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Abstract
This paper presents analytical solutions for one-dimensiond radial transient flow through horizontal,
unsaturated fractured rock formation. In these solutions, unsaturated flow through fractured mediais
described by a linearized Richards equation, while fracture-matrix interaction is handled using the
dual-continuum concept. Although linearizing Richards equation requires a specialy correlated
relationship between relative permeability and capillary pressure functions for both fractures and
matrix, these specidly formed relative permeability and capillary pressure functions are till
physicaly meaningful. These analytical solutions can thus be used to describe the transient behavior
of unsaturated flow in fractured media under the described model conditions. They can also be

useful in verifying numerical smulation results, which, as demonstrated in this paper, are otherwise

difficult to validate.
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1. | ntroduction

In the past few decades, flow through unsaturated fractured rock, a special case of multiphase
flow, has received a lot of attention because of subsurface environmental considerations.
Quantitative analysis of flow in unsaturated fractured rock is often based on Richards' equation.
Because of its nonlinear nature, Richards' equation solutions for general flow through fractured
media may be obtained only with a numerical approach. On the other hand, analytical solutions,
if available, provide more direct insight into the physics of unsaturated flow phenomena than
numerical or laboratory studies, and they are often needed to examine and verify numerical

model schemes or results.

For unsaturated flow through homogeneous single-porosity soils, many analytical solutions, both
exact and approximate, have been developed based on different levels of Richards equation
linearization [e.g., Pullan, 1990; Warrick and Parkin, 1995; Basha, 1999; Philip, 1969;
Zimmerman and Bodvarsson, 1995]. Despite the advances made so far, however, precise
analytical solutions to Richards equation remain intractable under genera flow conditions,
because of its known nonlinearity. In addition, it becomes more difficult to obtain an analytical
solution for flow through unsaturated fractured porous media because of the additional

complexity or inherent heterogeneity introduced by fracture-matrix interaction.

Recently, we presented a set of new analytical solutions for unsaturated flow within a single matrix
block with fracture-matrix interaction [Wu and Pan, 2003]. These analytical solutions required a
specialy correlated relationship between relative permeability and capillary pressure functions. The
present work extends our analytical solution approach to the entire fracture-matrix flow system,
using a general dual-continuum approach. In this work, we show that it is possible to obtain
analytical solutions if the specialy correlated relative permeability and capillary pressure functions
hold true for both fracture and matrix systems. In addition, we demonstrate that the new anaytical

solutions are very useful for checking numerica model results for unsaturated flow through
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fractured porous media.
2. Mathematical Formulation

The problems to be solved are cases of unsaturated radial flow in a horizontal and uniform
fracture-matrix formation corresponding to a fully penetrating injection well, specified with
either constant pressure or constant injection rate, respectively. The formation consists of
identical cubic matrix blocks separated by a uniform three-dimensional fracture network, as in
the Warren and Root model [Warren and Root, 1963], which can be approximated as two
different continua. Furthermore, we assume that the two sets of capillary pressure and relative

permeability functions for fracture and matrix, respectively, are in the form:

Kie(S)=C (S§ )OLi (@)

and
* \B:
P:(S.) =P PR, =Cy (Sa) 2

where subscript ¢ is an index for fracture (¢ = F) or matrix (¢ = M); Py is constant air (or gas)
pressure in fractures or the matrix; P,:is liquid water pressure in fractures or the matrix,
respectively; Cy. and C,. are coefficients (Pa), a.. and B are exponential constants of relative
permesability and capillary pressure functions, respectively, with fracture and matrix systems; and S@

is the effective fracture or matrix water saturation,

©)



with S;; being the residual water saturation in fracture and matrix systems, respectively.

If the following conditions,

o, =B, +1 4)

are satisfied for both fractures and matrix, Richards' equation can be readily linearized for flow
through both fractures or the matrix [Wu and Pan, 2003]. The linearized governing equation for
unsaturated radial flow (ignoring gravity effect and compressibility of water and rock) through
the fractures can be derived using a mass balance on a control volume and the dual-continuum

concept (see Appendix A), asfollows:
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(If not described, the symbols for variables and parameters in Equation (5) or in the following
equations are defined in the appendixes.) The third term on the left-hand side of Equation (5)
represents flow exchange terms on the local matrix interface between fracture and matrix systems,

describing the continuity in mass flux.

For flow inside the matrix, we use a 1-D spherical-flow approximation [Wu and Pan, 2003], and the

unsaturated flow inside a cubic matrix block isthen governed by

0°S, 208S, 1 oS,
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Theinitial conditions within fractures and matrix systems are uniform:



S0 =Sy ™
Note here that for smplicity initid saturations in fractures and the matrix are set to their residual

values, respectively.
Thefirst inner boundary condition is that the wellbore be specified with constant saturation:

S:r=r,.t)=S, ®

and the second isthat the injection rate be constatnt:
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Far away from the well, the boundary condition in fracturesremains a itsinitia condition
S.(r=ow,t)=S, (10)
At the matrix surface, the continuity in pressure or capillary pressure is enforced:

P.(r,t)=P,,(x=B/2,t;r) (11)

while at the matrix block center, a zero-gradient condition is maintained for symmetry:

0S, (x=0,t;r)
oX

=0 (12)

3. Analytical Solutions



In the following dimensionless variabl es, the dimensionless distances are defined as

o= (13

Xp =— (14)

to = (15)

. -S,
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In terms of these dimensionless variables, the solution for the normalized matrix saturation in the

Laplace spaceis given by (Appendix B):

< _ §=D |1/2(GXD)_ §=D sinh(cXp)
SMD_A“\/K Il/Z(G) A Xp  sinh(c) an

where o =,/A;p and |1,isthe modified Bessal function of the first kind.

S, isthe solution of the normalized fracture saturation in the Laplace space, defined differently for
the two well boundary conditions (Appendix B). The solution S with constant water saturation at

the wellbore,in Equation (8), isgiven by:
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where X, = A,A [ocothc —1]+ A,p. For the case of congtant flow rate as defined in Equation (9),

(18)

the solution SED is
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In the solutions above, constants A1, A2, Az, and A4 are defined in Appendix B; Ko and K1 is the
modified Bessel function of the second kind for zero and first order, respectively.

Equations (17), (18), and (19) congtitute the solutions in the Laplace space for normalized fracture
and matrix saturations under two types of inner-well-boundary conditions. To apply these solutions,
we use the Sehfest [1970] agorithm to invert these solutions from the Laplace space to the read

space.
4, Application

First, the analytical solutions of Equations (18) and (19) were used to calculate type curvesthat deal
with transient flow through a fully penetrating well into a uniform, horizontal fractured formation,
which is 10 m thick and radialy infinite. The fractured formation consists of uniform, identical 1 x 1
x 1 m cubes of matrix blocks, surrounding by a uniform, 3-D fracture network, identical to the
Warren and Root conceptual model. The basic fracture-matrix and fluid parameters used for the
example are listed in Table 1. A numerica inversion agorithm [Sehfest, 1970] was used in
calculating the analytical solutions. During the numerical Laplace inversion, the Stehfest’ s method
was found to work well, and the inverted solutions were verified by comparison with numerical

simulations and asymptotic solutions through many numerical experiments.



The results are depicted as normaized liquid saturation in fractures versus the dimensionless radia
distance from the well at different dimensionless times, in Figure 1 (a constant saturation at the
wellbore) and Figure 2 (a constant injection rate at well), respectively. These two type curves can be

used for examining numerical modd results for the same fracture-matrix flow system.

The analytical solutions were then used to assess the performance of the double-porosity and
MINC approaches in simulating fracture-matrix interaction in unsaturated fracture rocks. Note
that the double-porosity model represents the matrix by one single gridblock, whereas the MINC
concept subdivides a matrix block into many single or multidimensional or nested cells [Pruess
and Narasimhan, 1985]. Numerical simulations are performed using a numerical reservoir
simulator [Wu et al., 1996]. Note that the governing equation solved in numerical modeling is
still the original Richards equation, instead of the linearized forms of Equations (5) and (6). The
same relative permeability and capillary functions as those of Equations (1) and (2) in the

analytical solutions are input to the numerical model.

In the second application, the radial single-well flow system used is basically the same as that in the
first example. Rock and fluid properties are a'so given in Table 1. In the numerical model, however,
the uniform, horizontal, radialy infinite formation is represented by a finite radial system with an
outer boundary radius of 1,000 m. It is large enough such that the wetting front does not reach the
boundary at the end of smulation. Two numerical grids, a double-porosity mesh and a MINC one,
are generated for the radial symmetric formation. The double-porosity grid represents the matrix
system by one mesh locally [Warren and Root, 1963], while the MINC grid subgrids each matrix
block with 7 nested cdlls, for better numerical accuracy in estimating fracture-matrix flow [Pruess
and Narasimhan, 1985].

Figure 3 shows the saturation distribution along the fracturesin the radial direction at time of 0.1 and
10 days, respectively, simulated by the analytical, double-porosity, and MINC modeling results.
Note that the physical process smulated in this example is extremely nonlinear and dynamic. The

initia liquid saturations are at residual values for both fracture and matrix systems. At the beginning,
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the boundary saturation for fractures at the wellbore jumps to one (thus, flow rate at the well
becomesinfinitely large). Once imbibed into the fractures, the liquid will be competed by two forces
in two directions, one for continuous flow along fractures away from the well, and the other sucked

into dry matrix blocks.

The numerical modd results, shown in Figure 3, indicate that the MINC model does a much better
job in matching the analytical solutions than the double-porosity model. Thisimpliesthat in this case
the MINC concept better captures these physical processes by considering capillary gradients at
matrix surface and inside matrix blocks. However, Figure 3 clearly shows that even the MINC
simulations cannot match the analytical results very well. The reason behind this discrepancy is that
the matrix surface is subject to dynamic boundary conditions, i.e., varying fracture saturation or
capillary forces, which occurs at the upstream boundary for initiaizing imbibition into the matrix.
Using a dual-continuum numerical approach [Wu and Pan, 2003], extremely refined spatia
discretization is required to model imbibing processes accurately under dynamic upstream boundary

conditions.

Although the analytical solutions presented above are obtained under very strict assumptions
(i.e., specially correlated relations between relative permeability and capillary functions for both
fractures and the matrix, as well as negligible gravity effects), the relative permeability and
capillary functions of Equations (1) and (2) are not only physically meaningful, but also anong
the most widely used relations [Honarpour et. al., 1986]. In particular, for numerical models
based on the dual-continuum method (including double-porosity, MINC, and multiple-porosity,
models [e.g., Kazemi, 1969; Pruess and Narasimhan, 1985; Wu and Pruess, 1988]), handling
fracture-matrix interactions under different flow conditions is a key issue and its verification
remains a challenge [Kazeme et al., 1992] because of the dearth of analytical solutions for
unsaturated flow through fracture-matrix media. Since the treatment of fracture-matrix
interaction in this analytica model is based rigorously on the dual-continuum concept, the
analytical solutions obtained can be useful in evaluating numerical model results from dual-

continuum models, as shown above.



5. Concluding Remarks

This paper shows that with specially formed capillary pressure and relative permeability functions, it
is possible to obtain analytical solutions for transient unsaturated flow in fractured-matrix systems
using the commonly used dual-continuum concept. With the analytical solutions provided in the
Laplace space, anaytical solutions in real space can be readily obtained using numerical inversion
techniques. The analytical-solution approach of this work can be readily extended to other boundary
conditions or different flow geometries, such as linear and multidimensional unsaturated flow

through fractured porous formation.

The analytical solutions, though limited by the assumptions for their applications, can be used to
obtain some insight into the physics of transient flow processes related to fracture-matrix
interactions. As demonstrated in this work, these analytical solutions are very useful in verifying
numerical models and their results for describing flow through unsaturated fractured rock,
especialy the flow through a fracture-matrix interface, which is otherwise very difficult to

evauate.
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Appendix A. Derivation of Governing Equations

Let us consider a situation of unsaturated flow in a horizontal and uniform fractured-matrix
formation. Fractures and rock matrixes are lumped into two different continua, with matrix being
identical cubic blocks, separated by uniform three-dimensiona fracture network, as in the
Warren and Root model. Furthermore, gravity effects are ignored and incompressible liquid

flows through a single well into aradial infinite system.

The governing equations of unsaturated radial flow through such afracture-matrix system can be
derived using a mass balance on the control volume and the dual-continuum concept [Lai et al.

1983]. In theradial system, acontrol volume at aradial distance of r from the well is defined as

V, ={(r+dr)® =) ~ 2nrhr (A-1)

The interface area A between rock matrix blocks and surrounding fractures within the control
volume V, iswritten as

A, = GBZ(V%SJ (A-2)

where B is fracture spacing or the dimension of matrix cubes.
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Mass balance for the incompressible fluid within the control volume requires that:

0 o(V. .S
O e U TR

(A-3)

where x is the distance from a nested cross-sectional surface within the matrix block (having an
equal distance to the matrix surface) to the center of the cube (i.e., a one-dimensional spherical
coordinate with its center within the matrix block); and g- and qx are Darcy’s flow rate dong r and x

directions, respectively, calculated as

—-_ Kekie OPue — Kek e 0P __ kFCkFCpF 0S¢
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Substituting (A-4) and (A-5), aswell as, radial-crossareaA, = 2nrhinto (A-3), yields
keCuCpr (0°S.  10S.) 6KuCaCu 0S| . oS
o | B =0 (A-6)
“’w(l_SFr) ar r ar B “’W(]'_SMr) 8X ‘Zzs/z at
If we define D as soil-water or moisture diffusivity (Wu and Pan, 2003):
_keke ORy K Gy Cp (A-7)

s ¢§ Hw aSW - d)g My (1_S§r)
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with a dimension of m?/s. We will thus derive the linearized flow governing equation of (5) for

flow through the fractures.

Appendix B. Derivation of Analytical Solutions

In terms of these dimensionless variables, the two governing equations become:

2
o sgD L 105 AlasMD| _A, 0Sep (-1
org Iy orp OXp |,_a/» oty
and
0°Syp 2 0Syp 0S
™Mb, = =A MD _
ox2  xp Ox,  ° ot (B-2)
where
12D r21-S
L= M¢M2W Mr (B_s)
Di¢eB” 1-S;
4r2
A, = B—VZV (B-4)
and
D
A, =—F -
° D, (B-5)
Theinitial and boundary conditionsin turn become:
SiD tp=0 =0 (B-6)

The boundary conditions of constant saturation at the well become
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The constant rate condition turnsinto

_asi - L _
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Far away from the well,
SFD(rD :OO’tD):O (B-9)

At the matrix surface, the continuity in pressure becomes

CpFSE]b(rD’tD):CpMSK/IlD(XD :ltD;rD)

or
— CP'V'

SMD(XD :ltD;rD)_C_SFD(rD’tD) (B-10)
pF

Note that the linear relationship for the continuity in pressure on the matrix surface requires the
exponential constants of capillary B. =1for both fracture and matrix media. At the matrix block

center,
aSMD(XD :O’tD;rD)
0Xp

=0 (B-11)

Applying the Laplace transformation to Equations (B-1) and (B-2) and incorporating the initial
condition (B-6) yield:
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In Equations (B-12) and (B-13), §5D Is the Laplace transformed normalized saturation, and p is the

Laplace variable. The transformed boundary conditions are:

Sol,_,=Sw/P (B-14)
-
Bl _ Uo /P (B-15)
orp oo,

So| =0 (B-16)

At the matrix surface,

Cove =
C SFD =A4SFD (B-17)
pF

Sio

Xp=1

with Az = Com/Cpr, and at the matrix block center,

a§MD(XD :O7tD;rD):O
0Xp

(B-18)

The solution for the mormalized matrix saturation of Equations (B-13), (B-17), and (B-18) in the
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Laplace spaceis given by Equation (17).

Using Equation (17) in Equation (B-1), the solution of the normaized fracture saturation with
congtant water saturation at the well of (B-1), (B-14), and (B-16) is given by equation (18). For the
case of constant injection rate at the well, the solution for Equations (B-1), (B-15), and (B-16) is

given by Equation (19).
Table 1. Parameters for the type curves of fracture liquid saturation
Parameter Matrix Fracture Unit
Matrix dimension B=1 m
Porosity om =0.30 o= 0.30
Permesbility kv =1.0x 10 | ke=1.0x 10% m’
Residual/initial saturation Sur=0.2 S+=0.01(Figsl& 2)

or 0.2 (Fig. 3)
Coefficient of relative permesability | Civ = 1.0 Cr=0.1(Figs.1& 2)

or 1.0(Fig.3)
Coefficient of capillary pressure | Cpy = 1.0x 10* | Cpr = 1.0x 10° Pa
Saturation at well S=1.0
Injection rate at well q=157x 10" m¥s
Fluid viscosity pw=10x 10° Paes
Fluid density p=1,000 kg/m®
Welbore radius rw=0.1 m
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Figure 1. Type curves of normalized liquid saturation in fractures versus dimensionless radia

distance at different dimensionless times, with S- = 1 at well

18



Normalized Fracture Saruration

10"
Dimensionless Radial Distance

Figure 2. Type curves of normalized liquid saturation in fractures versus dimensionless radia

distance at different dimensionless times, with constant injection dimensionless rate

b = 0.25at wel.

19



1@

0.9 :— Analytical (t=0.1 d)
0 [ e Analytical (t=10 d)
Q - e» e» e Numerical-MINC (t=0.1)
S 0.8k @ o am o @ Numerical-MINC (t=10 d)
—~ ——FH—— Double-Porosity (t=0.1 d)
% [~ O Double-Porosity (t=10 d)
=57k Q
w 0.7F
£
c 06
9 -
= B
S B
© B
0 04
o B
QO B
N O3
© -
€02k
o B
zZ B

0.1

- | L1 I | L1
907 - 10"
Radial Distance (m)
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numerical results with the double-porosity and MINC modeling approaches, with
with Sc=1 at well
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