skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: CHARACTERIZATION OF COAL COMBUSTION BY-PRODUCTS FOR THE RE-EVOLUTION OF MERCURY INTO ECOSYSTEMS

Technical Report ·
DOI:https://doi.org/10.2172/840813· OSTI ID:840813

There is concern that mercury (Hg) in coal combustion by-products might be emitted into the environment during processing to other products or after the disposal/landfill of these by-products. This perception may limit the opportunities to use coal combustion by-products in recycle/reuse applications and may result in additional, costly disposal regulations. In this program, CONSOL conducted a comprehensive sampling and analytical program to include ash, flue gas desulfurization (FGD) sludge, and coal combustion by-products. This work is necessary to help identify potential problems and solutions important to energy production from fossil fuels. The program objective was to evaluate the potential for mercury emissions by leaching or volatilization, to determine if mercury enters the water surrounding an active FGD disposal site and an active fly ash slurry impoundment site, and to provide data that will allow a scientific assessment of the issue. Toxicity Characteristic Leaching Procedure (TCLP) test results showed that mercury did not leach from coal, bottom ash, fly ash, spray dryer/fabric filter ash or forced oxidation gypsum (FOG) in amounts leading to concentrations greater than the detection limit of the TCLP method (1.0 ng/mL). Mercury was detected at very low concentrations in acidic leachates from all of the fixated and more than half of the unfixated FGD sludge samples, and one of the synthetic aggregate samples. Mercury was not detected in leachates from any sample when deionized water (DI water) was the leaching solution. Mercury did not leach from electrostatic precipitator (ESP) fly ash samples collected during activated carbon injection for mercury control in amounts greater than the detection limit of the TCLP method (1.0 ng/mL). Volatilization tests could not detect mercury loss from fly ash, spray dryer/fabric filter ash, unfixated FGD sludge, or forced oxidation gypsum; the mercury concentration of these samples all increased, possibly due to absorption from ambient surroundings. Mercury loss of 18-26% was detected after 3 and 6 months at 100 F and 140 F from samples of the fixated FGD sludge. Water samples were collected from existing ground water monitoring wells around an active FGD disposal site (8 wells) and an active fly ash slurry impoundment (14 wells). These were wells that the plants have installed to comply with ground water monitoring requirements of their permits. Mercury was not detected in any of the water samples collected from monitoring wells at either site. A literature review concluded that coal combustion byproducts can be disposed of in properly designed landfills that minimize the potentially negative impacts of water intrusion that carries dissolved organic matter (DOM). Dissolved organic matter and sulfate-reducing bacteria can promote the transformation of elemental or oxidized mercury into methyl mercury. The landfill should be properly designed and capped with clays or similar materials to minimize the wet-dry cycles that promote the release of methylmercury.

Research Organization:
Consol Energy Inc. (US)
Sponsoring Organization:
(US)
DOE Contract Number:
FC26-00NT40906
OSTI ID:
840813
Resource Relation:
Other Information: PBD: 1 Mar 2005
Country of Publication:
United States
Language:
English