similar in many respects to conventional acceleration

methods, it should be emphasized that there are many attractive features in its application to the
transient problem.
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Figure 4.5 Flow for the Global/Local Acceleration
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5. MULTIGROUP NODAL EXPANSION METHOD FOR SP;

In the previous sections, the fine-mesh finite difference (FMFD) method has been
discussed to solve the SP; equation, which can easily treat heterogeneous geometries within the
fuel assembly (FA). However, when the heterogeous effect is not dominant, the FMFD solution
can be inefficient in terms of accuracy and time. As in the conventiona approach, the spatial
homogeni zation and nodal solution is more favorable in terms of computation time and accuracy.
Therefore, the multigroup nodal method for SPs is discussed in this section, and its adaptive use
depending upon the characteristics of FAs and its surroundings will be discussed later in Section
7.

The nodal method has been widely used and has become the standard for core neutronics
calculation since the early 1980s. As noted in the first section, there are several types of nodal
methods with different basis functions. nodal expansion method (NEM), analytic nodal method
(ANM), analytic function exansion nodal method (AFEN), nodal green function method
(NGFM), etc. Among them, the NEM is known to be easy to derive but relatively less accurate
than the others under the same number of calculation meshes. In this work, the NEM is utilized
for the multigroup SPs; equation since it is easy to implement for mutigroup applications and
simple to apply to more than one moment.

In order to apply the nodal method to the SP; equation, Eqg. (4.8) is rearranged to:

-D,V?+2, -23, D, 1
2 =S,| 2], (5.2)
—3 % -D,V?+Z, bj =3
5. 4

where ®, =¢, +2¢,, T 552

rt

J,=-DV®,, J,=-D.,Vg,.

¢t _Zr ,
3
Eq.(5.1) is more convenient to apply the NEM compared to Eq. (4.8), for reasons that will
become apparent later in this section. The Marshak boundary conditions in EQ. (4.10) aso

change corresponding to the definitionsin Eq. (5.1):

L1 1 3 -
)i =ZCD05J—FEJ1_E¢2s’ Js =

7 1 1

— b +=
165

J.—— 5.2
2°° 16 (52)

@,

5"

Based on the boundary conditions above and the following relationship between net and partial
moments:

‘]1 =—D1VCDO = JI - Jl_’ ‘]3 = _D3V¢2 = J; - J?: (5-3)
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Egs. (5.2) and (5.3) require that partial currents and surface fluxes at interfaces satisfy the
following relations:

LRSI (E R A [ I KR A )

The one-dimensional equation integrated over transverse directions within a given group can be
expressed as.

d2
-D,—+2Z, -22, ® 1 L
E o [l e e
22y p, s | 3) Lk
3 r u U2 r

where L;, isthetransverse leakage to the u-direction in i moment. Asin the conventional NEM,
the one-dimensional moments can be approximated in 4™-order polynomials:

@, (U) = Zai hi(u), @, U)= Zzihi ), (U=xy,2), (5.6)

where h,(u) =1, hj(u)=2u-1, h,(u) =6u(l-u)-1,
hy(u) = 6u(l—u)(2u 1), hy(u) =6u(l-u)(Bu® -5u+1), O<u<Ll.

Coupling between Egs. (5.2), (5.3), (5.4) and (5.6) yields the partial moment response equation
asfollows:

Dy +¢,J)" +C A, By, (5.79)

out
J; =¢5; D,
out n in
Ja :ggz¢2+gJJa +0,A+ 0, Do, (5.7b)
= out =N =in =in
where Ju = Clq)o +Cy )y +C3)yy +C@, —Cha5 — C5¢2I - C6¢2r )
= out =y =in =in
Jn = Clq)o +C3)y TGy +CA, +Ca5 — C6¢2I - C5¢2r )
s out

Ja = 9152 + gzjgl] + gajg: +0,8, — 0,85 — 95q)0| - qu)Or )
Jgft = 91¢2 + gsj;: + gzjg; +0,8, + 0,83 - 0sPg — 95Dy,

1 s ou sin sou in 3
== (Do — Dy )= ji + ji — i - Iy +§( 2 _¢zl)'

2
= 1 s sou +in T ou in 3
a, :q)o_E((DOr +(D0|):¢ _(Jlrt + )i t+ "+ Ju +§(¢2r +¢2|)j,
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1 4 s ou in s ou in
Z :§(¢2r — & ):7(13rt s — Jslt — Ja )"‘ ((DOr _(Dm)’
o 1 o 4 = out =in = out =in
Z,=¢, _§(¢2r + Py ): P, - 7(]3r + st )y 3 )+ (q)Or +CD0|) '
6D, (1+4D,) 1-48D? -8D,
= , C2 = 2 C3 = 2!
' 1+16D, +48D? 1+16D, + 48D; 1+16D, + 48D;
_ 6D,(1+12D,) _ 3D,(1+6D,) ~ 3D,
* 1+16D,+48D2" ° 1+16D,+48D7  ° 2(1+16D,+48D?)’
o - 42D, 0, - 49— 768D; 0. - 224D,
' 7+48D, " 77 49+448D,+768D; ' ° 49+ 448D, +768D2’
g 42D, 4D, (7+24D,) 14D,
4

~7+16D, ' 95T 29+ 448D, + 768D ' O°~ 49+ 448D, + 768D

Since the surface moments appear on the right hand sides of the partial moment response

eguations as shown in Eq. (5.7), it is not easy to formulate and solve them. For simplicity, the
following relationships are proposed here:

- 1 1 - 7 1
Ji :ZqDOS iE‘]l’ Iz :Egézs iEJa- (5.8)

These are truncated forms for the Marshak boundary conditions shown in Eq. (5.2). Therefore,
they are not conventional partial moments but quantities satisfying the following conditions.

‘]1 = _Dlvq)o = —Jrf - ‘]3 = —D3V¢2 = T3+ - Ts_’ (5-9)

and
Dy, = 2(]? + Tl_)’ Pos = g(]? + Ts_)- (5.10)

Eq. (5.9) isthe same as Eq. (5.3) and what is more, EQ. (5.10) is ssmpler than Eq. (5.4). With the
variables defined above, reflective boundary conditions and incoming current boundary
conditions need to be discussed. Reflective boundary conditions are the same as usual:

j1 = j1 ) Ta :Ts . (5-11)
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However, incoming current boundary conditions become different compared to the original ones
since j;° and j; are not rea partia moments. Inserting Egs. (5.9) and (5.10), using Egs. (5.2)
and (5.8) and j," = jI' =0 yields:

=i el ) -4l ). 512)

Finally, the relations between artificial partial currents, net currents, and surface fluxes have the
same form as in the NEM formulation of the diffusion equation with some additional
consideration for the incoming boundary conditions as shown in Eq. (5.12). The final form of

the partial moment response equation using j * then becomes the same as the conventional NEM
formulation:

I =c. Dy +¢,J,"+C,A, (5.134)
T =g ¢, +0,I" +g,A, (5.13h)

t - =i =i
where M =c,®@, +c211',”+c3jl',“+c1a4—c4a3,
= out -
Jl?u _CICD +C3]1| +C2]1r +Ca, +C,a;,
= out >
Js?u = 91¢2+92]3| +0sJa +0:8, — 0485,
out

Iot = 016+ Uslay + 9o day +0:84 + 0,85,

8, =2 (g~ )= o + T - T - T

8, = By~ (g, + Py )= By — (12 + 17 + T2+ 1),
Zl_%(%r B )= (J;’r“‘+13r—js?“‘—]’3‘{‘),

Z,= ¢, —§(¢2r +62)= ¢, [4(131“ + o+ Ja" + Ty ))

The definitions of the coefficients ¢, and g, are the same as in Eq. (5.7). However, the

definitions of the low-order coefficients, a, and a,, changed as seen in Eqg. (5.13), which do not
include surface moments on the right hand side.
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One of the most important considerations in the transverse averaged one-dimensional
approach is the approximation of the transverse leakage shapes. In thiswork here, the transverse
leakage shape is approximated in a second-order polynomial for both 0™ and 2™ moments as;

Lo, (U) = Zbi hi(u), Ly (u)= Z p;h; (u), (5.14)

— 1 — 1
where b0 = Loy bl ZE(LOr - I-0|)’ bz = Lo, _E(L + LOuI)’

Our

[EEN

— — 1
Po=Lo, P :E(Lzr - L2| )’ p, = L2u _E(L2ur + L2u|)'

The second-order polynomial approximation for the transverse leakage of the 0" moment
has been well established for applying the NEM to the diffusion equation. However, a quadratic
approximation is not adequate for the 2™ moment since the 2" moment shape is dramatically
changing near interfaces of very different materials. In the work here, a parabolic
approximation, which is a rough approximation for the 2" moment, will be used since the effect
of the 2" moments is relatively small in magnitude compared to the 0" moments and refining
more meshes relieves dramatic change of the 2" moment. If greater accuracy is desired in the
future, better approximations for the transverse leakage of 2" moments will be necessary.

The higher-order coefficients, a, and a,, are determined by solving two more moment

equations with the weighted residual method for Eq. (5.5) using h,(u) and h,(u), which are
shown in Eg. (5.6), as weighting functions. The resulting equations then become:

(60[A): +ZX,)a, =—§2ral+503—§b1+22r[221+Zaj, (5.159)
(240 E: +X,)a, =§2,a2 + So4+gb2 + 22{—%22 + 24) (5.15b)
(602)—:+§1n)z3 =—22rt21+523—2 pl+22r[gal+a3), (5.15¢)
(1402): +2,.)Z, :%znz3 +S,, +£ P, +22r(—%a2 +a4j, (5.15d)

5 5 X 5 5
where S :Z(—a +a —2(—2 +2 DZS, +—92[—a +a —2(—2 +2 DVZf.,
03 . 3 3 3% 3 9’9 T 3% 3 3% 3 g

eff @'
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7 7 X 7 7
Sos = Z[__az ta, +2(_Zz - Z4DZS ' +—QZ[——32 +a, +2(—Z2 - Z4DVZf .

2 2
S23 = _gsoen S24 = _§So4-

By defining new variables, j,;* and j; in Eq. (5.8), all equations became simple and very similar
to the conventional NEM equations for the diffusion equation. This means that the existing
routines can be utilized for solving the multigroup SP; NEM with only minor modifications.

The transverse averaged one-dimensional equations, Eq. (5.5), are normally solved one
direction at atime. However, when it is solved using the global/local acceleration method based
upon the “one-node” approach for the multigroup solution, convergence problems are sometimes
encountered. When the one-dimensional equation is solved for one direction, the leakages to the
transverse directions should be approximated. Since the neutron balance of a node is not being
satisfied in a multi-dimensional sense, convergence becomes difficult, particularly in multigroup
problems. Therefore, a method was developed to solve multi-dimensional equations
simultaneously such that the resulting solutions satisfy the nodal neutron balance.

Eqg. (5.16) shows moment matrix equations in which 2-D or 3-D one-dimensional
equations are solved at the same time, satisfying the nodal neutron balance in a node. As will be
explained in the next sections, 0" and 2™ moments are not solved simultaneously, but
determined sequentially for computational efficiency. In other words, a moment is used as a
source of the other moment determined in the previous iteration step. As seen in Eq. (5.16), there
are in fact 13 unknowns for a three-dimensional problem, which include currents and higher
coefficients of the nodal expansion polynomials of each direction and node-average moments.
The elements of the matrix of the left hand side of the equation are only property dependent, but
those of the right hand side are composed of the fission source, partial moments which are
boundary conditions, low-order coefficients of the nodal expansion polynomials of the other
moments and transverse |eakage coefficients.

Even though the performance of the multigroup SP; NEM at transient is interesting in
terms of stability and accuracy, the transient formulation remains as future work.
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1 C, -C, -C,
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- =z, 0 1402 +3. | =%, | a,
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L ~ 0

R 0 0 o)
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Note that these equations should consist of 13x13 matrices and 13x1 vectors for the 3-D
out

problem by repeating components corresponding to ( it i a,,a, ) and (j?j“t, i 25,2, ) for
the other directions, respectively.

6. NUMERICAL CONVERGENCE OF THE SP; EQUATION

6.1 Stability in the SP; equation

Before addressing the stability characteristics of the SPs; equations, it is worthwhile to
discuss alower bound for the stable convergence in the P, formulation. For the “two-factor one-
node” approach disscussed in Section 4, the CMFD formulation in Eq. (4.183a) is rewritten as:

| |+1 (DI i+1 + D|g|+1)(¢|+1 - aig,li+1 ¢ig )’ (61)
Where Dg _ Z(Dg D|g+1 + Dg Dgl 69 2(Dg D|g+l + Dg DI%l
'”1(W+D&—W+D&M"”l(W+D&—W+D&M1
ag _ DI i+l D|g|+1
Wi+l T =
DI J+1 + DI i+1

The fast convergence and stability of the iterative solution of the linear equation are assured as
long as the diagonal dominance is maintained as discussed in Eq. (4.5). This yields the
following conditions:

s +Dg, >0, (6.23)

1L,i+l

UN UN

Dg

1,i+1

>0, (6.2b)

i, |+l
which, since 5i?i+1 is always positive, implies the following:

(6.3)

This prescribes alower bound for the stable convergence of the P; nonlinear formulation. If this
condition is met with sufficient margin, then convergence can be achieved. The adequacy of the
margin isrelated to the diagonal dominance affecting the convergence efficiency.
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The same analysis as performed for the P; formulation above can be applied for the
nonlinear SP; formulation. Rearranging Egs. (4.21a) and (4.21b) yields:

U (R} (642
it =B+ D (0~ ). (640
:i,i+l :i,i+1 :i,i+l :i,i+1
T g Dyy — [339

where @ =gy, +24;,, === —, Biu==—= —.
9 09 29 Djl_é;+l+ Dll,g|+1 Dé,;rl_’_ Dé,g;+l

Since Eq. (6.4) is the same as Eqg. (6.1), the same idea can be applied to it. However, as far as

Eq. (6.4) is concerned, no bound exists because the second moment does not always have the

same sign. In addition, the correction factors for second moments, [A);g“, are sometimes very

large since the second moment is very small at a node center and dramatically changes at node
interfaces. Even though the overall convergence behavior of the SP; equation is driven by the
zeroth moment, the characteristics of second moment correction factors may disturb convergence
when the zeroth and second moments are similar in magnitude.

From Eq. (4.8), the second-moment equation can be written:

- [g D, +g D,, JV 224 (X) + Zg g (X) = —Log (X) (6.5)

where L, (x) = —é D,V (X) .

The right hand side of Eq. (6.5) is considered as a source which represents a “in-leakage”
of zeroth-moments. This means that when there is a positive “in-leakage”, the sources in the
second moment equation are positive and otherwise they are negative. For example, when UOX
and MOX fuel assemblies are adjacent asin Figs. 6.1, 6.2, and 6.3, the fast flux is relatively high
in a MOX fuel assembly and low in a UOX fuel assembly. The situation is opposite for the
thermal flux. Therefore, the therma second moment is normally positive in a MOX region and
negative in a UOX region. Figs. 6.1 through 6.3 show the zeroth and second moment
distributions for several combinations of fuel assembly types. Note that especidly at the
interface where the gradient of current is large, there appear large peaks in the second moments,
but they quickly show asymptotic behavior in the middle of assemblies.
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One of the characteristics of the multi-level formulation for the “one-node” approach in
the local calculation is to use the incoming partial currents as boundary conditions for a local
problem. In contrast, the “two-node” approach uses node average fluxes of the two neighboring
nodes as boundary conditions. It is interesting to compare the boundary conditions used in the
“one-node’ and “two-node” approaches on the convergence rate. Since node average fluxes are
not changing dramatically in the course of convergence, the boundary conditions of the “two-
node” approach are also not changing much, which improves convergence. However, since
partial incoming currents generally converge more slowly than node average fluxes, the
convergence of the “one-node” approach can be somewhat worse than the “two-node” approach.
Therefore, a multiple (typically double) sweeping technique is used to obtain more rigorous
partial current boundary conditions for “one-node” problems. Overal, the “one-node” approach
is comparable or superior to the “two-node” one in terms of computation time because currents
on all sides are determined simultaneously in the “one-node” approach. Furthermore, the “one-
node” approach has additional favorable features which will be discussed in the following
section.

U02-U02(3.0w/o)-U02-MOX

Oth mament

2nd mament

L L 1 L L L |
1 20 30 40 50 60 70
nodes{17x4)

Figure 6.1 Zeroth- and Second-Moment Distributions for UOX(2w/0)-UOX(3w/0)-
UOX (3w/0)-MOX (7w/0)
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_______________
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Figure 6.2  Zeroth- and
UOX (2w/0)-MOX (12w/0)

nodes{ 17xd)

Second-Moment Distributions for

MOX-UO2-MOX-REF

UOX (2w/0)-M OX (7w/0)-
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0.1
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Figure 6.3  Zeroth- and Second-Moment Distributions for MOX(7w/0)-UOX(2w/0)-
MOX(7w/0)-REF

6.2 Numerical Optimization

6.2.1 Ordering Analysis in the SP;3 calculation

There are several possible orderings of the SP; matrix. The ordering of the variables such
as angle, group, and space does not change the numerical properties of the matrix, but it can have
an influence on the state of convergence. The most typical ordering is to arrange the variablesin
(angle, space, group) order as depicted in Fig. 6.4: the angle is placed innermost and the group
outermost in a vector. This forms 2x2 block matrices consisting of flux moments in the
diagonal elements. Therefore, angle and space are normally solved at the same time in the inner
iteration, and group is solved in a Gauss-Seidel manner in an outer loop. An alternative ordering
is to have the (space, group, angle) ordering with angle outmost as shown in Fig. 6.5. In this
case, the 0™-moments are first determined, which are used as sources when solving the 2™-
moment equation. Eq. (4.8) isthus rearranged as.

-D,V?*+Z, 0 {¢} !2¢2] {1}
(3p.4+2D. v "1=D V2 |45, |, (66)
0 (5D3+5D1)V +Z, || 4, 5(,/50 0

where D, = ! : DBE;.
t

tr
Each method provides a different structure of A-matricesin the Ax =b problem. For the
purpose of illustration, the structures of the matrices are shown for one energy group as shown in
Figs. 6.6 and 6.7. In the case of Fig. 6.6, the matrix is 2x2-block symmetric in which the
zeroth- and second-moments are coupled. Alternately, the A-matrix in Fig. 6.7 is not symmetric,
but it can be solved angle by angle in a Gauss-Seidel iteration. Table 6.1 shows the performance
associated with ordering in terms of CPU time. While the original ordering, (angle, space,
group), is about 7 times slower, compared to the P; solution, the second ordering, (Space, group,
angle), is only about two times slower.

Table 6.1 Comparison with Change of Ordering for SP;

3x3 FAS, SPs

12
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17X17. pins, Order-1 Order-2

3x3/pin

K-eff 1.000868 1.001725

CPU 1 6.8 15

[teration 26 29 31

* order-1: (angle, space, group)
* order-2: (space, group, angle)
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(2 angular moments, 5x5 nodes, 7 groups)

Figure 6.4 A-matrix with the (Angle, Space, Group) Ordering
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Figure 6.6 A-matrix with the (Angle, Space) Ordering for a Group
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- -e -
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50 . . .

(5x5 nodes, 2 angular moments)
Figure 6.7 A-matrix with the (Space, Angle) Ordering for a Group

6.2.2 Group Collapse in the Global/Local Acceleration

Normally in a multigroup problem, the same number of energy groups is treated in the
global and local calculations. For example, if seven groups are treated in the local one-node
calculation, seven groups of corrective terms would be generated at every node interface and
then used in the global calculation. However, it is possible to reduce the number of groups in the
global calculation so that the existing two-group structure of the global routines of the code can
be used as it is and the computation time for CMFD may be reduced. The idea is somewhat
similar to that used in the popular coarse group rebalancing method (CGR).

In the CGR method, for example, the multigroup equation is reduced to the few-group
equations by conserving all the reaction rates and leakage:

VI +2,0=D 5 by +AD .2 dy (071,.....G). (6.7)

9'#9 g9’

15
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The rebalancing equation is constructed in the following manner with so-called driving factors,
d,:

9

GG G’

A(jémde - z jr?étdnej"' RerG = 2 RsG‘GdG + /IZ RfG'dG‘ ) (6.8)

where Rg =Y Z.4,V, "= ",

g'eG g'eG
d, = driving factor, A =area, n = neighboring nodes.

Unlike the CGR method, in the method proposed here cross sections are condensed to two
groups and correction factors are generated for only two groups, which is used in the global two-
group diffusion calculation.

Vs +260s = D Zgebs + 4D Zigbe » (G=12) (6.9)

G'#G G’

where ¢, =D gV, S6=D 2,4, V/ds, Js=D I A.

g'eG g'eG g'eG
The CMFD current for coarse group G is defined in the same way as in Eq. (4.3) with the fixed
number of groups:

JE = DU G- G -DEG + 7). (6=12) (6.10)

2(DL Dy + DL DY)
A(DS + D — [Sis*l + [SiG) '

2(Di Dy + DL Dy
A(DS+ D — [32{1 + [3iG) ’

A i+l _
D™ =

where DZ"* =

When prolongating the few-group values the shape functions which are used in restricting the
fine-group values can be used in the following manner:

Jy=3ax1(9), ¢y =¢s xN(Q), by = xW(9), (6.11)

where f(g), h(g), and w(g) arethe normalized fine-group shape functions for current, average
flux, and surface flux, respectively.

A preliminary test of this idea with the global/local acceleration technique was
successful. The global CMFD routine does not need to be changed even when increasing the

16
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number of energy groups at the local level. It aso provides improved computational efficiency
since the two-group CMFD scheme with the ILU preconditioned BiCGSTAB method can always
be used for multigroup problems. The detailed implementation and performance of this method
will be discussed in the section 8.

7. MULTI-LEVEL ACCELERATION AND ADAPTIVE METHODS

7.1 Multi-Level Method

The heterogeneous FA configuration with pin-by-pin meshes obviates the use of the
nodal approach which has only a few calculation meshes per FA. Even though the nonlinear
formulation of the pin-by-pin multigroup SP; calculation relieves the computation burden for
steady-state and transient calculations, it still requires a considerable amount of computing time,
particularly, for three-dimensiona whole core transient simulations. When comparing
computation times between the conventiona two-group nodal diffuson method and the
heterogeneous multigroup SP; method, it can be noted that the computational time is
significantly increased. The fine-mesh versus nodal increases by more than 100 times: the
multigroup (n) versus two-group by a factor of more than n/2, and SP; versus diffusion by a
factor of about 2 ~ 3.

As discussed in the previous sections, the global/local (two-level) acceleration method is
useful for the CMFD diffusion calculation with FA-homogenized cross sections at the global
level and the FMFD pin-by-pin SP; calculation at the local level. The global quantities such as
eigenvalue and FA-averaged two-group fluxes are quickly converged in the global level, while
the local quantities such as pin-by-pin multigroup moments within an assembly are relatively
slowly converged in the local calculation. Because most of the computation time is determined
by the local calculations, it isimportant to perform the minimum number of the local calculations
and to have the local fission sources converged as fast as possible in order to reduce the
computation time and achieve the better convergence.

One way to improve performance in terms of the computation time is to insert more
levels between the global and local levels as in the conventional multi-level or multi-grid
methods. In the report, the three-level method is proposed as shown in Figs. 7.1 and 7.2 in
which an intermediate level with the two-group pin-by-pin (1 node/pin) diffusion calculation can
be added. At the first step, the local level gives two-group pin-by-pin correction factors and cross
sections for the intermediate level, and then the intermediate-level calculation is performed to
provide coarse-mesh (e.g. 1 node/FA) correction factors and cross sections. The iteration
between intermediate and global levels is performed until reaching a certain tolerance. In this
iteration, there is no group and angle condensation, but only spatial homogenization. The
solution algorithm then returns to the local level by prolongation with respect to group and space,
and updates the distribution of fission sources and incoming currents at boundaries of local
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problems. This process, local/intermediate and intermediate/global iterations, is repeated until
eigenvalue and pin-by-pin fluxes are converged within given convergence criteria.

The following equations are solved at each level, which should be equivaent in terms of
reaction rates and |eakage:

V350 +E O () = 2 E (065 (1)

et e (7.138)
+ 2D VEE OO, (=1...MO).
VI T (g () = YT (Ngy" (1)
o Lz (7.1b)
HOVER(NGT (), (9=12)
VI + T (g () = YT (g (1)
o (7.10)

1 2 ——hom —hom
+E2vzfg- (N (r), (9=12),
g'=1
where J ge‘ (r),¢5é1et (r) :fine-mesh pin-by-pin multigroup SP; solutions,

Jg2(r), ¢, (r) : pin-by-pin (1 node/pin) 2-group diffusion solutions,
I (r), 44°" (r) : coarse-mesh (e.g. 1 node/FA) 2-group diffusion solutions.
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Local Level

Multi-Group Pin-by-Pin (nxn/pin) Calculation
SP; Calculation
Generation of Correction Factors for Intermediate Level

1l

Intermediate Level

2-Group Pin-by-Pin (1 node/pin) Calculation
Diffusion Calculation
Generation of Nonlinear Factors for Global Level

1L

Global Level

2-Group (1 node/FA) Calculation
Diffusion Calculation
CMFD Calculation

Figure7.1 A Flow of Multi-Level Calculation
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2-group

1 node/pin
Pin-by-pin geometry
Diffusion

Pinwise D, (9=1,2)

2-group

1 node/FA (e.g.)

Coarse-node homogeneous
geometry

Diffusion

Coarse-nodewise D,

Figure 7.2 A Graphica View of Multi-Level Calculation
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Egs. (7.1a), (7.1b), and (7.1c) correspond to local, intermediate, and global levels, respectively.
Once converged, al of them should have the same eigenvalues, reaction rates, and leakages in
each group. In order to force the three equations above to have the same reaction rates and
currents, the following relations are satisfied:

Z zZag',i ¢g',ivi

Ehet _ ieP g'sG 6het _ Eget (56 _asG) B ‘Tsh(gtA/z (7 28.)
oG = , G — - — :
Z Z%-,M /RS
ieP g'eG
D TRV, ot — -
Ezgm _ jeFA AT 3 hom _ DGh (¢Gh _¢sg _‘]shG Al2 (72b)

= Dg " = = =
h ! G h h
> 45, B+ P

jeFA
where « = cross section type, P =pin, FA = fuel assembly.

Essentially, convergence can be further improved by using intermediate levels, depending
upon the characteristics of problems. However, since the optimization of intermediate levels can
be another substantial issue as in the conventional multi-level method, it is not further addressed
in this report. The performance of only the three-level acceleration method will be discussed in
section 8.

7.2 Adaptive Methods

For the heterogeneous configuration (pin-by-pin), the fine-mesh finite difference method
is preferable to nodal methods. With the homogeneous configurations (FA-homogenized cross
sections), however, it is obviously efficient to use the nodal method for the spatial discretization.
As far as the number of energy group is concerned, the multigroup calculation is very effective
when the actual spectrum is very different from the lattice spectrum used off-line for group
collapsing. As discussed in Section 2, for example, the spectrum of the MOX/UOX combination
isvery different from the asymptotic spectrum which either of them has in asingle fuel assembly
calculation performed with the lattice code. However, the UOX/UOX combination, which has
typically mild spectral transitions, may not need to be analyzed with multigroup or
heterogeneous SP;. For angle, an increasing order of angular approximation can basically be
effective in places where the diffusion approximation fails, but it needs to be considered in
association with the equivalence homogenization theory when homogenization is involved
[Koebke, 1980] [Smith, 1986]. Therefore, it may not be necessary to apply the heterogeneous
multigroup SP; approximation to all the nodes in the core. It would be more efficient to
selectively apply the detailed approximation to the nodes as required, which is a primary
motivation of an adaptive method.
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The essential idea of an adaptive method is to use a suitable combination of different
methods with respect to group, space and angle in one calculation: multigroup and 2-group,
diffusion and SPs, fine-mesh finite difference and nodal methods. Since there is no reference
calculation, an appropriate approximation should be involved when expanding smaller
information to larger information on space, energy, and angle: for example, between coarse-
mesh and fine-mesh, 2-group and multi-group, and diffusion (one moment) and SP; (two
moments).

In the “one-node” problem explained in section 4, incoming partial currents used as
boundary conditions are the only information exchanged between nodes. Between coarse-
mesh and fine-mesh nodes, the coarse outgoing partial currents of the coarse-mesh node need
to be expanded to the fine incoming partial current of fine-mesh node, shown in Fig. 7.3.

jri=1.4

—>

|

|

Figure 7.3 Partial Current Interaction at the Interface between Coarse-mesh and Fine-mesh
Nodes

The incoming partial current can be approximated by a quadratic polynomial with known
average, top, and bottom partial currents.

T = +ag () +a,8, (%), (7.9

1 Hea Ha T+ 1 RS Hes
where £ (0= 2¢-1, &) =6x0-0 -1, a, = (if —j5). &, = I (i +J5),

j7 = partia current at top corner, jg = partial current at bottom corner.
The incoming partial current of the fine-mesh sideis expressed as:

it — ( F+ d
i ;[J (X)dx -

= jg(rz - rl) + (3]+ _Zj; - j;)(rzz - r12) _(ZJT+ - Jg - j;)(rz3 - r13)n
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where r €][0,1].

The opposite direction, from fine-mesh to coarse mesh, is much simpler by using:
. 1 .
==, 75
=3 Ei Ji (7.5)

where A =nodesize.

For angle, it is necessary to estimate higher-order current moments as boundary
conditions. This is somewhat complicated since higher-order current moments are much
more dramatically changing compared to the conventional current defined in the diffusion
theory. The simple approach is to approximate al the incoming higher-order current
moments by zero. If this assumption is applied to the nodes sufficiently far from the node of
interest, it will not introduce any serious error. However, if the assumption is made at
boundaries of the node of interest, it will cause some errors. It remains to be investigated how
much error isintroduced by this approximation.

— i+

J3

Figure 7.4 Partial Current Interaction at the Interface between diffusion and SP; Nodes

For energy group, few group information (two-group) needs to be expanded to multi-
group without any reference fine-group structure. The fine-group structure of the incoming
partial current is assumed to be the same as that of the outgoing partial current. As afirst
step, the fine-group structure is assumed to be flat or based on precal culated shapes, and then
from the following steps, it is extended from the fine-group structure of the outgoing partial
current.

jg(N=Jsxf(r), geG, (7.6)

where f, (r) isanormalized distribution of j, (r).
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jg:9€G

Jo

Figure 7.5 Partial Current Interaction at the Interface between Coarse and Fine Groups

Upon convergence, both the outgoing and incoming partial current would have the same fine-
group structure.

Different order of approximations in terms of space, angular moment, and energy group
can be mixed in the same core cal culation with the projections of coarse-mesh to fine-mesh, first-
order current moment to higher current moments, and two-group to multi-group. In the local
calculation level, adaptive methods can be used to save computing time while maintaining
similar accuracy to when more complicated local calculations were performed. Fig. 7.6 shows
an example of combining different methods in a core calculation. Note that an additional
advantage of this configuration is that no serious effort is necessary to construct the reflector
cross sections since the reflector is explicitly modeled. The performance of this method will be
discussed in more detail in Section 8.

(F: Fine-mesh, M: Multi-group, T: Transport (SPs), Others. 2-G, nodal, diffusion)
Figure 7.6 Adaptive Choice of Methods in a Core Calculation
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8. VERIFICATION

8.1 Implementation

All the methods discussed here have been implemented in PARCS which already has the
global/local iteration solver with the two-group diffusion method and higher-order spatial
methods such as NEM and ANM for steady-state and transient conditions [Joo, 1998]. Since the
new methods are based on a two-group diffusion acceleration at the global level, the existing
global routine can be used with minor modifications. Fig. 8.1 depicts on how the newly
implemented routines work in PARCS. The multigroup pin-by-pin FMFD, FA-homogeneous
NEM, and the adaptive method are simply selected with input options.

Global Leve Local Leve

FMFD for
Multigroup pin-by-pin SP3

- 2-group D
2-Group Diffusion IH - Homogenization
CMED Solver - Restriction or NEM for
Prolongation Multigroup SPs
|H between 2-group
and Multigroup

The Adaptive Method

Figure 8.1 Diagram on the Methods |mplemented into PARCS

In the global calculation, the BiCG stabilized (BICGSTAB) algorithm with the blockwise
incomplete LU (BILU) already implemented in PARCS is used for the CMFD calculation. In
addition, the eigenvalue calculation is accelerated with the Wielandt shift method. In the local
calculation when using fine-mesh FDM, the ILU-preconditioned CG method is used. The red-
black Gauss-Seidel method is also employed for sweeping one-nodes.

8.2 Benchmark Problems

Two MOX benchmark problems are used to verify the methods proposed here: the
OECD L 336-C5 [Sartori, 1991] and the KAIST benchmark problems [Cho, 2000]. Even though
the original L336-C5 problem has 2-group cross sections for homogeneous and heterogeneous

25



Final Report Date 31 August 2005
DE-FG07-011D14106

FA configurations, the cross sections of the KAIST benchmark problem are employed with the
same L 336-C5 core configuration in order to examine homogenization and transport effectsin a
multigroup structure. The KAIST benchmark problem has a larger-sized core with MOX, UOX,
control rods, and burnable absorbers, and therefore more closely resembles a practical PWR
model. The TWODANT code, aLos Alamos Sy code [Alcouffe, 1995], is used to first obtain the
reference solutions and then to calculate homogenized cross sections. The details of each
benchmark problem will be discussed in the following sections.

8.2.1 OECD L336-C5 Benchmark Problem

This benchmark problem has 2x2 fuel assemblies with UOX and MOX which are
surrounded by water reflectors as shown in Fig. 8.2. Since the size of the core is small, the
leakage of neutrons is very large. Therefore, there are large flux gradients at both the core
boundary and at UOX/MOX interfaces. Two-group assembly or pin cross sections were
originally provided for this problem. In the two-group calculation, however, the transport and
homogenization effects will be small since the changes in the intermediate energy group range
are smeared. Therefore, 7-group pin cross sections (see Table 8.1) and heterogeneous FA
configurations (see Fig. 8.3) are used from the KAIST benchmark problem in order to create a
more realistic problem and to examine al the effects discussed in Section 2.

When condensing 7-group cross sections to afew groups in order to investigate the group
homogenization effect, the manner of generating few-group diffusion coefficients or transport-
corrected cross sections isimportant since results can be very different depending upon the group
condensation method. For the diffusion equation, the usual direct weighting of the multigroup
diffusion coefficientsis used, which preserves the fundamental-mode | eakage:

a,I,G V ¢ ZV zzalg i,g ! I,G ZV ZDlg¢|g’ (81)

iel geG V ¢IG iel geG

where i,g =finenodeand group indices, I, G = coarse node and group indices,
a = Cross section type.

In the work here, the energy cutoffs shown in Table 8.1 are used for 2 groups and 4
groups. The higher order of Sy method in TWODANT is used to obtain the reference solution as
well as FA-homogenized cross sections for each assembly. The preliminary calculations listed in
Table 8.2 show a comparison of eigenvalues between the S; method with pin-homogenized
cross sections and different orders of methods with FA-homogenized cross sections, which gives
a rough idea of group and space homogenization effects. The assembly discontinuity factors
(ADFs) are dso used in the calculations with FA-homogenized cross sections. It is noted in
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Table 8.2 that the trend of differences between 2-group and 7-group calculations and between
diffusion and SP; calculations is not predictable because of cancellation effects between the
errors. However, the results shown in Table 8.2 at least imply that the substantial discrepancy in
eigenvalue can be caused from group and spatial homogenization.

______ Reflective
::::::::::::: .
SRaa O :mox
Ehat! N (] Reflector
Reflective SRR Vacuum
Vacuum

Figure 8.2 Geometry of the OECD L 336 C-5 Benchmark Problem

MOX FA uo;
MOX (boundary: 4.3w/o, middie: /.0 w/o, center: 8.7 w/0)
UOX (3.3 w/0)

Figure 8.3 Heterogeneous Configurations of MOX and UOX Fuel Assemblies
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Table 8.1 Energy Cutoffsfor 2 Groups and 7 Groups

7-Group 4-Group 2-Group Cutoff Energy

1 1 ~1.353 MeV

2 2 1 1.353 ~9.119KeV
3 9.119~3.928 eV
4 3 3.928~0.625 eV
5 0..625~0.146 eV
6 4 2 0.146 ~ 0.057 eV
7 0.057 eV ~

Table 8.2 Comparison of Eigenvaluesin the L336-C5 Benchmark Problem

FA Method Group k-effective AK-€eff (pcm)
HET S 7 0.95919 0
2 0.96019 99
Diffusi
rusion 0.95710 209
HOM
2 0.96210 291
SP.
3 7 0.96039 119
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8.2.2 KAIST Benchmark Problem

This benchmark problem is composed of various fuel types including MOX, in which 7-
group cell-homogeneous and cell-heterogeneous cross sections are provided. Figs. 8.3 and 8.4
show the assembly and core geometries of the KAIST benchmark problem, respectively. Tables
8.1, 8.3 and 8.4 show energy cutoffs and specifications of the problem. The 7-group cell
heterogeneous cross sections were first generated by condensing the HELIOS [Villarino, 1992]
results with 34 groups. From these cell heterogeneous cross sections, the 7-group cell
homogeneous cross sections were generated by the CRX code [Cho, 1996] which is based on the
method of characteristics (MOC). Cell homogeneous cross sections are then given by each pin
type. Instead of total cross sections and P; scattering cross sections, transport-corrected cross
sections are given by the following definition:
h) =2

tr,g'«g 0,9'«g _5g'gzlg ) (82)

G
where S, =>"%, . 4.
g-1

KAIST performed several types of calculations to examine errors in various modelling
approximations [Cho, 2000]. First, CRX was run with pin-heterogeneous configurations (e.g.
fuel, clad, gap, moderator, etc.), and these results were considered as a reference. The pin-
homogeneous cross sections were then used for CRX and TWODANT. In short, the whole-core
heterogeneous calculation was performed with CRX whose results were compared with
TWODANT results in which Sg was used with 2x2 meshes per pin. Furthermore, the
heterogeneous cal culation was also compared with 2-group AFEN [Noh, 1993] solutions which
used the conventional procedure. They concluded that there were significant errors in the
conventional procedure using the nodal method with 2-group cross sections generated in single
fuel assembly calculations with reflective boundary conditions.
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Reflective
UC;X- U(C();F(eiz MOX- | UOX-1
uc;x- MC1>X- UC;X' UOX-1
Reflective MQX- U((O;I%Z el Vacuum
UOX-1 | UOX-
- Reflector
Vacuum

Figure 8.4 Configuration of the KAIST Benchmark Problem

In the work here, TWODANT was also used to solve the KAIST Benchmark problem.
Several calculations were performed to examine the effect of the number of groups, order of
angles and heterogeneity. Since a transport code similar to CRX was not available, the
TWODANT solution was considered as the reference in the analysis here. FA-homogenized
cross sections are generated with a single FA calculation and zero-current boundary condition.
The two-group reflector cross sections were provided with the two-node (fuel assembly and
reflector) calculation.

Table 8.5 summarizes comparison of eigenvalues between the S;g method with pin-

homogenized cross sections and different orders of methods with FA-homogenized cross
sections in the same way as performed for the L336-C5 benchmark problem. As observed in the
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previous benchmark problem, the magnitude of differences between 2-group and 7-group
calculations and between diffusion and SP; cal culations changes unexpectedly. The same reason
asin the L336-C5 results can be hold. As mentioned in the previous section, the results in Table
8.5 at least indicates that homogenization and transport consideration can cause substantial errors
in eigenvalue.

Fig. 8.5 shows the pin power distribution of the KAIST MOX benchmark problem, which
has large variations in pin powers due to MOX fuel loading. Figs. 8.6 through 8.8 show 1%-, 4™,
and 7"-group flux distributions in which dramatic variations of fluxes can be observed at
interfaces between MOX and UOX in the lowest group.

The origina KAIST MOX benchmark problem was modified so that it becomes more
simple and appropriate to analyze in this work. First, the baffle is removed from the core, and the
core, which is composed of UOX FAs only, is constructed for the purpose of comparison with
the MOX core in characteristics. All multigroup cross sections including partial cross sections
and transient parameters are generated from HELIOS again since partial cross sections and
transient parameters, which are very necessary for transient calculations, are not provided from
the original KAIST benchmark problem. Figs. 8.9 and 8.10 show the modified MOX and UOX
benchmark cores. It will be interesting to compare the magnitude of eigenvalue errors at stead-
state conditions and to compare the transient behaviors between the two types of cores.

Table 8.3 Assembly Specification of the KAIST Benchmark

Lattice 17x17
Assembly Pitch 21.42 cm
GT/IT 2411

Table 8.4 Fuel Types Loaded in the KAIST Benchmark

Fuel Assembly Content K-inf

UOX-1 2.0 w/o UO; 1.10040
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UOX-2 (BA1g) 3.3w/o UO,, 16 BAs (GD + 0.711 w/0) 1.03171

UOX-2 (CR) 3.3w/o UO,, 24 Control Rods 0.80074

MOX-1 8.7 w/o (inner), 7.0 w/o(middle), 4.3 w/o (outer) | 1.16957
Pu

MOX-1 (BAs) 8.7 w/o (inner), 7.0 w/o(middle), 4.3 w/o (outer) | 1.12814

Pu, 8 BAs(GD + 0.711 w/0)

Table 8.5 Comparison of Eigenvaluesin the KAIST Benchmark Problem

FA Method Group k-effective AKk-€eff (pcm)
HET S 7 0.95521 0
2 0.95799 278
Diffusi
usion 0.95379 142
HOM
2 0.95909 388
P
SPs 7 0.95567 46
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Figure 8.5 Pin Power Distribution of KAIST Benchmark Problem from
TWODANT (Ss, 3x3 meshes/pin)

x10

Figure 8.6 1% Group Flux Distribution of the KAIST Core
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Figure 8.7 4™ Group Flux Distribution of the KAIST Core
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Figure 8.8 7" Group Flux Distribution of the KAIST Core
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Reflective

Reflective
UOX- | UOX- | MOX-| UOX-

2 2 1 1
UOX-2| MOX-| UOX-| |,ox-
(CR) 1 2 -
MOX-| YOX-2l yox-

UOX- | UOX- Reflector
Vacuum

Date 31 August 2005

Vacuum

Figure 8.9 Configuration of the Modified KAIST Benchmark Problem (MOX Core)

Reflective

Reflective
UOX- | UOX- | UOX- UOX-
2 2 2 1
UOX-2[UOX-2| UOX- UOX-
(CR) | (BAy) 2 -
UOX- |UOX-2 UOX-
?2 (CR) ,
UOX- | UOX- Reflector
Vacuum

Vacuum

Figure 8.10 Configuration of the Modified KAIST Benchmark Problem (UOX Core)
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8.3 Results

8.3.1 Steady-State

The advantages of the global/local acceleration method have been discussed in the
previous sections. good performance in convergence, easy paralelization, better performance in
solving transient problem, and flexibility in choosing linear solvers. It is worthwhile to
investigate in detail the reasons for the advantageous computational efficiency of the two-level
(global/local) acceleration method. The performance of the two-level method is compared with
the coarse-mesh rebalancing (CMR) method which is one of the conventional acceleration
methods, as summarized in Table 8.6.

Table 8.6 Methods Used for Performance Comparison

M ethod Global Local

(Coarse-Mesh Calculation) (Fine-Mesh Calculation)
1 CMFD with D correction “One-node” FDM
2 CMPFD with CMR Whore-core FDM

The global/local acceleration method (Method-1) is based on the “one-node” approach in
which the fine-mesh finite-difference matrix is constructed for each local node (e.g. FA-size
node which has fine calculation meshes) and solved by red-black Gauss-Seidel sweep. In the
CMR method (Method-2), the fine-mesh finite-difference matrix is constructed for the whole
problem (e.g. whole-core) and the CMR is then performed to set up the coarse-mesh finite-
difference matrix.

Tables 8.7 and 8.8 show a comparison of results in terms of computation time for the two
different benchmark problems at steady-state conditions. The results show that the performances
of those two methods are comparable. Even though Method-1 shows the smallest number of
iterations, the total computation time is similar to the other method since the time to solve the
local problems is larger than the other method. Therefore, it can be concluded that the
global/local acceleration method with the “one-node” scheme at the local level has a
performance comparable to the CMR acceleration method for the eigenvalue problem. However,
the “one-node” calculation is expected to have an advantage in the transient fixed-source
problem which will be analyzed in the following section.
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With the two-level (global/local) acceleration, the eigenvalue converges quickly in 3 ~ 4
iterations since the boundary information of the whole problem is quickly transferred throughout
the core at the global calculation level. Thisis similar in characteristics to the techniques using
coarser meshes such as the multi-grid method and the coarse-mesh rebalancing method. The
only difference is that in the nonlinear global/local approach, the global level is independently
solving the problem once correction factors are determined, but in the multi-grid method or the
coarse-mesh method, the coarse-mesh calculations are always dependent upon the finer-mesh
calculations through residuals or driving factors, respectively. Due to local changes in group
fluxes, more iterations are required even though the eigenvalue is almost converged in a few
iterations. In the case of SP;, the convergence is a little slower since one more variable, the 2"-
moment, must be somewhat converged at the same time. Overall, the increase in the number of
groups and angles deteriorates convergence behavior. Tables 8.7 and 8.8 also show that SP;
calculations are about 2 or 3 times slower than diffusion calculations.

Fig. 8.11 and Table 8.9 show comparison of convergences between the whole-core FDM
used in PARCS and the two-level acceleration method. As briefly noted in Section 8.1, the FDM
module in PARCS uses an efficient numerical combination of the block incomplete LU
preconditioner and the BiCG-STAB algorithm as well as the Wielandt acceleration method. Due
to the limitation of the FDM module of the PARCS code, only two-group diffusion results are
compared. The results show that the two-level method is about four times faster than the FDM
module with efficient numerical solvers.

The performance of the three-level acceleration method discussed in Section 7.1 was
investigated with multigroup pin-by-pin SP; calculations. The resultsin Fig. 8.12 and Table 8.10
show the better performance of the three-level method compared to the two-level method. Since
the two cases chosen here have the similar characteristics in a core size, the number of groups,
and the number of spatial meshes, they showed similar results in performance.

Tables 8.11 and 8.12 show the accuracy of pin-by-pin SP; methods against more
sophisticated transport methods with S;6. The ADFs are used in the calculations with FA-
homogeneous cross sections. The results show that pin-by-pin 7-group SP; results have very
good agreement with the reference, while few group results sometimes show good agreement in
eigenvalue because of cancellation of errors among the various approximations. However, few
group results do not have as good agreement with the reference in the power distribution as the
pin-by-pin multigroup SP; results. Figs. 8.13 and 8.14 illustrate comparisons of power
distributions among different approaches.

It can be summarized that the two-level (global/local) acceleration method for diffusion
and SP; methods shows better performance compared to the whole-core FDM with the Wielandt
acceleration but comparable performance to the CMR acceleration. In addition, the three-level
acceleration method, which is applicable to multigroup pin-by-pin SP; method, has better
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performance in convergence than the two-level acceleration method. As far as the accuracy is
concerned, the pin-by-pin multi-group SP; method isin best agreement with the reference.

Table 8.7 Performance Comparison between Diffusion and SP; in the L336-C5
Benchmark Problem

e | ves | em Diffusion SP;
p h/pin 2-Level ? CMRP" 2-Level®
2 2x2 | CPU 3.7 29 8.0
lteratio | 12 20 12
n
3x3 | CPU 8.2 5.4 222
lteratio | 13 15 14
n
4 2x2 | CPU 85 8.8 33.2
lteratio | 14 19 16
n
7 2x2 | CPU 32.1 245 81.8
lteratio | 22 21 14
n

a: Global calculation by CMFD and local calculation by one-node FMFD sweep
b : Global calculation by CMR and local calculation by whole-core FMFD matrix
* SUN Ultra2, 300MHz
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Table 8.8 Performance Comparison between Diffusion and SP; in the KAIST
Benchmark Problem

Grou | Mes | 1tem Diffusion SPs
p h/pin 2-Level? CMR® 2-Level?
2 2x2 | CPU 10.3 13.6 249
Iteratio | 13 27 13
n
3x3 | CPU 25.4 320 721
[teratio | 13 23 13
n
4 2x2 | CPU 311 37.8 94.7
Iteratio | 17 24 15
n
7 2x2 | CPU 89.7 82.9 229.6
Iteratio | 25 26 21
n

a: Global calculation by CMFD and local calculation by one-node FMFD sweep
b : Global calculation by CMR and local calculation by whole-core FMFD matrix
* SUN Ultra2, 300MHz
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Figure 8.11 Convergence of Conventional FDM (PARCS) and Two-Level Acceleration Method

Table 89 Comparison of Computation Time between FDM (PARCS) and Two-Level
Acceleration Method

CPU (sec)
Group | Method | Core | Cross K-eff
Section FDM 2-Level | Ratio
(PARCYS)
2 Diffusion | MOX | FA-HOM | 0.95799 | 76 19 4.0
PIN-HOM | 0.95730 | 85 24 35
UOX | FA-HOM | 0.95283 | 68 19 3.6

* 51x51 meshes/FA
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2-Level(UOX) |4
3-Level (UOX) |1
2-Level (MOX)
3-Level (MOX)

Iteration

Figure 8.12 Convergence of Two-Level and Three-Level Acceleration Methods

Table 810 Comparison of Computation Times between Two-Level and Three-Level
Acceleration Methods

CPU (sec)
Group | Method | Core | Cross K-eff
Section 2-Level | 3-Level | Ratio
7 SP; MOX | PIN-Hom | 0.95543 | 561 345 1.6
UOX | PIN-Hom | 0.95234 | 565 340 1.7
* 3x3 meshes/pin
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Table 8.11 Comparison of Eigenvalue and Powers in the Modified KAIST Benchmark Problem
(MOX Core)

Code Group | Method gerzgtsif) . Iééeg_K FA Power (% Diff.)
(pcm)
Average | Maximum

TWODANT | 7 Sis PIN-Hom | 0.95521 0 0

2 Diffuson | FA-Hom | 278 1.67 2.67

7 -142 1.49 4.50
PARCS 2 SP3 FA-Hom | 388 1.46 2.30

7 46 0.64 2.13

7 SP3 PIN-Hom | 22 0.30 0.82

* PIN-Hom : Pin-homogenized cross sections
* FA-Hom : FA-homogenized cross sections
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I Bror 7G S5 PIN-Hom (TWODANT)
2-G Diffusion FA-Hom (PARCYS)

4.50 7-G Diffusion FA-Hom (PARCYS)
0.83 2-G SP; FA-Hom (PARCS)
2.13 7-G SP; FA-Hom (PARCS)
0.82 7-G SP; PIN-Hom (PARCS)
0.849 1.298

-0.63 2.67

252 1.86

-1.44 1.87

0.95 0.39

0.70 0.02

1.882 0.685 0.489

0.94 -2.49 0.97

134 -0.33 0.90

-1.45 -2.39 0.50

-0.34 -0.38 -0.34

-0.53 0.34 0.12

1.050 0.598

172 -1.49

234 -151

-1.01 114

-0.75 -0.91

-0.34 -0.09

Figure 8.13 Comparison of Power Distributions in the Modified KAIST Benchmark Problem
(MOX Core)
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Table 8.12 Comparison of Eigenvalue and Powers in the Modified KAIST Benchmark Problem

Date 31 August 2005

(UOX Core)
K-eff -
Code Group Method Cl'OS.S Delta-K FA Power (% Diff.)
Section
(pcm) .
Average Maximum
TWODANT | 7 Sis PIN-Hom | 0.95169 0 0
2 114 242 4.53
7 Di foSI on FA-Hom -297 1.52 5.22
PARCS 2 234 2.18 4.37
7 SPs FA-Hom 1110 0.83 3.04
I SP3 PIN-Hom | 65 0.26 0.90
* PIN-Hom : Pin-homogenized cross sections

* FA-Hom : FA-homogenized cross sections
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1531‘11; Eje" 7G Su6 PIN-Hom (TWODANT)
e o error 2-G Diffusion FA-Hom (PARCS)
2'11 7-G Diffusion FA-Hom (PARCYS)
- 2-G SP; FA-Hom (PARCS)

: 7-G SP; FA-Hom (PARCS)
0.90 7-G SP, PIN-Hom (PARCS)

0.921 1323
224 3.85
0.65 2,09
-3.00 3.08
-0.70 0.66
0.60 0.0
1.750 0.742 0.492
155 453 132
052 1230 0.80
2,08 437 0.83
0.26 219 017
10.39 0.16 -0.03
1.043 0.581
1149 -0.99
1179 114
074 059
0.14 10.30
-0.38 0.23

Figure 8.14 Comparison of Power Distributions in the Modified KAIST Benchmark Problem
(UOX Core)
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8.3.2 Transient

Two types of test cores are constructed for the transient calculations as shown in Figs.
8.15 and 8.16: MOX and UOX Cores. While the MOX core consists of a checkerboard loading
of MOX and UOX fuel assemblies (FAS), the UOX core is composed of UOX FAs only. The
control rod, which is inserted at the center FA, is gected in 0.1 sec resulting in super-prompt
criticality. The rod gjection is simulated by diluting absorbersin a2-D geometry. First of al, the
newly implemented transient neutronics and thermal-hydraulics (T/H) routines of PARCS have
been verified against the ANM transient results of PARCS which have aready been well
benchmarked. The test cases are run with 2-group FA homogeneous cross sections since the
original PARCS with ANM works only with 2-group homogeneous configurations. Fig. 8.17
shows very good agreement between them, which means that the new routines are properly
implemented. As mentioned earlier, one of the biggest advantages of the two-level (global/local)
acceleration scheme is to save computing time in transient calculations by reducing the number
of local calculations depending upon the cross section change:

m,i+1 m,i
IR

= max m,i
Zy

<& (8.3

where ZL‘;‘ = removal cross section of node m at i update of correction factors.

The correction factors changes significantly in the node in which the control rod is being
removed. However, once the rod is removed, the correction factors changes very small. Fig.
8.18 illustrates the accuracy of using an adaptive update of correction factors, which isin very
good agreement with the results without adaptation. In addition, Table 8.13 shows the saving of
computation time with an adaptive update of correction factors. If the transient calculations are
performed more than 0.6 sec, the CPU saving would be greater.
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Figure 8.16 Configuration of 3x3 UOX Core for the Rod Ejection Transient Problem

47



Final Report

DE-FGO07-011D14106

T T T I
00 — PARCS-ANM
_ == FMFD
o
& 200
a
3
20t R
o H 1 1
0 01 02 03 0.4 05 06
1.5 T T T T
s
= i
o=
=
(&) -
<o
o
L |
0.4 05 06
45 T T T T
Ky
ERds =
&
=g
£
T 20
1 1 1 1 1
0 01 02 03 0.4 05 06
time(sec)

Date 31 August 2005

Figure 8.17 Comparison of Power, Reactivity, and Enthalpy with Time between PARCS-ANM
and FMFD Diffusion in the MOX-Core Transient
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Figure 8.18 Comparison of Power, Reactivity, and Enthalpy with Time between PARCS-ANM
and FMFD Diffusion w/ Adaptation in the MOX-Core Transient

Table 8.13 Reduction of Computation Time Due to Adaptation with Cross Section Change
(Total elapsed time = 0.6 sec)

CORE Method | w/o Adaptation (sec) | w/ Adaptation (sec) | Ratio
*
MOX Diffusio | 219 41 0.19
n
SP; 393 123 0.31
UOX Diffusio | 226 42 0.19
n
SP; 348 71 0.20

* 2-group, FA-homogeneous, 2x2 meshes/pin
Note that the CPU reduction will become larger with greater total elapsed time

It is very worthwhile to compare the transient results of the two different cores, which
have the same dynamic reactivities. As shown in Table 8.14, the MOX core has a smaller
delayed neutron fraction and generation time, which causes the earlier core power peak. It is
instructive to understand the trend using the simple point kinetics equations:

p®)+7[(pt)-p,) dt'- 3

b(t) = N p@+%§a@, (8.4)

where ¢(t) =-46,(t)+ B p(t).

In the super-prompt critical domain Eq. (8.4) at hot zero power conditions, the solution can be
approximated as [Ott, 1989]:

2 N
Po ap= N (8.5)

2Ny , pL— B

p(t)=exp(p iﬂ tij’ Proax =
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2 2 2 1 2 0 ' '
where p; :(pl_ﬂ) _pAi/,Oﬂ poz(pl_ﬂ) ) p1=p(t)+7'[(p(t)—p0) at’,

y <0 (thermal feedback coefficient).

The equation above implies that the height of the power peak is dependent upon (pll ,3—1)2,

Al p,and y/ g . Inaddition, the energy stored in the power peak becomes only dependent upon
p ! p and y/ g asfollows:

~ 2P P) (8.6)

P(t) 4

t
Figure 8.19 Power Pulse of the Superprompt-critical Transient

According to the MOX and UOX transient results with the same dynamic reactivities, the MOX
core should have relatively earlier and smaller power peak and smaller stored energy. The trend
can be estimated using Egs. (8.5) and (8.6) with data in Table 8.14. These are shown in the
comparison results in Fig. 8.20. More tests are performed with the same cores changing the
methods from diffusion and SP; approximations using 2-group homogeneous cross sections.
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Figure 8.20 Comparison of Results between MOX and UOX Core Transients

Table 8.14 Transient Parameters of MOX and UOX Cores

PARAMETER MOX UOX Ratio
Initial K-eff 1.00029 0.99998 -
Beta 0.0053 0.0076 1.43
Reactivity ($) 1.14 1.14 1

A 1.31 x10°° 2.16x10°° 1.65
Al B 0.0025 0.0028 1.12
Doppler Coefficient | -3.4 -3.1 0.91
(per/ ° )@

O/ p -642 -408 0.64
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Figure 8.21 Comparison of Power, Reactivity, and Enthalpy with Time between Diffusion and
SP3 in the MOX-Core Transient
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Figure 8.22 Comparison of Power, Reactivity, and Enthalpy with Time between Diffusion and
SP; in the UOX-Core Transient
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The different methods result in different control rod worth in the steady-state calculation, which
significantly affects the transient results as shown Figs. 8.21 and 8.22. Even though the
difference of delayed neutron fractions between 2-group FA-homogenous diffusion and
multigroup pin-by-pin SP; calculations is one of the major effects for transient results, its
investigation and analysis remain as future work.

8.4 Performance of Multigroup SP; Nodal Expansion Method

The conventional methods used to solve the NEM is to perform one-dimensional
sweeping with numerical schemes such as the red-black Gauss-Seidel and then perform
acceleration with coarse-mesh rebalancing, Chebyshev method, etc. In this work the multigroup
NEM is solved within the framework of the global/local acceleration method, which was
discussed in the previous sections. Even though one-dimesional sweeping works well with the
global/local iteration for 2-group problems, it turns out to have poor convergence for multigroup
SP; problems. This is the primary reason why the simultaneous matrix solution method is
proposed as discussed in Section 5. Determining all directional currents, higher cofficients, and
average flux of anode at atime makes it possibe to obtain a stable correction factors.

As explained in the SP; solution with the FMFD method, the 2-group diffusion equation
is solved with CMFD in the global calculation whereas the multigroup SP; equation is solved
with NEM in the local calculation. The 2™ moments as a boundary condition for the local
problem are determined from the previous iteration step. The restriction and prolongation of
group information between 2-group CMFD and multigroup NEM are performed in the same way
as explained in Section 6. The 13x13 matrix equation shown in Eg. (5.16) are solved using LU
factorization.

The multigroup NEM for the SP; equation has been implemented into the PARCS code
and tested using the modified KAIST benchmark problem as shown in Figs. 8.23 and 8.24. Figs.
8.25 and 8.26 show two-group moment shapes of FMFD SP; and nodal SP; along the top edge
line of the core for the MOX benchmark, and Figs. 8.27 and 8.28 show the moments for the
UOX benchmark. The 0™ moment comparisons show that the nodal SP; has good agreement
with FMFD SP; at interfaces between different types of fuel assemblies, which enables the nodal
solution to have good approximations of the eigenvalue and power distribution. However, the 2™
moment results show that even though the trend in moment distribution is correct, the accuracy
of the slope of the moment is not as good as the 0" moment at interfaces. This implies that the
2" moments might not be sufficiently well approximated with a second-order polynomial, and
future work will be to investigate the use of the exponential functions to estimate the steep
change of the 2" moment at interfaces. Nevertheless, the nodal SP; results have very good
accuracy because the influence of 2™ moments on scalar fluxes and currents is relatively small.
Figs. 8.29 through 8.34 illustrate the comparisons of moment distributions from multigroup SP;
calculations.
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Tables 8.15 and 8.16 show the comparison of eigenvalue and computing time between
FMFD and nodal methods in the diffusion and SP; equations. As many researchers have shown,
the NEM for the diffusion equation has very good agreement with the FMFD solutions. The SPs
NEM also has good agreement with FMFD SP; results.

As expected, there is large reduction of about a factor of more than 100 in the calculation
times in two-group. The reason why the CPU reduction is much smaller in 7-group is because
the method of solving the local problems is changed in the 7-group cases. While one-
dimensional sweeping is used in 2-group, the LU factorization to solve the 13x13 matrix shown
in Eq. (5.16) isused in the 7-group cases. If the 2-group solver is changed to the LU factorization
for the 13x13 matrix, the CPU difference will be smaller. As future work, the LU factorization
will be changed to more efficient numerical methods and the computing time will then be
reduced.

UOX | UOX2 ] UoX1
-BP
- uox2) uox2 | uox1
UOX2| UoX1
uox1| uoxi

Figure 8.23 MOX Core Solved with the Multigroup SP; NEM
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Figure 8.24 UOX Core Solved with the Multigroup SP; NEM
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Figure 8.25 Fast Group Moments along the Top Boundary Line in the UOX Benchmark
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Figure 8.27 Fast Group Moments in 2-Group along the Top Boundary Line in the MOX
Benchmark
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Figure 8.29 Group-1 Moments of 7-Group Solution along the Top Boundary Line in the UOX
Benchmark
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Figure 8.31 Group-7 Moments of 7-Group Solution along the Top Boundary Line in the UOX
Benchmark
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Figure 8.32 Group-1 Moments of 7-Group Solution along the Top Boundary Line in the MOX
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Figure 8.33 Group-4 Moments of 7-Group Solution aong the Top Boundary Line in the MOX
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Figure 8.34 Group-7 Moments of 7-Group Solution along the Top Boundary Line in the MOX
Benchmark

Table 8.15 Comparison of Eigenvalue and Computation Time between FMFD and Nodal
SP; Methods for the MOX Benchmark Problem

Grp| Item Diffusion DeltaK | RMS SP; DeltaK| RMS
FMFD |[NODAL| (Ratio) | (Max) | FMFD |[NODAL| (Ratio) | (Max)
k-eff |0.97579|0.97581 2 0.06 [0.97795|0.97794| -1 0.05
2 G/L 18 5 - (0.20) 19 8 - (0.08)
Iter
CPU(s)| 421 | 02 | (211) 670 | 05 | (134)
k-eff |0.98466|0.98468 2 0.09 |0.98778|0.98781 3 0.11
7 G/L 16 17 - (0.19) 17 16 - (0.24)
Iter
CPU(s)| 1456 | 5.6 (26) 390.7 | 10.6 (37)
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1) Calculation mesh: FMFD — 51x 51/pin, NODAL — 3x 3/FA

2) Note that since 2-group cross sections are not generated in consistence with 7-group cross
sections, their resultsin eigenvalues and powers are not comparable each other.

3) No upscattering cross sections are considered in 7-group cal culations

4) SUN Ultra2, 450 MHz

Table 8.16 Comparison of Eigenvalue and Computation Time between FMFD and Nodal
SP; Methods for the UOX Benchmark Problem

Gro |ltem Diffusion Deta-K |RMS |SP; DetaK | RMS
up Error of Error of
Power Power
FMFD |[NODAL|(Ratio) [(Max) [FMFD |[NODAL|(Ratio) ((Max)
k-eff [0.93819 (0.93820 |1 0.07 0.93989 (0.93988 |-1 0.04
2 G/L 18 6 - (0.14) |18 8 - (0.09)
Iter
CPU(s)|37.8 0.3 (126) 62.9 0.5 (126)
k-eff [0.95619 [0.95619 |0 0.07 0.95847 (0.95852 |5 0.08
7 G/L 21 22 - (0.14) |23 23 - (0.19)
Iter
CPU(s)[208.0 |8.1 (26) 3926 (195 (20)

1) Calculation mesh: FMFD — 51x 51/pin, NODAL — 3x 3/FA

2) Note that since 2-group cross sections are not generated in consistence with 7-group cross
sections, their resultsin eigenvalues and powers are not comparable each other.

3) No upscattering cross sections are considered in 7-group cal culations

4) SUN Ultra2, 450 MHz
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8.5 Performance of the Adaptive Method

Since the multigroup pin-by-pin SP; calculation with the FMFD method still has large
computation time compared to the conventional approach using the advanced nodal method with
2-group FA homogenized cross sections, the adaptive method is experimented here, in which the
different methods are used in the same core calculation. For example, the multigroup pin-by-pin
SP; method is used in the regions in need, and nodal methods, which are computationally
efficient, are used in the other regions. This adaptive method was verified against the modified
KAIST benchmark problem with the choise of methods shown in Figs. 8.35 and 8.36.

As shown in Fig. 8.35, the SP; method is mainly assigned to MOX regions and interface
regions between fuel assemblies and reflector where the transport effect is expected to be
dominant. Since the total computation time is so small, it is not easy to make conclusion.
According to the results shown in Table 8.17, however, Case-3 is a kind of optimum choice in
terms of accuracy and computation time as can be expected, which SP; is assigned to MOX FAs
and reflector nodes adjacent to fuel assemblies. Fig. 8.36 and Table 8.18 show performance
depending upon the choice of methods with pin-by-pin FMFD and nodal methods in which only
2 group cross sections are used. Cases 2 through 6 list a spectrum of change of accuracy and
computation time. Based upon the results, Case 5 is most desirable in terms of both accuracy and
computatin time.

It will be interesting to investigate how to optimize the choice of methods. Furthermore,
to show significant performance improvement of the adaptive method, the multigroup and pin-
by-pin SP; methods need to be involved. It remains as one of possible future extensions of this
report.
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Figure 8.35 Assignment of Solversin the Adaptive Method with Nodal Methods
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Table 8.17 Comparison of Eigenvalue and Power with Choice of Different Methods in 2-
Group FA-Homogeneous Problem (Use of Nodal Methods Only)

C FM NODAL K -eff % Error of CPU
AS FD Power
E (DeltarK, RMS (Max) (sec)

SP; SP; Dif pcm)

i

Re 25 0 0 0.97795 - 72.2
f
1 0 25 0 ( -1 0.04 (0.09) 31
2 0 14 11 ( -27) 0.38(0.82) 2.8
3 0 9 16 ( -37) 0.69 (0.84) 2.5
4 0 8 17 ( -72) 0.48 (0.85) 2.5
5 0 3 22 ( -87) 1.03 (1.49) 2.4
6 0 0 25 (-214) 1.19 (1.99) 2.0

* FMFD = 51x51/pin, NODAL = 3x3/FA
* criterion = 10°°
* SUN Ultra2, 450 MHz
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Figure 8.36 Assignment of Solversin the Adaptive Method with Nodal and FMFD Methods
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Table 8.18 Comparison of Eigenvalue and Power with Choice of Different Methods in 2-Group FA-
Heterogeneous Problem (Use of Nodal and FMFD Methods)

CA FM NODAL K-eff % Error of CPU
SE FD Power

(DeltaK, RMS (Max) (sec)

SP; SP; Dif pcm)
f

Re 25 0 0 0.96440 - 447
f
1 18 7 0 (7 0.06 (0.14) 33.6
2 18 0 7 ( 6) 0.06 (0.14) 323
3 14 4 7 ( 88) 0.95 (1.90) 26.9
4 11 7 7 ( 43 0.85 (1.57) 224
5 7 6 12 ( -3 0.22 (0.41) 14.4
6 0 25 0 ( 83 0.83 (1.64) 34
7 0 0 25 (-101) 1.03 (2.59) 2.0

* FMFD = 3x3/pin, NODAL = 3x3/FA
* criterion = 10°°
* SUN Ultra2, 450 MHz
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9. SUMMARY AND CONCLUSIONS

The sources of error involved in the solution of the Boltzmann transport equation, such as
gpatial discretization, spatial homogenization, group collapsing, and transport, were qualitatively
and quantitatively evaluated for the solution of core neutronics problemsin LWRs. Basicaly, al
errors occur due to differences in spectrum conditions between group constants generated in
lattice calculation and used in core calculation. For example, if all group constants are generated
under the actual spectrum conditions, very accurate solutions can be obtained. However, it isin
fact impossible to know the actual spectrum conditions when generating group constants. Based
upon test calculations described in Section 2, it was found that heterogeneous multigroup
transport calculations are necessary to accurately predict eigenvalue and fuel pin powers for
tightly coupled MOX loaded cores. Multigroup transport calculations with pin-by-pin
configurations are relatively |ess sensitive to the spectrum condition in which group constants are
provided. Since the multigroup transport equation for pin-by-pin core configurations requires a
large amount of computation time, it is formulated within a framework of the multi-level
acceleration method, which enhances the computational efficiency for both eigenvalue and fixed
source problems.

The local spatial calculation is performed using the fine-mesh finite difference (FMFD)
method instead of the traditional nodal method since the heterogeneity inside fuel assemblies can
be treated directly. In addition, the so-called “one-node two-factor” scheme (one-node local
calculation resulting in two correction factors at each side of a node) in the global/local multi-
level acceleration is adopted instead of the “two-node one-factor” scheme (two adjacent local
node calculations resulting in one correction factor at the interface). The “one-node two-factor”
scheme has advantages in terms of computationa efficiency and in terms of treatment of
heterogeneous configurations. The simplified P; approximation (SPs) is used as a transport
solver because of its favorable characteristics in terms of accuracy and computing time. The
heterogeneous configuration with pin-homogenized cross sections is also adopted to minimize
the spatial homogenization error and especially to improve estimates of pin powers. In order to
reduce the computation time and enhance the convergence rate, the two-group diffusion
calculation with homogenized cross sections is maintained at the global level while the
multigroup pin-by-pin SP; calculation is performed only at the local level. In addition, adaptive
methods are implemented, which enable the use of solvers with different levels of complexity
within the same core calculation. For the adaptive method, the multigroup nodal expansion
method (NEM) for the SP; approximation has been developed and investigated. In the efficient
formulation of NEM for SPs, the definition of partial moments is modified appropriately.

The methodologies developed in this report have been verified for steady-state and
transient calculations using the OECD L336 benchmark and the modified KAIST benchmark
problems, both of which included MOX fuels and were solved using 7-group homogenized cell
cross sections. The results show that the multi-level acceleration method for the SP;
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approximation is successful for steady-state conditions in terms of both accuracy and
computation time. It was also observed that the global/local multi-level scheme for the
multigroup SPs; formulation is more efficient for the transient fixed source problem since
correction factors for the CMFD calculation can be reused during mild transient periods without
being explicitly recalculated. The multigroup SP; NEM, which was used in the adaptive method,
has very good agreement in 2-group and 7-group test problems. The adaptive method also
showed expected performance in terms of accuracy and computation time depending upon the
choice of methods.

The principal original contributions of this work are the formulation of pin-by-pin
multigroup SP3; approximation within a framework of the multi-level global/local acceleration
approach for the steady-state and transient conditions, the development of multigroup NEM for
SP;, and the development of the adaptive techniques for the methods proposed here. In the
future, the multigroup pin-by-pin SP; method should be verified with more sophisticated
reference calculations, such as full core calculations with the Lattice codes. The cell-
homogenization factors, such as the superhomogenization (SPH) factors, will then need to be
considered. In addition, the performance of the multi-level acceleration method needs to be
compared more systematically with other advanced accel eration techniques.

Asfor transient calculations, it would be also worthwhile to compare kinetics parameters
determined using the conventional methods and those obtained from the pin-by-pin multigroup
SP; calculations, and to analyze their effects on transient behaviors in terms of power peak and
energy deposition. The multigroup pin-by-pin SP; should be extended to three dimensions for
more realistic ssimulation of rod gection transients. In order to save computation time in three-
dimensional calculations, nodal methods can be used in the z-direction, since compositions are
normally homogeneous in the z-direction. The transverse leakage shapes for the pin-by-pin
configuration then need to be appropriately established, which would be different from the
conventional approximations of the transverse leakage shapes for the FA-homogeneous
configuration. As for the nodal expansion method for SPs, the polynomial approximation of the
second moments and their transverse leakage shapes need to be improved for better accuracy
with coarser meshes. Noda methods for diffusion and SP; approximations also need to be
investigated together with the equivalence theory, since they will have different discontinuity
factors to preserve reference currents at assembly interfaces. Even though the adaptive method
was tested with the “one-node two-factor” scheme in this work, it will be interesting to perform
the adaptive calculations with the “two-node one-factor” scheme since multigroup or transport
effects are actually dominant at interfaces between two different assemblies or interfaces
between fuel assemblies and reflector.  The choice of appropriate methods in the adaptive
method will have to be optimized based upon systematic error analysis in association with the
specific core.
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PART II: ADAPTIVE METHODS FOR THE VARIATIONAL NODAL METHOD

The variational nodal method has found substantial use in both diffusion theory and higher-order
spherical harmonics approximations. It has been available in both two- and three-dimensional
Cartesian and hexagona geometries. However, the need sometimes arises for two-dimensional
R-Z geometry calculations, particularly for scoping studies. The following describes the
theoretical basis for the method implemented in the ANL code VARIANT.

1.0 Theory

The variational nodal method is a primal hybrid finite element representation of the even-
parity form of the transport equation. In the hybrid formulation, the problem domain V is
decomposed into subdomains V, (also called elements or nodes):

v=Xv,. @)

Within each node, the even-parity form of the transport equation is solved in space (F) and angle
(Q):
—Q-VeQ-Vyt (F,Q)+o v (F,Q) = as_[dg)f (F, ) +5(F), eV, )

where " is the even parity flux component, o and o, the total and scattering cross
sections and s the group source. The odd-parity flux v, whichisrelated to " by

Q-Vy' (F,Q)+oy (1,Q) =0, Fel (3)
is defined only along the node interface I'y as a Lagrange multiplier.

The functiona for the variational nodal method is given as a superposition of nodal
contributions:

Fly".w 1=> Flv".v], (4)

where
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Fly =] dv{[ Ao (VY ) +oy* ] -0,¢° —2¢s}+2j dr oAy y -, (5)

and ¢ is the scalar flux. This functional must be stationary with respect to arbitrary variations
w' and w~ about the true solutions y'and . Thus, we make the replacements
v >y +oy" and y~ -y +ewy” where § and ¢are small positive constants, and require

the linear termsin 6 and ¢ to vanish. Setting the linear term in 6 to zero yields the weak form
of Eq. (2):

[av[do Q- V)@ - Vy ')+ (oy" —o,9—5)]+ [dr[dX- Ay =0, (6)

and applying the divergence theorem yields

jdvjdgﬁ(—fz-%-lfzﬁyf +oy’ -as¢—s)+jdrjdgfz- Ap' (y +0'Q- V') =0. ©)

Clearly, Eq. (2) must be satisfied if the volume integral is to vanish for arbitrary *, and Eq. (3)
must be met at the interface for the surface integral to vanish. The continuity conditions across
nodal interfaces may be stated as follows. Since the Lagrange multiplier = and its variation -
are uniquely defined at the interface, two conditions are imposed. First, the surface integral in Eg
(7) imposes continuity on o *Q-Vy*. Second, requiring the linear term in & to vanish yields for
each nodal interface, say between nodes 'V, and V,,, a condition of the form

jdrjdgiz-ﬁ&-(yf—w):o, (8)

since i, =—,. Thus " must be continuous across the interface.

2.0 Cylindrical Coordinates (r, z)

The R-Z cylindrical coordinates system is shown in Figure 1, together with an angular-
direction coordinates system used to define the particle direction Q. In this system, a spatial
point is defined by its (r, z) coordinate and

Q=0 F+Q 6+Q,7, (9)
where

Q, =(1-p*)"? coso,

Q, =1-p*)"*sno, (10)

77



Final Report Date 31 August 2005
DE-FG07-011D14106

with p=cosd. The Q-V may be determined by [O’ Dell, 1987], [Lewis, 1984].

QV=0 Q240

0
-, 11
"o oz (1D

"or

and the incrementa angleis defined as dQ = (47)'dudw.

” N>

A A

Fig. 1 Cylindrical Coordinates

3.0 Discretization

We begin by considering a rectangular node in r, z bounded on left and right by r <r<r,

and on bottom and top by z <z<z as shown in Figure 2. We expand the even-parity flux
coefficients within the node as
v (r,z,Q) =g" (Q)®Ff (r, 2)¢,. r<r<r,z<z<z, (12

Here ® denotes the Kronecker product, and g(Q) is vector of even-order spherical harmonics
with M terms obey the orthonormal condition
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[dog@e" (@) =1, (13)

The spatial trial functions f(r,z) are complete polynomials. They are Legendre polynomialsin z
and also constructed to be orthogonal in r, so that

% j dVE(r, 2T (r,2) =1, | (14)

In R-Z geometry, V, = 2z(r> —r?)(z, —z,) and
fav()= 27zj drr_[: dz(-) (15)

The vector &, in Eq, (12) contains the unknown coefficients.

_______________ ——m 2Vl dzl

Fig. 2 Element V, with interfaces T,

79



Final Report Date 31 August 2005
DE-FG07-011D14106

Along the node interfaces, we make the expansions

y (F,Q) =Kk, (Q®h](2),, rer,I
and (16)
y (F,Q) =k, (Q®h (2)z,, rel,T,

where ky(f)) is vector of odd-order spherical harmonics in which the angular coordinates have

been rotated such that the polar angle, ,u:fl-ﬁy, is taken with respect to the surface normal.
They obey the orthonormal conditions
j dOk (K (Q) =1,
and y=rtlb (17
j dQg(Q)k] (Q2) =0

The spatial trial functions h, are set sets of orthogonal polynomials defined along the interfaces.

The source and the scalar flux may be approximated as

s=ws(r,z) (18)

and L<r<r,z <7<z,
#(r)=w f (r,2)g, (19)
with [w], =6

ml *

The nodal volumes corresponding to the response matrices will be toroids with
rectangular cross sectionsin ther, z plane. The central nodes, however, are cylinders with three
surfaces. The centerline symmetry condition that

limy (. ) =y*(2,0) (20)

reguires that the central nodes contain two sets of trial functions for " and for y~when spherical

harmonics are employed. Only even functions in r are included in the spatial trial function sets
for the Y, terms, which are independent of @, causing the radial derivative vanishes at r = 0

only odd functions of r are included for the » dependent Y,,, m=0 terms, causing them to
vanish at the origin. With these stipulations, the singularities that would otherwise be
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encountered in applying the operator of Eq. (11) are removed. Note, also, that unlike Cartesian
geometry, each response matrix in the radial direction is unique, even though the cross sections
and the widths and heights of the nodes are same.

4.0 Response Matrix Formulation

Response matrices are obtained from the foregoing space-angle trial functions by inserting
theminto Egs. (4) and (5). Thisreduces the functional to the algebraic form:

F=ZFV [va'%v] (21)
and
Fv [CV’XV] :CIAVCV _ZC-II;SV +2C11;MVXV " (22)
The matrix Ay isgiven as
A, =0, ® [dV(V, )V, A7 J+(o 1, —o,ww JOV,I,, (23)

where repeated subscriptsk or k' indicates summation with k,k'=r,w,z, and

vf=0df/or,
v f=ftir, (24)
Vi=ocf/oz.

The incremental spatial volume is given by dV = 2rrdrdz.

Each of the elements of Ay is given in terms of integrals over known spatial or angular
trial functions:

H,. = J.dQQka'gkgl' ' (25)
where
g.,=8g (26)
g, =—0glow.
The sourceis
s, = j dVs ®f . (27)

The surface coefficients are partitioned according to the four interfaces:
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%
%=X (28)
X
%o
The M, matrix isthen given as
M, =[M;, M, M|, M, ], (29)
M =E ®D, y=rtlb (30)
where
E, = j dQQ-A g(QK (Q), (31)
and
D, = 2nt, | def (1, ] (2), y=rl
(32)
D, - zﬂj drrf(r,z, )h (r) . y=t,b

We may now obtain a set of algebraic equations by requiring the discretized functional to
be stationary. To examine arbitrary variations about the solutions, we make the replacements

§, ¢, +C, and y, >y, +%, in Egs. (21) and (22). Requiring the linear term in & to
vanishyields

AL +My, =s (33)

v

Requiring the linear term in ¢ to vanish imposes continuity across nodal interfaces of the
moments defined by

\|,V :MICV " (34)
We may solve Eq. (33) for C,,

Cv = A;lsv _A;leXv ! (35)
and combine the result with Eq. (34) to obtain
\VV = MI A;lsv _M‘-I; Al_/lMVXV * (36)

At this point, we have written the even-parity flux moments y, at the node interface in terms of
the source and the odd-parity interface moments y,,, while imposing the continuity of both of
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these moments between neighboring nodes. The final step isto transform variables such that Eq.
(36) may be written in terms of aresponse matrix. Introducing the partia current-like variables

o=V (37)
into Eq. (39) and (40) then yields response matrix equation for each node:
j: :Rvjl_/ +Bvsv’ (38)

-1

where R, =(2M7A;'M, +1) " (:MTAM, —1) and B, =(MTA'M, +1) M7 A%

5.0 Results I: VARIANT Steady-State

The R-Z formalism is being implemented as a modification of the multigroup VARIANT
code at Argonne National Laboratory, for both diffusion theory and higher-order spherical
harmonics calculations. Both fixed source and eigenvalue options are included. To test the fixed
source capability the well-known Iron-water problem [Gelbard, 1972] has been recast from X-Y
to R-Z geometry, with al dimensions and cross sections remaining the same. Figures 3 and 4
show P; and Ps results close to the vacuum boundaries. Fine mesheswith Ar = Az =1 cm, and a
coarse mesh, with Ar = Az = 3 cm, are presented. For comparison, fine mesh x-y calculations
are also included. The substantial transport effects are, as expected, present in R-Z aswell as X-Y
geometry.
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3 300
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R or X (cm) at Z or Y=28.5cm

Fig. 3 Flux distribution close to the vacuum boundary on the top
for the Iron-water problem

To examine spatial truncation errors, we utilize two-group eigenvalue problems. Table 1
provides P; eigenvalue results using two group MOX fuel and water cross sections. The core is
40 cm in radius and 80 cm in height surrounded by radial and axia reflectors 20 cm thick. A
reflected boundary condition is used to reduce the modeling to the upper half of the core. The
eigenvalue is tabulated vs. both h and p refinement. Aside from the coarsest nodes, the accuracy
increases faster with p refinement (i.e. increasing the polynomia order in the interface
approximation) than in reducing the mesh size in h refinement. Moreover, both CPU time and
memory requirements increase substantially with mesh size reduction, but much less so with
increased polynomial order.
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Fig. 4 Flux distribution close to the vacuum boundary on the right
for the Iron-water problem

Ar & A7 face ilat Linear Quadratic
100m 0.95450 0.95349 0.95349
(1.21x10%%) | (L.47x10%%) | (1.47x10°%)
Ao 0.95351 0.95335 0.95335
(1.68x10°%%) | (0.00%) (0.00%)
oo 0.95339 0.95335 0.95335
(3.15x10°%%) | (0.00%) (0.00%)
1om 0.95336 0.95335 0.95335
(1.05x10°%%) | (0.00%) (0.00%)

Table 1 Comparison of h-refinement and p-refinement
for Two-Region Eigenvalue Problem
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6.0 Results II: VARIANT and PARCS TRANSIENT

As shown in Fig. 5, athree-dimensional 3x3 fuel assembly mini core was constructed using data
from the OECD/NEA and U.S. NRC PWR MOX/UQO2 core transient benchmark [Kozlowski,
2003]. The mini-core consists of 4 MOX and 5 UOX assemblies, and 22 planes including
top/bottom reflectors. The homogenized 2-/4-/8-group cross sections are provided for assembly-
wise and/or pin-wise meshesin a PMAXS format. A superprompt critical reactivity insertion is
simulated by a control rod which is inserted in the center UOX fuel assembly and fully eected

within 0.1 seconds.

Fig. 5 3x3 Fuel Assembly Mini-Core.
State steady calculations are summarized in Table 2. The ANL code VARIANT [Palmiotti,

1994] is used as a reference solution. The transient power is shown in Fig. 6 which shows
consistency between the higher order PARCS and VARIANT results.
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Fig. 6 Rod Ejection Transient
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Milestone Status Table:

Task / Milestone Description Planned Actual Comments
Completion Completion
1. Adaptive Methods 6/02 7/02
2. Error Estimation 3/03 4/03
3. Preconditioner 6/03 6/03
4. Code Integration 9/03 Delayed while method
was reformul ated
5. Benchmarking 1/04 8/04
6. Code Verification 6/04  10/04
7. Preparation of Final Report 8/05 Completed
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