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NonIinear Interlayer lhnneling in a Double Electron Layer Structure

s.K. Lyo
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We present a theory for nonequilibrium two-dimensional to two-dimensional tunneling

between two weakly tunnel-coupled electron layers when the chemical potentials of the

two electron gases are arbitrarily biased. We first present an intuitive but rigorous sec-

ond-order perturbation theory based on a transition-rate approach. Contributions from

electron-impurity, electron-electron, and electron-phonon interactions are considered. The

validity of this result is established using a more general field-theoretic formalism by

expressing the tunneling current as a current-current correlation function which can be

evaluated employing a standard temperature-ordered Green’s function technique and a

Feynman-graph expansion. The formalism is exact to the second order in the tunneling

integral and to all orders in the interactions and is useful for studying higher-order interac-

tion effect. The relevance of the numerical results to recent experimental data from a

GaAi4AlXGa1.XAs double-electron-layer tunneling transistor (DEL~) at 77 K are dis-

cussed. These data show a large peak-to-valley ratio of the I-V curve. The room tempera-

ture numerical results for the I-V curve show a reasonably large peak-to-valley ratio

indicating the feasibdity of room temperature DELXT’S.
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L INTRODUCTION

Currently, there is increasing interest in the tunneling phenomenon between two

quasi-two-dimensional (2D) layers of electron gases separated by a wide barrier. [1 - 7]

This phenomenon is not only interesting academically but also offers potentially valuable

application to 2D-2D tunneling transistors with sharp current-voltage characteristics

owing to the restricted phase space available for tunneling compared to the conventional

3D-2D tunneling transistors, as demonstrated recently by Simmons et al.[8] This paper

presents a theory for the double-quantum-well (DQW) 2D-2D tunneliig structure pio-

neered by Eisenstein, Pfeiffer and West [2]. In this structure, the two QW’S have indepen-

dent ohmic contacts. When a bias potential V is applied between the source and the drain

contacts, the electrons drift into the top QW (QW 1), tunnel through the wide center barrier

into the bottom QW (QW2) and flow out of QW2. The two QW’S are not in equilibrium,

with the difference of their chemical potentials P1 and ~ given by PI - ~ = eV (2 O). h

this paper, we obtain the tunneling current as a function of eV assuming that the in-plane

conductance of the QW’S are vary large, causing a significant potential drop only over the

barrier. The effect of in-plane resistance on the source-drain 1-Vcurve can be studied using

the 1-Vrelationship obtained here and a differential transmission line model. [6]

Of particular interest of this paper is to investigate the maximum possible tempera-

ture-dependent peak-to-valley ratio in a given structure in the ideal intrinsic limit, namely
,.,’ -.,,.,., .,
:.
.’ ...- .; .,’” “.:” .’+

u-the hrnit where the major effect from the static scattering centers are eliminated through
,,

modulation doping. This requires a careful microscopic treatment of the level damping

arising from electron-electron andelectron-phonon interactions.

The present paper is structured as follows. We formulate the tunneling cumnt in terms
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of an intuitive second-order transition-rate theory using a T-matrix approach in Section II.

Contributions from electron-impurity (or -surface roughness), electron-electron, and elec-

tron-phonon interactions are considered. The validity of the results in Sec. II is examined

in Sec. III, where we establish a formal theory of the nonequilibrium 2D-2D tunneling cur-

rent in terms of the current-current correlation function. This is then evaluated employing

a standard temperature-ordered Green’s function technique and a graph expansion. The

formalkm is exact to the second order in the tunneling integral J and to all orders in the

interactions and is similar to the linear response theory. The formalism is valid in the limit

where J is small (i.e., <<damping o, namely when the tunneling time is much longer than

the scattering time. This condition is well satisfied in typical tunneling transistors, where

the center barrier is wide allowing the charges in the two QW’S to be controlled indepen-

dently. Numerical results are given in Sec. IV and compared with recent experimental data

from GaAs/AIXGal.XAs double-electron-layer tunneling transistor (DELTT) available at

77 K. The I-V curve is also evaluated at 300 Kin order to assess the feasibility of room

temperature DELZT. The paper is concluded in Sec. V with a brief discussion.

II. TRANSITION RATE FORMALISM

The Hamiltonian is given, in the absence of tunneling, by

H = Z X(&jk – ~jb~kajk+~~~.q(b?qb.q+11 2) + Him + H..ph+ He-.,
j=l,2 k Sq

(1)

where ~k is the electron energy for the wave vector k in theJ.h QW, ajkt (ajk) is the Fer-

mion creation (destruction) operator, fia~q is the phonon energy of modes and wave vector

q and bqt (bw) is the boson creation (destruction) operator. The rest of the terms in Eq. (1)

denote electron interactions with the impurities, Lo phonons, acoustic phonons, and other
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electrons. The expressions forthese terms will be given later. The spin sum is suppressed.

The total Harniltonian is the sum of H and the tunneling Hamiltonian Htun:

(2)

where J is the tunneling integral. The operator f (f*) transfers an electron from QW2

(QW1) to QW1 (QW2). While we concentrate on the ground sublevels of each QW, the

result can & generalized to include tunneling between all the sublevels if the index k

includes the sublevel index implicitly. In this case, J depends on the sublevel indices.

In general, tunneling cannot occur directly from an initial state {lb in QW1 to a final

state 12k> in QW2, because momentum and energy conservation cannot be satisfied simul-

taneously when the energy dispersions Elk and ~zkare not aligned (i.e., Elk # s2k). Here ~b

is the noninteracting eigenstate of the first term of H. We therefore need to construct sec-

ond-order perturbation processes through which momentum and energy can be dissipated.

We use a second-order perturbation theory which treats the resonance in the intermediate

energy denominators rigorously. [9] An alternate more general and formal diagrammatic

approach useful for a systematic study of higher-order effects is presented in Sec. III.

11.1 Tunneling through Electron-Impurity Scattering

Figure 1 shows second-order perturbation processes which allow an electron to tunnel

from an initial state Ilb to a final state 12k>. In l(a), the electron is first scattered (indi-

cated by the black dot) into an intermediate state Ilk’> and then tunnels into 12k>. In l(b),

the electron first undergoes virtual tunneling into an intermediate state 12b and then is

scattered into the final state 12k’>. In this elastic transition, momentum is dissipated

through impurity collisions in QW 1 (Fig. l(a)) as well as in QW2 (Fig. l(b)). The T-matrix
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for these processes is given by [9]

where fiim is the sum of the screened impurity potentials. In Eq. (3), intermediate-state

damping ~&) is included for resonant transitions. The argument z of the damping ~q(z)

for the T-matrix in Eq. (3) as well as for the T-matrices for the electron-phonon and elec-”

tron-electron processes to be introduced later is determined from the fact that the denomi-

nator in the first and second term of E@.(3) is the denominator of the Green’s function of

the intermediate states ljq> = Ilk’> and ljq> =“12k>, respectively, namely GjJz-iO)= [z -

~q- i~jq(z)]- 1, ignoring the energy shift. Hence, z = Elk fOr both terms of ~. (3). Note that,

in the present nonequilibrium tunneling problem, the z and k dependence of ~jk(z) are

important and make the problem more complicated than in the linear response case whe~

only the properties on the Fermi surface matter.

The transition rate from QW 1 to QW2 is then given by

(4)

Here, a factor of 2 is included for the spin degeneracy and ~im denotes impurity averag-

ing. The back-transition rate W ‘m2~1 can be found in a similar way. Subtracting the

back-transition rate from ~. (4), assuming an in-plane inVerSiOn symmetry (i.e., Ej.k= Ejk),

and multiplying the rate by the electron charge e, we find the tunneling current

i~ 4=J2
1 ‘F(v)~fik(l-f2k.)<

‘+2’’.’(’:=2’)(’)

<ltilfii~llk> <2k Ifii~J2k>
=

h kk’ A – irlk

where ~(V) = 1- exp(-/3eV),$k is the Fermi functionfik =[eXp(/3(&?jk - ~j)) + 1]-1, ~ = kB~
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T is the temperature, A = &2~- &lk= ~ - ev and ~~~- ~~/&*k) with the understanding 1*

-2, and 2* = LA. is the difference of the ground sublevels of the two QW’S in the

absence of the bias. For zero bias V= O, we have F(V) = O, yielding ~m = O due to detailed

balance. It turns out that the energy denominators for the intermediate states in Eq. (5)

have the same expression for tunneling through electron-phonon interaction (EPI) and

electron-electron interaction as will be shown later.

11.2 llmneling through Electron-Phonon Scattering

Phonon-assisted tunneling is obtained from the same processes illustrated in Fig. 1

except that the black dots now indicate phonon absorption and emission. The initial state

Ilk, n~q>consists of an electron in IUO and phonons in ln~q>. The final state is 12k; n~q t

1> depending on whether a phonon is emitted (+) or absorbed (-). In 1(a), the electron is

first scattered into an intermediate state IM’, n~q * 1> through virtual (or real) phonon

emission or absorption and then tunnels into 12k~. In 1(b), the electron first undergoes vir-

tual tunneling into an intermediate state 12b and then is scattered into the final state 12k\

n~q f 1> emitting or absorbing a phonon of mode sq. In this inelastic transition, energy

and momentum are transferred to the phonon bath. The T-matrix equals

(6)

where n~q= [exp(@ow) - 1]-1 is the Boson function.The arguments of the damping in Eq.

(6) are determined according to the method discussed following Eq. (3). In Eq. (6),

ie.pht is the phonon emission (+) and absorption (-) part of the screened EPI: fi~.@ =

‘ie-pl+‘e-pi ‘d
* 1/2

+ 1 I~$_Ph Ijk,nsq >= Vsq%q< jk’ ,nsq _ (7)●j (qll)–lAj (Qz)%,~t~l “
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+ 1/2, g = (qll, qz), ~j{qll)is the dielectric screening constant,Here n~qt= n~q+ 1/2 –

Aj(Q = Joj(z)2wq(zMz (8)

is the momentum conservation factor, ~(z) is the confinement wave function and V~qis the

strength of the EPI. We consider only the bulk phonon mode ~~q(z) = e~zz. For the optical

phonons, we consider only the LO phonon interaction and suppress the indexs from

A@z) = Aj(qz) for simplicity.

The phonon-assisted transition rate is then given by

W1$2=+Y;*fik(l - f2k ) I mxzr 04)(2w52k’ * fi%q – %)%’*q,, -

The expression in Eq. (6) is simplified using the energy conservation in Eq. (9) to

~=J2’~n’?w%A2:$&’’)7$3 (w)

The back current can be found in a similar way:

ak,k’iqi, “

Note that the order for i- and -is reversed in the T-matrixinEqs.(11) and (12).

The phonon-assisted current is obtained by subtractingEq.(11) from Eq. (9) and

exploiting the nonequilibrium version of detailed balance ~lk(’ ‘f2k’) %qk ‘f2k(l -

(9)

(lo)

(11)

(12)
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(13)

The cross terms in Eq. (13) yields the interference effect. This term is negligible for the

phonon modes localized in one of the QW’S. Short wavelength phonons (q# >> 1) do not

contribute to this term even for the extended bulk phonons. This point is easily seen for

identical confinement wave functions, for example, from A1(qz)*A2(@ = lA1(qz)12e@~ (d

is the well-to-well separation). The summation on qz cancels out for q.# >>1. Also, the

factors Aj(qZ) are small for q~ >>1 where b (> d) is the QW width. The cross term can

introduce a destructive interference for long wavelength phonons (q# << 1) away from the

resonance, namely for {Al >> ~~kfor identical QW’S (i.e., ●l(qll) = c2(qll)). In this case, the

two terms in Eq. (13) cancel out, yielding a negligible off-resonance tunneling current.

This effect arises from the fact that long wavelength phonons modulate the energies of the

two QW’S in phase and do not contribute to inelastic tunneling.

11.3 llmneling through Electron-Electron Scattering

The electrons can relax their energy and momentum by colliding with other electrons

before or after tunneling as illustrated by two-step processes in Fig. 2. The initial state Ilk,

jkl> = IIJoJkl> represents a two-particle state with an electron in Ilb and the other in

ljkl> in thejth QW. The final state is 12k’jjkl ‘>. In 2(a), the electron in Ilb is first scattered

into an intermediate state IM’> while kicking the other electron into ljkl ‘>. It then tunnels

into 12k’>.The exchange effect will be discussed later. The two steps are reversed in l(b).

In this inelastic transition, energy and momentum are transferred through an Auger-like
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process.The T-matrix for these processes is given by

P
J <M’ ,jkl’IH= IIk,jkl> + < 2t ,jkl’l fiw 12k,jk1 > J

lk,]kl+2k’,jkl’ =
‘j ‘EIK’ _ ZTIV(~j ) &lK‘&zk ‘lTzk(&lK) ‘

(14)

where the quantity Sj in the first denominator is given by Sj = ~~k+ ~kl - &~kl8= ~zk~with the

last equality arising from the energy conservation between the final and initial state (see

Eq. (15). The first and second denominator in Eq

i~2k, respectively, as in the phonon-assisted case,

The tunneling rate from QW 1 to QW2 equals

(14) then simplifies to A - ir’k, and -A -

where the factor

< ik’, jkl’ Ifia

8 includes spin sums. ‘he matrix elements in Eq. (14) are given by

~m2
ik, jkl >= %(~)%+kl,k’ +kl (16a)‘ = u@c$k+kl ,k’+kl’‘

A ~qeti(q)

where

~j(q) = \j@i(z)2@j(z’)2e–qtz–z’l&dz’ , (16b)

q = k’ - Id, ~ti is the dielectric screening constant, ~ is the bulk dielectric constant and A is

the area of the QW’S.

The back cument can be found similarly by reversing the direction of the arrows in Fig.

2, yielding
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where

T27 ,jk~’+lk,jk~ = J(
< lk, jkl Ifi~ IM’,jkl’ > ~ < 2k, jkl IH= 12k’ ,jkl’ >

)-
A – iTIK –A – iF2k

(18)

The T-matrices in Eqs. (14) and (18) are identical in view of Eq. (16) and the discussion

following Eq. (14). The energy conservation condition in Eq. (17) yields~zk~~l~ (1 -~lk)(l

The tunneling current is then the difference between the forward current and the back

currenc

(19)

In the above treatmen; we have assumed that the two-particle wave function is a product

of the single-particle wave functions: Iik,jkl> = lib Ijkl>. To account for the exchange

effect, we symmetrize and antisymmetrize Iik,jkl> for the spin-singlet and spin-triplet

states, respectively. This procedure is straightforward. We write down the result only for

the most practical case where the Coulomb interaction as well as the wave function over-

lap between the two QW’S is negligible. The net result is to replace the T-matrix in Eq.

(19) by

Ull(k’ –k)2 -; Ull(k’ –k)U1l(kl’ –k)

~<jk1d2k’,jkll 2 = ~2(
6.

A2 + r~kr2
J,l

U22(k’–k)2 – :U22(k’ –k)U22(k1’ –k)
+ q,2)%+k1,k’+kl’“

A2 + Tzk2

The second terms in the numerators of Eq. (20) represent the exchange correction.

(20)
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11.4 Damping of the Electronic States

The tunneiing current studied above is a skewed Lorentzian in V with the width deter-

mined by the damping of the intermediate states. Note that the current is not merely a sum

of the Lorentzian functions because the phase space for tunneling increases with the bias

potential V until the Fermi level of QW2 aligns with the ground sublevel of QW1. Contri-

butions to the damping of the.intermediate states are given by [10 - 12]

and

(21a)

(21b)

(21C)

A systematic formal justification of the expressions for the tunneling current in this section

as well as a formalism for higher-order corrections is given in the next section.

HI. FIELD THEORETIC FORMALISM

In this section, we give a general formalism for the tunneling current which includes the

interactions to all orders and allows as ystematic evaluation of higher-order effects for the

current. We then evaluate the basic lowest order effect and rederive the results of Sec. II.

HI. 1 Current-Cument Correlation Function

The tunneIing current is given by the golden rule to the second order in Jin terms of the



Page 12

tunneling rates W 1+2 and W2+ 1 and equals

where En, h> and Z are the eigenvalues, eigenstates and the distribution function of H, JI =

PI - P2 = eV The spin degeneracy factor 2 is included in Eq. (22). The expression in Eq.

(22) can be recast into a standard current-current correlation function F(o,)

P
I = ~Im F(a)r + Q + iO): F{@r) = Jea’u < euHie-tiit > du,

o
(23)

where Im means the imaginary part of the quantity that follows and the angular brackets

denote the thermodynamic average. The energy parameter ti~2m-i@l is on the imaginary

axis and is to be analytically continued to slightly above the real axis: Q + iO and r is an

integer.

111.2 Tunneling Cum-nt

In this section, we evaluate the ieading terms in Eq. (21) using a standard diagrammatic

perturbation theory. [10, 11] The most important contribution comes from the basic bubble

diagram shown in Fig. 3(a):

where ~e = (2/+I)m.@l, /is an integer,

(24)

(25)

is the dressed Fermion propagator shown by the solid lines and t$jk(~<) is the self-energy
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part. Carrying out the /?-summation in Eq. (24) and inserting the result in Eq. (23), we find

where

rjk(d
Pjk(z) = A~(Z –Ejk- ~jk(z))2 + rjk(z)2 ‘

(26)

(27)

and Mjk(z), ~~@) are the red and imaginary part of $k(z). me dampingpart ~~~(z)is asum

of the three contributions in @. (21). The real part M~k(z)renormalizes the single particle

energy and will not be considered in this paper. The Fermi functions in Eq. (26) are given

‘1 Expressions similar to that in Eq. (26) have been obtainedby~(z) = [exp(fiz-~j)) + 11 .

earlier by employing Keldysh’s nonequilibrium Green’s function method [13] in

metal-insulator-metal single-banier tunneling structures. [14]

The compact result in Eq. (26) is more formal than the perturbation results obtained in

Sec. II, ahhough thelatter contain one-rung corrections that are absent from Eq. (26) as

will be shown below. Unfortunately, the expression in Eq. (26) cannot be evaluated within

a reasonable computing time for realistic ~j~(z) unless a quasi-particle approximation is

made to the initial and final states, which yielded the main part of the results in Sec. II. In

the following, we study the contributions to the current in Eq. (26) from the impurity, elec-

tron-phonon and electron-electron scattering, examine the validity of the results in Sec. II

and proceed to investigate the higher-order effect.

The contribution to tunneling from impurity scattering is obtained by expanding

pI~(z)P2~(z)= [~z~im(z)lGzJz-012p2k(z)+ ~z/m(z)lGz~(z-iO)i2p~k(z)] m-l to the first order

in ~kim in Eq. (26). Using the expressions for ~zkim(z), I“2kim(z)in Eq. (21a) and the iden-
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tityjl(z) -f2(z) =fl(z)(l -f2(z))W) and approximating p~~(z)= a(~k - z), the impurity part

of Eq. (26) yields

~*=4m? 2
iul ~ J F(V) ~$jk(l – f2t )[1< UC’IHh Ilk> GIV(ezw– iO) 12

kk’

+lc2k’l~ti 12k>G2k(~1k–iO)12],

(28)

which is identical to the two terms ~ l<jk’lH__mljkA2 in Eq. (5).

The one-impurity-rung diagram shown in Fig. 3(b) yields:

~ _8m 2-
m – ~ J j [i(d – f2(z)]~%,~ % (z)plk(z)[p2k(z)R2v (z)”+ /32/7(Z)R2k(Z)]dZ,(29)

where Rjk(z) is the real part of Gjk(z) and Ikk~~ <<lkW~m Ilk><2kW~m 12k’>>im To pro-

ceed further, we approximate:

Re{Gl~(z + io)G2k(z * io)} << Re{G1k (z T iO)G2k(z t io) }. (30)

This relationship means that, when the quantities in Eq. (30) are multiplied by a slowly

varying function of&k and summed on ~k, the left hand side (LHS) gives a negligible con-

tribution compared to the right hand side (RHS). The basic reason is that any contribution,

to be significant, should arise from the region near the poles &lk= z ~i~lk, ~zk = z 3 il_’..~

(assuming a constant ~k). For the quantity on the LHS, the integration contour can be

closed on the complex plane to enclose zero poles, yielding a vanishing contribution since

the poles are on the same side. This is not possible for the RHS, which has a sharp Lorent-

zian resonance when the two QW sublevels align. An alternate perturbative argument was
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given earlier. [10] With this approximation, Eq. (29) yields

~B _87re 2-
–TJ j [fi(z)-f2(z)lX<< l~lfiti llk><2klfiti Izk’>>im

(31)
im

kk’

X Plk(z)%k’ (z) Re{GIE (z – i@ G2k(z + io) }dz.

This result reduces to the cross te~s in Eq. (5) in the limit p~~(z) = ~(~~k- z) and fikf(z) =

i3(s2ti - z). These terms contribute only when the impurities reside in the center barrier.

The contribution from the phonon-assisted tunneling to Eq. (26) is obtained by expand-

ing~lk(d~z~(z)= [~~kph(Z)fG~k(Z-io) 12~2k(Z) + ~2kph(Z)!G2k(Z-io) [2p~k(Z)] 7T-* tOthe fht

order in ~~kphin Eq. (26). Using the expressions for ~z~ph(z), ~zkph(z) in Eq. (21b) and the

identity ~$kf + n~q= ‘jk’ %q=~(z)-l ‘d approximating ~jk(z) = 6@jk - d> ‘e ‘ind

This contribution is to be identified with the two direct terms in Eq. (13).

The cross terms in Eq. (13) arise from the one-phonon-rung diagram shown in Fig. 3(c)

which reads:

(33)

G2& + P2 + ‘r)Glk (G + P1)G2P (<r + P2 + ‘r)ak’,k+ql, -

me quantity ~~;~+ql,here can be replaced by a~;k.~l, due to the in-plane inversion symme-

try. An inversion symmetry in the growth direction @j(z)2= #~(-z)2 simplifies Aj(qJ to

-2
Aj(4z) = J#j (Z)cos(qzz)dz. (34)
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The e and t summations in Eq. (33) are converted into contour integrations on the com-

plex plane. These integrations generate many terms which contain the factors shown in Eq.

(30). After a lengthy calculation and employing the approximation given in I@ (30), we

obtain,

Iph”= yJ%(v) Tdz 7Wl(z)o - .f2(~))zplk(z)P2k’(~) MJ$-- M? sq*

~ ‘I(qz ‘A2(qZ) Re{GIE (X – iO)G2k(Z+ iO)}~(X– Z* fi~sq)~k,~i-qll-
q(q,,)E2(q)

(35)

Combining Eqs. (32) and (35), we find

Iph’= :Jb’(v) ~dz y d.$fl(z)(l - fz(x))zplk(dpzk (x) WJL. (36)
-- W sq*

x Al (qZ)Glti (x – iO)/ sl (qll) + A2(qZ)G2~(z + io)l S2(qll) 23(x – z ~ fi~~q)~~,ti+qll.

This result is identical to the phonon-assisted tunneling current obtained in Eq. (13) in the

The contribution from electron-electron scattering to Eq. (26) is obtained by expanding

~lk(z)~2k(z) = [rllcee(z)lGlk(z-iO) i2~2k(z) + ‘2k&(z)]G2k(z-i0) [2~lk(z)l ‘-1 ‘0 ‘he ‘irst ‘rder ‘n

~kw in Eq. (26). Using the expressions for ~~kee(z), ~’km(z) in ~. (21c) and approximat-

ing Pjk(z) = ~(~~k- Z), we find

z “=~.J2~(v)X Z, &&l (1 – fzk )(1 – fj~~ )d(elk + ‘jki – ‘2k4ee – Ejk; ) (37)
jwl r kl

x [1 Ull(k’ –k)GIK (~2v – iO) 12~j,l+ IU22(k’–k)G2~ (Elk – io) !2 ~j,2]-

This contribution is to be identified with the direct terms in Eqs. (19) and (20). The rung

correction to Eq. (37) arises from inter-QW Coulomb interaction and is small. The elec-
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tron-electron self-energy part in Eq. (2 lc) is given by the upper part of Fig. 3(d) where the

wiggly curve denotes a dressed electron-electron interaction. The lower part of Fig. 3(d)

can be included in Eq. (37) by replacing Ujj(k’ - k)2 -+ Ufi(k’ - k)2 -Uj-(k’ -k) U~lkl’ - k)/2.

The phonon rung in the present tunneling problem gives a relatively smaller comection

compared with the single-QW or bulk transport problem, because each of the two EPI ver-

tices otiginate from different QW’S, yielding A1(qz)*A2(qz) = lA1(qz)12e@~. A significant

amount of contribution from the qz - integration arises only from a restricted region qz <<

I/dasdiscussed already in Sec. II. In view of the fact that d is large in tunneling structures,

successive rung diagrams are expected to converge rapidly. Also, the impurity-rung correc-

tion can be important only when the impurities are in the center barrier close to the wave

functions in both wells.

IV. NUMERICAL EVALUATION

In this section, we evaluate the tunneling current in GaAs/A~.3G~.7As DQW’S with

120 ~ wide QW’S separated by a 125 ~ wide center barrier and comp~e with recent data.

[8] The electron densities of the QW’S are NI = 8 and N2 = 2 X 1011cm-2, yielding the

Fermi energies elF = 28.7 meV, &zF= 7.2 meV and A = 21.5meV at zero bias for an effec-

tive mass m* = 0.067 (in units of free electron mass) in the wells. The dimension of the

geometric tunneling area of the sample is ~ = 0.02 cm, % = 0-05 cm. The center barrier is

dopant free, yielding a negligible contribution from the cross term in Eq. (5) and

(38)

Here, damping ~kim(z) in the numerators was defined in Eq. (21a) and is an impurity part

of ~k in the denominators. The quantity ~~kim(z)follows from summing on one of the



, ,

Page 18

dummy wave numbers in Eq. (5). The Fermi function was defined following Eq. (27).

For a numerical evaluation, we ignore the momentum dependence of the impurity scatter-

ing (relevant for short-range scattering) and approximate ~j~im(z) as a constant ~j~im(z) =

~im above the band bottom and zero otherwise. The quantities ~im depend on the doping

configuration of the sample and are not well known. Therefore, these quantities are taken

as adjustable parameters. Other damping parameters in ~~kfrom electron-electron and

electron-phonon scattering are calculated microscopically.

The EPI with the LO phonons are given by

[1
1/2~wfi5f3m;12

V@.=
Q,olq%7 ‘

(39)

where ~01 is the sample volume and q =0.06 is the dimensionless coupling parameter for

GaAs QW’S. The dispersion of the optical phonon frequency will be ignored: fi~q = fitio

= 36.2 meV. The electrons interact with the acoustic phonons through screened deforma-

tion potential scattering and piezoelectric scattering with the parameters given in Ref. 15.

The dielectric screening constant is approximated by

(40)

where TJFis the Fermi temperature, s = 2e2m*/ti2k the screening constant and ~ = 13.

The I-V curves are calculated using the results in Sec. II and employing an adjustable

parameter J= 0.001 meV, ~lim = 4 meV and ~zim = 12 meV. The ratio of ~lim and ~zim

here equals the measured ratio of the low-temperature nobilities of the sample. The calcu-

lated I-V curves are displayed in Figs. 4-7 as a function of the voltage drop V~w across

the barrier for T = OK, 77 K and 300 K. The I - VDQWcurve at 77 Kin Fig. 5 is similar to
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the experimentally observed 1- VsD curve in shape and magnitude [8] except that the

experimental 1- VsD cume is skewed slightly toward the right due to the fact that 1) VsD is

the sum of VDQWand the in-plane voltage drop Vllin the QW’S, neglected in the present

treatment, and 2) Vllis larger for a larger current. A tight-binding estimate of ~ for the sam-

ple yields .l = 0.002 meV, twice the .l = 0.001 meV employed. This discrepancy maybe

due to the uncertainties in the calculation of J, the actual tunneling area which is smaller

than the geometric area = 0.02 X 0.05 cm2 employed for the calculation [6], and uncer-

tainties in I’lim and ~2im. Larger ~lim and ~2im broaden the 1- Vww curve and lower the

peak curreng requiring a larger J to produce the same peak current. In a more realistic cal-

culation with a known dopant distribution for the sample, the VDQwdependent J can be

calculated using a self-consistent density functional theory.

Fig. 4 shows the I - VDQWcurve at O K. The current arises primarily from impurity scat-

tering (dotted curve). The peak occurs slightly above evDQw = ~lF - ~2F = 21.5IIIevwhere

the two QW ground sublevels align. It is interesting to note that electron-electron scatter-

ing (dash-dotted curve) also contributes significantly. The small LO-phonon contribution

(dashed curve) increases until the Fermi level of QW2 is about %ino= 36.2 meV below the

bottom of the QW1 band (i.e., eV = ?ho + ~~F= 64.9 mev), where all the electrons in

QW1 can tunnel into QW2 by emitting one LO-phonon. The acoustic-phonon contribu-

tion, included in the total current, is the least impo~nt for the nonequilibrium tunneling

current at all temperatures and is not indicated separately, although it is more important

than the LO-phonon contribution at low temperatures in the linear regime.

At 77 K, the I - VDQW curve is broader and the peak current is much smaller than at T =

O K as shown in Fig. 5. The LO-phonon scattering contribution is larger than at O K but is
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still smaller than the contributions from impurity and electron-electron scattering. At 300

K, the LO-phonon and electron-electron contribution have increased considerably relative

to the impurity contribution as seen in Fig. 6. It is interesting to note that the electron-elec-

tron contribution is larger than the LO-phonon contribution. The impurity contribution is

large in Fig. 6 because of the large impurity damping I’lim = 4 meV and I’~m = 12 meV

chosen to simulate the 77 K experimental data in Ref. 8.

The current becomes much sharper as a function of V and increases in magnitude with-

out impurity scattering as shown by the fine-dotted curve in Fig. 6. The temperature

dependence of the total tunneling current is plotted in Fig. 7. The solid curve shows the

total current at 300 Kin the intrinsic limit, namely in the absence of impurity scattering

(i.e., I’~im= ~~im = 0). This curve is much above the dash-dotted curve which includes the

contribution from impurity scattering. The resonance at about 90 mV for the intrinsic 1- V

curve represents the cument from tunneling between the ground sublevel of QW 1 and the

second sublevel of QW2, using the same J value for comparison with the first resonance

current. The actual tunneling integral for this case is expected to be larger than that

between the ground sublevels.

V. CONCLUSIONS

We presented a theory for nonequilibrium 2D-2D tunneling between double electron

layers separated by a wide barrier when the chemical potentials of the two electron gases

are arbitrarily biased. Initially, an intuitive but rigorous second-order perturbation theory

was established based on a transition-rate approach. The result was used for a numerical

evaluation of the I-V relationship. Contributions from electron-impurity, electron-electron,

and electron-phonon interactions have been considered. The validity of this treatment was
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examined using a field-theoretic formalism by expressing the tunneling current as a veloc-

ity-velocity correlation function. The correlation function was then evaluated employing a

standard temperature-ordered Green’s function technique. The formalism is exact to the

second order in the tunneling integral and to all orders in the interactions. It is similar to

that of a linear response theory and useful for a systematic study of higher-order effects.

The numerical results were compared with recent experimental data from

GaAs/AIXGal-XAs double quantum wells at 77 K. These data show a large peak-to-valley

ratio in the I-V curve, yielding a first demonstration of a DELTI’ at 77 K. Numerically, a

large peak-to-valley ratio was obtained at 300 K predicting the feasibility of room temper-

ature DEL~s.
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Figure Captions

Fig. 1 Second-order two-step processes for tunneling through electron-impurity and ekc-

tron-phonon interactions (black dots). Tunneling takes place (a) after and (b) before

the interaction.

Fig.2 Second-order two-step processes for tunneling through electron-electron interaction

(wiggly vertical lines). Tunneling takes place (a) after and (b) before the interaction.

Fig. 3 Major contributions to the current correlation function. (a) Bubble diagram, (b)

One-impurity-rung diagram (dashed horizontal line with a cross), (c)

One-phonon-rung (wavy horizontal line) diagram and (d) electron-electron

self-energy part. The wiggly curves represent screened electron-electron interaction

in the random phase approximation.

Fig. 4 Tunneling current as a function of the voltage drop between the layers at O K.

Fig. 5 Tunneling current as a function of the voltage drop between the layers at 77 K.

Fig. 6 Tunneling current as a function of the voltage drop between the layers at 300 K.

Fig. 7 Total tunneling current as a function of the voltage between the layers at T = 0,77

and300 K. The solid curve represents the intrinsic total current at 300 K in the

absence of impurity scattering and includes tunneling from the ground sublevel of

QW1 to the second subleveI of QW2.
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