

**Decision Analysis Science Modeling for Application and
Fielding Selection Applied to Equipment Dismantlement
Technologies**

**Topical Report
January 1998**

RECEIVED

OCT 26 1998

OSTI

**By:
M. A. Ebadian**

Work Performed Under Contract No.: DE-FG21-95EW55094

For
U.S. Department of Energy
Office of Fossil Energy
Federal Energy Technology Center
P.O. Box 880
Morgantown, West Virginia 26507-0880

By
Florida International University
Hemispheric Center for Environmental Technology (HCET)
Center for Engineering & Applied Sciences
10555 West Flagler Street
EAS-2100
Miami, Florida 33174

Disclaimer

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

ACKNOWLEDGMENTS

This report is based on work supported by the U. S. Department of Energy, Office of Environmental Management, Office of Science and Technology's Deactivation and Decommissioning Focus Area, Morgantown Energy Technology Center. The Principal Investigator, FIU Collaborator, and students at Florida International University would like to thank Dr. Paul Hart for providing us the opportunity to work on this project.

TABLE OF CONTENTS

ACRONYMS	iv
NOMENCLATURE	iv
EXECUTIVE SUMMARY	v
1. INTRODUCTION	1
1.1 PURPOSE OF THIS INVESTIGATION	1
2. PROJECT DESCRIPTION.....	2
3. RESULTS	3
3.1 SELECTING AND PREPARING SURROGATES.....	3
3.2 COMPARING THE END POINTS ACHIEVED TO THE ASSESSMENT OBJECTIVES.....	4
3.3 DETERMINING THE TYPES OF TECHNOLOGIES TO BE TESTED	4
3.4 TEST LOCATION AND UTILITY PARAMETERS.....	6
3.4.1 Test Equipment, Personnel, and Materials.....	6
3.5 DATA REQUIREMENTS.....	6
3.6 MULTIMEDIA INFORMATION SYSTEM.....	8
4. ACTIVITIES PLANNED FOR FY98	9
5. CONCLUSIONS.....	10
6. REFERENCES	11
APPENDIX A	

ACRONYMS

D&D	Decontamination and Decommissioning
DOE	U.S. Department of Energy
DOE-EM	U.S. Department of Energy-Environmental Management
DOE-OST	U.S. Department of Energy-Office of Science and Technology
FIU	Florida International University
FIU-HCET	Florida International University-Hemispheric Center for Environmental Technology
FY97	fiscal year 1997
FY98	fiscal year 1998
HCET	Hemispheric Center for Environmental Technology
INEL	Idaho National Engineering Laboratory
IUOE	International Union of Operating Engineers
MODM	multi-objective decision making
ORNL	Oak Ridge National Laboratory
PC	personal computer
RAPIC	Remedial Action Program Information Center

NOMENCLATURE

psi	pound per square inch
ft	foot
V	volt
amp	ampere

EXECUTIVE SUMMARY

The purpose of this 2-year investigation is to field test innovative as well as commercially available nuclear and non-nuclear technologies for equipment dismantlement, thereby ensuring that the safest and most cost-effective options are developed and subsequently used during the decontamination and decommissioning (D&D) of U.S. Department of Energy (DOE) sites. Comprehensive and comparable data will be collected in the areas of health and safety, operations, and secondary waste management. The technologies tested will include innovative as well as commercially available nuclear and non-nuclear technologies that have the potential to meet the environmental restoration objectives.

This report summarizes the activities performed during fiscal year 1997 (FY97) and describes the planned activities for fiscal year 1998 (FY98). Accomplishments for FY97 include the following:

- Design and construction of the equipment dismantlement technologies test site at the Hemispheric Center for Environmental Technology
- Identification of over 100 equipment dismantlement technologies
- Pre-selection of dismantlement technologies
- Identification of surrogate material for technology demonstration

It is expected that a total of seven technologies will be tested during FY98. After the completion and compilation of the technology demonstration results, a decision will be made at a later stage whether to evaluate and test additional technologies and whether to develop interactive computer software during fiscal year 1999. The decision support model will allow site-specific parameters and technology performance data to be considered when determining the best option given site-specific conditions.

1.0 INTRODUCTION

The dismantlement of radioactively contaminated process equipment is a major concern during the D&D process. As buildings undergo the D&D process, metallic equipment contaminated with radionuclides such as uranium and plutonium must be dismantled before final disposal. The primary objective for equipment dismantlement is to reduce the potential for personnel and environmental exposure to contaminants during the decommissioning of the nuclear facility.

The selection of the appropriate technologies to meet the dismantlement objectives for a given site is a difficult process in the absence of comprehensive and comparable data. Choosing the wrong technology could result in increased exposure of personnel to contaminants and an increase in D&D project costs.

Innovative technologies are being developed with the goal of providing safer and more cost-effective alternatives that generate less secondary waste, thereby decreasing the operating costs for dismantlement. During the development and implementation process, performance indicators for the success of these technologies must be reviewed to ensure that these aims are being met. This project provides a mechanism for the assessment of innovative and commercially available nuclear and non-nuclear technologies for equipment dismantlement.

1.1 PURPOSE OF THIS INVESTIGATION

The purpose of this investigation is to field test innovative and commercially available nuclear and non-nuclear technologies for equipment dismantlement. Evaluating the selected technologies under standard non-nuclear conditions will ensure that the safest and most cost-effective options are being developed for the D&D of the DOE's environmental restoration sites.

Assessments of selected technologies will be conducted under the supervision of HCET and the International Union of Operating Engineers (IUOE) on the campus of Florida International University (FIU) in Miami, Florida. Comprehensive and comparable data will be collected in the areas of health and safety, operations, and waste management. The technologies tested will include those funded by the U.S. Department of Energy-Environmental Management (DOE-EM) as well as commercial nuclear and non-nuclear technologies that have the potential to meet the decontamination objectives of reducing personnel and environmental exposure or reducing the contamination levels to those for unrestricted use.

The test conditions developed for the assessment of these technologies are consistent with baseline testing performed under the contract with DOE. The data gathered as part of the testing of commercially accepted technologies will be used to compare the performance of the innovative technologies. This will allow a direct comparison of data related to production rates, health and safety issues, waste generation, and other performance factors.

2.0 PROJECT DESCRIPTION

The project goals for this project are:

- to evaluate innovative as well as commercially available nuclear and non-nuclear technologies.
- to develop a multimedia information system for dismantlement technologies.

To facilitate the completion of these goals, the following tasks have been established:

- Develop a test area to evaluate innovative as well as commercially available nuclear and non-nuclear technologies under conditions found at DOE Complex facilities (scheduled for completion in February 1998).
- Determine technology assessment requirements.
- Develop a list of potential equipment dismantlement technologies to be evaluated.
- Develop and maintain a multimedia information system for equipment dismantlement technologies (FY98).
- Perform field assessments of seven innovative and commercially durable nuclear and non-nuclear technologies during FY98.
- Document performance results of technologies tested (FY98).
- Develop interactive computer software that uses the collected performance data and site-specific data to facilitate the decision-making process in selecting a decontamination technology (FY99).

3.0 RESULTS

The required preparatory work to help complete the field testing of innovative and commercially available nuclear and non-nuclear technologies was completed during FY97. These activities included the following:

- Selecting and preparing surrogates
- Comparing the end point achieved to the assessment objectives
- Determining the types of technologies to be tested
- Establishing a test location and utility parameters
- Establishing data requirements.

3.1 SELECTING AND PREPARING SURROGATES

A preliminary review of DOE sites indicated a wide variability in the types of equipment used. This variability made it difficult to choose the proper design for the construction of the test areas. To develop the test site, HCET personnel's experience and consultations with DOE professionals were used during the surrogate selection and test site design. Photo albums from the Fernald and Hanford sites were also reviewed. To provide uniformity in testing, schedule 40 steel was selected for the 4" x 6" diameter pipes and A-36 grade steel was selected for the I-beams to construct the items in the test sections.

The test site was designed in-house and was approved by Shrum and Ali Associates, who also provided architectural drawings for the construction of the test site. VRV contractor was hired for the construction of the test site. The test site includes the following equipment:

1. Railing
2. Tank
3. Large equipment (i.e. glove boxes)
4. Large overhanging I-beam (and support) (W 16 x 31)
5. Electrical conduit
6. 12-ft cast-iron drainage pipe
7. Pipe hanger
8. 6-ft pipe (schedule 40)
9. 4-ft pipe (schedule 40)
10. 6-ft I-beam (W 6 x 16)
11. Gate valve
12. Barricade

The schematic layout of the test site is shown in Figure 1, and the actual test site is presented in Figure 2.

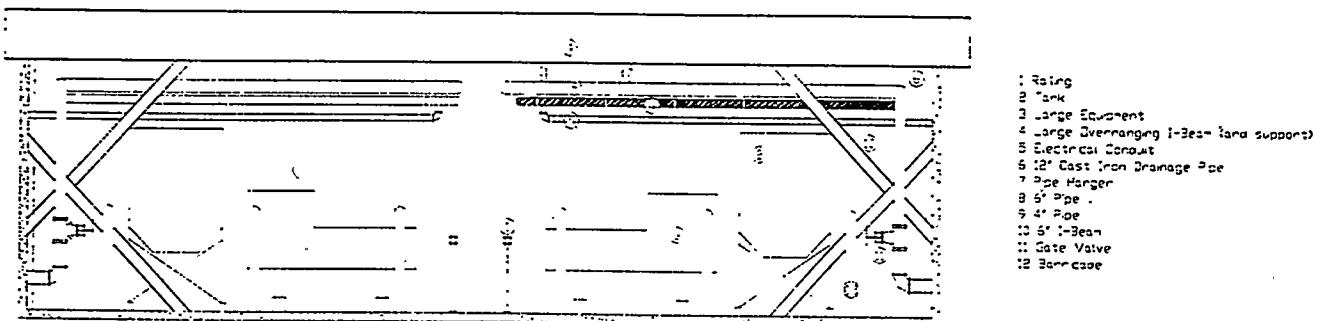


Figure 1. Schematic of test site (front view).

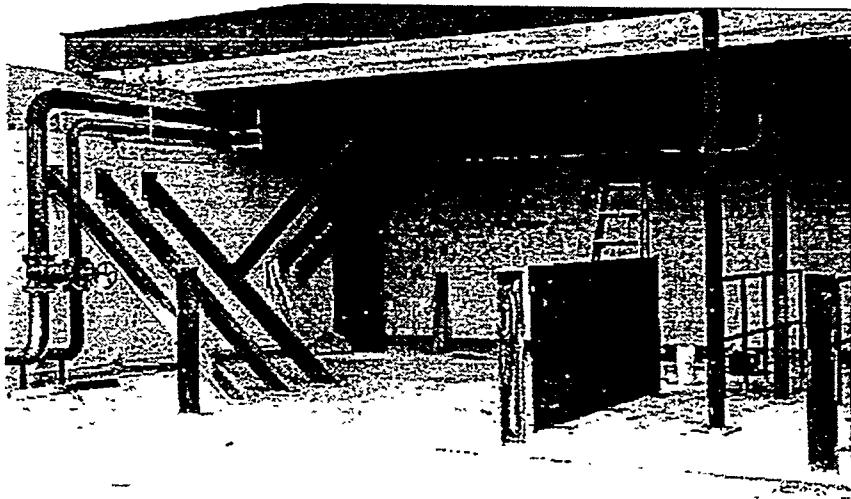


Figure 2. Test site for Equipment Dismantlement Technologies.

3.2 COMPARING THE END POINTS ACHIEVED TO THE ASSESSMENT OBJECTIVES

The end point achieved will be compared with the following criteria:

- The technology's cutting speed
- The technology's ability to cut different materials
- The technology's ability to cut different geometries

3.3 DETERMINING THE TYPES OF TECHNOLOGIES TO BE TESTED

To facilitate the determination of the type of technologies to be tested, various publications and databases were reviewed. These publications and databases included:

- DOE/EM-0142P *Decommissioning Handbook*
- ORNL/M-2751 *Oak Ridge National Laboratory Technology Logic Diagram*
- EGG-WTD-11104 *Idaho National Engineering Laboratory Decontamination and Decommissioning Technology Logic Diagram*
- Remedial Action Program Information Center (RAPIC) database

In addition, through interaction with other D&D professionals and by searching nuclear industry journals, other potential innovative technologies have been located. It is anticipated that throughout the next year of this project, additional innovative and commercially available nuclear and non-nuclear technologies will be identified and reviewed for possible inclusion for future study. The criteria used for inclusion in the testing include state of maturity, cost of the demonstration, potential benefit to the DOE Complex, and availability of the testing sections. Established sources and databases were used for categorizing and performing the initial screening of technology types.

To date, the following technologies have been identified for possible inclusion in the study:

- Oxy-gas torch
- Cutting/electric arc eroding
- Remote grinding
- Plasma cutting
- Crushing/shearing
- Ice sawing
- Hydraulic impulse generator and abrasive waterjet technology
- Abrasive waterjet technology

During FY97, an advertisement was placed in the *Commerce Business Daily (CBD)*. The technologies located through responses to this advertisement are presented in Table 1.

Table 1.
Technologies for Equipment Dismantlement

	TECHNOLOGY NAME	COMPANY
1	Cutting/Electric Arc Eroding	NUKEM
2	Remote Grinding	NUKEM
3	Plasma Cutting	NUKEM
4	Crushing/Shearing	NUKEM
5	Ice Sawing	NUKEM
6	Hydraulic Impulse Generator and Abrasive Waterjet Technology	Waterjet Technology, Inc.
7	Abrasive Waterjet Technology	Waterjet Technology, Inc.

3.4 TEST LOCATION AND UTILITY PARAMETERS

The FIU-HCET technology bay consists of a concrete pad with 10-ft-high concrete walls on three sides and a concrete ceiling covering half of the pad. All masonry walls, floors, and ceilings at the assessment site are 8 in. thick. The test site contains a series of test areas, each consisting of the 12 surrogates described in section 3.1 and shown in Figure 2. Adjacent to the test bay is a trailer that serves as a field office, changing facility, and a cool-down area for the technologists and the technology assessment team. A fence restricting access to the area surrounds the trailer and the test area.

A 60-psi, 6-gal/min, portable water supply and a 110-V, 15-amp electric supply is available for use by the vendors. The vendors will provide any other utilities (e.g., 220 or 480 V electricity, diesel fuel, compressed air, etc.).

3.4.1 Test Equipment, Personnel, and Materials

HCET and the IUOE will supply the following:

- A Light-duty fork lift (5,000 lb)
- A 60-psi, 6-gal/min, portable water supply and a 110-V, 15-amp electric supply
- Surrogate materials
- Monitoring instrumentation
- Project oversight
- Sample and data collectors

The technology vendor is required to supply the following:

- All required and support equipment
- Trained operators
- Job safety analysis for each technology
- Operating procedures
- Media and other materials
- Project manager
- Information required to complete the data requirements section
- Transportation of all equipment, materials, and personnel to FIU
- Per diem for all vendor personnel
- Rigging equipment to support surrogates during equipment dismantlement

3.5 DATA REQUIREMENTS

Extensive data will be collected on each technology. The data will be obtained from vendor contacts and vendor literature. The technologies will be demonstrated to validate the data collected and to collect additional data needed by DOE project managers. Table 2 presents the data to be collected and the sample collection method.

Table 2.
Data Requirements

Data Requirements	Sample Collection Method
COST DATA	
Capital cost for the purchase of equipment	Vendor supplied
Utility cost	Vendor supplied: measurement of fuel used; gallons of water used (flow meter); electric meter calculation
Maintenance cost	Vendor supplied
Unit/operating cost	Vendor supplied: generated from operational data calculations
OPERATIONAL DATA	
Technology description	Vendor supplied: field inspection
Technology benefits	Vendor supplied; field inspection
Technology limitations	Vendor supplied: field inspection
Main equipment requirements	Vendor supplied: field verification
Support equipment requirements	Vendor supplied: field verification
Production rates	Time studies
Length of cut	Field inspection
Number of cuts	Vendor supplied: field verification
Set up time	Vendor supplied; field verification
Actual cutting time	Field inspection
Total dismantle time per surrogate	Field inspection
Cutting Speed	Vendor supplied: field verification
Forms of cut	Field inspection
Quality of cut	Field inspection
Effect of job conditions on the technology (End point achieved by the technology)	Field observation
Equipment configuration changes	Field observation
Portables required at site	Field observation
Other setup facilities required	Field observation
Total area required for the entire setup	Field observation

Table 2.
Data Requirements (Continued)

Wear rate of the cutting tool	Vendor supplied; field verification
Ability of technology to cut different metals	Field observation
Work space required for each cut/job	Field observation
Labor classification	Vendor supplied; field verification
Utility requirements	Vendor supplied; field verification
Power consumption calculations	Field calculation
Measurement of fuel used	Field calculation
Environmental conditions	Vendor supplied, field inspection
Aerosol size and concentration produced	Vendor supplied, field inspection
Gas analysis (for thermal cutting technologies)	Vendor supplied, field inspection
Visible sparks	Vendor supplied, field inspection
Smoke, fumes, etc. generated	Vendor supplied, field inspection
Other hazards	Field observation
Secondary waste management	Vendor supplied, field inspection
Physical condition of secondary waste	Field observation
Volume of secondary waste	Field calculation
Quantity of media used	Field calculation
Characteristics of media	Media material safety data sheet
Equipment portability	Vendor supplied; field verification
Operation/maintenance requirements	Vendor supplied; field verification
IMPLEMENTATION DATA	
Level of training required	Vendor supplied
Availability of equipment and supplies	Vendor supplied; verification
Health and safety concerns	Vendor supplied, ILOE

3.6 MULTIMEDIA INFORMATION SYSTEM

The multimedia information system to support dismantlement activities provides a means of accessing data related to operation and maintenance, cost, and performance data; health and safety; and secondary waste management in the form of an interactive computer-based system. The information system also provides video clips and photographs of the technologies assessed.

This system of consolidated information will allow a complete and comprehensive comparison of technologies during the technology selection process.

4.0 ACTIVITIES PLANNED FOR FY98

The activities planned for FY98 include the field testing of seven innovative and commercially available technologies for equipment dismantlement and the development of a multimedia information system for equipment dismantlement technologies. The activities planned for FY98 are listed below.

Task 1. Construct the test site

Task 2. Develop the test plan

Task 3. Develop the scope of work for the technology demonstration

Task 4. Provide quality assurance for technology testing

Task 5. Develop a multimedia information system for dismantlement technology

Task 6. Procure and field test technology

Task 7. Perform a literature survey on decision models

Task 8. Conduct technology demonstrations

Task 9. Prepare report for technology testing.

5.0 CONCLUSIONS

The preliminary activities needed to begin the evaluation of dismantlement technologies are complete. These activities include preparing the test site, developing the performance indicators, and contacting technology vendors for inclusion in the study. Second-year activities will generate the bulk of the deliverables for this project. The evaluation of seven technologies and the development and implementation of a multimedia information system for assessing the technology will occur during FY98.

6.0 REFERENCES

Argonne National Laboratory (ANL-89/31), Argonne, Illinois, 1989, *An Evaluation of Alternative Reactor Vessel Cutting Technologies for the Experimental Boiling Water Reactor at Argonne National Laboratory*, EBWR D&D Project, by L.E. Boing, D.R. Henley, W.J. Manion, and J.W. Gordon.

Dismantling: Comparative tests on five cutting tools. G. Pilot, J. Bernard, J.R. Costes, J.P. Grandjean. Institut de Protection et de Surete Nucleaire Commissariat a l'Energie Atomique, DPEI/SERAC, CE/Saclay - Batiment 389, 91191 GIF - SUR - YVETTE Cedex, France. Commissariat a l'Energie Atomique, DCC/UDIN, CE/Valrho B.P. 171, 30205 BAGNOLS-SUR-CEZE, France.

The Arc Saw and Its Application to Decommissioning. Paul R. Deichebohrer, Rockwell Hanford Operations, Richland, Washington.

Comparative Assessment of Several Dismantling Cutting Tools. Pilot. G.,* Bernard. J.** Lorin C.,*** Ravera. J.P.***

*Institut de Protection et de Surete Nucleaire. Departement de Protection de l'Environnement et des Installations, Service d'Etudes et de Recherches en Aerocontamination et en Confinement, IPSN/CEA, 91191 GIF SUR YVETTE CEDEX.

**Institut de Protection et de Surete Nucleaire, Departement de Protection de l'Environnement et des Installations, Service Technique d'Equipements de Surete et de Radioprotection. IPSN/CEA, B.P. n° 6 - 92265 FONTENAY AUX ROSES CEDEX.

***Direction du Cycle du Combustible (DCC/CEA), Unite de Demantelame des Installations Nucleaires. CE/VALRHO, B.P. 171 - 30205 BAGNOLS SUR CEZE CEDEX.

Aerosols from Oxy-Acetylene Gas Cutting Operations on Metal Plates: A Laboratory Study. DOE-RAPIC, Principal Investigators - Wong. B.A, Newton. G.J, Obarski. G.E, Hoover. M.D.

Comparison Between Laser, Plasma, Waterjet, Oxygen Cutting and Other Mechanical Cutting Processes for Low Thicknesses (0.5 up to 5 mm). Anderson.B.C, (Denmark), Welding in the World, Vol 25, No. 5/6. pp 88 - 99, 1987.

Aerosols from Metal Cutting Techniques Typical of Decommissioning Nuclear Facilities - Experimental System for Collection and Characterization. Newton.G.J, Hoover.M.D, Edward.B.B, Brian.A.W, and Ritter.P.D. Inhalation Toxicology Research Institute, Lovelace Biomedical and Environmental Research Institute, P.O. Box 5890, Albuquerque, NM, 87185.

APPENDIX A

TECHNIQUES FOR DISMANTLEMENT

TECHNIQUES FOR DISMANTLEMENT

Table A.1

CUTTING TECHNIQUE	INNOVATIVE/ COMMERCIALLY AVAILABLE	POSSIBLE VENDORS
THERMAL		
Gas Processes		
Oxy Propane	Commercially available	Ge Ga Lotz (UK) 0044 1283 214181 Messer Griesheim (UK) 0044 1670 737444 Remotely deployed-AEA Technology - Mike Wareing
Oxy Acetylene	Commercially available	Ge Ga Lotz (UK) 0044 1283 214181 Messer Griesheim (UK) 0044 1670 737444 Remotely deployed-AEA Technology - Mike Wareing
Oxy fuel gas injection cutting	Commercially available	Messer Griesheim - standard unit 0044 1670 737444 AEA Technology - low flow unit - Mike Wareing
Thermic/thermite Lance	Commercially available	
Arc Processes		
Plasma Arc	Commercially available	Messer Griesheim (UK) 0044 1670 737444 Thermal Dynamics (USA) Remotely deployed -AEA Technology - Mark Wareing CEA (France) 00331 6908 6347 BNF plc (UK) 0044 19467 28777
Thermal Arc Water Jet	Innovative Technology	L-Tec Corporation 803-664-4397
Miscellaneous		
Laser/Advanced Laser	Innovative Technology	AEA Technology (Use of CO Lasers) 0044 1235 463638 CEA (CO ₂ and YAG under water) 0033169086347 EM-50 - LB Spiegel (ETEC) 818 586 8886 Hobart (US) Lumonics (US) US Laser Corp (US)

Table A.1 (Continued)

CUTTING TECHNIQUE	INNOVATIVE/ COMMERCIALLY AVAILABLE	POSSIBLE VENDORS
MECHANICAL		
Abrasive		
Cold High Pressure Abrasive Water Jet	Commercially available	Aqua Blast (UK) 0044 1493 330140 Hydro Cleaning 713-478-5255 Bay Decking 510-769-6033 Blasters 813-985-4500 Applied Radiological Control 610-367-6792 Canberra Nuclear Products 203- 238-2351 Ice Solv 717-838-2351 University of Hanover, Prof Bach 0049 511 7620
Abrasive Water Jet	Commercially available	Aqua Blast (UK) 0044 1493 330140 Hydro Cleaning 713-478-5255 Bay Decking 510-769-6033 Blasters 813-985-4500 Applied Radiological Control 610-367-6792 Canberra Nuclear Products 203- 238-2351 Ice Solv 717-838-2351 University of Hanover, Prof Bach 0049 511 7620
Disc Grinder	Commercially available	Grainger McMaster Carr Bosch Black and Decker Remote use - AEA Technology Mark Wareing
Circular Diamond Saw	Innovative technology	Marcrist Industries (UK) 0044 1302 467266 Diamant Boart (Belgium) 0032 348 3211
Diamond Wire	Innovative technology	Marcrist Industries (UK) 0044 1302 467266. Diamant Boart (Belgium) 0032 348 3211 Trentec 513 677 0800.
Saws		
Toothed saw e.g. Hack saw, Band saw, reciprocating saw.	Commercially available	Grainger McMaster Carr Bosch. Black and Decker Remote use - AEA Technology 0044 1235 434350 SCK.CEN (Belgium) 0032 1433 2661 EH Wachs (USA)

Table A.1 (Continued)

CUTTING TECHNIQUE	INNOVATIVE/ COMMERCIALlY AVAILABLE	POSSIBLE VENDORS
Tungsten Carbide Tipped circular Saws.	Commercially available	Grainger McMaster Carr Bosch, Black and Decker Remote use - AEA Technology 0044 1235 434350 SCK.CEN (Belgium) 0032 1433 2661 EH Wachs (USA) Marcrist Industries 0044 1302 467266
Oxy Arc	Commercially available	Thermadyne (UK) 0044 1257 261755
Contact Arc	Innovative technology	CEA, France 00331 6908 6347
Electro Discharge Machining	Commercially available	Spark Tec (Europe) ltd (UK) 0044 121 422 0243 Remote deployed - AEA Technology 0044 1235 434350 EM-50.
Arc Saw	Commercially available	Toshiba Corporation Hideaki Heki University of Birmingham 0044 121 414 3541.
PCT Circular Saw	Commercially available	Marcrist Industries 0044 1302 467266 Remote use - AEA Technology 0044 1235 434350 SCK.CEN (Belgium) 0032 1433 2661 EH Wachs (USA)
Shears and Nibblers		
Hydraulic Shear (open jawed)	Commercially available	Enerpac Ltd. (UK) 0044 1233 639871 Lucas (Germany) Hydr'am. (France) 0033 72489005 BNF plc (UK) 0044 19467 28777
Hydraulic Shear (closed anvil)	Commercially available	Enerpac Ltd. (UK) 0044 1233 639871
Hydram Shear	Innovative technology	Hydr'am. (France) 0033 72489005
Crimp Shear.	Innovative technology	BNF plc (UK) 0044 19467 28777.
Continuous Punch Shear	Innovative technology	Hydr'am (France) 0033 72489005
Nibbler	Commercially available	Remote use - AEA Technology 0044 1235 434350.
Milling and Orbital Cutters	Commercially available	Furmanite 0044 1539 729009 Tube Runner 0044 1869 246681 Reekie Machine Tools 0044 1418 120411
Swage Cutter	Commercially available	Semi remote – Rigid Rigid Tool (UK) 0044 1869 485335
Explosive Cutting	Innovative technology	Royal Ordnance 0044 1257 265511 Royal Military College 0044 1793 785323 Nitrobickford CEA 00331 6908 6347
Ice Sawing	Innovative technology	Kernkraftwerke