”_“J Office of
Science

U.5. DEPARTMENT OF ENERGY

Advanced Scientific Computing Research
Final Project Report

A Cross-Platform Infrastructure for Scalable Runtime
Application Performance Analysis
Jack Dongarra* and Shirley Moore, University of Tennessee
Jeffrey Hollingsworth, University of Maryland
Bart Miller, University of Wisconsin

Summary

The purpose of this project was to build an extensible cross-platform infrastructure to
facilitate the development of accurate and portable performance analysis tools for current and
future high performance computing (HPC) architectures. Major accomplishments include
tools and techniques for multidimensional performance analysis, as well as improved support
for dynamic performance monitoring of multithreaded and multiprocess applications.

1.0 Introduction

Previous performance tool development has
been limited by the burden of having to re-write
a platform-dependent low-level substrate for
each architecture/operating system pair in order
to obtain the necessary performance data from
the system. Manual interpretation of
performance data is not scalable for large-scale
long-running applications. The infrastructure
developed by this project provides a foundation
for building portable and scalable performance
analysis tools, with the end goal being to provide
application developers with the information they
need to analyze, understand, and tune the
performance of terascale applications on HPC
architectures.

The backend portion of the infrastructure
provides runtime instrumentation capability and
access to hardware performance counters, with
thread-safety for shared memory environments
and a communication substrate to support
instrumentation of multiprocess and distributed
programs. Front end interfaces provides tool
developers with a well-defined, platform-
independent set of «calls for requesting
performance data. End-user tools have been
developed that demonstrate runtime data

" 865-974-8295, dongarra@cs.utk.edu

collection, on-line and off-line analysis of
performance data, and multidimensional
performance analysis.

The infrastructure is based on two underlying
performance instrumentation technologies.
These technologies are the PAPI cross-platform
library interface to hardware performance
counters and the cross-platform Dyninst library
interface for runtime modification of executable
images. The Paradyn and KOJAK projects have
made use of this infrastructure to build
performance measurement and analysis tools
that scale to long-running programs on large
parallel and distributed systems and that
automate much of the search for performance
bottlenecks.

2.0 Hardware
Enhancements

Counter Interface

The PAPI library provides a portable interface to
hardware performance counters available on
most modern microprocessors [Browne et al.,
2000]. Counters are usually available that
provide counts of relevant cache and memory
events, such as load and store counts and cache
and TLB misses at various levels of the memory
hierarchy. The PAPI effort has defined a

standard set of performance metrics for the
memory hierarchy, and the implementation
maps these standard events to native events on a
given platform. PAPI is available for most high
performance computing platforms. PAPI eases
the burden on developers of end-user
performance analysis tools by handling the low-
level details of access to hardware performance
counters and providing a common interface
across platforms. During this project, PAPI has
been ported to a number of high-end computing
systems, including Red Storm, Blue Gene/L, and
Cray X1.

This project has extended the set of PAPI
standard events to include additional metrics
related to cache and memory performance and
cache coherence events. In addition, support for
accessing native events through the PAPI
interface has been improved, allowing easy-to-
use mnemonic names to be used instead of
numeric codes. Support for using configure to
automatically generate the makefiles for each
platform has been added so that installation is
now easier. A directory containing command-
line utilities for querying the available standard
and native events and for choosing a set of
compatible events is now created as part of the
installation. ~ PAPI version 3 was completely
rewritten to streamline the interface so that
measurement overheads are much lower.
Version 3 has improved support for threaded
applications, and threading issues and bugs on
several platforms have been resolved. The high-
level interface is now thread-safe. Support was
also added for interrupt on overflow for multiple
events.

The PAPI substrate for the Itanium 2 includes
platform-support support for profiling routines
that make use of the EARSs to record information
about data addresses. Additional work on an

end-user tool for data-centric hardware counter
measurement is described in the next section.

3.0 Data Centric Measurement

During the course of this grant, we developed
cacheScope, a Dyninst based tool that uses
hardware counters to provide cache miss
statistics on a per data structure basis. The tool
uses a sampling based approach that keeps the
overhead low. Cache information is provided
both in terms of the share of misses due to each
data structure, and the number of cycles lost due
to misses.

In order to track dynamic memory allocations,
calls to functions such as malloc must be
replaced with equivalent calls supplied by Cache
Scope. The instrumentation code uses perfmon
[perfmon] to set the Itanium 2 hardware
performance monitors to count L1 data cache
read misses, L1 data cache reads, L2 cache
misses, and Data EAR events. The Data EAR is
set to record information about L1 data cache
load misses and floating point loads.

For purposes of keeping statistics, memory
objects are grouped into equivalence classes,
which we refer to as stat buckets. Each global or
static variable in the program is assigned its own
stat bucket. When a block of memory is
dynamically allocated, a bucket name is either
automatically generated or is supplied by the
user, as described below; this name identifies the
bucket to which the block is assigned. Different
blocks may have the same bucket name, so that
multiple blocks are assigned to a single bucket.
This is useful when a group of blocks are part of
the same data structure, as in a tree or linked list.
Automatically assigned names are generated
based on the names of the top three functions on
the call stack above the memory allocation
function that allocated the object.

100 —

O Sample 1 in 512K
B Sample 1 in 32K
O Sample 1 in 2K
O Sample 1 in 128 -

10 -

percent increase in running time
p—
|
[

0.1 - B sl e sl s i
001 ~ T T T T T T T T]
SEIFF F LIS LSS
&£ & ¢ o&? DR < @Q
Figure 1: Overhead of Data Centric Approaches.

Figure 1 shows the overhead of sampling data Stat Bucket Latency
cache information using our approach. The Beycles %o Per Event
groups of bars show the overhead as the heap K_2 23.67 35'40A’ 118.5
li te is varied. The results show that if heap_disp_3 18.41 | 27.5% 10.7
sampling rate 1ed. . heap K_3 7.49 | 11.2% 5.4
the sampling rate is no more than 1 in 32K heap_disp_2 347 | 52% 228
misses, that the overhead of our approach is Exc 213 | 32% 5.5
generally less than 1%, and always less than heap M_2 153 | 2.3% 15.2
10%. heap_C_2 149 | 2.2% 14.7
<stack> 1.12 1.7% 5.0
. . h M_1 0.95 1.4% 23.9
Figure 2 shows the results of running hZ:E—K—1 0.93 1_402 80.0

cacheScope on the Equake program from the
SPEC CPU2000 benchmark. The left column
shows the data structure, and the next column
shows the number of cycles of latency due to
that data structure (in billion of cycles). The
final column shows the average number of
cycles per miss. Using this data, we were able
to tune the program, and decreases L1 cache
misses in the application by 57%, L2 cache
misses by 30%, and running time by 10%.

The cacheScope tool is available for download
from the project web page at
http://www.dyninst.org/cachescope/.

Figure 2: Data Structure Statistics for Equake

4.0 On-line Automated Performance
Analysis

Paradyn is a performance measurement tool for
parallel programs that automates much of the
search for performance bottlenecks [Miller et al.,
1995]. Paradyn uses DyninstAPI [Buck and
Hollingsworth, 2000] to selectively insert
performance instrumentation and thus scales to
long running programs and large systems. The
instrumentation is controlled by the Performance
Consultant which automates the runtime search
for performance bottlenecks. The newest release
of Paradyn has improved support for
instrumenting and analyzing multithreaded and
message-passing parallel applications.

Dyninst API has been extended with methods
for discovering and instrumenting basic blocks
and loops and functions. The newest release of
Paradyn uses this extension to recognize and
search loops for bottlenecks.

The latest release of Paradyn (4.2) supports
MPICH and LAM MPI's, and also supports the
instrumentation of OpenMP programs. It can
isolate performance data to specific threads and
loops. Future work includes improving the
naming of loops and threads to be closer to what
the Open/MP programmer specifies.

5.0 Off-line Automated Performance
Analysis

The KOJAK toolkit supports performance
analysis of MPI and/or OpenMP applications by
automatically searching traces for execution
patterns that indicate inefficient behavior [Wolf
et al., 2005a]. The performance problems
addressed include inefficient use of the parallel
programming model and low CPU and memory
performance. Figure 1 gives an overview of
KOJAK’s architecture and its components. The
KOJAK analysis process is composed of two
parts: a semi-automatic multi-level
instrumentation of the user application followed
by an automatic analysis of the generated
performance data.

Source

code

POMP DIRECTIVES'
Manual i i

of user source code

OPARI
Automatic instrumentation of
OpenMP source constructs

PAPI Library
Recording of
hardware counters

Executable

Automati
of ust

DPCL
Automatic instrumentation
of binary user code

] ¥
Abstract high-level interface
to event trace

entation
ode

EPILOG
Runtime system and
MPI/ OpenMP
wrapper libraries

Analysis
Report

EXPERT
Automatic pattern analysis

Figure 1: KOJAK architecture

The event traces generated by KOJAK’s tracing
library EPILOG capture MPI point-to-point and
collective communication as well as OpenMP
parallelism change, parallel constructs, and

synchronization. In addition, data from
hardware counters accessed using the PAPI
library [Browne et al., 2000] can be recorded in
the event traces. EPILOG instrumentation can
be inserted using either automated source code
instrumentation or the dynamic instrumentation
technology described in section 3. KOJAK’s
EXPERT tool is an automatic trace analyzer that
attempts to identify specific performance
problems. EXPERT represents performance
problems in the form of execution patterns that
model inefficient behavior. These patterns are
used during the analysis process to recognize
and quantify inefficient behavior in the
application. The pattern classes are organized in
a specialization hierarchy, as shown in Figure 2.
Recent work has taken advantage of the
specialization relationships to obtain a
significant speed improvement for EXPERT and
to allow more compact pattern specifications
[Wolfet al., 2004].

Each pattern calculates a (call path, location)
matrix containing the time spent on a specific
behavior in a particular (call path, location) pair,
where a location is a process or thread. Thus,
EXPERT maps the (performance problem, call
path, location) space onto the time spent on a
particular performance problem while the
program was executing in a particular call path
at a particular location. After the analysis has
been finished, the mapping is written to a file
and can be viewed using the CUBE display tool,
shown in Figure 3.

[Time
—| Execution

{EanyFeduce]

{Lare Brosdcast |

{ Wit at N N
Painit to Paint

{ Labe Receiver
Messages in Wrong Order]

{Care Sender
. {Wessages n Wrong Grder
0]

Sythranizaion
Baier Completion

L (w1

Fark
—{Synchronzation |

'—| Darrier

]
{ Expiicit
[Wait at Burrier
Impicit

L {Tock Competion |
JAFI
{Griical

Idie Threads
|—{Fioating Puirt inst

L1 Cache Misses

Figure 2:
hierarchy

KOJAK pattern specialization

-] 0.0 Communication
[62 Callective

[] 0.0 barrier_sync_
[00 source_

[01 Process 1
[01 Process 2

aN REYE ERERIETER [0.1 Process 3
[] 0.0 Late Receiver [o0 octart. [01 Process 4
=1 (] 101 Late Sender =[] 00rey_real [01 Pracess 5

2.2 Wavetront fiom NE

[0.0 snd_real_
[0.0 glabal_int_sum_
[0.0 flwe_emr_
[] 0.0 global_teal_sum_ |,

[02 Pracess 6
[03 Process 7
[01 Pracess 8
[01 Process 3
[01 Process 10

front from NW

40 Wavefront from S =

35 Wavefront from S

T uoio ol
L ‘ ‘
10 20

SU‘ 4U‘ EU‘ EU‘

File View Help
Performance hetics Call Tree ‘ System Tree
-] 00 Tine A= [00inner_auto_ 4] =[] 008N =
&1 {652 Execution =[] 00inner_ =[] 0.0 v6300-2-ethd
£ [l 1T MR [00 initialize_ [01 Pracess 0

!UI IIIIIIIgUIFIIIIIIIgUIFIIIIII!Uﬁ

b1 |

Figure 3: CUBE coupled tree browser

A performance algebra for combining multi-
experiment results has also been developed that
enables performance data from different
executions, such as those for which different
performance metrics have been collected, or
those for different code versions, to be
combined. The resulting derived experiment can
also be viewed with CUBE [Song et al., 2004].

As part of the Performance Evaluation Research
Center effort, we have used KOJAK to
investigate scalability issues of the SciDAC
GYRO code observed on the SGI Altix while
running the Bl-std benchmark [Worley et al.,
2005]. We analyzed how the performance

behavior of GYRO was changed after raising the
number of processes from 128 to 192. Using
KOJAK’s performance algebra utility we have
shown that the increase of consumed CPU time
(linear speed up should leave the CPU time
unchanged) was partly due to wait states in
specific MPI_Allreduce() calls (about 1/3),
partly due to increased actual communication
(about 2/3), and a small amount of additional
computation, as shown in Figure 4.

hNdCUBE: diff.cube

File Wiew Help
Performance Metrics ‘ Call Tree ‘
=[] 0.0 Time =[] 0.0 DO_FULLADVANCE B
=[O 8.9 Execution 0.5 RTRANSP_INIT
= [02 MPI =[] 0.0 RTRANSP_DO

=[] 0.0 Communication
[=-[J 407 Collective [0.5 FTRANSP_INIT
[] 0.0 Early Reduce =[] 0.0 FTRANSP_DO
[T -0.1 Late Broadcast |
LR [0.2 DO_COLLISION_CORRECT
= D 0.0 TIMESTEP_S5P_3:2
1.1 GET_KINETIC_ADVANCE
=[] 0.0 GET_NONLINEAR_ADVANCE
=[] 0o Fss0E

[3.9 MPI_Altoal

O oopzp

Oooio

[0.0 3ynchronization

3.5 MPLAlltoall Iﬂ
IIFIIIIIIIIIFIIIIIIIIIFIIIIII Iw
G0 R N1)

ZD‘ 30‘ 40‘ 50‘ ED‘

FIIII m‘

=l

Figure 4: Change in performance behavior of
GYRO when raising the number of processes on
the SGI Altix from 128 to 192.

5.1 Topological Analysis

We have demonstrated that knowledge about the
virtual topology, which defines logical
adjacency relationships between processes, can
be exploited to explain the occurrence of
inefficiency patterns in terms of the
parallelization strategy used in an application
[Bhatia et al., 2005]. To do this we have
extended KOJAK to record and process
topological information in trace files. For
applications that use MPI topology support, the
topology is recorded automatically. For all other
applications this can be done can with minimal
effort by inserting two calls to a C/Fortran API
into the source code. To visually map
performance data onto the topology, a three-
dimensional topological display has been added
to CUBE. The ability to adjust various display
parameters ensures scalability. Using this

extension, we have shown correlations between
higher-level events related to the parallel wave-
front scheme used in SWEEP3D and wait states
identified by our pattern analysis, as shown in
Figure 5. In addition, we have visually exposed
relationships between pattern occurrences and
the topological characteristics of the affected
processes. Finally, an extension has been
implemented to automatically record the
physical network topology of BlueGene/L.
Scalability has been demonstrated for a run of
sPPM with 1792 CPUs, as shown in Figure 6.

Miewy Geometry Zoom Colors

(15,15) [a]

|

*

L | J

Figure 5: Distribution of wait states in SWEEP3D
when pipeline is refilled from North-West.

View Geometry Zoom Colors

(7, 7,15}

1 6458e-05 2.994e-03

[<] | [+]
Figure 6: Distribution of wait states resulting from

all-to-all operations across the torus-network
topology in BG/L.

5.2 Perturbation Compensation

Tracing parallel programs to observe their
performance introduces intrusion as the result of
trace measurement overhead. If post-mortem
trace analysis does not compensate for the
overhead, the intrusion will lead to errors in the
performance results. We have shown that
measurement overhead can be accounted for
during trace analysis and intrusion modeled and
removed [Wolf et al., 2005]. Algorithms

developed in earlier work have been
reimplemented as part of KOJAK, allowing
them to be applied in large-scale parallel
programs. The ability to reduce trace
measurement error has been demonstrated for a
Monte-Carlo simulation based on a
master/worker scheme.

5.3 Support for MPI-2

Besides other features, MPI-2 introduced a
standardized interface for remote memory access
(RMA). RMA allows a process to directly
access a part of the memory of a remote process,
without explicit participation of the remote
process in the data transfer. Since all parameters
for the data transfer are determined by one
process, it is also called one-sided or single-
sided communication. To appropriately address
this programming model, we have integrated
performance measurement and analysis
functionality for one-sided communication into
the existing KOJAK toolkit [Hermanns et al.,
2005]. Special emphasis has been placed on the
development of an event model that realistically
represents the dynamic behavior of MPI-2 RMA
operations in the event stream. It includes all
synchronization methods described by the MPI-
2 standard and their characteristics.
Additionally, Co-Array Fortran, a vendor-
specific RMA interface, that forms a subset to
the model due to its simplicity, has been covered
as well.

6.0 Outreach and Impact

Tools developed as part of this project have been
presented at a number of workshops and
tutorials, including the following:

e “Methods for Performance Engineering of
Scientific Applications,” tutorial,
Supercomputing 2004, Pittsburgh, PA,
November 2004.

e “Application Performance Analysis Tools
for Linux Clusters”, tutorial, Linux Clusters:
The HPC Revolution, Austin, Texas, May
2004.

e “Performance Optimization using SvPablo
and KOJAK”, tutorial, Linux Clusters: The

HPC Revolution, Chapel Hill, NC, April
2005.

PAPI is currently used for access to hardware
counter data by a number of performance
analysis tool efforts, including IPM, PerfSuite
TAU, and Scalea. Integration into vendor
systems is also taking place — for example, PAPI
is included in the bundled software shipped with
the Cray XT3, and SGI is using PAPI and
Dyninst for Open SpeedShop.

Although KOJAK is a complete end-user tool, it
is also an extensible infrastructure for automated
performance analysis. The set of patterns on
which KOJAK bases its search for performance
bottlenecks is extensible, and a Python interface
is supported for rapid prototyping of new
patterns. KOJAK’s CUBE is a generic display
tool for displaying linked multiple dimensions in
a performance search space.

7.0 Conclusions and Future Work

The technology developed as part of this project
has been widely accepted by the high
performance computing community and is
already serving as the basic infrastructure for
higher level performance tool development tool
efforts. Continued development of the
infrastructure with a focus on flexibility and
scalability and its availability on cutting edge
hardware will enable rapid prototyping of
performance analysis tools for emerging high-
end architectures.

Although the current version of PAPI supports
only a single underlying substrate at a time,
work is underway to vectorize PAPI so that
multiple substrates can be used simultaneously.
For example, this capability would allow
processor performance, network performance,
and power consumption information to be
monitored simultaneously.

The Paradyn project has pioneered an approach
of instrumenting the application to collect only
that performance data relative to the
performance hypotheses currently under
consideration. Although Paradyn uses dynamic

instrumentation, the principle of driving the data
collection according to the performance
questions to be answered applies to static source
code instrumentation as well. As an extension
of Paradyn’s Metric Description Language, we
plan to develop a high level Performance
Description Language (PDL) that will enable the
intuitive expression of performance problems in
the context of the application source code. The
language will have different levels of
expressiveness, so that a novice user can quickly
and easily specify what data should be collected
for basic performance questions and the more
advanced user can specify detailed expressions
for more complex performance questions.

For scalability purposes, further work is needed
on multi-step performance instrumentation that
takes advantage of previously collected basic
profile data and call-path data to restrict
subsequent more detailed instrumentation to
relevant portions of the execution. To make
multi-step specification of instrumentation easy
for the end-user, we plan to extend the KOJAK
CUBE display tool to be a graphical user
interface for instrumentation. The GUI would
take a simple call-path profile with call-tree and
baseline performance data as input. It would
then show a hierarchy of potential performance
problems and a corresponding annotated call-
tree. Every performance tool supported would
provide a “plug-in” that registers with the GUI
what performance data it can collect. Clicking
on a performance problem in combination with
marking sub-call trees of interest would cause
the appropriate instrumentation to be generated,
via the formulation of PDL expressions. The
translation into tool-specific instrumentation
would also be guided by the plug-in.

Both Paradyn and KOJAK make use of a multi-
dimensional performance search space. We plan
to make use of our work on data centric
measurement from this project to extend the
search space for Paradyn and KOJAK with a
data structure dimension. This extension will
allow performance hypotheses, in the case of
Paradyn, and performance patterns, in the case
of KOJAK, to be expressed in terms of
application data structures.

References

[Bhatia et al., 2005] Bhatia, N., Song, F., Wolf,
F., Dongarra, J., Mohr, B., Moore, S.
“Automatic Experimental Analysis of
Communication Patterns in Virtual Topologies”.
In Proceedings of the International Conference
on Parallel Processing (ICPP), IEEE Computer
Society, Oslo, Norway, June 2005.

[Browne et al., 2000] Browne, S., Dongarra, J.,
Garner, N., Ho, G., Mucci, P. "A Portable
Programming Interface for Performance
Evaluation on Modern Processors," The
International Journal of High Performance
Computing Applications, Volume 14, number 3,
pp. 189-204, Fall 2000.

[Buck and Hollingsworth, 2000] Buck, B. and J.
Hollingsworth, An API for Runtime Code
Patching. Journal of High Performance
Computing Applications 14(4), 2000, pp. 317-
329.

[Buck and Hollingsworth, 2004] Buck, B.R. and
JK. Hollingsworth. Data Centric Cache

Measurement on the Intel Itanium 2 Processor,
in SC 2004. Pittsburgh, PA. November, 2004.

[Hermanns et al., 2005] Hermanns, M.-A. ,
Mohr, B., Wolf, F. "Event-based Measurement
and Analysis of One-sided Communication". In
Proceedings of the European Conference on
Parallel Computing (Euro-Par) (to appear),
Springer, Lisbon, Portugal, August - September,
2005.

[Miller et al., 1995] Barton P. Miller, Mark D.
Callaghan, Jonathan M. Cargille, Jeffrey K.
Hollingsworth, R. Bruce Irvin, Karen L.
Karavanic, Krishna Kunchithapadam and Tia
Newhall, "The Paradyn Parallel Performance
Measurement Tool", IEEE Computer 28, 11,
(November 1995): 37-46. Special issue on
performance evaluation tools for parallel and
distributed computer systems.

[perfmon] perfmon project web site,
http://www.hpl.hp.com/research/linux/perfmon/

[Song et al., 2004] F. Song, F. Wolf, N. Bhatia,
J. Dongarra, S. Moore: An Algebra for Cross-
Experiment Performance Analysis. In
Proceedings of the International Conference on
Parallel Processing (ICPP), IEEE Computer
Society, Montreal, Canada, August 2004.

[Wolf et al., 2004] Wolf, F., B. Mohr, J.
Dongarra, and S. Moore. Efficient Pattern
Search in Large Traces through Successive
Refinement, in European Conference on
Parallel Computing (Euro-Par). Pisa, Italy.
August-September, 2004.

[Wolf et al., 2005] Wolf, F., Malony, A.,
Shende, S., Morris, A. "Trace-Based Parallel
Performance Overhead Compensation,"
International Conference on High Performance
Computing and Communications (HPCC),
Sorrento (Naples), Italy, September, 2005.
(submitted)

[Wolf et al., 2005a] Wolf, F., Mohr, B,
Dongarra, J., Moore, S. "Automatic analysis of
inefficiency patterns in parallel applications,"
Concurrency and Computation: Practice and
Experience, Special issue "Automatic
Performance Analysis" (submitted), 2005.

[Worley et al.,, 2005] Worley, P., Candy, J.,
Carrington, L., Huck, K. Kaiser, T,
Mahinthakumar, G., Malony, A., Moore, S.,
Reed, D., Roth, P., Shan, H., Shende, S.,
Snavely, A., Sreepathi, S., Wolf, F., Zhang, Y.:
Performance Analysis of GYRO: A Tool
Evaluation. In Proceedings of the SciDAC
Conference, San Francisco, CA, 2005.

Publications, Proceedings and Reports

Mucci, P., Dongarra, J., Kufrin, R., Moore, S., Song, F., Wolf, F. "Automating the Large-Scale
Collection and Analysis of Performance," In Proceedings of the 5th LCI International
Conference on Linux Clusters: The HPC Revolution, Austin, Texas, May 18-20, 2004.

Dongarra, J., Moore, S., Mucci, P., Seymour, K., You, H. "Accurate Cache and TLB
Characterization Using hardware Counters," Proceedings of ICCS 2004 (to appear), Krakow
Poland, June 6-9, 2004.

Wolf, F., Mohr, B. ""Hardware-Counter Based Automatic Performance Analysis of Parallel
Programs," Proc. of the Minisymposium 'Performance Analysis', Conference on Parallel
Computing (PARCO), Elsevier, Dresden, Germany, September 3, 2003.

Dongarra, J., Malony, A., Moore, S., Mucci, P., Shende, S. "Performance Instrumentation and
Measurement for Terascale Systems," /CCS 2003 Terascale Workshop, Melbourne, Australia,
June, 2003.

Dongarra, J., London, K., Moore, S., Mucci, P., Terpstra, D., You, H., Zhou, M. "Experiences and
Lessons Learned with a Portable Interface to Hardware Performance Counters," PADTAD
Workshop, IPDPS 2003, Nice, France, April 26, 2003.

Moore, S., Mucci, P., Dongarra, J., Shende, S., Malony, A. "Performance Instrumentation and
Measurement for Terascale Systems," Lecture Notes in Computer Science, Springer-Verlag,
Heidelberg, Volume 2723, pp. 53-62, January, 2003.

Moore, S. ""A Comparison of Counting and Sampling Modes of Using Performance
Monitoring Hardware," /CCS 2002, Amsterdam, April, 2002.

Wolf, F., Malony, A., Shende, S., Morris, A. "Trace-Based Parallel Performance Overhead
Compensation," International Conference on High Performance Computing and Communications
(HPCC) (submitted), Sorrento (Naples), Italy, September, 2005.

Shende, S., Malony, A., Morris, A., Wolf, F. "Performance Profiling Overhead Compensation
for MPI Programs," [2th European Parallel Virtual Machine and Message Passing Interface
Conference (submitted), Springer LNCS, September, 2005.

Moore, S., Wolf, F., Dongarra, J., Shende, S., Malony, A., Mohr, B. ""A Scalable Approach to
MPI Application Performance Analysis," /2th European Parallel Virtual Machine and Message
Passing Interface Conference (to appear), Springer LNCS, September, 2005.

Hermanns, M.-A. , Mohr, B., Wolf, F. "Event-based Measurement and Analysis of One-sided
Communication," /n Proceedings of the European Conference on Parallel Computing (Euro-Par)
(to appear), Springer, Lisbon, Portugal, August - September, 2005.

Bhatia, N., Moore, S., Wolf, F., Dongarra, J., Mohr, B. ""A Pattern-Based Approach to
Automated Application Performance Analysis," Workshop on Patterns in High Performance
Computing, University of Illinois at Urbana-Champaign, May, 2005.

Moore, S., Wolf, F., Dongarra, J., Mohr, B. "Improving Time to Solution with Automated
Performance Analysis," Second Workshop on Productivity and Performance in High-End
Computing (P-PHEC) at 11th International Symposium on High Performance Computer
Architecture (HPCA-2005), San Francisco, February 13, 2005.

Wolf, F., Mohr, B., Dongarra, J., Moore, S. "Automatic analysis of inefficiency patterns in
parallel applications," Concurrency and Computation: Practice and Experience, Special issue
"Automatic Performance Analysis" (submitted), 2005.

Wolf, F. "EARL - API Documentation," /CL Technical Report, ICL-UT-04-03, Oct 1, 2004.

Wolf, F., Mohr, B., Dongarra, J., Moore, S. "Efficient Pattern Search in Large Traces through
Successive Refinement," Proceedings of Euro-Par 2004, Springer-Verlag, Pisa, Italy, August 31 -
Sept. 3, 2004.

Song, F., Wolf, F., Bhatia, N., Dongarra, J., Moore, S. "An Algebra for Cross-Experiment
Performance Analysis," 2004 International Conference on Parallel Processing (ICCP-04),
Montreal, Quebec, Canada, August 15-18, 2004.

Song, F., Wolf, F. "CUBE User Manual," /CL Technical Report, ICL-UT-04-01, February 2,
2004.

Wolf F., Mohr, B. "Automatic performance analysis of hybrid MPI/OpenMP applications,"
Journal of Systems Architecture, Special Issue 'Evolutions in parallel distributed and network-
based processing', Clematis, A., D'Agostino, D. eds. Elsevier, 49(10-11), pp. 421-439, November,
2003.

Mohr, B., Wolf, F. "KOJAK - A Tool Set for Automatic Performance Analysis of Parallel
Applications," Proc. of the European Conference on Parallel Computing (EuroPar), Springer-
Verlag, Klagenfurt, Austria, LNCS 2790, pp. 1301-1304, August 26-29, 2003.

V. Getov, M. Gerndt, A. Hoisie, A. Malony, B.P. Miller, eds., Performance Analysis and Grid
Computing, Kluwer Academic Publishers, Boston, Massachusetts, 2004.

T. Ludwig and B.P. Miller, eds., On-line Monitoring Systems and Computer Tool
Interoperability, Nova Science Publishers, New York, 2003.

K.L. Karavanic and B.P. Miller, “A Framework for Multi-Execution Support Performance
Analysis” in On-line Monitoring Systems and Computer Tool Interoperability, Nova Science
Publishers, T. Ludwig and B.P. Miller, eds., New York, 2003.

P.C. Roth, D.C. Arnold, and B.P. Miller, “Benchmarking MRNet: Measuring the Performance
and Scalability of Tool Infrastructure”, High Performance Grid Computing Workshop of the
International Parallel and Distributed Processing Symposium, Santa Fe, NM, April 2004.

P.C. Roth and B.P. Miller, “The Distributed Performance Consultant and the Sub-Graph
Folding Algorithm: On-line Automated Performance Diagnosis on Thousands of Processes”,
submitted for publication, April 2005.

E.D. Collins and B.P. Miller, “A Loop-aware Search Strategy for Automated Performance
Analysis”, submitted for publication, January 2005.

A.R. Bernat and B.P. Miller, “Incremental Path Profiling”, submitted for publication, November
2003.

Bryan R. Buck, Jeffrey K. Hollingsworth, A New Hardware Monitor Design to Measure Data
Structure-Specific Cache Eviction Information, 7o Appear International Journal of High
Performance Computing Applications, 2005.

Chadd C. Williams, Jeffrey K. Hollingsworth, Automatic Mining of Source Code Repositories
To Improve Bug Finding Techniques, 7o Appear IEEE Transactions on Software Engineering,
2005.

Bryan R. Buck, Jeffrey K. Hollingsworth, Data Centric Cache Measurement on the Intel
Itanium 2 Processor, Proceedings of SuperComputing 2004, Nov. 2004.

Mustafa M. Tikir, Jeffrey K. Hollingsworth, Using Hardware Counters to Automatically
Improve Memory Performance, Proceedings of SuperComputing 2004, Nov. 2004.

I-Hsin Chung, Jeffrey K. Hollingsworth, Using Information from Prior Runs to Improve
Automated Tuning Systems, Proceedings of SuperComputing 2004, Nov. 2004.

Chadd C. Williams, Jeffrey K. Hollingsworth, Bug Driven Bug Finders, International Workshop
on Mining Software Repositories (MSR), May 2004.

Chadd C. Williams, Jeffrey K. Hollingsworth, Interactive Binary Instrumentation, Second
International Workshop on Remote Analysis and Measurement of Software Systems (RAMSS), May
2004.

Bryan R. Buck, Data Centric Cache Measurment Using Hardware And Software
Instrumentation, Ph.D. Dissertation, University of Maryland, June 2004.

Mustafa M. Tikir, Jeffrey K. Hollingsworth, Efficient Instrumentation for Code Coverage
Testing, International Symposium on Software Testing and Analysis (ISSTA) 2002, July 2002.

