

Cl₂/Ar High Density Plasma Damage in GaN Schottky Diodes

A.P. Zhang⁽¹⁾, G. Dang⁽¹⁾, F. Ren⁽¹⁾, X.A. Cao⁽²⁾, H. Cho⁽²⁾, E.S. Lambers⁽²⁾, S.J. Pearton⁽²⁾, R.J. Shul⁽³⁾, L. Zhang⁽³⁾, A.G. Baca⁽³⁾, R. Hickman⁽⁴⁾ and J.M. Van Hove⁽⁴⁾

⁽¹⁾ Department of Chemical Engineering, University of Florida, Gainesville, FL 32611

⁽²⁾ Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611

⁽³⁾ Sandia National Laboratories, Albuquerque NM 87185

⁽⁴⁾ SVT Associates, Eden Prairie, MN 55344

ABSTRACT

Inductively Coupled Plasma etching of GaN Schottky diodes in Cl₂/Ar discharges produces reductions in both reverse breakdown voltage and Schottky barrier height. The extent of these reductions is a function of both ion energy and ion flux. Two different post-etch treatments were performed in an attempt to remove the ion-damaged GaN surface layer, namely annealing in N₂ or UV-ozone oxidation followed by dissolution of the oxide. Both treatments provide only partial restoration of the diode properties.

RECEIVED
JUL 13 1999
OSTI

INTRODUCTION

GaN-based electronics offer the potential of high frequency operation at elevated temperatures (500 °C) and higher power levels than conventional GaAs or Si devices ⁽¹⁻⁹⁾. Significant progress has already been made in development of high performance GaN/AlGaN heterostructure field effect transistors ⁽²⁻⁹⁾ grown on Al₂O₃ or SiC substrates. Other prototype devices include a depletion-mode GaN MOSFET ⁽¹⁰⁾, GaN /AlGaN heterojunction bipolar transistors ⁽¹¹⁻¹³⁾ and GaN rectifiers ⁽¹⁴⁾ and junction field effect transistors ⁽¹⁵⁾. Precise pattern transfer during fabrication of these devices requires use of dry etching methods with relatively high ion energy in order to break the strong Ga-N bonds (8.92eV/atom) ⁽¹⁶⁾. Under those conditions there will generally be some ion-induced damage remaining in the GaN after dry etching, along with the possibility of a non-stoichiometric near-surface region due to preferential loss of N₂ ⁽¹⁷⁻¹⁹⁾. The Ga etch product in Cl₂-based discharges is GaCl₃, and this is less volatile than N₂ both from a pure chemical vapor presence and from a preferential sputtering viewpoint.

There has been relatively little work on understanding the effects of plasma processes on the electrical characteristics of GaN. Exposure to pure Ar discharges was found to produce higher reverse bias leakage currents in p-n junction structures compared to use of Ar/N₂ discharges ⁽²⁰⁾. Even relatively low power reactive ion etching (RIE) conditions were found to deteriorate the quality of Schottky contacts deposited on plasma-etched n-GaN ^(21, 22). The preferential loss of N₂ from the GaN surface does improve the specific contact resistance of n-type ohmic contacts because of the creation

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

DISCLAIMER

**Portions of this document may be illegible
in electronic image products. Images are
produced from the best available original
document.**

of a degenerately doped surface layer ⁽²³⁾. We have found previously that exposure of GaN to H₂ or N₂ Inductively Coupled Plasmas (ICP) prior to deposition of Schottky contacts creates a damaged region ~500Å deep that can be essentially restored to its original characteristics by annealing at 750 °C ⁽²⁴⁾. There are also situations where GaN device structures will employ a metal contact as a self-aligned etch mask. In this case it is of interest to examine the effects of plasma exposure on samples with existing Schottky contacts.

In this paper we report the results of a study of the effects of Cl₂/Ar ICP exposure on GaN Schottky devices. The degradation of reverse breakdown voltage (V_B) and Schottky barrier height (ϕ_B) was strongly dependent on the incident ion energy and flux. Both annealing and UV ozone treatment were employed to try to remove the plasma damage.

EXPERIMENTAL

Diodes were fabricated on normally undoped ($n \sim 10^{17} \text{ cm}^{-3}$) GaN layers ~3μm thick grown on an n^+ (10^{18} cm^{-3}) GaN buffer on c-plane Al₂O₃ substrate ⁽²⁵⁾. Ohmic contacts were formed with lift-off Ti/Au subsequently annealed at 600 °C, followed by evaporation of the 250 μm diameter Pt/Au Schottky contacts through a stencil mask.

The samples were briefly exposed (~10secs) to 10 Cl₂/5Ar (total gas load 15 standard cubic centimeters per minute) ICP discharges in a Plasma Therm 790 reactor. The gases were injected directly into the source through electronic mass flow controllers, and the 2MHz source power was varied from 100-1000 W. The samples

were placed on an rf-powered (13.56MHz, 5-300W), He backside-cooled chuck.

Process pressure was held constant at 2 m Torr.

The current-voltage (I-V) characteristics of the diodes were recorded on a HP 4145A parameter analyzer. Barrier height (ϕ_B) and ideality factor (n) were obtained from the forward I-V characteristic according to the relationship ⁽²⁶⁾:

$$J = A^{**} T^2 \exp\left(\frac{e\phi_B}{kT}\right) \left[\exp\left(\frac{eV}{nkT}\right) - 1 \right]$$

Where J is the current density, A^{**} the effective Richardson constant, T the measurement temperature (25 °C), e the electronic charge and k is Boltzmann's constant. The reverse breakdown voltage (V_B) was defined as the voltage at which the current density was 3.06×10^4 mA/cm².

Some diodes were annealed at temperatures up to 800 °C after plasma exposure, while others were treated in UV-ozone at 25 °C for period up to 20 minutes, followed by rinsing in HCl solutions. Auger Electron Spectroscopy (AES) was performed in some cases.

RESULTS AND DISCUSSION

Figure 1 shows some typical I-V characteristics from GaN diodes after exposure to the ICP Cl₂/Ar discharges at fixed ICP source power and varying rf power. The latter parameter controls the average energy of ions (predominantly Ar⁺ and Cl₂⁺ in this case) incident on the samples. There is a clear degradation in V_B as this rf chuck power is increased.

The dependence of V_B and ϕ_B on rf chuck power is shown in the upper part of Figure 2. Both of these parameters decrease with increasing power. Under these

conditions, the dc chuck self-bias increases from -105 V at 50 W to -275 V at 200 W. The average ion energy is roughly the sum of this voltage plus the plasma potential which is 20-25 V in this system under these conditions. After plasma exposure, the diode ideality factor was always ≥ 2 , which is a further indication of the degradation in electrical properties of the structures. The results are consistent with creation of an ion damaged, non-stoichiometric GaN surface region. Note that the GaN etch rate increases monotonically with rf chuck power (lower part of the Figure 2), but this more rapid removal of material is not enough to offset the greater amount of damage caused by the higher-energy ion bombardment. We believe the GaN must be non-stoichiometric and hence more n-type at the surface because of the sharp decreases observed in V_B . In the case of semiconductors such as GaAs where ion bombardment creates more resistive material by introduction of deep compensating levels rather than shallow donor states, the breakdown voltage is generally found to increase with exposure to plasmas^(27, 28).

The dependence of V_B and ϕ_B on ICP source power is shown in Figure 3 (top). While ϕ_B continues to decrease as the ion flux increases, V_B initially degrades but shows less of a decrease at higher source powers. This is most likely a result of the continued decrease in the self-bias at higher source power. This also leads to a decrease in GaN etch rate above 500 W. The results of Figure 2 and 3 show that both ion energy and ion flux are important in determining not only the GaN etch rate, but also the amount of residual damage in the diodes.

As mentioned previously, past measurements on ICP damaged GaN surfaces have established the damage depth as being of order 500 Å⁽²⁴⁾. One method for trying

to remove damaged material is by oxidizing it by UV/ozone (O_3) exposure, followed by stripping of the oxide. Figure 4 shows the dependence of V_B and ϕ_B on UV ozone treatment time. In each case after the oxidation, a 1:20, HCl: H_2O solution was used for removal of the oxidized material. While there is some improvement in both parameters up to 5 min, there is no further improvement for longer times. We assume the oxidation distance is diffusion-controlled (i.e. dependent on \sqrt{t}), and from preliminary measurements we believe that only ~ 30 Å of GaN is oxidized and removed for 5 minute UV ozone exposure. Therefore the process would have to be repeated approximately 15-20 times to remove the damaged region of the GaN, assuming the oxidation rate remains the same deeper into the material. Use of a stronger HCl solution improves the V_B value compared to use of the 1:20 solution (Figure 5), but there is no improvement in ϕ_B .

Figure 6 shows the effect of anneal temperature on the recovery of V_B and ϕ_B . There is a clear improvement in V_B for anneals in the range 500 – 700 °C, and little change thereafter and it remains lower than the unetched control value. However, ϕ_B changes very little with annealing. These results are somewhat different than in the case where the surface is exposed to the ICP discharge, annealed and then the Schottky contact is deposited⁽²⁴⁾. For that sequence, essentially full recovery of the electrical characteristics was obtained for 750 °C annealing. In the present case where the contact is in place we believe the metal begins to react with the GaN at ~ 600 °C, accounting for the lack of recovery of ϕ_B at higher temperatures.

The effect of annealing time at fixed temperature (700 °C) on V_B and ϕ_B is shown in Figure 7. The improvement in both parameters leads to saturation beyond 60 secs. It would be expected that the recovery mechanism should be most critically dependent on temperature since most defect annealing processes involve dissociation and diffusion of defects and their complexes. In this case, the recovery would be dependent on the square root of annealing time and exponentially on temperature.

To establish the chemical state of the GaN surface at different stages, AES was performed. Figure 8 shows surface scans before (top) and after (lower) exposure to a 500 W source power, 50 W chuck power Cl₂/Ar discharge. The main change is a reduction in the N₂ signal in the latter sample (by ~20%), confirming the preferential loss of this element during dry etching. Subsequent annealing at 700 °C in N₂ restored some of this deficiency (Figure 8, bottom).

SUMMARY AND CONCLUSIONS

The main points of our study may be summarized as follows:

1. ICP Cl₂/Ar discharges degrade the performance of GaN Schottky diodes, with ion energy and ion flux both playing important roles.
2. The degradation mechanism appears to be creation of a conducting, non-stoichiometric (N₂-deficient) near-surface region on the GaN.
3. UV ozone oxidation of the surface and subsequent dissolution of the oxidized region in HCl provides some restoration of the electrical properties of the GaN.
4. Annealing at 700 – 750 °C also restores some of the initial reverse breakdown voltage characteristics, but little change in ϕ_B for Pt/Au contacts on GaN.

ACKNOWLEDGEMENTS

The work at UF is partially supported by a DARPA/EPRI grant, no. MDA 972-98-1-0006 (D. Radack and J. Melcher) monitored by ONR (J. C. Zolper), and a NSF grant DMR 97-32865 (L. D. Hess). Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed-Martin company, for the US Department of Energy under contract no. DEAC04-94-AL-85000.

References

1. J.C. Zolper, Solid-State Electronics, 42 2153 (1998)
2. S.C.Binari, J.M. Redwing, G. Kelner and W. Kruppa, Electron. Lett., 33 242, (1997)
3. Q. Chen, R. Gaska, M.A.Khan, M.S.Shur, A.T.Ping, I.Adesida, J.Burm, W.J. Schaff and L.F. Eastman, Electron. Lett., 33 637 (1997)
4. M.S.Shur, Solid-state Electron. 42 2131(1998)
5. Y.F.Wu, B.P.Keller, P.Fini, S.Keller, T.J. Jenkins, L.T. Kehias, S.P. DenBaars and U.K. Mishra, IEEE Electron. Dev. Lett., 19 50(1998)
6. A. Balandin, S.Cai, R.Li, K.L.Wang, V.R.Rao and C.R. Viswanathan, IEEE Electron. Dev. Lett., 19 475(1998)
7. D.V. Kuksenkov, H.Temkin, R.Gaska and J.W. Yang, IEEE, Electron. Dev. Lett., 19 222(1998)
8. C.J. Sullivan, M.Y. Chen, J.A. Higgins, J.W. Yang, Q. Chen, R.L. Pierson and B.T. McDermott, IEEE, Electron. Dev. Lett., 19 198(1998)
9. C.E. Wetzel and K.E. Moore, Mat. Res. Soc. Symp. Proc., 483, 111(1998)
10. F.Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A.G. Baca, S.J. Pearton and C.R. Abernathy, Appl. Phys. Lett., 73 3893(1998)
11. F. Ren, C.R. Abernathy, J.M. Van Hove, P.P. Chow, R. Hickman, J.J. Klaasen, R.F. Kopf, H. Cho, K.B. Jung, J.R. Laroche, R.G. Wilson, J. Han, R.J. Shul, A.G. Baca and S.J. Pearton, MRS Internet J. Nitride Semicond. Res., 3 41(1998)

12. L.S. McCarthy, P. Kozodoy, S.P. DenBaars, M. Rodwell and U.K. Mishra, 25th Intl. Symp. Compound Semi., Oct. 1998, Nara, Japan

13. J. Han, A.G. Baca, R.T. Shul, C.G. Willison, L. Zhang, F. Ren, A.P. Zhang, G.T. Dang, S.M. Donovan, X.A. Cao, H. Cho, K.B. Jung, C.A. Abernathy, S.J. Pearton and R.G. Wilson, Appl. Phys. Lett. (May 3, 1999 issue)

14. Z.Z Bandic, P.M. Bridger, E.C. Piquette, T.C. McGill, R.P. Vaudo, V.M. Phanse and J.M. Redwing, Appl. Phys. Lett., 74 1266 (1999)

15. J.C. Zolper, R.T. Shul, A.G. Baca, S.J. Pearton, R.G. Wilson and R.A. Shull, Appl. Phys. Lett., 68 273,(1996)

16. R.J. Shul, in GaN and Related Materials, ed. S.J. Pearton (Gorden and Breach, NY 1997), Chapter 12

17. A.T. Ping, A.C. Schmitz, I. Adesida, M.A. Khan, Q. Chen and J. Yang, J. Electron. Mater., 26 266(1997)

18. S.J. Pearton, J.W. Lee, J.D. MacKenzie, C.R. Abernathy and R.J. Shul, Appl. Phys. Lett., 67 2329(1995)

19. H.P. Gillis, D.A. Choutov, K.P. Martin, M.D. Bremser and R.F. Davis, J. Eletron. Mater., 26 301(1997)

20. A.S. Usikov, W.L. Lundin, U.I. Ushakov, B.V. Pushnyi, N.M. Schmidt, J.M. Zadiranov and T.V. Shuhtra, Proc. ECS 98-14, 57(1998)

21. A.T. Ping, Q. Chen, J.W. Yang, M.A. Khan and I. Adesida, J. Electron. Mater., 27 261(1998)

22. J.Y. Chen, C.J. Pan and G.C. Chi, Solid-State Electron., 43 649(1999)

23. Z.F. Fan, S.N. Mohammad, W. Kim, O. Aktas, A.E. Botchkarev and H. Morkoc, Appl. Phys. Lett., 69 1672(1996)

24. X.A. Cao, H. Cho, S.J. Pearton, G.T. Dang, A.P. Zhang, F. Ren, R.J. Shul, L. Zhang, R. Hickman and J.M. Van Hove (to be published)

25. J.M. Van Hove, R. Hickman, J.J. Laasen, P.P. Chow and P.P. Ruden, Appl. Phys. Lett., 70 282(1997)

26. S.M. Sze, Physics of Semiconductor Devices (Wiley and Sons, NY 1981)

27. C.A. Eddy and B. Molnar, Mat. Res. Soc. Symp. Proc., 395, 745(1996)

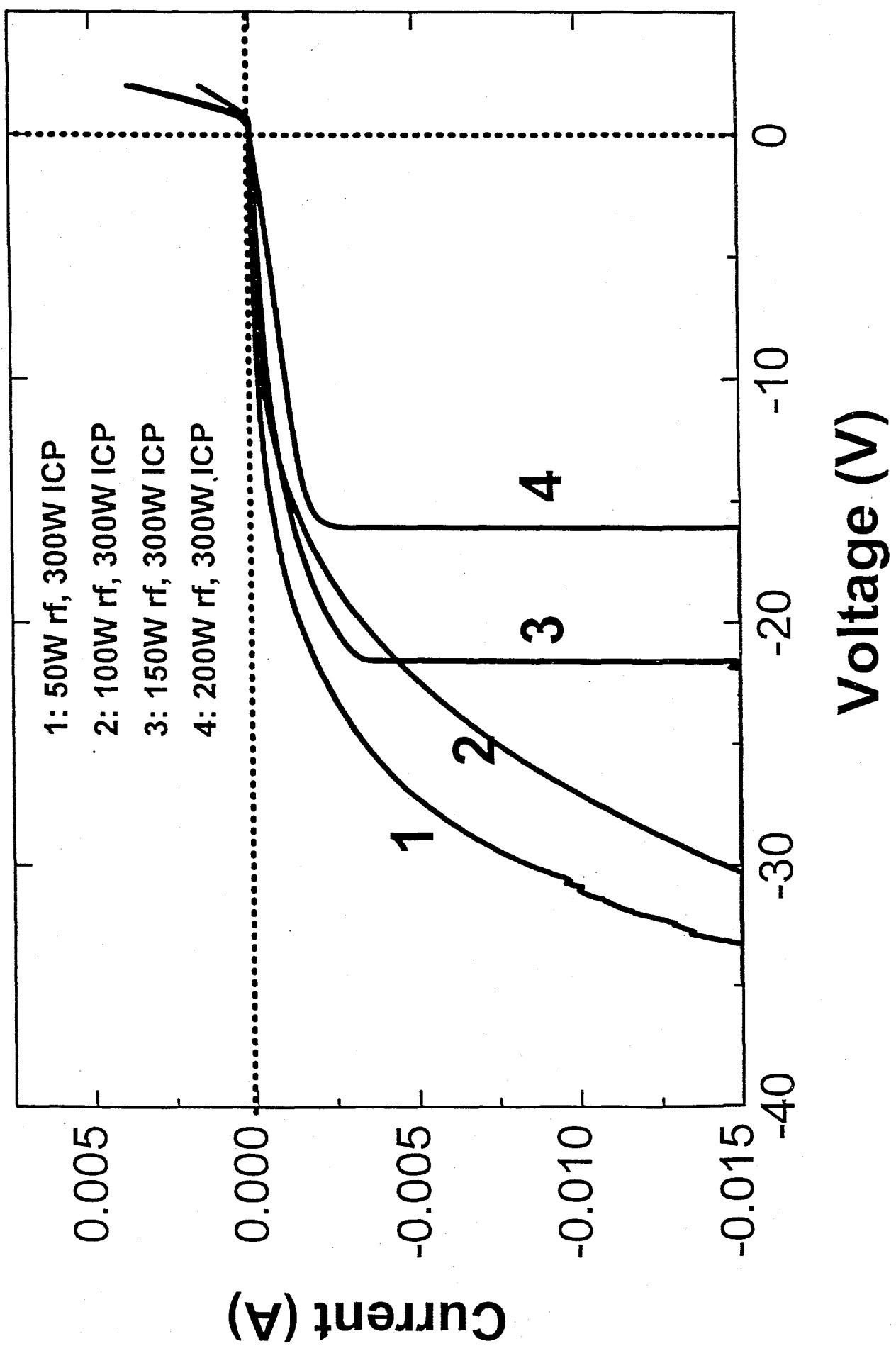
28. S.J. Pearton, Mat. Sci. Rep., 4, 313(1990)

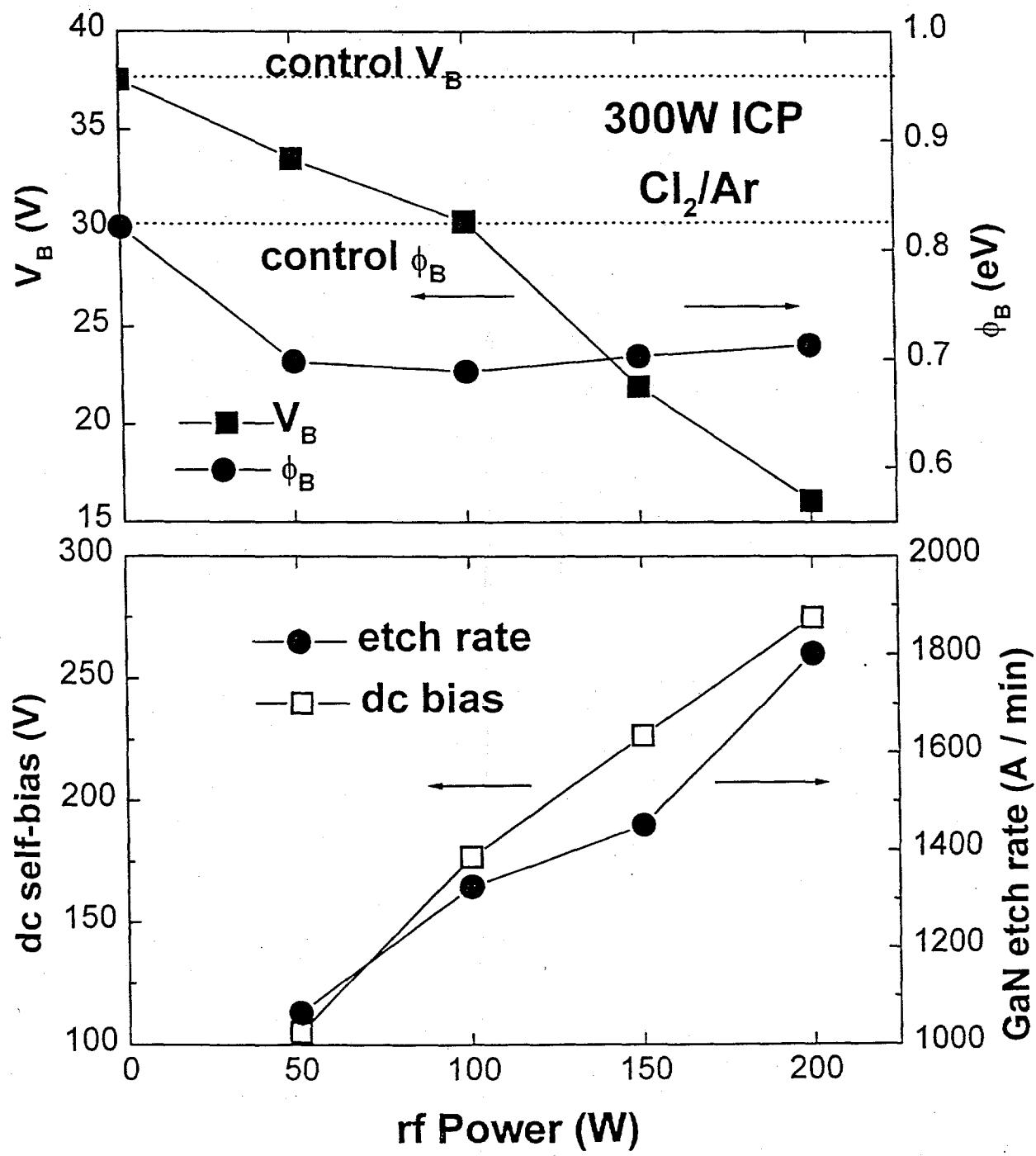
Figure Captions

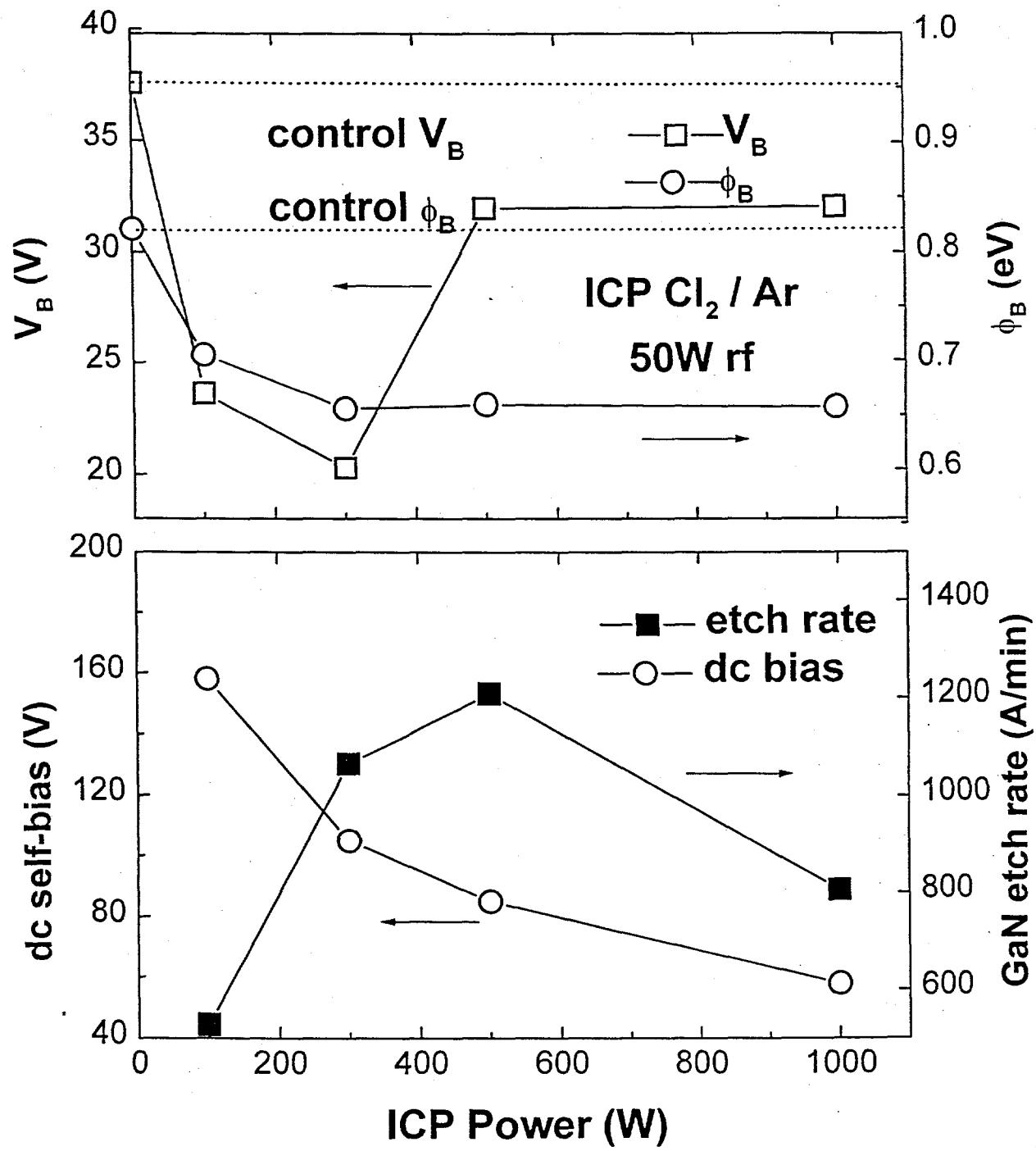
Figure 1. I-V characteristics from GaN diodes after Cl_2/Ar plasma exposure (300W source power, 2m Torr) with different rf chuck powers

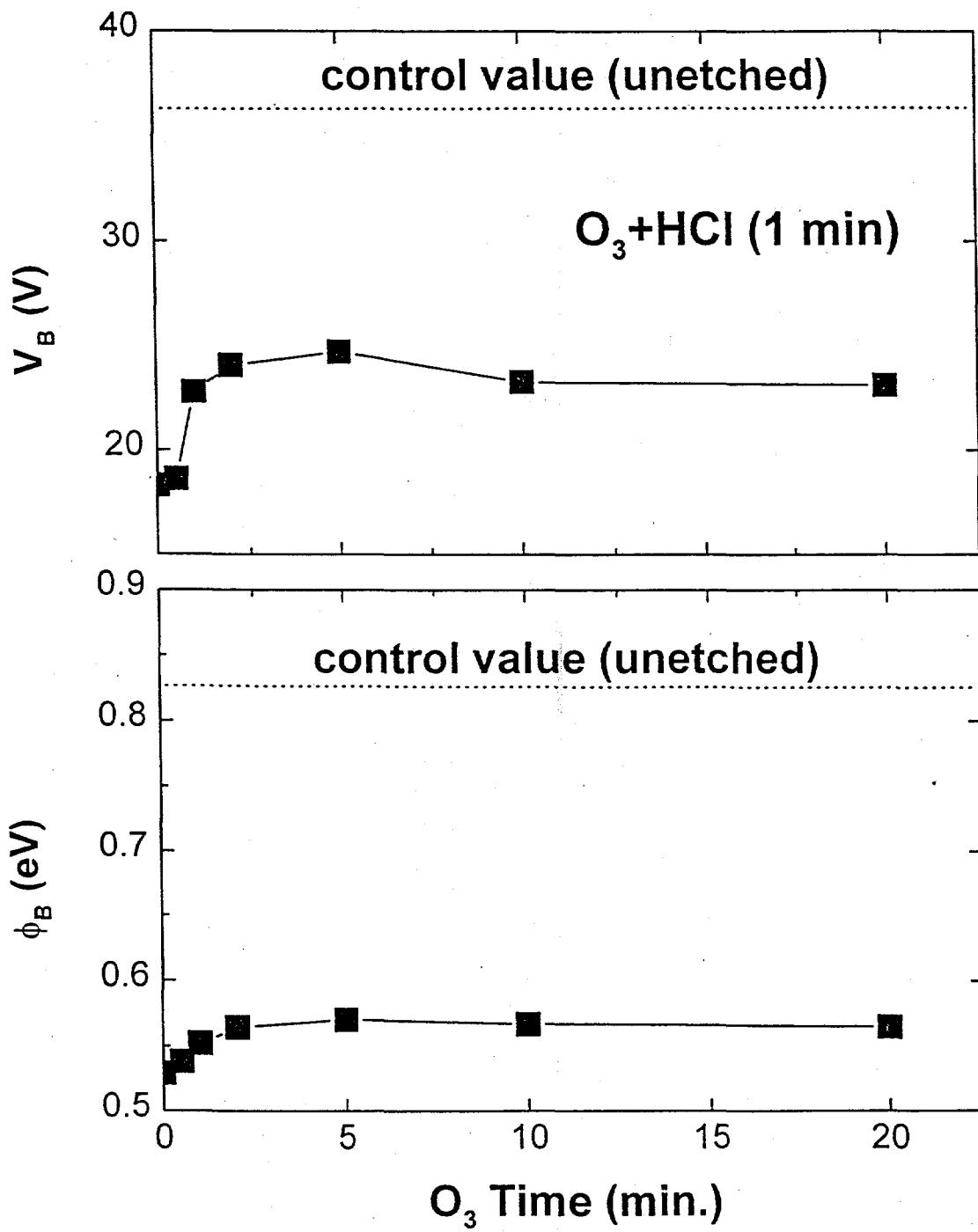
Figure 2. Rf chuck power dependence of V_B and ϕ_B in Cl_2/Ar plasma exposed GaN diodes (top) and of dc chuck self-bias and GaN etch rate under the same conditions (bottom)

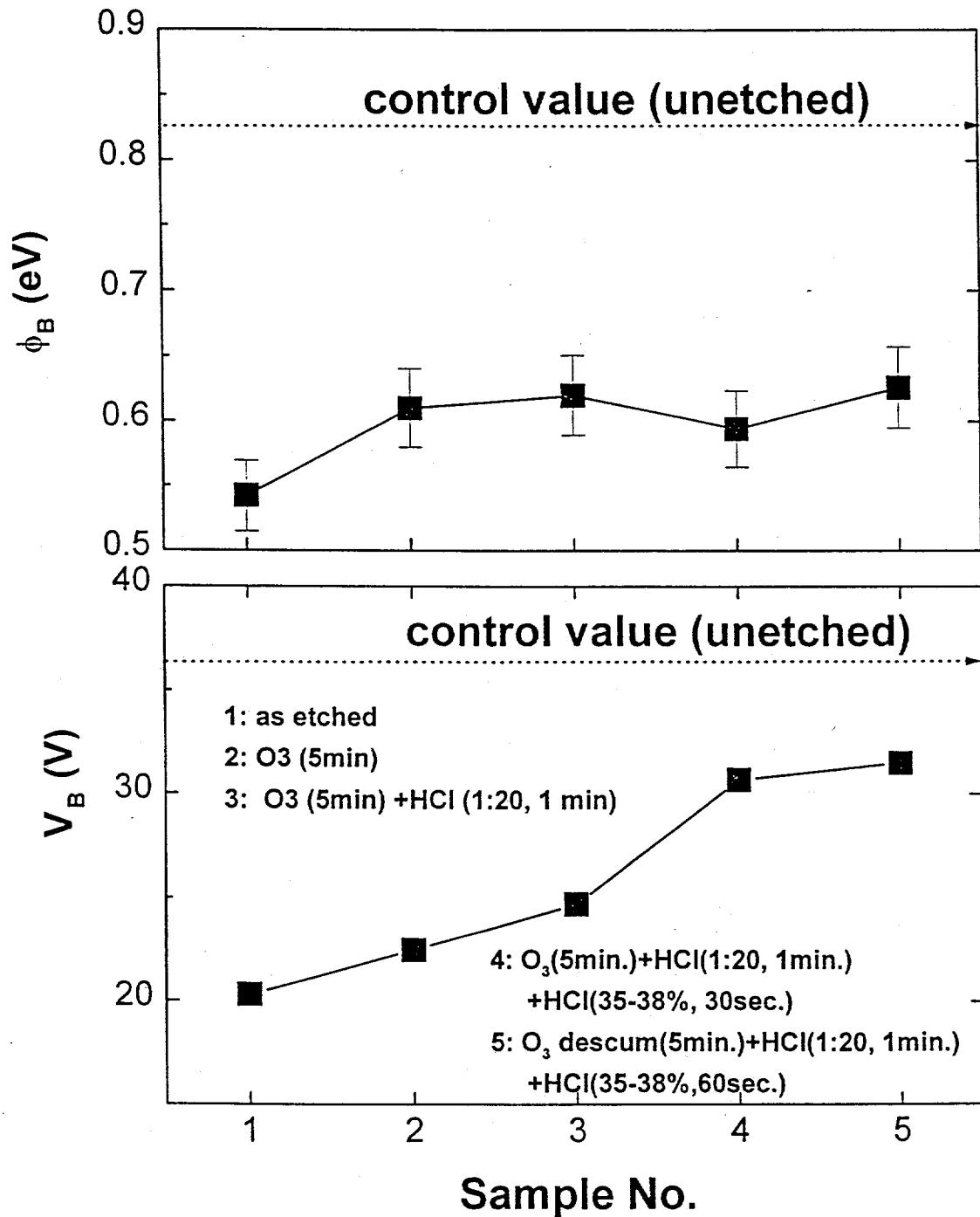
Figure 3. ICP power dependence of V_B and ϕ_B in Cl_2/Ar plasma exposed GaN diodes (top) and of dc chuck self-bias and GaN etch rate under the same conditions (bottom)


Figure 4. UV ozone oxidation time dependence of V_B (top) and ϕ_B (bottom) in Cl_2/Ar plasma exposed GaN diodes. After oxidation, the samples were rinsed in 1HCl: 20H₂O for 1 min.


Figure 5. Dependence of V_B (top) and ϕ_B (bottom) on process condition in Cl_2/Ar plasma exposed GaN diodes. After UV ozone oxidation, the samples were rinsed in 1HCl: 20H₂O for 1 min or aqueous HCl (35-38%) for 30-60 seconds.


Figure 6. Annealing temperature dependence of V_B (top) and ϕ_B (bottom) in Cl_2/Ar plasma exposed GaN diodes. Anneal time was 30 sec at each temperature.


Figure 7. Annealing time dependence (at 700 °C) of V_B (top) and ϕ_B (bottom) in Cl_2/Ar plasma exposed GaN diodes.


Figure 8. AES surface scans from GaN (top) or after (center) Cl_2/Ar plasma exposure, and subsequent annealing at 700 °C for 60 seconds (bottom).

