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Abstract

A generalized self-consistent model of cylindrical inclusions in a homogeneous and

isotropic matrix phase was used to study the effects of tubule orientation on the elastic

properties of dentin. Closed form expressions for the five independent elastic constants of

dentin were derived in terms of tubule concentration, and the Young’s moduli and Poisson

ratios of peri– and intertubular dentin. An atomic force microscope (AFM) indentation

technique determined the Young’s moduli of the peri– and intertubular dentin as

approximately 30 GPa and 15 GPa, respectively. Over the natural variation in tubule density

found in dentin, there was only a slight variation in the axial and transverse shear moduli

with position in the tooth, and there was no measurable effect of tubule orientation. We

conclude that tubule orientation has no appreciable effect on the elastic behavior of normal

dentin, and that the elastic properties of healthy dentin can be modeled as an isotropic

continuum with a Young’s modulus of approximately 16 GPa and a shear modulus of 6.2

GPa.
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Introduction

Dentin, the mineralized tissue forming the bulk of the tooth, lies between the enamel

and the pulp chamber. It has a characteristic microstructure consisting of a hydrated matrix

of type I collagen that is reinforced with a nanocrystalline carbonated apatite. This matrix

phase lies between nearly cylindrical tubules that run from the dentin-enamel junction to the

pulp chamber. The tubules are the pathways of the formative odontoblast cells and, as they

move inward during formation of the crown, the tubule numerical density increases 2-4

times with depth  [Marshall, 1993].  The tubule lumens, which are roughly 1 µm in

diameter, are surrounded or lined by a hypermineralized cylinder of peritubular dentin

composed largely of apatite that is also roughly 0.5- 1.5 µm in thickness. The formation of

the peritubular dentin occurs after mineralization of the matrix, and may be formed as a

passive precipitation rather than as an active part of the mineralization process [Ten Cate,

1994]. It has not been established if the peritubular dentin serves any role in enhancing the

mechanical properties of dentin tissue.

The elastic properties of dentin are of considerable importance for understanding the

mechanical properties of calcified tissue in general, and for understanding alterations in the

mechanical response of such tissues as determined by disease and age. In addition it is

important to understand the elastic response of dentin to external loading, as this has

important implications for understanding masticatory loading effects, the effect of

microstructural alterations due to caries, sclerosis, and aging, as well as understanding the

effects of the wide variety of restorative dental procedures that range from preparation

design to bonding methods.

In spite of its importance, there is great inconsistency with the reported values of the

Young’s modulus of dentin. Measurements of the Young’s modulus span a range from

about 10 to 20 GPa,  a range that appears to be independent of testing method (see Table 1).

Furthermore, it is interesting to note that despite marked advances in both our theoretical

understanding of the mechanics of composite structures and improved testing methods, the
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large discrepancies in measured values of the elastic modulus persist, as demonstrated by

two recently published papers that report values of 20.3 and 8.7–11.2 GPa, respectively [Xu,

et al. 1998; Merideth, et al. 1996].

The large discrepancy in the elastic modulus of dentin reflects the difficulties in

performing mechanical tests on small specimens. It is also true that measurements can be

affected by variations in specimen wetness, possible variations in mineralization, and tubule

density and orientation. Clearly, an accurate determination of the elastic properties  of dentin

would benefit from a model that accounts for tissue variability in terms of a limited number

of properties that can be accurately measured.

Dentin can be analyzed at many length scale hierarchies. At the microscopic level,

dentin can be studied as an aggregate of mineral and collagen. At the microstructural level,

dentin is composed of cylindrical tubules interpenetrating a partially mineralized matrix

phase of type I collagen. Finally, at the functional, or continuum level, dentin looks like a

homogeneous substance that fills the space between the enamel and the pulp. Previous

attempts to model the elastic properties of dentin have focused on the constituent materials

properties at the microscopic level, and have relied on bounding principals such as Voigt

and Reuss or Hashin-Shtrikman [Katz, 1971]. In bounding models, the elastic behavior of

dentin is determined only by the relative volume fractions of the collagen and mineral

phases. For dentin, however, these models have proved to be of little value because the

elastic properties of the two constituent phases differ by several orders of magnitude. About

the only use for bounds is as a check on the validity of any other theoretical model: the

Young’s modulus of healthy dentin cannot exceed 40 GPa, nor be less than about 5 GPa.

Such wide bounds do not help with the assessment of the reliability of the experimental

measurements, since most reported measurements lie within these upper and lower bounds.

Christensen and Lo [summarized in Christensen 1990] have developed a

micromechanics model of cylindrical inclusions in a homogeneous matrix phase. This
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model is quite powerful in that it covers the complete range of possible inclusion densities,

and presents simple analytical expressions for the elastic constants. The purpose of this

paper is to extend this model to dentin. The model requires two measurements: the Young’s

modulus of the matrix phase (intertubular dentin) and the modulus of the cylindrical

inclusion (the tubule lumen with its surrounding peritubular cuff). We report the values for

these moduli based on atomic force microscope (AFM) indentation of fully hydrated

specimens, and use them to predict the continuum elastic properties of dentin. We then use

the model to test the hypothesis that the elastic properties of dentin are dominated by the

matrix, and that the dentinal tubules contribute only slightly to the mechanical properties.
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Materials and Methods

micromechanics model

The micromechanics model of dentin proposed here is a straightforward extension

of the generalized self–consistent formalism, also called the three–phase model, of

cylindrical inclusions in a uniform matrix phase that was pioneered by Christensen and Lo

[Christensen 1990]. In the original presentation, both the matrix phase and the material

comprising the cylindrical inclusion were assumed isotropic. Transverse anisotropy of the

composite structure was imposed by the parallel alignment of the cylindrical inclusions. A

boundary value problem was formulated by embedding a cylindrical inclusion into the

matrix, with the areal fractions adjusted to account for the correct concentration of the

inclusions. This two phase model was then embedded in an effective medium that matched

the continuum properties of the bulk composite. With this model, analytic solutions for the

five independent elastic constants were obtained without restrictions on the concentration or

symmetry of the cylindrical inclusions.

The axial Young’s modulus was derived as a function of the concentration (areal

fraction of the inclusions crossing the plane normal to their orientation, c) of the inclusions,

the Young’s moduli of the matrix (Em) and cylindrical inclusion (Ef), and a factor, γ, that

depends upon the difference in Poisson ratio between the two phases [Christensen 1990]:

E cE c E cf m f m f m f m11 1= + −( ) + ( )γ ν ν µ µ κ κ, , , , , , (1)

In this formalism, νf, νm, µf, µm, κf, and κm are the Poisson ratios, shear moduli, and bulk

moduli of the inclusion and matrix respectively.

The axial shear modulus, µ12, was derived as a function of the concentration, c, and

the independent shear moduli of the matrix and inclusion phases µm and µf:
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Finally, the transverse shear modulus, µ23, was obtained from the solutions of a quadratic

equation:
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where the coefficients A, B, and C are algebraic expressions given in Christensen (1990).

To apply this model to dentin, we assumed that the tubule lumen with its

surrounding, coaxial peritubular cuff could be modeled as a cylindrical inclusion with a

Young’s modulus, Ef, given by:
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where Al is the lumen area, and Ept and Apt are the Young’s modulus and area of the

peritubular dentin. From the assumption that the constituent phases (intertubular matrix and

peritubular dentin) are elastically isotropic, the values for the shear, µm, and bulk, km, moduli

of the matrix phase were determined from the measured Young’s modulus of the matrix

phase from the relations:
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(5)

where km is the bulk modulus of the matrix phase. Similar expressions apply for µf and kf  as

well. From the above relationships (given in complete form in Christensen 1990), all of
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dentin’s continuum elastic properties could be described in terms of three measurable

parameters: c, Em, and Ept.

specimen preparation

Six partially erupted human third molars with no visible or radiographic evidence of

caries were used for this study. Thin (1 mm) transverse slabs through the mid–coronal

dentin were cut from each tooth with a slow speed diamond saw (Isomet, Buehler) under

constant irrigation. The slabs were assigned randomly to one of two groups (n=3). For

Group 1, cubes of 1–mm side length were prepared with the tubules intersecting the

superior and inferior cube faces and running parallel with the lateral cube faces (see Figure

1). Group 2 specimens were left as slabs. The specimens were polished in stages through

0.05 µm diamond and then rinsed in water and ultrasonicated to remove the smear layer.

After rinsing, the specimens were allowed to dry in air up to seven days until AFM

indentation was performed.

AFM indentation

The specimens were imaged and indented using a specially modified atomic force

microscope (Nanoscope III, Digital Instruments, Santa Barbara, CA). The modification

consisted of replacing the AFM cantilever/tip assembly with a transducer driven head and

tip (Triboscope, Hysitron, Minneapolis, MN) that allowed the AFM to operate both as an

imaging and an indentation instrument. This modification has been described in detail

elsewhere [Balooch, et al. 1998].

The AFM was used initially to image the specimen, and sites were selected for

indentation. The AFM tip was then brought in contact with the surface and the force on the

tip was ramped linearly to between 400–700 micro Newtons, depending on whether

indentations were made in intertubular or peritubular dentin (an attempt was made to keep

the indentation depth constant, so as to minimize tip area errors). This maximum force was
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held constant for a brief time interval, and was then decreased linearly to zero. The time

increments were two seconds for each segment of the loading profile (see Figure 2a). The

load displacement profile for a typical specimen is shown in Figure 2b. A polynomial

expression, Pu, for the unloading curve was obtained from a least squares fit of the data

between 20% and 95% of the maximum force:

P B h hu f
m

= −( ) (6)

where h was the indentation depth, hf was the indention depth at zero force, and B and m

were determined from a least squares fit of the unloading data. The derivative of the

unloading curve evaluated at the peak force provided the contact stiffness, S[Oliver and

Pharr, 1992]

S
dP

dh
mB h hu

h h f

m
= = −( )→

−

max max

1
(7)

Care was taken to remove the uncalibrated machine compliance, Cm, which was associated

with the tip shaft and sample mounting from each indentation:

S
S Cc

m
=

( ) −[ ]
1

1/
(8)

and Cm was determined by comparing compliance data for indentations at different depths

[Kinney, et al., 1996].

The indentation modulus, E*, was determined from the measured contact stiffness,

Sc, and the contact areas for each indentation, A, that were obtained from the contact depth

and the diamond–tip shape calibration [Doerner and Nix, 1986]:
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E
A
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The Young’s modulus of the probed specimen, Es, was then obtained from E* and the

known modulus of the diamond indenter, Ei:

1 1 12 2

E E E

s

s

i

i
* =

−( )
+

−( )ν ν
(10)

The intertubular dentin in the Group 1 specimens was indented at 5 µm intervals

approximately 100 µm inwards from the cube edge in a direction parallel with the tubule

axis. The specimens were then rotated 90o and indented along the direction normal to the

tubule axis. Care was taken to make indentations in the same region of dentin to test for

material anisotropy. Because these measurements required frequent repositioning of the

specimen, it was difficult to fully immerse the cubes in water. Therefore, the cubes were

indented dry for this part of the investigation.

The Group 2 specimens were indented in a direction parallel with the tubule axis,

starting with dry specimens and then full water immersion with measurements at a half, two,

24, and 72 hours in water. The purpose of the repeated measurements was to study the

effects of hydration on the modulus of dentin. Intertubular dentin was indented at a location

midway between adjacent tubules, and peritubular dentin was indented across the full width

of the cuff, as shown in Figure 3. Indentations were made across the full width of the cuff in

order to measure the magnitude of boundary effects on the indentation modulus of the

peritubular dentin. The precise location of each indentation was determined by AFM

imaging. Measurements were repeated three times on each specimen.
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Results

AFM indentation moduli across the width of a representative peritubular cuff are

shown in Figure 4. Within a tenth of a micrometer of both the lumen wall and the

intertubular dentin interface, the modulus was noticeably reduced by boundary effects.

However, across the bulk of the peritubular cuff, remarkably constant values were obtained.

The peritubular modulus was 28.6±.5 GPa, and was rounded to 30 GPa for Ept in Equation

4 so as not to underestimate the mechanical contribution of the tubules. The values for Al

and Apt as a function of location in the tooth are listed in Table 2, based on tubule areas

calculated by Pashley [1989] from the data of Garberoglio and Brannstrom [1976].

Substituting these values into Equation 4 produced an inclusion modulus, Ef, that was

independent of position (22.5 GPa).

The intertubular modulus was measured in two orientations:  perpendicular with the

tubule axis and parallel with the axis. Measurements perpendicular to the tubule axis gave

values of 20.1±1.1 GPa and those made parallel with the axis were 20.3±.9 GPa. There was

no statistically significant effect of orientation on the measured values of the peritubular and

intertubular dentin moduli based on a two–tailed T test (p>.7).

The modulus of the intertubular dentin as a function of time in water is graphed in

Figure 5. There was a rapid decrease in elastic modulus in the first 24 hours, followed by a

more gradual decrease over the next 48 hours. Concerns about possible specimen

demineralization led us to select the 24 hour time point (Em = 15 GPa) for modeling

purposes (see discussion).

With the values of Em and Ef, the five independent elastic constants were determined

as a function of tubule concentration. Because there were no independent measures of

Poisson’s ratio, three limiting cases were explored: vm < vf; vm = vf; vm > vf, where vf was

given a constant value of 0.25 and vm ranged from 0.1 to 0.4. The magnitudes of the axial

Young’s modulus and axial and transverse shear moduli are charted as a function of tubule

concentration in Figure 6. All moduli increased linearly with tubule concentration as
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expected. The axial Young’s modulus increased from about 15.3 GPa near the dentin

enamel junction to 16.3 GPa within a mm of the pulp. There was only a slight effect of

varying Poisson’s ratio. The effects of Poisson’s ratio were more pronounced on the

magnitudes of the shear moduli, a natural consequence of Equation 5. At 10% tubule

density, the axial and transverse shear moduli ranged from about 5.5 to 7 GPa as Poisson’s

ratio of the intertubular matrix  was varied from 0.1 to 0.4. The axial and transverse shear

moduli were identical over the expected range of tubule concentration in healthy dentin.

Discussion

The micromechanics model developed here operates at the composite level,

accounting for the interaction of the continuous matrix phase with an inclusion phase, in this

case the hypermineralized peritubular cuffs. If the materials properties of the two phases are

known, then a micromechanics model can be used to predict the effective properties of the

composite material. Strictly speaking, a micromechanics model applies to a statistically

homogeneous material. The tubule density of dentin, however, varies slightly from the

dentin enamel junction towards the pulp. However, the variations in tubule density are small

enough that we can define a representative volume element that is large compared with the

tubule diameters and spacing, and over which the calculated effective properties correctly

define the relations between the field variables of stress and strain.  

There are as yet no constitutive  models that describe the mechanical behavior of the

dentin matrix as a function of mineralization and fiber orientation, nor is the organization of

the dentin matrix fully understood. Nevertheless, it is possible to measure a Young’s

modulus of the matrix  (intertubular  dentin) and peritubular dentin with atomic force

indentation. These values can be used in a micromechanics model to predict the effective

properties of dentin, perhaps more accurately than they can be measured with conventional

biomechanical testing since physical measurement of bulk dentin properties is so difficult.
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In a previous study of human dentin, we reported a Young’s modulus of intertubular

dentin that ranged from 17.7–21.1 GPa and for peritubular dentin of 29.8 GPa [Kinney, et

al., 1996]. These measurements were made with a NanoindenterTM, which could not operate

under water. Also, because the Nanoindenter is not an imaging device, it was impossible to

know with certainty where the indentations were made with respect to the dentin

microstructure. Therefore, the reported values for the intertubular dentin were considered to

be upper bounds, and the value for the peritubular dentin was considered to be a slightly

lower estimate because of possible influence of the intertubular dentin or the tubule lumen.

With the atomic force microscope used in this study, the precise location of each indentation

could be recorded and the indentations could be made with the specimens fully immersed in

water. It was not surprising to find the AFM measurements of the intertubular modulus

significantly lower than previously reported. It is also important to note that the AFM

indentations of the peritubular dentin gave modulus values that were in close agreement with

previous work [Kinney, et al. 1996]. This is because peritubular dentin has very low organic

content and is not appreciably affected by drying.

The effects of hydration on the mechanical properties of mineralized tissues has

been previously reported. In the first systematic study of this effect, Currey reported that

three hours of rehydration was sufficient to restore the elastic modulus of dried specimens

to their original value [Currey, 1988]. In addition, Jameson, et al. (1993) determined that the

stress and strain at fracture could be restored to original values after 96 hours of rehydration

in deionized water. Although the time points used in our study were too widely separated to

confirm that three hours proposed by Currey was sufficient to restore the elastic properties

of the dentin, we did not observe any significant change in modulus after 24 hours of

rehydration. However, there was a trend towards a slight decrease between 24 and 72 hours.

We were concerned that this continued decrease might have been a result of surface

demineralization in water, an affect that has been observed by others in mechanical test
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specimens of bone [Gustafson, et al. 1996]. To mitigate this possibility, we chose to use the

24 hour time point for evaluating the Young’s modulus of the intertubular dentin.

Tubule number density increases from about 4 vol% near the dentin enamel junction

to about 16 vol% within one mm of the pulp [Garberoglio and Branstrom, 1976; Pashley,

1989]. Although the number density of tubules increase with depth and should therefore

increase the effective modulus, any increase is partially offset by the corresponding decrease

in the volume fraction of the matrix phase. Therefore, over this range in density, the tubules

have only a slight affect on the magnitude of the elastic constants. Furthermore, Poisson’s

ratio of the matrix phase affects only the magnitude of the shear moduli, and has only a

negligible affect on the axial Young’s modulus.

The model makes three predictions. First, the model predicts that in healthy, primary

coronal dentin there is a slight increase in the elastic modulus subjacent to the mantel

inwards. Second, the model predicts that the properties of the matrix dominate the

mechanical behavior of the bulk dentin. Finally, the model predicts that the axial and

transverse shear moduli are the same regardless of Poisson’s ratio.

The largest uncertainty in the present study is the magnitude of the shear modulus.

We are aware of only one attempt to measure the shear modulus [Renson and Braden

1975]. These investigators obtained a shear modulus of 6.1 GPa in torsion, and made the

observation that there was no apparent effect of tubule orientation on their results, although

there was no way to precisely control tubule orientation in the macroscopic dentin beams

used in their study. The magnitude of their shear modulus was consistent with a Poisson’s

ratio near 0.25. Indeed, for those specimens for which both the Young’s and shear modulus

were measured, Renson and Braden obtained a mean Poisson’s ratio of 0.23.

The most critical assumptions in the proposed micromechanics model are that the

matrix phase is homogeneous and isotropic. Previous studies have shown that in primary

dentin the mineralization is uniform at about 40–45 vol%, and that measurable deviations

from this value occur only in the immediate vicinity of the dentin enamel junction (mantle
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dentin) or the pulp [Kinney, et al., 1994]. Therefore, by confining our model to primary

dentin, we were reasonably assured of mineral homogeneity.  The assumption of elastic

isotropy, however, requires careful consideration. Dentin’s microstructure, both from the

orientation of the tubules as well as the planar confinement of the collagen fibrils

perpendicular to the tubules, gives the appearance of orthotropic symmetry. However, there

is no compelling evidence that dentin’s elastic properties are anisotropic. Furthermore, our

AFM indentations detected no anisotropy in the Young’s modulus when measured in

orthogonal directions. However, it has recently been observed that the transverse shear

strength may be greater than the axial shear strength [ Watanabe et al., 1996]. It is possible

for the dentin matrix to be elastically isotropic yet have an orientation dependence of shear

strength from the presence of the tubule lumens acting to increase the energy required to

propagate a crack in the transverse direction. The question of elastic isotropy will only be

resolved by careful measurement of the elastic modulus as a function of tubule orientation.

In summary, our results predict that the intertubular dentin matrix governs the elastic

behavior of dentin, and that the tubules do not introduce elastic anisotropy. Combining the

indentation data on the intertubular and peritubular dentin with the cylindrical inclusion

micromechanics model gave the values for the five independent elastic constants that are

listed in Table 3. Until better indentation or shear moduli data become available, primary

dentin should be modeled as an isotropic material with these values of the elastic constants.
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Tables

Table 1: Reported values of the Young’s modulus of dentin

Authors and date Method
Young’s Modulus

(GPa)

Peyton et al. (1952) compression 11.6
Neumann and Di Salvo (1957) compression 1.6–11.7

Craig and Peyton (1958) compression 18.3
Stanford et al. (1958) compression 11.0

Tyldesley (1959) 4–point bending 12.3
Stanford et al. (1960) compression 11.7–13.8

Bowen and Rodriguez (1962) tension 19.3
Lehman (1967) tension 11.0
Haines (1968) compression 11.0
Renson (1970) compression 12.8
Renson (1970) cantilever bending 12.0

Renson and Braden (1971) indenter 12.0
Renson and Braden (1975)cantilever bending 11.1–19.3

Watts, et al. (1987) Compression 13.9±1.5 (25C)
Huang et al. (1992) Compression 14.9

Van Meerbeek (1993) Nanoindenter 19.3
Sano (1994) tensile 13–15

Rees et al. (1994) 3–point bending 8.6 (s):14.3–15.8 (d)*
Meridith, et al. 1996 Indentation 8.7–11.2

Xu et al. (1998) Indentation 20.3 ± 1.7

* (s) = static modulus; (d) = dynamic modulus
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Table 2: the elastic modulus of the cylindrical inclusion (lumen+peritubular cuff) with
position (based on values from Garberoglio and Brannstrom (1976) as tabulated by Pashley
(1989)).

Distance from pulp
(mm)

Al Ap Ai Ef (GPa)

1.1–1.5 4.0 11.9 84.1 22.5

1.6–2.0 2.9 8.6 88.5 22.5

2.1–2.5 1.5 4.4 94.1 22.5

2.6–3.0 1.0 3.0 96.0 22.5

3.1–3.5 1.0 2.9 96.1 22.5
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Table 3: Model predictions for the five independent elastic constants of dentin assuming

Poisson’s ratio of .25 for peritubular and intertubular dentin.

Location E11 (GPa) µ12 (GPa) µ23 (GPa) K23 (GPa) ν12

Inner dentin 16.1–16.4 6.3–6.4 6.3–6.4 12.7–12.9 .25

Outer dentin 15.3–15.6 6.1–6.2 6.1–6.2 12.4–12.5 .25
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List of Figures

Figure 1:

Photomicrograph of a 1–mm cube dentin. The locations of the indentations, both parallel

and perpendicular to the tubule axis, are circled. The arrow lies in the approximate direction

of the tubules.

Figure 2a:

The force applied to the indenter tip as a function of time. The load cycle consisted of three,

2–second segments: a linear ramp, a constant hold, and a linear decrease.

Figure 2b:

A typical force/displacement profile for indentation in intertubular dentin.

Figure 3:

Artist rendering of the hypermineralized peritubular cuff showing the approximate locations

of the indentations.

Figure 4:

Young’s modulus of peritubular dentin measured as a function of radial distance from the

lumen wall. Within 0.1 micrometer of the lumen and the peri–intertubular dentin interface,

the Young’s modulus is much lower due to interaction with the boundaries. Within the bulk

of the peritubular dentin, the measured values vary by less than 2% of the mean value of

28.6 GPa.
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Figure 5:

The Young’s modulus of intertubular dentin as a function of time in water, starting from the

dry state at time zero.

Figure 6: a) axial Young’s modulus as a function of tubule concentration for three values of

the Poisson’s ratio of the intertubular dentin matrix. b) axial shear modulus as a function of

tubule concentration for three values of the shear modulus. c) transverse shear modulus of

dentin. d) the ratio of the axial to transverse shear moduli in dentin. The apparent

discontinuities in the graph (6d) are a result of round off error in calculating the ratios to

two significant figures. Over the entire range of tubule concentration the two shear moduli

differ by less than 1%.
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