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PART I:   ADAPTIVE NEUTRON TRANSPORT METHODS IN PARCS 

 
1.  Introduction 

The diffusion approximation has successfully been used for the analysis of the current 
generation of Light Water Reactors (LWRs) because the transport equation is very costly to 
solve for reactor core-sized problems.  During the past twenty years advanced nodal methods 
such as the nodal expansion method (NEM) [Finnemann, 1977], the analytic nodal method 
(ANM) or the nodal integration method (NIM) [Fischer, 1981], and the analytic function 
expansion method (AFEN) [Noh, 1995] have been successfully developed to spatially discretize 
the diffusion equation. These coarse-mesh or nodal approaches were preferred in order to save 
CPU time and memory.  Considerable effort had been invested in improving the accuracy of 
nodal methods and these advanced nodal methods became capable of estimating an eigenvalue 
within tens of pcm with a fuel assembly size of nodes. During the past few years, however, there 
has been some concern that the methods that have been developed for uranium fueled LWRs do 
not perform satisfactorily when applied to the same cores fueled with Mixed Oxide (MOX), or 
more generally to cores with very heterogeneous loadings. Several researchers carefully 
examined the source of the large errors in modeling heterogeneous core configurations.  

 
The specific approximations which contribute to the errors observed in nodal diffusion 

methods can be identified into four primary effects: a spatial discretization effect, a spatial 
homogenization effect, a group collapsing effect, and a transport effect. The quantification 
analysis of the four effects under various possible environments is very important to isolate the 
source of errors and to provide direction for improving in core calculations. In the analysis here 
the spatial discretization effect is not included since it has been well investigated by many 
researchers.  Instead, the analysis will focus on group, transport, and spatial homogenization 
effects. 

 
2.  Background Study 

In order to analyze the three effects, TWODANT, the Los Alamos discrete ordinate  
transport code [Alcouffe, 1995], is utilized.  The conventional diffusion and simplified P3 (SP3) 
methods are also used for comparison, which will be described in detail later. Fuel combinations 
such as UOX/UOX show small spectrum changes, and the diffusion approximation is still 
accurate in these configurations.  In this thesis very different materials in characteristics are used 
such as MOX, reflector (water) or UOX with large amounts of neutron absorber.  The various 
geometry configurations used are shown in Figs. 2.1 through 2.5.  The compositions and 
geometries tested are mainly based on possible combinations of the KAIST benchmark problem 
which will be discussed in detail in Chapter 8.  The geometry in Fig. 2.1 is somehow not 
realistic, but it will assist in verifying what happens in core peripheries where there are interfaces 
between fuels and reflector. In Fig. 2.2, MOX and UOX are neighboring as often seen in MOX 
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loaded reactors, and in Fig. 2.3 the same geometry is used as in a diagonal direction of the 
KAIST benchmark core.  Fig. 2.4 is the same as Fig. 2.3 except that it is composed of many 
different pins. The two-dimensional configuration in Fig. 2.5 will be used to examine the spatial 
heterogeneity effect.   

 
 
 

 
 
 
 

Figure 2.1  1-D Geometry Configuration of Case A 
 
 
 
 
 
 
 

Figure 2.2  1-D Geometry Configuration of Case B 
 

 
 
 
 
 
 
 

Figure 2.3  1-D Geometry Configuration of Case C 
 

 
 
 
 
( Pin pitch = 1.26 cm )  
 

 
Figure 2.4  1-D Geometry Configuration of Case D (Heterogeneous Pins) 
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The tests performed here are summarized in Table 2.1. For the transport effect, Cases A 
through D have been tested changing the order of the angular approximation in the SN and PN 
methods.  For the group effect, 7-group cross sections are condensed to 4 and 2 groups in single 
fuel assembly calculations with zero-current boundary conditions, which is a conventional 
method of homogenization. For the spatial homogenization, two-dimensional heterogeneous fuel 
assemblies (FAs) shown in Fig. 2.5 are homogenized in the same manner used for the group 
homogenization.  The assembly discontinuity factor (ADF) is also calculated to account for the 
discrepancy between homogeneous and heterogeneous configurations, which is also one of the 
conventional procedures. Note that since there is no theoretical discrepancy between PN and SPN 
in one-dimensional geometry, SPN is meaningful only for Case E. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

MOX (boundary: 4.3w/o, middle: 7.0 w/o, center: 8.7 w/o) 
UOX (3.3 w/o + B4C Control Rods) 

 
Figure 2.5  2-D Geometry Configuration of Case E 

 
 

 
 
 
 
 
 

Control Guide Tube 

MOX UOX 
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Table 2.1  Test Cases for Separate Effects 

 

Effect Description Case 

Transport Change the order of angles only  
(S16, P1, SP3)  
(7-G homogeneous cross sections) 

 A, B, C, D 

Group 
Homogenization 

Change the number of groups only  
(S16)  
(2, 4, 7 groups homogeneous cross 
sections)                                

B                
(w/ different 
composition) 

Spatial 
Homogenization 

Change the spatial configurations only  
(S16, P1, SP3) 
 (7-G homogeneous, heterogeneous 
cross sections)      

E 

 
 
Transport Effect 
 
Brantley and Larsen performed some tests with the modified OECD-L336 MOX benchmark 
problem for the transport effect and showed ~33 pcm and 1.68 % errors between S16 and P1 in 
eigenvalue and average assembly power, respectively; ~11 pcm and 0.16 % between S16 and SP3 
[Brantley, 2000]. According to their results, the transport effect, which can be estimated from the 
errors between S16 and P1, is not that large, but it showed that SP3 has very good agreement with 
S16.    
As summarized in Table 2.2, the difference of eigenvalues between S16 and P1 is over 840 pcm in 
Cases A and D and are 50 pcm and 68 pcm in Cases B and C, respectively.  These differences 
are reduced to less than 100 pcm or a few pcm when using P3.  Even though Cases A and D show 
much larger deviations in P1 calculations, it should be noted that these conditions are somewhat 
different from practical conditions.   Pin powers resulting from SP3 are also reduced to one-half 
or one-third of the P1 results.  Figs. 2.6, 2.7, and 2.8 show power distributions and differences of 
P1 and P3 from S16 for the cases discussed here. 
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Figure 2.6  Power Difference of P1 and SP3 Methods againt S16 (Case A) 

 

 
Figure 2.7  Power Difference of P1 and SP3 Methods againt S16 (Case B) 
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Figure 2.8  Power Difference of P1 and SP3 Methods againt S16 (Case C) 

 
 
 
Table 2.2  Comparison of Eigenvalue and Powers for Transport Effects 
 

% Error of Local Power CASE Eigenvalue 
(∆ pcm) RMS Maximum 

S16 1.07110 - - 

P1  (  -879) 0.9 2.9 

 
CASE A 

SP3 (    -47) 0.2 -0.7 

S16 1.18499 - - 

P1  (    -50) 0.7 1.1 

 
CASE B 

SP3 (      -4) 0.1 0.5 

S16 1.17265 - -  
CASE C P1  (    -68) 0.7 2.7 
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SP3 (      -2) 0.3 0.9 

S16 0.81368 - - 

P1  (   -840) 4.1 12.6 

 
CASE D 

SP3 (   -121) 1.3 5.2 

* 7-group calculation 
 
Group Effect 

Palmtag discussed energy group homogenization in his thesis and quantified the 
errors caused by the spectral differences between UOX and MOX [Palmtag, 1997]. 
According to his results, eigenvalue errors ranged from 200 to 500 pcm; assembly 
power errors between 1 % and 2 %, and pin-power errors between 2.6 % and 4.6 % in 
2-group calculations. The similar tests have been performed here with Case B changing 
enrichments. The trends shown in Tables 2.3 and 2.4 are somehow consistent to his 
results even though the magnitude of errors is a little smaller.  In Table 2.3, 97-group S2 
calculations are used as references for 8-group, 4-group, and 2-group calculations.  Note 
that a 8-group structure is used just for this analysis instead of a 7-group one because 7 
group results are often not distinguishable from 2-group results.  Fig. 2.9 illustrates the 
energy cutoffs used in condensing groups here.  Eigenvalue errors are ranging from 100 
to 300 pcm in 2-group calculations. In Table 2.4 in which the configuration of Case B is 
used as it is, group condensing is performed from 7 to 2 groups using S16 7-group fluxes 
of single fuel assembly geometry with zero-current boundary condition.  Since this is a 
specific case in which a FA with 2.0 w/o UOX and a FA zoned with 4.3 w/o, 7.3 w/o 
and 8.7 w/o Pu-total are neighboring, it shows an eigenvalue difference of 73 pcm and 
RMS and maximum pin power errors of 1.2 % and 2.4 %, respectively, in 2-group 
calculations. 

 
Spatial Homogenization Effect 

 

The spatial homogenization effect can be seen in Table 2.5. In order to see the 
spatial homogenization effect only, the same number of energy groups (7 groups) is 
used for both heterogeneous and homogeneous calculations. The results show that just 
the spatial homogenization causes an error of 500 ~ 800 pcm without any consideration 
of the assembly discontinuity factor (ADF). However, when the ADF is used, the 
eigenvalue error is reduced to less than 100 pcm and assembly power errors become 
very smaller, especially, in the SP3 calculation. The discontinuity factor was first 
proposed by Koebke to preserve the reaction rates between heterogeneous and 
homogeneous geometries based upon the equivalence theory  [Keobke, 1980], and it 
was later generalized to the assembly discontinuity factor [Smith, 1986].  The results 
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note that the ADF is essential to preserving good accuracy when using homogenized 
cross sections.  It is well defined for the diffusion approximation, but not for the SPN 
approximation.  Details of the ADF for the SPN approximation will also be discussed in 
Appendix B.  The results show that P1 or SP3 calculation with the ADF has very good 
agreement in terms of eigenvalue and assembly power. Even though they are not shown 
in the table, the error of local pin powers reconstructed by the modulation technique 
should be discussed together with assembly average power. 

 
 

 
 

Figure 2.9  Energy Cutoffs for Group Condensation 
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Table 2.3  Comparison of Eigenvalue with Change of MOX and UOX Enrichments 
 

MOX 
Energy UOX 

4 w/o 8 w/o 12 w/o 
2 w/o 34* 55 39 
3 w/o 13 37 44 
4 w/o 51 51 57 

 
8-Group 

5 w/o 65 60 58 
2 w/o 22 26 2 
3 w/o 55 26 28 
4 w/o 82 60 63 

 
4-Group 

5 w/o 107 80 76 
2 w/o 87 138 188 
3 w/o 157 141 212 
4 w/o 222 194 261 

 
2-Group 

5 w/o 271 229 285 

* ∆pcm from 97-group S2 calculation 
 
 
 
Table 2.4  Comparison of Eigenvalue and Powers for Group Effects (Case B) 
 

% Error of Local Power Group Eigenvalue 
(∆ k-eff, pcm) RMS Maximum 

7 1.14319 - - 

2 (    73) 1.2 2.4 
* S16 calculation 
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Table 2.5  Comparison of  Spatial Homogenization Effects (Case E) 
 

% Error of FA Average Power Configuration Eigenvalue 
(∆ k-eff, pcm) RMS Maximum 

S16 1.03373 - - 

HET (-1009) - - 

HOM (No ADF) (  -786) 5.6 7.2 

 
 
P1 

HOM (ADF) (    -90) 0.9 1.1 

HET (     52) - - 

HOM (No ADF) (  -490) 3.7 4.8 

 
 
SP3 

HOM (ADF) (     60) 0.01 -0.01 

* HET: Heterogeneous cross section, HOM: Homgeneous cross section 
* difference : pcm 
 

2.2 Motivation 

 According to the qualitative analyses for MOX-loaded test problems performed in the 
previous section it can be concluded that group homogenization and transport effects cause 
substantial errors in terms of eigenvalue and power, and spatial homogenization is more related 
to the loss of accuracy in estimating local pin powers. Therefore, the transport, group, and spatial 
homogenization effects need to be more accurately approximated in very heterogeneous cores.   
Even though there have been many ad-hoc methods to reduce errors, more fundamental remedies 
are necessary to effectively treat various core conditions. One possibility is to explicitly use the 
multigroup transport equation with heterogeneous geometry.  As shown in the results, the SP3 
approximation includes most of the transport effect. Other researchers have also shown the 
simililar results with respect to the SP3 approximation [Larsen, 1996], [Brantley, 2000], 
[Mengelle, 1999], [Tatsumi, 2000].  Therefore, with current computational power, the 
multigroup SP3 approximation with heterogeneous geometry can be considered as a viable option 
to achieve the most accurate results within reasonable computation time. Even though the 
accuracy gain from the multigroup pin-by-pin SP3 calculation is small for some cases, it would 
still be meaningful in that the near-reference solution for steady-state and transient conditions 
can be achived. 
 
 However, the multigroup pin-by-pin SP3 calculation is still very costly particularly when 
solving the transient problem.  The motivation of the work here is to identify methods that make 
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it practical to perform steady-state and transient caculations using the multigroup SP3 
approximation with heterogeneous geometry.   
 
 The conventional methods to solve the multigroup pin-by-pin equation are the fine-mesh 
finite difference method (FDM) with efficient linear solvers such as Krylov subspace methods 
and some acceleration methods such as Chebyshev, coarse-mesh rebalacing (CMR), and multi-
grid methods.  In the work here, the multi-level acceleration based upon the global/local iteration 
is introduced and coupled with the multigroup pin-by-pin SP3 formulation to show better 
performance compared to the conventional methods. 
 
3. NEUTRON TRANSPORT EQUATION 

 
The methods used to solve the transport equations can be categorized as either stochastic 

or deterministic methods.  While a stochastic method implies using the Monte Calro method, a 
deterministic method can involve either differential or integral methods depending upon the 
manner to deal with the angular variable. There are several alternative methods in integral 
transport methods: collision probability method, characteristics method, etc. The differenial 
transport method typically implies either the spherical hamonics method (PN) or the discrete 
ordinate method (SN).  Each method has some advantages and disadvantages, but among them 
the differential transport methods are most commomly used for practical large-scale reactor 
problems due to computational efficiency.  

 
In this section, the PN method is briefly introduced; it starts with one-dimensional 

geometry since it is useful to obtain analytic insight in the nature of the solution of the transport 
equation.  

 
3.1 PN Method 

The Boltzmann transport equation was proposed more than one century ago to describe 
dilute gases. It is also very useful to describe neutron transport behavior [Duderstadt, 1979]. The 
following is the Boltzmann neutron transport equation without an external neutron source in the 
steady state: 
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The equation above can be solved with the spherical harmonics method (PN) which is developed 
by expansion of the angular flux and the differential scattering cross sections in Legendre 
polynomials [Henry, 1975]: 
 

 ∑ ∑
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Using the orthogonal property of the spherical harmonics, the coefficients of Eq. (3.2) are 
determined as: 
 

 ∫ ΩΩΩ= ),,()(),( ErYdEr m
n

m
n ψφ . (3.3) 

 
Since the angular flux is independent of the azimuthal angle in a one-dimensional geometry, the 
angular flux can be expressed as: 
 

 ),,(),,( Er
x
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∂
∂

→Ω∇⋅Ω ψµψ , (3.4) 

 
Therefore, the form of the PN method can be easily introduced using a one-dimensional form 
written as follows: 
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And the following coefficients are determined by using the orthogonal property of Legendre 
polynomials: 
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Therefore, Eq.(3.5) is rewritten using moments and Legendre polynomials as: 
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Using the recursion relationship of the Legendre polynomials: 
 
 )()()1()()12( 11 µµµµ −+ ++=+ nnn nPPnPn , (3.9) 
 
One can arrive at (N+1) sets of coupled partial differential equations for the expansion 
coefficients ),( Exnφ : 
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For convenience in deriving multi-group one-dimensional PN equations, the energy ranges are 
divided into G discrete intervals. Eq. (3.10) can be rewritten with these discrete groups: 
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While all cross sections in the first PN equation are flux weighted, an exact calculation of total 
and scattering cross sections of the higher PN equations requires that ),( Exnφ with 0>n  be 
known.  Instead of introducing different total cross sections in all moment equations, gt0Σ , 
which is weighted by flux, is used in the left hand side of the higher moment equations. 
Modification of diagonal elements of scattering cross sections is then required: 
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Then, Eq. (3.11) can be written as: 
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where  )()()( 0 xxx sngggtrng Σ′−Σ=Σ . 

A reflective boundary condition obviously requires that all odd moments of the flux 
vanish: 
 
 noddforExsn ,0),( =φ , (3.14) 
 
where sx  is x  at a surface. 
The exact interface condition of continuity of angular flux cannot be satisfied exactly by the flux 
approximation for infinite N.  Therefore, the first N+1 Legendre moments of this relation are 
required to be satisfied: 
 
 NnExEx snsn ,...,2,1,0),,(),( == +− φφ , (3.15) 
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where +
sx  and −

sx  are x  from right or left side of a surface s, respectively. 
 
3.2 Multidimensional Simplified PN Method 

The original approach of the SPN approximation is a simple generalization of the one-
dimensional PN equations to the multidimensional PN equations. The result is (N+1)-coupled SPN 
equations in the three-dimensional geometry. First of all, a procedure for producing three-
dimensional P1 equations from the one-dimensional P1 equations can be defined as follows: 
 

1) Replace the operator x∂∂ /  in the one-dimensional 0=n  equation with the divergence 
operator ∇ , 

2) Replace the operator x∂∂ /  in the one-dimensional 1=n  equation with the gradient 
operator ∇ , 

3) Consider the zeroth-order Legendre moment of the angular flux 0φ  as a scalar, 
4) Consider the first-order Legendre moment of the angular flux 1φ  as a vector. 

 
For the SPN equations, the relations of P1 between one-dimensional and multi-

dimensional geometries are extrapolated to PN when N > 1. 
 
1) Replace the operator x∂∂ /  in the one-dimensional equation for even n  with the 

divergence operator ∇ , 
2) Replace the operator x∂∂ /  in the one-dimensional equation for odd n  with the gradient 

operator ∇ , 
3) Consider the even-order Legendre moments of the angular flux  as scalars, 
4) Consider the odd-order Legendre moments of the angular flux  as vectors. 

 
With the procedure above, the final form is obtained as: 
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The general matrix form of the SPN equations is shown in Eq. (3.17). Their boundary conditions 
can also be  obtained from those for the one-dimensional PN equations.  The advantages of the 
SPN equations are that inspite of some approximations in their formulation they have 
significantly improved computational efficiency compared to the SN method or the original PN 
method, and they maintain the rotational invariance of the PN equations which the SN eqautions 
do not have. 
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Note that N is normally odd, and accordingly N-1 becomes even. The number of first-order 
differential equations is reduced by one-half in second-order differential equations with the 
assumption of )1(0 ≥= isi .  For simplicity, Eq. (3.17) can be reduced to (N+1)/2 number of 
second-order differential equations as shown in Eq. (3.18). 
 

It should be noted that the general SPN equations are asymptotic corrections to the P1 
theory. For planar geometry problems, these corrections exactly reduce to the PN equations. In 
practice, the SPN equations are most accurate for problems that are reasonably close to being 
diffusive in nature or for problems that have strong transport regions in which the solution 
behaves nearly one-dimensionally and has weak tangential derivatives at material interfaces. 
However, for problems that have strong multidimensional transport effects, such as voids, 
streaming regions, or geometically complex spatial inhomogeneous, the SPN solutions are less 
accurate [Larsen, 1996]. 

 



 

 

18

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−− 0
.
.
.
0
.
.
0
0

.

.

.

.

.

...
...

...

...
...

0

1

4

2

0

11

444

222

00 s

ba

cba

cba
cba

cb

N

n

NN

nnn

φ

φ

φ
φ
φ

, (3.18) 

 
where  rDb Σ+∇−= 2

10 ,  2
10 2 ∇−= Dc , 

 2
12 5

2
∇−= Da , 2

2
312 5

3
5
4

tDDb Σ+∇⎟
⎠
⎞

⎜
⎝
⎛ +−= , 2

32 5
4

∇−= Dc , 

 2
112
∇

−
−= −nn D

n
na ,  tnnnn D

n
nD

nn
nb Σ+∇⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+
+

+
−+

−= +−
2

11

2

12
1

)1)(12(
, 

 2
112

2
∇

+
+

−= +nn D
n

nc ,  

 
tm

m m
mD

Σ+
≡

)12(
,   numberoddm = , numberevenn = . 

 
 
4. NONLINEAR FORMULATION OF THE SP3 EQUATION 
 
4.1 Nonlinear Approach 

Smith first introduced the nonlinear iteration method to reduce the computer memory 
storage requirement and to increase the computational efficiency [Smith, 1983].  The global 
problem is solved with the coarse-mesh finite difference (CMFD) method while the local 
calculation is performed based on the “two-node” problem.  From the higher-order acurate 
solution with the “two-node” problem, the correction factor can be computed at every node 
interface to construct the following CMFD formulation: 
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11,11,1,
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i
g
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g
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g
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ii DDJ φφφφ +−−−= +++++ , (4.1) 
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where ( )∆+
=

+

+
+

1

1
1,

2~

ii

iig
ii DD

DD
D , ∆= node size. 

 
 

 
 
 
 
 
 

Figure 4.1  Two-Node Calculation 
 

Aragones and Ahnert proposed an interesting idea which is basically the same as Smith 
but uses the interface flux discontinuity factor (IFDF) instead of the additive correction term 
shown in Eq. (4.1) [Aragones, 1986].  Their CMFD formulation is somewhat different: 
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The IFDF here accounts for the difference between coarse mesh and fine mesh, the so-called 
coarse-mesh effect, as well as the difference between the homogeneous geometry and the 
heterogeneous geometry, the so-called heterogeneity effect.  Another distinction from the 
Smith’s formulation is that the local problem is constructed not with “two-node” but with “one-
node”.  They have a correction factor per interface in common. 
 

Recently, Moon, et al. suggested the so-called “two-node two-factor” approach which 
uses two correction factors from each side at an interface [Moon, 1999]. The correction factors 
are calculated based on the “two-node” problem which uses the higher-order solution.   
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This is similar to the Smith’s idea in the sense of using the “two-node” problem and is similar to 
the Aragones’ idea in the way that it defines the two correction factors.  

1+i
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gφ  

1, +ii
gJ  
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Shin, et al. presented the “one-node two-factor” idea which is based on the same equation 
as in Eq. (4.3) [Shin, 1999]. The distinction from the Moon’s approach is that the two correction 
factors for each interface are calculated based on the “one-node” problem instead of the “two-
node” problem, which is similar to the Aragones’ formulation. However, this is distinguished 
from the Aragones’ approach in that it uses the partial incoming currents as boundary conditions 
for the “one-node” problem.  

 
To summarize nonlinear formulations historically, they are basically the same in the 

sense that they are correcting the neutron current term so that the CMFD current is equivalent to 
the reference current which is determined by the higher-order nodal methods or the fine-mesh 
finite difference methods. The principle distinction among the formulations is that some use one 
correction factor and some use two correction factors, and some calculate corrections factors 
with the “one-node” problem and some obtain correction factors with the “two-node” problem. 
Of course, the boundary condition for the local problem is different depending upon the type of 
local problem used (i.e. “one-node” or “two-node”). No matter which method is used in the local 
problem, it is obvious that they all construct a simple CMFD matrix in the global problem which 
can be easily solved with higher-order accuracy.  Each has its own advantages and disadvantages 
compared to the others. For example, the “one-node” as a local problem is better than the “two-
node” in terms of computation efficiency, but it is relatively less stable compared to the “two-
node” in terms of convergence. One correction factor might be better than two factors in that the 
“one-factor” equation, Eq. (4.1), requires a smaller number of floating operations and has a 
smaller number of degrees of freedom to determine the CMFD diffusion coefficients compared 
to the “two-factor” equation.  However, even though the “two-node” approach is free to use 
either the “one-factor” method or the “two-factor” method, the “one-node” approach is limited to 
using the two correction factors because the partial current boundary condition should be 
determined with two degrees of freedoms. In this report, the “one-node two-factor” approach is 
chosen since it provides a convenient combination of computational efficiency for the 
implementation of SP3 as will be described in the next section. 

 
However, it is first worthwhile to first examine Aragones’ nonlinear formulation in more 

detail.  Even though it appears to use the “one-node one-factor” approach, it actually employs the 
“one-node two-factor” approach to provide the interface flux boundary conditions in the local 
problem as in Shin’s formulation. As mentioned already, the differences between the two 
approaches are a form of correction factors which yield a different form of the CMFD current 
equation and boundary conditions for the local problem. In his paper, Aragones discussed a 
linear discontinuous finite difference formulation which allows the accurate and stable reduction 
in directions (transport to diffusion), spatial mesh (fine to coarse mesh), and groups (multigroup 
to few or one group).  Unlike other approaches, the IFDF is used to correct the current instead of 
the additional corrective term, which includes both the coarse-mesh effect and the heterogeneity 
effect.   
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It is also interesting to examine the stability condition for the interface correction factors. 
The IFDF is defined as: 
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. (4.4) 

 
Based on the concept that convergence and stability of the iterative solution of the linear 
equations are preserved as long as the diagonal dominance is preserved, α of Eq. (4.2) and g

iir 1, +  
of Eq. (4.4) should be non-negative and bounded: 
 
 01, >+

g
iiα ,  01, >+

g
iir . (4.5) 

 
As a result, the following condition can be imposed as a lower bound for the averaged diffusion 
coefficients for each node and group: 
 

 ),max(
2 1,,1

g
ii

g
iig

i

ig
i JJhD +−−>

φ
, (4.6) 

 
where  g

iiJ ,1−  = current for group g at a left surface of a node i , 

 g
iiJ 1, +  = current for group g at a right surface of a node i . 

 
 It is noted in the Aragones’ paper that the lower bound for diffusion coefficients with respect 
to currents and fluxes are always fulfilled in PWR calculations. This bounding analysis of 
diffusion coefficients can be applied to the other approaches as will be discussed later for SP3. 
 

Overall, the correction factors are defined depending upon the global and local 
configurations, as shown in Fig. 4.2. For example, the correction factor, hf , connects a 
heterogenous geometry to a homogeneous one; sf , fine-mesh to coarse-mesh; gf , many groups 
to a few groups; af , transport to diffusion. In the conventional two-group calculation, normally 
the heterogeneity and group factors, hf * gf , are calculated off-line in a single fuel assembly 
configuration with the name of the assembly discontinuity factor (ADF). The spatial correction 
factor, sf , is calculated on-line during the global/local iteration for acceleration, which 
corresponds to D̂  in the previous discussion.   

 
The nonlinear global/local method has been successfully applied to the diffusion equation 

by several other researchers. In this report, the application is expanded to the transport problem.  
In the following sections, the formulations of the multidimensional SP3 method are briefly 
discribed for steady-state and transient conditions, and then the nonlinear formulations are 
discussed on the basis of the “one-node two-factor” approach. 
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Figure 4.2  Correction of Currents for Each Global/Local Configuration 
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4.2 Two-Dimensional SP3 Equation 

4.2.1 Steady State Equation 
 

The governing equations of the multidimensional SP3 equation can be written as discussed in 
Section 3.2 with truncation of orders higher than three: 
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The most common methods used for a direct solution for the SPN equations involve the 
elimination of odd-order angular moments to yield a set of coupled diffusion-like equations as 
shown below in a matrix-equation form in a given group: 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

Σ+∇⎟
⎠
⎞

⎜
⎝
⎛ +−∇−

∇−Σ+∇−

0
1

5
4

5
3

5
2

2
0

2

0
2

13
2

1

2
1

2
1

SDDD

DD

t

r

φ
φ

, (4.8) 

 

where 
tr

D
Σ

≡
3

1
1 ,   

t

D
Σ

≡
7

3
3 . 

These are simply two coupled diffusion equations that can readily be solved with standard 
diffusion computer codes with appropriately defined diffusion coefficients. 

For SP3 boundary conditions, the Marshark boundary condition can be used in the same 
way as in P1.  For example, the equations for a right boundary become:   
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 1)(0 =µP , µµ =)(1P , )13(
2
1)( 2

2 −= µµP , )35(
2
1)( 3

3 µµµ −=P . 

Applying 1P  and 3P  to Eq. (4.9) leads to the relationship between partial currents, surface fluxes 
and net currents: 
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5 φφ −±=± , (4.10) 

 
which have the additional contribution of the other moment unlike the boundary conditions of 
the P1 equation. 
 
4.2.2 Transient Equation 
 

The time-dependent SP3 equations are basically the same as Eq. (4.7) except for the 
additional time derivative terms in each equation: 
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Similarly in the steady-state equation, inserting Eq. (4.11b) into Eq. (4.11a), and Eqs. (4.11b) and 
(4.11d) into Eq. (4.11c) yields the two time-dependent 2nd-order differential equations: 
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As indicated in Eq. (4.12), time derivatives of divergences of the 1st- and 3rd-moments, which are 
the change of leakages of 0th- and 2nd-moments with time, are additional terms to be considered, 
compared to the conventional time-dependent diffusion equation.   
 

In an actual calculation, the following equations are used with appropriate time 
discretization. Together with inserting the time derivative term ( ) 1/ +∂∂ ntυ into *

sgΣ , the term tgs0  

on the right hand side is also modified with the time derivative term ( )nt∂∂ υ/ . Using the fully 
implicit method with the time indices, Eq. (4.11) can then be written as: 
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Eq. (4.13) can be reduced to the two second-order differential equations similar to the steady-
state equations: 
 

 n
g

n
tg

n
grg

n
g

trg

n
g

trg

n
g

trg

qsq 0
1

0
1

0
*

1*
1

0*
1

2*

1
3

1
3

2
+=Σ+⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Σ
−∇

Σ
+∇

Σ
⋅∇− ++++ φφφ , (4.14a) 

 

.

1
3

1
3

2
5
21

7
3

5
3

2
1

0
*

1*
1

0*
1

2*3*
1

2*

n
g

n
gtg

n
g

trg

n
g

trg

n
g

trg

n
g

tg

n
g

tg

q

qq

=Σ+

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Σ
−∇

Σ
+∇

Σ
⋅∇−⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

Σ
−∇

Σ
⋅∇−

+

+++

φ

φφφ
 (4.14b) 



 

 

26

 
The equations above can be expressed in a simple matrix equation form without a group index to 
compare with the steady-state equation in Eq. (4.8): 
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The terms, n
igq⋅∇  ( 3,1=i ), are additionally considered compared to the time-dependent 

diffusion equation, which correspond to the terms, ( ) tig ∂⋅∇∂ /φ  ( 3,1=i ), of Eq. (4.12).  Since 

the terms n
igq⋅∇  are the change of leakages with time, their contribution is relatively small 

compared to the change of the 0th- and 2nd-moments with time. 
 
4.3 Nonlinear Formulation of the SP3 Equation 

While Smith first introduced the idea of nonlinear approach into the steady-state 
eigenvalue problem, it was Al-Chalabi and Joo that showed the nonlinear method was very 
efficient for transient fixed source problem, especially when used with the analytic nodal and the 
nodal expansion methods [Al-Chalabi, 1993], [Joo, 1997]. The conventional expression for the 
nonlinear CMFD method uses one correction factor as in Eq. (4.1).  While 1,~ +ii

gD  is simply 

calculated based on properties of adjacent nodes, 1,ˆ +ii
gD  is determined by comparing the CMFD 

currents with higher-order solution currents.  The conventional approach for the nonlinear 
method is based on the “two-node” problem shown in Fig. 4.1 where the node average fluxes of 
adjacent nodes serve as boundary conditions.  

 
For practical core problems, “two-node” problems for every surface would be solved to 

obtain higher-order solution currents. One of the higher-order solvers such as ANM, NEM, 
AFEN, fine-mesh finite difference method (FMFD), etc., can be used to solve the “two-node” 
problem and to provide higher-order accurate currents for the given boundary conditions. 

 
For the application of the nonlinear method to the SP3 equation Moon’s approach [Moon, 

1999] for the P1 equation is useful in which he uses two correction factors when applying the 
nonlinear CMFD method to the AFEN method. In his approach the correction factors are 
determined by solving a “one-node” problem with a higher-order method. The advantage of this 
approach is to achieve better computational efficiency compared to the conventional method 
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which uses one correction factor based on a “two-node” problem because higher-order currents 
at all surfaces are determined at a time.  

 
There are several variations to formulate the nonlinear “one-node” equation.  The first is 

to define current and surface correction factors for each interface as follows: 
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where  sgφ  = surface flux for group g,  

 cgD̂  = current correction factor for group g,  

 sgD̂  = surface correction factor for group g. 
 
The other is to introduce different current correction factors for two sides at each interface: 
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where l  and r denote left and right surface, respectively. Since i

gr
i
gl JJ =+1 , Eq. (4.17) can be 

written as: 
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The two correction factors, i

gD̂  and 1ˆ +i
gD , at the same surface are used to calculate currents and 

surface fluxes which are used to provide partial current boundary conditions for a “one-node” 
problem. 
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As shown in Fig. 4.3, partial incoming currents become boundary conditions of 
a “one-node” problem. The two approaches have the same number of degree of freedom 
in common, which means that both approaches should basically give the same answers.   

 
 

 
 

 
 
 
 
 
 

Figure 4.3  One-Node Calculation 
 

Of many higher-order methods, the fine-mesh finite difference method has an advantage 
of being able to directly use a heterogeneous configuration, which means that there is no need for 
dehomogenization to obtain fuel pin fluxes and powers.  When using the FMFD as a higher-
order solver, it is necessary to connect the CMFD solutions to the FMFD quantities. Since the 
CMFD solutions are node- or surface-average values and the FMFD method requires local 
information, the boundary conditions of the “one-node” problem can be generated as follows: 

 
 )()( xfjxj in

g
in
g = , (4.19) 

 
where  in

gj  = face-averaged partial incoming current from CMFD, 

 )(xj in
g  = local distribution of partial incoming currents to be used for boundary 

conditions of FMFD,  
 )(xf  = shape function normalized to the average incoming current.   
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Figure 4.4  Local Boundary Conditions from CMFD Global Values 
 
 
The procedure for the global/local iteration methods is as follows: 
 

1) Run CMFD (global calculation). 
2) Provide the incoming partial currents for every node. 
3) Convert average quantities to local ones with the shape function for boundary conditions 

of “one-node” problems.  Then, the local flux shape of the previous iteration can be used 
for the shape function. 

4) Given the incoming partial currents, solve FMFD in each “one-node” problem (local 
calculation). 

5) Sequentially sweep node by node using the outgoing partial currents of a node as the 
incoming boundary conditions of neighboring nodes. 

6) Using the resulting surface currents and fluxes, calculate correction factors and 
homogenized cross sections. 

7) Go back to 1) with updated correction factors and homogenized cross sections. 
8) Repeat 2) through 6) until achieving the convergence criterion. 

 
Since the global CMFD calculation is very efficient, the number of the local calculations 
constitutes the largest fraction of the computational time.  
 

Since the nonlinear formulation has been applied to the P1 equation, it should be 
straightforward to extend it to the P3 equations in multidimensional geometry. However, the 
question arises about how to treat the higher-moment terms within the framework of the 
nonlinear formulation. For simplicity, the SP3 equation shown in Eq. (4.8) is used in two-
dimensional x-y geometry with the relationships between the odd and even moments: 
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where  ggg 20 2φφ +=Φ . 

Similarly to Eq. (4.18), first and third moments can be written with the definitions of 1,
1
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gD  and 
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In order to determine 1,
1

ˆ̂ +ii
gD  and 1,

3
ˆ̂ +ii

gD  for the CMFD calculation at all node interfaces, 
the “one-node” problem can be solved, as shown below in Fig. 4.6, based on Eq. (4.21) with the 
incoming partial moment boundary conditions.  

 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 4.6  One-Node SP3 Calculation 
 
The incoming partial currents for the second moments can be determined by Eq. (4.10). Note that 
unlike 0th-moments, 2nd-moments are not always positive.   
 

This nonlinear global/local formulation can also be applied to the SN method to accelerate 
convergence since the source iteration of the SN method has poor convergence when the 
scattering ratio is close to unity. The nonlinear formulation for the simplified even-parity SN 
method (SEPSN) is briefly described in Appendix A. It should be closely investigated in 

inj1  

inj1  

inj3  

inj3  

inj1  inj3  

inj1  
inj3  
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comparison with some other conventional acceleration methods such as the diffusion synthesis 
acceleration method (DSA) [Alcouffe, 1977] which works very efficiently for the SN method. 
Even though the global/local approach is similar in many respects to conventional acceleration 
methods, it should be emphasized that there are many attractive features in its application to the 
transient problem.   
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Figure 4.5  Flow for the Global/Local Acceleration 
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5. MULTIGROUP NODAL EXPANSION METHOD FOR SP3 
 

In the previous sections, the fine-mesh finite difference (FMFD) method has been  
discussed to solve the SP3 equation, which can easily treat heterogeneous geometries within the 
fuel assembly (FA).  However, when the heterogeous effect is not dominant, the FMFD solution 
can be inefficient in terms of accuracy and time. As in the conventional approach, the spatial 
homogenization and nodal solution is more favorable in terms of computation time and accuracy. 
Therefore, the multigroup nodal method for SP3 is discussed in this section, and its adaptive use 
depending upon the characteristics of FAs and its surroundings will be discussed later in Section 
7.   

The nodal method has been widely used and has become the standard for core neutronics 
calculation since the early 1980s. As noted in the first section, there are several types of nodal 
methods with different basis functions: nodal expansion method (NEM), analytic nodal method 
(ANM), analytic function exansion nodal method (AFEN), nodal green function method 
(NGFM), etc.  Among them, the NEM is known to be easy to derive but relatively less accurate 
than the others under the same number of calculation meshes.  In this work, the NEM is utilized 
for the multigroup SP3 equation since it is easy to implement for mutigroup applications and 
simple to apply to more than one moment.  

 
In order to apply the nodal method to the SP3 equation, Eq. (4.8) is rearranged to: 
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, (5.1) 

 

where   200 2φφ +≡Φ ,  rtrt Σ+Σ≡Σ
3
4

3
5 , 011 Φ∇−= DJ ,  233 φ∇−= DJ .  

Eq.(5.1) is more convenient to apply the NEM compared to Eq. (4.8), for reasons that will 
become apparent later in this section. The Marshak boundary conditions in Eq. (4.10) also 
change corresponding to the definitions in Eq. (5.1): 
 

 ss Jj 2101 16
3

2
1

4
1 φ−±Φ=± ,  ss Jj 0323 16

1
2
1

16
7

Φ−±=± φ . (5.2) 

 
Based on the boundary conditions above and the following relationship between net and partial 
moments: 
 

  −+ −=Φ∇−= 11011 jjDJ ,   −+ −=∇−= 33233 jjDJ φ . (5.3) 
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Eqs. (5.2) and (5.3) require that partial currents and surface fluxes at interfaces satisfy the 
following relations: 
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25
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The one-dimensional equation integrated over transverse directions within a given group can be 
expressed as: 
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where iuL  is the transverse leakage to the u-direction in i  moment. As in the conventional NEM, 
the one-dimensional moments can be approximated in 4th-order polynomials: 
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  )12)(1(6)(3 −−= uuuuh , )155)(1(6)( 2

3 +−−= uuuuuh ,  .10 << u  
Coupling between Eqs. (5.2), (5.3), (5.4) and (5.6) yields the partial moment response equation 
as follows: 
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Since the surface moments appear on the right hand sides of the partial moment response 
equations as shown in Eq. (5.7), it is not easy to formulate and solve them. For simplicity, the 
following relationships are proposed here: 

  

 101 2
1

4
1~ Jj s ±Φ=± ,  323 2

1
16
7~ Jj s ±=± φ . (5.8) 

 
These are truncated forms for the Marshak boundary conditions shown in Eq. (5.2). Therefore, 
they are not conventional partial moments but quantities satisfying the following conditions.    
 

  −+ −=Φ∇−= 11011
~~ jjDJ ,   −+ −=∇−= 33233

~~ jjDJ φ , (5.9) 
 
and 

 

  ( )−+ +=Φ 110
~~2 jjs ,   ( )−+ += 332

~~
7
8 jjsφ . (5.10) 

 
Eq. (5.9) is the same as Eq. (5.3) and what is more, Eq. (5.10) is simpler than Eq. (5.4). With the 
variables defined above, reflective boundary conditions and incoming current boundary 
conditions need to be discussed.  Reflective boundary conditions are the same as usual: 
 

  −+ = 11
~~ jj ,    −+ = 33

~~ jj . (5.11) 
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However, incoming current boundary conditions become different compared to the original ones 
since ±

1
~j  and ±

3
~j  are not real partial moments.  Inserting Eqs. (5.9) and (5.10), using Eqs. (5.2) 

and (5.8) and 031 == inin jj  yields: 
 

  ( )−−+ += 311
~8~

109
3~ jjj ,    ( )−−+ += 313

~3~14
109

3~ jjj . (5.12) 

 
Finally, the relations between artificial partial currents, net currents, and surface fluxes have the 
same form as in the NEM formulation of the diffusion equation with some additional 
consideration for the incoming boundary conditions as shown in Eq. (5.12).  The final form of 
the partial moment response equation using ±j~  then becomes the same as the conventional NEM 
formulation: 
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The definitions of the coefficients ic  and ig  are the same as in Eq. (5.7).  However, the 
definitions of the low-order coefficients, 1a  and 2a , changed as seen in Eq. (5.13), which do not 
include surface moments on the right hand side. 
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One of the most important considerations in the transverse averaged one-dimensional 
approach is the approximation of the transverse leakage shapes.  In this work here, the transverse 
leakage shape is approximated in a second-order polynomial for both 0th and 2nd moments as: 
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 The second-order polynomial approximation for the transverse leakage of the 0th moment 
has been well established for applying the NEM to the diffusion equation. However, a quadratic 
approximation is not adequate for the 2nd moment since the 2nd moment shape is dramatically 
changing near interfaces of very different materials.  In the work here, a parabolic 
approximation, which is a rough approximation for the 2nd moment, will be used since the effect 
of the 2nd moments is relatively small in magnitude compared to the 0th moments and refining 
more meshes relieves dramatic change of the 2nd moment. If greater accuracy is desired in the 
future, better approximations for the transverse leakage of 2nd moments will be necessary. 
 

The higher-order coefficients, 3a  and 4a , are determined by solving two more moment 
equations with the weighted residual method for Eq. (5.5) using )(1 uh  and )(2 uh , which are 
shown in Eq. (5.6), as weighting functions. The resulting equations then become: 
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By defining new variables, ±

1
~j  and ±

3
~j  in Eq. (5.8), all equations became simple and very similar 

to the conventional NEM equations for the diffusion equation.  This means that the existing 
routines can be utilized for solving the multigroup SP3 NEM with only minor modifications. 
 

The transverse averaged one-dimensional equations, Eq. (5.5), are normally solved one 
direction at a time. However, when it is solved using the global/local acceleration method based 
upon the “one-node” approach for the multigroup solution, convergence problems are sometimes 
encountered.  When the one-dimensional equation is solved for one direction, the leakages to the 
transverse directions should be approximated. Since the neutron balance of a node is not being 
satisfied in a multi-dimensional sense, convergence becomes difficult, particularly in multigroup 
problems. Therefore, a method was developed to solve multi-dimensional equations 
simultaneously such that the resulting solutions satisfy the nodal neutron balance.  

 
Eq. (5.16) shows moment matrix equations in which 2-D or 3-D one-dimensional 

equations are solved at the same time, satisfying the nodal neutron balance in a node. As will be 
explained in the next sections, 0th and 2nd moments are not solved simultaneously, but 
determined sequentially for computational efficiency. In other words, a moment is used as a 
source of the other moment determined in the previous iteration step. As seen in Eq. (5.16), there 
are in fact 13 unknowns for a three-dimensional problem, which include currents and higher 
coefficients of the nodal expansion polynomials of each direction and node-average moments.  
The elements of the matrix of the left hand side of the equation are only property dependent, but 
those of the right hand side are composed of the fission source, partial moments which are 
boundary conditions, low-order coefficients of the nodal expansion polynomials of the other 
moments and transverse leakage coefficients.  

 
Even though the performance of the multigroup SP3 NEM at transient is interesting in 

terms of stability and accuracy, the transient formulation remains as future work. 
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Note that these equations should consist of 1313×  matrices and 113×  vectors for the 3-D 
problem by repeating components corresponding to ( )4311 ,,~,~ aajj out

r
out
l  and ( )4333 ,,~,~ zzjj out

r
out
l   for 

the other directions, respectively. 
 
 
6. NUMERICAL CONVERGENCE OF THE SP3 EQUATION 
 
6.1 Stability in the SP3 equation 

Before addressing the stability characteristics of the SP3 equations, it is worthwhile to 
discuss a lower bound for the stable convergence in the P1 formulation.  For the “two-factor one-
node” approach disscussed in Section 4, the CMFD formulation in Eq. (4.18a) is rewritten as: 

 

 ),)(ˆ̂~~( 1,11,1,1,
g

i
g
ii

g
i

g
ii

g
ii

g
ii DDJ φαφ +++++ −+−=  (6.1) 

 

where  
∆+−+

+
=
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g
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g
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g
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g
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g
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g
ig
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g
ig

ii DDDD
DDDDD , 

 g
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g
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g
iig

ii
DD

DD

1,1,

1,1,
1, ˆ̂~~

ˆ̂~~

++

++
+

+

−
=α . 

 
The fast convergence and stability of the iterative solution of the linear equation are assured as 
long as the diagonal dominance is maintained as discussed in Eq. (4.5).  This yields the 
following conditions: 
 

 0ˆ̂~~
1,1, >+ ++

g
ii

g
ii DD , (6.2a) 

 0ˆ̂~~
1,1, >− ++

g
ii

g
ii DD , (6.2b) 

 

which, since g
iiD 1,

~~
+  is always positive, implies the following: 

 

   g
ii

g
ii DD 1,1,

ˆ̂~~
++ > . (6.3) 

 
This prescribes a lower bound for the stable convergence of the P1 nonlinear formulation.  If this 
condition is met with sufficient margin, then convergence can be achieved.  The adequacy of the 
margin is related to the diagonal dominance affecting the convergence efficiency. 
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The same analysis as performed for the P1 formulation above can be applied for the 
nonlinear SP3 formulation.  Rearranging Eqs. (4.21a) and (4.21b) yields: 
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Since Eq. (6.4) is the same as Eq. (6.1), the same idea can be applied to it.  However, as far as 
Eq. (6.4) is concerned, no bound exists because the second moment does not always have the 

same sign. In addition, the correction factors for second moments, 1,
3

ˆ̂ +ii
gD , are sometimes very 

large since the second moment is very small at a node center and dramatically changes at node 
interfaces. Even though the overall convergence behavior of the SP3 equation is driven by the 
zeroth moment, the characteristics of second moment correction factors may disturb convergence 
when the zeroth and second moments are similar in magnitude. 
 

From Eq. (4.8),  the second-moment equation can be written:  
 

 )()()(
5
4

5
3

022
2

13 xLxxDD ggtgggg −=Σ+∇⎟
⎠
⎞

⎜
⎝
⎛ +− φφ , (6.5) 

 

where  )(
5
2)( 0

2
0 xDxL ggg φ∇−= . 

 The right hand side of Eq. (6.5) is considered as a source which represents a “in-leakage” 
of zeroth-moments. This means that when there is a positive “in-leakage”, the sources in the 
second moment equation are positive and otherwise they are negative. For example, when UOX 
and MOX fuel assemblies are adjacent as in Figs. 6.1, 6.2, and 6.3, the fast flux is relatively high 
in a MOX fuel assembly and low in a UOX fuel assembly. The situation is opposite for the 
thermal flux. Therefore, the thermal second moment is normally positive in a MOX region and 
negative in a UOX region.  Figs. 6.1 through 6.3 show the zeroth and second moment 
distributions for several combinations of fuel assembly types.  Note that especially at the 
interface where the gradient of current is large, there appear large peaks in the second moments, 
but they quickly show asymptotic behavior in the middle of assemblies. 
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 One of the characteristics of the multi-level formulation for the “one-node” approach in 
the local calculation is to use the incoming partial currents as boundary conditions for a local 
problem. In contrast, the “two-node” approach uses node average fluxes of the two neighboring 
nodes as boundary conditions. It is interesting to compare the boundary conditions used in the 
“one-node” and “two-node” approaches on the convergence rate.  Since node average fluxes are 
not changing dramatically in the course of convergence, the boundary conditions of the “two-
node” approach are also not changing much, which improves convergence. However, since 
partial incoming currents generally converge more slowly than node average fluxes, the 
convergence of the “one-node” approach can be somewhat worse than the “two-node” approach. 
Therefore, a multiple (typically double) sweeping technique is used to obtain more rigorous 
partial current boundary conditions for “one-node” problems.  Overall, the “one-node” approach 
is comparable or superior to the “two-node” one in terms of computation time because currents 
on all sides are determined simultaneously in the “one-node” approach. Furthermore, the “one-
node” approach has additional favorable features which will be discussed in the following 
section. 
 
 

 
Figure 6.1  Zeroth- and Second-Moment Distributions for UOX(2w/o)-UOX(3w/o)-
UOX(3w/o)-MOX(7w/o) 
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Figure 6.2  Zeroth- and Second-Moment Distributions for UOX(2w/o)-MOX(7w/o)-
UOX(2w/o)-MOX(12w/o) 
 

  



Final  Report  Date 31 August 2005 
DE-FG07-01ID14106 

 12

Figure 6.3  Zeroth- and Second-Moment Distributions for MOX(7w/o)-UOX(2w/o)-
MOX(7w/o)-REF 
 
 
6.2 Numerical Optimization 

6.2.1 Ordering Analysis in the SP3 calculation 
 
There are several possible orderings of the SP3 matrix. The ordering of the variables such 

as angle, group, and space does not change the numerical properties of the matrix, but it can have 
an influence on the state of convergence. The most typical ordering is to arrange the variables in 
(angle, space, group) order as depicted in Fig. 6.4: the angle is placed innermost and the group 
outermost in a vector. This forms 22×  block matrices consisting of flux moments in the 
diagonal elements. Therefore, angle and space are normally solved at the same time in the inner 
iteration, and group is solved in a Gauss-Seidel manner in an outer loop. An alternative ordering 
is to have the (space, group, angle) ordering with angle outmost as shown in Fig. 6.5. In this 
case, the 0th-moments are first determined, which are used as sources when solving the 2nd-
moment equation. Eq. (4.8) is thus rearranged as: 
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, (6.6) 

 

where 
tr

D
Σ

≡
3

1
1 ,   

t

D
Σ

≡
7

3
3 . 

Each method provides a different structure of A-matrices in the bAx =  problem.  For the 
purpose of illustration, the structures of the matrices are shown for one energy group as shown in 
Figs. 6.6 and 6.7.  In the case of Fig. 6.6, the matrix is 22× -block symmetric in which the 
zeroth- and second-moments are coupled. Alternately, the A-matrix in Fig. 6.7 is not symmetric, 
but it can be solved angle by angle in a Gauss-Seidel iteration. Table 6.1 shows the performance 
associated with ordering in terms of CPU time.  While the original ordering, (angle, space, 
group), is about 7 times slower, compared to the P1 solution, the second ordering, (space, group, 
angle), is only about two times slower.   
 
 
Table 6.1  Comparison with Change of Ordering for SP3 
 

3x3 FAs, SP3 
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17x17 pins, 
3x3/pin Order-1 Order-2 

K-eff 1.000868 1.001725 

CPU  1 6.8 1.5 

Iteration 26 29 31 

* order-1: (angle, space, group) 
* order-2: (space, group, angle) 

 
 

 
(2 angular moments, 5x5 nodes,  7 groups) 
Figure 6.4  A-matrix with the (Angle, Space, Group) Ordering 
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(5x5 nodes,  7 groups, 2 angular moments) 

Figure 6.5  A-matrix with the (Space, Group, Angle) Ordering 

 
(2 angular moments,  5x5 nodes) 
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Figure 6.6  A-matrix with the (Angle, Space) Ordering for a Group 
 

 
(5x5 nodes, 2 angular moments) 
Figure 6.7  A-matrix with the (Space, Angle) Ordering for a Group 
 
6.2.2 Group Collapse in the Global/Local Acceleration 
 

Normally in a multigroup problem, the same number of energy groups is treated in the 
global and local calculations.  For example, if seven groups are treated in the local one-node 
calculation, seven groups of corrective terms would be generated at every node interface and 
then used in the global calculation. However, it is possible to reduce the number of groups in the 
global calculation so that the existing two-group structure of the global routines of the code can 
be used as it is and the computation time for CMFD may be reduced. The idea is somewhat 
similar to that used in the popular coarse group rebalancing method (CGR).  

In the CGR method, for example, the multigroup equation is reduced to the few-group 
equations by conserving all the reaction rates and leakage: 

 

 ∑ ∑
≠

Σ+Σ=Σ+⋅∇
gg g

gfgggsgrggJ
' '

'''' φλφφ   (g=1,…..,G). (6.7) 
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The rebalancing equation is constructed in the following manner with so-called driving factors, 
gd : 

 

 ∑∑∑ +=+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≠ '
''

'
'

G
GfG

GG
GGsGGrG

n
nG

out
nGG

out
G dRdRdRdjdjA λ , (6.8) 

 

where   ∑
∈

Σ=
Gg

gkgkG VR
'

''φ ,  ∑
∈

=
Gg

out
g

out
G jj

'
' ,    

  Gd = driving factor,  A  = area,  n  = neighboring nodes. 
 
Unlike the CGR method, in the method proposed here cross sections are condensed to two 
groups and correction factors are generated for only two groups, which is used in the global two-
group diffusion calculation.  
 
 ∑∑ Σ+Σ=Σ+⋅∇

≠ '
''

'
''

G
GfG

GG
GGsGGrGGJ φλφφ ,  )2,1( =G  (6.9) 

 

where  V
Gg

gG ∑
∈

=
'

'φφ ,  G
Gg

gkgkG V φφ /
'

''∑
∈

Σ=Σ ,   ∑
∈

=
Gg

gG AJJ
'

' . 

The CMFD current for coarse group G is defined in the same way as in Eq. (4.3) with the fixed 
number of groups: 
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When prolongating the few-group values the shape functions which are used in restricting the 
fine-group values can be used in the following manner: 
  
 )(gfJJ Gg ×= ,    )(ghGg ×= φφ ,   )(gwsGsg ×= φφ , (6.11) 
 
where )(gf , )(gh , and )(gw  are the normalized fine-group shape functions for current, average 
flux, and surface flux, respectively. 
 
 A preliminary test of this idea with the global/local acceleration technique was 
successful.  The global CMFD routine does not need to be changed even when increasing the 
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number of energy groups at the local level. It also provides improved computational efficiency 
since the two-group CMFD scheme with the ILU preconditioned BiCGSTAB method can always 
be used for multigroup problems. The detailed implementation and performance of this method 
will be discussed in the section 8. 
 
7. MULTI-LEVEL ACCELERATION AND ADAPTIVE METHODS 
 
7.1 Multi-Level  Method 

The heterogeneous FA configuration with pin-by-pin meshes obviates the use of the 
nodal approach which has only a few calculation meshes per FA. Even though the nonlinear 
formulation of the pin-by-pin multigroup SP3 calculation relieves the computation burden for 
steady-state and transient calculations, it still requires a considerable amount of computing time, 
particularly, for three-dimensional whole core transient simulations. When comparing 
computation times between the conventional two-group nodal diffusion method and the 
heterogeneous multigroup SP3 method, it can be noted that the computational time is 
significantly increased.  The fine-mesh versus nodal  increases by more than 100 times: the 
multigroup ( n ) versus two-group by a factor of more than n /2, and SP3  versus diffusion by a 
factor of about 2 ~ 3.   

 
As discussed in the previous sections, the global/local (two-level) acceleration method is 

useful for the CMFD diffusion calculation with FA-homogenized cross sections at the global 
level and the FMFD pin-by-pin SP3 calculation at the local level. The global quantities such as 
eigenvalue and FA-averaged two-group fluxes are quickly converged in the global level, while 
the local quantities such as pin-by-pin multigroup moments within an assembly are relatively 
slowly converged in the local calculation. Because most of the computation time is determined 
by the local calculations, it is important to perform the minimum number of the local calculations 
and to have the local fission sources converged as fast as possible in order to reduce the 
computation time and achieve the better convergence. 

 
One way to improve performance in terms of the computation time is to insert more 

levels between the global and local levels as in the conventional multi-level or multi-grid 
methods.  In the report, the three-level method is proposed as shown in Figs. 7.1 and 7.2 in 
which an intermediate level with the two-group pin-by-pin (1 node/pin) diffusion calculation can 
be added. At the first step, the local level gives two-group pin-by-pin correction factors and cross 
sections for the intermediate level, and then the intermediate-level calculation is performed to 
provide coarse-mesh (e.g. 1 node/FA) correction factors and cross sections. The iteration 
between intermediate and global levels is performed until reaching a certain tolerance. In this 
iteration, there is no group and angle condensation, but only spatial homogenization. The 
solution algorithm then returns to the local level by prolongation with respect to group and space, 
and updates the distribution of fission sources and incoming currents at boundaries of local 
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problems. This process, local/intermediate and intermediate/global iterations, is repeated until 
eigenvalue and pin-by-pin fluxes are converged within given convergence criteria.    

 
The following equations are solved at each level, which should be equivalent in terms of 

reaction rates and leakage: 
 

 
),,...,1(,)()(

)()()()()(

1'
''

1'
''

MGgrrv
k

rrrrrJ

MG

g

het
g

het
fg

het
g

MG

g

het
g

het
gsg

het
g

het
tg

het
g

=Σ+

Σ=Σ+⋅∇

∑

∑

=

=

φ
χ

φφ

  (7.1a) 

 
),2,1(,)()(1

)()()()()(

2

1'
''

2

1'
''

=Σ+

Σ=Σ+⋅∇

∑

∑

=

=

grrv
k

rrrrrJ

g

het
g

het
fg

g

het
g

het
gsg

het
g

het
tg

het
g

φ

φφ
  (7.1b) 

 
),2,1(,)()(1

)()()()()(

2

1'

hom
'

hom
'

2

1'

hom
'

hom
'

homhomhom

=Σ+

Σ=Σ+⋅∇

∑

∑

=

=

grrv
k

rrrrrJ

g
gfg

g
ggsggtgg

φ

φφ
  (7.1c) 

 
where  )(),( rrJ het

g
het
g φ  : fine-mesh pin-by-pin multigroup SP3 solutions,  

)(),( rrJ het
g

het
g φ  : pin-by-pin (1 node/pin) 2-group diffusion solutions,  

)(),( homhom rrJ gg φ  : coarse-mesh (e.g. 1 node/FA) 2-group diffusion solutions. 
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Figure 7.1  A Flow of Multi-Level Calculation 
 

Local Level 
 

- Multi-Group Pin-by-Pin ( nn× /pin) Calculation 
- SP3 Calculation 
-    Generation of Correction Factors for Intermediate Level  

Intermediate Level 
 

- 2-Group Pin-by-Pin (1 node/pin) Calculation 
- Diffusion Calculation 
- Generation of Nonlinear Factors for Global Level  

Global Level 
 

- 2-Group (1 node/FA) Calculation 
- Diffusion  Calculation 
- CMFD Calculation 
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Figure 7.2  A Graphical View of Multi-Level Calculation 

Multi-group 
Fine-mesh 
Pin-by-pin geometry 
SP3 

2-group 
1 node/pin 
Pin-by-pin geometry 
Diffusion 

Pinwise sgD̂̂  (g=1,2) 

2-group 
1 node/FA (e.g.) 
Coarse-node homogeneous 

geometry 
Diffusion 

Coarse-nodewise sgD̂̂  
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Eqs. (7.1a), (7.1b), and (7.1c) correspond to local, intermediate, and global levels, respectively. 
Once converged, all of them should have the same eigenvalues, reaction rates, and leakages in 
each group.  In order to force the three equations above to have the same reaction rates and 
currents, the following relations are satisfied: 
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where  α  = cross section type, P = pin,  FA = fuel assembly. 
 

Essentially, convergence can be further improved by using intermediate levels, depending 
upon the characteristics of problems. However, since the optimization of intermediate levels can 
be another substantial issue as in the conventional multi-level method, it is not further addressed 
in this report. The performance of only the three-level acceleration method will be discussed in 
section 8.  

 
7.2 Adaptive  Methods 

For the heterogeneous configuration (pin-by-pin), the fine-mesh finite difference method 
is preferable to nodal methods. With the homogeneous configurations (FA-homogenized cross 
sections), however, it is obviously efficient to use the nodal method for the spatial discretization. 
As far as the number of energy group is concerned, the multigroup calculation is very effective 
when the actual spectrum is very different from the lattice spectrum used off-line for group 
collapsing. As discussed in Section 2, for example, the spectrum of the MOX/UOX combination 
is very different from the asymptotic spectrum which either of them has in a single fuel assembly 
calculation performed with the lattice code. However, the UOX/UOX combination, which has 
typically mild spectral transitions, may not need to be analyzed with multigroup or 
heterogeneous SP3. For angle, an increasing order of angular approximation can basically be 
effective in places where the diffusion approximation fails, but it needs to be considered in 
association with the equivalence homogenization theory when homogenization is involved 
[Koebke, 1980] [Smith, 1986]. Therefore, it may not be necessary to apply the heterogeneous 
multigroup SP3 approximation to all the nodes in the core.  It would be more efficient to 
selectively apply the detailed approximation to the nodes as required, which is a primary 
motivation of an adaptive method. 
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The essential idea of an adaptive method is to use a suitable combination of different 
methods with respect to group, space and angle in one calculation: multigroup and 2-group, 
diffusion and SP3, fine-mesh finite difference and nodal methods. Since there is no reference 
calculation, an appropriate approximation should be involved when expanding smaller 
information to larger information on space, energy, and angle: for example, between coarse-
mesh and fine-mesh, 2-group and multi-group, and diffusion (one moment) and SP3 (two 
moments). 

In the “one-node” problem explained in section 4, incoming partial currents used as 
boundary conditions are the only information exchanged between nodes. Between coarse-
mesh and fine-mesh nodes, the coarse outgoing partial currents of the coarse-mesh node need 
to be expanded to the fine incoming partial current of fine-mesh node, shown in Fig. 7.3. 
 
 
    
 
 
 
 
 

 
 
 
Figure 7.3  Partial Current Interaction at the Interface between Coarse-mesh and Fine-mesh 
Nodes 

 
 
The incoming partial current can be approximated by a quadratic polynomial with known 
average, top, and bottom partial currents. 
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The incoming partial current of the fine-mesh side is expressed as: 
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where  ]1,0[∈ir . 
The opposite direction, from fine-mesh to coarse mesh, is much simpler by using: 
 

 ∑ −−

∆
=

i
ijj 1 , (7.5) 

 
where  ∆  = node size. 

For angle, it is necessary to estimate higher-order current moments as boundary 
conditions. This is somewhat complicated since higher-order current moments are much 
more dramatically changing compared to the conventional current defined in the diffusion 
theory.  The simple approach is to approximate all the incoming higher-order current 
moments by zero.  If this assumption is applied to the nodes sufficiently far from the node of 
interest, it will not introduce any serious error.  However, if the assumption is made at 
boundaries of the node of interest, it will cause some errors. It remains to be investigated how 
much error is introduced by this approximation. 

 
 
 
 
 
 
 
 

 
 
Figure 7.4  Partial Current Interaction at the Interface between diffusion and SP3 Nodes 

 
 
For energy group, few group information (two-group) needs to be expanded to multi-

group  without any reference fine-group structure.  The fine-group structure of the incoming 
partial current is assumed to be the same as that of the outgoing partial current.  As a first 
step, the fine-group structure is assumed to be flat or based on precalculated shapes, and then 
from the following steps, it is extended from the fine-group structure of the outgoing partial 
current.   
 
 )()( rfjrj gGg ×= ++ ,  Gg ∈ , (7.6) 
 
where  )(rf g  is a normalized distribution of )(rjg
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Figure 7.5 Partial Current Interaction at the Interface between Coarse and Fine Groups 

 
 

Upon convergence, both the outgoing and incoming partial current would have the same fine-
group structure. 

Different order of approximations in terms of space, angular moment, and energy group 
can be mixed in the same core calculation with the projections of coarse-mesh to fine-mesh, first-
order current moment to higher current moments, and two-group to multi-group.  In the local 
calculation level, adaptive methods can be used to save computing time while maintaining 
similar accuracy to when more complicated local calculations were performed.  Fig. 7.6 shows 
an example of combining different methods in a core calculation. Note that an additional 
advantage of this configuration is that no serious effort is necessary to construct the reflector 
cross sections since the reflector is explicitly modeled. The performance of this method will be 
discussed in more detail in Section 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(F: Fine-mesh,  M: Multi-group, T: Transport (SP3), Others: 2-G, nodal, diffusion) 
Figure 7.6 Adaptive Choice of Methods in a Core Calculation  
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8. VERIFICATION 
 
8.1 Implementation 

All the methods discussed here have been implemented in PARCS which already has the 
global/local iteration solver with the two-group diffusion method and higher-order spatial 
methods such as NEM and ANM for steady-state and transient conditions [Joo, 1998].  Since the 
new methods are based on a two-group diffusion acceleration at the global level, the existing 
global routine can be used with minor modifications. Fig. 8.1 depicts on how the newly 
implemented routines work in PARCS. The multigroup pin-by-pin FMFD, FA-homogeneous 
NEM, and the adaptive method are simply selected with input options. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.1  Diagram on the Methods Implemented into PARCS 
 
In the global calculation, the BiCG stabilized (BiCGSTAB) algorithm with the blockwise 
incomplete LU (BILU) already implemented in PARCS is used for the CMFD calculation.  In 
addition, the eigenvalue calculation is accelerated with the Wielandt shift method.  In the local 
calculation when using fine-mesh FDM, the ILU-preconditioned CG method is used.  The red-
black Gauss-Seidel method is also employed for sweeping one-nodes. 
 
8.2 Benchmark Problems 

Two MOX benchmark problems are used to verify the methods proposed here: the 
OECD L336-C5 [Sartori, 1991] and the KAIST benchmark problems [Cho, 2000]. Even though 
the original L336-C5 problem has 2-group cross sections for homogeneous and heterogeneous 
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FA configurations, the cross sections of the KAIST benchmark problem are employed with the 
same L336-C5 core configuration in order to examine homogenization and transport effects in a 
multigroup structure. The KAIST benchmark problem has a larger-sized core with MOX, UOX, 
control rods, and burnable absorbers, and therefore more closely resembles a practical PWR 
model. The TWODANT code, a Los Alamos SN code [Alcouffe, 1995], is used to first obtain the 
reference solutions and then to calculate homogenized cross sections. The details of each 
benchmark problem will be discussed in the following sections. 

 

8.2.1 OECD L336-C5 Benchmark Problem 
 

This benchmark problem has 2x2 fuel assemblies with UOX and MOX which are 
surrounded by water reflectors as shown in Fig. 8.2.  Since the size of the core is small, the 
leakage of neutrons is very large.  Therefore, there are large flux gradients at both the core 
boundary and at UOX/MOX interfaces. Two-group assembly or pin cross sections were 
originally provided for this problem. In the two-group calculation, however, the transport and 
homogenization effects will be small since the changes in the intermediate energy group range 
are smeared. Therefore, 7-group pin cross sections (see Table 8.1) and heterogeneous FA 
configurations (see Fig. 8.3) are used from the KAIST benchmark problem in order to create a 
more realistic problem and to examine all the effects discussed in Section 2.   

 
When condensing 7-group cross sections to a few groups in order to investigate the group 

homogenization effect, the manner of generating few-group diffusion coefficients or transport-
corrected cross sections is important since results can be very different depending upon the group 
condensation method. For the diffusion equation, the usual direct weighting of the multigroup 
diffusion coefficients is used, which preserves the fundamental-mode leakage: 
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where  gi,  = fine node and group indices, GI , = coarse node and group indices, 
 α  = cross section type. 
 

In the work here, the energy cutoffs shown in Table 8.1 are used for 2 groups and 4 
groups. The higher order of SN method in TWODANT is used to obtain the reference solution as 
well as FA-homogenized cross sections for each assembly. The preliminary calculations listed in 
Table 8.2 show a comparison of eigenvalues between the S16 method with pin-homogenized 
cross sections and different orders of methods with FA-homogenized cross sections, which gives 
a rough idea of group and space homogenization effects. The assembly discontinuity factors 
(ADFs) are also used in the calculations with FA-homogenized cross sections. It is noted in 
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Table 8.2 that the trend of differences between 2-group and 7-group calculations and between 
diffusion and SP3 calculations is not predictable because of cancellation effects between the 
errors. However, the results shown in Table 8.2 at least imply that the substantial discrepancy in 
eigenvalue can be caused from group and spatial homogenization. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8.2 Geometry of the OECD L336 C-5 Benchmark Problem 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
MOX (boundary: 4.3w/o, middle: 7.0 w/o, center: 8.7 w/o) 
UOX (3.3 w/o) 
 
Figure 8.3 Heterogeneous Configurations of MOX and UOX Fuel Assemblies 
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Table 8.1  Energy Cutoffs for 2 Groups and 7 Groups 
 

7-Group 4-Group 2-Group Cutoff Energy 

1 1 ~ 1.353 MeV 

2 1.353  ~ 9.119 KeV 

3 

2 

9.119 ~ 3.928    eV 

4 3 

 

1 

3.928 ~ 0.625    eV 

5 0..625 ~ 0.146    eV 

6 0.146 ~ 0.057    eV 

7 

 

4 

 

2 

0.057 eV ~ 

 
 
 
Table 8.2 Comparison of Eigenvalues in the L336-C5 Benchmark Problem  

 

FA Method Group k-effective  ∆ k-eff (pcm) 

HET S16 7 0.95919 0 

2 0.96019 99 
Diffusion 

7 0.95710 -209 

2 0.96210 291 

 

HOM 

SP3 7 0.96039 119 
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8.2.2 KAIST Benchmark Problem 
 

This benchmark problem is composed of various fuel types including MOX, in which 7-
group cell-homogeneous and cell-heterogeneous cross sections are provided.  Figs. 8.3 and 8.4 
show the assembly and core geometries of the KAIST benchmark problem, respectively. Tables 
8.1, 8.3 and 8.4 show energy cutoffs and specifications of the problem.  The 7-group cell 
heterogeneous cross sections were first generated by condensing the HELIOS [Villarino, 1992] 
results with 34 groups. From these cell heterogeneous cross sections, the 7-group cell 
homogeneous cross sections were generated by the CRX code [Cho, 1996] which is based on the 
method of characteristics (MOC). Cell homogeneous cross sections are then given by each pin 
type.  Instead of total cross sections and P1 scattering cross sections, transport-corrected cross 
sections are given by the following definition: 

 
 gggggggtr 1'',0', Σ−Σ=Σ ←← δ , (8.2) 

where ∑
=

←Σ=Σ
G

g
ggg

1'
',11 . 

 
KAIST performed several types of calculations to examine errors in various modelling 

approximations [Cho, 2000]. First, CRX was run with pin-heterogeneous configurations (e.g. 
fuel, clad, gap, moderator, etc.), and these results were considered as a reference. The pin-
homogeneous cross sections were then used for CRX and TWODANT. In short, the whole-core 
heterogeneous calculation was performed with CRX whose results were compared with 
TWODANT results in which S8 was used with 2x2 meshes per pin. Furthermore, the 
heterogeneous calculation was also compared with 2-group AFEN [Noh, 1993] solutions which 
used the conventional procedure. They concluded that there were significant errors in the 
conventional procedure using the nodal method with 2-group cross sections generated in single 
fuel assembly calculations with reflective boundary conditions.  
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Figure 8.4 Configuration of the KAIST Benchmark Problem 

 
 

In the work here, TWODANT was also used to solve the KAIST Benchmark problem.  
Several calculations were performed to examine the effect of the number of groups, order of 
angles and heterogeneity. Since a transport code similar to CRX was not available, the 
TWODANT solution was considered as the reference in the analysis here. FA-homogenized 
cross sections are generated with a single FA calculation and zero-current boundary condition. 
The two-group reflector cross sections were provided with the two-node (fuel assembly and 
reflector) calculation.   

 
Table 8.5 summarizes comparison of eigenvalues between the S16 method with pin-

homogenized cross sections and different orders of methods with FA-homogenized cross 
sections in the same way as performed for the L336-C5 benchmark problem. As observed in the 
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previous benchmark problem, the magnitude of differences between 2-group and 7-group 
calculations and between diffusion and SP3 calculations changes unexpectedly.  The same reason 
as in the L336-C5 results can be hold.  As mentioned in the previous section, the results in Table 
8.5 at least indicates that homogenization and transport consideration can cause substantial errors 
in eigenvalue. 

 
Fig. 8.5 shows the pin power distribution of the KAIST MOX benchmark problem, which 

has large variations in pin powers due to MOX fuel loading. Figs. 8.6 through 8.8 show 1st-, 4th-, 
and 7th-group flux distributions in which dramatic variations of fluxes can be observed at 
interfaces between MOX and UOX in the lowest group. 

 
The original KAIST MOX benchmark problem was modified so that it becomes more 

simple and appropriate to analyze in this work. First, the baffle is removed from the core, and the 
core, which is composed of UOX FAs only, is constructed for the purpose of comparison with 
the MOX core in characteristics. All multigroup cross sections including partial cross sections 
and transient parameters are generated from HELIOS again since partial cross sections and 
transient parameters, which are very necessary for transient calculations, are not provided from 
the original KAIST benchmark problem. Figs. 8.9 and 8.10 show the modified MOX and UOX 
benchmark cores. It will be interesting to compare the magnitude of eigenvalue errors at stead-
state conditions and to compare the transient behaviors between the two types of cores. 
 

 

Table 8.3 Assembly Specification of the KAIST Benchmark 

Lattice 17x17 

Assembly Pitch 21.42 cm 

GT / IT 24 / 1 

 

 

Table 8.4 Fuel Types Loaded in the KAIST Benchmark 
 

Fuel Assembly Content k-inf 

UOX-1 2.0 w/o UO2 1.10040 
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UOX-2 (BA16) 3.3 w/o UO2, 16 BAs (GD + 0.711 w/o) 1.03171 

UOX-2 (CR) 3.3 w/o UO2, 24 Control Rods 0.80074 

MOX-1 8.7 w/o (inner), 7.0 w/o(middle), 4.3 w/o (outer) 
Pu 

1.16957 

MOX-1 (BA8) 8.7 w/o (inner), 7.0 w/o(middle), 4.3 w/o (outer) 
Pu,  8 BAs (GD + 0.711 w/o) 

1.12814 

 
 
 

Table 8.5 Comparison of Eigenvalues in the KAIST Benchmark Problem  
 

FA Method Group k-effective  ∆ k-eff (pcm) 

HET S16 7 0.95521 0 

2 0.95799 278 
Diffusion 

7 0.95379 -142 

2 0.95909 388 

 

HOM 

SP3 7 0.95567 46 
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Figure 8.5  Pin Power Distribution of KAIST Benchmark Problem from 
TWODANT (S8, 3x3 meshes/pin) 

 
Figure 8.6  1st Group Flux Distribution of the KAIST Core 
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Figure 8.7  4th Group Flux Distribution of the KAIST Core 

 

Figure 8.8  7th Group Flux Distribution of the KAIST Core 
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Figure 8.9  Configuration of the Modified KAIST Benchmark Problem (MOX Core) 

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 8.10  Configuration of the Modified KAIST Benchmark Problem (UOX Core) 

Vacuum  

UOX-
2 

(BA )

UOX-
2

UOX-2 
(CR) 

UOX-
2

UOX-2 
(CR) 

UOX-
1

UOX-
1

UOX-
1

UOX-
1

UOX-
1

MOX-
1

MOX-
1

MOX-
1 

(BA )
Reflective  Vacuum  

Reflective 

Reflector  

UOX-
2 

(BA )

UOX-
2

UOX-2 
(CR) 

UOX-
2

UOX-2 
(CR) 

UOX-
1

UOX-
1

UOX-
1

UOX-
1

UOX-
1

UOX-
2

UOX-
2

UOX-2 
(BA4) 

Reflective  Vacuum  

Vacuum  

Reflective 

Reflector  



Final  Report  Date 31 August 2005 
DE-FG07-01ID14106 

 36

 
8.3 Results 

8.3.1 Steady-State 
 

The advantages of the global/local acceleration method have been discussed in the 
previous sections: good performance in convergence, easy parallelization, better performance in 
solving transient problem, and flexibility in choosing linear solvers. It is worthwhile to 
investigate in detail the reasons for the advantageous computational efficiency of the two-level 
(global/local) acceleration method. The performance of the two-level method is compared with 
the coarse-mesh rebalancing (CMR) method which is one of the conventional acceleration 
methods, as summarized in Table 8.6. 

 
 

Table 8.6 Methods Used for Performance Comparison 
 

Method Global 
(Coarse-Mesh Calculation) 

Local 
(Fine-Mesh Calculation) 

1 CMFD with D̂  correction “One-node” FDM  

2 CMFD with CMR Whore-core FDM 

 
 
 The global/local acceleration method (Method-1) is based on the “one-node” approach in 
which the fine-mesh finite-difference matrix is constructed for each local node (e.g. FA-size 
node which has fine calculation meshes) and solved by red-black Gauss-Seidel sweep.  In the 
CMR method (Method-2), the fine-mesh finite-difference matrix is constructed for the whole 
problem (e.g. whole-core) and the CMR is then performed to set up the coarse-mesh finite-
difference matrix.  
 
 Tables 8.7 and 8.8 show a comparison of results in terms of computation time for the two 
different benchmark problems at steady-state conditions. The results show that the performances 
of those two methods are comparable. Even though Method-1 shows the smallest number of 
iterations, the total computation time is similar to the other method since the time to solve the 
local problems is larger than the other method.  Therefore, it can be concluded that the 
global/local acceleration method with the “one-node” scheme at the local level has a 
performance comparable to the CMR acceleration method for the eigenvalue problem. However, 
the “one-node” calculation is expected to have an advantage in the transient fixed-source 
problem which will be analyzed in the following section.    
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With the two-level (global/local) acceleration, the eigenvalue converges quickly in 3 ~ 4 
iterations since the boundary information of the whole problem is quickly transferred throughout 
the core at the global calculation level.  This is similar in characteristics to the techniques using 
coarser meshes such as the multi-grid method and the coarse-mesh rebalancing method.  The 
only difference is that in the nonlinear global/local approach, the global level is independently 
solving the problem once correction factors are determined, but in the multi-grid method or the 
coarse-mesh method, the coarse-mesh calculations are always dependent upon the finer-mesh 
calculations through residuals or driving factors, respectively. Due to local changes in group 
fluxes, more iterations are required even though the eigenvalue is almost converged in a few 
iterations.  In the case of SP3, the convergence is a little slower since one more variable, the 2nd-
moment, must be somewhat converged at the same time.  Overall, the increase in the number of 
groups and angles deteriorates convergence behavior. Tables 8.7 and 8.8 also show that SP3 
calculations are about 2 or 3 times slower than diffusion calculations.  

 
Fig. 8.11 and Table 8.9 show comparison of convergences between the whole-core FDM 

used in PARCS and the two-level acceleration method. As briefly noted in Section 8.1, the FDM 
module in PARCS uses an efficient numerical combination of the block incomplete LU 
preconditioner and the BiCG-STAB algorithm as well as the Wielandt acceleration method.  Due 
to the limitation of the FDM module of the PARCS code, only two-group diffusion results are 
compared.  The results show that the two-level method is about four times faster than the FDM 
module with efficient numerical solvers.   

 
The performance of the three-level acceleration method discussed in Section 7.1 was 

investigated with multigroup pin-by-pin SP3 calculations. The results in Fig. 8.12 and Table 8.10 
show the better performance of the three-level method compared to the two-level method. Since 
the two cases chosen here have the similar characteristics in a core size, the number of groups, 
and the number of spatial meshes, they showed similar results in performance.  

 
Tables 8.11 and 8.12 show the accuracy of pin-by-pin SP3 methods against more 

sophisticated transport methods with S16. The ADFs are used in the calculations with FA-
homogeneous cross sections. The results show that pin-by-pin 7-group SP3 results have very 
good agreement with the reference, while few group results sometimes show good agreement in 
eigenvalue because of cancellation of errors among the various approximations.  However, few 
group results do not have as good agreement with the reference in the power distribution as the 
pin-by-pin multigroup SP3 results. Figs. 8.13 and 8.14 illustrate comparisons of power 
distributions among different approaches. 

 
It can be summarized that the two-level (global/local) acceleration method for diffusion 

and SP3 methods shows better performance compared to the whole-core FDM with the Wielandt 
acceleration but comparable performance to the CMR acceleration. In addition, the three-level 
acceleration method, which is applicable to multigroup pin-by-pin SP3 method, has better 
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performance in convergence than the two-level acceleration method.  As far as the accuracy is 
concerned, the pin-by-pin multi-group SP3 method is in best agreement with the reference. 

 
 

Table 8.7 Performance Comparison between Diffusion and SP3 in the L336-C5 
Benchmark Problem 

 

Diffusion SP3
  Grou

p 
Mes
h/pin 

Item 
2-Level a CMR b 2-Levela 

CPU 3.7 2.9 8.0 2x2 

Iteratio
n 

12 20 12 

CPU 8.2 5.4 22.2 

2 

3x3 

Iteratio
n 

13 15 14 

CPU 8.5 8.8 33.2 4 2x2 

Iteratio
n 

14 19 16 

CPU 32.1 24.5 81.8 7 2x2 

Iteratio
n 

22 21 14 

a : Global calculation by CMFD and local calculation by one-node FMFD sweep 
b : Global calculation by CMR   and local calculation by whole-core FMFD matrix 
* SUN Ultra2, 300MHz 
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Table 8.8 Performance Comparison between Diffusion and SP3 in the KAIST  
Benchmark Problem 

 

Diffusion SP3
  Grou

p 
Mes
h/pin 

Item 
2-Levela CMRb 2-Levela 

CPU 10.3 13.6 24.9 2x2 

Iteratio
n 

13 27 13 

CPU 25.4 32.0 72.1 

2 

3x3 

Iteratio
n 

13 23 13 

CPU 31.1 37.8 94.7 4 2x2 

Iteratio
n 

17 24 15 

CPU 89.7 82.9 229.6 7 2x2 

Iteratio
n 

25 26 21 

a : Global calculation by CMFD and local calculation by one-node FMFD sweep 
b : Global calculation by CMR   and local calculation by whole-core FMFD matrix 
* SUN Ultra2, 300MHz 
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Figure 8.11  Convergence of Conventional FDM (PARCS) and Two-Level Acceleration Method  
 
 
Table 8.9  Comparison of  Computation Time between FDM (PARCS) and Two-Level 
Acceleration Method  

CPU (sec) 
Group Method Core Cross 

Section 
K-eff 

FDM 
(PARCS)

2-Level Ratio 

FA-HOM 0.95799 76 19 4.0 MOX 

PIN-HOM 0.95730 85 24 3.5 

2 

 

Diffusion 

UOX FA-HOM 0.95283 68 19 3.6 

* 51x51 meshes/FA 
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Figure 8.12  Convergence of Two-Level and Three-Level Acceleration Methods  
 
 
 
Table 8.10  Comparison of  Computation Times between Two-Level and Three-Level 
Acceleration Methods 

CPU (sec) 
Group Method Core Cross 

Section 
K-eff 

2-Level 3-Level Ratio 

MOX PIN-Hom 0.95543 561 345 1.6 7 

 

SP3 

UOX PIN-Hom 0.95234 565 340 1.7 

* 3x3 meshes/pin 
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Table 8.11  Comparison of Eigenvalue and Powers in the Modified KAIST Benchmark Problem 
(MOX Core) 

FA Power (% Diff.) 
 

Code 

 

Group 

 

Method Cross 
Section 

K-eff 
Delta-K 
(pcm) 

Average Maximum 

TWODANT 7 S16 PIN-Hom 0.95521 0 0 

2 278 1.67 2.67 

7 

Diffusion FA-Hom 

-142 1.49 4.50 

2 388 1.46 2.30 

7 

SP3 FA-Hom 

46 0.64 2.13 

 

 

PARCS 

7 SP3 PIN-Hom 22 0.30 0.82 
 
* PIN-Hom  : Pin-homogenized cross sections 
* FA-Hom   : FA-homogenized cross sections 
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Figure 8.13  Comparison of Power Distributions in the Modified KAIST Benchmark Problem 
(MOX Core) 
 

    1.087 
      2.02 
      4.50 
      0.83 
      2.13 
      0.82 
     0.849 
     -0.63 
      2.52 
    -1.44 
      0.95 
      0.70 
    1.882 
      0.94 
     -1.34 
     -1.45 
     -0.34 
     -0.53 
    1.050 
     -1.72 
     -2.34 
     -1.01 
     -0.75 
     -0.34 

   1.298 
     2.67 
     1.86 
     1.87 
     0.39 
     0.02 
    0.685 
    -2.49 
    -0.33 
    -2.39 
    -0.38 
     0.34 
   0.598 
    -1.49 
    -1.51 
    -1.14 
    -0.91 
    -0.09 

      0.489 
       0.97 
       0.90 
       0.50 
      -0.34 
      0.12

 7G S16 PIN-Hom (TWODANT) 
 2-G Diffusion FA-Hom (PARCS) 
 7-G Diffusion FA-Hom (PARCS) 
 2-G SP3  FA-Hom (PARCS) 
 7-G SP3  FA-Hom (PARCS) 
 7-G SP3 PIN-Hom (PARCS) 

Rel. % error 
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Table 8.12  Comparison of Eigenvalue and Powers in the Modified KAIST Benchmark Problem 
(UOX Core) 

FA Power (% Diff.) 
 

Code 

 

Group 

 

Method Cross 
Section 

K-eff 
Delta-K 
(pcm) 

Average Maximum 

TWODANT 7 S16 PIN-Hom 0.95169 0 0 

2 114 2.42 4.53 

7 Diffusion FA-Hom -297 1.52 5.22 

2 234 2.18 4.37 

7 SP3 FA-Hom 110 0.83 3.04 

 

 

PARCS 

7 SP3 PIN-Hom 65 0.26 0.90 
 
* PIN-Hom  : Pin-homogenized cross sections 
* FA-Hom   : FA-homogenized cross sections 
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Figure 8.14  Comparison of Power Distributions in the Modified KAIST Benchmark Problem 
(UOX Core) 
 
 

    1.112 
      3.45 
      5.22 
      2.11 
      3.04 
      0.90 
     0.921 
     -2.24 
      0.65 
     -3.00 
     -0.70 
      0.60 
    1.750 
      1.55 
    -0.52 
     2.08 
     0.26 
    -0.39 

    1.043 
    -1.49 
    -1.79 
    -0.74 
    -0.14 
    -0.38 

   1.323 
     3.85 
     2.09 
     3.08 
     0.66 
    -0.02 
    0.742 
    -4.53 
    -2.30 
    -4.37 
    -2.19 
     0.16 

   0.581 
   -0.99 
   -1.14 
   -0.59 
   -0.30 
   -0.23 

      0.492 
       1.32 
       0.80 
       0.83 
      -0.17 
     -0.03

 7G S16 PIN-Hom (TWODANT) 
 2-G Diffusion FA-Hom (PARCS) 
 7-G Diffusion FA-Hom (PARCS) 
 2-G SP3  FA-Hom (PARCS) 
 7-G SP3  FA-Hom (PARCS) 
 7-G SP3 PIN-Hom (PARCS) 

Rel. 
% error 
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8.3.2 Transient 
 

Two types of test cores are constructed for the transient calculations as shown in Figs. 
8.15 and 8.16: MOX and UOX Cores. While the MOX core consists of a checkerboard loading 
of MOX and UOX fuel assemblies (FAs), the UOX core is composed of UOX FAs only. The 
control rod, which is inserted at the center FA, is ejected in 0.1 sec resulting in super-prompt 
criticality. The rod ejection is simulated by diluting absorbers in a 2-D geometry. First of all, the 
newly implemented transient neutronics and thermal-hydraulics (T/H) routines of PARCS have 
been verified against the ANM transient results of PARCS which have already been well 
benchmarked.  The test cases are run with 2-group FA homogeneous cross sections since the 
original PARCS with ANM works only with 2-group homogeneous configurations. Fig. 8.17 
shows very good agreement between them, which means that the new routines are properly 
implemented. As mentioned earlier, one of the biggest advantages of the two-level (global/local) 
acceleration scheme is to save computing time in transient calculations by reducing the number 
of local calculations depending upon the cross section change: 

 

 ε<
Σ

Σ−Σ
=∆Σ

+

im
rg

im
rg

im
rg

,

,1,

max max  (8.3) 

 
where im

rg
,Σ  = removal cross section of node m  at ith update of correction factors. 

   
The correction factors changes significantly in the node in which the control rod is being 
removed.  However, once the rod is removed, the correction factors changes very small.  Fig. 
8.18 illustrates the accuracy of using an adaptive update of correction factors, which is in very 
good agreement with the results without adaptation. In addition, Table 8.13 shows the saving of 
computation time with an adaptive update of correction factors.  If the transient calculations are 
performed more than 0.6 sec, the CPU saving would be greater. 
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Figure 8.15  Configuration of  3x3 MOX Core for the Rod Ejection Transient Problem  
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
Figure 8.16  Configuration of  3x3 UOX Core for the Rod Ejection Transient Problem 

: 3.3 w/o UO2 + 16 BPs   
: 3.3 w/o UO2  
   w/  Control Rod  

0=J  

0=J  0=J  

0=J  

: 8.7, 7.0, 4.3 w/o    
 zoned MOX

: 3.3 w/o UO2 + 16 BPs   
: 3.3 w/o UO2  
   w/  Control Rod  

0=J  

0=J  0=J  

0=J  

: 3.3 w/o  UO2  
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Figure 8.17  Comparison of Power, Reactivity, and Enthalpy with Time between PARCS-ANM 
and FMFD Diffusion in the MOX-Core Transient 
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Figure 8.18  Comparison of Power, Reactivity, and Enthalpy with Time between PARCS-ANM 
and FMFD Diffusion w/ Adaptation in the MOX-Core Transient 
 
 
Table 8.13  Reduction of Computation Time Due to Adaptation with Cross Section Change 

(Total elapsed time = 0.6 sec) 
 

CORE Method
* 

w/o Adaptation (sec) w/ Adaptation (sec) Ratio 

Diffusio
n 

219  41 0.19 MOX 

SP3 393 123 0.31 

Diffusio
n 

226 42 0.19 UOX 

SP3 348 71 0.20 

 * 2-group, FA-homogeneous, 2x2 meshes/pin  
 Note that the CPU reduction will become larger with greater total elapsed time  

 
It is very worthwhile to compare the transient results of the two different cores, which 

have the same dynamic reactivities.  As shown in Table 8.14, the MOX core has a smaller 
delayed neutron fraction and generation time, which causes the earlier core power peak. It is 
instructive to understand the trend using the simple point kinetics equations: 

 

 
( )

∑
∫

Λ
+

Λ

−−+
=

k
kk

t

tp
dtptpt

tp ςλ
βγρ

1)(
')'()(

)( 0
0

, (8.4) 

 
where  )()()( tptt kkk βςλς +−= . 
 
In the super-prompt critical domain Eq. (8.4) at hot zero power conditions, the solution can be 
approximated as [Ott, 1989]: 

 

 0
1exp)( pttp ⎟

⎠
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where   ( ) ( )2
10

1

12
1

2 2 βρ
βρ

γρβρρ −≈
−

Λ
−−= pb ,  ( )∫ −+=

t

dtptpt
0

01 ')'()( γρρ ,  

  0<γ  (thermal feedback coefficient). 
 
The equation above implies that the height of the power peak is dependent upon ( )2

1 1/ −βρ , 
β/Λ , and βγ / . In addition, the energy stored in the power peak becomes only dependent upon 
βρ /1  and βγ /  as follows: 

 

  ( )
γ

βρ −
−≈∆ 1

max
2tp  (8.6) 

 
 

 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 8.19  Power Pulse of the Superprompt-critical Transient 
 

 
According to the MOX and UOX transient results with the same dynamic reactivities, the MOX 
core should have relatively earlier and smaller power peak and smaller stored energy. The trend 
can be estimated using Eqs. (8.5) and (8.6) with data in Table 8.14. These are shown in the 
comparison results in Fig. 8.20.  More tests are performed with the same cores changing the 
methods from diffusion and SP3 approximations using 2-group homogeneous cross sections. 

P(t) maxp

t∆

t
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Figure 8.20  Comparison of Results  between MOX and UOX Core Transients 
 
Table 8.14  Transient Parameters of MOX and UOX Cores 

PARAMETER MOX UOX Ratio 

Initial K-eff 1.00029 0.99998 - 

Beta 0.0053 0.0076 1.43 

Reactivity ($) 1.14 1.14 1 

Λ  1.31 510−×  2.16 510−×  1.65 

β/Λ  0.0025 0.0028 1.12 

Doppler Coefficient 
(pcm/ C)(1)   

-3.4 -3.1 0.91 

β/)1(  -642 -408 0.64 
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Figure 8.21 Comparison of Power, Reactivity, and Enthalpy with Time between Diffusion and 
SP3 in the MOX-Core Transient 
 

 
Figure 8.22 Comparison of Power, Reactivity, and Enthalpy with Time between Diffusion and 
SP3 in the UOX-Core Transient 
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The different methods result in different control rod worth in the steady-state calculation, which 
significantly affects the transient results as shown Figs. 8.21 and 8.22. Even though the 
difference of delayed neutron fractions between 2-group FA-homogenous diffusion and 
multigroup pin-by-pin SP3 calculations is one of the major effects for transient results, its 
investigation and analysis remain as future work. 
 
8.4 Performance of Multigroup SP3 Nodal Expansion Method 

The conventional methods used to solve the NEM is to perform one-dimensional 
sweeping with numerical schemes such as the red-black Gauss-Seidel and then perform 
acceleration with coarse-mesh rebalancing, Chebyshev method, etc. In this work the multigroup 
NEM is solved within the framework of the global/local acceleration method, which was 
discussed in the previous sections. Even though one-dimesional sweeping works well with the 
global/local iteration for 2-group problems, it turns out to have poor convergence for multigroup 
SP3 problems.  This is the primary reason why the simultaneous matrix solution method is 
proposed as discussed in Section 5. Determining all directional currents, higher cofficients, and 
average flux of a node at a time makes it possibe to obtain a stable correction factors.   

 
As explained in the SP3 solution with the FMFD method, the 2-group diffusion equation 

is solved with CMFD in the global calculation whereas the multigroup SP3 equation is solved 
with NEM in the local calculation.  The 2nd moments as a boundary condition for the local 
problem are determined from the previous iteration step. The restriction and prolongation of 
group information between 2-group CMFD and multigroup NEM are performed in the same way 
as explained in Section 6.  The 1313×  matrix equation shown in Eq. (5.16) are solved using LU 
factorization. 

 
The multigroup NEM for the SP3 equation has been implemented into the PARCS code 

and tested using the modified KAIST benchmark problem as shown in Figs. 8.23 and 8.24.  Figs. 
8.25 and 8.26 show two-group moment shapes of FMFD SP3 and nodal SP3 along the top edge 
line of the core for the MOX benchmark, and Figs. 8.27 and 8.28 show the moments for the 
UOX benchmark.  The 0th moment comparisons show that the nodal SP3 has good agreement 
with FMFD SP3 at interfaces between different types of fuel assemblies, which enables the nodal 
solution to have good approximations of the eigenvalue and power distribution. However, the 2nd 
moment results show that even though the trend in moment distribution is correct, the accuracy 
of the slope of the moment is not as good as the 0th moment at interfaces.  This implies that the 
2nd moments might not be sufficiently well approximated with a second-order polynomial, and 
future work will be to investigate the use of the exponential functions to estimate the steep 
change of the 2nd moment at interfaces. Nevertheless, the nodal SP3 results have very good 
accuracy because the influence of 2nd moments on scalar fluxes and currents is relatively small. 
Figs. 8.29 through 8.34 illustrate the comparisons of moment distributions from multigroup SP3 
calculations. 
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Tables 8.15 and 8.16 show the comparison of eigenvalue and computing time between 
FMFD and nodal methods in the diffusion and SP3 equations. As many researchers have shown, 
the NEM for the diffusion equation has very good agreement with the FMFD solutions. The SP3 
NEM also has good agreement with FMFD SP3 results.  

 
As expected, there is large reduction of about a factor of more than 100 in the calculation 

times in two-group. The reason why the CPU reduction is much smaller in 7-group is because 
the method of solving the local problems is changed in the 7-group cases.  While one-
dimensional sweeping is used in 2-group, the LU factorization to solve the 1313×  matrix shown 
in Eq. (5.16) is used in the 7-group cases. If the 2-group solver is changed to the LU factorization 
for the 13x13 matrix, the CPU difference will be smaller.  As future work, the LU factorization 
will be changed to more efficient numerical methods and the computing time will then be 
reduced. 

 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.23  MOX Core Solved with the Multigroup SP3 NEM 
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Figure 8.24  UOX Core Solved with the Multigroup SP3 NEM 
 
 

 
 
Figure 8.25 Fast Group Moments along the Top Boundary Line in the UOX Benchmark 
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Figure 8.26  Thermal Group Moments along the Top Boundary Line in the UOX Benchmark 
 

 
Figure 8.27  Fast Group Moments in 2-Group along the Top Boundary Line in the MOX 
Benchmark 
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Figure 8.28  Thermal Group Moments in 2-Group along the Top Boundary Line in the MOX 
Benchmark 
 

 
 
Figure 8.29  Group-1 Moments of 7-Group Solution along the Top Boundary Line in the UOX 
Benchmark 
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Figure 8.30  Group-4 Moments of 7-Group Solution along the Top Boundary Line in the UOX 
Benchmark 
 
 

  
 
Figure 8.31  Group-7 Moments of 7-Group Solution along the Top Boundary Line in the UOX 
Benchmark 
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Figure 8.32  Group-1 Moments of 7-Group Solution along the Top Boundary Line in the MOX 
Benchmark 
 
 

 
 
Figure 8.33  Group-4 Moments of 7-Group Solution along the Top Boundary Line in the MOX 
Benchmark 
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Figure 8.34  Group-7 Moments of 7-Group Solution along the Top Boundary Line in the MOX 
Benchmark 

 
Table 8.15  Comparison of Eigenvalue and Computation Time between FMFD and Nodal 
SP3 Methods for the MOX Benchmark Problem 
 

Grp Item Diffusion Delta-K RMS SP3 Delta-K RMS 

  FMFD NODAL (Ratio) (Max) FMFD NODAL (Ratio) (Max) 

 k-eff 0.97579 0.97581 2 0.97795 0.97794 -1 

2 G/L 
Iter 

18 5 - 19 8 - 

 CPU(s) 42.1 0.2 (211) 

0.06 

(0.10) 

67.0 0.5 (134) 

0.05 

(0.08) 

 k-eff 0.98466 0.98468 2 0.98778 0.98781 3 

7 G/L 
Iter 

16 17 - 17 16 - 

 CPU(s) 145.6 5.6 (26) 

0.09 

(0.19) 

390.7 10.6 (37) 

0.11 

(0.24) 
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1) Calculation mesh:  FMFD – 5151× /pin,  NODAL – 33× /FA 
2) Note that since 2-group cross sections are not generated in consistence with 7-group cross 

sections, their results in eigenvalues and powers are not comparable each other. 
3)  No upscattering cross sections are considered in 7-group calculations 
4)  SUN Ultra2, 450 MHz 

 
 
 
Table 8.16  Comparison of Eigenvalue and Computation Time between FMFD and Nodal 
SP3 Methods for the UOX Benchmark Problem 
 

Gro
up 

Item        Diffusion Delta-K RMS 
Error of 
Power 

SP3 Delta-K  RMS 
Error of 
Power 

  FMFD NODAL (Ratio) (Max) FMFD NODAL (Ratio) (Max) 

 k-eff 0.93819 0.93820 1 0.93989 0.93988 -1 

2 G/L 
Iter 

18 6 - 18 8 - 

 CPU(s) 37.8 0.3 (126)  

0.07 

(0.14) 

62.9 0.5 (126) 

0.04 

(0.09) 

 k-eff 0.95619 0.95619 0 0.95847 0.95852 5 

7 G/L 
Iter 

21 22 - 23 23 - 

 CPU(s) 208.0 8.1 (26) 

0.07 

(0.14) 

392.6 19.5 (20) 

0.08 

(0.14) 

 
1) Calculation mesh:  FMFD – 5151× /pin,  NODAL – 33× /FA 
2) Note that since 2-group cross sections are not generated in consistence with 7-group cross 

sections, their results in eigenvalues and powers are not comparable each other. 
3)  No upscattering cross sections are considered in 7-group calculations 
4)  SUN Ultra2, 450 MHz 
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8.5 Performance of the Adaptive Method 

Since the multigroup pin-by-pin SP3 calculation with the FMFD method still has large 
computation time compared to the conventional approach using the advanced nodal method with 
2-group FA homogenized cross sections, the adaptive method is experimented here, in which the 
different methods are used in the same core calculation. For example, the multigroup pin-by-pin 
SP3 method is used in the regions in need, and nodal methods, which are computationally 
efficient, are used in the other regions. This adaptive method was verified against the modified 
KAIST benchmark problem with the choise of methods shown in Figs. 8.35 and 8.36.   

As shown in Fig. 8.35, the SP3 method is mainly assigned to MOX regions and interface 
regions between fuel assemblies and reflector where the transport effect is expected to be 
dominant.  Since the total computation time is so small, it is not easy to make conclusion. 
According to the results shown in Table 8.17, however, Case-3 is a kind of optimum choice in 
terms of accuracy and computation time as can be expected, which SP3 is assigned to MOX FAs 
and reflector nodes adjacent to fuel assemblies.  Fig. 8.36 and Table 8.18 show performance 
depending upon the choice of methods with pin-by-pin FMFD and nodal methods in which only 
2 group cross sections are used. Cases 2 through 6 list a spectrum of change of accuracy and 
computation time. Based upon the results, Case 5 is most desirable in terms of both accuracy and 
computatin time.  

It will be interesting to investigate how to optimize the choice of methods. Furthermore, 
to show significant performance improvement of the adaptive method, the multigroup and pin-
by-pin SP3 methods need to be involved. It remains as one of possible future extensions of this 
report. 
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Figure 8.35  Assignment of Solvers in the Adaptive Method with Nodal Methods 
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Table 8.17 Comparison of Eigenvalue and Power with Choice of Different Methods in 2-
Group FA-Homogeneous Problem (Use of Nodal Methods Only) 
 

FM
FD 

NODAL C
AS
E 

SP3 SP3 Dif
f 

K-eff 

(Delta-K, 
pcm) 

% Error of 
Power              
RMS (Max) 

CPU 

(sec) 

Re
f 

25 0 0 0.97795 - 72.2 

1 0 25 0 (    -1) 0.04 (0.09) 3.1 

2 0 14 11 (  -27) 0.38 (0.82) 2.8 

3 0 9 16 (  -37) 0.69 (0.84) 2.5 

4 0 8 17 (  -72) 0.48 (0.85) 2.5 

5 0 3 22 (  -87) 1.03 (1.49) 2.4 

6 0 0 25 (-214) 1.19 (1.99) 2.0 

 
* FMFD = 51x51/pin, NODAL = 3x3/FA 
* criterion = 610−  
* SUN Ultra2, 450 MHz 
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Figure 8.36  Assignment of Solvers in the Adaptive Method with Nodal and FMFD Methods 
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CASE 7 =  CASE 6 in Fig. 8.35 
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Table 8.18 Comparison of Eigenvalue and Power with Choice of Different Methods in 2-Group FA-

Heterogeneous Problem (Use of Nodal and FMFD Methods) 
   

FM
FD 

NODAL CA
SE 

SP3 SP3 Dif
f 

K-eff 

(Delta-K, 
pcm) 

% Error of 
Power              
RMS (Max) 

CPU 

(sec) 

Re
f 

25 0 0 0.96440 - 44.7 

1 18 7 0 (     7) 0.06 (0.14) 33.6 

2 18 0 7 (     6) 0.06 (0.14) 32.3 

3 14 4 7 (   88) 0.95 (1.90) 26.9 

4 11 7 7 (   43) 0.85 (1.57) 22.4 

5 7 6 12 (    -3) 0.22 (0.41) 14.4 

6 0 25 0 (   83) 0.83 (1.64) 3.4 

7 0 0 25 (-101) 1.03 (2.59) 2.0 

 
* FMFD = 3x3/pin, NODAL = 3x3/FA 
* criterion = 610−  
* SUN Ultra2, 450 MHz 
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9. SUMMARY AND CONCLUSIONS 
 

The sources of error involved in the solution of the Boltzmann transport equation, such as 
spatial discretization, spatial homogenization, group collapsing, and transport, were qualitatively 
and quantitatively evaluated for the solution of core neutronics problems in LWRs. Basically, all 
errors occur due to differences in spectrum conditions between group constants generated in 
lattice calculation and used in core calculation. For example, if all group constants are generated 
under the actual spectrum conditions, very accurate solutions can be obtained. However, it is in 
fact impossible to know the actual spectrum conditions when generating group constants. Based 
upon test calculations described in Section 2, it was found that heterogeneous multigroup 
transport calculations are necessary to accurately predict eigenvalue and fuel pin powers for 
tightly coupled MOX loaded cores. Multigroup transport calculations with pin-by-pin 
configurations are relatively less sensitive to the spectrum condition in which group constants are 
provided. Since the multigroup transport equation for pin-by-pin core configurations requires a 
large amount of computation time, it is formulated within a framework of the multi-level 
acceleration method, which enhances the computational efficiency for both eigenvalue and fixed 
source problems.  

 
The local spatial calculation is performed using the fine-mesh finite difference (FMFD) 

method instead of the traditional nodal method since the heterogeneity inside fuel assemblies can 
be treated directly. In addition, the so-called “one-node two-factor” scheme (one-node local 
calculation resulting in two correction factors at each side of a node) in the global/local multi-
level acceleration is adopted instead of the “two-node one-factor” scheme (two adjacent local 
node calculations resulting in one correction factor at the interface). The “one-node two-factor” 
scheme has advantages in terms of computational efficiency and in terms of treatment of 
heterogeneous configurations. The simplified P3 approximation (SP3) is used as a transport 
solver because of its favorable characteristics in terms of accuracy and computing time. The 
heterogeneous configuration with pin-homogenized cross sections is also adopted to minimize 
the spatial homogenization error and especially to improve estimates of pin powers. In order to 
reduce the computation time and enhance the convergence rate, the two-group diffusion 
calculation with homogenized cross sections is maintained at the global level while the 
multigroup pin-by-pin SP3 calculation is performed only at the local level. In addition, adaptive 
methods are implemented, which enable the use of solvers with different levels of complexity 
within the same core calculation. For the adaptive method, the multigroup nodal expansion 
method (NEM) for the SP3 approximation has been developed and investigated.  In the efficient 
formulation of NEM for SP3, the definition of partial moments is modified appropriately. 

 
The methodologies developed in this report have been verified for steady-state and 

transient calculations using the OECD L336 benchmark and the modified KAIST benchmark 
problems, both of which included MOX fuels and were solved using 7-group homogenized cell 
cross sections. The results show that the multi-level acceleration method for the SP3 
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approximation is successful for steady-state conditions in terms of both accuracy and 
computation time. It was also observed that the global/local multi-level scheme for the 
multigroup SP3 formulation is more efficient for the transient fixed source problem since 
correction factors for the CMFD calculation can be reused during mild transient periods without 
being explicitly recalculated.  The multigroup SP3 NEM, which was used in the adaptive method, 
has very good agreement in 2-group and 7-group test problems. The adaptive method also 
showed expected performance in terms of accuracy and computation time depending upon the 
choice of methods. 

 
The principal original contributions of this work are the formulation of pin-by-pin 

multigroup SP3 approximation within a framework of the multi-level global/local acceleration 
approach for the steady-state and transient conditions, the development of multigroup NEM for 
SP3, and the development of the adaptive techniques for the methods proposed here. In the 
future, the multigroup pin-by-pin SP3 method should be verified with more sophisticated 
reference calculations, such as full core calculations with the Lattice codes. The cell-
homogenization factors, such as the superhomogenization (SPH) factors, will then need to be 
considered. In addition, the performance of the multi-level acceleration method needs to be 
compared more systematically with other advanced acceleration techniques.  

 
As for transient calculations, it would be also worthwhile to compare kinetics parameters 

determined using the conventional methods and those obtained from the pin-by-pin multigroup 
SP3 calculations, and to analyze their effects on transient behaviors in terms of power peak and 
energy deposition. The multigroup pin-by-pin SP3 should be extended to three dimensions for 
more realistic simulation of rod ejection transients.  In order to save computation time in three-
dimensional calculations, nodal methods can be used in the z-direction, since compositions are 
normally homogeneous in the z-direction. The transverse leakage shapes for the pin-by-pin 
configuration then need to be appropriately established, which would be different from the 
conventional approximations of the transverse leakage shapes for the FA-homogeneous 
configuration.  As for the nodal expansion method for SP3, the polynomial approximation of the 
second moments and their transverse leakage shapes need to be improved for better accuracy 
with coarser meshes.  Nodal methods for diffusion and SP3 approximations also need to be 
investigated together with the equivalence theory, since they will have different discontinuity 
factors to preserve reference currents at assembly interfaces. Even though the adaptive method 
was tested with the “one-node two-factor” scheme in this work, it will be interesting to perform 
the adaptive calculations with the “two-node one-factor” scheme since multigroup or transport 
effects are actually dominant at interfaces between two different assemblies or interfaces 
between fuel assemblies and reflector.   The choice of appropriate methods in the adaptive 
method will have to be optimized based upon systematic error analysis in association with the 
specific core. 
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PART II:  ADAPTIVE METHODS FOR THE VARIATIONAL NODAL METHOD 

 The variational nodal method has found substantial use in both diffusion theory and higher-order 
spherical harmonics approximations.  It has been available in both two- and three-dimensional 
Cartesian and hexagonal geometries. However, the need sometimes arises for two-dimensional 
R-Z geometry calculations, particularly for scoping studies.  The following describes the 
theoretical basis for the method implemented in the ANL code VARIANT. 

 
1.0  Theory 
 
 The variational nodal method is a primal hybrid finite element representation of the even-
parity form of the transport equation.  In the hybrid formulation, the problem domain V  is 
decomposed into subdomains νV  (also called elements or nodes): 
 

ν
ν

VV ∑= . (1) 

 
Within each node, the even-parity form of the transport equation is solved in space ( r ) and angle 
( Ω̂): 
 
 

)()ˆ,()ˆ,()ˆ,(ˆˆ 1 rsrdrr s +Ω′Ω=Ω+Ω∇⋅Ω∇⋅Ω− +++− ∫ ψσψσψσ , νVr ∈  (2) 
 
where +ψ  is the even parity flux component, σ  and sσ  the total and scattering cross 
sections and s the group source.  The odd-parity flux −ψ , which is related to +ψ  by 
 
 

0)ˆ,()ˆ,(ˆ =Ω+Ω∇⋅Ω −+ rr σψψ , νΓ∈r  (3) 
 
is defined only along the node interface Γv as a Lagrange multiplier. 
 

The functional for the variational nodal method is given as a superposition of nodal 
contributions: 
 ∑ −+−+ =

ν
ν ψψψψ ],[],[ FF , (4) 

where 
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 { } −+++−−+ ⋅ΩΩΓ+−−+∇⋅ΩΩ= ∫∫∫∫ ψψφφσσψψσψψ
νν

ν nddsddVF s ˆˆ22])ˆ([],[ 2221 , (5)  

and φ is the scalar flux.  This functional must be stationary with respect to arbitrary variations 
+ψ~  and −ψ~  about the true solutions +ψ and −ψ .  Thus, we make the replacements 

+++ +→ ψδψψ ~  and −−− +→ ψεψψ ~  where δ  and ε are small positive constants, and require 
the linear terms in δ  and ε  to vanish.  Setting the linear term in δ to zero yields the weak form 
of Eq. (2): 
 
 0~ˆˆ)](~)ˆ)(~ˆ([ 1 =⋅ΩΩΓ+−−+∇⋅Ω∇⋅ΩΩ −+++++− ∫∫∫∫ ψψφσσψψψψσ

νν

nddsddV s , (6) 

 
and applying the divergence theorem yields 
 
 0)ˆ(~ˆˆ)ˆˆ(~ 11 =∇⋅Ω+⋅ΩΩΓ+−−+∇⋅Ω∇⋅Ω−Ω +−−+++−+ ∫∫∫∫ ψσψψφσσψψσψ

νν

nddsddV s . (7) 

 
Clearly, Eq. (2) must be satisfied if the volume integral is to vanish for arbitrary +ψ~ , and Eq. (3) 
must be met at the interface for the surface integral to vanish.  The continuity conditions across 
nodal interfaces may be stated as follows.  Since the Lagrange multiplier −ψ  and its variation −ψ~  
are uniquely defined at the interface, two conditions are imposed. First, the surface integral in Eq. 
(7) imposes continuity on +− ∇⋅Ω ψσ ˆ1 .  Second, requiring the linear term in ε  to vanish yields for 
each nodal interface, say between nodes νV  and ν′V , a condition of the form  
 
 0 )(~ˆˆ    =′−⋅ΩΩΓ ++−∫∫ ψψψ

ν

ndd , (8) 

 
since νν ′−= nn ˆˆ .  Thus +ψ  must be continuous across the interface. 
 
2.0  Cylindrical Coordinates (r, z) 
 

The R-Z cylindrical coordinates system is shown in Figure 1, together with an angular-
direction coordinates system used to define the particle direction Ω̂ .  In this system, a spatial 
point is defined by its (r, z) coordinate and 
 zr zr ˆˆˆˆ Ω+ωΩ+Ω=Ω ω , (9) 
where 
 ωµ−=Ω cos)1( 2/12

r ,  
 ωµ−=Ωω sin)1( 2/12 , (10) 
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 µ=Ωz   
 
with θ=µ cos .  The ∇⋅Ω̂  may be determined by [O’Dell, 1987], [Lewis, 1984]. 
 

 
zrr zr ∂
∂

Ω+
ω∂
∂

Ω−
∂
∂

Ω=∇⋅Ω ω
1ˆ , (11) 

 
and the incremental angle is defined as 1(4 )d d dπ µ ω−Ω= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.0 Discretization 
 

We begin by considering a rectangular node in r, z bounded on left and right by l rr r r≤ ≤  
and on bottom and top by b tz z z≤ ≤  as shown in Figure 2.  We expand the even-parity flux 
coefficients within the node as 
 ν

+ ⊗Ω=Ω ξψ ),()ˆ()ˆ,,( zrzr TT fg . ,l r b tr r r z z z≤ ≤ ≤ ≤  (12) 
 
Here ⊗ denotes the Kronecker product, and )ˆ(Ωg  is vector of even-order spherical harmonics 
with M terms obey the orthonormal condition 

θ 

ω 

ẑ

r̂

ω̂  

Ω̂

µ 

Fig. 1  Cylindrical Coordinates 
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 M

Td Igg =ΩΩΩ∫ )ˆ()ˆ( . (13) 
 
The spatial trial functions ),( zrf  are complete polynomials.  They are Legendre polynomials in z 
and also constructed to be orthogonal in r, so that 
 

 ∫ =
v

I
T

v

zrzrdV
V

Iff ),(),(1 , (14) 

 
In R-Z geometry, 2 22 ( )( )r l t bV r r z zν π= − −  and 
 
 ( ) 2 ( )r t

l b

r z

r z
dV drr dz

ν

π⋅ = ⋅∫ ∫ ∫  (15) 

 
The vector ξv in Eq, (12) contains the unknown coefficients. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vV  

dr 

Fig. 2 Element vV  with interfaces vΓ  
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Along the node interfaces, we make the expansions 
 
 ')()ˆ()ˆ,( γγγ χψ zhr TT ⊗Ω=Ω− k , ,r lr∈Γ Γ   
and   (16) 
 ')()ˆ()ˆ,( γγγ χψ zhr TT ⊗Ω=Ω− k , ,t br∈Γ Γ  
 
where ˆ( )γ Ωk  is vector of odd-order spherical harmonics in which the angular coordinates have 

been rotated such that the polar angle, ˆ n̂γµ =Ω⋅ , is taken with respect to the surface normal. 
They obey the orthonormal conditions 
 ∫ =ΩΩΩ N

Td Ikk )ˆ()ˆ( γγ   
and  , , ,r t l bγ =  (17) 
 ∫ =ΩΩΩ 0kg )ˆ()ˆ( Td γ   
 
The spatial trial functions γh are set sets of orthogonal polynomials defined along the interfaces. 
 

The source and the scalar flux may be approximated as 
 
 ),( zrsws =  (18) 
and                                                                                           ,l r b tr r r z z z≤ ≤ ≤ ≤        
 ( ) ( , )T Tr r z νφ = ⊗w f ξ            (19) 
with [ ] 1mm δ=w . 
 

The nodal volumes corresponding to the response matrices will be toroids with 
rectangular cross sections in the r, z plane.  The central nodes, however, are cylinders with three 
surfaces.  The centerline symmetry condition that 
 
 ˆlim ( , ) ( , )

r o
r zψ ψ θ± ±

→
Ω =  (20) 

 
requires that the central nodes contain two sets of trial functions for ψ+ and for ψ− when spherical 
harmonics are employed.  Only even functions in r are included in the spatial trial function sets 
for the 0lY  terms, which are independent of ω , causing the radial derivative vanishes at r = 0; 
only odd functions of r are included for the ω  dependent lmY , 0m≠  terms, causing them to 
vanish at the origin.  With these stipulations, the singularities that would otherwise be 
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encountered in applying the operator of Eq. (11) are removed.  Note, also, that unlike Cartesian 
geometry, each response matrix in the radial direction is unique, even though the cross sections 
and the widths and heights of the nodes are same. 
 
4.0 Response Matrix Formulation 
 

Response matrices are obtained from the foregoing space-angle trial functions by inserting 
them into Eqs. (4) and (5).  This reduces the functional to the algebraic form: 

 
 ∑=

ν
ννν ],[ χζFF  (21) 

and 
 ννννννννννν χζζζζχζ MsA TTTF 22],[ +−= . (22) 
 
The matrix AV is given as 
 
 ( )( ) ( ) I

T
sM

T
kkkk VdV IwwIffHA ννν′

ν

−
νν ⊗σ−σ+∇∇⊗σ= ∫'

1 , (23) 

 
where repeated subscripts k or k' indicates summation with zrkk ,,', ω= , and 
 
 /r r∇ =∂ ∂f f ,  
 /rω∇ =f f , (24) 
 /z z∇ =∂ ∂f f .  
 
The incremental spatial volume is given by rdrdzdV π= 2 . 
 

Each of the elements of AV is given in terms of integrals over known spatial or angular 
trial functions: 

 ' ' '
T

kk k k k kd= ΩΩ Ω∫H g g , (25) 
where 
 ,r z =g g , (26) 
 /ω ω= −∂ ∂g g .  
The source is 
 fss ⊗= ∫

ν
ν dV . (27) 

 
 The surface coefficients are partitioned according to the four interfaces: 
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r

t

l

b

ν

′⎡ ⎤
⎢ ⎥′⎢ ⎥=
⎢ ⎥′
⎢ ⎥
′⎢ ⎥⎣ ⎦

χ
χ

χ
χ
χ

 (28) 

The Mv matrix is then given as 
 [ ], , ,r t l bν ′ ′ ′ ′=M M M M M , (29) 
 
 γ γ γ′ = ⊗M E D , , , ,r t l bγ =                     (30) 
where 
 )ˆ()ˆ(ˆˆ ΩΩ⋅ΩΩ= ∫ Tnd γγγ kgE , (31) 
and 
 2 ( , ) ( )t

b

z T

z
r dz r z zγ γ γ γπ= ∫D f h , ,r lγ =  

  (32) 
 2 ( , ) ( )r

l

r T

r
drr r z rγ γ γπ= ∫D f h . ,t bγ =  

 
We may now obtain a set of algebraic equations by requiring the discretized functional to 

be stationary.  To examine arbitrary variations about the solutions, we make the replacements 
ννν δζζζ

~
+→  and ννν δχχχ ~+→  in Eqs. (21) and (22).  Requiring the linear term in δ  to 

vanish yields 
 ννννν sMA =+ χζ . (33) 
 
Requiring the linear term in ε  to vanish imposes continuity across nodal interfaces of the 
moments defined by 
 ννν ζψ TM= . (34) 
We may solve Eq. (33) for νζ , 

 νννννν χζ MAsA 11 −− −= , (35) 
 
and combine the result with Eq. (34) to obtain 
 
 νννννννν χψ MAMsAM 11 −− −= TT . (36) 
 
At this point, we have written the even-parity flux moments νψ  at the node interface in terms of 
the source and the odd-parity interface moments νχ , while imposing the continuity of both of 
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these moments between neighboring nodes.  The final step is to transform variables such that Eq. 
(36) may be written in terms of a response matrix.  Introducing the partial current-like variables 
 
 ννν χψ 2

1
4
1 ±=±j  (37) 

 
into Eq. (39) and (40) then yields response matrix equation for each node: 
 
 ννννν sjRj Β+= −+ , (38) 
 
where ( ) ( )IMAMIMAMR −+= −−−

ννννννν
1

2
111

2
1 TT  and ( ) 1

2
111

2
1 −−− += νννννν AMIMAMB TT . 

 
 

5.0  Results I:    VARIANT Steady-State 

The R-Z formalism is being implemented as a modification of the multigroup VARIANT 
code at Argonne National Laboratory, for both diffusion theory and higher-order spherical 
harmonics calculations. Both fixed source and eigenvalue options are included.  To test the fixed 
source capability the well-known Iron-water problem [Gelbard, 1972] has been recast from X-Y 
to R-Z geometry, with all dimensions and cross sections remaining the same.  Figures 3 and 4 
show P1 and P3 results close to the vacuum boundaries.  Fine meshes with r∆  = z∆  = 1 cm, and a 
coarse mesh, with r∆  = z∆  = 3 cm, are presented.  For comparison, fine mesh x-y calculations 
are also included.  The substantial transport effects are, as expected, present in R-Z as well as X-Y 
geometry. 
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To examine spatial truncation errors, we utilize two-group eigenvalue problems. Table 1 
provides P1 eigenvalue results using two group MOX fuel and water cross sections. The core is 
40 cm in radius and 80 cm in height surrounded by radial and axial reflectors 20 cm thick.  A 
reflected boundary condition is used to reduce the modeling to the upper half of the core.  The 
eigenvalue is tabulated vs. both h and p refinement. Aside from the coarsest nodes, the accuracy 
increases faster with p refinement (i.e. increasing the polynomial order in the interface 
approximation) than in reducing the mesh size in h refinement.  Moreover, both CPU time and 
memory requirements increase substantially with mesh size reduction, but much less so with 
increased polynomial order. 

Fig. 3  Flux distribution close to the vacuum boundary on the top  
for the Iron-water problem 
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              Interface   
       &r z∆ ∆   Flat Linear Quadratic 

10cm 0.95450 
(1.21×10-1%) 

0.95349 
(1.47×10-2%)  

0.95349 
(1.47×10-2%) 

4cm 0.95351 
(1.68×10-2%) 

0.95335 
(0.00%) 

0.95335 
(0.00%) 

2cm 0.95339 
(3.15×10-3%) 

0.95335 
(0.00%) 

0.95335 
(0.00%) 

1cm 0.95336 
(1.05×10-3%) 

0.95335 
(0.00%) 

0.95335 
(0.00%) 

 
Table 1 Comparison of h-refinement and p-refinement 
for Two-Region Eigenvalue Problem 
 
 

 
 

Fig. 4  Flux distribution close to the vacuum boundary on the right 
for the Iron-water problem 



Final  Report  Date 31 August 2005 
DE-FG07-01ID14106 

 86

 
6.0   Results II:  VARIANT and PARCS TRANSIENT  
 
As shown in Fig. 5, a three-dimensional 3x3 fuel assembly mini core was constructed using data 
from the OECD/NEA and U.S. NRC PWR MOX/UO2 core transient benchmark [Kozlowski, 
2003].  The mini-core consists of 4 MOX and 5 UOX assemblies, and 22 planes including 
top/bottom reflectors.  The homogenized 2-/4-/8-group cross sections are provided for assembly-
wise and/or pin-wise meshes in a PMAXS format.   A superprompt critical reactivity insertion is 
simulated by a control rod which is inserted in the center UOX fuel assembly and fully ejected 
within 0.1 seconds. 
 

 
 

Fig. 5  3x3 Fuel Assembly Mini-Core. 
 
State steady calculations are summarized in Table 2.  The ANL code VARIANT [Palmiotti, 
1994] is used as a reference solution.  The transient power is shown in Fig. 6 which shows 
consistency between the higher order PARCS and VARIANT results. 
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Fig. 6   Rod Ejection Transient 
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