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SUMMARY

Integrity monitoring and flaw diagnostics of flat beams and tubular structures was
investigated in this research task using guided acoustic signals. A piezo-sensor suite was
deployed to activate and collect Lamb wave signals that propagate along metallic
specimens. The dispersion curves of Lamb waves along plate and tubular structures are
generated through numerical analysis. Several advanced techniques were explored to
extract representative features from acoustic time series. Among them, the Hilbert-
Huang transform (HHT) is a recently developed technique for the analysis of non-linear
and transient signals. A moving window method was introduced to generate the local
peak characters from acoustic time series, and a zooming window technique was
developed to localize the structural flaws.

The time-frequency analysis and pattern recognition techniques were combined
for classifying structural defects in brass tubes. Several types of flaws in brass tubes
were tested, both in the air and in water. The techniques also proved to be effective
under background/process noise. A detailed theoretical analysis of Lamb wave
propagation was performed and simulations were carried out using the finite element
software system ABAQUS. This analytical study confirmed the behavior of the acoustic
signals acquired from the experimental studies.

The report presents the background the analysis of acoustic signals acquired from
piezo-electric transducers for structural defect monitoring. A comparison of the use of
time-frequency techniques, including the Hilbert-Huang transform, is presented. The
report presents the theoretical study of Lamb wave propagation in flat beams and tubular
structures, and the need for mode separation in order to effectively perform defect
diagnosis. The results of an extensive experimental study of detection, location, and
isolation of structural defects in flat aluminum beams and brass tubes are presented.

The results of this research show the feasibility of on-line monitoring of small
structural flaws by the use of transient and nonlinear acoustic signal analysis, and its

implementation by the proper design of a piezo-electric transducer suite.
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1. INTRODUCTION

1.1. Background

Nuclear power plant components, such as steam generators (SGs), heat
exchangers, pressure vessels, and piping are exposed to high temperature, high pressure,
and high radiation environment. Key components such as SGs and pressure vessels have
stringent design requirements regarding their structural integrity. To increase the safety
and reliability of a nuclear power plant, the monitoring of the integrity of key equipment
is very important. Information about conditions such as tube cracks, corrosion, pitting,
and fouling must be available in order to keep severe damages from occurring.

Some nondestructive testing techniques have been developed and implemented
for structural defect inspection during manufacture and for routine maintenance process.
The well known methods for in-service inspection include eddy current testing, ultrasonic
testing, visual inspection, and others. These methods are fairly effective and accurate in
detecting structural flaws in SG tubes, pressure vessels, and steam pipes, but these
inspections are usually off-line and slow. Hence the traditional nondestructive
examination (NDE) methods are not suitable for in-situ and on-line monitoring. On the
other hand, nuclear reactor surveillance systems are not capable of providing complete
intrinsic information about structures in a reactor systems. Currently there are no
techniques that can be used during plant operation to collect internal information and
evaluate structural integrity of key components.

An innovative idea was proposed in this research to develop an intelligent system
such that guided active acoustic signals could be generated in SG tubing any time during
plant operation, and passive signals could be collected with sufficient information to
evaluate its integrity. The tested structure would be diagnosed using passive acoustic
signals through advanced non-stationary signal processing techniques. Although there is
a large body of research performed in Lamb waves and NDE, many problems still exist.
These include the selection of input frequency band, sensor deployment, and feature

extraction. None have ever studied the change of Lamb wave properties in specimens



immersed in water and their application in structural health monitoring, which is
important in many circumstances and is one of the key problems studied in this research.

In order to perform the detection, localization, and classification of flaws in
tubing or plate-like structures, the time frequency analysis methods were explored to
extract representative features. Pattern classification techniques were used to categorize
structural defects in ether air or in water. In addition, a multi-sensor suite was developed
to monitor the wave propagation from multiple perspectives. As a viable technique,
wavelet transform (WT) (continuous and discrete WT) which is an effective non-
stationary and linear data decomposition technique, was used in this study for band-
limited feature extraction. Another recently developed method, the Hilbert-Huang
transform (HHT), provides a more efficient time-frequency analysis of signals from
nonlinear systems. The application of HHT for elastic wave analysis was an important
step towards accurate structural heath diagnostics in this research. Other transient signal
processing techniques, such as the moving window and zooming window, were
implemented to deal with localized acoustic signal properties in the time domain.

In addition, to verify the experimental work, simulation of Lamb waves was
performed in tubes and plate-like structures. A finite element code, called ABAQUS, was

used to simulate Lamb wave propagation.

1.2. Review of the Applications of Guided Acoustics

Named after the English scientist Horace Lamb, in honor of his fundamental
contributions to wave propagation, Lamb wave has attracted a broad range of studies of
its properties and applications. During the 1960s Viktorov [22] elaborated the properties
of elastic guided waves (Lamb and Rayleigh waves), the applications in the NDE field,
and the methods of activating specified guided waves. His work has become a
cornerstone for the many subsequent studies. Auld [3] systematically summarized the
wave propagation in elastic media, including non-homogeneous materials such as the
piezo- electric materials. The use of Lamb waves for the detection of inclusions was
analyzed theoretically in his work. Recently, Rose [31] studied the practical applications
of guided waves from experimental and theoretical perspectives. The wave propagation

in multi-layer materials was discussed and the utilization of mode change due to the
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phenomenon of scattering was studied to determine the most sensitive input frequency
and the appropriate mode. The idea of utilizing some specific modes of guided waves
was introduced in his work.

Many other researchers are also involved in the study of Lamb waves, including
practical applications. Among them Ditri [29] used S-parameter formalism to study the
phenomenon of scattering of Lamb waves from a circumferential crack in an isotropic
hollow cylinder. Similarly McKeon [23] explored higher order plate theory to derive
analytical solutions for the scattering of the lowest order symmetric Lamb waves from a
circular inclusion in plate like structures. The results were used to explain the scattering
effects found in Lamb wave tomography. Alleyne [11] (1998) studied the reflection of
L(0,2) mode Lamb wave from notches in pipe-like structures, and the relationship
between reflection ratio and the depth of notch. The pulse-echo method was adopted in
his research. However, the experimental setup is not suitable for in situ and on-line
structural inspection because of its complexity.

In 2000, Malyarenko et al. [16] described the application of Lamb wave
tomography for mapping the flaws in multi-layer aircraft materials. A circular array of
space transducers was set up for the reconstruction of tomography, which was used to
judge the health of aircraft structures. The study was aimed at scanning a large area
quickly and automatically. Although that technique cannot be applied to tube like
structures, it is still an important step towards the application of Lamb wave techniques in
the aerospace industry. Another important work was reported by Motegi [32] in 1999
about Lamb wave propagation in water-immersed inhomogeneous plates. The radiation
of Lamb waves into water from the specimen was analyzed. This work is mentioned here
because of the importance of the interaction between water and immersed specimens in
this study.

In 2001, Halabe and Franklin [58] tried to detect fatigue cracks in metallic
members using the statistical properties of guided waves in the frequency domain. The
Rayleigh waves were produced and several types of crack-like defects (for example,
micro fatigue, macro fatigue) were tested using five-cycle sine pulse excitation with 2.25
MHz of central frequency. The study illustrates the sensitivity of Rayleigh waves to

surface flaws, but location and classification were not studied in their research. In 2001
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Jung [62] detected discontinuities in concrete structures using Lamb waves and frequency
domain analysis.

Time-frequency analysis methods are of importance for characterizing acoustic
waves. Niethammer and Jacobs [40] compared four methods of time-frequency
representations of Lamb waves. The reassigned spectrogram (from short-time Fourier
transform (STFT)), the reassigned scalogram (from wavelet transform (WT)), Wigner-
Ville distribution (WVD) and Hilbert transform were used to represent multi-mode Lamb
waves. The advantages and shortcomings were discussed. The results showed that
spectrogram and smoothed WVD gave the best time-frequency distribution for wide-band
Lamb waves.

In 2002, Valle et al. [7] performed the study of flaw localization with reassigned
spectrogram of detected Lamb modes using a modified signal processing technique. The
spectrogram was generated by STFT, and the image change due to the flaw reflection
was used to locate notch-type flaws. Only one type of flaw was studied and the accuracy
of the detection depended heavily on the signal quality; a high level of noise would
provide a big challenge in the performance of the algorithm. Although the scope of this
research is limited, it embodies some good ideas such as using non-contact methods to
generate guided waves, and utilizing advanced signal processing techniques to explore
the hidden information. Similarly, in the work of Clezio [15], the interaction between
cracks and the first symmetric Lamb mode Sy in an aluminum plate placed in a vacuum
were demonstrated using both experiments and finite element simulations. The work
illustrates a nonlinear relationship between crack thickness, and reflection and
transmission coefficients. Another type of flaw, a hole in an aluminum plate, was studied
by Fromme and Sayir [47] in 2002. The active Lamb wave was selectively excited to
have an anti-symmetrical mode using piezoelectric transducers, and is currently a very
popular method for Lamb wave activation. The scattering coefficient is calculated using
Mindlin’s theory and a classical plate theory.

The application of Lamb waves for flaw detection in composite structures has also
attracted many researchers. In 2002, Kessler [54] studied health monitoring of composite
materials, either in plate or tubular structure. The properties of Lamb wave propagation

in composite structures were studied using ABAQUS, a finite element simulation code,
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and experiments using piezo-transducers. The experimental data were processed using
continuous wavelet transform to increase the sensitivity of flaw detection.  Similarly
Yuan [68] intended to establish an on-line damage detection algorithm for composite
structures where time and frequency information were used for integrity evaluation and
wavelet analysis was used to reduce raw data noise. Another researcher, Paget [4],
performed the damage assessment in composites through Lamb waves using adaptive
wavelet decomposition technique that was sensitive to small damages.

There are also many other studies about the application of guided waves. For
example, Kawiecki and Seagle [79] detected the damages in aluminum plates and
concrete blocks through shifts in frequency resonance peaks of Lamb waves.

However, most of these works focused on the detection of structural flaws in
either single or composite materials, none was able to classify flaw type and locate the
flaw simultaneously. In contrast, the research reported here focused on developing an
on-line and in-situ structural flaw classification approach through smart signal collection
and analysis. In order to locate and classify structural flaws, which are difficult using
raw Lamb wave signals, an advanced post signal processing technique was absolutely
necessary. As mentioned above, several time-frequency analysis methods have been
used to process Lamb wave signals. However, all of these methods, from STFT to
wavelet analysis, use linear transformations. A new nonlinear and non-stationary signal
processing technique, called the Hilbert-Huang transform (HHT), was introduced in this
research project, and other advanced DSP techniques were developed for the structural

diagnostics of power plant components.

1.3. Objectives of this Research

Inspired by the idea of guided elastic waves for structural flaw detection, the
research reported here was aimed at developing on-line, in-situ structural monitoring
techniques for steam generator and heat exchanger tubing to minimize the limitations of
data accessibility during plant operation. The new monitoring system would combine the

functions of acoustic signal generation, data collection, flaw detection, evaluation,
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isolation and classification. The new techniques could be extended to pressure vessels,
steam pipes, and other important equipment to improve the safety of nuclear power plants.

For the most commonly used ultrasonic NDE technique, the equipment adopted is
not suitable for on-line testing of steam generator tubes. The post signal processing
technique is not mature enough to extract hidden features from complex signals. This
research was aimed at studying the feasibility of implementing embedded sensor suites in
structural members. The system must be sensitive to small structural changes, and robust
under noisy environment. Guided waves, either Lamb waves or Rayleigh waves, would
be analyzed since both of them are highly sensitive to structural anomalies. Because of
the small tube wall thickness of steam generator tubing, we are interested in the Lamb
wave propagation in this study. The application of lamb waves for structural flaw
detection is not a new idea. However, there are several practical problems, especially in
the extraction of representative features.

In distinction from the previous work (details in Literature review) on Lamb
waves for structural defect analysis, this research introduced and implemented some
advanced non-stationary signal processing techniques, so that the multi-mode Lamb wave
time series could be processed to reveal representative features. Both time and frequency
information would be extracted to detect and isolate potential structural flaws, which may
cause severe damages with time. Following is a list of significant results of this

research.

® A successful design of a smart signal activation and collection system. A multi-
sensor piezo-sensor system is proposed to interrogate test specimens from
different directions, and the passive sensors collecting optimal system
information from multiple perspectives. Several types of input signals were used
in order to determine the optimal frequency band, input signal length, and shapes.

® Comprehensive study of Lamb wave propagation in different media and
structures, especially in tubing specimens immersed in water. The aluminum
plate was also studied as a benchmark specimen in this research.

® Signal characterization for various flaws. Typical flaws include half depth holes,

through hole, notches, and other simulated flaws using clip-on weights. The
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severity of flaw is adjusted through the change of the flaw size such as notch
depth and diameter of the hole. Flaw position information was collected to study
the localization of unknown structural flaws.

® Structural health evaluation through the change of signal energy, local peak
position, extent of spread, etc. The analysis was performed in both time and
frequency domains using non-stationary signal decomposition. The sensitivity
and robustness of the techniques were evaluated.

® Estimation of the location of structural flaws. It was found that the reflected and
diffracted waves could be used for the localization of structural defects using
advanced signal processing techniques.

® Defect classification in laboratory specimens, especially brass tubes. Cross
correlation of wavelet analysis and Hilbert-Huang transform are being used to
extract the signatures for each type of structural defect. Advanced pattern
recognition techniques, such as PCA of residual space, was applied to identify
flaw type.

® Theoretical study of acoustic wave propagation by simulation of Lamb wave

propagation along aluminum plates and brass tubes using the software ABAQUS.

1.4. Original Contributions of the Research

In order to realize the on-line and in-situ structural health monitoring for a
complex system such as a steam generator, many technical problems need to be tackled
including experimental design, data acquisition, data transmission, signal feature
extraction, and pattern classification. The original contributions of this research include

the following:

i.  Development of a smart structural activation and signal collection system that is
suitable for Lamb wave separation. A special set-up with multiple piezo-sensors
is proposed to generate the mixtures of symmetric and anti-symmetric Lamb

waves for both plate and tubular structures.

15



ii.  Lamb wave mode separation. In this research, mode separation was proved to be
very important for tubular structures in order to characterize the flaws, while it is
not necessary for aluminum beams because the anti-symmetric wave has much
higher energy than the symmetric wave.

iii.  New implementation of Hilbert-Huang transform (HHT) for evaluation of various
flaws in an aluminum plate. The HHT is more sensitive in detecting to structural
flaws than other signal processing methods.

iv.  Development of a new moving window method for the extraction of localized
features from Lamb waves in tubing. The sensitivity and the robustness of this
algorithm will be evaluated quantitatively.

v.  Development of a window zooming technique for estimation of the location of the
structural flaw in tubing. Diverging points were defined to reflect the distance
between the receiving sensors and the defect.

vi.  Defect classification using time-frequency analysis and pattern recognition
methods.

vii.  Noise reduction using HHT decomposition and reconstruction.
viii.  Theoretical study of Lamb wave propagation along aluminum plates and brass
tubes using the finite-element code ABAQUS. Defect conditions such as partial

and through holes would be simulated and compared to experimental results.

1.5. Organization of the Report — VVolume 2

Section 2 describes the experimental setup developed in this research. The sensor
arrangement is demonstrated for the structural test. It then briefly describes the
principles of piezoelectric phenomena and piezoelectric materials. The dimension and
materials of the piezo-sensors used in this research are then detailed. Finally, this section
discusses the exisiting methods for the Lamb wave generation, and their advantages and
shortcomings.

The Lamb wave propagation equations are elaborated in Section 3. Lamb waves
are described in Cartesian and cylindrical coordinates respectively for aluminum plate

and brass tubes. Characteristic equations are derived with appropriate boundary
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conditions. The numerical solutions are then generated and dispersion curves are plotted
to demonstrate the change of Lamb wave speed due to the change of Lamb wave mode
and input frequency. In the final part of this section, characteristic equations for the
structures submerged in water are derived. The continuous stress components and
particle displacement on the boundaries are used in system equations.

Section 4 discusses non-stationary signal processing techniques. Hilbert-Huang
and wavelet transforms are compared to reveal the differences between linear and
nonlinear transformation. Moving window and zooming window techniques are
introduced to perform feature extraction from Lamb wave signals propagating along the
experimental specimens. Eigen-face analysis was used to classify the structural flaw
based on the time-frequency plot of the Wavelet Transform.

In Section 5, the mode separation concept is introduced. The mode separation
process takes advantage of the special arrangement of sensor placement. Separated
symmetric and anti-symmetric signals were used to verify the wave speed along the brass
tube used in the research.

Section 6 describes the monitoring of the aluminum plate structure based on the
passive Lamb waves propagating in the test specimen. HHT is utilized in the analysis of
the structural resonant frequency, flaw indication, and localization. Another method,
called the extrema envelope, was also applied to flaw detection, especially the
localization of structural flaws in the plate-like structures.

The focus of Section 7 is on tubular structures. The moving window technique
was utilized to extract representative features from the separated anti-symmetric Lamb
wave signals such that the health conditions of the tested structure can be evaluated. The
features can be also used for flaw classification. Due to the wave reflection, the flaw
localization needs the help of a new method called zooming windows. The position of
flaw is then approximately decided. The flaw type classification is realized using wavelet
transform and Eigen-face analysis. The brass tube was tested in both air and in water,
and the results demonstrate the effectiveness of the signal processing methods developed

in this research.
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The simulations of acoustic propagation along the plate and tubular structures are
then illustrated in Section 8. A finite element code, ABAQUS, was used to simulate the
wave behavior. The frequency response was compared with the experimental data.

A summary of this research task is given in Section 9. Some concluding remarks
and suggestions for future research are also outlined.

A detailed bibliography of publications related to this research task is given in the
report. Some useful information may be found in the appendices. The appendices
include some important mathematical operations under cylindrical coordinate system, the
codes used for Lamb wave simulation, HHT and other signal processing methods, and a

DAQ LABVIEW interface.
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2. EXPERIMENTAL RESEARCH

2.1. Laboratory Testing System

A smart sensor array system was developed for acoustic signal generation and
data acquisition using piezo-electric sensors. Figure 2.1 illustrates the experimental
modules. One piezo-sensor is used as an active sensor to generate Lamb waves in
laboratory specimens, and the remaining are the passive sensors to collect the transmitted
acoustic signals. The active and the passive sensors were interfaced with a PC through a
standard National Instruments DAQ card. The test setup illustrated here is very
important for the mode separation presented in Section 3. Figure 2.2 shows the
experimental setup of a brass tube submerged in water. Here, a two-phase flow
environment was simulated using air bubbles.

The active piezo-transducer is interrogated using Hanning-window modulated
sine-pulses, consisting of about five cycles. The data sampling frequencies of 300 kHz
and 1.6 MHz were used. The frequency of excitation was established based on the
optimal bandwidth for the specimen of interest. Active frequencies are selected in the
range 13 kHz — 20 kHz. This frequency band was selected for two reasons. The first is
the Lamb wave transportation mode in this range is much simpler than the high frequency
band, so it is easy to perform the mode separation of raw signals. There is only one
possible torsional mode, one longitudinal mode, and one flexural mode in this range for
brass tubes. This was verified by the experimental data and is discussed in Chapters 4
and 5. The second reason is that it is located in the resonant band of the brass tubes and
aluminum beams used in the experiments of this research. Hence the energy decay ratio

1s low.
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Figure 2.1. Experimental modules for interrogation of typical specimens.
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Figure 2.2. Experimental setup for testing brass tubing in water.

2.2. Piezo-electric Materials and Piezo-sensors

The piezoelectricity refers to the electrical polarization of crystals caused by
deformation in certain directions in some materials such as quartz, tourmaline, Rochelle
salt, etc. Pierre and Jacques Curie discovered this phenomenon of surface electric
charges in 1880 on tourmaline crystals. It has been widely used in vibration sensors and

surface acoustic wave devices in wireless signal transmission. The quick and accurate
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response of piezoelectric materials to the pressure makes it ideal for the measurement of
any rapidly changing mechanical variables such as forces and accelerations. The special
properties of piezoelectric materials are due to the spatial molecular crystal structures as
discussed in [87].  As illustrated by Figure 2.3(a) and (b), the piezoelectric substance
can be cut along different axes, the coordinate system is defined according to the crystal
structure elaborated in [87]. For an X-cut piezoelectric plate, the applied pressure on the
surface introduces an electrical charge on the surface. The change in the electrical field
causes the plate to expand along the x-direction. The X-cut means cutting the crystal
perpendicular to the x-direction. Therefore, the periodical change of electrical field on
the X-cut crystal plate generates periodical longitudinal effect inside. While for a Y-cut
piezoelectric plate shown in Figure 2.3(b), the electrical filed change produces a shear

force along the x-direction, and thus creates a transverse vibration inside the plate.

Figure 2.3(b). Shear effect of piezoelectric materials with Y-Cut.

However, the piezoelectric effect exhibited by natural materials such as quartz,

and Rochelle salt, is very small, so polycrystalline ferroelectric ceramic materials such as
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barium titanate and lead (plumbum) zirconate titanate (PZT), with improved properties,
have been developed. @ The PZT is the most widely used piezo-ceramic material
nowadays. The pizeo-sensor used in this research is also made of lead, zirconate and
titanate. The Curie temperature, under which the sensor should be operated, is 662 °F for
this type of sensor from Piezo Systems, Inc.  Notice that the primary water inlet
temperature of steam generator is around 600 °F, the sensor used in this research may not
be suitable for on-site implementation considering the high pressure inside a SG. The
high pressure may cause the decrease of stable temperature of piezoelectric materials.
One solution is to use quartz slices whose stable temperature is up to 1063 °F. However,
this is not the issue addressed in this research.

The piezoelectric sensor sheet useed in this research is shown in Figure 2.4
(courtesy from PSI website). The thickness is 0.00105 inch and the capacity is 315 nf.
The sensor sheet is then cut into small sensors useed in the experiments. Two typical
sensor dimensions are: 1 inch x 0.375 inch for aluminum beam; 1.5 x 0.1875 inch for
brass tubes.  These sensors are shown in Figure 2.5. The figure also shows some

structural flaws tested in this research.

280 Mic kel electrodes
both sides

285~

Figure 2.4. Piezoelectric sensor sheet. Thickness: 0.00105 inch (from PSI).




(©)

Figure 2.5. Experimental specimens with sensor, and structural flaw. (a) Brass tube; (b)
Aluminum plate; (c) Partial beam.
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2.3. Activation of Guided Acoustics Using Piezo-sensors
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Figure 2.6. Methods of Lamb wave generation.

There are several commonly adopted methods for Lamb wave generation as
discussed by Viktorov in [22]. These methods are illustrated in Figure 2.6. In Figure
2.6(a), the piece of piezoelectric transducer is directly bonded onto a plate. The Lamb
waves are then generated as the electrical field applied on the sensor changes. The
generated Lamb waves propagate along the plate toward two opposite directions. All
possible transportation modes, based on the input frequency, will be excited through this
type of sensor setup. The advantage of this method is the simplicity of sensor installation
and manufacturing. The disadvantage is that Lamb waves generated are fairly
complicated, especially in the high frequency band. Since the space available in steam
generators is limited, this method is utilized in this project in order to simplify the
instrumentation. The disadvantages will be overcome by the careful selection of the

input signal band and the mode separation technique discussed in Section 3.
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Another Lamb wave excitation method is illustrated in Figure 2.6(b). A piece of
piezo-transducer (X-cut) is placed on a piece of metal plate with corrugated, comb-
shaped profile on one side. The slot width of the comb profile is Ay, which decides the
wavelength of the guided acoustics generated by this structure. The Lamb wavelength

would be 4 =24;. An important advantage of this method is that the wavelength is

selectively decided by the slot width and thus it is easy to determine the resonant input
frequency from the dispersion curves. The dispersion curve in Figure 2.7 is the
numerical solution of Lamb wave propagation along an aluminum plate that discussed in
Section 3. The intersection points of a line with a gradient of 4/d and the dispersion
curves decide the resonant input frequencies as shown in the figure with circles. This
method can effectively activate Lamb waves in almost any elastic material. But it is not
used in the experiments of this research because the frequency band adopted here is not
very high, thus the wavelength is too long for the comb structure considering the small
dimension of the experimental specimen. Nevertheless this method has great potential

for high frequency Lamb wave implementation in long tubes such as oil pipes.
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Figure 2.7. The resonant frequency is decided by slot width d and the Lamb wave mode.
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The third method is called wedge technique as illustrated in Figure 2.6(c). A
wedge block, usually made of plastic, is placed on the experimental specimen. A piezo-
transducer generates longitudinal waves in the wedge. The longitudinal waves then
convert into Lamb waves in the experimental specimen. A modified method uses Y-cut
piezoelectric plate to generate transverse waves in the wedge block. Different Lamb
mode signals may be activated by the adjustment of the wedge angle. As the most
widely used method, wedge block method has been extensively explored for the study of
ultrasonic testing. The advantage of this method is the flexibility in the selective
generation of Lamb waves at a given frequency. However, it is not as efficient as the
comb structure discussed above, and its setup is not suitable for online monitoring of SG

tubes due to the limited available space; hence it is not considered in this research.
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3. FUNDAMENTALS OF LAMB WAVE THEORY

3.1. Elastic Wave Propagation Along Thin Plates

WV VN / ,
17 "

Figure 3.1. Guided acoustic waves in a plate-like structure.

Considering the propagation along a thin plate, as in Figure 3.1, Lamb wave is a
special type of surface wave, for which the displacements occur in the direction of both
its propagation and normal to the free boundaries. The stress components on the
boundaries must be zero. The general particle displacement equation [22, 30] can be
written in the potential form as:

U=Vg+Vx(y)

Ve(i#)=0

¢ : scalar potential of longitudal wave (3.1)

w . vector potential of transverse wave
U : particle displacement.

y
A
o . l/72 @
\ ¥ Z
AT »
— v Z
PN RN
\ )
-

Figure 3.2. Vector potentials and particle movement.
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The condition of Ve () =0 is necessary to make sure that the particles with

same x-coordinate are rotating around its balance position in a close route in the same

direction and same speed. As demonstrated in figure 3.2, the particle displacements

caused by the vector potential is:

5
Qv Yy g
Xy z oy o
F=vxp=| L O O W Oy
VIlx oy a o ’ (3.2)
Vv ¥y V, ( Yy _al/lx)z'
OX oy

vV : particle displacement caused by .

By assuming that the displacement along the x-axis is zero, we can derive that the

vector potential has only the nonzero component in the direction of x, i.e. w, =y, =0.

Let y, = ¢, we can rewrite the wave equations as [3, 22]

2 2
0 (2é+8 f+kf¢:0
oz~ oy
62 62 (3.3)
oy TN
The solutions of these equations have the following form:
¢ = Axch(yk* —ki)e'™ D + Bxsh(yk* -k )e'™ ), (3.4)

@ =C #sh(y k> —k2)e' ™ 4+ Dxch(y k> —k2)e',

A, B, C, and D are constants. All terms in the equations have the same complex

exponential term e'* " which is time dependent and influences the wave speed in the

z-direction. The remaining terms in the equations are only related to y and are time

independent.
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#'= Axsh(y k> —k?) + B xeh(y k® —k?), (3.5)
¢'ZC*sh(y1/k2—kt2)+D*ch(yw/kz—kf). '

Rewrite the above using sine and cosine functions:
¢'= A'*sin(yﬁk,2 —k?)+ B'*cos( Y4/ kl2 —k?), 3.6
@'= C'ssin(yk} —k*) + D"cos(yyk —k*), '
where ¢'and @' represent the standing waves in the y-direction (thickness). The

displacement and the stress functions in the thin plate can then be written as follows:

u, =0,
op O d¢' .
uy =_¢—8—¢=d_¢_|k(0"
oy oz dy
u, =%+a—¢:ik¢'+d—¢,
oz oy dy
ou, ou . dg' d’e'
= u(— + =) = uRik —+ k*p'+—2-),
v = H( . 6y) 1( dy P O|y2)
ou ou 24
O'yy :i(a(;lz +Ey)+2lugy:/1(—k2¢'+(jj—f)
y
d2¢v . d2¢v
+2ll’l( 2 _Ik dyz )’
Where:
u,,. - particle displacement,
Oy 2y - SLIESS,
(3.7)

A, i : Lame constant.
We are able to separate them into symmetric and anti-symmetric terms according to the

displacement in the direction of y as follows:
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Symmetric modes:

P'= B'cos(y\/m),

¢'=C'sin(yfk? —Kk*),

u, =—B'Jk? =k cos(yy/k? —k?)—ikC' cos(y~fk: —k?),

u, = ikB'sin(y,/k? —k?)+ k> —k>C'sin(y~ k2 — k), (3.8)
o, = u(=2ikB' Jk? =k sin(yJk} —k?)+C'(2k? —k?)sin(y,/k? —Kk?)),

o, =ik B'cos(y\k? —k>) —2u((ki —k*)B'cos(yyk? —k>),

+ ikC'\/Wcos(y\/W).

For the symmetric mode, the particle displacement in the z-direction is symmetric across

the thickness of the plate, while the displacement in the y-direction is anti-symmetric.

Anti-symmetric modes:

¢'= Asin(y [k} —k*),

p'=D'cos(yfk? —k?),

u, = —ikA'sin(yk? —k?) = D' k2 —k? sin(y,/k? —k?),

u, = A'Jk? —k? cos(y/k? —k?)—ikD'cos(y,/k? —k?), (3.9)
o, = u(~2iKA'\kZ — k> cos(y+fk? —k>)+ D' (2k* —kZ) cos(yy/k? —k>)),

o, = Ak} A'sin(yafk? —k?) = 2((k? —k*)A'sin(y k7 —k>),

— ikD'\/Wcos(y\/W).

For the anti-symmetric mode, the particle displacement in the z-direction is anti-
symmetric across the thickness of the plate, while the displacement in the y- direction is

symmetric.

Using boundary conditions that the stress at free boundaries must be zero,
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o

c,=0 at y=f—,

o N

c,=0 at y=+_, (3.10)

[\

d : thickness,

we can write out two characteristic equations to determine the wave number k:

tany/1—¢2d _452\/1—42\/72—4’2

Sym N s
tany/y> —¢°d 2% -1’
. (3.11)
_ 2 2 132
Anti - tan,/1—-¢ dA=_ 257 -1) ,
tan yZ_é/Zd 4;2\/1_;2\/72_42
Where
c’ c’
d=ldig® = by =t

d : thickness of plate,

C, : transverse wave speed,

¢, : longitudinal wave speed, (3.12)
c: phase speed of Lamb wave,

(4]
k, =—:transverse wave number,
Ct

o : frequency.
From these equations we are able to obtain solutions of wave numbers kg and k,
(symmetric and anti-symmetric).
The numerical solutions of the above characteristic equations are shown in Figure
3.3. The relationship between the wave number k and the phase speed is defined as

k=",
C, (3.13)

C, : phase speed.
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Figure 3.3. Dispersion curves for a traction free aluminum beam.

The Lamb wave transportation becomes more complicated as the frequency increases for
a plate with fixed thickness. But there is only one symmetric and one anti-symmetric
mode for low frequency waves.

Unfortunately the Lamb waves usually propagate in a group, i.e. many modes are
mixed together. Hence the phase speed cannot describe the behavior of Lamb wave
propagation unless a pure mode is generated in a plate. Therefore the group speed is

introduced and defined as

c - do do dw 3 C, B C,
97 gk - dc. dc. dc.
& ac?) d—“)—w—;’ C,—w—" ¢, —fd " (3.14)
C, o Cy dw d(fd)
where : @ = 27fd.
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The numerical solution of the group speed as a function of the product of frequency and

thickness is plotted in Figure 3.4.

Group speed (mmiusec)
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Figure 3.4. Group speed of Lamb waves in a traction free aluminum beam.

It is interesting to see that the phase speed of each mode is very close to its phase
speed in the low frequency band. This makes the problem of Lamb wave transportation
easier as long as the input signal has low frequency.

Similarly, the more complicated Lamb wave properties in metal tubes have been
derived [22, 30, 89]. In summary, it is found that Lamb waves propagate in multiple
modes. Hence the signals from the transducers are dependent on their positions, wave
frequency, and plate thickness. An important property related to the defect inspection is
that a single input mode signal will be scattered forward and backward as in a multimode
propagation. The structural flaw may be viewed as a new source of waves being
scattered around. Its presence would definitely alter the signal characteristics and its

frequency spectrum, changes of which are useful for nondestructive examination.
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3.2. Elastic Waves in Metal Tubes

Figure 3.5. Guided acoustic waves in tubing.

Lamb wave signals in tubing structures are more complicated because they are
mixtures of time series with different modes. In addition, the spread of frequency will
cause the spread of wave speed even using a simple sine pulse as input, and further
increases the difficulty in analyzing tubular Lamb waves. Many studies have been
performed in the propagation of Lamb waves in tubular structures. In summary, there are
four types of Lamb wave modes in tubular structures. Each of them is described.
® (Circumferential — non-propagation mode:

A circumferential mode is a type of wave that transports around in the
circumferential direction; thus, it is a non-propagating mode in the axial direction. This
type of mode is not very useful for structural monitoring unless the defect is located at the
same axial position and different circumferential locations as the active sensor. The wave

propagation is illustrated in Figure 3.6a.

® Flexural modes - anti-symmetrical modes:

As shown in Figure 3.6b, the flexural modes are anti-symmetric modes whose
axial particle displacements are anti-symmetric with respect to the central line of the tube.
Therefore, if two sensors are deployed at the same axial position on the tube and have
180-degree apart in the circumferential direction, the signals collected should have 180-
degree phase difference. This is important for mode separation. As illustrated later, the

flexural mode plays a key role in flaw detection and isolation for tube-like structures.

® [ongitudinal-symmetrical modes:
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The wave propagation of longitudinal modes is illustrated in Figure 3.6c. The
particle displacement in the axial direction is symmetric across the structure. The

experimental data of this research demonstrated the significance of symmetrical modes.

® Torsional-symmetrical modes:

Another type of symmetrical modes is the torsional mode shown in Figure 3.6d.
The properties such as dispersion curves will be illustrated later in this section and can
also be found in references [22, 30, 89]. This type of mode is also important in this
research because of its presence in the experimental data.

Because of the complexity of Lamb waves in tubes, advanced non-stationary
signal processing methods are necessary for understanding Lamb wave properties,

including fault detection, structural flaw evaluation, and classification.
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(d)

Figure 3.6. Lamb wave modes in tubular structures.

For a hollow cylinder, the circumferential wave equations in terms of the
potentials ¢ and v is written as:

o> 10 1 o° ®*
— Yp+—¢=0

——t—
o ror r?oo’ c.
o> 1o 1 ¢ o’
—+

+— +—w,=0
o’ ror r’ 692)% Cr Ve

(3.15)

(

Where cp and cr are longitudinal and shear wave velocities, respectively. The general

solution is given by
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p=AJd, (Z’—r) +AY,, (Z’—r>

r or (3.16)
y,(N=~AJdy (C_) + AV (C_)

Where Jip(z) and Yio(z) are the first and second type Bessel functions, respectively. Al,
A2, A3, and A4 are constants.

The particle displacements and stresses can be represented in the form of
potentials as:

u =92 1oV
or r o0
104 o
“=ae ar
r ou ru 1 éu ou G-17)
=A—+ L+ r2u—",
O (ar r rae) ”ar
ou u 1ou
Tro (ar r raa)
——>

0? A0 A 0° 210 2u 0*
ar,=(/1+2,u)—?+——¢+—2—¢;——’§l—w+—’u—l//,
or ror r° o6 r- oo r odor (3.18)
#(_£%+gaz_¢_62_‘//+la_l/j+Laz_l//)
r’o60 rorod or* ror  r* 90
#(r,0) = p(r)e' =,
Let _
w(r,0)=9(re' ",

O

Equations (3.18) then yield the following:
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Tro = A { 4 or o ar
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y7i Ct
2
o, = eloren ), 0P ¢ P vy - 2) 40 —(x —2)k’b’p —2ikb 9 + 2|kbra—
r or or
= £ gited ] _oikh +2rikba—¢ g 8 4 r%— k’b*9¢.
Tro =7 { 4 or o’ or
Using the boundary conditions similar to plate structure described above
Oy = O’
o, =0.
forr=a,b, (3.20)

a :inner tube radius
b : outer tube radius.

The following equations show the recursive relations for Bessel functions.

2—”J (0 =30, () + 300 (%),
dJ
25805 (0-3,,00,
" (3.21)
xJn_l(x):an(x)+x”—(X),
dx
4,00

Joa (X) ==nJ, (X) + X———

Note: Same relations exist for the second type Bessel functions Yy (X).
The four constants, Al, A2, A3 and A4 in Equation (3.16) are determined by setting the

determinant of the system equations to zero. The characteristic equations are derived as:
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IDy|=0, i.j=1:4
where,

b !
D, =[J kb—z(ac)_) + kb+2( c ) 2y _I)ka(_)]l_ )

b b
Dy, =i[Jy, c. —) = Jioe2 (?)],
b _
D13 [Y kb— 2(C )+Y kb+2(C )—2(x - I)ka(_)]l 1,
| | C,
. wb
D14 = '[ka 2 C, ) ka+2( Ct )]
b
D,, _I[‘]kb 2(C| ) — kb+2( c, )]Z 5
b b
Dy, =1Jp () = J )]
2 Kb—2 c. kb2 c,
. b b .
Dy, =ilY 0 () + Yo (17,
C, C
wb wb
D24 = _[kafz (—) - ka+2 (—1,
C, C
wa wa a’
Dy =)+ kb+2( )—2(x—-1)J kb( )]_,
C, C, C, b X
. wa wa_ . a’
D32 = '[J kb—2 (?) -J kb+2 (?)]b_z’
wa b
Dy =[Yig 2 () Voo (- %) - 2z =Dl @by a’
C C, C, b? X
wa a
D, =i[Yy, 2( c. ) Yipio (— c. )]b_za
. wa wa. . a’
D, =i[J —)-1J — ,
a =1l kb—z(cl )~ Jiia ( c, )] bz}(
wa
Dy =-[Jw.(— c, )— kb+2( )] b2’
) wa wa., a’
Dy =Y (?) Yoo (?)] bzl ) (3.22)

44 - [ka 2( ) ka+2( )]_

t
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The solution of these equations gives the dispersion curves in the circumferential
direction.

For the longitudinal wave propagation, three types of wave modes are studied,
namely, longitudinal mode, torsional mode, and flexural mode. The particle

displacement would be assumed as:

u, =U(r)cos(n@)e' ™
u, =V (r)cos(ng)e'*> " (3.23)
u, =W (r)cos(n@)e'®

U, V, W are the displacement amplitudes composed of Bessel functions. Among them

the longitudinal mode particle displacement equations are analyzed below:

8 10 & 1 0%
——t——t—)p——— =0
(ar2 r or 622)¢ ¢ ot’

0 18 & Loy _,

(6r2 ror azz)l// ¢ ot’

(3.24)

The analytical solution for longitudinal mode potential equations is:

¢ =D(r)e"" ™ = (AT (k) + AY, (ke ™™

Y= \P(r)ei(wt—kz) = (ASJl(ktr) + A4Y1(ktr))ei(m_k2)

¢ : scalar potential of longitudal wave (3.25)
w :vector potential of transverse wave

k2 =| 2 |-k k=] 2 |-k
t (CfJ | (Cf

Jand Y refer to the first and the second type Bessel functions, respectively.

The general wave equations for three types of transportation modes is expressed as:
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06 2udw dw,
A+2u)——-—"——=+2 = -,
AH 2 =g TP TP

06 . ow dw, o,
—-2 L 4+2 L= ,
00 Ha "M TP

104 2u 0 24 0w, o’u,
A+2u) - -2 (re,) + S :
( ﬂ)r oz r 8r( ) r o0 Lo

(A+ 2#)% (3.26)

Where:

:la(rur)+18(ru9)+6uZ,
r or r o6 0z
ou, _ou,

00 0z

_ou, _ou,
0z or

o, = 1[20U,) _0u
r or 00

u, : particle displacement in direction i,
A, - Lamb constant,
p - density.

20 :l
r

r ’

2w,

3

2 1, (3.27)

Introducing scalar potential and vector potential as described at the beginning of this

chapter, the wave equation is written as:

U=Vg+VxW)
¢ : scalar potential of longitudal wave (3.28)
w :vector potential of transverse wave

Expanding this,

o> 10 1 08 & o’

—+

——t— +—)p+—¢=0

(arz ror r’oo’ az2)¢ o /
(3.29)
(a_2+li+ii+i)_'+w_2 7 =0
o ror roo’ a2 cr v
By assuming the potential in the forms as below [89],
¢ = f(r)cos(nf)cos(wt + kz),
=g, (r)sin(n@)sin(awt + kz),

v, =9, (r)sin(nd)sin( ) (3.30)

v, =0,(r)cos(nf)sin(at + kz),
v, =0,(r)sin(n@)cos(wt + kz).
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the general solution of Equation (3.29) is:

f(n=AZ,(ar)+BW, (),
gr(r) = _ge(r) = Azzn+1 (ﬂl r)+ Bzwn+1 (,Blr)s
g9,(r)=AZ (B,r)+BW, (Br).

Where (3-31)
a, =|a,a’* =w® /c} k2,
B :|ﬂ,ﬂ2 =w’/c] —k’.

Z denotes a J or I Bessel function, and W denotes a Y or K Bessel function. The proper

selection of the Bessel function to be used is shown in following.

Fork < Cﬂ; J(an),Y (ar), ()Y (Br);

Forcﬁ<k<cﬁ; 1(a,1), K(e, 1), J(fr),Y (f); (3.32)

For k >Cﬁ; (), K(e,r), 1 (1), K(S,T).

t

The particle displacement and the stress field are derived as [89]:

[t +(n/r)g, +kg, Jcos(n@) cos(at + kz),

u =

u, ==/ f +kg, - g, sin(n@) cos(et + kz),

u, = [— kf —g, —(n+1)g, /r]cos(ne) sin(at +Kz),

S, = {— /1(052 + kz)f + 2;1[ f' +$(g; —%J + kgi}} cos(n@) cos(wt + kz), (333)
an( .. f ; ) n+1 Al .

Org = H T f T _2(93 -p 93)_k Tgl — g, |sin(né@)cos(at + kz),

5. = ﬂ{_ 2kf' —%{g; i [”T”— i kﬂgi—% g3}cos(n9) sin(at + kz).

Applying the boundary conditions of free motion on the inner and outer surfaces,

0,=0,=0,,=0,atr=a,and r=h. (3.34)

The system equation for the coefficients A, B, A, By, As, B;is derived as:
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B, =0 (3.35)
Coi = Cg .
Since the nontrivial solution of this equation exists only when the determinant of matrix
C is zero, the characteristic equation of a tubular wave system is [89]:
lc;| =0, for (i, j=1t06).
Where,
¢, = -n-(p -k’ (@) + 240,82, (a2,
¢, =2kpa’Z (Ba)-2ka(n+DZ, (B a),
Cl3 = _2n(n - I)Zn (ﬁla) + 2ﬂ”znﬂlazn+l (ﬂla)a
Ciy = [2n(n -1 (p* -k*)a’ }Nn (@) +2a,aW, ,, (,8),
Cis = 24,kB,a’W, (B,a) - 2ka(n + DW,,, (5,2),
Cis =—2n(n—DW, (p,a) + 2ngaW,,, (f,a),
Cy =2n(n-DZ (a,a) =24 @z, (a,2),
c,, =—kB,a’Z, (B,a)+2ka(n+1)Z,  (Ba),
¢,y =-Pn(n-1- g2z, (Ba) - 24, 4,22,.,,(52).
Cyy =2n(n =W, (@) - 2n,aW, , (2,a),
C25 = _/12 kﬁlazwn (ﬁla) + Zka(n + 1)Wn+1 (ﬁla):
¢y =—[20(n —1) - 22 W, (B,2) - 24,aW,.,(5,2).
C,, =2nka,Z, (a,a) - 2A,ka,a’Z, . (),
Cy = _nﬂlazn (ﬁla) - (ﬁz - kz)azzn-H (ﬂla)a
Cy; =—nkaZ, (f5,a), (3.36)
C,, =2nkaW, (a,a) - 2ka,a’W, ,, (a,a),
Cys = ﬂ’znﬂlawn (ﬂla) - (ﬂz - k2)a2Wn+1 (ﬂla)a
Cys =—NkaW, (5,a).

The other three rows, from c4; to cg6 are obtained from the first three rows by substitution

of b with a. The parameters A; and A, are defined in Equation (3.37).
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Fork<2; A4 =14 =1
Cl

For £ <k<2; A =-14 =1 (3.37)
CI Ct

Fork>%; A =-14 =-1.

C,

Numerical solutions of characteristic equation are then generated for each
transportation mode.

For longitudinal and torsional modes, the particle motion is independent of the
angular coordinate e, i.e. n=0, the determinant in Equation (3.35) breaks into the product

of two sub-determinants

11 12 14 15

&
~

023 C26
X

. (3.38)
C53 CS()

~

1 4

[\S}

4

&

C C C c

C C C C
‘CIJ‘ = Dl D2 — C31 C3 C3 C35
45
C C C C

o G2 Lea Cos
The solution of D; = 0 generates the longitudinal modes for a tubular structure, and for D,
= 0 corresponds to the torsional modes. The numerical solutions for longitudinal modes
are illustrated in Figures 3.7. We observe that the group speed of longitudinal wave in a
brass tube with a = 5.10mm and b = 6.35mm is 3720 m/s under a frequency of 13 kHz,
which is one of the input frequencies used in the experiments of this research. This value
will be verified later using the experimental data. The numerical solutions of torsional
modes for a brass tube are given in Figures 3.8a and 3.8b. The group speed of torsional
wave in a brass tube used in the experiments is 2320 m/s, which can also be verified by
experimental results.

For flexural modes, we need to solve the complete set of Equations (3.34) to get
solutions under each circumferential order n. The numerical solutions for n =1 to 3 were
calculated and plotted in Figures 3.9 - 3.11 for the experimental brass tubes. Since we
are more interested in the frequency band from 13 kHz to 20 kHz, all flexural modes in
this range are calculated and plotted together in Figure 3.12. Note that there is only one
flexural mode for the frequency band 13 kHz — 20 kHz. The propagation speed is about

1500 m/s for 13 kHz. This is verified in the next Section.
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Phase speed (mmiusec)

Group speed (mmiusec)

Longitudinal modes for a brass tube, inner radius 5.10mm, outer radius 6 35mm
0

fd{hHZ"mim)

Figure 3.7a. Longitudinal modes in tubular structures, phase speed.

Longitudinal modes for a brass tube, inner radius S.10mm, cuter radius 5. .235mm
E

oe i | i i

fAd{hAHZ"mm)

Figure 3.7b. Longitudinal modes in tubular structures, group speed.
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Group speed (mmiusec)

Phase speed [mmiusec)

26

0.3

Torsional modes for a brass tube, inner radius S.10mm, outer radis 5.25mm

e, P 5 oo
SRS MU - S S = SR N e

)
: G:}GGG @%G%G‘-
: SO T
d & & m@?@ﬁﬂﬂ@@@@@g
i i i
8] 1 2 3 4 =)
fA{hHZ"mm)

Figure 3.8a. Torsional modes in a brass tube, phase speed.

Torsional modes for a brass tube, inner radius S.10mm, outer radis 6.25mm

1 2 3 B 5
A MAHZ™ i)

Figure 3.8b. Torsional modes in a brass tube, group speed.
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flexural mode for a brass tube used in experiments, n =1

Phase speed (mmiusec)

fd{hWIHZ"mim)

Figure 3.9a. Flexural modes in a brass tube with first circumferential order, phase speed.

Group speed (mmiusec)

o5 : | : :

fA{hHZTmim)

Figure 3.9b. Flexural modes in a brass tube with first circumferential order, group speed.
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flexural mode for brass tube, n =2

Phase speed (mmiusec)

fd(hAHZ"mim)

Figure 3.10b. The second circumferential order flexural modes in a brass tube, phase
speed.

Group speed (mmiusec)

os | | | :

fd({MAHZ" mim)

Figure 3.10b. The second circumferential order flexural modes in a brass tube, group
speed.
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flexural mode for brass tube, n =3

Phase speed (mmiusec)

fd{hHZ"mm)

Figure 3.11a. The third circumferential order flexural modes in a brass tube, phase speed.

Group speed (mmiusec)

o s | : | :

fd{ lHZ" i)

Figure 3.11b. The third circumferential order flexural modes in a brass tube, group speed.
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flexural mode for brass tube, SkHz to 20kH=

Group speed (mmiusec)
I

0.0z

fd(hAHZ"mim)

Figure 3.12. The flexural modes in the brass tube used in the experiments, group speed for 5 kHz
to 20 kHz.

3.3. Elastic Waves in Metal Structures Submerged in Water

3.3.1. Plate specimen immersed in water

For the plate immersed in the water, we must consider the interaction between
plate surface and water. Since only dilatational waves exist in water, the particle

displacement equation in water is written as

l_jW = V¢W
@, - scalar potential of longitudal wave in water (3.39)
u, : water particle displacementin.

Using the same coordinate system as in Section 3.1 for the aluminum plate, the

solution of this equation has the following form:
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¢w =E *Sin(y ,sz _ kz)ei(kz—wt) +F *COS(y /kv2v _ k2 )ei(kz—a;t),

@ . (3.40)
k, =—,C,, : wave speed in water.

CW
The water particle displacements in both directions are derived as:
ux(water) = 0’
Uy(watery = 8;;/W B Ekd COS(Y'\/ sz —k? )ei(kka’t) -
Fk, sin(yyk2 —k?)e'te

o, -

uz(water) = E = Ik¢w> (341)
Where :
ky =k —k?
U,y 2cwatery - PATTICIE displacement in water.

The normal stress on the waterside is:

au,
o (water) = w(
» o1

ou
+—)y =4 (-k*=k>a,,
ay) w( )Py,

Where : (3.42)
A, : Lame constant of water.

The boundary conditions for this water-plane coupling problem are decided by Equation

(3.43).

d
O-yz:O at y:ig,

d
Oy = Opyery AL Y =%, (3.43)
d
uy = uy(water) at y= iEa
d : thickness.

Hence the system equation can be derived, based on Lamb wave equations for the

plate, described in Equations (3.8) and (3.9).
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d
Fory=+—
y 2

uy = uy(water)’
=
_p /kIZ —k? cos(yy ki —k*)—ikC'cos(yk; —k*)

—ikA'sin(yyk; —k*) = D'k} —K sin(yyk; —k*) =
Ekd COS(y [sz _ kz)ei(kz—wt) _ de sin(y /k\i _ kz)ei(kz—a)t);

o,, =0,

=
u(=2ikB' k2 —k? sin(yy/k2 —k?)+C'(2k> —k2)sin(yy k> —k?))
1(—2ikA k2 —k? cos(yyk? —k*)+ D'(2k* —k?)cos(ykZ —k?)) = 0;

o, =0

Yy yy(water) >

—
— Ak} B'cos(y/ki —k?)=2u((k/ —k*)B'cos(y/k~ —k?),

+ikC' k! —k? cos(y+/k; —k*)— Ak} A'sin(y [k} —k*) - (3.44)
2u((k} —k*)A'sin(yk’ —k*)—ikD'\/k} —k? cos(y /k; —k*) =

ﬂ“w(_kz - kj )¢w

A system characteristic equation can be derived in the following form:

Ch Cp C3 Cy Cs CylA
Cii Cp Cy Gy Cy Cy|B
Cjy Cp Cy Cy O 0|C -0 (3.45)
Cy Cp Cy Cy O 0 |D
Csi Cp Cs3 Cyy Css CylE
Coi Co Ce3 Cos Cos Coof F

Nontrivial solutions exist only if the determinant of matrix C equals zero.

In order to consider the energy leakage from plate to the water, an imaginary part
is introduced into the wave number k=k.. + ikima, for the plate immersed in water. The
imaginary part corresponds to the energy leakage from plate to the water. The wave

i(kz—ot) i(Kz—at) -

propagation term € =g g includes the effect of wave attenuation due to
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the effect of water at the boundaries. Therefore, we need to generate complex solutions

for this equation.

3.3.2. Plate structure with water loaded on one side

For the plate with one side in contact with water and the other side free of
traction, the solution of this equation has the following form since one coefficient E is
able to describe the continuous particle displacement in the water because only the

particle movement on the interface will be used in deriving the system equations:

¢w —E % e*i)’\ Ky —k* ei(kz—zut),

» _ 3.46)
k, =—.c, : wave speed in water.
w
The water particle displacements in both directions are derived as:
Uy (water) = 0,
0 . “ikyy ik
Uy (water) = s = —iEk,e e,
o, -
Usuatery = — = 1K (3.47)
Where :
ky = k. -k’
U,y 2waery - PArtICle displacement in water.

The normal stress on the waterside is:
ou 8uy 2 L2\ aikgY Eai(kz—at)
O yy(water) = ﬂw(a_zz + E) = ﬂw(—k - kd )e YEe'™ s

Where : (3.48)
A, : Lame constant of water.

The boundary conditions become.
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d
o, =0 at =+—,
yz y >

d
O-yy = O-yy(water) at y= +5:
d
o, =0 at y=-—. (3.49)
d
Uy :uy(water) at y=+5,
d : thickness.

Hence the system equation can be derived, based on Lamb wave equations for
plate, as described in Equations (3.8) and (3.9).

54



d
Fory=+—
g 2

0, =0,

yz

=
2ikB' (k[ —k? sin(y+/k] —k*)—=C'(2k* —=k/})sin(y/k; —k*)
2ikA' K —k* cos(yy [k’ —k*) = D'(2k? —k?) cos(y~/k? —k*)

d
Fory=—
y 2

o, =0

yy yy(water) »

N
— k7B cos(y~fki —k>) = 24((k? —k*)B' cos(y/k? —k?),
+ikC'JkZ — k2 cos(yJk? —k?) — Ak A'sin(y/k? —k?) -
2u((k —k*)A'sin(yy[k7 —k?) -

ikD' k2 —k? cos(yk? —k?) = A, (-k* — k3 )e "V Eelt-eb;

u, =u

y — Yy(water)>
=
_B /klz —k? cos(yk/ —k*)—ikC'cos(yyk —k*)

—ikA'sin(yyk? —k?) = D'y/k2 —k* sin(y,/k: —k*) =

_ |Ekd e—ikdyei(kz—a}t),
d
Fory=-—
y 2
o, =0,

vy

N
— k7B cos(y~fki —k>) = 24((k? —k*)B' cos(y/k? —k?),

+ikC'yJkZ k2 cos(yJk? —k?) — Ak A'sin(y/k? —k?) -

2u((ki —k*)A'sin(yy/k7 —k?)

—ikD'\k? — Kk cos(y~/k? —k?) = 0. (3.50)

The system characteristic equation are derived in the following form:
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Cy Cy C3 Cy OJA
C; Cp Cy Cy OB
C;; Cp Cy3 Cy CfC =0 (3.51)
Cy Cp Cy3 Cy O|D
Csi Cn C3 Gy Col|E

Nontrivial solutions exist only if the determinant of matrix C equals zero.
Complex solutions of the determinant matrix are the wave numbers of the Lamb wave

propagating along the plate.

3.3.3. Tubular specimen immersed in water

For the tubular specimen immersed in the water, we may consider the interaction
between tubular surface and water in a way similar to that for the plate. The particle

displacement equation of water is given by

u, =Vg,
@, : scalar potential of longitudal wave in water (3.52)
u, : water particle displacement.
Expanding the above equation
1e 10 ¢ o’

62
o +—)p +—a¢ =0 3.53
(8r2 ror r*oo’ 822)¢W c P (3.53)

Assume the functional form of the potential in the following form [89],
@, = f,(r)cos(n@)cos(at +kz). (3.54)
Using the same coordinate system as in Section 3.2 for the tubular structure, the
general solution of this equation has the following form.
f,(nN=AZ (2,r)+BW (a,),
Where, (3.55)

2 2 2 2
,a,, =0 /c, —k".

a, = |awr

The water particle displacements in both directions are derived as:
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_ 04,

Uruater) =~ = f, (r)cos(n@)cos(at +kz),
r
99,
uz(water) = E = kfw(r) COS(n 9) cos(a)t + kZ),
Where :
U, waer) - PArticle displacement in water.

The normal stress on the waterside is:
2 2
O rr(water) — /Iw (_k - aw)¢w’

The boundary conditions are written as:

c,=0, o,=0at r=a,r=>n,
O-rr = O-rr(water) at r= a= r= b’
U =Uaery al r=a,r=b,

a : inner radius,
b : outer radius.

Hence the system equation can be derived.

Forr=a,b

Uy = Uywater)»

=

[f'+(n/r)g3 +kgr]: f, (1)
0,=0,,=0,

=

—

n( . f ) n+1 ,
—T(f —7j—2(93—ﬂ293)—k(—r gl—glj}ﬂ),

— 2kf’ —E{gi +(nT+l—ﬂ2 +k2jgl}%93}=0;
;

=0

—

=%

m rr(water) >

J

—

—ﬂu(oz2 + kz)f +2y[f" +%(g; —%)Jr kgi}} =
Ak —al)f,.

A system characteristic equation is then derived in the following form:
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Nontrivial solutions exist only if the determinant of matrix C equals zero. As

mentioned in the previous section, an imaginary part is introduced into the wave number

in order to consider the energy leakage from the tube. The imaginary part corresponds to

the energy leakage from the tube to the water. Therefore the complex solutions are

necessary for the wave propagation along the tube immersed in water.

3.3.4. Tubular structure with water in contact on the outside

Since the waves leaving the tube surface are diverging, zero HANKEL function is

introduced for the wave propagation in the water because its asymptotic value is zero for

r — o. Using the same coordinate system as in Section 3.2 for the tubular specimen, the

general solution of this equation has the following form [30].

fw(r) = A\N(‘]O(awr) + iYO(awr)) = A\NHO(awr):
Where, (3.61)

el -k,

a :|0{

w s &

wr wr

The boundary conditions are given by

c,=0, o,=0at r=a,r=>nb,
o,=0, at r=a,
o,.,=0 at r=»h,

rr ™ rr(water) (362)
u =u at r=»h,

r = “r(water)
a : inner radius,
b : outer radius.

The system equation is derived as follows.
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Forr=»h
u,=u

y y(water) >
=
[t'+(/b)g, +kg, |= £, (0);
Forr=a,b
6, =0,,=0,
=

{ zl (f —ij—2(g;' —ﬂzgs)—k(n—ﬂgl —g{j} =0,
r r r
{—2kf' —E{gi +(—n+l - p +k2jgl}——nk 93} -
r r r

Forr=a,0. =0,

>Hrr

=
Ma? +k?)f () - Zy[f @)+2 [93(a) 9;(@ )j Tk (a)}
Forr= b’ 5rr = 5rr(water)’
= (3.63)
{— M +K?)f (b) +2,Ll|:f by+ (g (b) - 93éb)j Tk, (b)}
A=K* —a,) £, (D).
A system characteristic equation can be derived in the following form:
Cll C12 C13 C14 ClS C16 Cl7 Al
C2] C22 C23 CZ4 C25 C26 0 Bl
C31 C32 C33 C34 C35 C36 0 AZ
Ch Cp Cy Cy Cis Cp 0]By=0 (3.64)
CSl C52 C53 C54 C55 C56 0 A3
C61 C62 C63 C64 C65 C66 0 B3
C71 C72 C73 C74 C75 C76 C77 A\N

Nontrivial solutions exist only if the determinant of matrix C equals zero. The
complex solutions are necessary for the wave propagation along the tube with water

loaded outside.
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4. DIGITAL SIGNAL PROCESSING (DSP) TECHNIQUES
FOR NON-STATIONARY ACOUSTIC DATA

Depending on the properties of experimental data and the objectives of this
research, several non-stationary signal analysis techniques are proposed for the post
signal processing in this study such that more structural properties will be revealed from
the experimental data. Some of them are fairly new and have never been used before. As
shown in the section above, the Lamb wave speed changes with the transportation mode
and frequency, hence neither time nor is frequency analysis alone sufficient to reveal the
phenomenon of Lamb wave dispersion. Therefore, time-frequency analysis was very
important in this study. An advanced non-linear non-stationary DSP method, Hilbert-
Huang transform (HHT), was introduced and briefly elaborated below as compared with
the Wavelet transform. In addition, instantaneous time information plays an important
role in structural flaw detection, evaluation, and localization. Two new techniques, called
moving windows and zooming windows, are proposed in this section so that more
material properties can be revealed from the acquired data. The structural flaw
classification using the discrete wavelet transform (DWT) and eigen-face analysis is

presented.

4.1. Hilbert-Huang Transform

Hilbert transform (HT) is suitable to process non-stationary and narrow band

signals. The Hilbert transform is defined as
Y (t)=H(X()) = 1 Prwﬁd T, (4.1)
T Set-7

where P is the Cauchy principal value. From this we can construct an analytical signal
Z(t)=X({)+iY (t) = A(t)exp(iO(t)), (4.2)

The instantaneous frequency used in Hilbert transform is written as

o(t) = 278 (t) = %Q(t). (4.3)
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However, the integration of finding H[x(t)] is usually complicated, even by using
numerical calculation methods. Therefore, Fourier and inverse transformations are often

used to calculate Y(t) as described below.

X(f)=FFT(x(t)), f =1~2N,

z(f)=x(f :1~ N), padding zeros for N +1~ 2N, (4.4)

Y (t) =imag(IFFT (z(f))).

A time-frequency distribution may be developed using the Hilbert transform.
Unfortunately, the application of HT is strictly limited by the properties of x(t), that is,
the signal should be narrow banded around time t. This condition is usually not satisfied
by time series collected from practical applications. Suppose that we have a signal x(t) =
cos(mt) + cos(myt), Hilbert transform will generate an average instantaneous frequency
instead of ; and o, separately. To overcome this problem, Huang et al. [43] proposed
an empirical decomposition method to extract intrinsic mode functions from time series
such that each intrinsic mode function contains only one simple oscillatory mode (a
narrow band at a given time).

An empirical mode decomposition (EMD) algorithm was proposed to generate
intrinsic modes in an elegant and simple way, called the sifting process. Three
assumptions are made for the EMD of a time series: first, the signal must have at least
two extrema — one minimum and one maximum; second, the time interval between the
extrema defines the characteristic of the time series; third, if the data were totally devoid
of extrema but contained only inflection points, it can be differentiated to reveal the
extrema.

Once the extrema are identified, the maxima are connected using a cubic spline
and used as the upper envelope. The minima are interpolated as well to form the lower
envelope. The upper and lower envelopes should cover all the data points in the time
series. The mean of the upper and lower envelopes, m;(t), is subtracted from the original
signal to get the first component h(t) of this sifting process.

h, (t) = x(t) —m, (t). (4.5)
If hy(t) is an intrinsic mode function (IMF), the sifting process stops. Two conditions are

used to check hi(t) as an IMF: 1) the number of zero crossings should be equal to the
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number of extrema or differ by at most 1. In other words, h;(t) should be free of riding
waves; 2) h;(t) has the symmetry of upper and lower envelopes with respect to zero.
Otherwise, the sifting process should be repeated to purify the signal h;(t) to an
IMF. As aresult, h;(t) is sifted to get another first sifted component h;;(t).
h,,(t) =h, (t) —m,,(t), (4.6)
where my(t) is the mean of upper and lower envelopes of h;(t). The process continues
until hy(t)is an IMF. The h;i(t) is then designated as the first component c;(t) = hji(t).

In order to stop the sifting process a criterion is defined using a standard deviation.

2
& =hy @)
= ha®

The threshold value is usually set between 0.2 and 0.3 [43]. A revised criterion is

SD

< threshold. 4.7)

proposed to accelerate the sifting process.

[ 2
Z‘hl,k—l (t) - hl,k (t)‘
SD =H < threshold. (4.8)

D hiL ()
t=1

The stopping criterion is designed to keep the resulting IMFs to be physically

meaningful. The first component c(t) contains the finest scale of the signal, or the
highest frequency information at each time point. The residual after the first sifting
process is
r,(t) = x(t) —c, (t). (4.9)

Then 1, is used to replace the raw signal x(t), and the sifting process continues to generate
other IMFs. The sifting process should stop according to the requirement of the physical
process. However, there are some general standards, for example, the sum-squared value
of the residuals is less than a predefined threshold value or the residual becomes a

monotonic function. The residual after sifting out n components is given by

r(t) = x(t)— ici (t). (4.10)
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The resulting IMFs from sifting processes are then ready to be transformed using the
Hilbert transform. It is obvious that the resulting empirical components are free from
siding (frequencies on either side) waves thus local narrow frequency band is realized.
The HHT is adaptive by using the sifting process with the help of cubic interpolations,
thus it is a nonlinear transform technique that has great potential applications for

complicated non-stationary nonlinear data analysis.

4.2. Moving Window Method for the Analysis of Time Series of Lamb
Waves

For the finite length tubing, Lamb wave signals collected by piezo-sensors are the
combination of several transportation modes that bounce back and forth between the ends
or inside discontinuities. The reflection from the boundaries forms local peaks in
collected signals in piezo-transducers. However, the wave speed changes along with the
frequency for a single mode. Therefore, the synthetic time series usually have narrow
peaks at the beginning and wider peaks later. In addition the local peaks are not easy to
be found provided enough time is given. The local peaks finally become meaningless as
they spread out because too much information is mixed together. In comparison, the
first several peaks have clear physical meaning and thus deserve to be separated from the
rest for analysis.

A specific type of structural flaw usually interferes with propagating waves in
three ways: refraction of part of energy into air or water, reflection of part of the energy
back in the form of several modes and transmission of the rest of the energy forward in
all modes. The reflection and transmission coefficients are a function of modes as
studied by Rose [30], the shape of defect, and the flaw dimension. The experimental
studies of reflection/refraction coefficients did not generate constructive results that can
be directly applied to NDE techniques. However, one definite correct conclusion is the
reflection rate increases nonlinearly with the structural defect size.

In order to study the effect of structural flaws on time series of acoustics in a tube
like structure, a moving window with flexible size is implemented to localize the
properties of acoustic signals. The principle of this algorithm is demonstrated in Figure

4.1.
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Figure 4.1. Signal localization using moving windows.

The window signals are extracted as long as the middle of the window coincides
with a local maximum point, plus it must also be the maximum value among the points
falling into the window. The width of the moving window is very critical for good
feature extraction. For a large window, suppose its width is larger than two times the
distance between two local peaks, the information extracted may not be useful. Too
small a window may also create problems, that is, the method may not be sensitive to the
existence of structural defects. The selection of an optimal window size depends on the
characteristics of the signals, but usually one option is a little bit smaller than twice the
distance between two neighboring peaks.

Several properties of windowed signals are introduced in this study and defined as
follows:

a. Amplitude in voltage. The energy of local peaks reflects the energy loss in the

Lamb wave propagation. The energy loss is due to the refraction of acoustic

waves into the air or water from elastic media. A structural discontinuity will
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definitely increase the refraction of acoustic wave into the air and thus decrease
the peaks. Part of the energy is reflected back, while the reflection from the
defect has certain time of flight and thus also causes the decrease of local acoustic

peaks.

b. Spread of the windowed signal. This is defined as

ik,

S(Xw) = i:—nn >

2.

4.11)

Where :
n: half of the window width,

XW

C.

: windowed signals around a local peak.

The variance of windowed signal will increase as a local peak spreads outside its
boundaries.

Gravity center is defined as:
0
Sixx,|

WI(Xw):i:_nO—a

2 ¥l

I=—n
n

Z|i X Xwi|
W, (x,) =, (4.12)

2. [Xil

i=0
Where : n half of the window width,
X,, : windowed signals around a local peak,
W, : gravity center of left half part of the windowed signal,
W, : gravity center of right half part of the windowed signal.

The left gravity center and the right gravity center are especially useful in estimating the
location of flaw in tubing. Since the first reflection from a structural flaw is located
between the first two local peaks selected by a moving window, the right gravity center

of the first peak should shift towards the right, and the left gravity center of the second
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peak should shift toward the left, provided the window is large enough to cover the

reflected signals. This will be elaborated in the next section about zooming window.

4.3. Window Zooming Method for the Analysis of Lamb Wave Data

A zooming window method is proposed to locate the defect in a tube like
structure. As will be shown in the next section, the localization of flaw in a tube is much
more difficult than in an aluminum plate. Actually the reflected signal in a tube does not
appear as an obvious small peak between the local peaks and it is difficult to locate the
position of reflection visually. The reason is that the reflection of Lamb waves in a tube
spreads between local peaks with certain distribution without an apparent peak, while the
distribution depends on the properties of input signals, size of defect, and the shape of
defect. The zooming window provides a method for flaw location, and an estimation of
the distribution of the reflection signal, as long as enough small step size is given for the
window’s expansion. The window expansion is illustrated using dashed red lines in
Figure 4.2.

For the zooming window method, only the first few local peaks are of interest
because of the dispersion of Lamb waves. In other words, the spread of the local peak
distorts the reflection after several local peaks, so it is very difficult to distinguish the

location information from these local peaks with very large variance.
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Figure 4.2. Signal localized properties using zooming windows.
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4.4. Wavelet Transformation and Eigen-face Analysis

The wavelet transform has been widely used in non-stationary signal analysis for
its good properties in capturing both localized time and frequency information. By
comparison, STFT (Short-Time Fourier Transform) is especially useful for chirp signals.
The limitation mainly comes from the Heisenberg uncertainty principle. The statistical
properties of spectrogram from STFT have been used to indicate the structure flaw as
described in the 2003 Annual Report. However, the features are not complete for fault
evaluation and classification.

A Hanning window modulated sine pulse signal is therefore introduced in order to
generate more representative signals for flaw classification. Accordingly, wavelet
decomposition is adopted for time-frequency analysis since STFT is not suitable in
capturing the abrupt changes in the time series. The continuous wavelet transform is

defined as

t—-7
a

CWT(z,a) = %j: f () (—)dt. (4.13)

Where a is a parameter called scale that corresponds to the inverse of the frequency. The
wavelet transformation results in a two-dimensional time and frequency image. The
coefficients can be viewed as the energy at a point with time t and frequency f. However,
the direct comparison of WT coefficients is not a good way to detect the structural
changes systematically from the data. Based on the wavelet transformation, two
dimensional cross correlation analysis provides a different perspective to view the signal

change. The cross correlation is calculated as

. 1 T/2
Cyy =lim— j WC, (t,aWC, (t + 7, a)dt. (4.14)

-T/2

WC, and WC, are the coefficients of wavelet transforms of signals x and y, respectively.

The cross correlation reflects the time difference change between signals x and y. Since

67



the structural flaw or thickness change of structure scatters the input waves, cross
correlation is a good way to reveal the potential features.

Although the wavelet transform has good properties, it still is limited by the
Heisenberg uncertainty principle. The difference is that wavelet analysis decreases the
frequency resolution and increases the time domain resolution for high frequency signals,
while increases the frequency resolution and sacrifices the time domain resolution for low
frequency part of signals as shown in Figure 4.3. This is one of the reasons for
introducing the Hilbert-Huang transformation in this research for time-frequency

analysis.

t
Figure 4.3. Energy distribution of wavelet transformation in the time-frequency domain.

However, WT analysis is still useful in blind classification of structural conditions. The
blind classification means the raw wave signals are utilized directly for classification
after wavelet decomposition. No other feature extraction techniques are required. The
eigen-face method is applied to the time-frequency (T-F) images for classification. The
classification process is shown in Figure 4.4. The eigen-face of a set of training images
is extracted using the principal component analysis (PCA), where each training image is
converted into a vector from a two-dimensional data set. A test T-F image is then
projected onto each of the eigen-faces stored in the database. The test image is classified

into the one that generates the smallest projection residual.
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Figure 4.4. DWT/CWT + eigen-face analysis for structural flaw classification.

4.5. Comparison of Wavelet Transform with HHT

The wavelet transform method is developed based on the fact that transient signal
analysis, such as short time Fourier transform (STFT), could not generate satisfactory
resolution with fixed size windows. WT adopts the adjusted window size to improve the
time-frequency plot by sacrificing the frequency resolution in the high-frequency band
and the time resolution in low-frequency band. However, a dilemma associated with WT

is how to explain the decomposed components, since the limited length of the wavelets

causes the frequency band under a scale spread around a scaled central frequency as:

aA
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F. is the wavelet central frequency decided by its shape. It is roughly the frequency of a
sine wave that best fits the shape of the wavelet, and may be calculated by the peak value
of FFT of the wavelet.

A is the sampling interval, and a is the scale.

Hence the result from WT is not real instant frequency component but a series of
scaled central frequency approximations. The second reason is that the WT is still
limited by uncertainty principle though it tries to decrease its effect. The direct effect is
that we need to find the local change in high frequency area because high frequency part
has higher time domain resolutions even for the local change happening in low frequency
band. There is another difficulty in the implementation of the WT, that is, it is still
subjective in selecting the wavelet and evaluating the results using different wavelets.

In comparison, HHT uses an empirical filtering process, which is adaptive instead
of having a fixed window. In addition, the definition of Hilbert transform provides the
best way to find the instantaneous frequency for a time series. Thus, the HHT is first a
nonlinear filtering process while WT is usually linear, and secondly it generates the
instantaneous frequency from the definition

e dé(t)
dt =’ : (4.16)
6(t): phase of atime series.

In addition, energy leakage is not avoidable due to the limited length of the
wavelets, while the HHT process generates much less leakage. This is illustrated in
Figure 4.5, where a sine pulse signal is processed using HHT and WT analyses. We can
see that HHT generates the best time-frequency plot in Figure 4.5b, while the WT +
Hilbert transform is better than the pure wavelet transformation. Therefore, the energy
leakage in a time-frequency plot from wavelet analysis is caused by two factors: the short
length of wavelet, and the methods of instant frequency calculation.

In order to see more advantages of Hilbert transform, another time series defined

by 1000 exp(—2t)cos(80zt +1) , is generated and analyzed using HHT, WT with
MORLET wavelet, and WT + HT.
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Figure 4.5a. The sine pulse signal adopted in this research.
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Figure 4.5b. HHT plot of the sine pulse signal, 18 kHz.

71

1000



fraq (Hz)

05k 1 1 1 1 1 1 1 1 1 1
100 200 200 00 S00 [s1e]] Foo S00 Q00 1000
time points (2. 3exp-6 5)

Figure 4.5¢c. WT plot of the sine pulse signal; a Morlet wavelet was used. The leakage of
the energy is obvious compared with 7.5b.
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Figure 4.5d. WT + Hilbert transform can improve the concentration of instant frequency.
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The amplitude-modulated signal is plotted in Figure 4.6a. The HHT result is
shown in Figure 4.6b, which demonstrates the frequency modulation introduced by
amplitude modulation is small and the excellent performance of Hilbert transform in
capturing the instantaneous frequency from non-stationary signals. However the wavelet
analysis generates a large frequency variation around the central frequency (20 Hz) as
shown in Figure 4.6¢, which is caused by the wavelet leakage and the bad definition of
instantaneous frequency through scale. The problem of energy leakage cannot be fixed
by introducing Hilbert transform after WT decomposition as demonstrated in Figure 4.6d.

A nonlinear time series defined by 100*cos(20*pi*t + 0.5*cos(10*pi*t)) is
generated to test the capability of HHT in processing the signals from nonlinear system.
The original signal is plotted in Figure 4.7a. The instantaneous frequency should be
20pi-5*pi*cos(10*pi*t) theoretically from its definition. The Hilbert transform contour
plot of the first IMF from EMD gives exactly this instantaneous frequency as being
expected as illustrated in Figure 4.7b. While the contour plot of WT results generates a
spectrum around 10 Hz in Figure 4.7c¢, it is widely distributed and it not able to establish
a clear frequency feature from this plot. The process of WT + Hilbert transform
illustrated, in Figure 4.7d, is not helpful because the nonlinear properties are mainly
related to the signal decomposing process, so the difference comes from the WT process
and the EMD nonlinear sifting process.

In summary, the difference between HHT and WT are mainly due to two
factors. First, the empirical mode decomposition process is nonlinear and adaptive
compared with the linear fitting process used in the WT. Second, the instantaneous
frequency calculated by the Hilbert transform may be compared with the correspondence
between the frequency and the wavelet scale. Hence, the HHT is highly suitable for the
nonlinear and non-stationary signal processing, especially studying the local frequency

properties without much energy leakage.
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Figure 4.6a. amplitude modulated signals, 1000*exp(-2*t).*cos(80*pi*t+1).

HHT
60 T T T T T

55 -
50 F -
45| 4

40 ik
35 H 4
30

freq (kHz)

25
20 | -
15 E 4
10 F -
5L 4

1 1 1 1 1
100 200 300 400 500
time points (2 3exp-6 5)

Figure 4.6b. HHT of the amplitude modulated signals illustrates frequency modulation
introduced by amplitude modulation is small.
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Figure 4.6¢c. WT of amplitude-modulated signals.
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Figure 4.6d. WT + Hilbert transform for amplitude modulated signals.
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Figure 4.7a. Nonlinear signal defined by 100*cos(20*pi*t + 0.5*cos(10*pi*t)).
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Figure 4.7b, HHT of the nonlinear signal.
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Figure 4.7c. WT of the nonlinear signal.
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Figure 4.7d. WT + Hilbert transform for nonlinear signals.
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5. MODE SEPARATION OF LAMB WAVES

Mode separation for acoustics in tube-like structure is very important for feature
extraction in structural monitoring. The raw signals and the separated signals are plotted
in Figures 5.1 and 5.2 for comparison. In the raw signals, several modes of acoustic
waves interweave together. The local peaks are irregularly distributed along the time
axes. This makes the signals very difficult to be analyzed. However, the separated
signals with single mode shown in Figure 5.2 have regular local peaks and clear patterns
that are suitable for analysis using the moving window elaborated above.

In order to separate symmetric and anti-symmetric modes, a special sensor
deployment is required, where two passive sensors are embedded into a tube, 180-deg
apart at the same axial position. The independent pure mode waves are then calculated

by:

S, =(8,-5,)/2,
S, =(s,+5,)/2,
where:

(5.1)

s, : raw singal from sensor i,
S, : antisymmetric singals,
S, : symmetric mode singals.
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Figure 5.1. Raw signals from brass tube.
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Figure 5.2. Separated symmetric and anti-symmetric mode signals.

flexural mode

As we mentioned in Section 3, the Lamb wave propagation speed in a brass tube
used in our research was verified using experimental data. With the separated mode
illustrated in Figure 5.2, we can calculate the symmetrical mode speed by measuring the
distance between two neighboring peaks and the length of the experimental tubes which
is 0.9 m. The average time interval between two neighboring peaks is 780/1600000 =

4.8750e-4 second, SO the symmetrical wave speed 1S
2L/At=1.8/(4.875x107")=3692.3m/s . From Section 3, we know that the

longitudinal mode speed (numerical solution) for the brass tube used in this research is
3,720 m/s, therefore we can decide that the symmetric mode appeared on the upper plot
in Figure 5.2 is a longitudinal mode.

In a similar fashion, the anti-symmetric mode speed may be calculated. The
average time interval in the lower plot in Figure 5.2 is 1874/1600000=0.0012 second.
Hence the anti-symmetrical wave speed is 2L/At=1.8/0.0012=1536.8m/s.  The
theoretical speed for the first-order flexural mode calculated in Section 3 is about
1500m/s, and it is the only flexural mode that exists at 13 kHz. Therefore, the anti-

symmetrical wave in the lower plot of Figure 5.2 is the first-order flexural mode
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propagating along a brass tube with inner radius 5.1 mm and outer radius 6.35 mm. The
small difference between experimental and the theoretical results are due to several
reasons. The first reason is that the length of tube is an approximate value. A small
measurement error such as 9mm will cause about 30m/s difference in longitudinal speed.
The second reason comes from the measurement of the inner and outer radius of the
experimental tubes. These two dimensions are two sensitive parameters in the Lamb
wave numerical estimation. The third source of error is from the numerical calculation
itself. This error may be reduced by the enhancement of eigen-value algorithm, but
cannot be completely eliminated..

Therefore, the virtues of separation of the Lamb wave in tubular structures exist
not only in simplifying the Lamb wave structures, but also verifying the experimental
results through theoretical analysis. The advantages of this technique will be further

tllustrated in the tubular structure health evaluation described in Section 7.
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6. STRUCTURAL DIAGNOSTICS OF ALUMINUM

PLATES

Experimental analysis of aluminum plates in air was performed with different

input frequencies. The length of the aluminum beams used in this study is two feet. As

the optimal selection, 27 kHz, 28 kHz, 29 kHz, and 30 kHz sine pulses, modulated by

Hanning windows are used to stimulate the piezo-transducers attached on to the surface

of the metal beam to produce Lamb waves. A typical output from three passive channels

is plotted in Figure 6.1. The 3™ sensor and the 4™ sensor are placed back to back on two

opposite faces of the aluminum plate at the same position. This allows us to separate the

symmetric and anti-symmetric modes of propagation as shown in Figure 6.2.

amplitude volts

Raw Lamb wave signals

T
—— passvive ensor 2

I
4000 000

T
—— passvive ensor 3

i
4000 5000

T
—— passvive ensor 4

I
1000

i i i
2000 3000 4000

time points (3 3exp-6 5)

5000

Figure 6.1. Lamb wave signals from an aluminum plate.
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Figure 6.2. Symmetric and anti-symmetric modes of waves in a plate.

It is noticed by comparing the separated signals that the symmetric mode wave is
very weak compared with the anti-symmetric mode, and the symmetric mode propagates
faster than the anti-symmetric mode. Since in this study, the anti-symmetric mode
dominates the wave signal in an aluminum plate, the following analysis focuses on anti-
symmetric mode or raw signals without reference to symmetric signals. However, it does
not mean that the symmetric wave is not important. With appropriate excitation, we are
able to generate pure symmetric mode Lamb waves in plate-like structures, and the
analysis of mode conversion between symmetric and anti-symmetric modes are of

importance in structural flaw detection.

6.1. Flaw Detection and Localization Using HHT

Structural flaw detection for an aluminum plate was discussed in the 2003 Annual
Report [118], using the energy ratio method and DWT analysis. There are several other
studies focused on flaw detection for plate-like structure. Although the focus of this

research is to monitor flaws in tubing (in the air and in water), the study on aluminum
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plates has been performed because of its simple geometry and fewer number of wave
modes.

As mentioned above, the Hilbert-Huang transform emphasizes instantaneous
frequencies, and can generate clearer time-frequency plots in many circumstances. In
addition, due to the intrinsic decomposition, HHT often extracts more meaningful
features than other algorithms such as the WT. The sifting process used in the HHT
decomposes the signal into important components. The sifting process uses local
extrema and cubic spline interpolation to sift out local high frequency waves, therefore
HHT is really adaptive to the signals itself, that is, it has good nonlinear properties. In
summary HHT provides us a powerful non-stationary, nonlinear DSP method to deal
with both intra-modulated and inter-modulated signals. As an example, Figure 6.3
illustrates the sifting processing of Lamb wave signals from an aluminum plate. The
original signal is plotted in Figure 6.4. It is very important to notice the adaptive
characteristics of HHT, displayed by each intrinsic mode function (IMF). We see that an
IMF need not be of narrow band in the whole time domain, but must be of narrow band at
each time instant. This property is extremely useful in filtering out nonlinear and non-
stationary background noise in steam generators as illustrated for tubing structural

diagnostics in the Section 7.
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Figure 6.4. Lamb wave signal in an aluminum plate.

As illustrated in Figures 6.5 and 6.6, the HHT generates clear time-frequency
plots of Lamb waves for the aluminum plate. It was used to indicate the potential
structural problems in this research and is found to be more sensitive in some cases than
other methods, especially for the small flaw such as a partial hole on the surface of the
aluminum plate. Another method described next will not be able to detect this type of
small flaw, but can detect other kinds of flaws such as clips, deep v-notch, etc. The flaw
position can be estimated using the distance between the reflected signals indicated in
Figure 6.6 and the first group of peaks or the second group of peaks, which correspond to
the reflection from the boundaries of the beam. The estimated position of the defect in
Figure 6.6 should then be at one-third of the plate length from the left boundary, which is
very near the actual flaw position.

An important information revealed by the HHT plots is the dispersion phenomena
of Lamb waves in plate like structures. In our experiments, we tried to create active
signals with pure frequency using modulated sine wave (Hanning window); however, the
finite length of modulated window will definitely cause the frequency spread due to the
effect of window’s boundary.  Therefore we find that the Lamb wave signals are
concentrated around the selected center frequency of input signals, which is 27 kHz for
Figures 6.5 and 6.6. However, there are other frequency components around 27 kHz,
and their transportation speeds are inversely proportional to their frequencies. This

proves that the Lamb waves here are in an anti-symmetric mode, because only the anti-
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symmetric 0™ order mode has this relationship between frequency and wave speed in low
frequency bands, whereas the symmetric 0" order mode has constant speed in low
frequency bands.

Figures 6.7 to 6.12 illustrate more experimental Lamb waves and their HHT under
different structural conditions. We can see that the HHT generates clear time-frequency
plots for aluminum plates, and indicates the structural anomaly without complexity. The
approximate flaw position may be estimated more accurately in the HHT plot than in the
raw signal plot. The HHT is therefore sensitive to small signal changes in both the time
and the frequency domains, while the WT analysis does not perform well based on the
test that we performed. The reason is WT has more energy leakage than HHT, so the WT

may not be sensitive to the small reflection from the structural flaw.

One problem associated with the structural diagnostics described above using
HHT is the estimation of the flaw size. We can roughly state that the flaw size is
proportional to the energy of the reflected wave; however, the reflection is also affected
by the position of the flaw. The method used to estimate the flaw size in a systematic
way for plate and tubular structure deserves to be further studied.

Another nonlinear signal processing technique for structural flaw detection in
plates is elaborated in the next section, which can estimate the flaw position more

quantitatively.
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Figure 6.12. Lamb wave signal from an aluminum beam with two clips located near the
right end and its HHT.
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6.2. Flaw Detection and Localization Using Extrema Extraction

As discussed in the HHT analysis, the HHT provides us with an effective way to
understand the Lamb waves in a plate like structure. It is very sensitive to the changes
caused by small flaws especially surface flaws. HHT can even be used for testing the
homogeneity of materials. For instance, in Figure 6.5, the aluminum plate is supposed to
be flawless, but we can still find some small spots between the first group of peaks and
the second group. These spots are not caused by macro-structural flaws, but by the
micro-structural change, such as a single broken fiber. Hence the Lamb wave is
sensitive enough to feel the stress distribution change, and HHT 1is able to extract the
micro-changes from the signals. In addition, the resolution of the contour plot of T-F
distribution from HHT can be easily adjusted according to the requirement of detection.

However, there are also other analytical methods that can be used to extract
representative features of Lamb waves; for example, the method of extrema extraction
used below. For some types of flaws, such as clip and v-notches, this method is very
effective. Compared with the HHT analysis, this is a simple and effective method to save
calculation time without degrading the results of diagnostics. The method is not very
sensitive to small surface flaws, but still a good check for the HHT analysis.

The objective of extrema extraction is to extract the upper and lower envelopes
from Lamb wave signals. Since any structural flaw will change the signals collected by
the passive sensors, the shapes of the envelopes would be affected. The comparison
between normal wave envelope and the abnormal wave envelope should reveal the
structural change in the materials.

In order to extract the envelope of a time series, first the local maxima and
minima are picked out separately. The points between the maximum points are estimated
using a cubic-spline interpolation to generate an upper envelope. In the same way, the
interpolation of minimum points gives the lower envelope. An example of the extraction
process is shown in Figure 6.13.

Passive wave signals under different system conditions are compared in Figure
6.14, where the blue line corresponds to the normal condition and the other three

correspond to the system response under the same flaw (2 clips on) but different positions
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on the plate. The first one (green line) is located at 1/5 of the plate length from the
active sensor; the second is located at 2/5 of the length from the active sensor; the third
one is located in the middle of the test plate. The plot shows the defect on plate causes
the amplitude to decrease more quickly. The first peak is the wave signals collected by
the passive sensor before collisions. Therefore the amplitudes are almost the same.

The signals between the first peak and the second peak are plotted in Figure 6.15.
The location of flaw can be estimated approximately by the location of the peaks. As
demonstrated in Figure 6.15, the peak of each curve is due to the reflection of structural
flaw and thus the time of flight directly reflects the distance between the receiving sensor

and the defect.
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Figure 6.13. Lamb waves and envelope extraction.
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Figure 6.14. Passive Lamb wave signals for aluminum beam under different conditions.

indication of flaww position
12 T T T T T T

— nor
—
— 2
— 13
— 4
f5

Defect locations

08

0.6

0.4

0.z

o [ L ”.'}-, f‘\/\/\
AL W

1 1 1
100 150 200 250 200 250
time points (3 3exp-6 s)

Figure 6.15. The signals between the first and the second peaks for different flaw types.
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6.3. Selection of the Resonant Frequency for Aluminum Plate

The selection of active frequency is very important for the implementation of
guided acoustics. We want to use the frequency band that has low decay ratio, thus high
signal-noise ratio in structural monitoring to decrease false rate and to realize remote
monitoring. The resonant frequency is usually an optimal selection for the excitation
signal. The resonant frequency of a tested specimen is decided by several parameters
such as the length, shape, and materials. Two methods can be used to decide the resonant
frequency of a tested structure. In the first method, we generate a gradually increasing
chirp signal to scan a wide band of the input frequency. The resonance peaks can be
decided by observing the output time signals plotted in Figure 6.16. Another method is
to use HHT of a pure pulse signal as demonstrated in Figures 6.17 and 6.18. Since the
pulse signal theoretically includes all the frequency information (limited by the sampling
frequency), it is reasonable to find the resonant frequency from a proper time frequency
plot. As shown in Figure 6.17, the HHT generates a clear time-frequency plot where it is
easy to find not only the resonant frequency around 27 kHz but also the dispersion curve
of the anti-symmetrical Lamb wave signals. These two methods give out same results,

but it is obvious that HHT is more concise.
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Figure 6.16. Chirp signal scanning a wide band from 100 to 90k Hz.
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Figure 6.17. HHT of a pulse signal from an aluminum plate.

Fulse signal from an aluminum beam
25 T T

1 1 1 1
0 1000 2000 3000 4000 5000
time point {3 3exp-6 5)

Figure 6.18. A pulse signal from an aluminum plate.
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7. INTEGRITY MONITORING OF METAL TUBING
7.1. Structural Flaw Evaluation in Air

After mode separation, the Lamb wave signals from a brass tube are passed
through a moving window with an optimal width. The properties around local peaks are
then calculated as defined in Section 4. Five structural conditions are tested for a three
feet long brass tube and are listed in Table 7.1. The results of analysis from moving
windows are plotted in the following figures. Figures 7.1 — 7.4 show the results with 14
kHz active wave propagating from right to left. The anti-symmetric mode waves are
used in these figures. It is clear that the structural flaws cause the decrease of the
amplitude of local peaks, while the variance of windowed signals increases due to the
scattering of structural discontinuity. Figures 7.1 and 7.2 demonstrate the left part and
right part of the gravity centers of windowed signals shifting away from the middle point
of the window. It is noticed that the left part weight center of the first local peak does not
change because the left part of the first peak is not affected by the scattering of Lamb
waves.

The severity of structural defects could be estimated using these figures. The size
of flaw is roughly proportional to the decrease of amplitude. The variance doesn’t
change much for the first local peak under different conditions, but the difference
increases with time because of wave spread during propagation. The larger the flaw size,
the bigger is the difference between normal and flaw curves. All of these could be used

for the evaluation of structural conditions.
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Table 7.1. Five structural conditions tested for a brass tube (3 feet long) in the air

Structural conditions Activation Wave Active sensor
frequency propagation
direction
1. Normal 13kHz, 14kHz, Left to right, right | Left-up, left-bottom,
15kHz, 16kHz to left right-up, right -
bottom

2. Half hole (d=0.6mm) 13kHz, 14kHz, | Left to right, right Same as above
15kHz, 16kHz to left

2. Half hole (d=1.8mm) 13kHz, 14kHz, | Left to right, right Same as above
15kHz, 16kHz to left

3. Through hole (d=1.8 upper, 13kHz, 14kHz, | Left to right, right Same as above
d=0.6mm bottom) 15kHz, 16kHz to left

4. Notch(1.5mmx8mm) 13kHz, 14kHz, | Left to right, right Same as above
15kHz, 16kHz to left

Amplitude change
1.2 T T T T
| | | | _ NF
1.1 b P R (E P -+ - hholel H
I I I I -<=- hhole2
| | | |
T S -< - thole
é\: | ] ‘ - notch
0.9 f-------- B Tommmoo- R e T e TR |
-+~ | |
|
° 0.8 F-—-——--"-"-"—"—a4~ - - — - — ‘r 77777777777777777777777777 —
> |
E_ 0.7 -~~~ ————~ "~~~ —4+-————=~<= - 1 S —]
© 0.6 F—--—-—-—————~——————— =>4 - ———————_ E\ ,,,,,,,, —
| |
] I RSN S VA N _
| | | ==
| | ~+ |
o4+-r--——-——----- |- - - — - — - - = - — = b - - - — \7777777:<#,7\t ,,,,, —
1 1 1 S
03 ,,,,,,,,,, I - - - - — e L - - - — — — \EY\, ,,,,,, e —
| | | | ~ |
| | | | T |
02 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000

time (6.2500e-007 sec)

Figure 7.1. Amplitude change of local peaks of anti-symmetric mode signals,
propagating from the right to the left, with 14 kHz input frequency.
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Figure 7.2. Change of variance of local peaks from anti-symmetric mode signals
propagating from the right to the left end, with input frequency 14 kHz.
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Figure 7.3. Change of left part weight center of local peaks from anti-symmetric mode
signals propagating from the right to the left end, input frequency 14 kHz.
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Figure 7.4. Change of right part weight center of local peaks from anti-symmetric mode
signals propagating from the right to the left end, with input frequency 14 kHz.

Compared with the anti-symmetric mode, the symmetric mode waves
corresponding to the anti-symmetric signals used in Figures 7.1 — 7.4 are not sensitive to
structural changes. As shown in Figures 7.5 - 7.8, symmetric waves cannot
systematically indicate the existence of structural anomaly as do anti-symmetric waves.
The reason why the symmetric Lamb waves are not sensitive to structural changes is
discussed below.

In order to check the robustness and sensitivity of the method using anti-
symmetric mode Lamb waves for structural diagnostics, different activation frequencies
and locations of active sensors are tested. Figures A.l through A.4 in appendix II show
the results with the activation wave propagating from left to right, and the input
frequency is still 14 kHz. We find similar result as shown in Figures 7.1 — 7.4, except in
the plot of the gravity center of the left part of windowed signals the normal curve is
distorted. This is the reason we need to repeat the experiment using different frequencies

and active sensor locations before a final decision could be made.
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The input frequency is then changed to 13 kHz, with the active wave propagating
from left to right. The results are shown in Figures A.5 through A.8. We find very
similar results as in Figures 7.1 - 7.4. This verifies the validity of the moving window
technique in evaluating the structural integrity using anti-symmetric signals.

The reason why the symmetrical is mode not sensitive to the structural flaw is that
the reflections from structural flaws are generally axially non-symmetrical no matter
what are the input Lamb wave signals. Hence most features of the structural changes
would be displayed in flexural mode signals after the mode separation. This also
demonstrates the importance of the mode separation for tube health monitoring since this
process filters out axial symmetrical signals not representing the change of tubular

structures.
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Figure 7.5. Amplitude change of local peaks of symmetric mode signals propagating
from right to left, input frequency 14 kHz.
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Figure 7.7. Change of left part weight center of local peaks of symmetric mode signals
propagating from right to, input frequency 14 kHz.
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Figure 7.8. Change of right part weight center of local peaks of symmetric mode signals,
propagating from right to left, input frequency 14 kHz.
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7.2. Structural Flaw Evaluation in Water

In practice, we are interested in acoustic propagation along the tubing immersed
in water because our final objective of this research is detecting structural flaws in the SG
U-tubes. A summary of experiments with the specimen submerged in water is given in
Table 7.2. Transient signal processing methods, similar to those used in experiments
performed in air, are implemented. The data processing results are illustrated in Figures
7.9 - 7.12. Obviously the moving window method is also very effective for the brass tube
examination performed in the water. The different structural conditions are clearly
separated in the four representative features extracted. The difference observed in Figure
7.9 about the local peak amplitude is that the local peak energy drops more quickly than
what was observed for tests in air and shown in Figure 7.1. Further comparison will be
given in the next section using the experimental data of another specimen tested both in
air and in water.

An abnormal data set in Figure 7.1 is the data from the notch condition, whose
amplitude is larger than the normal one. This is due to the error in the experimental
procedure. Unlike the experiments in the air, we could not create a designed flaw on site
in the water. The flaw was created outside the water, and the specimen was then put back
in the water tank. Although we tried our best to keep the boundary conditions
unchanged, it could not be perfectly duplicated. However, the other three features are not
so sensitive to the boundary condition change as demonstrated in Figures 7.10 - 7.12.
The structural flaws cause significant changes in the local peak spread and the local
gravity centers.

We could conclude that the moving window technique worked excellently in the

water without the effect of noise.
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Table 7.2. Five conditions tested for a brass tube (2 feet long) in water (#10)

Structural conditions in Water Activation Wave propagation | Sampling
frequency direction frequency
2. Half hole (d=0.6mm) 13kHz, 14kHz, Left to right, right 1.6MHz
15kHz, 16kHz to left
2. Half hole (d=1.8mm) 13kHz, 14kHz, Left to right, right 1.6MHz
15kHz, 16kHz to left
3. Through hole (d=1.8 upper, 13kHz, 14kHz, Left to right, right 1.6MHz
d=0.6mm bottom) 15kHz, 16kHz to left
4. Notch(1.5mmx8mm) 13kHz, 14kHz, Left to right, right 1.6MHz
15kHz, 16kHz to left
2. Half hole (d=0.6mm) 13kHz, 14kHz, Left to right, right 1.6MHz

15kHz, 16kHz

to left

105




Amplitude change

amplitude

0 2000 4000 6000 8000 10000 12000
time {6.2500e-007 sec)

Figure 7.9. Amplitude change of local peaks of anti-symmetric mode signals in the
water, propagating from left to right, with 13 kHz input frequency.
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Figure 7.10. Variance change of local peaks of anti-symmetric mode signals in the
water, propagating from left to right, with 13 kHz input frequency.
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Figure 7.11. Left weight center change of local peaks of anti-symmetric mode signals
in the water, propagating from left to right, with 13 kHz input frequency.
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Figure 7.12. Right weight center change of local peaks of anti-symmetric mode signals
in the water, propagating from left to right, with 13 kHz input frequency.
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7.3. Comparison of Structural Flaw Evaluation in Air and in Water

As we mentioned above, we are interested to know the difference of Lamb wave
signals in a brass tube in air and in water. Therefore, another tube was tested in both air
and in water. The experiments performed are summarized in Table 7.3.

Moving window method was again used for analysis, however, different window
size was used because the sampling frequency was 300 kHz, much lower than 1.6 MHz
used in the experiments listed in Tables 7.1 and 7.2. The results of analysis are illustrated
in Figures 7.13 — 7.16. It is obvious that the moving window method works excellently
even for the case of low sampling frequency.

The results demonstrate that the effect of water on the brass tubes causes more
energy leakage from tube to the media around, therefore the amplitude of local peaks of
tube waves is lower in the water than in the air. On the other hand, the variance of local
peaks in the water is larger than that in the air. The change of gravity centers in water is
similar to that in the air. In summary, the moving window method is still an effective

algorithm for the analysis of acoustic waves from the tubes immersed in water.

Table 7.3. Six conditions tested for a brass tube in both air and water (#4)

Structural conditions Activation frequency Wave propagation Sampling
direction frequency
1. Normal, in air 16kHz, 17kHz, 18kHz, | Left to right, right to 300 kHz
19kHz left
2. Half hole (d=0.6mm), in | 16kHz, 17kHz, 18kHz, | Left to right, right to 300kHz
air 19kHz left
3. Through hole 16kHz, 17kHz, 18kHz, | Left to right, right to 300 kHz
(d=0.6mm), in air 19kHz left
4. Normal, in water 16kHz, 17kHz, 18kHz, | Left to right, right to 300 kHz
19kHz left
5. Half hole (d=0.6mm), in | 16kHz, 17kHz, 18kHz, | Left to right, right to 300 kHz
water 19kHz left
6. Through hole (d=0.6), 16kHz, 17kHz, 18kHz, | Left to right, right to 300 kHz
in water 19kHz left
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Figure 7.13. Amplitude change of local peaks from anti-symmetric mode signals,
propagating from the left to the right, with input frequency 16 kHz.
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Figure 7.14. Change of variance of local peaks from anti-symmetric mode signals,
propagating from the left to the right, with input frequency 16 kHz.
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Figure 7.15. The change of left part weight center of local peaks from anti-symmetric
mode signals, propagating from the left to the right, with input frequency
16 kHz.
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Figure 7.16. The change of right part weight center of local peaks from anti-symmetric
mode signals, propagating from the left to the right, with input frequency 16 kHz.
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7.4. Estimation of Defect Location

7.4.1. Flaw localization for brass tube in air

Defect localization for tubing is not as simple as for a plate-like structure because
the complexity of the scattering phenomena of tubular acoustic waves. The reflection of
acoustic waves in a tube is weak and widely spread. Therefore no obvious reflected
peaks are found between local peaks in the raw signals. The methods used in aluminum
plate analysis such as HHT and extrema extraction cannot generate satisfactory results.
So a new method named zooming windows is introduced to estimate the flaw position in
tube-like structures. The zooming windows are applied onto the first two local peaks in
the separated anti-symmetric waves. The right weight center of the first local peak is
calculated and the left part weight center of the second peak is calculated as the window
zooming around its center.

As illustrated in Figure 7.17 below, the curves of left or right part weight centers
should diverge due to the effect of structural reflection. The divergent point indicates the
approximate position of the defect. Therefore we are able to tell roughly where the flaw
exists.

Figures 7.18 - 7.21 demonstrate the effectiveness of the zooming window. In
Figures 7.18 and 7.19, we notice that the divergent point for the first peak is earlier than
for the second local peak. This indicates that the defect here is near the receiving sensors.
In fact the defect here is located at about one-third of tube length to the receiving sensors.
The observation of Figures 7.20 and 7.21 indicate that the diverging point for the first
peak is later than the second peak. So we can tell the defect is far away from the passive
sensors, and we know that the defect is in fact located at about two-thirds of tube length

to the passive sensors.

111



Diverging  Diverging

point #1 point #2

r==="="/n""7"T I_____I

| 1 | |

| 1 | |

I I |

|_ 1 1 \/\ »

/ T T T Time

First peak  Reflection Second peak  Third peak

Figure 7.17. The zooming windows and the diverging points.

change of the right part weight center of the first local pealk

350 T T T T T
: : : : : 3
300 --mmmmmmeees R RREEEE R R RREEEEEE doooooodIto oo
s s s s r
L L """"""" L """"" B """ ;F:_:_Z_Z}_Sg
% Dlver'glng : : P e
S 200 ------- point e T
= H H - IRt
=2 : L3
E : 5
= 150 —---mmmmmme - Ao E'::::-*_ “z=
=2 -
o . : :
100 ---------~ B e R I TTE b---1 % hhole2 ...
- : : : [,
50 -
O | | | | |
0 z 4 6 8 10 12

time (6.252002-007 sec)
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signals, propagating from the right to the left, input frequency 13 kHz.
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Figure 7.19. The change of left part weight center of the second local peak as the
zooming window changing size from 100 to 1200, using anti-symmetric
mode signals, propagating from the right to the left, input frequency 13 kHz.
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Figure 7.21. The change of left part weight center of the second local peak as the
zooming window changing size from 100 to 1200, using anti-symmetric mode
signals, propagating from the left to the right, input frequency 13 kHz.

7.4.2 Flaw Localization for Brass Tubes in Water Through Zooming
Windows

The zooming window method was tested for the tubular structure in the air.
Further evaluation of this algorithm was performed and the results are presented in this
section from the experiments on a brass tube in the water. The experimental conditions
are listed in Table 7.2. Different flaws are created in the middle of the tube as compared
with the flaws described in the previous section where the flaws are located at about one-
third of the length to the left end. The results of the zooming window method are
illustrated in Figures 7.22 - 7.25. It is very interesting to find that the first two local
peaks have almost the same diverging point no matter whether the active signals
propagate from right to left (in Figures 7.22 and 7.23) or from the left to right (Figure
7.24 and 7.25). Therefore, we are confident in predicting that the structural flaw is

located in the middle of the specimen.
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Figure 7.22. The change of right part weight center of the first local peak as the zooming
window changing size from 100 to 1200, anti-symmetric mode signals,
propagating from the right to the left, input frequency 13 kHz.
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Figure 7.23. The change of right part weight center of the second local peak as the
zooming window changing size from 100 to 1200, anti-symmetric mode signals,
propagating from the right to the left, input frequency 13 kHz.
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Figure 7.24. The change of right part weight center of the first local peak as the zooming
window changing size from 100 to 1200, anti-symmetric mode signals,
propagating from the left to the right, input frequency 13 kHz.

change of the left part weight center of the second local peak

-100

-200

-300

-4100

Left weight center

S00

600

200 | i | |
0 2 4 ] g8 10 12
time {6.2500e-007 sec)

Figure 7.25. The change of right part weight center of the second local peak as the
zooming window changing size from 100 to 1200, anti-symmetric mode signals,
propagating from the left to the right, input frequency 13 kHz.
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7.5. Noise Reduction of Acoustic Signals in Brass Tubes

Under a noisy environment, the structural monitoring proposed in this research
becomes complicated. Because the noise may cause the signal processing techniques
mentioned above invalid. Hence a de-noising process is necessary.

There are two types of noise in a steam generator system, the high frequency
noise caused by steam bubbles and structural vibrations, and the low frequency noise
caused by the turbulence of water flow. The noisy environment was simulated in the
experiments during this research. The noisy raw signals can be observed in the following
figures. We used HHT as an adaptive de-noising algorithm to extract useful signals in
this project. We first decomposed the raw signals into multiple IMFs as shown in Figures
7.22 and 7.23. The number of levels was adjustable based on the complexity of the
environment. Then a purified time series was reconstructed by summarizing selected
useful IMFs as shown in Figure 7.24.

The results illustrate that the representative signals can be perfectly extracted
from noisy data, and the purified data are suitable for the implementation of the proposed
signal processing techniques.

Figures 7.25 - 7.28 illustrate the features extracted through the moving window
method after HHT de-noising process. Note that the features tend to become uniform at
the end of the data. This is because the acoustic energy decreases quickly in the water
such that the local peaks are not so obvious after the first several peaks. Therefore, focus
should be put on the first four to five local peaks depending on the input signal amplitude
and the properties of water.  Very good performance was achieved using moving
window after HHT de-noising. While the features from same process before de-noising
were not quite meaningful as shown in Figure 7.29, where the difference of the spread of
the local peaks under different conditions should increase with time. In contrast Figure
7.26 gives the correct answer after noise reduction. Similar phenomenon occurred for
the local peak gravity center. The left and right gravity center of the local peaks could
not generate meaningful features under the effect of the two-phase flow noise in water.

This is illustrated in Figures 7.30 and 7.31.
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As discussed in Section 7.2, the local peak amplitude is sensitive to the change of
boundary conditions, therefore we found the abnormal change of amplitude under notch
condition as shown in Figure 7.25. However, other features such as the gravity center
position are not significantly affected by the boundary conditions.

In summary, the HHT noise reduction method worked very well for the brass
tubes under the effect of two-phase flow environment. The recovered signals generated

good features for tubular specimens using the moving window technique.

Raw data and the IMF components

g 1 ‘ ‘

S 9 B

3

s ‘ | | |

0.5 1000 2000 3000 4000 5000
L

'8."20 10100 2obo 3obo 40100 5000
¥ o0 WWWMW«WWWWWWMWWWMWWMWMWWMWMWW\W

-8.60 10:00 ZObO 30b0 40100 5000

69(5;0 1000 2obo 30bo 40100 5000
g 0 Jw e A A A AR AR AT AN A A AN i N AP A ]

"0:05, 1000 2000 3000 4000 5000

time (3.33exp-6))

Figure 7.22. Raw data and IMFs from HHT.
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Figure 7.23. Raw data and IMFs from HHT.
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Figure 7.24. Raw data and the reconstructed data.
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Figure 7.25. Amplitude change of local peaks from anti-symmetric mode signal after de-
noising, with input frequency 13 kHz.
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Figure 7.26. Spread change of local peaks from anti-symmetric mode signal after de-
noising, with input frequency 13 kHz.
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Figure 7.27. Left gravity centers of local peaks from anti-symmetric mode signal after
de-noising, with input frequency 13 kHz.

mean position, right
400 T T T T T

350

300

250

Gravity center

200

150 i i i i i
0 2000 4000 6000 8000 10000 12000
time (6.2500e-007 sec)

Figure 7.28. Right gravity centers of local peaks from anti-symmetric mode signal after
de-noising, with input frequency 13 kHz.
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Figure 7.29. Spread change of local peaks from anti-symmetric mode signal before de-
noising, with input frequency 13 kHz.
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Figure 7.30. Left gravity centers of local peaks from anti-symmetric mode signal with
noise, with input frequency 13 kHz.
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Figure 7.31. Right gravity centers of local peaks from anti-symmetric mode signal with
noise, with input frequency 13 kHz.

7.6. Classification of Tube Flaws

The accuracy of the classification for defects in tubular structures depends
primarily on the selection and extraction of representative features. In this research, the
features extracted through moving window technique are used for defect classification.
Five structural conditions were trained and the representative feature matrices, defined in
previous sections were collected for classification. Experimental data were collected for
each structural condition under different input frequency, and the results generated by the
moving window method were used for classification. The normalized distance between
the tested matrix and the trained matrices were calculated and listed in Table 7.4. We can
see the matrices for partial hole and through hole defects have similar distance to a test
matrix, so it is easy to misclassify them. The reason is that these three tube flaws, in
fact, have similar features. Therefore other classification methods and representative
features were also explored to increase the success rate of the method implemented here

These are discussed later.
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Table 7.4. Distance between test and training matrices

\% NF Half'hole | Halfhole | Through Notch
Test (0.6mm) | (1.8mm) | hole(0.6mm)
NF 0.0272 | 0.0568 0.0597 0.0650 0.4048
Half hole (0.6mm) 0.0224 | 0.0074 0.0058 0.0105 0.2745
Half hole (1.8mm) 0.0418 | 0.0216 0.0087 0.0064 0.2010
Through hole(0.6mm) | 0.0573 | 0.0311 0.0144 0.0082 0.1765
Notch 0.4564 | 0.3395 0.2760 0.2406 0.0118
Classification of brass tube with a through hole
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Figure 7.32. The classification of tube defects.
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Figure 7.32 illustrates the plots of the measurement residuals between the test and the
training conditions. Based on this plot, the test defect was classified into a through hole
in a tube, which is the actual condition in our study.

In this research another technique, DWT + eigen face analysis, was tested for the
feature extraction and classification of tube flaws. The method used DWT and Eigen-
face analysis. The efficiency of DWT makes the process of classification much faster
than continuous wavelet analysis. In the example illustrated in Section 7.3, the raw
signals with active frequency of 16 kHz, 17 kHz, 18 kHz, and 19 kHz were decomposed
into five levels according to the properties of the input. The decomposed signals of
acoustic waves are plotted in Figure 7.33. An Eigen-face was extracted to represent a
structural condition. The test signals were then projected onto the space spanned by an
Eigen-face, a residual between the test T-F and the recovered one using principal
components and corresponding scores was generated. The test condition was classified
into the flaw type that has the smallest residual. As shown in Figures 7.34 and 7.35, six
types of structural conditions were trained and tested using Lamb wave signals from
brass tubes, and all of the conditions were correctly classified. The six conditions of
brass tubes were: normal condition in air, a half hole on a tube in the air, a through hole
on a tube in the air, normal condition in water, a haft hole on a tube loaded with water,

and a through hole on a tube loaded with water.

125



o,

O Ul ©O N O NR O Rk O B

oo

oo

Amplitude

oo

°5
o 8'01

-0.05

DWT decomposition of Lamb wave

T T T T .
WWWNWWWWMWMWWMMWWMMWMWW R Sgnak
| | | |
0 1000 2000 3000 4000 5
~1W First level
| | | |
0 1000 2000 20$00 4000 5
Second lewel
| | | |
o 1000 200N 2mn 40pn 5
WWWWW”MWWWMWMMM Third level
el g sl
| | | |
0 1000 2000 2000 4000 5
Fourth level
ol oo il A~ A1)
| | | |
0 1000 2000 2000 4000 5
Fifth level
| | | |
0 1000 2000 3000 4000

time (3.300e-006 sec)

Figure 7.33. DWT decomposition of acoustic waves in a brass tube.
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Figure 7.34. The tube defect classification using DWT + Eigen-face.

testimag using sensor <

Normal in water

in water

150 T T T T
nfi  hholg thole | : :
IO = - - ------ S ------- - -------- R 2GR EE R TREE ETTE P
[T ) . ] o nfaw
0 ]
1 2
150 !

Residual
N
]
I

100 o - I ——————— R ;
0 l

200 ,

nfi : : :
: Aol :
T AR . .
0

Types of condition

Through hole in water

Figure 7.35. The tube defect classification using DWT + Eigen-face.

127



7.7. Summary of Tubular Structural Evaluation

The tubular structures were evaluated through Lamb wave analysis. The
structural evaluations were performed both in water and in air. An obvious bias caused
by water pressure is found in the experiments under water shown in Figure 7.36. The
bias must be eliminated before acoustic signal processing.

The moving-window technique was applied in this chapter for the feature
extraction in tubular structure. The results of analysis demonstrate the effectiveness of
this method in both water and in air. It can be used to both detect the structural flaws and
evaluate the severity. The analysis also shows that the anti-symmetric Lamb waves are
more sensitive to the structural changes compared with symmetric signals. An optimal
window size is a key parameter for moving window method to be successful.

The zooming window technique was used to estimate the flaw location if an
anomaly was detected. The method worked well in generating an approximate flaw
position in the air and water without the effect of two-phase flow. This technique was
not used to calculate an accurate flaw position, but it is applicable to many cases.

The noisy environment was simulated through the two-phase flow. The moving
window method was not able to generate meaningful result under the effect of noise.
Therefore the HHT technique was introduced for the purpose of de-nosing. The moving
window method generates satisfactory results using de-noised acoustic signals.

Two types of classification methods were tested in this chapter for tubular flaws.
The first one used the features from moving windows and calculated the distance among
the tubular conditions as listed in Table 10.4. We can see that some similar flaws like
the half hole 1, haft hole 2, and the through hole are not easy to separate using this
method. Hence another method using WT + Eigen-face was implemented. This method
had generated better classification results. All the tested flaws (in air and in water) were
identified. One shortcoming of this method is that it seeks to use all the redundant
information in raw signals, thus it takes more calculation time and may not be robust

when checking a tubular specimen using features from another tube.
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In summary, this section provides the advanced signal processing techniques for
the tube like structure flaw detection, severity evaluation, flaw localization, noise

reduction, and classification.
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Figure 7.36. Lamb wave signals with noise from a brass tube.
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8. SIMULATION OF LAMB WAVE PROPAGATION

USING THE FINITE ELEMENT CODE ABAQUS

8.1. Introduction

The simulation of Lamb wave propagation along plate and tube like structures

was an important task to verify our experimental and theoretical results. Several finite

element codes such as FEMLAB, ENSYS, and ABAQUS were tested. Among them,

ABAQUS was selected for its good capability in simulating acoustic wave propagation in

solid media. In general, ABAQUS is a highly sophisticated software package developed

by Hibbitt, Karlsson & Sorensen, Inc. [95] for modeling the behavior of solids and

structures under externally applied loading. ABAQUS includes the following capabilities:

a)
b)
c)
d)
€)
f)
9)
h)

Simulation of both static and dynamic stress distribution problems.

Dynamic studies of linear and nonlinear systems.

Modeling large shape changes in solids, in both two and three dimensions.

Heat transfer.

Modeling the contact between solids.

Eigenvalue buckling prediction.

Natural frequency extraction.

Models for foams, concrete, soils, piezoelectric materials, and many others, based
on an advanced material library.

Modeling a number of interesting phenomena, including vibration, coupled

fluid/structure interactions, acoustics, buckling problems, and others.

ABAQUS is used by a wide range of industries, including aircraft manufacturers,

automotive industry, oil companies, microelectronics industries, as well as national

laboratories and universities. The flow chart for ABAQUS is shown in Figure 8.1.
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11.2. Simulation Results

The acoustic responses of steel plates and tubes are simulated in this project using
ABAQUS. Figures 8.2 - 8.4 show the Lamb wave propagation in a steel plate from
3.6663e-5 second to 1.1666e-4 second. We can make several conclusions from these
plots: first, the Lamb waves in plate like structures have a dominant anti-symmetric
distribution with sine pulse activation on one side of the plate; second, the Lamb wave
disperses due to the impurity of input signals. The system time response at a point in
the plate is illustrated in Figure 8.5, where the amplitude of the particle displacement
decreases with time. But, due to storage space limitation and computer memory, we were
not able to simulate a large number of time steps. Therefore the material density and
Poisson ratio are revised in ABAQUS’ input file to accelerate the wave propagation such
that we could collect more information in a less number of time steps. So, the calculation
of wave speed from Figure 8.5 is not included. However, we are still able to calculate
the frequency response of the system as shown in Figure 8.6, where we find several
resonant peaks around the active frequency of 27 kHz.

Figures 8.7 - 8.9 demonstrate the wave propagation in a tube from 3.9996e-5
second to 6.9993e-4 second. The observation shows that there are both symmetric and
anti-symmetric modes in the tubular structure compared with only anti-symmetric mode
in the plate. The contour plot of the tube shows the displacement of node points located
on the tube surface.

Figures 8.11 and 8.11 show the time and frequency response of a tube structure to
a sine pulse input.

A MATLAB code was created for the preparation of active input data files and for
the post-processing of ABAQUS data file. The geometry inputs are generated using
ABAQUS CAE pre-processor, and the plots of point displacement are from ABAQUS
VIEW, a post-processing code.
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Pre-processing ABAQUS
CAE/ MATLAB/ other

coftware

ABAQUS
input: *.1np

ABAQUS
Calculation

ABAQUS
output: *.dat,
* res. *.0db

Post-processing
ABAQUS VIEW/CAE/MATLAB

Figure 8.1. Flow chart for ABAQUS simulation process.

oDE: th_shell.odb ABAGUS/Standard 6.3-1 Tue May 18 13:43:31 EDT 2004
Step: Step-1
3 1 Increment 11: Step Time = 3 LEEGEIE-05

Deformed War: U Deformation Scale Factor: +2.254e=+08

Figure 8.2. Lamb wave in a plate at time 3.6663¢-5 second.
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Yiewport: 1 ODE: mellubf/beam_acouwth_shell.odb

o
)\ ODE: th_shell.odb ABAQUS/Standard 6 .3-1 Tue May 18 13:43:31 EDT 2004
Step: Step-1
3 1 Tncor ement 24: Step Time = 7.9992E-05
Deformed Yar: T Deformation Scale Factor: +1.134=+07
Figure 8.3. Lamb wave in a plate at time 7.9992¢-5 second.
Yiewport: 1 ODB: /nelflubf/beam_acowth_shell.odb
2
SDE: th _=hell.odb ABAGUS/!Standard §6.3-1 Tues May 18 13:43:31 EDT 2004
Step: Step-1
3 1 Increment 35: Step Time = 1.1666E-04
Deformed War: U Deformation Scale Factor: +§.280e+06

Figure 8.4. Lamb wave in a plate at time 1.1666e-4 second.
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Figure 8.6. Frequency response for the plate (from Simulation).
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Figure 8.7. Particle displacement at one point on a normal plate.
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Yiewport: 1 ODB: /neiflubf/beam_acowtube_nomalodb

3, Mise=
SHES,. lfraction = -1.0]

)\ ABAQUIS fStandard 6.3-1 Wed May 19 12:42:36 EOT 2004
=3 =) £
3 1 o

Incremen 12: Step Time = 3.9996E-05
Frimary Var: 5, Mi=e=
Deformed Var: T Deformation Scale Factor: +5.855=+08

Figure 8.7. Lamb wave in a tube at time 3.9996e-5.

Yiewport: 1 ODB: /neifubffbeam_acouwtube_nomal.odb

3, Mize=
SHES. (fraction = -1.0]
s, Crit.:

= AQUS.-'Standard 6.3-1 Wed May 19 12:42:36 EDT 2004

: Step Time = 4.2329E-04
Primary Var: 5, Mi=e=
Deformed War: T Deformation Scale Factor: +1.175e=+08

Figure 8.8. Lamb wave in a tube at time 4.2329e-4.
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ABXDTIS /Standard §.3-1

: Step Time = £.35327E-04
FPrimary War: . Miz=e=
Deformed War: O Deformation Scale Factor: +2.766=+08

Wed May 19 12:42:36 EDT 2004

Figure 8.9. Lamb wave in a tube at time 6.3327¢-4.
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Wed May 159 12:42:36 EDT 2004

Figure 8.10. Lamb wave in a tube at time 6.9993e-4.
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Figure 8.12. Frequency response for brass tube (from Simulation).
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8.3. Concluding Remarks on Simulation Using ABAQUS

Through the simulation results illustrated in the previous section, we found that
the ABAQUS could be used to study the vibration of metal plates and tubes. The results
verified that vibration frequency was decided by the excitation signals. The structural
flaws affect the wave propagation along the structures. The simulation is also a good
way to observe the dynamic process of wave propagation.

However, we also found many differences between the simulation and our
experiments such as the signal amplitude and components. There are many reasons for
these differences. The first is that elastic properties, i.e. the Lamb constants, were
changed in the simulation inputs to accelerate wave propagation, because the source limit
of the workstation where the ABAQUS is running. The large scale of the 3D wave
simulation has fairly high requirement on computer storage, so the calculations must be
limited to several hundred steps. A second reason is that a shell structure was used in
plate and tube to simplify the geometry. This simplification may not be very suitable for
the Lamb wave propagation, because the Lamb waves usually refer to the waves in a
plate like or tubular structure with a small thickness. The third reason is that the
boundary conditions may not be correctly simulated in ABAQUS, especially the leakage
of energy to the air.

Despite all of these limitations, ABAQUS provided us with a convenient tool to
study wave propagation. Some properties, especially the frequency response, can be
clearly demonstrated. Further study of advanced simulation method is necessary for

future research on the application of Lamb waves.
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9. CONCLUSIONS AND SUGGESTIONS FOR FUTURE

WORK
9.1 Conclusions

From the study performed in this research, we conclude that Lamb waves used in
this project are very sensitive to structural defects in brass tubes. The defect size,
location, shape, and surrounding media are among the factors that affect the Lamb wave
propagation along guided structures. The dimension of the smallest flaw illustrated in
this study is about one millimeter. However, smaller defects including micro-structural
variations could be monitored because the propagation of elastic waves strictly depends
on the microstructure of materials.

Unfortunately, the Lamb wave is not as simple as the pure longitudinal and
transverse wave that propagates along an infinite medium. The complexity comes from
the combination of multi-mode waves for plate or tubular structures. There are four types
of Lamb waves for tubular structures. For each mode, the wave speed decreases
nonlinearly as the frequency-thickness product increases, accompanied by the appearance
of new modes. Hence the features of experimental data collected from the sensor system
cannot be easily visualized and analyzed. Non-stationary signal processing is important
for acoustic data analysis in this research for the success of structural integrity
diagnostics.

The structural flaw may change the characteristics in time and frequency domains.
For this reason the Hilbert-Huang transform was introduced for its adaptiveness and
sensitivity in separating wave modes, which was also found to be useful in filtering out
noise due to water flow and voids. Two transient signal processing techniques, moving
windows and zooming windows, are developed for the tubular acoustics activated by sine
pulses. Good features were extracted for the detection, localization, size estimation, and
classification of structural flaws.

An optimal setup was critical in collecting representative acoustic signals. A
multi-sensor suite was deployed in a way that two sensors were 180-deg apart, such that

the single mode Lamb wave signals could be separated. The separated Lamb waves were
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applied to the structural diagnostics of brass tubes. Excellent results were achieved by
applying moving and zooming windows to the separated signals.

The methods of transient data analysis were proved to be effective for the brass
tubes immersed in the water and under the effect of two-phase flow. The HHT was
successfully implemented for noise reduction. A direct effect of submerging in water on
the Lamb waves in tubing was the increase of energy leakage.

There should be potentially a wide range of applications of this technique in the
aerospace and other industries. The techniques developed here are especially useful for

the on-line in-situ monitoring of key equipment to improve system reliability and safety.

9.2. Suggestions for Future Work

Because of the potentially large number of applications of the guided acoustic
techniques, further research must be performed to develop industrial implementation of
this method. There are many interesting and challenging problems in the areas of
acoustic sources, acoustic sensors, and acoustic signal analysis. Some suggestions are
given below.

First, a detailed study of the effect of high temperature and high pressure on the
performance of piezoelectric sensors should be performed before the implementation of
the techniques described in this research for steam generator tubes and other equipment
under hostile environment.  Underwater signals have a significant bias due to the
pressure of water.

Second, a good numerical solution algorithm is desirable in the future study for
theoretical understanding of acoustic leakage from elastic media to a liquid such as water.
Acoustics propagation along a buried tube is also a very interesting topic.

Third, the techniques developed in this research may be expanded to the structural
monitoring of large dimension pipes. Due to the large dimension of pipes, better results
are expected. Large-scale experimental data are necessary for analysis following the
theoretical study mentioned above. A comb-like active sensor should be further

investigated in generating acoustics with selected wavelength.
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Finally, the application of photo-acoustics for microstructure study is very
applicable in the material evaluation and underwater studies. = Photo-acoustic means
generating acoustics waves through intensive non-mechanical waves, such as lasers, X-
rays, and others. The laser generated Lamb waves must be further studies for practical
applications.

In summary, the future work should focus on extending the current techniques
developed in this research to a wide range of applications, addressing practical problems
such as the effect of high temperature on piezo-devices, and exploring new methods for

acoustic signal generation and information extraction.
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Appendices

Appendix A: Cylindrical Coordinate Used in Tube Analysis

The cylindrical coordinate system used in tubular structure analysis has the following
relations with rectangular coordinate system:

r=+x>+vy?,

6 = arctan(y / X),

Z=17.
f = Xcos(0) + ¥sin(@
A ( )+ ¥sin(0), (AD)
0 =17xf=-Xsin(@)+ Y cos(H)
2=1
where,
F,, 2 : the unit vector in cylindrical coordinate system.
The variation of unit vectors with the coordinate can be derived as:
a g 0o,
or or or
r_ —Xsin(f) + Y cos(0); 20 =—Xcos(fd) — ¥sin(f) = —T; o =0, (A.2)
060 060
g=0; %=0; @=0.
0z 0z 0z
The gradient in cylindrical system:
v=p2,990 ;9 (A.3)
or rof oz
The divergence of a vector A in cylindrical system:
A n A A
G AL (o, LA, OA
ror r o oz (A.4)
0 A, 10A, OA,
=—A +—+—-+ .
or rrof oz

Then the Laplacian operator can be derived:
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2 2
A:V226_2+li+izi+a_2‘ (AS)
or ror r- 00 oz

The curl of a vector A in a cylindrical system is:

1 6A,

1 OA, B oA, ~ OA, B OA, 1
r 00

VxA=Ff(= )+ 60(
rog oz 0z or

yr2t C - L% (A.6)
r or

The properties described here have been utilized in deriving the Lamb wave
equations for brass tubes elaborated in chapter 6.
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Appendix B: More moving window results for brass tubes in air
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Figure A.1. Amplitude change of local peaks of anti-symmetric mode signals,
propagating from left to right, input frequency 14 kHz.

variance change due to the structrual defect

400
380 -
360
hholel
340 hhole2 |+
thole
§ 320 notch
ke
8 300 e L LR T it -
280 P T -
260 S S —
240 [l Bt T —
|
220 : | | | |
0 2000 4000 6000 8000 10000 12000

time (6.2500e-007 sec)

Figure A.2. The change in variance of local peaks of anti-symmetric mode signals,
propagating from left to right, with 14 kHz input frequency.
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Figure A.3. The change in left part weight center of local peaks of anti-symmetric mode
signals, propagating from left to right, input frequency 14 kHz.
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Figure A.4. The change in right part weight center of local peaks of anti-symmetric
mode signals, propagating from left to right, input frequency 14 kHz.
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Figure A.5. Amplitude change in local peaks of anti-symmetric mode signals,
propagating from left to right, input frequency 13 kHz.
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Figure A.6. The change in variance of local peaks of anti-symmetric mode signals,
propagating from left to right, input frequency 13 kHz.
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Figure A.7. The change in left part weight center of local peaks of anti-symmetric mode
signals, propagating from left to right, input frequency 13 kHz.
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Figure A.8. The change in right part weight center of local peaks of anti-symmetric
mode signals, propagating from left to right, input frequency 13 kHz.
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Appendix C: MATLAB Code Lamb wave Numerical Solution

%%
% Lamb-wave, Rayleigh wave dispersion curves, group speed, cg =
% cp”™2/(cp-fd*d(cp)/d(fd));
% using numerical method
% tan(gh) /q + 4k~"2ptan(ph) = 0
% qtan(gh) + (g™2 - k”"2)tan(ph) /4k~2p =0
% p~2 = wh2(1/cLln2 -1/cp2)%%
% gn2 = wh2(1L/ctNh2 -1/cp2)%%
%%
close all
clear
cL= 6.27;
cT= 3.14; % for aluminum mm/us
CcR = 2.82;
sv = [1:
av = [1;
%% test for symetric modes
fd = 0.2:0.2:20
len = length(fd);
for £ ind = 1:len
fd_ind = fd(f_ind);

cp =0.1

wh = fd_ind*pi; % Mh*mm and fh = wh/2pi
= sqrte((1/cL"™2 - 1/cp™2));
ql = sqrt((1/cT”™2 - 1/cp™2));

svall = tan(ql*wh)/ql + 4*pl/cp”2*tan(pl*wh)/(ql”2-1/cp™2)"2 ;
avall = ql*tan(gl*wh) + 1/4/pl*cp”™2*tan(pl*wh)*(ql"2-1/cp™2)"2;
%svall = abs(tan(gl*wh)/tan(pl*wh) + 4*pl*ql/cp”2/(ql™2-1/cp™2)"2);

%avall = abs(tan(gql*wh)/tan(pl*wh) + cp”™2/4/pl/ql*(ql™2-1/cp™2)"2);
sym ind = 1;
anti_ind = 1;

for cp = 0.2:0.0003:20
pl = sqrt((1/cL™"2 - 1/cp™2));
ql = sqrt((1/cT”™2 - 1/cp™2));
sval2 = tan(ql*wh)/ql + 4*pl/cp”2*tan(pl*wh)/(ql”2-1/cp™2)"2;
aval2 = ql*tan(gl*wh) + 1/4/pl*cp”™2*tan(pl*wh)*(ql"2-1/cp™2)"2;
%sval2 = (tan(gl*wh)/tan(pl*wh) + 4*pl*ql/cp”™2/(ql™2-1/cp™2)"2);
%aval2 = (tan(gl*wh)/tan(pl*wh) + cp”™2/4/pl/ql*(ql™2-1/cp™2)"2);

% sv = [sv, svall];
% av = [av, avall];
if svall*sval2 < 0 & sval2 - svall >0
disp("symmetric model*");

disp((svall*sval2));
disp(sval2 - svall);
disp(cp);

sym(f_ind, sym _ind) = cp;
sym_ind = sym_ind +1;

end

if avall*aval2 <0 & aval2 - avall >0
disp("antisysmmetric model");
disp(avall*aval2);
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disp(aval2 - avall);
disp(cp);

anti(f_ind, anti_ind) = cp;
anti_ind = anti_ind +1;

end
svall = sval2;
avall = aval2;
end
end

%

syml = (sym(l:end-1,:).72)./(sym(l:end-1,:) -
([1:99]"*ones(1,10)) .*(diff(sym)));

antil = (anti(l:end-1,:).7"2)./(anti(l:end-1,:) -
([1:99] "*ones(1,10)).*(diff(anti)));

%

figure

%subplot(2,1,1)

plot(syml,"ro:");

legend("symmetric mode*®);

%subplot(2,1,2)

hold

plot(antil,"r*-");

xlabel ("fd");

ylabel ("Group speed”);

legend( "antisymmetric mode");

figure
plot(fd(1:end-1), syml1(:,1),"r*-");
[ml,nl]=size(syml);
hold
for ncol = 1:nl
nonzero_nu = Find(sym(:,ncol) >0);
plot(fd(nonzero_nu(l:end-3)), syml(nonzero_nu(l:end-3), ncol), "r*-
")

end

[ml,nl]=size(anti);

for ncol = 1:nl
nonzero_nu = find(anti(:,ncol) >0);
plot(fd(nonzero_nu(l:end-2)), antil(nonzero_nu(l:end-2),

ncol), "bo:");

end

xlabel (* fd(MHz*mm) ") ;

ylabel ("Group speed (mm/usec)”);

grid

% Lamb-wave dispersion curves for brass tubes
% using numerical method

% | c11 ... cl6 |

ol .- --- 1 =0

% ] c6l ... c66

% pr2 = wr2(1/cl™N2 -1/cpn2)%%
% g2 = wr2(1/ct™2 -1/cpn2)%%
%%

close all
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clear
clL= 4.48e6%6.29e6;%5.8e6;%4.48; mm/s
cT= 2.32e6%3.23e6;%3.1e6;%2.32; % for brass mm/s

cR = 2.82e6;
sv = [1;
av = [1;
be = [1;
zbe = [1;
wbe =[];
lam = [];

% definition of characteristic equation
r2= 5.10;%9.45;%19.05;%12.27; % mm
rl = 6.35%8.23;%17.399;%11.07; % mm
d = 1.25%1.22;%1.651 % mm
%
%% For longitudinal mode
n=2;
fd = [0.005:0.01:0.5, 0.6:0.1:5] % 0.005:0.005%13:0.013%0.2:5%0.005%
0.01:0.1:5
len = length(fd);
for £ ind = 1:len
fd_ind = fd(f_ind);
cp = 0.1le6 ;
wh = le6*fd_ind*2*pi/d; % Mh*mm and fh = wh/2pi
alpha = wh*abs(sqrt((1/cL"2 - 1/cp™2)));

beta wh*abs(sqrt((1/cT™2 - 1/cp”™2)));
%
alpha2 = wh™"2*(1/cL™2 - 1/cp™2);
beta2 = wh™"2*(1/cT™2 - 1/cp”™2);
k_wave = wh/cp;
% define the feature matrix
if cp >= cL
z1l = besselj(n, alpha*rl);
z2 = besselj(n+l, alpha*rl);
z1l b = besselj(n, beta*rl);
z2 b = besselj(n+l, beta*rl);
%
wl = bessely(n, alpha*rl);
w2 = bessely(n+1, alpha*rl);
wl b = bessely(n, beta*rl);
w2_b = bessely(n+1l, beta*rl);
%
zlp = besselj(n, alpha*r2);
z2p = besselj(n+1, alpha*r2);

z1 bp = besselj(n, beta*r2);
z2 bp = besselj(n+l, beta*r2);
wlp = bessely(n, alpha*r2);
w2p = bessely(n+l, alpha*r2);
wl bp = bessely(n, beta*r2);
w2_bp = bessely(n+1l, beta*r2);
lamd_a = 1;

lamd b 1;

%
elseif cL>cp & cp>cT
z1 = besseli(n, alpha*rl);
z2 = besseli(n+1, alpha*rl);
z1 b = besselj(n, beta*rl);
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z2 b = besselj(n+l, beta*rl);

wl = besselk(n, alpha*rl);

w2 = besselk(n+1, alpha*rl);
wl b = bessely(n, beta*rl);
w2_b = bessely(n+1l, beta*rl);
%

zlp = besseli(n, alpha*r2);
z2p = besseli(n+1, alpha*r2);

z1 bp = besselj(n, beta*r2);
z2 bp = besselj(n+l, beta*r2);

besselk(n, alpha*r2);
besselk(n+l1l, alpha*r2);
wl bp = bessely(n, beta*r2);
w2_bp = bessely(n+1l, beta*r2);
lamd_a
lamd b
%

1;

elseif cp <= cT

z1 = besseli(n, alpha*rl);

z2 = besseli(n+l, alpha*rl);
z1l b = besseli(n, beta*rl);
z2 b = besseli(n+l, beta*rl);
%

wl = besselk(n, alpha*rl);

w2 = besselk(n+1, alpha*rl);
wl b = besselk(n, beta*rl);
w2_b = besselk(n+1, beta*rl);

zlp = besseli(n, alpha*r2);
z2p = besseli(n+1, alpha*r2);
z1 bp = besseli(n, beta*r2);
z2 bp = besseli(n+l, beta*r2);

besselk(n, alpha*r2);
besselk(n+1l, alpha*r2);
wl bp = besselk(n, beta*r2);
w2_bp = besselk(n+1l, beta*r2);
_1;

_1;

lamd b
end
%
cc(1,D)=C2*n*(n-1) - (beta2 - k wave™2)*rin2)*z1 +

2*lamd_a*alpha*rl*z2;

cc(1,2)=2*k_wave*beta*r1”2*z1 b - 2*k wave*r1*(n+1)*z2_b;
cc(1,3)=-2*n*(n-1)*z1_b + 2*lamd_b*n*beta*rl*z2_b;
cc(1,4)=C2*n*(n-1) - (beta2 - k_waven2)*rin2)*wl + 2*alpha*ril*w2;
cc(1,5)=2*1amd_b*k wave*beta*rl™2*wl b - 2*(n+1)*k wave*rl*w2 b;
cc(1,6)=-2*n*(n-1)*wl b + 2*n*beta*ri1*w2_b;
%
cc(2,1)=2*n*(n-1)*z1 - 2*lamd_a*n*alpha*rl1*z2;
cc(2,2)=-k_wave*beta*r1n2*z1 b + 2*k_wave*r1*(n+1)*z2_b;
cc(2,3)=-(2*n*(n-1) - beta2*rin2)*z1_ b - 2*lamd_b*beta*rl1*z2_b;
cc(2,4)= 2*n*(n-1)*wl - 2*n*alpha*rl*w2;
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cc(2,5)=-lamd_b*k_wave*beta*ri”"2*wl b + 2*k_wave*rl1*(n+1)*w2_b;

cc(2,6)=-(2*n*(n-1) - beta2*rin"2)*wl b - 2*beta*ri1*w2_b;

%

cc(3,1)=2*n*k_wave*rl*z1 - 2*lamd_a*k _wave*alpha*rin2*z2;

cc(3,2)=n*beta*ri*z1_b - (beta2-k_waven2)*r1N2*z2 b;

cc(3,3)=-n*k_wave*rl*zl b;

cc(3,4)=2*n*k_wave*rl*wl - 2*k_wave*alpha*riln2*w2;

cc(3,5)=lamd_b*n*beta*r1*wl_b - (beta2-k wave™2)*rin2*w2_b;

cc(3,6)=-n*k_wave*rl*wl _b;

%

cc(4,D)=2*n*(n-1) - (beta2 - k waven"2)*r272)*zlp +
2*lamd_a*alpha*r2*z2p;

cc(4,2)=2*k_wave*beta*r272*z1 bp - 2*k_wave*r2*(n+1)*z2_bp;

cc(4,3)=-2*n*(n-1)*z1_bp + 2*lamd_b*n*beta*r2*z2 bp;

cc(4,49)=2*n*(n-1) - (beta2 - k_wave™2)*r272)*wlp + 2*alpha*r2*w2p;

cc(4,5)=2*1lamd_b*k_wave*beta*r272*wl _bp - 2*(n+1)*k _wave*r2*w2_bp;

cc(4,6)=-2*n*(n-1)*wl_bp + 2*n*beta*r2*w2_bp;

%

cc(5,1)=2*n*(n-1)*z1p - 2*lamd_a*n*alpha*r2*z2p;

cc(5,2)=-k_wave*beta*r2"2*z1_bp + 2*k_wave*r2*(n+1)*z2_bp;

cc(5,3)=-(2*n*(n-1) - beta2*r272)*z1 bp - 2*lamd_b*beta*r2*z2 bp;

cc(5,4)= 2*n*(n-D*wlp - 2*n*alpha*r2*w2p;

cc(5,5)=-1amd_b*k_wave*beta*r2/"2*wl_bp + 2*k_wave*r2*(n+1)*w2_bp;

cc(5,6)=-(2*n*(n-1) - beta2*r272)*wl_bp - 2*beta*r2*w2_bp;

%

cc(6,1)=2*n*k_wave*r2*zlp - 2*lamd_a*k wave*alpha*r2/~2*z2p;

cc(6,2)=n*beta*r2*z1 bp - (beta2-k waven™2)*r272*z2 bp;

cc(6,3)=-n*k_wave*r2*z1 bp;

cc(6,4)=2*n*k_wave*r2*wlp - 2*k_wave*alpha*r2/2*w2p;

cc(6,5)=lamd_b*n*beta*r2*wl _bp - (beta2-k wave/2)*r2/2*w2_bp;

cc(6,6)=-n*k_wave*r2*wl_bp;

%

%svall = det(Jcc(2,3), cc(2,6); cc(5,3), cc(5,6)]);
% svall = det([cc(1,1), cc(1,2), cc(l1,4), cc(1,5)
% cc(3,1), cc(3,2), cc(3,4), cc(3,5)
% cc(4,1), cc(4,2), cc(4,4), cc(4,5)
% cc(6,1), cc(6,2), cc(6,4), cc(6,51);

svall = det(cc);

%

sym_ind = 1;

anti_ind = 1;

pp(l) = 1;

pp(2) = 1;

pp(3) = 1;
for cpl = [0.1:0.001:10]

cp = cpl*le6;
alpha = wh*abs(sqrt((1/cL"2 - 1/cp™2)));
beta = wh*abs(sqrt((1/cT™2 - 1/cp”™2)));
%

alpha2 = wh"2*(1/cL"2 - 1/cp™2);
beta2 = wh™"2*(1/cT™2 - 1/cp”2);
%
k_wave = wh/cp;
% define the feature matrix
ifcp >clL
z1 = besselj(n, alpha*rl);
z2 = besselj(n+1l, alpha*rl);
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%

N

=

(=2
I

=
=
I

w2

besselj(n, beta*rl);
besselj(n+l, beta*rl);

bessely(n, alpha*rl);
bessely(n+1, alpha*rl);

wl b = bessely(n, beta*rl);
w2_b = bessely(n+1, beta*rl);

%
z1lp =

w2p =
wl_bp
w2_bp
lamd_
lamd_|

elseif cL
z1l =
z2 =
z1 b
z2 b
%
wl =
w2 =
wl b
w2_b
%
z1lp =
z2p =
z1 bp
z2_bp

besselj(n, alpha*r2);
besselj(n+1, alpha*r2);
= besselj(n, beta*r2);
= besselj(n+l, beta*r2)
bessely(n, alpha*r2);
bessely(n+l, alpha*r2);

= bessely(n, beta*r2);
= bessely(n+l, beta*r2)
a=1;

b =1;

>cp & cp>cT

besseli(n, alpha*rl);
besseli(n+l, alpha*rl);
= besselj(n, beta*rl);
= besselj(n+l, beta*rl);

besselk(n, alpha*rl);
besselk(n+1, alpha*rl);
= bessely(n, beta*rl);

= bessely(n+l, beta*rl);

besseli(n, alpha*r2);
besseli(n+l, alpha*r2);
besselj(n, beta*r2);
besselj(n+l, beta*r2)

besselk(n, alpha*r2);
besselk(n+1, alpha*r2);

= bessely(n, beta*r2);
= bessely(n+l, beta*r2)
| a = -1;
b =1;
<= cT

besseli(n, alpha*rl);
besseli(n+l, alpha*rl);
= besseli(n, beta*rl);
= besseli(n+1l, beta*rl);

besselk(n, alpha*rl);
besselk(n+1, alpha*rl);
besselk(n, beta*rl);
besselk(n+1l, beta*rl);

besseli(n, alpha*r2);
besseli(n+l, alpha*r2);
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besseli(n, beta*r2);
besseli(n+l, beta*r2);

wlp = besselk(n, alpha*r2);
w2p = besselk(n+1l, alpha*r2);
wl bp = besselk(n, beta*r2);
w2_bp = besselk(n+1, beta*r2);
_1;

_1;

lamd b

end

%

cc(1,D)=2*n*(n-1) - (beta2 - k wave™2)*rin2)*z1 +
2*lamd_a*alpha*ri1*z2;

cc(1,2)=2*k_wave*beta*r1”2*z1 b - 2*k wave*rl1*(n+1)*z2_b;

cc(1,3)=-2*n*(n-1)*z1_b + 2*lamd_b*n*beta*rl*z2_b;

cc(1,4)=C2*n*(n-1) - (beta2 - k wave"2)*rl™2)*wl + 2*alpha*ri*w2;

cc(1,5)=2*1lamd_b*k wave*beta*r1l™2*wl b - 2*(n+1)*k wave*rl*w2 b;

cc(1,6)=-2*n*(n-1)*wl_b + 2*n*beta*ri1*w2_b;

%

cc(2,1)=2*n*(n-1)*z1 - 2*lamd_a*n*alpha*rl*z2;

cc(2,2)=-k _wave*beta*rin"2*z1 b + 2*k _wave*rl*(n+1)*z2 b;

cc(2,3)=-(2*n*(n-1) - beta2*rin2)*zl1 b - 2*lamd_b*beta*rl*z2 b;

cc(2,4)= 2*n*(n-1)*wl - 2*n*alpha*rl*w2;

cc(2,5)=-1amd_b*k_wave*beta*ri”2*wl b + 2*k_wave*rl1*(n+1)*w2_b;

cc(2,6)=-(2*n*(n-1) - beta2*rin"2)*wl_b - 2*beta*rl*w2_b;

%

cc(3,1)=2*n*k_wave*rl*zl - 2*lamd_a*k wave*alpha*rin2*z2;

cc(3,2)=n*beta*ri*z1_b - (beta2-k_waven2)*rln2*z2 b;

cc(3,3)=-n*k_wave*rl*z1 b;

cc(3,4)=2*n*k_wave*rl*wl - 2*k_wave*alpha*rln2*w2;

cc(3,5)=lamd_b*n*beta*r1*wl b - (beta2-k wave”™2)*ri1”2*w2 b;

cc(3,6)=-n*k_wave*rl*wl b;

%

cc(4,)=C2*n*(n-1) - (beta2 - k waven2)*r272)*zlp +
2*lamd_a*alpha*r2*z2p;

cc(4,2)=2*k_wave*beta*r272*z1 bp - 2*k _wave*r2*(n+1)*z2 bp;

cc(4,3)=-2*n*(n-1)*z1 _bp + 2*lamd_b*n*beta*r2*z2 bp;

cc(4,4)=2*n*(n-1) - (beta2 - k waven"2)*r27"2)*wlp + 2*alpha*r2*w2p;

cc(4,5)=2*1amd_b*k_wave*beta*r272*wl_bp - 2*(n+1)*k_wave*r2*w2_bp;

cc(4,6)=-2*n*(n-1)*wl_bp + 2*n*beta*r2*w2_bp;

%

cc(5,1)=2*n*(n-1)*zlp - 2*lamd_a*n*alpha*r2*z2p;

cc(5,2)=-k_wave*beta*r272*z1 bp + 2*k_wave*r2*(n+1)*z2_bp;

cc(5,3)=-(2*n*(n-1) - beta2*r272)*z1 bp - 2*lamd_b*beta*r2*z2 bp;

cc(5,4)= 2*n*(n-1)*wlp - 2*n*alpha*r2*w2p;

cc(5,5)=-1lamd_b*k_wave*beta*r2/°2*wl _bp + 2*k_wave*r2*(n+1)*w2_bp;

cc(5,6)=-(2*n*(n-1) - beta2*r27"2)*wl _bp - 2*beta*r2*w2_bp;

%

cc(6,1)=2*n*k_wave*r2*zl1lp - 2*lamd_a*k_wave*alpha*r2/2*z2p;

cc(6,2)=n*beta*r2*z1 bp - (beta2-k waven™2)*r272*z2 bp;

cc(6,3)=-n*k_wave*r2*z1 bp;

cc(6,4)=2*n*k_wave*r2*wlp - 2*k_wave*alpha*r272*w2p;

cc(6,5)=lamd_b*n*beta*r2*wl_bp - (beta2-k_wave/2)*r2/2*w2_bp;

cc(6,6)=-n*k_wave*r2*wl_bp;

%

%sval2 = det([cc(2,3), cc(2,6); cc(5,3), cc(5,6)]) ; % torsional mode
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% sval2 = det([cc(1,1), cc(1,2), cc(l1,4), cc(1,5) % longitudinal
mode

% cc(3,1), cc(3,2), cc(3,4), cc(3,5)

% cc(4,1), cc(4,2), cc(4,4), cc(4,5)

% cc(6,1), cc(6,2), cc(6,4), cc(6,51);

%

sval2 = det(cc);

pp(1) = pp(2);

ppP(2) = pp(3);

pp(3) = (sval2 - svall);%/abs(sval2 - svall);

delt = abs(sval2 - svall);
%
av = [av, sval2?2];
%be = [be; beta*rl, beta*r2, beta2*ri1n2, beta2*r2/2];
%zbe=[zbe; z1 b, z2 b, z1 bp, z2_bp];
%wbe = [wbe;wl b, w2 b, wl bp, w2 _bp];
%lam = [lam ; lamd_a, lamd_b];
%
iT svall*sval2 <= 0 & pp(2)*pp(3) > 0 & pp()*pp(2) >0 &
abs(pp(3)/pp(2)) < 10 & abs(pp(2)/pp(1)) < 10 %& abs(pp(3)/pp(2)) > 0.5
& abs(pp(2)/pp(1)) > 0.5% %& delt < 2.e7 %]abs(sval2) < 1le-9; %sval2 -
svall <0
disp("symmetric mode®);
disp((svall*sval2));
disp(pp(2)/pp(1));
% disp(sval2 - svall);
disp(cpl);
sym(f_ind, sym _ind) = cpl;
sym_ind = sym_ind +1;
disp(pp)
end
svall = sval2;
% avall = aval2;
end
end
figure
%subplot(2,1,1)
plot(sym,“ro:");
legend("symmetric mode*®);
%subplot(2,1,2)
%hold
Yplot(anti, "r*-");
xlabel ("fd");
ylabel ("Phase speed”);
legend( "antisymmetric mode®);
%
figure
plot(fd,sym(:,1),"r*-");
[ml,nl]=size(sym);
hold
for ncol = 2:nl
nonzero_nu = Find(sym(:,ncol) >0);
plot(fd(nonzero_nu), sym(nonzero_nu, ncol),"r*-");
end
%
syml = sym;
syml1(1,2) = 0;
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%
%Filtering out the singular point cT = 2.320 and cL = 4.48
num_cur = 0; %1;
max_sp(1l) = max(symli(1,:));
for i = 2:30
max_sp(i) = max(sym(i,:));
if max_sp(i) > max_sp(i-1)
num_cur = num_cur+l
end
num_nonzero = find(syml(i,:) >0);
if num_cur < length(num_nonzero)
% cT_ind = Find(syml(i,:) == cT/1.eb6)
cT_ind = Ffind(abs(symli(i,:) - 2.32)== min(abs(syml(i,:)-
2.32)));
it = isempty(cT_ind);
if it ==
syml(i,l:end-1) = [sym(i,1l:cT_ind(1)-1), sym(i,
cT_ind(1)+1:end)];
end
%end
end
end
%%
figure
%
[ml,nl]=size(syml);
plot(fd,symli(:,1), " r*-");
hold
for ncol = 1:nl
nonzero_nu = find(syml(:,ncol) >0);
plot(fd(nonzero_nu), syml(nonzero _nu, ncol),"r*-%);
end
xlabel (* fd(MHz*mm) ") ;
ylabel ("Phase speed (mm/usec)”);
grid
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Appendix D: MATLAB Code for HHT

%%

% Hilbert-huang transformation, Emperical signal decomposition

% 1in the first step, them HT for T-F plot

%%

clear

close all

%

s=load('c:\lu\longbeam/beam6 newtault\l6 300ks 12r 3rec pulse Sk# 50 10v 2clamp
thole up");

%

r _sig=s(1:end,3)";;

%

t = 1:length(r_sig);

figure

plot(t,r_sig);

hl =r _sig;

Y%perform 8 EMD

cc=[1;

residual(1) = sumsqr(r_sig);

forjj=1:6 %% usually four EMD are enough for any time seris
%%

for n_sift = 1:8 % at most eight sifting processes
%

% fing the maxima and minima points

[ maxma, ma_ind, minma, mi_ind]= extrema(hl(end,:), t);
%

% empirical mode decomposition using cubic spline interplation
%

ma_sp = spline(ma_ind, maxma, t);

mi_sp = spline(mi_ind, minma, t);

ml =0.5%(ma_sp + mi_sp);

h1l =[hl; hl(end,:)- m1];

if(0)

figure

plot(t, ma_sp,'r-");

hold

plot(t, mi_sp, 'b:");

title(['"EMD level' int2str(n_sift)]);

hold off

figure

plot(t, h1(n_sift+1,:));

title('EMD level' int2str(n_sift)]);
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end
%%
% defining the sifting standard deviation
% SD = sum((hl - h_new)"2) /sum(h12)
%%
sd = sumsqr(h1(n_sift,:)-h1(n_sift+1,:))/sumsqr(h1(n_sift,:))
if sd <0.3 % 0.2 is a more strict criteria
disp(['break at level->' int2str(n_sift) ]);
break
end
end
%%
% the difference between extema number and the zero crossing number
% may be checked if you want evaluate the performance of of EMD
%%
cc = [cc; hl(end,:)];
HH =hl(1,:)-hl(end,:);
h1 =[];
h1 = HH;
residual(jj+1) = sumsqr(HH);
if(0)
figure
plot(hl);
title(['Dcompositon after level:: ' int2str(jj)]);

if residual(jj+1) > residual(jj)
figure
plot(residual);
%break
end
end
%
end
%%
% Hilbert spectrum
% HT is performed to find the instantenuous frequency provided that a
% narrow frequency band exists at that points, otherwise the instant
% fregency is meaningless

%%
ins_freq =[];
mag = [];

ana = hilbert(cc');

[nrow, ncol]= size(ana);
for col = 1:ncol

angl = angle(ana(:,col));
%% smooth the angle
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%% ang = conv(ones(10,1), ang);

ang = conv( ones(10,1), unwrap(angl));
if(0)

figure

subplot(2,1,1)

plot(angl);

title(['wraped phase angle, IMF' int2str(col) ';']);
subplot(2,1,2)

plot(ang(1:end-10));

title(' unwraped phase angle");

end

%

ins_freq = [ins_freq, diff(ang(1:1:end))];
mag = [mag, abs(ana(:,col))];

figure

subplot(2,1,1)
plot(ins_freq(1:end-10,col));
title(['Instant frequency, IMF' int2str(col) ';']);
subplot(2,1,2)

plot(mag(:,col));

title(' Magnitude');

end

%%

% smoothed phase angle using convolution
%%

[ms,ns]= size(ana);

figure

ins_fs=[];

for ii =1:ns

ins_fs = [ins_fs, angle(conv(ones(10,1),(ana(2:end,ii).*conj(ana(1:end-1,ii)))))];
subplot(ns, 1,i1)

plot(ins_fs(:,ii));

end

title('smoothed instant frequency');

%%

% smoothed instant frequency

%%

fs = 300;

ins_freqs = ins_freq(1l:end-10,:)*fs/2/pi/10; %ins_fs(5:end-4,:)*fs/2/pi;
[mi, mj]= size(ins_freqs);
ma = zeros(50, mi);
ins = ceil(ins_freqs);
for tim = 1:mi
for jj = 1:mj-3
if ins(tim,jj) >0 & ins(tim,jj) < 50;
ma(ins(tim,jj),tim) = mag(tim,jj);
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end

end

end

figure

if(1)

contour(ma,30);

xlabel('time points (3.3exp-6 s)');
ylabel('freq (kHz)');

%ins_freq = ins_freq*300000/2/pi;
%figure

%plot(ins_freq, 'r+');

%

[mcc, ncc]= size(cc);

figure

for im = I:mcc
subplot(mcc,1,im)

plot(cc(im,:));

end

end

%% plot for the first

if(1)

nc = 1;% input("Which HT of IMF to plot?');
ma = zeros(60, mi);
ins = ceil(ins_freqs);
for tim = 1:mi
for jj =nc:nc
if ins(tim,jj) >0 & ins(tim,jj) < 60;
ma(ins(tim,jj),tim) = mag(tim,jj);
end
end
end
figure
subplot(1,2,1);
plot(r_sig);
ylabel('amplitude (volt)");
xlabel('time points (3.3exp-6 s)');
subplot(1,2,2)
contour(ma,30);
xlabel('time points (3.3exp-6 s)');
ylabel('freq (kHz)");
end
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Appendix E: MATLAB Code for Moving Window algorithm.

close all

clear

sl =
load("c:/1u/tube5/T5 16k _r2l _6v_300ksT sinepulse 100# 5000 nf bottom wa
ter");

s2 =

load("c:/1u/tube5 faultl/T5 16k r21_6v_300ksf sinepulse 100# 5000 _notch
_bottom water®);

s3 =

load("c:/1u/tube5 fault2/T5 16k r21_6v_300ksf sinepulse_100# 5000 fault
2 _bottom_water®);

s4 =
load("c:/1u/tube5/T5 16k _12r 6v_300ksT sinepulse_ 100# 5000 nf bottom wa
ter");

s5 =

load("c:/1u/tube5_ faultl/T5 16k 12r_6v_300ksf_sinepulse_100# 5000_notch
_bottom water®);

s6 =

load("c:/1u/tube5 fault2/T5 16k 12r_6v_300ksf sinepulse_100# 5000 fault
2 bottom _water");

sl = load(["14_16k_300ks_5v_100# nf _5k_12r"]);

s2 = load(["14_16k 300ks 5v_100# hhole 5k_I2r_ leftl0inch"]);

s3 = load(["14_16k 300ks 5v_100# thole 5k_I2r_ leftl0inch"]);

s4 = load(["14_16k 300ks 5v_100# nf 5k I2r water™]);

s5 = load(["14_16k _300ks 5v_100# hhole_5k_I2r_ leftl0inch_water™]);
s6 = load(["14_16k 300ks 5v_100# thole 5k_I2r_ leftl0inch_water™]);

%s1l =
load("c:/1u/tube5/T5 16k r2l _10v_300ksf sinepulse 100# 5000 nf up water

%s2 =

load("c:/1u/tube5 faultl/T5 16k r21 _10v_300ksT sinepulse_ 100# 5000 notc
h_up_water®);

%s3 =

load("c:/1u/tube5_ fault2/T5_16k r21_10v_300ksT_sinepulse_100#_5000_faul
t2_up_water®);

%s4 =
load("c:/1u/tube5/T5 16k _12r 10v_300ksf sinepulse 100# 5000 nf up water
");

%s5 =

load("c:/1u/tube5 faultl/T5 16k 12r_10v_300ksT sinepulse_ 100# 5000 notc
h_up_water®);

%s6 =

load("c:/1u/tube5 fault2/75 16k 12r_10v_300ksT sinepulse 100# 5000 faul
t2_up_water®);%

%sl =
load("c:/1u/tube8/T8 16k _r2l 6v_300ksT sinepulse 100# 5000 nf _up water”
)

%s2 =

load("c:/1u/tube8 holel/T8 16k r2l1_6v_300kst sinepulse_ 100# 5000 hhole_
up_water®);
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%s3 =

load("c:/1u/tube8 hole2/T8 16k r2l1 6v_300ksf sinepulse 100# 5000 thole
up_water®);

%s4 =
load("c:/1u/tube8/T8 16k _I12r 6v_300ksT _sinepulse_100# 5000 _nf _up water”
)

%s5 =

load("c:/1u/tube8 holel/T8 16k 12r_6v_300kst sinepulse_ 100# 5000 hhole_
up_water®);

%s6 =

load("c:/1u/tube8 hole2/T8 16k 12r_6v_300ksf sinepulse 100# 5000 thole
up_water");

%

it
for i= 2:4
s1l(:,i)= s1(:,1) - s1(1,i1);
s2(:,1)= s2(:,1) - s2(1,1);
s3(:,i1)= s3(:,1) - s3(1,1);
s4(:,i)= s4(:,1) - s4(1,i1);
s5(:,1)= sb5(:,1) - s5(1,1);
s6(:,i1)= s6(:,1) - s6(1,i);
end
end
%
%
%
figure
title(Canti sym™);
for i= 1:3

subplot(3,1,1);

eval(["da = s" int2str(i) "(:,3) -s" int2str(i) "(:,4);:"'D:
plot(da);
end
figure
for i= 4:6
subplot(3,1,i-3);
eval(["da = s" int2str(i) "(:,3) -s" int2str(i) "(:,4):"D:
plot(da);
end
figure
title("anti sym");
for i= 1:3
subplot(3,1,1);
eval(["da = s" int2str(i) "(:,3) -s" int2str(i) "(:,4);"D:
[px, f]= psd(da, 2000, 300000);
plot(f, px);
end
figure
for 1= 4:6
subplot(3,1,i-3);
eval(["da = s* int2str(i) "(:,3) -s" int2str(i) "(:,4);:"D:
[px, F]= psd(da, 2000, 300000);
plot(f, px);
end
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% moving windows for peak values and standard deviation from peak
points
st = [1
figure
for i= 1:6
%subplot(3,1,i-3);
eval(["da = s" int2str(i) "(:,3) -s" int2str(i) "(:,4);:"D:
eval(["maa® int2str(i) "= max_prop(350, da);"]);
maa = max_prop(350, da);

ifi==

plot(maa(:,1),maa(:,3));

hold on

elseif i1 == 2

plot(maa(:,1),maa(:,3), " r+:%);

elseif i==
plot(maa(:,1),maa(:,3), "r*:");

elseif i==4
plot(maa(:,1),maa(:,3),"kp-");

elseif i==
plot(maa(:,1),maa(:,3), "ko:");
else
plot(maa(:,1), maa(:,3), "k™:");
grid
end

title("Vvariance of local peaks");

legend("NF, air®, "hhole,air ", "thole,air ~,"NF,water ",
"hhole,water®, "thole,water”);

xlabel ("time (3.33e-006 sec)");

ylabel("variance®);

end

%plot(st);

figure

%subplot(3,1,1)

plot(maal(:,1), maal(:,4));

hold

%subplot(3,1,2)

plot(maa2(:,1), maa2(:,4),"r:");
%subplot(3,1,3)

%plot(maa6(:,1), maa6(:,4), "g+:");
%subplot(3,1,1)

plot(maa3(:,1), maa3(:,4),"r*:");
%subplot(3,1,2)

plot(maa4(:,1), maad(:,4), "kp-");
%subplot(3,1,3)

plot(maa5(:,1), maa5(:,4),"k+:");
plot(maa6(:,1), maa6(:,4), "k :");
grid

title("Amplitude of local peaks®);
legend("NF, air®, "hhole,air ", "thole,air ","NF,water ",
"hhole,water”, "thole,water”);
xlabel ("time (3.33e-006 sec)");
ylabel ("Amplitude®);

%%

figure

for 1= 1:6
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%subplot(3,1,i-3);
eval(["dd = maa" int2str(i) "(:,:):"D:

ifi==1
plot(dd(:,1),dd(:,2));
hold on

elseif i == 2

plot(dd(:,1),dd(:,2),"r+:");
elseif 1==3
plot(dd(:,1),dd(:,2),"r*:");
elseif i==4
plot(dd(:,1),dd(:,2),"kp-");
elseif i==5
plot(dd(:,1),dd(:,2),"ko:");
elseif 1==6
plot(dd(:,1),dd(:,2),"k*:");

end
title(" mean position, right part mean center®);
legend("NF, air®, “hhole,air *, "thole,air ~,"NF,water ",

"hhole,water®, "thole,water”);
xlabel ("time (3.33e-006 sec)");
ylabel ("Gravity center®);

end

grid

figure

for 1= 1:6
%subplot(3,1,1-3);
eval(["dd = maa®™ int2str(i) "(:,:):"D:;
ifi==
plot(dd(:,1),dd(:,5));
hold on
elseif 1 == 2
plot(dd(:,1),dd(:,5),"r+:%);
elseif i==
plot(dd(:,1),dd(:,5),"r*:");

elseif i==

plot(dd(:,1),dd(:,5), kp-");
elseif i==5
plot(dd(:,1),dd(:,5), "ko:");
elseif i1==6
plot(dd(:,1),dd(:,5), "k™:");
end
title(" mean position, left part mean center”);
legend("NF, air®, “hhole,air ", "thole,air ","NF,water ",
"hhole,water”, "thole,water");
xlabel ("time (3.33e-006 sec)");
ylabel("CGravity center”);
end
grid

B
%%
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function max_pro = max_prop(win_size, dal)

max_pro =[];
Ywinsize = 200;
wid = ceil(win_size/2);
len = length(dal);
for 1 = wid+1:len-wid
in_dat = dal(i-wid:i+wid);
ii, jj, v]= find(abs(win_dat) == max(abs(win_dat)));
ax_ind = min(ii);
if max_ind == wid+1
[m, stdd] = wei_std(abs(win_dat));
[mr, stdr]= wei_std(abs(win_dat(wid:end)));
[ml, stdl]= wei_std(abs(win_dat(l:wid)));
max_pro = [max_pro; i, mr, stdd, max(abs(win_dat)), wid-ml];
end
end
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Appendix F: LabVIEW Interface for Lamb Wave Experiments
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