skip to main content
OSTI.GOV title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Experimental Investigation of Beam Breakup in the Jefferson Laboratory 10 kW FEL Upgrade Driver

Conference ·
OSTI ID:840485

In recirculating accelerators, and in particular energy recovery linacs (ERLs), the maximum current has been limited by multipass, multibunch beam breakup (BBU), which occurs when the electron beam interacts with the higher-order modes (HOMs) of an accelerating cavity on the accelerating pass and again on the energy recovered pass. This effect is of particular concern in the design of modern high average current energy recovery accelerators utilizing superconducting RF technology. Experimental observations of the instability at the Jefferson Laboratory 10 kW Free-Electron Laser (FEL) are presented. Measurements of the threshold current for the instability are presented and compared to the predictions of several BBU simulation codes. With BBU posing a threat to high current beam operation in the FEL Driver, several suppression schemes were developed. These include direct damping of the dangerous HOMs and appropriately modifying the electron beam optics. Preliminary results of their effectiveness in raising the threshold current for stability are presented.

Research Organization:
Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
Sponsoring Organization:
USDOE Office of Energy Research (ER) (US)
DOE Contract Number:
AC05-84ER40150
OSTI ID:
840485
Report Number(s):
JLAB-ACP-05-366; DOE/ER/40150-3420; TRN: US0502045
Resource Relation:
Conference: PAC 2005, Knoxville, TN (US), 05/16/2005--05/20/2005; Other Information: PBD: 1 May 2005
Country of Publication:
United States
Language:
English