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Summary

In the last few years, it was clearly shown that cross-field transport in the far SOL could be
significantly faster than previously thought and that this transport exhibited convective rather then
diffusive features. As a result, in high density cases the plasma comine into the SOL from the core
recycled at the wall of the tokamak main chamber, rather than flowing into the divertor and
recycling there, as the conventional picture of edge plasma flows would suggest. It was also shown
that coherent structures, often called “blobs™, played very important roles in the particle and energy
transport inside the SOL region for both L and H confinement modes. The blobs seen in the SOL
are extended along the magnetic field lines and have a plasma density two to three times higher
than the ambient SOL plasma density and poloidal and radial scales of about 1 cm. In experimental
measurements, the blobs propagated in radial direction towards the chamber wall with a velocity
~10° cm/s, and the contribution of non-diffusive flux associated with transport of blobs to the
total particle flux in the far SOL attained 70-90%. In addition, recent assessment of experimental
data and theoretical models shows that plasma propagation into the SOL during ELM is somewhat
similar to that of blobs.

Interestingly, similar features of plasma mrbulence were observed in stellarators and linear-
plasma devices. In linear devices, it was found that cross-field plasma transport in the “SQL”
region (the region where magnetic ficld lines are not connected to the plasma source) was very
mtermittent and that plasma blobs propagating radially to the wall with velocity ~ 10°ecm/s were
the main contributors to plasma particle flux. Moreover, comparison between intermittent transport
propertics measured on the PISCES linear device and on several tokamaks (namely, Alcator C-
Mod, MAST, and Tor-Supra) showed almost identical power spectra and probability distribution
functions of ion saturation current fluctuations in the SOL regions of these devices.

All these findings on various fusion devices show that we are dealing with fundamental
property of cross-field plasma transport. They significantly alter our understanding of edge plasma
transport, recycling, impurity sources and transport, and plasma-wall interaction. They can result in
the far-reaching consequences for the design of future fusion devices and, therefore, should be
understood in detail. In addition, these findings are also of general theoretical interest (e.g. how
blobs are related to the qualitative physical picture of anomalous transport outlined above).

In trying to assess the issues of intermittent anomalous plasma transport, many questions
immediately arise: what are the physical mechanisms causing blob propagation in the SOL; how
stable are the blobs; how far can a blob penetrate into the SOL; what determines the percentage of
particle and energy flux that blobs carry away; what is the role of neutrals and ambient SOL plasma
in the particle and energy transport per se as well as in the blob dynamics; how can intermittent
anomalous transport with large contribution from convective structures be incorporated into
macroscopic 21D transport codes (e. g UEDGE code) to perform integrated studies of the edge.




SOL, and divertor plasmas; and how the non-diffusive component of anomalous transport depends
on global discharge plasma parameters and under what conditions does it dominate? We have
suggested that blob motion in tokamak SOL might be caused by the VB and curvature drifts of
charged particles in the curved magnetic field of a tokamak and that these drifis resulted in plasma
polanization and, correspondingly, in the ExB radial convection of the blob plasma. The ExB flow
became rather strong in the SOL due to the effective “sheath resistivity” when the plasma contacted
the divertor target. The estimates of blob radial velocity in were in agreement with experimental
data. Further analytical and numerical investigations of this idea have shown, that while large blobs
are subject fo fingering effects caused by the flute instability, relatively small blobs (~lem) can
move coherently over large distances (~10 em). In linear devices the VB and curvature drifis can
be substituted by the “neutral wind™ effects.

To understand the role of non-diffusive features of anomalous cross-field transport in the
integrated simulation of the tokamak edge, SOL, and divertor plasmas, a hybrid, diffusive and
convective, plasma transport model was applied within the framework of the 2D transport code
UEDGE. The non-diffusive transport was modeled macroscopically with the 2D transport code
UEDGE by using hybrid, diffusive and convective, plasma transport model. In a series of UEDGE
runs, the cross-field convective velocity Vs profile, along with plasma diffusivities, was adjusted
to maich representative set of experimental data. We found that the pure diffusive and the hybrid
(diffusive and convective) models were both well capable of fitting the few main parameters such
as SOL plasma density and temperature profiles in the narrow region adjacent to the separatrix.
However, the pure diffusive model failed to properly describe plasma transport in the far SOL with
physically meaningful magnitude of diffusion coefficients. At the same time, the hybrd model was
able to match most of relevant experimental data in the L mode shot and between ELMs in the H
mode shot.

In high-density C-Mod discharges, the fast SOL transport lead to the main-chamber
recychng regime, in which the core plasma was fueled predominantly due to neutrals originating
from the chamber wall. The transition from the regime, in which the core plasma was fueled due to
the leakage of neutrals from the divertor, to the main chamber recycling regime with an increase in
the discharge density was found with UEDGE modeling of a series of L-mode DIII-D shots that
provided the edge density scan at the same power input. In addition, the non-diffusive cross-field
plasma transport in the SOL affected not only the mid-plane plasma parameters but also the
parameters in the divertor region by decreasing the peak load on divertor plates in the radiative
divertor shot. This implies that the divertor detachment process can be strongly altered by the
blobby plasma transport in the SOL.

The results of our studies were published in 29 refereed publications (see attached list).
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We have developed the model of blob motion in tokamak SOL caused by the grad(B) and
curvature drifts of charged particles in the curved magnetic field of a tokamak and that
these drifts resulted in plasma polarization and, correspondingly, in the ExB radial
convection of the blob plasma. The ExB flow became rather strong in the SOL due to the
effective "sheath resistivity" when the plasma contacted the divertor target. The estimates
of blob radial velocity in were in agreement with experimental data. In linear devices the
grad(B) and curvature drifts can be substituted by the "neutral wind" effects. To
understand the role of non-diffusive features of anomalous cross-field transport in the
integrated simulation of the tokamak edge, SOL, and divertor plasmas, a hybrid, diffusive
and convective, plasma transport model was developed and applied within the framework
of the 2D transport code UEDGE. We found that the pure diffusive model failed to
properly describe plasma transport in the far SOL with physically meaningful magnitude
of diffusion coefficients. At the same time, the hybrid model was able to match most of
relevant experimental data in the L mode shot and between ELMs in the H mode shot.
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