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Abstract 
 
This paper presents analytical solutions for one-dimensional radial transient flow through horizontal, 

unsaturated fractured rock formation. In these solutions, unsaturated flow through fractured media is 

described by a linearized Richards’ equation, while fracture-matrix interaction is handled using the 

dual-continuum concept. Although linearizing Richards’ equation requires a specially correlated 

relationship between relative permeability and capillary pressure functions for both fractures and 

matrix, these specially formed relative permeability and capillary pressure functions are still 

physically meaningful. These analytical solutions can thus be used to describe the transient behavior 

of unsaturated flow in fractured media under the described model conditions. They can also be 

useful in verifying numerical simulation results, which, as demonstrated in this paper, are otherwise 

difficult to validate. 
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1. Introduction 
 
 

In the past few decades, flow through unsaturated fractured rock, a special case of multiphase 

flow, has received a lot of attention because of subsurface environmental considerations. 

Quantitative analysis of flow in unsaturated fractured rock is often based on Richards’ equation. 

Because of its nonlinear nature, Richards’ equation solutions for general flow through fractured 

media may be obtained only with a numerical approach. On the other hand, analytical solutions, 

if available, provide more direct insight into the physics of unsaturated flow phenomena than 

numerical or laboratory studies, and they are often needed to examine and verify numerical 

model schemes or results.  

 

For unsaturated flow through homogeneous single-porosity soils, many analytical solutions, both 

exact and approximate, have been developed based on different levels of Richards’ equation 

linearization [e.g., Pullan, 1990; Warrick and Parkin, 1995; Basha, 1999; Philip, 1969; 

Zimmerman and Bodvarsson, 1995]. Despite the advances made so far, however, precise 

analytical solutions to Richards’ equation remain intractable under general flow conditions, 

because of its known nonlinearity. In addition, it becomes more difficult to obtain an analytical 

solution for flow through unsaturated fractured porous media because of the additional 

complexity or inherent heterogeneity introduced by fracture-matrix interaction.  

 

Recently, we presented a set of new analytical solutions for unsaturated flow within a single matrix 

block with fracture-matrix interaction [Wu and Pan, 2003]. These analytical solutions required a 

specially correlated relationship between relative permeability and capillary pressure functions. The 

present work extends our analytical solution approach to the entire fracture-matrix flow system, 

using a general dual-continuum approach.  In this work, we show that it is possible to obtain 

analytical solutions if the specially correlated relative permeability and capillary pressure functions 

hold true for both fracture and matrix systems. In addition, we demonstrate that the new analytical 

solutions are very useful for checking numerical model results for unsaturated flow through 
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fractured porous media. 

 

2. Mathematical Formulation  

 

The problems to be solved are cases of unsaturated radial flow in a horizontal and uniform 

fracture-matrix formation corresponding to a fully penetrating injection well, specified with 

either constant pressure or constant injection rate, respectively. The formation consists of 

identical cubic matrix blocks separated by a uniform three-dimensional fracture network, as in 

the Warren and Root model [Warren and Root, 1963], which can be approximated as two 

different continua. Furthermore, we assume that the two sets of capillary pressure and relative 

permeability functions for fracture and matrix, respectively, are in the form: 

 

 ( ) ξα

ξξξξ = *
kr SC)S(k                 (1) 

 

and 

 

 ( ) ξβ−

ξξξξξξ =−≡ *
pwgc SCPP)S(P               (2) 

 

where subscript ξ  is an index for fracture (ξ = F) or matrix (ξ = M); ξgP is constant air (or gas) 

pressure in fractures or the matrix; ξwP is liquid water pressure in fractures or the matrix, 

respectively; ξkC  and ξpC  are coefficients (Pa), ξα and ξβ   are exponential constants of relative 

permeability and capillary pressure functions, respectively, with fracture and matrix systems; and *Sξ  

is the effective fracture or matrix water saturation, 
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with rSξ  being the residual water saturation in fracture and matrix systems, respectively.  

 

If the following conditions, 

 
 1+β=α ξξ                         (4) 

 

are satisfied for both fractures and matrix, Richards’ equation can be readily linearized for flow 

through both fractures or the matrix [Wu and Pan, 2003]. The linearized governing equation for 

unsaturated radial flow (ignoring gravity effect and compressibility of water and rock) through 

the fractures can be derived using a mass balance on a control volume and the dual-continuum 

concept (see Appendix A), as follows:  
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(If not described, the symbols for variables and parameters in Equation (5) or in the following 

equations are defined in the appendixes.) The third term on the left-hand side of Equation (5) 

represents flow exchange terms on the local matrix interface between fracture and matrix systems, 

describing the continuity in mass flux.  

 

For flow inside the matrix, we use a 1-D spherical-flow approximation [Wu and Pan, 2003], and the 

unsaturated flow inside a cubic matrix block is then governed by 
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The initial conditions within fractures and matrix systems are uniform: 

 



  

 

 

5

 r0t
SS ξ=ξ =                      (7) 

Note here that for simplicity initial saturations in fractures and the matrix are set to their residual 

values, respectively. 

 

The first inner boundary condition is that the wellbore be specified with constant saturation: 

 

 ( ) 0wF St,rrS ==                     (8) 

 

and the second is that the injection rate be constatnt: 
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Far away from the well, the boundary condition in fractures remains at its initial condition  

 

 ( ) FrF St,rS =∞=                   (10) 

 

At the matrix surface, the continuity in pressure or capillary pressure is enforced: 

  

 ( ) ( )r;t,2/BxPt,rP cMcF ==                 (11) 

 

while at the matrix block center, a zero-gradient condition is maintained for symmetry: 
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3. Analytical Solutions 
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In the following dimensionless variables, the dimensionless distances are defined as 

 
w

D r
rr =                        (13) 

 B
x2x D =                       (14) 

 

and the dimensionless time is 
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The normalized (or scaled) water saturation is 
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In terms of these dimensionless variables, the solution for the normalized matrix saturation in the 

Laplace space is given by (Appendix B): 
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where pA3=σ  and I1/2 is the modified Bessel function of the first kind. 

 

FDS  is the solution of the normalized fracture saturation in the Laplace space, defined differently for 

the two well boundary conditions (Appendix B). The solution FDS  with constant water saturation at 

the wellbore,in Equation (8), is given by: 
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( )
( )20

D20D0
FD xK
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SS =              (18) 

where [ ] pA1cothAAx 2412 +−σσ= . For the case of constant flow rate as defined in Equation (9), 

the solution FDS is 
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qS =                          (19) 

 

In the solutions above, constants A1, A2, A3, and A4 are defined in Appendix B; K0 and K1 is the 

modified Bessel function of the second kind for zero and first order, respectively. 

 

Equations (17), (18), and (19) constitute the solutions in the Laplace space for normalized fracture 

and matrix saturations under two types of inner-well-boundary conditions. To apply these solutions, 

we use the Stehfest [1970] algorithm to invert these solutions from the Laplace space to the real 

space.  

 

4. Application 

 

First, the analytical solutions of Equations (18) and (19) were used to calculate type curves that  deal 

with transient flow through a fully penetrating well into a uniform, horizontal fractured formation, 

which is 10 m thick and radially infinite. The fractured formation consists of uniform, identical 1 × 1 

× 1 m cubes of matrix blocks, surrounding by a uniform, 3-D fracture network, identical to the 

Warren and Root conceptual model. The basic fracture-matrix and fluid parameters used for the 

example are listed in Table 1. A numerical inversion algorithm [Stehfest, 1970] was used in 

calculating the analytical solutions. During the numerical Laplace inversion, the Stehfest’s method 

was found to work well, and the inverted solutions were verified by comparison with numerical 

simulations and asymptotic solutions through many numerical experiments.  
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The results are depicted as normalized liquid saturation in fractures versus the dimensionless radial 

distance from the well at different dimensionless times, in Figure 1 (a constant saturation at the 

wellbore) and Figure 2 (a constant injection rate at well), respectively. These two type curves can be 

used for examining numerical model results for the same fracture-matrix flow system. 

 

The analytical solutions were then used to assess the performance of the double-porosity and 

MINC approaches in simulating fracture-matrix interaction in unsaturated fracture rocks. Note 

that the double-porosity model represents the matrix by one single gridblock, whereas the MINC 

concept subdivides a matrix block into many single or multidimensional or nested cells [Pruess 

and Narasimhan, 1985]. Numerical simulations are performed using a numerical reservoir 

simulator [Wu et al., 1996]. Note that the governing equation solved in numerical modeling is 

still the original Richards’ equation, instead of the linearized forms of Equations (5) and (6). The 

same relative permeability and capillary functions as those of Equations (1) and (2) in the 

analytical solutions are input to the numerical model. 

   

In the second application, the radial single-well flow system used is basically the same as that in the 

first example. Rock and fluid properties are also given in Table 1. In the numerical model, however, 

the uniform, horizontal, radially infinite formation is represented by a finite radial system with an 

outer boundary radius of 1,000 m. It is large enough such that the wetting front does not reach the 

boundary at the end of simulation. Two numerical grids, a double-porosity mesh and a MINC one, 

are generated for the radial symmetric formation. The double-porosity grid represents the matrix 

system by one mesh locally [Warren and Root, 1963], while the MINC grid subgrids each matrix 

block with 7 nested cells, for better numerical accuracy in estimating fracture-matrix flow [Pruess 

and Narasimhan, 1985].  

 

Figure 3 shows the saturation distribution along the fractures in the radial direction at time of 0.1 and 

10 days, respectively, simulated by the analytical, double-porosity, and MINC modeling results. 

Note that the physical process simulated in this example is extremely nonlinear and dynamic. The 

initial liquid saturations are at residual values for both fracture and matrix systems. At the beginning, 
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the boundary saturation for fractures at the wellbore jumps to one (thus, flow rate at the well 

becomes infinitely large). Once imbibed into the fractures, the liquid will be competed by two forces 

in two directions, one for continuous flow along fractures away from the well, and the other sucked 

into dry matrix blocks.  

 

The numerical model results, shown in Figure 3, indicate that the MINC model does a much better 

job in matching the analytical solutions than the double-porosity model. This implies that in this case 

the MINC concept better captures these physical processes by considering capillary gradients at 

matrix surface and inside matrix blocks. However, Figure 3 clearly shows that even the MINC 

simulations cannot match the analytical results very well. The reason behind this discrepancy is that 

the matrix surface is subject to dynamic boundary conditions, i.e., varying fracture saturation or 

capillary forces, which occurs at the upstream boundary for initializing imbibition into the matrix. 

Using a dual-continuum numerical approach [Wu and Pan, 2003], extremely refined spatial 

discretization is required to model imbibing processes accurately under dynamic upstream boundary 

conditions. 

 

Although the analytical solutions presented above are obtained under very strict assumptions 

(i.e., specially correlated relations between relative permeability and capillary functions for both 

fractures and the matrix, as well as negligible gravity effects), the relative permeability and 

capillary functions of Equations (1) and (2) are not only physically meaningful, but also among 

the most widely used relations [Honarpour et. al., 1986].  In particular, for numerical models 

based on the dual-continuum method (including double-porosity, MINC, and multiple-porosity, 

models [e.g., Kazemi, 1969; Pruess and Narasimhan, 1985; Wu and Pruess, 1988]), handling 

fracture-matrix interactions under different flow conditions is a key issue and its verification 

remains a challenge  [Kazeme et al., 1992] because of the dearth of analytical solutions for 

unsaturated flow through fracture-matrix media. Since the treatment of fracture-matrix 

interaction in this analytical model is based rigorously on the dual-continuum concept, the 

analytical solutions obtained can be useful in evaluating numerical model results from dual-

continuum models, as shown above. 
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5. Concluding Remarks 

 

This paper shows that with specially formed capillary pressure and relative permeability functions, it 

is possible to obtain analytical solutions for transient unsaturated flow in fractured-matrix systems 

using the commonly used dual-continuum concept. With the analytical solutions provided in the 

Laplace space, analytical solutions in real space can be readily obtained using numerical inversion 

techniques. The analytical-solution approach of this work can be readily extended to other boundary 

conditions or different flow geometries, such as linear and multidimensional unsaturated flow 

through fractured porous formation.  

 

The analytical solutions, though limited by the assumptions for their applications, can be used to 

obtain some insight into the physics of transient flow processes related to fracture-matrix 

interactions. As demonstrated in this work, these analytical solutions are very useful in verifying 

numerical models and their results for describing flow through unsaturated fractured rock, 

especially the flow through a fracture-matrix interface, which is otherwise very difficult to 

evaluate.  
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Appendix A. Derivation of Governing Equations 

 

Let us consider a situation of unsaturated flow in a horizontal and uniform fractured-matrix 

formation. Fractures and rock matrixes are lumped into two different continua, with matrix being 

identical cubic blocks, separated by uniform three-dimensional fracture network, as in the 

Warren and Root model. Furthermore, gravity effects are ignored and incompressible liquid 

flows through a single well into a radial infinite system.     

 

The governing equations of unsaturated radial flow through such a fracture-matrix system can be 

derived using a mass balance on the control volume and the dual-continuum concept [Lai et al. 

1983]. In the radial system, a control volume at a radial distance of r from the well is defined as 

 

 ( )( ) rhdr2hrdrrV 22
n π≈−+π=         (A-1) 

 
The interface area Ac between rock matrix blocks and surrounding fractures within the control 
volume Vn is written as 
 






= 3

n2
c B

VB6A          (A-2) 

 
where B is fracture spacing or the dimension of matrix cubes. 
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Mass balance for the incompressible fluid within the control volume requires that: 
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where x is the distance from a nested cross-sectional surface within the matrix block (having an 

equal distance to the matrix surface) to the center of the cube (i.e., a one-dimensional spherical 

coordinate with its center within the matrix block); and qr and qx are Darcy’s flow rate along r and x 

directions, respectively, calculated as 
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Substituting (A-4) and (A-5), as well as, radial-cross area rh2Ar π= into (A-3), yields 
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If we define Dξ as soil-water or moisture diffusivity (Wu and Pan, 2003):  
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with a dimension of m2/s. We will thus derive the linearized flow governing equation of (5) for 

flow through the fractures. 

 

 

Appendix B. Derivation of Analytical Solutions 

 

In terms of these dimensionless variables, the two governing equations become:  
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and 
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where 
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The initial and boundary conditions in turn become: 
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The boundary conditions of constant saturation at the well become 
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The constant rate condition turns into 
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Far away from the well, 

 

 ( ) 0t,rS DDFD =∞=              (B-9) 

 

At the matrix surface, the continuity in pressure becomes 
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Note that the linear relationship for the continuity in pressure on the matrix surface requires the 

exponential constants of capillary 1=βξ for both fracture and matrix media. At the matrix block 

center,  
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Applying the Laplace transformation to Equations (B-1) and (B-2) and incorporating the initial 

condition (B-6) yield:  
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In Equations (B-12) and (B-13), DSξ is the Laplace transformed normalized saturation, and p is the 

Laplace variable. The transformed boundary conditions are: 

 

 p/SS D01rFD
D

=
=

                  (B-14) 

 

 p/q
r

S
D

1rD

FD

wD

=
∂
∂

−
=

                (B-15) 

 

 0S
Dr

FD =
∞=

                   (B-16) 

 

At the matrix surface,  
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with A4 = CpM/CpF , and at the matrix block center,  
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The solution for the mormalized matrix saturation of Equations (B-13), (B-17), and (B-18) in the 
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Laplace space is given by Equation (17). 

 

Using Equation (17) in Equation (B-1), the solution of the normalized fracture saturation with 

constant water saturation at the well of (B-1), (B-14), and (B-16) is given by equation (18). For the 

case of constant injection rate at the well, the solution for Equations (B-1), (B-15), and (B-16) is 

given by Equation (19). 

 

 

Table 1. Parameters for the type curves of fracture liquid saturation 

Parameter Matrix Fracture Unit 

Matrix dimension B = 1  m 

Porosity φM = 0.30 φF= 0.30  

Permeability kM = 1.0 × 10-15 kF = 1.0 × 10-12 m2 

Residual/initial saturation SMr = 0.2 SFr = 0.01 (Figs.1 & 2) 

or 0.2 (Fig. 3) 

 

Coefficient of relative permeability  CkM = 1.0 CkF = 0.1 (Figs. 1 & 2) 

or 1.0 (Fig.3) 

 

Coefficient of capillary pressure CpM = 1.0× 104 CpF = 1.0 × 103 Pa 

Saturation at well S0= 1.0  

Injection rate at well q = 1.57 × 10-4 m3/s 

Fluid viscosity µw = 1.0 × 10-3  Pa•s 

Fluid density ρ = 1,000 kg/m3 

Wellbore radius rw = 0.1 m 
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Figure 1. Type curves of normalized liquid saturation in fractures versus dimensionless radial 

distance at different dimensionless times, with SF = 1 at well 
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Figure 2. Type curves of normalized liquid saturation in fractures versus dimensionless radial 

distance at different dimensionless times, with constant injection dimensionless rate 

qD = 0.25 at wel. 
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Figure 3. Comparison of fracture liquid saturations simulated using the analytical solution and 

numerical results with the double-porosity and MINC modeling approaches, with 

with SF = 1 at well 

 

 


