August 27, 2004

US Department of Energy
SBIR/STTR Program, SC-32
19901 Germantown Road
Germantown, MD 20874-1290

To whom it might concern:

This is the final report for the Tech-X Phase II SBIR project “CORBA for Fourth Generation
Languages, ”Grant No DE-FG03-00ER83107.

Sincerely,

Svetlana Shasharina
Vice-President of Tech-X Corporation and PI of the project

Table of Contents

TaADIE Of CONLENESeeutiiieiieieee ettt sttt et e b ettt bt e b et ebe et e sae e 2
INELOAUCTION ...ttt ettt et e bt e et e e s bt e st esae e et e beesabeenbeeeaee 3
IDL-CORBA BIIAZEeiitiiieiiiiiieiteet sttt sttt ettt ettt nae s 3
ATCRIEECTUTE. ...ttt ettt ettt et e e e st e et eat e st e enbesatesaeenbeeneesaeensesneens 3
Installation of the Brid@eccooiiiiiiiiiieee e 4
The IDL ObJeCt INTEITACE.ccciiiiiieiiieiieeie ettt ettt e be et e b e et eesbeeseeesseenseas 5
IDL CORBA ODbjJect DEtECHION.....c..eeriiiiiriiieiieieritesiteieeitesie ettt sttt st eaesieens 6
IDL — CORBA - IDL CONVEISION. ...c..eiitiiitirtiiieriientteteeitesieete st sieeteeiee st etesetesteesesieesseensesaeens 6
RUNNING CORBA SEIVETSceiuiiiiiiiieiiieeciie ettt stte e et e e st e e steeessaeeessaeeesseeessaeeensaeesaseens 7
RUNNING IDL CHENLS.....veeiviiiiieiiieciie ettt ettt ettt ettt ettt e b e saeeabeesseesnbeessaesnseensnesnseennns 8
CORBA-IDL BIIAZEtetieiieiieeiieieee ettt sttt st et e st e beenteeneenseeneeeneenseeneas 10
ATCRItECTUIE OVETVIEW ...cutiiiiiieiieiieeitete ettt sttt et sbe et st sae ettt e bt etesanenbeens 10
Installing CORBA-IDL BIIid@e.......ccccutiiiiieiieiieeieeiieeitesiee ettt eve et e e eaeesveesseessseesaeensaens 12
Preparing IDL Objects for CORBA CLENLScceriirieiiiiiiniiiiiiecicieeieneeieeeeeesee e 12
Running the Bridging SEIVEI:ccooiiiiiiiiiiecie ettt saae e 12
RUNNING the CHENT ..ottt 13
TASKDIL ..ottt ettt ettt et e a e e bt et ea e bt et et e bt et e ente bt enbe et e aeennes 13
OVETVIEW ..ttt ettt e ettt e e ht e e b e e ht e e bt e e ab e e bt e sabeeabeeeabe e bt e sabe e bt e enbeenbeesnseenneeans 13
Status 0f the TaSKDLooiiiiiiie ettt st 14
00 (S o o USSR 15
TASK TICKEES ..ttt ettt et st et b e bt et sae e b enees 16
DITECLOTY SHUCKUIE. ...eciiieeiiieeiiee ettt ettt e ettt e et e e et e e s teeessbeeessbeeesaeeesseeensseesnsseennseeennses 16
Graphical User Interface DeSCIIPtiONc.ceeoueeiiriiniiiiiiniinieeieetceee sttt 18
RIS o) 1 B 00 112 1o) OSSO PR TSR 18
SesS10N CONTIGUIALIONovutiuiiiiiriiiiieierite ettt sttt sbe et e sae e 20
WOTKET OULPUL ...ttt ettt ettt e et e e b e e steessae e taeesbeesseessseenseessseenseessseenseessseens 21
SESSTON STATUS. ..eeeuvveeetiieetieeeieeeeteeeeteeeeteeestteeestaeestaeestaeesssaeesssaeesssaeassseeasseeesseessseesseeenssenns 22
WOTKET SEALUS. ..ottt ettt et sb ettt bt et e e e 22
TASK STATUS ..ttt ettt e e st e bt e st e e bt e ssbe e bt e sbeenaneans 22
IDL Procedure SIZNAtUIES.......cccuteruieiiiieriieeieeniieeieesieeettesteesteesseesseeseessaeenseessseenseesssesseessseans 23
The SETUP WIZATA ...oooeeiiiiiie ettt e e e e e et ee e saaeeesseeenseeensseennnes 23
INSTAIIALION. ...ttt ettt ettt et sttt b b et 25
Running TaskManager from CVSooiiiiiiiiieicieteee et 25

Introduction

The software developed in this project consists of three parts: ILD-CORBA bridge,
CORBA-IDL bridge and TASKDL. In what follows we discuss these pieces along with
instructions on how download and use them. IDL-CORBA bridge allows IDL code to access
remote objects written in other languages. CORBA-IDL bridge allows using remote IDL server
objects in client codes written in other languages. Finally, TASKDL is an attempt to create a
distributed client-server using light-weight approach alternative to CORBA and run parallel IDL
applications.

IDL-CORBA Bridge

Architecture

The Common Object Request Broker Architecture (CORB is an open distributed object
infrastructure defined by the Object Management Group (OMG). OMG is an industrial
consortium that, among other things, oversees the development and evolution of CORBA
standards and their related service standards through a formal adoption process. The process has
proven to be highly effective in ensuring the quality, the interoperability, and the
implementability of newly adopted standards. CORBA standardizes and automates many
common network programming tasks such as object implementation, registration, and location
transparency. CORBA also defines standard language mappings of most popular languages for
the programming interfaces to services provided by the Object Request Broker (ORB). An ORB
is the basic mechanism by which objects transparently make requests to and receive responses
from other objects on the same machine or across a network.

By ensuring the quality and the interoperability of the standards, ORB venders are able to
continuously evolve and optimize ORB implementations and users can freely switch between
ORB products with minimal efforts. The General Inter-ORB Protocol (GIOP) is CORBA’s
standard message exchange protocol over the wire. The Internet Inter-ORB Protocol (IIOP) is a
concrete realization of GIOP using TCP/IP. GIOP adopts a binary data representation format
called the Common Data Representation (CDR) that allows standardized and efficient message
exchange between ORBs. Unlike Web Services which use XML documents as the common
format for message exchange, CORBA uses CDR. This allows messages to be exchanged in
binary format and is much more efficient both in terms of processing overhead and protocol
overhead.

Current implementations of CORBA do not provide bindings for Interactive Data Language
(IDL). Our IDL-CORBA-Bridge partially gaps this problem by providing capabilities to call
CORBA objects from IDL client. As a consequence, scientists and engineers will be able to
create IDL client applications to access remote CORBA objects and use the powerful features of
IDL to analyze or render that data locally.

Our bridge uses TAO, an ORB developed by the Distributed Object Computing Group of
Washington University in St. Louis, the University of California, Irvine, and Vanderbilt
University. TAO is an open-source, high-performance and highly configurable ORB
implementation of CORBA specifications. TAO supports the standard OMG CORBA reference

model and real-time CORBA specification with many enhancements designed to ensure
efficient, predictable, and scalable QoS behavior for high-performance and real-time
applications.

The IDL-CORBA bridge uses C++ implementation of Dynamic CORBA and IDL Dynamic
Loadable Modules wrapping Dynamic CORBA, to provide the connection between IDL client
application and CORBA objects. The current implementation of the bridge requires a C++
compiler (gce3.3 and higher), TAO (compiled with corresponding gcc) and IDL (version 6.0 or
higher). It works on Linux and Unix platforms.

The general architecture of the IDL to CORBA Bridge is shown on Fig.1. As indicated in this
diagram, the architecture consists of four main subsystems: the IDL object interface, the “tap”
into the IDL object system, the conversion between IDL and CORBA primitives and CORBA
itself.

IDL to CORBA Bridge

| |

| |
IDL Language | IDL Internals | CORBA

| |

| |

| |

| |

. | IDL CORBA |
oot Ly P L mecorea L o

| Detection |

| |

| |

| |

| |

| |

| |

| |

Fig. 1. Basic architecture of the IDL-CORBA bridge.
As indicated in this diagram, the architecture consists of four main subsystems: the IDL object
interface, the “tap” into the IDL object system, the conversion between IDL and CORBA
primitives and CORBA itself. The specifics of each system is discussed in the following
sections.

Installation of the Bridge
Unpacking the tarball with the command
gunzip — idlcorba.tar.gz | tar xfpv —
will create idlcorba directory with the following subdirectories:

e idl corba bridge - the main directory containing the bridge source code;

e server cpp - a directory containing a demo server object, the test C++ server code using
this demo object and scripts needed to run the server side of the bridge;

e client idl has several examples of IDL client using test objects from server cpp
directory;

e stddir - a utility directory;

e config — directory with files included in configure.in and needed to generate Makefiles.
The package comes with all items needed to generate Makefiles. In order to create configure the
first time, one needs to run scripts

-/config/cleanconfig.-sh
-/config/regenconf._sh
In order to make Makefiles, run
configure
Then do
make depend
make
To clean (delete generated files), do
make clean
This implied that you autoconf and configure tools installed. The default implies that the main
TAO installation directory is /usr/local/ ACE+TAOQO. If it is different, configure script should be
run as follows:
configure —-with-corba-idl=<full path of tao idl>
For example:
configure —with-corba-idl=/usr/local/instal lations/ACE+TAO/TAO/TAO_IDL/tao_idl
If location of IDL different from /usr/local/rsi/idl, one needs to run configure as follows
configure —with-rsiidl-bindir=location of IDL bin directory>
For example,
confgure —with-rsiidl-bindir=/usr/local/idl/bin
Note that you can run configure with multiple concatenated “—with-“ statements.

The IDL Object Interface

As discussed earlier, CORBA objects are exposed at the IDL language level as normal IDL
objects. As such the user performs standard IDL operations and syntax to use these proxy
objects. All the obj_* routines exposed in IDL operate on a CORBA object and method calls are
initiated using the standard IDL method operator, —>. While the standard IDL object
operations are used, some unique methodologies are required to create the link between IDL and
the underlying CORBA object. This interface was provided to Tech-X by RSI.

CORBA objects are defined in .idl files (IDL here stands for Interface Definition language,
which we will refer to as CORBA-IDL). These files show interfaces of the objects. For
example, this snippet of the code defines interface Demo:

// Demo.idl
interface Demo {
long doLong(in long Ii, out long lo, inout long lio);

with oni method, which return a long, takes li as an input parameter, lo as an output parameters,
lio as both input and output parameter.
CORBA-IDL compiler takes this code and creates skeletons and stubs. In case of TAO, this is
done using the following command:
/usr/local /ACE+TAO/TAO/TAO IDL/tao_idl -Ge 1 -Sc -Ge 1 -Sc Demo. idl
assuming that ACE TAO is installed in /ust/local.
Skeletons are abstract classes, which are used on the server side. For example, interface Demo,
will obtain a skeleton class POA Demo. Server implementation class should inherit from the
skeleton and implement methods declared in the .idl file. Here is an example of a C++
implementation (see Demolmpl.h and Demolmpl.cpp):
class Demolmpl : public POA Demo {
public:
CORBA: :Long Demolmpl : :doLong(CORBA: :Long 11,
CORBA: :Longé& lo,
CORBA: :Long& 1i0) throw(CORBA: :SystemException) {
TXSTD: :cout << "‘doLong'" << TXSTD::endl;
lo=1i +1;
lio += Ii;
retum lo;

}
Directory server cpp contains an extensive example using all types supported by the bridge. In
order to generate stub and skeletons, one needs just to do “make depend.” In addition, this
directory contains the implementation (Demolmpl.h and Demolmp.cpp), which can be compiled
by doing “make.”

IDL CORBA Object Detection

The next functional area of the IDL to CORBA bridge architecture is the detection of IDL
operations on CORBA specific objects. This area involves the addition of logic to the core IDL
implementation that allows for the detection of IDL CORBA proxy objects during IDL object
creation and method calls. During these operations, if an IDL CORBA proxy object is detected,
operational control is shifted to the IDL CORBA system. No CORBA specific technologies or
interfaces are utilized in this functional area of the architecture. This part of the bridge was also
implemented by RSI.

IDL — CORBA - IDL Conversion
The IDL-CORBA bridge supports a rich subset of variables. Here is the corresponding mapping
table of supported types.

CORBA Type IDL Type

short IDL_INT

unsigned short IDL UINT

-6-

long IDL LONG
unsigned long IDL ULONG

float float

double double

char UCHAR

boolean UCHAR

octet UCHAR

string IDL STRING
Arrays of the above Arrays of the above

CORBA operations parameters have directional attributes:

e in — The in attribute indicates that the parameter is sent from the client to the server
and can be used, but not modified by the function call.

e out — The out attribute indicates that the parameter is sent from the server to the
client. Its value will be set by the server function call.

e 1inout — The inout attribute indicates that the parameter is first sent by the client
to the server and then back to the client. Its value maybe reset by the server function
call.

This means that the IDL client code should always instantiate in and inout parameters. It may
instantiate out parameters, but their values will be set in the process of invoking the server
function.

This architectural area comprises the majority of the functionality required to implement the IDL
to CORBA Bridge. In this system, requests are validated, IDL data is converted into a format
recognized by CORBA and method calls are packaged and dispatched to the target CORBA
object. All of these operations are performed dynamically to provide the runtime behavior
expected by the IDL user.

The key technology that allows the dynamic method dispatch that this subsystem performs is the
CORBA Dynamic Invocation Interface (DII). This interface provides the ability to call methods
on CORBA objects without specific object information during system implementation. When a
method is called on an IDL CORBA proxy object, the following procedure takes place:
1. IDL determines if the method exists on the target object.
2. IDL parameters are packaged as CORBA Any variables.
3. The method call is dispatched to CORBA using the functionality provided by the DII
system.
4. Upon return from the method call, any output values are retrieved, converted back into
IDL variables and control is return to IDL.
These conversions were implemented by Tech-X and comprised the biggest part of the bridge
implementation.

Running CORBA Servers
In order to access CORBA objects, one needs to instantiate the ORB and the objects themselves.
An example can be found in server cpp directory: files serverlOR.cxx and serverNS.cxx. The

-

difference between these server executables is that the CORBA object publishes its reference
differently.
In the first case (serverlOR.cxx), the ORB creates an IOR (Interoperable Object Reference),
which encapsulate the server port number, its [P address, transport and protocol used and the
name of the object. In our example, this IOR is written to a file Demo.ref. This file should be
available to the client. If one needs to access many CORBA objects, using IOR is not practical.
It makes more sense to register all objects with one process and access them through this process
using objects names. This is achieved by using the CORBA Naming Service (see serverNS.cxx).
In case of TAO, one can start it by the following command:
In the second case, the CORBA object registers itself with the Naming Service, which allows
obtaining objects references from this service by objects names. In order to use Naming Service,
one needs to start it by starting the daemon before starting the server process. For example:
/usr/local/ACE+TAO/TAO/orbsves/Naming_Service/Naming_Service -ORBEndpoint
iiop:// uname -n":50065/ &
where 50065 is the Naming Service port number.
The bridge extensively uses Dynamic Invocation Interface (DII) for extracting knowledge about
an OMG-IDL interface. In order to register interfaces, one needs to start the Interface
Repository and populate it with .idl files. In case of TAO, this is done as follows:
/usr/local/ACE+TAO/TAO/orbsves/IFR_Service/IRR Service -ORBEndPoint #iop:// uname -
n":50063 &
/usr/local /ACE+TAO/TAC/orbsves/IFR_Service/tao ifr -ORBInitRef
InterfaceRepository=corbaloc: iiop: “uname -n" 50063/ InterfaceRepository Demo.idl &

where 50063 is the port number of the repository process.

After all the needed processes (the Interface Repository for both cases and the Naming Service
for the second case) are started, one then can run executables serverlOR and serverNS,
respectively.

All the steps described above are collected in two shell scripts: run serverlOR.sh and
run_serverNS.sh. One should edit them to change the default port numbers and names of .idl
files used. Note that these numbers as well as the server IP name should be available to the
client code.

Running IDL Clients

IDL client can access server objects (after servers are started as described above) via proxy IDL
objects. These objects are created with the OBJ NEW function with a specific CORBA token.
This token makes sure that when a function or procedure is called using the proxy object, all
methods are delegated to the bridge. The bridge parses the object name and the method
signature, converts IDL variables into CORBA variables, creates a Dynamic CORBA request
and sends the request to the servant object. When the request returns, the bridge converts
CORBA variables back into IDL variables and makes them (including the return value) available
to the IDL application. The OBJ DESTROY destroys the proxy object and releases resources
associated with CORBA.

Corresponding to the two types of the servers, there can be two kinds of IDL clients: using IOR
and the Naming Service. Examples are given by idl clientlOR.idl and idl clientNS.idl in the

_8-

client idl directory. They use correspondingly serverlOR and serverNS processes. Note, that
idl_clientlOR.idl counts on Demo.ref file, containing IOR of the Demo object, to be in the same
directory. One can run getlOR.sh script to get the file (edit according to where Demo.ref file
was generated) or modify idl clientlOR.pro to refer to correct location of this file. Also, note
that the client code uses DLM’s which are located in the idl corba bridge directory, but the
make process should have created a link to the required shared library (idl_objbridge corba.so)
in the client_idl directory.

To run idl clientlIOR, one needs to pass information about the Interface Repository. For
example, if the repository is running on quad.txcorp.com on port 50063, one needs to do the
following:

IDL> .r idl_clientlOR
% Compiled modulle: IDL_CLIENT IOR.

IDL> idl_clientlOR, "‘quad.txcorp.com:50063""
To run the client using the Naming Service, one needs to pass information about this process too:

IDL> .r idl_client\S
% Compiled modulle: IDL_CLIENTNS.

IDL> idl_client\S, "‘quad.txcorp.com:-50063", "‘quad.txcorp.com:-50065"
where the processes port numbers should correspond to numbers used in the server scripts
run_serverlOR.sh and run_serverNS.sh. If everything is OK, you will see the following output:

doDouble

f should be 3, it is 3.0000000
x should be 1, it is 1.0000000
y should be 3, It is 3.0000000
z should be 3., is is 3.0000000
dolLong

f should be 2, it is 2

x should be 1, it is 1

y should be 4, It is 4

z should be 2, is is 2
doFloat

f should be 6, it is 6.00000

X should be 3, it is 3.00000

y should be 9, It is 9.00000

z should be 6, is is 6.00000
doShort

f should be 4, it is -4

X should be -3, It is -3

y should be -5, it is -5
z should be -4, is is -4
doushort

T should be 3, it is
x should be 3, it is
y should be 5, It is
z should be 4, is is
doULong

T should be 4, it is
x should be 3, it is
y should be 6, It is
z should be 4, is is
doString

T should be hello, it is hello
sl should be hello, it is hello
s2 should be hello, it is hello
s3 should be hihihi, is is hihihi

A O W W

A O W b~

doVoidParam

T should be 2, it is 2
doReturnVoid

g should be 2, it is 2
doOctet

T should be B, it is B

ol should be A, it is A
02 should be B, it is B
03 should be C, is is C

fa should be [4, 1, 5], it is 4 1 5
lal shoudl be [4, 1, 5], it is

1a2 should be [5, 2, 6], It is 5

1a3 shoudl be [14, 2, 6], it is 14 2 6

CORBA-IDL Bridge

Architecture Overview
Similarly to our approach in implementing the IDL-CORBA bridge, we decided to use Dynamic
CORBA for the CORBA-IDL bridge design, namely the Dynamic Skeleton Interface (DSI).

-10-

This approach allows disengaging the server implementation from the OMG-IDL interfaces and
skeletons generated from them by CORBA compilers.

e
N

C++ Server

Implementation
\ Callable IDL

Client

Figure 2. High-level architecture of the CORBA-IDL bridge.

In this approach the DSI servant plays the role of adapter: it receives CORBA invocations from
the CORBA client, translates them into dynamic language of a C++ dynamic server, which is
implemented to use Callable IDL, thus delegating the work to IDL objects.

Several C++ classes were created to implement this architecture. Class
TxRsiCorbaObjectsBridge is the DSI servant, which is created by the server main program and is
derived from the Dynamiclmplementation class. This object starts a single IDL process,
represented by a singleton TxCallableIDL class, whose constructor calls IDL INIT and who
creates IDL objects registered with the bridge. It also creates a TxRsiObject, which represents
the information obtained via interaction with the Interface Repository: practically a list of
TxOperations of each interface, thus representing remote IDL objects in the bridge.

The main task of DSI implementation is to implement the invoke() method of the servant (here
TxTsiCorbaObjectsBridge). The following things happen in our implementation of this function.
First, the identity of the requested object is determined and checked with the objects available in
the registered list. The name of the operation is determined next. This allows us to find the list
of parameters of the operation, create an NVList and package the request object with correct
arguments. After that the action is passed to the TxRsiObject’s handleOperation() function.

-11-

This function tells the correct operation to handle itself: which results in building a correct string
and data structures needed for Callable IDL. After that the static singleton TxCallableIDL takes
the description string and data structures and finish the work.

Installing CORBA-IDL Bridge
CORBA-IDL bridge is distributed in a file called “corbaidl.tar.gz”. Please refer to “Installation
of the Bridge” section of IDL-CORBA bridge for details instructions on how to unpack,
configure, and build the CORBA-IDL bridge. Unpacking the distribution will create the
following major subdirectories:

e corba_idl_bridge is the main directory containing the libraries for the bridge
between CORBA clients and IDL implemnetation.

e server_idl contains the generic the C++ server code for IDL objects and scripts to
start up the IFR service.

e client _cpp contains an examples CORBA client for invoking an IDL object.

Preparing IDL Objects for CORBA Clients
Files containing RSI IDL object implementation should be named according to IDL convention.
For example, our Demo object is defined by the file "Demo define.pro". Once you have the
IDL object implementation ready, you need to decide what functions/procedures of
the object need to expose to CORBA client, you need to define the interface for CORBA client
using the CORBA interface definition language (CORBA IDL.) An example CORBA interface
definition is available in client_cpp/Demo. idl.

A few hints to keep in mind when creating the CORBA interface defintions:

e IDL functions have return values while procedures have not. Map IDL procedures to
CORBA functions with void return type.

e Be careful to assign argument passing direction (in, out and inout).

e Many RSI IDL functions can be used with many different data types (e.g., integer,
double, array of integers and array of doubles) safely without modification. However,
functions defined in CORBA interface can only be used with specific types. You will
need to create adapter RSI IDL functions with different names if you wish to use the
same function with different data types.

Running the Bridging Server:
First you need to

cd server_idl
In order to support arbitrary CORBA interfaces in a single server, the server needs to query the

CORBA Interface Repository to acquire the definition of the CORBA interface during execution.
Therefore, before running the server, we need to have the Interface Repository running and

-12-

initialize with all the interface definitions the server may need to serve. The start ifr.sh
shell script under the server_cpp subdirectory shows how to start up the TAO Interface
Repository service and how to feed the repository with the client side CORBA interface
definition. start ifr.sh also shows how to feed the example Demo.idl defined under
client cpp subdirectory to the Interface Repository. Notice that you may need to update the path
inside the script about where TAQ's interface repository service program can be located.

Once the Interface Repository is started, you can start the server as shown in run_server.sh
shell script. By default, the server implementation will be initialized to service the "Demo"
object defined in this directory. The generated IOR key that identify the object will be written to
a file called "Demo.ref" which the client will use to get access to the RSI IDL object. Users can
override:

e The name of the RSI IDL object to be served in this server by using the -1 <name>

command line flag. Notice that there must be a corresponding
<name>__define.pro available.

e The name of the file the IOR will be written to by using the -0 <ior filename>
command line flag.

Running the Client

This client_cpp subdirectory contains an example of how to invoke functions defined in an
RSI IDL objects. Usually, the IDL object developers define the CORBA interface clients can
access the object. The Demo.idl file provides one such example interface definition for the
example IDL object defined in the . ./server_idl/ subdirectory.

After starting up the server in . ./server_i1dl/ subdirectory, you can start up the client as:

$./client —k Ffile://../server_idl/Demo.ref

The only command line flag —K is used to passed in the Interoperable Object Refernce
(IOR) that uniquely identify the instance of RSI IDL object the client should contact.

TaskDL

Overview

The goal of TaskDL (http://grid.txcorp.com/taskdl/index.jsp) is to provide an environment to
easily set up and run IDL applications on parallel, distributed grid-like WAN resources for faster
and more efficient execution. TaskDL is an effective tool for increasing performance when the
underlying parallelized tasks require no communication with each other.

For instance, rendering frames for a movie or processing spatial data from a series of time slices
represent problems, which are parallelizable in a task-farm paradigm such as TaskDL. The
TaskDL Task Manager sets up a farm of parallel host workers which process tasks

-13-

independently, achieving excellent speed-up as a function of number of worker nodes. TaskDL
provides a simple user interface and requires very little refactoring of existing serial code.
TaskDL is a component of the FastDL umbrella of products. For more information, contact
info@txcorp.com.

QuickTime™ and a
TIFF (Uncompressed) decompressor
are needed to see this picture.

Status of the TaskDL

A user may federate IDL hosts without installing the TaskDL software on each of them. TaskDL
requires that the host workers have a common NFS space with each other and the session
manager host so that all processors can access the same data, log, and session directories (the
tuple space). The cluster of IDL worker hosts must each have a licensed installation of IDL.

The manager application starts the host workers with SSH. TaskDL supports up to two separate
connections to each worker node in case worker hosts have dual processors. Coordination
between the manager application and host workers is done only through the tuple space
populated with work tickets.

-14-

Tuple Space

The concept of a Tuple Space has been developed as an underlying paradigm for distributed and
parallel computing using shared memory. A tuple is a vector of values, which describe an object,
such as a data file, resource, process or protocol. Distributed processors can discover work to be
done by looking for structured XML task tickets in the Tuple Space, and can communicate with
each other by moving tuples within the space, removing tuples from the space altogether, and
writing new tuples into the space. See xml.coverpages.org/tupleSpaces.html for some examples
of how Tuple Spaces have been developed for distributed and parallel programming

The tuple space used by TaskDL is a filesystem containing a collection of work tickets, log files,
and data files accessible by the worker nodes. Work tickets are tuples containing XML tagged
descriptors of data, IDL procedure names, which will process the data, and the locations of data
and IDL code needed to complete the parallel task. The tuple space is implemented by creating
task tickets in XML and moving them between directories that denote their status. The manager
creates task tickets and puts them into a tO-dO directory. When a worker picks up a task, it
moves the ticket to a WOrk-in-progress directory, examines the XML to see how to do
the work, and processes the input data by running the IDL procedures specified in the task ticket.
File system locks provide synchronization between workers so that they don't try to process the
same task. When the worker is done with a particular task, the ticket is moved to a done

directory and the tO-doO directory is re-examined for more work tickets. The status of the tasks
and the workers are written to log files and updated in the TaskDL application GUI. When the

list of tasks in the tO-dO directory is exhausted, the workers exit IDL. The last remaining
worker processes the serial finalization task (if there is one) and then exits IDL.

If a task can not be completed for some reason, such as a worker node failure, an unavailable
IDL license, or a corrupted input data file, the user has the ability to manually re-queue the task
so that a different worker can pick up the ticket and complete the task. Once the manager
application has started the workers, they operate independently, and the manager application can
be stopped without affecting the progress of the task farm. At some later time, the user may
reconnect to an existing session and determine the progress of the tasks. The reconnection may
be made to tasks that are still actively being processed as well as completed tasks.

An example of how the TaskDL system works is creating a movie from a large set of time-sliced
two-dimensional data. In a movie farm, data.xml tickets represent the data and IDL code
which will produce individual frames of the movie through some image analysis and production
procedure, creating image files (such as PNG). The finalization step would combine the resulting
images into a movie file, such as MPEG. The worker nodes will process individual frames in a
parallel manner, as there is no dependencies between the frames. The finalization procedure can
not be processed until all of the frames have been produced, and must be done in serial.

Below is an outline of how the tuple space is implemented in TaskDL. Not shown are the data
and code tuple spaces. Task tickets are moved to directories, which represent the state of the

-15-

task. In addition, log files are maintained and are used by the manager to display the session
status in the GUI.

Task Tickets

The XML describing a task ticket is fairly basic. Below is an example ticket, showing the paths
to the data and parallel procedure to be run by the workers are given. The XML task tickets are
generated by the manager application when the session is started. They are parsed by the IDL
workers. The function calls to the parallel work procedures in IDL with the correct input data
files for each task are generated using the parsed XML variables.

<task>

<task id>taskl</task id>

<data loc array>

<data loc>/Users/veitzer/data/dl.dat</data loc>
<data locs/Users/veitzer/data/d2.dat</data loc>
</data_loc array>
<pro_loc>/Users/veitzer/mycode/plex.pro</pro_loc>
<proceduresplex</procedure>

</task>

Directory Structure

The directories generated by TaskDL implement the tuple space, which must be cross-mounted
on the manager host and all worker nodes. The session <SESSION-ID> active directory is
automatically created based on the system time when a session is configured and executed within
the GUI. When all work for the session is completed, the entire session directory name is
changed, indicating not only the time that the session began, but also the time when the session
was completed and the final state of the session (completed or completed-with-failures). The
tuple space for a given session is under the session directory tree. Note that the input, output, and
user-provided code directories must exist outside of the session directory because they persist
independently of the session being run.

/shared
/examples

-16-

/movie
/code
create_png.pro
create mpeg.pro
/input
*_dat
/output
*.png
movie.mpeg
/montecarlo
/code
calcpi .pro
average.pro
/input
pi_*.in
/output
pi_*.out
/txcode
catch_idl_Im _error.pro
drop_ticket.pro
parse_file_pro
task parser__define.pro
worker _pro
/session <SESSION-I1D>_active
/todo
task*.xml
/wip
task* . xml
/done
task*.xml
/state
manager .state
manager . tasks
manager .workers
host*.state

/logs

-17-

host*._stderr
host* _stdout

For more general problems, the user will define their own cross-mounted input, output, and IDL
code tuple space to be used instead of the examples. These directories can be specified in the
GUL

/input_data
*_dat

/output_data
*.out

/user_code
unit.pro

final .pro

Graphical User Interface Description

This section describes TaskDL's user interface. When the TaskDL application is started, the
TaskDL Task Manager GUI is brought up with the last configuration loaded. The Manager
provides information about the current session, such as the status of worker nodes and tasks,
output from the IDL workers, progress of the session, and the general configuration of the tuple
space. The Manager also provides session control through buttons which allow the user to create
a new configuration, load/save configurations, execute a session with the current configuration,
reconnect to a previously executed session, check the status of host workers and possibly
requeue their tasks, and quit the application. Note that once a session is started, it runs
independently on the remote worker nodes, whether or not the Manager is connected to the
session.

Session Control

This panel contains information about the Manager and the session timing, as well as buttons
which control the session and the GUI. This control is opened when the application starts.
* Displayed Information
= Manager Host - The name of the host machine which is running the session manager and
hence the GUI itself.

Note: The manager host must be cross-mounted with all of the worker nodes.

= Session Started - Displays the date and time that a session is first executed.

-18-

Session Ended - Displays the date and time that a session finishes.

¢ Buttons

Execute - This button begins execution of a session using the current session
configuration (see Session Configuration below). Pressing the EXECUTE button starts a
number of processes behind the scenes, such as creating session-specific directories and
files, generating xml descriptions of tasks to be processed, generates IDL batch files and
shell scripts, and writing state and configuration files. The EXECUTE button also
establishes ssh connections to the worker nodes.

Reconnect - This button allows the manager to reconnect to a session, which was
previously started. Once the manager has made ssh connections to the worker nodes and
started the IDL processes, the workers act independently without any control from the
manager. The manager reports the progress of the workers in the GUI, but may be
stopped without affecting the worker progress. If the manager is restarted at a later time,
using the RECONNECT button allows the manager to catch up with the progress of the
workers and display the current state of the session in the GUI. It is possible to reconnect
to both active sessions (where work is still being done) and also to completed sessions
(where all work has ceased.)

Worker Status - In the event that a worker fails while executing a task, it may be
necessary to manually rqueue that task so that it may be processed by another worker.
The WORKER STATUS button provides an interface for the user to get detailed
information on the status of a given worker. Choosing the WORKER STATUS button
first determines the last reported state of the worker, returning the name and status of the
worker host, the last task that the worker was working on, and the last reported status of
the task. If the status of the last task is still active, it may be that the worker has in some
way failed, and the task is not going to be completed. In this case the manager prompts
the user to reconnect to the worker host via a new ssh connection, and check to see if the
IDL process is still running on the worker. If either the ssh connection can not be made,
or if the IDL process is not longer in the process table, the user may requeue the task so
that a different worker may process the task at a later time. If the user chooses to requeue
a task, it is assumed that the worker host is dead and will not process any further tasks.

Quit - Quit the session manager application. Quitting the manager does not affect the
progress of any of the worker hosts.

-19-

Session Configuration

The SESSION CONFIGURATION panel displays the user-defined parameters for the session.

These parameters may change from session to session, depending on the needs of the user. The

panel also contains buttons for creating, loading, and saving session configurations.

* Displayed Information

o Input Directory - The full path name of the directory, which contains all of the input files. The
input files are generally data files, which are passed to the user defined IDL procedure which
is being run in parallel. For example, if the IDL work procedure reads in a set of data files
called frameXX.dat, where XX = 1,2,..., then those files must be located in the input
directory. No data is written to the input directory, and no files are edited or removed from the
input directory. The input directory should only contain data files, which are to be processed,
ie. no description or readme files.

o QOuput Directory - The full path name of the directory which any generated output files will be
written to. For example, if the IDL work procedure processes each frame of data from the files
frameXX.dat and writes out a new data file called resultXX.dat, then those output files will be
created in the output directory. If the specified output directory does not exist when the
session is started, it will be created.

o Work Procedure - The full path name of the IDL .pro file which contains the user-defined
procedure which is to be run in parallel. Note that this parameter specifies the name of the
file, not the name of the procedure. If the file specified here contains more than one valid IDL
procedure, the user will be prompted to choose the appropriate work procedure. However, all
IDL procedures and functions in the file specified here are compiled by IDL, so if the parallel
work procedure makes function calls to other user-defined procedures or functions (such as to
set up data structures or initialize variables) they should be put in the same file as the work
procedure. The IDL work procedure must conform to a specific signature in terms of inputs to
the procedure (see section below regarding IDL procedure signatures). Any data files, which
are passed to the work procedure must be located in the input directory.

° Finalization Procedure - The full path name of the IDL .pro file which contains the user
defined procedure which is to be run in serial after all of the parallel work has be completed.
Note that this parameter specifies the name of the file which contains the finalization
procedure, not the name of the procedure itself. However, it is highly recommended that the
name of the file and the name of the procedure be the same. All procedures and functions in
the specified file are compiled by IDL, but the user will not be prompted to choose the
procedure, which is to be run as the finalization code. The finalization procedure is useful
when the user wants to run additional co,de which takes data generated by the parallel work
procedure as input. For instance, if the work procedure produces output data resultXX.dat,
and these data files are to be put together (say making a movie from a series of frames) then

-20-

the finalization procedure can accomplish this by serially processing the data files produced
by the parallel work processing. Any data files that are used by the finalization procedure
must be located in the output directory, including files generated by the work procedure.
There are specific signature requirements for the finalization procedure. See below. It is
possible to specify that no serial finalization should be performed. If this is the case, then this
field will display "<none>".

Buttons

New Config - The NEW CONFIG button launches a setup wizard which allows the user to
enter new parameters for running a new session. See the section below on the Setup Wizard
for detailed documentation. The user should use the NEW CONFIG button to change session
variables, like the output directory or the number of worker hosts.

Load Config - The LOAD CONFIG button loads a configuration, which has been previously
saved by the user. The user may browse the directory tree to find saved TaskDL configuration
files. Configuration files have the extension .tdl.

Save Config - The SAVE CONFIG button saves the current configuration to a user named .tdl
configuration file. This file may be loaded later on in a different session to restore the current
session configuration. Note that the SAVE CONFIG button does not save any information
about the current session, only information about the configuration of the session prior to
running the session. Information about a running session is automatically saved, and can be
accessed at a later time by using the RECONNECT button in the Session Control panel.

TaskDL configurations are saved in two files; a configName.tdl file and a configName.workers
file. These files are paired, and are both required when restoring a particular configuration.
TaskDL configuration files contain the following information:

° A date stamp indicating when the configuration files were created.

The full path name of the Input Directory.

The full path name of the Output Directory.

The full path name of the file which contains the parallel work procedure.

The full path name of the file which contains the serial finalization procedure.

The full path name of the base TaskDL package directory (the location where ant is run).
The username of the user running TaskDL.

The full path name of the user’s ssh known_hosts file (typically ~user/.ssh/known_hosts).
A list of worker host names, including information about which connection is specified (a
single host can have up to two different ssh connections).

A list of the locations of the IDL binary for each worker host.

Worker Output

21-

The WORKER OUTPUT panel contains panels with tabs which show informational messages
from each IDL process which is running on the worker hosts. The user can switch between
panes by clicking on the tab corresponding to the worker, which you would like to observe. In
fact, the workers do not write to the tabs themselves, but rather they redirect their output to
various log files, which are parsed by threads in the manager. Because of this, the manager can
be disconnected, and upon reconnection the worker output panes will catch up to the current state
of each worker.

Session Status

The SESSION STATUS panel provides information about the current state of the session. The
status bar will indicate some of the key aspects of the session status, such as "connecting to
workers," and will report the number of tasks completed. As the session finishes, the total
amount of time to complete the session is also reported in the SESSION STATUS panel.

Worker Status

The WORKER STATUS panel provides information on the status of the host workers. The
panel displays a table with rows for each host (including connection indicator), the current status
of the host, and the Process ID for IDL running on that host. Possible states for the hosts are:

* idle - The manager has not initiated a ssh connection to this host.

* login cancelled - ssh login to this host was cancelled. The host is not doing any processing.

* login failed - ssh login to this host failed. The host is not doing any processing.

* no IDL license - There is a problem with the IDL license manager and IDL can not be run.
The host is not doing any processing.

» working - The host is currently running IDL and processing tasks.

* done - There are no more tasks for the host to process. IDL has finished and exited.

Task Status

The TASK STATUS panel displays information regarding the status of all of the tasks in the
session. When a new session is executed, the manager creates an XML descriptor of each input
file, and puts that 'ticket' into the tuple space to be processed by the worker nodes. The manager
then populates those tickets into the TASK STATUS panel. Note that the name of the task is the
same as the name of the data file which is to processed. In addition, if there is a finalization task,
then that is added to the table as well, although there is no XML ticket for finalization

22-

procedures. When worker nodes process a task, they move the XML ticket out of the 'todo' tuple

space into the 'work in progress' space, and eventually move the ticket to the 'done' tuple space.

In this manner each task is only processed by a single worker. As a worker processes a task, the

status of the task is updated by the manager, and displayed in the TASK STATUS panel. The

possible task states are:

o queued - The XML ticket for the task in question is in the 'todo' tuple space, waiting to be
processed by a worker node.

o initiated - The XML ticket for the task in question is in the 'work in progress' tuple space, and
the worker is currently processing the task in IDL.

o completed - The XML ticket for the task in question is in the 'done' tuple space, and the
worker has completed the task and written out any output data.

o requeued - A worker initiated the task and then for some reason stopped working on the task.
The user chose to move the task from the 'work in progress' space back to the 'todo' tuple
space so that a different worker could process the task at a later time. See the section on the
WORKER STATUS button in the SESSION CONTROL panel.

IDL Procedure Signatures

TaskDL host workers support only certain specific signatures for the parallel work procedure and
serial finalization procedure. Namely, the parallel work procedure must take as an input
argument a single name of a data file to be processed. The parallel work procedure cannot return
any values, but may directly write out as many output files as is desired. It is discouraged
behavior to provide absolute path names for any output files, although this is supported. Output
files will by default be created in the specified output directory, which is required if the
finalization procedure needs to use these files as input.

The finalization procedure can take no arguments as input parameters. However, the user can put
in required input files by hardcoding the names of the files or by using built-in IDL functionality
to do file searching and listing, such as the function FILE SEARCH, to specify the input files for
the finalization procedure. See the examples provided with the TaskDL distribution for a simple
method for doing this. The finalization procedure can not return any values, but may directly
write out as many output files as is desired by the user. All output files from the finalization
procedure will be written to the user specified output directory, unless hard-coded paths are
provided.

The Setup Wizard

23-

The SETUP WIZARD is a utility that provides a way for the user to specify the parameters of a
TaskDL session. There are five panels of the SETUP WIZARD, corresponding to all of the
session parameters.

1.

INPUT DIRECTORY - Enter the full path name of the directory which contains the input
data files for the parallel work procedure. This directory should *only* contain input files
(and possibly other directories). Any regular files in this directory will are assumed to be valid
input files to the parallel work procedure. Subdirectories are not searched for input files (try
using soft links if you want to maintain separation of file locations, although this has not been
tested.) Files in this directory are not moved or modified by TaskDL. The user may use the
"browse" button to specify the INPUT DIRECTORY location.

PARALLEL IDL PROCEDURE FILE - Enter the full path name of the IDL .pro file, which
contains the procedure which will work in parallel to process the input files. Note that this
input parameter specifies the name of the file. which contains the procedure, not the name of
the procedure, although these may be the same. If there is more than one valid IDL procedure
in the file, the user will be prompted to specify which procedure is the appropriate one. The
user may use the "browse" button to specify the PARALLEL IDL PROCEDURE FILE.

FINALIZATION PROCEDURE - Enter the full path name of the IDL .pro file which
contains the serial finalization procedure. Note that this input parameter specifies the name of
the file, not the name of the procedure. However, they should be the same, and the user is not
prompted to specify the name of the procedure. There should only be one valid procedure in
the specified file. Any other setup procedures and functions should be included in the file,
which contains the PARALLEL IDL PROCEDURE. The finalization procedure is run after
all of the parallel work procedures have been finished. Thus the finalization procedure can use
the output of the parallel procedure as input if necessary. If the user desires to have no
finalization procedure, enter "none" or "<none>" for this parameter. The user may use the
"browse" button to specify the FINALIZATION PROCEDURE.

OUTPUT DIRECTORY - Enter the full path name of the directory which will contain the
output data files for both the parallel and finalization procedures. Any files, which are input
files for the finalization procedure must also be put in this directory, unless they will be
generated by the parallel work procedures. If the specified directory does not exist at runtime,
it will be created. If the directory does exist, files may be overwritten.

WORKER HOST ADDRESSES - Enter the hostnames of the nodes, which will do the
parallel processing. Fully qualified hostnames may be either entered by typing in the
appropriate box or by using the pull-down menu. The user may also supply the location of the
IDL distribution by entering this information in the box labeled IDL PATH. The default
location is displayed. Once the correct hostname and IDL location is specified, select the
"ADD HOST" button to add a new worker node to the list. The user may add the same host
twice. This is useful if the worker node has two processors, for instance. To remove a host
from the list of workers, select the host to be removed in the table, and click the "REMOVE
HOST" button. Recall that all worker hosts must be cross-mounted (as is true of the manager

24-

host) and that all workers must have a working version of IDL, which can be licensed at
runtime. The manager does not have to have IDL. The user may add as many worker hosts as
is desired. The default configuration uses the manager hostname as the single worker host.

Clicking the "DONE" button will write the entered configuration to a save file and will reset the
manager GUI with the new information. Note that the user may now click the "SAVE CONFIG"
button in the SESSION CONFIGURATION panel of the manager GUI to name this
configuration so that it may be reloaded at a future time. The new configuration is also written as
the last configuration, and will be automatically loaded the next time the manager is launched.

Installation
1. Prerequisites for the manager
e SSH. Since the manager communicates with the workers' hosts using SSH, you must
have a login account on all hosts you plan to use in the farm.
e Java. A Java virtual machine is required for the manager. Hosts acting as workers do
not need Java. More info on Java and obtaining a JVM at http://java.sun.com.
e Ant. The Ant build system is required to build the project from CVS. Information and
downloads of Ant are available at http://ant.apache.org/.
2. Configuring the workers
e Identify a file system that all workers cross mount.
e Identify the install path of IDL for each worker. TaskManager has been tested with
both IDL 5.6 and 6.0 workers

Running TaskManager from CVS

1. Login via "ssh -X" to a host with a file system that all workers cross mount.

Note: In order for workers to access the work tickets, they must share a common file system.

2. Get project from CVS with the command cvs -d :ext:volt.txcorp.com:/projects co taskdl

3. Change to the working directory:

cd taskdl

4. Run the Ant configuration tool:

ant

Note: if the 'ant’ executable is not in your path, you may need to specify the pathname
manually.

5. The TaskDL GUI opens up. The settings from the last session configuration executed are
loaded into the fields. To run a session with the current settings press the Execute button and
enter login information as prompted. To change the configuration settings, press the New
Config button, and follow the instructions in the Setup Wizard.

-25-

