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Summary 
 
The purpose of this project was to build an extensible cross-platform infrastructure to 
facilitate the development of accurate and portable performance analysis tools for current and 
future high performance computing (HPC) architectures.  Major accomplishments include 
tools and techniques for multidimensional performance analysis, as well as improved support 
for dynamic performance monitoring of multithreaded and multiprocess applications. 
 
1.0 Introduction 
 
Previous performance tool development has 
been limited by the burden of having to re-write 
a platform-dependent low-level substrate for 
each architecture/operating system pair in order 
to obtain the necessary performance data from 
the system.  Manual interpretation of 
performance data is not scalable for large-scale 
long-running applications.   The infrastructure 
developed by this project provides a foundation 
for building portable and scalable performance 
analysis tools, with the end goal being to provide 
application developers with the information they 
need to analyze, understand, and tune the 
performance of terascale applications on HPC 
architectures. 
 
The backend portion of the infrastructure 
provides runtime instrumentation capability and 
access to hardware performance counters, with 
thread-safety for shared memory environments 
and a communication substrate to support 
instrumentation of multiprocess and distributed 
programs.  Front end interfaces provides tool 
developers with a well-defined, platform-
independent set of calls for requesting 
performance data.  End-user tools have been 
developed that demonstrate runtime data 

collection, on-line and off-line analysis of 
performance data, and multidimensional 
performance analysis.  
 
The infrastructure is based on two underlying 
performance instrumentation technologies.  
These technologies are the PAPI cross-platform 
library interface to hardware performance 
counters and the cross-platform Dyninst library 
interface for runtime modification of executable 
images.  The Paradyn and KOJAK projects have 
made use of this infrastructure to build 
performance measurement and analysis tools 
that scale to long-running programs on large 
parallel and distributed systems and that 
automate much of the search for performance 
bottlenecks. 
 
2.0 Hardware Counter Interface 

Enhancements 
 
The PAPI library provides a portable interface to 
hardware performance counters available on 
most modern microprocessors [Browne et al., 
2000]. Counters are usually available that 
provide counts of relevant cache and memory 
events, such as load and store counts and cache 
and TLB misses at various levels of the memory 
hierarchy.  The PAPI effort has defined a 



 

 

standard set of performance metrics for the 
memory hierarchy, and the implementation 
maps these standard events to native events on a 
given platform.  PAPI is available for most high 
performance computing platforms. PAPI eases 
the burden on developers of end-user 
performance analysis tools by handling the low-
level details of access to hardware performance 
counters and providing a common interface 
across platforms.  During this project, PAPI has 
been ported to a number of high-end computing 
systems, including Red Storm, Blue Gene/L, and 
Cray X1.   
 
This project has extended the set of PAPI 
standard events to include additional metrics 
related to cache and memory performance and 
cache coherence events.  In addition, support for 
accessing native events through the PAPI 
interface has been improved, allowing easy-to-
use mnemonic names to be used instead of 
numeric codes.  Support for using configure to 
automatically generate the makefiles for each 
platform has been added so that installation is 
now easier.  A directory containing command-
line utilities for querying the available standard 
and native events and for choosing a set of 
compatible events is now created as part of the 
installation.   PAPI version 3 was completely 
rewritten to streamline the interface so that 
measurement overheads are much lower.  
Version 3 has improved support for threaded 
applications, and threading issues and bugs on 
several platforms have been resolved.  The high-
level interface is now thread-safe.  Support was 
also added for interrupt on overflow for multiple 
events.   
 
The PAPI substrate for the Itanium 2 includes 
platform-support support for profiling routines 
that make use of the EARs to record information 
about data addresses.  Additional work on an 

end-user tool for data-centric hardware counter 
measurement is described in the next section. 
 
3.0 Data Centric Measurement 
 
During the course of this grant, we developed 
cacheScope, a Dyninst based tool that uses 
hardware counters to provide cache miss 
statistics on a per data structure basis. The tool 
uses a sampling based approach that keeps the 
overhead low. Cache information is provided 
both in terms of the share of misses due to each 
data structure, and the number of cycles lost due 
to misses. 
 
In order to track dynamic memory allocations, 
calls to functions such as malloc must be 
replaced with equivalent calls supplied by Cache 
Scope. The instrumentation code uses perfmon 
[perfmon] to set the Itanium 2 hardware 
performance monitors to count L1 data cache 
read misses, L1 data cache reads, L2 cache 
misses, and Data EAR events. The Data EAR is 
set to record information about L1 data cache 
load misses and floating point loads. 
 
For purposes of keeping statistics, memory 
objects are grouped into equivalence classes, 
which we refer to as stat buckets. Each global or 
static variable in the program is assigned its own 
stat bucket. When a block of memory is 
dynamically allocated, a bucket name is either 
automatically generated or is supplied by the 
user, as described below; this name identifies the 
bucket to which the block is assigned. Different 
blocks may have the same bucket name, so that 
multiple blocks are assigned to a single bucket. 
This is useful when a group of blocks are part of 
the same data structure, as in a tree or linked list. 
Automatically assigned names are generated 
based on the names of the top three functions on 
the call stack above the memory allocation 
function that allocated the object. 



 

 

 
Figure 1 shows the overhead of sampling data 
cache information using our approach.  The 
groups of bars show the overhead as the 
sampling rate is varied. The results show that if 
the sampling rate is no more than 1 in 32K 
misses, that the overhead of our approach is 
generally less than 1%, and always less than 
10%. 
 
Figure 2 shows the results of running 
cacheScope on the Equake program from the 
SPEC CPU2000 benchmark.  The left column 
shows the data structure, and the next column 
shows the number of cycles of latency due to 
that data structure (in billion of cycles).  The 
final column shows the average number of 
cycles per miss.  Using this data, we were able 
to tune the program, and decreases L1 cache 
misses in the application by 57%, L2 cache 
misses by 30%, and running time by 10%. 
 
The cacheScope tool is available for download 
from the project web page at 
http://www.dyninst.org/cachescope/. 
 
 
 
 
 
 

 
Latency Stat Bucket Bcycles % Per Event 

heap_K_2 23.67 35.4% 118.5 
heap_disp_3 18.41 27.5% 10.7 
heap_K_3 7.49 11.2% 5.4 
heap_disp_2 3.47 5.2% 22.8 
Exc 2.13 3.2% 5.5 
heap_M_2 1.53 2.3% 15.2 
heap_C_2 1.49 2.2% 14.7 
<stack> 1.12 1.7% 5.0 
heap_M_1 0.95 1.4% 23.9 
heap_K_1 0.93 1.4% 80.0 

 
Figure 2: Data Structure Statistics for Equake 

 
4.0 On-line Automated Performance 

Analysis 
 
Paradyn is a performance measurement tool for 
parallel programs that automates much of the 
search for performance bottlenecks [Miller et al., 
1995].  Paradyn uses DyninstAPI [Buck and 
Hollingsworth, 2000]  to selectively insert 
performance instrumentation and thus scales to 
long running programs and large systems.   The 
instrumentation is controlled by the Performance 
Consultant which automates the runtime search 
for performance bottlenecks.  The newest release 
of Paradyn has improved support for 
instrumenting and analyzing multithreaded and 
message-passing parallel applications.   
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Figure 1: Overhead of Data Centric Approaches. 

 



 

 

Dyninst API has been extended with methods 
for discovering and instrumenting basic blocks 
and loops and functions.  The newest release of 
Paradyn uses this extension to recognize and 
search loops for bottlenecks. 
 
The latest release of Paradyn (4.2) supports 
MPICH and LAM MPI's, and also supports the 
instrumentation of OpenMP programs. It can 
isolate performance data to specific threads and 
loops. Future work includes improving the 
naming of loops and threads to be closer to what 
the Open/MP programmer specifies. 
 
5.0 Off-line Automated Performance 

Analysis 
 
The KOJAK toolkit supports performance 
analysis of MPI and/or OpenMP applications by 
automatically searching traces for execution 
patterns that indicate inefficient behavior [Wolf 
et al., 2005a].  The performance problems 
addressed include inefficient use of the parallel 
programming model and low CPU and memory 
performance.  Figure 1 gives an overview of 
KOJAK’s architecture and its components.  The 
KOJAK analysis process is composed of two 
parts: a semi-automatic multi-level 
instrumentation of the user application followed 
by an automatic analysis of the generated 
performance data. 
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Figure 1:  KOJAK architecture 
 
The event traces generated by KOJAK’s tracing 
library EPILOG capture MPI point-to-point and 
collective communication as well as OpenMP 
parallelism change, parallel constructs, and 

synchronization.  In addition, data from 
hardware counters accessed using the PAPI 
library [Browne et al., 2000] can be recorded in 
the event traces.  EPILOG instrumentation can 
be inserted using either automated source code 
instrumentation or the dynamic instrumentation 
technology described in section 3.  KOJAK’s 
EXPERT tool is an automatic trace analyzer that 
attempts to identify specific performance 
problems.  EXPERT represents performance 
problems in the form of execution patterns that 
model inefficient behavior.    These patterns are 
used during the analysis process to recognize 
and quantify inefficient behavior in the 
application.  The pattern classes are organized in 
a specialization hierarchy, as shown in Figure 2.  
Recent work has taken advantage of the 
specialization relationships to obtain a 
significant speed improvement for EXPERT and 
to allow more compact pattern specifications 
[Wolf et al., 2004].   

 
Each pattern calculates a (call path, location) 
matrix containing the time spent on a specific 
behavior in a particular (call path, location) pair, 
where a location is a process or thread.  Thus, 
EXPERT maps the (performance problem, call 
path, location) space onto the time spent on a 
particular performance problem while the 
program was executing in a particular call path 
at a particular location. After the analysis has 
been finished, the mapping is written to a file 
and can be viewed using the CUBE display tool, 
shown in Figure 3. 
 



 

 

 
Figure 2:  KOJAK pattern specialization 
hierarchy 
 

 
Figure 3:  CUBE coupled tree browser 

 
A performance algebra for combining multi-
experiment results has also been developed that 
enables performance data from different 
executions, such as those for which different 
performance metrics have been collected, or 
those for different code versions, to be 
combined.  The resulting derived experiment can 
also be viewed with CUBE [Song et al., 2004]. 
 
As part of the Performance Evaluation Research 
Center effort, we have used KOJAK to 
investigate scalability issues of the SciDAC 
GYRO code observed on the SGI Altix while 
running the B1-std benchmark [Worley et al., 
2005].  We analyzed how the performance 

behavior of GYRO was changed after raising the 
number of processes from 128 to 192. Using 
KOJAK’s performance algebra utility we have 
shown that the increase of consumed CPU time 
(linear speed up should leave the CPU time 
unchanged) was partly due to wait states in 
specific MPI_Allreduce() calls (about 1/3), 
partly due to increased actual communication 
(about 2/3), and a small amount of additional 
computation, as shown in Figure 4. 
 

 
 
Figure 4: Change in performance behavior of 
GYRO when raising the number of processes on 
the SGI Altix from 128 to 192. 

5.1  Topological Analysis 
 
We have demonstrated that knowledge about the 
virtual topology, which defines logical 
adjacency relationships between processes, can 
be exploited to explain the occurrence of 
inefficiency patterns in terms of the 
parallelization strategy used in an application 
[Bhatia et al., 2005]. To do this we have 
extended KOJAK to record and process 
topological information in trace files. For 
applications that use MPI topology support, the 
topology is recorded automatically. For all other 
applications this can be done can with minimal 
effort by inserting two calls to a C/Fortran API 
into the source code. To visually map 
performance data onto the topology, a three-
dimensional topological display has been added 
to CUBE. The ability to adjust various display 
parameters ensures scalability. Using this 



 

 

extension, we have shown correlations between 
higher-level events related to the parallel wave-
front scheme used in SWEEP3D and wait states 
identified by our pattern analysis, as shown in 
Figure 5. In addition, we have visually exposed 
relationships between pattern occurrences and 
the topological characteristics of the affected 
processes. Finally, an extension has been 
implemented to automatically record the 
physical network topology of BlueGene/L. 
Scalability has been demonstrated for a run of 
sPPM with 1792 CPUs, as shown in Figure 6. 
 

 
Figure 5: Distribution of wait states in SWEEP3D 
when pipeline is refilled from North-West. 

 
Figure 6: Distribution of wait states resulting from 
all-to-all operations across the torus-network 
topology in BG/L. 

 
5.2 Perturbation Compensation 
 
Tracing parallel programs to observe their 
performance introduces intrusion as the result of 
trace measurement overhead. If post-mortem 
trace analysis does not compensate for the 
overhead, the intrusion will lead to errors in the 
performance results. We have shown that 
measurement overhead can be accounted for 
during trace analysis and intrusion modeled and 
removed [Wolf et al., 2005]. Algorithms 



 

 

developed in earlier work have been 
reimplemented as part of KOJAK, allowing 
them to be applied in large-scale parallel 
programs. The ability to reduce trace 
measurement error has been demonstrated for a 
Monte-Carlo simulation based on a 
master/worker scheme.  
 
5.3 Support for MPI-2 
 
Besides other features, MPI-2 introduced a 
standardized interface for remote memory access 
(RMA). RMA allows a process to directly 
access a part of the memory of a remote process, 
without explicit participation of the remote 
process in the data transfer. Since all parameters 
for the data transfer are determined by one 
process, it is also called one-sided or single-
sided communication. To appropriately address 
this programming model, we have integrated 
performance measurement and analysis 
functionality for one-sided communication into 
the existing KOJAK toolkit [Hermanns et al., 
2005]. Special emphasis has been placed on the 
development of an event model that realistically 
represents the dynamic behavior of MPI-2 RMA 
operations in the event stream. It includes all 
synchronization methods described by the MPI-
2 standard and their characteristics. 
Additionally, Co-Array Fortran, a vendor-
specific RMA interface, that forms a subset to 
the model due to its simplicity, has been covered 
as well. 
 
6.0 Outreach and Impact 
 
Tools developed as part of this project have been 
presented at a number of workshops and 
tutorials, including the following: 
 
• “Methods for Performance Engineering of 

Scientific Applications,” tutorial, 
Supercomputing 2004, Pittsburgh, PA, 
November 2004. 

• “Application Performance Analysis Tools 
for Linux Clusters”, tutorial, Linux Clusters: 
The HPC Revolution, Austin, Texas, May 
2004. 

• “Performance Optimization using SvPablo 
and KOJAK”, tutorial, Linux Clusters: The 

HPC Revolution, Chapel Hill, NC, April 
2005.  

 
PAPI is currently used for access to hardware 
counter data by a number of performance 
analysis tool efforts, including IPM, PerfSuite 
TAU, and Scalea.  Integration into vendor 
systems is also taking place – for example, PAPI 
is included in the bundled software shipped with 
the Cray XT3, and SGI is using PAPI and 
Dyninst for Open SpeedShop.   
 
Although KOJAK is a complete end-user tool, it 
is also an extensible infrastructure for automated 
performance analysis.  The set of patterns on 
which KOJAK bases its search for performance 
bottlenecks is extensible, and a Python interface 
is supported for rapid prototyping of new 
patterns.  KOJAK’s CUBE is a generic display 
tool for displaying linked multiple dimensions in 
a performance search space.  
 
7.0 Conclusions and Future Work 
 
The technology developed as part of this project 
has been widely accepted by the high 
performance computing community and is 
already serving as the basic infrastructure for 
higher level performance tool development tool 
efforts.  Continued development of the 
infrastructure with a focus on flexibility and 
scalability and its availability on cutting edge 
hardware will enable rapid prototyping of 
performance analysis tools for emerging high-
end architectures.   
 
Although the current version of PAPI supports 
only a single underlying substrate at a time, 
work is underway to vectorize PAPI so that 
multiple substrates can be used simultaneously.  
For example, this capability would allow 
processor performance, network performance, 
and power consumption information to be 
monitored simultaneously.   
 
The Paradyn project has pioneered an approach 
of instrumenting the application to collect only 
that performance data relative to the 
performance hypotheses currently under 
consideration.  Although Paradyn uses dynamic 



 

 

instrumentation, the principle of driving the data 
collection according to the performance 
questions to be answered applies to static source 
code instrumentation as well.   As an extension 
of Paradyn’s Metric Description Language, we 
plan to develop a high level Performance 
Description Language (PDL) that will enable the 
intuitive expression of performance problems in 
the context of the application source code.  The 
language will have different levels of 
expressiveness, so that a novice user can quickly 
and easily specify what data should be collected 
for basic performance questions and the more 
advanced user can specify detailed expressions 
for more complex performance questions.   
 
For scalability purposes, further work is needed 
on multi-step performance instrumentation that 
takes advantage of previously collected basic 
profile data and call-path data to restrict 
subsequent more detailed instrumentation to 
relevant portions of the execution. To make 
multi-step specification of instrumentation easy 
for the end-user, we plan to extend the KOJAK 
CUBE display tool to be a graphical user 
interface for instrumentation.  The GUI would 
take a simple call-path profile with call-tree and 
baseline performance data as input.  It would 
then show a hierarchy of potential performance 
problems and a corresponding annotated call-
tree.  Every performance tool supported would 
provide a “plug-in” that registers with the GUI 
what performance data it can collect.  Clicking 
on a performance problem in combination with 
marking sub-call trees of interest would cause 
the appropriate instrumentation to be generated, 
via the formulation of PDL expressions.  The 
translation into tool-specific instrumentation 
would also be guided by the plug-in. 
 
Both Paradyn and KOJAK make use of a multi-
dimensional performance search space.  We plan 
to make use of our work on data centric 
measurement from this project to extend the 
search space for Paradyn and KOJAK with a 
data structure dimension.  This extension will 
allow performance hypotheses, in the case of 
Paradyn, and performance patterns, in the case 
of KOJAK, to be expressed in terms of 
application data structures. 
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