

TITLE: COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN

QUARTERLY TECHNICAL PROGRESS REPORT

REPORTING PERIOD START DATE: 9/09/03 (PROGRAM START)

REPORTING PERIOD END DATE: 04/30/05

PRINCIPLE AUTHOR(S): B. LANNING, J. ARPS

DATE REPORT WAS ISSUED: APRIL 2005

DOE AWARD NUMBER: DE-FC26-03NT41849

SUBMITTING ORGANIZATION: SOUTHWEST RESEARCH INSTITUTE
6220 CULEBRA ROAD (78238-5166)
P.O. BOX 28510 (78228-0510)
SAN ANTONIO, TEXAS

OTHER TEAM MEMBERS: COLORADO SCHOOL OF MINES
IDATECH

SUBMIT TO: NETL AAD DOCUMENT CONTROL
BLDG. 921 U.S. DEPARTMENT OF ENERGY
NATIONAL ENERGY TECHNOLOGY LABORATORY
P.O. BOX 10940
PITTSBURGH, PA 15236-0940

SOUTHWEST RESEARCH INSTITUTE®
SAN ANTONIO
DETROIT

HOUSTON
WASHINGTON, DC

**TITLE: COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY
MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN**

QUARTERLY TECHNICAL PROGRESS REPORT

REPORTING PERIOD START DATE: 9/09/03 (PROGRAM START)

REPORTING PERIOD END DATE: 04/30/05

PRINCIPLE AUTHOR(S): B. LANNING, J. ARPS

DATE REPORT WAS ISSUED: APRIL 2005

DOE AWARD NUMBER: DE-FC26-03NT41849

SUBMITTING ORGANIZATION: SOUTHWEST RESEARCH INSTITUTE
6220 CULEBRA ROAD (78238-5166)
P.O. BOX 28510 (78228-0510)
SAN ANTONIO, TEXAS

OTHER TEAM MEMBERS: COLORADO SCHOOL OF MINES
IDATECH

SUBMIT TO: NETL AAD DOCUMENT CONTROL
BLDG. 921 U.S. DEPARTMENT OF ENERGY
NATIONAL ENERGY TECHNOLOGY LABORATORY
P.O. BOX 10940
PITTSBURGH, PA 15236-0940

APPROVED:

James H. Arps, Manager
Surface Engineering Section

DISCLAIMER

“This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness or any information, apparatus, product, or process disclose, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.”

ABSTRACT

Over the last quarter, we continued to optimize procedures for producing free-standing, defect free films using rigid silicon and glass substrates. A strong correlation was observed between sputter power and formation of defects (pinholes) in the film; i.e., lower power, and correspondingly lower deposition rate, results in a lower defect density. Films less than 1 μm -thick have been successfully released from both silicon and glass substrates although the minimum thickness for pinhole-free films over a 4-inch diameter disc is still on the order of 3-4 μm .

Results from hydrogen permeation testing over the last quarter have shown a marked increase in membrane performance primarily due to proper alloy composition and pre-treatment procedures. As an example, the hydrogen flux at 400 °C and 20 psi trans-membrane pressure, for a 5 μm -thick membrane, was 120 cm^3 (STP)/ cm^2 min. The productivity of this membrane exceeds the 2015 DOE Fossil Energy targets. Hydrogen permeability was calculated to be $2.0 \cdot 10^{-4}$ $\text{cm}^3(\text{STP}) \cdot \text{cm}/\text{cm}^2 \cdot \text{s} \cdot \text{cm Hg}^{0.5}$. Permeation tests were then repeated on a sibling membrane sample and the measured hydrogen flow rate at 400 °C and 20 psi was 58 cm^3 (STP)/min. Although lower than the flow rate of the first sample, the hydrogen flow rate increased to 175 cm^3 (STP)/min after two oxidation treatments.

Finally, with the attendance of John Shen and the rest of the program team members at the IdaTech facility in Bend, OR, we presented an overview of program activities. Subsequently, we prepared detailed written responses to John Shen's questions with regard to technical feasibility, maturity, scale-up and commercialization potential in comparison to competing hydrogen separation methods such as pressure swing absorption and ionic conducting membranes.

Table of Contents

DISCLAIMER.....	III
ABSTRACT	IV
TABLE OF CONTENTS	V
1.0 EXECUTIVE SUMMARY	1
2.0 EXPERIMENTAL.....	1
3.0 RESULTS AND DISCUSSION	1
3.1 PROGRESS	1
3.1.1 <i>Optimization of Pd-Cu Membrane Formation.....</i>	<i>1</i>
3.1.2 <i>H₂ Permeation Testing.....</i>	<i>1</i>
3.2 PROBLEMS ENCOUNTERED:.....	4
3.3 PLANS FOR NEXT REPORTING PERIOD:	4
4.0 CONCLUSION	4
5.0 REFERENCES.....	5

1.0 EXECUTIVE SUMMARY

Refer to abstract.

2.0 EXPERIMENTAL

Pd-Cu alloy Vacuum Deposition –

Rigid substrates – Based on procedures reported previously for depositing and releasing Pd-Cu films from rigid silicon substrates, we extended this development to include larger silicon and glass substrates. In brief, processing parameters were optimized to produce films with poor adhesion and minimal electrostatic interaction forces using magnetron sputtering from an alloy target.

H₂ Testing – A membrane foil is first sandwiched between two circular supports, such as alumina paper, and then sealed with either a Kalrez O-ring (max. use to 315 °C) or Grafoil packing material (allowing a 650 °C upper use temperature in oxygen-free environments) in the 25 mm Millipore membrane cell. The membrane is then checked with helium to confirm a tight seal and that the membrane is defect (pinhole) free. Subsequently, the membrane is heated to operating temperature to begin permeation testing.

3.0 RESULTS AND DISCUSSION

3.1 Progress

3.1.1 Optimization of Pd-Cu Membrane Formation

Rigid Substrates (silicon/glass)

We have established processing procedures that will enable reliable and consistent (with greater than a 95% level of confidence) release of Pd-Cu alloy films (currently 4" diameter rounds) from rigid support materials such as silicon and glass. We have also observed a strong correlation between sputter deposition power and the formation of defects (pinholes); namely, the higher the power, the greater the probability of pinhole formation assuming everything else remains constant (invariant). However, optimum release does not always coincide with low power and therefore, we are continuing to investigate processing conditions that will reduce defect formation while maintaining adequate release characteristics.

3.1.2 H₂ Permeation Testing

Results from H₂ Permeation Testing (Sputtered films on silicon)

Membrane SwRI-pg168 was prepared in accordance with the procedures outlined in the experimental section and then tested for permeation with pure hydrogen. See Figure 1 for the hydrogen flux behavior with time at 400 °C and 20 psi trans-membrane pressure.

A helium leak of $1.1 \text{ cm}^3 \text{ (STP)}/\text{cm}^2 \text{ min}$ was observed at time, $t \sim 51$ hours indicating that a leak may have developed during testing. The data in Figure 1 have been corrected for this leak.

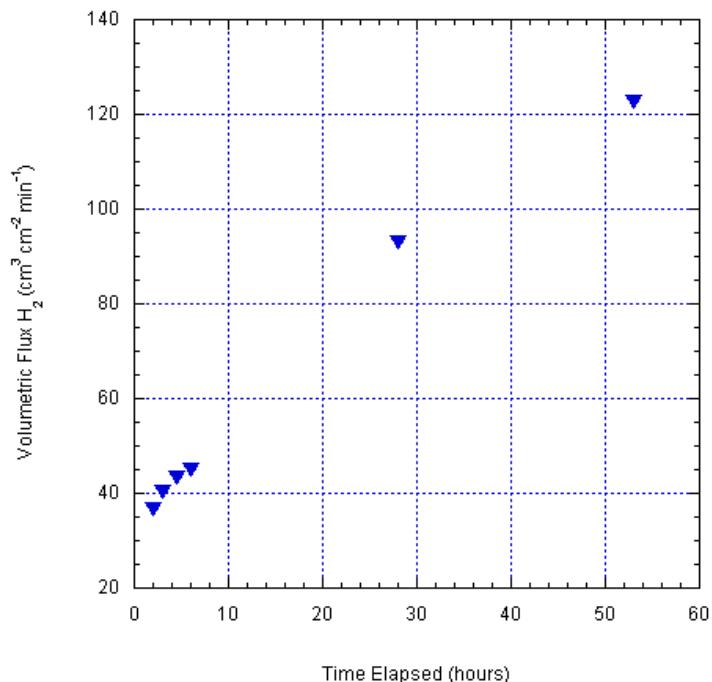


Figure 1. Influence of time on hydrogen permeation of membrane SwRI-pg168 at 400°C with a hydrogen feed pressure of 20 psig.

Table 1 shows the how the hydrogen flux of membrane SwRI-pg168 compares to the targets established by the Office of Fossil Energy Hydrogen from Coal RD&D plan. The hydrogen flux at the target conditions is calculated based on the results at 20 psig. This foil exceeds the 2015 target.

Table 1. Calculated H_2 flux of membrane SwRI-pg168 and Office of Fossil Energy performance targets

Performance Criteria	Membrane SwRI-pg168	2007 Target	2010 Target	2015 Target
Flux scf/h/ft ² @ 100 psi ΔP H_2 partial pressure & 50 psia permeate side pressure	564	100	200	300

The thickness of membrane SwRI-pg168 was measured after testing in order to minimize handling of the film before hydrogen permeation could be studied and was measured with a micrometer to be $5\text{ }\mu\text{m}$. The hydrogen permeability was then determined to be $2.0\bullet10^{-4}\text{ cm}^3(\text{STP})\bullet\text{cm}/\text{cm}^2\bullet\text{s}\bullet\text{cm Hg}^{0.5}$.

A separate sibling membrane, labeled SwRI-pg176, was also tested this quarter and is still under test at $400\text{ }^\circ\text{C}$. This membrane was mounted as received using the same arrangement as SwRI-pg168. Hydrogen flow rates will be reported here rather than flux until the experiment is concluded and the area available for permeation can be measured. At $400\text{ }^\circ\text{C}$ and 20 psi, a helium leak of $7.4\text{ cm}^3(\text{STP})/\text{min}$ is observed. The hydrogen flow rates have been corrected for this leak. The hydrogen flow rate at 20 psi achieved a steady state of approximately $58\text{ cm}^3(\text{STP})/\text{min}$ relatively quickly. An in-situ air oxidation was performed at 20 psig and $400\text{ }^\circ\text{C}$ for 1 hour, upon which the hydrogen flow rate doubled to a steady value of approximately $121\text{ cm}^3(\text{STP})/\text{min}$. A second air oxidation was then performed where air was supplied to the foil at 20 psig and $400\text{ }^\circ\text{C}$ for a period of 2 days. A jump in the hydrogen flow rate was observed followed by a gradual decrease to a higher steady state. Figure 2 shows the hydrogen flux behavior with time at $400\text{ }^\circ\text{C}$ and 20 psi trans-membrane pressure and the influence of air oxidation treatments. This foil exhibited dramatic enhancements in hydrogen flux as a result of air oxidation similar to the $25\text{ }\mu\text{m}$ foil reported during the March project review meeting in Oregon.

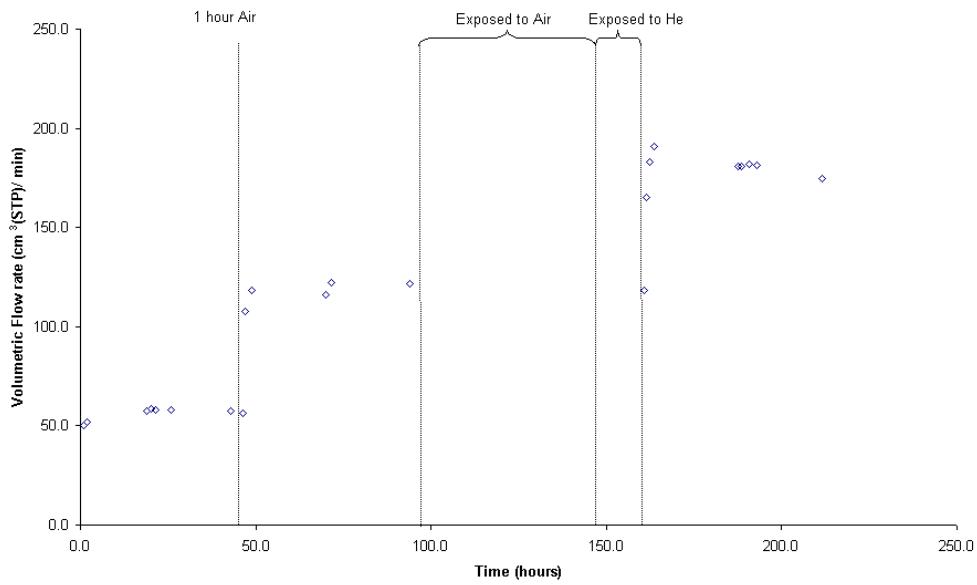


Figure 2. Influence of time and air oxidation on hydrogen permeation of membrane SwRI-pg176 at $400\text{ }^\circ\text{C}$ with a hydrogen feed pressure of 20 psig.

Permeation experiments with membrane SwRI-pg176 will continue. Analysis of the surface using SEM will be performed in addition to structure and composition analysis.

3.2 Problems Encountered:

As we have concentrated this last quarter on establishing procedures for producing thin, less than 5 μm -thick membranes without any pinholes, we have delayed fabrication of membranes to be delivered to IdaTech. We are currently scheduled to produce these films and will deliver to IdaTech upon completion.

3.3 Plans for Next Reporting Period:

- Complete fabrication of 4" diameter membranes for delivery to IdaTech for incorporation into test module.
- Continue to develop procedures, such as oxygen pre-treatment, and develop processes for the incorporation of alloy additions, that will enhance hydrogen permeation.

4.0 CONCLUSION

Continued to optimize procedures for producing free-standing, defect free films using rigid silicon and glass substrates. A strong correlation was observed between sputter power and formation of defects (pinholes) in the film; i.e., lower power, and correspondingly lower deposition rate, results in a lower defect density. Films less than 1 μm -thick have been successfully released from both silicon and glass substrates although the minimum thickness for pinhole-free films over a 4-inch diameter disc is still on the order of 3-4 μm .

Results from hydrogen permeation testing over the last quarter have shown a marked increase in membrane performance primarily due to proper alloy composition and pre-treatment procedures. As an example, the hydrogen flux at 400 $^{\circ}\text{C}$ and 20 psi trans-membrane pressure, for a 5 μm -thick membrane, was 120 cm^3 (STP)/ cm^2 min. The productivity of this membrane exceeds the 2015 DOE Fossil Energy targets. Hydrogen permeability was calculated to be $2.0 \cdot 10^{-4} \text{ cm}^3(\text{STP}) \cdot \text{cm}/\text{cm}^2 \cdot \text{s} \cdot \text{cm Hg}^{0.5}$. Permeation tests were then repeated on a sibling membrane sample and the measured hydrogen flow rate at 400 $^{\circ}\text{C}$ and 20 psi was 58 cm^3 (STP)/min. Although lower than the flow rate of the first sample, the hydrogen flow rate increased to 175 cm^3 (STP)/min after two oxidation treatments.

Finally, with the attendance of John Shen and the rest of the program team members at the IdaTech facility in Bend, OR, we presented an overview of program activities. Subsequently, we prepared detailed written responses to John Shen's questions with regard to technical feasibility, maturity, scale-up and commercialization potential in comparison to competing hydrogen separation methods such as pressure swing absorption and ionic conducting membranes.

5.0 REFERENCES

N/A