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We present a theory fof nonequilibrium two-dimensional to two-dimensional tunneling
between two weakly tunnel-coupled electron layers when the chemical potentials of the
two electron gases are arbitrarily biased. We first present an intuitive but rigofo_us sec-
ond-order perturbation theory based on a transition-rate épproach. Contributions from
electron-impurity, electron-electron, and electron-phonon interactions are considered. The
validity of this result is established using a more general field-theoretic formalism by
expressing the tunneling current as a cufrent—current correlation function which can be
evaluated employing a standard temperature-ordered Green’s function technique and a
Feynman-graph expansion. The formalism is exact to the second order in the tunneling
integral and to all orders in the interactions and ié useful for studying higher-order interac-
tion effect. The relevance of the numerical results to recent experimental data from a
GaAs/Al,Ga,_,As double-electron-layer tunneling transistor (DELTT) at 77 K are dis-
cussed. These data shov;/ a large peak-to-valley ratio of the I-V curve. The room tempera-
ture numerical results for the I-V curve show a reasonably large peak-to-valley ratio

indicaﬁng the feasibility of room temperature DELTT’s.

PACS: 73.40.Gk, 73.61.Ey, 72.20.My, 73.40.Kp RECEIVED |
JUuL 13189




Page 2

L INTRODUCTION

Currently, there is increasing interest in the tunneling phenomenon between two
quasi-two-dimensional (2D) layers of electron gasés separated by a wide barrier. {1 - 7]
This phenomenon is not only interesting academically but also offers potentially valuable
application to 2D-2D tunneling transistors with sham current-voltage characteristics
owing to the restricted phase space available for tunneling compared to the conventional
3D-2D tunneling transistors, as demonstrated recently by Simmons et al.[8] This paper
presents a theory for the double-quantum-well (DQW) 2D-2D tunneling structure pio-
neered by Eisenstein, Pfeiffer and West [2]. In this structure, the two QW’s have indepen-
dent ohmic contacts. When a bias potential V is applied between the source and the drain
contacts, the electrons drift into the top QW (QW1), tunnel through the wide center barrier
into the bottom QW (QW2) and flow out of QW2. The two QW;s are not in equilibrium,
with the difference of their chemical potentials p; and u, given by pq - pp = eV (= 0). In

this paper, we obtain the tunneling current as a function of eV assuming that the in-plane
conductances of the QW’s are vary large, causing a significant potential drop only over the
barrier. The effect of in-plane resistance on the source-drain I-V curve can be studied using
the I-V relationship obtained here and a differential transmission line model. {6]

Of particular interest of this paper is to investigate the maximum possible tempera-

ture-dependent peak-to-valley ratio in a given structure in the ideal intrinsic limit, namely
| mthellmlt where the major effect from the static scattering centers are eliminated through ﬂ
:mOdﬁlaﬁon doping. This requires a careful microgcopic treatment of the level damping
aﬁsing from electron-electron and-electron-phonon interactions.

The present paper is structured as follows. We formulate the tunneling current in terms
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of an intuitive second-order transition-rate theory using a T-matrix approach in Section II.
Contributions from electron-impurity (or -surface roughness), electron-electron, and elec-
trén‘phonon interactions are considered. The vaiidity of the results in Sec. I is examined
in Sec. II, where we establish a formal theory of the nonequilibrium 2D-2D tunneling cur- -
rent in terms of the current-current correlation function. This is then evaluated employing
a standard temperature—orderéd Green’s function technique and a graph expansion. The
formalism is exact to the second order in the tunneling integral J and to all orders in the
interactions and‘ is similar to the linear response theory. The formalism is valid in the limit
where J is small (i.e., << damping I'), namely when the tunneling time is much longer than
the scattering time. This condition is weli satisfied in typical tunneling transistors, where
the center barriér is wide allowing the charges in the two QW’s to be controlled indepen-
dently. Numerical results are given in Sec. IV and compared with recent experimental data
from GaAs/Al,Ga;_,As double-electron-layer tunneling transistor (DELTT) available at
77 K. The I-V curve is also evaluated at 300 K in order to assess the feasibility of room

temperature DELTT. The paper is concluded in Sec. V with a brief discussion.

II. TRANSITION RATE FORMALISM
The Hamiltonian is given, in the absence of tunneling, by

H= 3 F(ep —iahay + Thog(bhby, +1/2)+ Hyy+ He gy +H,_, 1)
j=12 k sq

where g5 is the electron energy for the wave vector k in the jth QW, aﬂ;r (aj) is the Fer-
mion creation (destruction) operator, ﬁcosq is the phonon energy of mode s and wave vector

q and bsqf (bsq) is the boson creation (destruction) operator. The rest of the terms in Eq. (1)

denote electron interactions with the impurities, LO phonons, acoustic phonons, and other
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electrons. The expressions for.these terms will be given later. The spin sum is suppressed.

The total Hamiltonian is the sum of H and the tunneling Hamiltonian H\,,;:

Htun =t+tf: t=12a1k7a2k, (2)
k

where J is the tunneling integral. The operator £ (#7) transfers an electron from Qw2
(QW1) to QW1 (QW2). While we concentrate on the ground sublevels of each QW, the
result can be generalized to include tunneling betwcen. all the sublevels if the index k
- includes the sublevel index implicitly. In this case, J depends on the sublevel indices.

In general, tunneling cannot occur directly from an initial state. {1k>in QW1 to a final
state 12k> in QW2, because momentum and energy conservation cannot be satisfied simul-
taneously when the energy dispersions £;; and &, are not aligned (i.e., £; # £5)- Here ljk>
is the noninteracting eigenstate of the first term of H. We therefore need to construct sec-
ond-order perturbation processes through which moméntum and energy can be dissipated.
We use a second-order perturbation theory which treats the resonance in the intermediate
energy denominators rigorously. [9] An alternate more general and formal diagrammatic
approach useful for a systematic study of higher-order effects is presented in Sec. IIL
IL1 Tunneling through Electron-Impurity Scattering

Figure 1 shows second-order perturbation processes wﬁich allow an electron to tunnel
from an initial state |1k> to a final state {2k>. In 1(a), the electrdn is first scattered (indi-
cated by the black dot) into an intermediate state 11k"> and then tunnels into 12k, In 1(b),
the electron first undergoes virtual tunneling into an intermediate state 12k> and then is
scattered into the final state 12k">. In this elastic transition, momentum is dissipated

through impurity collisions in QW1 (Fig. 1(a)) as well as in QW2 (Fig. 1(b)). The T-matrix
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for these processes is given by [9]

< Hy |1k > + <2k H  12k>J
Enc —Epe — ik (Ene)  Erc — € — i E1x)

im —
Tig—sor =

3)

where ﬁim is the sum of the screened impurity potentials. In Eq. (3), intermediate-state
damping I;(2) is included for resonant transitions. The argument z of ﬁe damping I7,(z)
for the T-matrix in Eq. (3) as well as for the T-matrices for the electron-phonon and elec-
tron-electron processes to be introduced later is determined from the fact that the dénomi-
nator in the first and second term of Eq. (3) is the denominator of the Green’s function of
the intermediate statés lig> = 11k*> and ljg> = 12k>, respectively, namely Gjy(z-i0)=1{z-
Ejg- szq(z)]'l, ignoring the energy shift. Hence, z = £;; for both terms of Eq. (3). Note that,
in the present nonequilibrium tunneling problem, the z and k dependences of I;(z) are
important and make the problem more complicated than in the linear respoﬁse case where
only the properties on the Fermi surface matter.

The transition rate from QW1 to QW2 is then given by

im 47 im
WS, = -{k%ﬁk (A~ foe) < s g i 8(Er — E00)- 4

Here, a factor of 2 is included for the spin degeneracy and <>;;,, denotes impurity averag-
ing. The back-transition rate W imz__,l can be found in a similar way. Subtracting the
back-transition rate from Eq. (4), assuming an in-plane inversion symmetry (i.e., & = &),

and multiplying the rate by the electron charge ¢, we find the tunneling current

Iim _ 4re] 2

~ -~ 2
I<1k‘!Himl1k>+<2k'lHim12k>l

F (V)zk:’ Ju(t= fp) < ’ AT, A-iT, ! >im 5(51(: - &), (5)

where F(V) =1 - exp(-BeV), fi is the Fermi function fik =[exp(B(ejk - p,j)) + 1]'1, B =kgT,
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T is the temperature, A = &y - €1, = 4, - eV and I'y = I'i(gj«) with the understanding 1*
= 2,and 2* = 1. A, is the difference of the ground sublevels of the two QW’s in the
absence of the bias. For zero bias V =0, we have F(V) =0, yielding 1™ = 0 due to detailed
balancé. It turns out that the energy denominatqrs for the intermediate states in Eq. (5)
have the same expression for tunneling through electron-phonon intefaction (EPI) and
eléctron—electron interaction as will be shown later.
I1.2 Tunneling through Electron-Phonon Scattering

Phonon-assisted tunneling is obtained from the same processes illustrated in Fig. 1
except that the black dots now indicate phonon absorption and emission. The initi_al state -
11k, ngp> consists of an electron in 11k> and phonons in lnsq>. The final state is 12k’, nsé *
1> depending on whether a phonon is emitted (+) or absorbed (-). In 1(a), the electron is
first scattered into an intermediate state |1k, Ngq = I> through virtual (or real) phonon
emission or absorption and then tunnels into 12k>. In 1(b), the electron first undergoes vir-
tual tunneling into an intermediate state 12k> and then is scattered into the final state 12k’,
ng, = 1> emitting or absorbing a phonon of mode sq. In this inelastic transition, energy

and momentum are transferred to the phonon bath. The T-matrix equals

J<W,ng, * 1AL, 11kn,, > L S2ng £ HY ,\2kn, >

Tt (s9) = : = :
€1 — (e TRO,) — il (81 F hOO,) €1 — Eqp — il (E1)

., (©)

where Ngg = [exp(Bﬁqu) - 1]'1 is the Boson function. The arguments of the damping in Eq.
(6) are determined according to the method discussed following Eq. (3). In Eq. (6),
ﬁe_pgt is the phonon emission (+) and absorption (-) part of the screened EPI: ﬁe_ph =

+ -~ -
He—ph +H -ph aIld

s gt +1/2 -1
< jK'.nsg £ W H_ o | jk.ngg >= Vg €j(qy) A (g, )0 ko 1q,- (7
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Here nsqi= ngg +1/2 = 172, g = (qy, q,), €(qy) is the dielectric screening constant,

A7) = [6;@0ug(2)dz | | ®)

is the momentum conservation factor, db-(z) is the confinement wave function and Vsq is the
strength of the EP1. We consider only the bulk phonon mode ¢,(z) = "7, For the optical
phonons, we consider only the LO phonon interaction and suppress the index s from
Asj(qz) = Aj(qz) for simplicity.

The phonon-assisted transition rate is then given by

4z
W, = _{Ek‘. %:flk (1= foe) | T ) P 8(egp £ a0y — €11 )0k o +q,- ®
sq

The expression in Eq. (6) is simplified using the energy conservation in Eq. (9) to

-1 -12
pht 2 2.2 % 1A1(qz)€1(4n) _Ay(g)e(q) I 10
'Iik—)Zk' (SQ)I =J VSanQl A'—irlk' A+iF2k ‘ (C,k'i%' (10)
The back current can be found in a similar way:
Ax '
WP, = Y kEk' Zif2k‘ A= f) VIR T 1 (59) P S(eqp theo,, — £y W kg, (11
sq
with,
b 2 2.2 F |A1(q )é1 @) Ayg)e(g)™ |2
i% — 4 —
[T o) = 72V j Ae iy A+ Ty | o (12)

Note that the order for + and - is reversed in the T-matrix in Egs. (11) and (12).
The phbnon-assisted current is obtained by subtracting Eq. (11) from Eq. (9) and

exploiting the nbnequilibrium version of detailed balance: Sl - for) nﬂft - fordl -
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fionsg ™ =ful - fadngg (1 - ePeVy:

IZ

-1 a1
Iph :4775612}7(‘/)2 Eflk(l _ fzk')";tquqz‘Al(qz)el(q") _ A2(qz)€2(q||) (13)

Kk sqt A-ily A+ily,
S(ey Thaeo,, — &y )5k,k'iq; .

The cross terms in Eq. (13) yields the iﬁterference effect. This term is negligible for the
phonon modes localized in one of the QW’s. Short wavelength phonons (g,4 >> 1) do not
contribute to this term even for the extended bulk phonons. This point is easily seen for
identical confinement wave functions, for example, from 4,(g,)*4,(q,) = lAl(qz)lzei‘JZd d
is the well-to-well separation). The summation on g, cancels out for g,d >> 1. Also, the
factors Aj(qz) are small for g,b >> 1 where b (> d) is the QW width. The cross term can
introduce a destructive interference for long wavelength phonons (g,4 << 1) away from the
resonance, namely for |4l >> ij for identical QW'’s (i.e., €;(qy) = €,(g))). In this case, the
two terms in Eq. (13) cancel out, yielding a negligible off-resonance tunneling current.
This effect arises from the fact that long wavelength phonons modulate the energies of the
two QW'’s in phase and do not contribute to inelastic tunneling.
I1.3 Tunneling through Electron-Electron Scattering

The electrons can relax their energy and momentum by colliding with other electrons
before or after tunneling as illustrated by two-step processes in Fig. 2. The initial state |1k,
jki1> = I1k>ljk;> represents a two-particle state with an electron in |1k> and the other in
ljky{> in the jth QW. The final state is [2&', jk;*>. In 2(a), the electron in [1k> is first scattered
into an intenhediate state 11k"> while kicking the other electron into ljk; ">. It then tunnels
into 12k">. The exchange effect will be discussed later. The two steps are reversed in 1(b).

In this inelastic transition, energy and momentum are transferred through an Auger-like
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process.The T-matrix for these processes is given by

J <&, jk'| Hop 11k, jky > +<2k‘,jk1'if1ee [ 2k, jky > J
€j & ~il (&) Enc— €~ ilu(Er)

Tk jky =2k jiy = (14)

r

where the quantity &; in the first denominator is given by & = £ + £, - Ejk, = Exp with the
last equélity arising from the energy conservation between the final and initial state (see
Eq. (15). The first and second denominator in Eq. (14) then simplifies to A - il and -A -
il respectively, as in the phonon-assisted case. | |

The tunneling rate from QW1 to QW2 equals

8r 2 _
WS, = 5y %k k%' e,k > 2k gy’ | Jue iy U= Fare YA = fz) O(Exp + €y — Epp — €3 )(15)
JKE Ky Ky '

where the factor 8 includes spin sums. The matrix elements in Eq. (14) are given by

2

P <. _
< ik ’Jkl { H¢e ilk,]kl >= mﬁj(q)ak_*_kl’kﬁ +k1' = U'ij(q)ak‘l-kl,k"*'kl' , (1621)
where
Ei(9) = [| $:(2)%0;(2 e Pz, ‘ (16b)

q=1k'- K, €;j is the dielectric screening constant,  is the bulk dielectric constant and A is

the area of the QW's.

The back current can be found similarly by reversing the direction of the arrows in Fig.

2, yielding

wee =30 5 5 Izee b Fa (A= )= fi ) 8(E + e, )17
2155 2 2 Dk iy stk Jare Fiep A= A )= fin, ) 0(Ep + €jp — Egp — €52 )1T)
7 171
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where

<1k, jkg | H, 11K, jk' > L <2k, iy | H, 12K ,jk1'>)

Tee‘ P = =J .
2k 1k, jiy, = I A-iTy “A—iTy, (13)

The T-matrices in Egs. (14) and (18) are identical in view of Eq. (16) and the discussion
following Eq. (14). The energy conservation condition in Eq (17) yields fo ];klo (1-fipa
- fik)) = Furii (1= FareXL - f DB,

The tunneling current is then the difference between the forward current and the back

current:

2 | ,
I = 8%F(V) 2 X Tk i -2k jie | Jue Ty U= Fae Y= fig) (19)

_ In the above treatment, we have assumed that the two-particle wave function is a product
of the single-particle wave functions: lik,jk;> = lik> ljk;>. To account for the exchange
effect, we symmetrize and antisymmetrize lik,jk{> for the spin—singlet and spin-triplet
states, respectively. This procedure is straightforward. We write down the result only for
the most practical case where the Coulomb interaction as well as the wave:function over-
lap between the two QW’s is negligible. The net result is to replace the T-matrix in Eq.
(19) by

2

L] 1 1 1]
) , Un —k)? -—Z—Uu(k ~k)Uyy (k' k)
1k, jky =2k jky'| = I

(20)

AT+ T2 i
1 Al 1
Uyy (K —k)? = = Uy (K kYU, (ky' —k)
+ 2 85208k vk k-
A® +Ty,2 I (Ea

The second terms in the numerators of Eq. (20) represent the exchange correction.
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' 11.4 Damping of the Electronic States

The tunneling current studied above is a skewed Lorentzian in V with the width deter-
mined by the damping of the intermediate states. Note that the current is not merely a sum
of the Lorentzian functions because the phase space for tunneling increases with the bias
potential V until the Fermi level of QW2 aligns with the ground sublevel of QW1. Contri-

butions to the damping of the intermediate states are given by [10 - 12]

};’?(z) =y <k jk'l Flim | jk > 12>im o(e & —2)s ' (21a)
k’ .
TR =7 3 [ 13 )(Vigh j(8,) €5(q)) 82 £ hd g = €08, o1y 21b)
k' sqt .
and
Tg@= 275% kfkl Ujk—& Y Fe, (= Fie YA = fr 1+ efﬁ(z~#j ] (21c)
11 ’

6(2 + Ejkl - ejk' ‘—Ejkl‘ ).

A systematic formal justification of the expressions for the tunneling current in this section

as well as a formalism for higher-order corrections is given in the next section.

ITI. FIELD THEORETIC FORMALISM

In this section, we give a general formalism for the tunneling current which includes the
interactions to all orders and allows a systematic evaluation of higher-order effects for the

current. We then evaluate the basic lowest order effect and rederive the results of Sec. IL

IM. 1 Current-Current Correlation Function

The tunneling current is given by the golden rule to the second order in J in terms of the
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tunneling rates W;_,, and W,_,; and equals

4re - :
I=e(Wisy W) =——[e PEx tc m1tT 1n > 22)
nm

— e PEn ik n1t I m >PIVS(E, — E,, + Q),
where E, In> and Z are the eigenvalues, eigenstates and the distribution function of H, 2=

WLy - 1y = eV. The spin degeneracy factor 2 is included in Eq. (22). The expression in Eq.

(22) can be recast into a standard current-current correlation function F(w,)

| o |
I= %Im F(o, » Q+i0): F(o,) = [ < eMte ™ T > du, ' (23)
: 0

where Im means the imaginary part of the quantity that follows and the angular brackets
denote the thermodynamic average. The energy parameter ©,=27rif8! is on the imaginary

axis and is to be analytically continued to slightly above the real axis: £2+ i0 and r is an

integer.
I11.2 Tunneling Current

In this section, we evaluate the leading terms in Eq. (21) using a standard diagrammatic

perturbation theory. [10, 11] The most important contribution comes from the basic bubble

diagram shown in Fig. 3(a):
F(w,)= —Jzﬁ“g Gy (G + )G (G + Uy +@,), (24)

where £, = (2€+ )i}, £is an integer,

1
Co—Ejr = Si(Cy) | _ 25)

Gy o) =

is the dressed Fermion propagator shown by the solid lines and § jk(ge) is the self-energy
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part. Carrying out the -summation in Eq. (24) and inserting the result in Eq. (23), we find

r=42 Tm(z)—Ja(zn%plk(z)pu(z)dz, 26)
where
_1 Ty (2)

and Mj;(z), I}k(z) are the real and imaginary part of Sj(z). The damping part I}k(z) is a sum
of &16 three contributions in Eq. (21). The real part Mjk(z) renormalizes the single particle
.energy and will not be considered in this paper. The Fermi functions in Eq. (26) are given
by jj(z) = [exp(B(z-p.j)) + 1]‘1. Expressions similar to that in Eq. (26) Have been obtained
earlier by employing Keldysh’s nonequilibrium Green’s function method [13] in |
metal-insulator-metal single—barrief tunneling structures. [14]

The compact result in Eq. (26) is more formal than the perturbation results obtained in
Sec. I, although the latter contain one-rung corrections that are absent from Eq. (26) as
will be shown below. Unfortunately, the expression in Eq. (26) cannot be evaluated within
a reasonable cdmputing time for realiétic ij(z) unless a quasi-particlé approximation is
made to the initial and final statés, which yielded the main part of the .results in Sec. II. In
the following, we study the contributions to the current in Eq. (26} from the impurity, elec-
tron-phonon and electron-electron scattering, examine the validity of the results in Sec. Il
and proceed to investigate the higher-order effect.

The contribution to tunneling from impurity scattering is obtained by expanding -
P12 = [T ™(DIG 1 (z-10)p2(@) + To™(D)Giz-i0)Pppi(2)) 7 to the first order

in I;™ in Eq. (26). Using the expressions for I';;"™(z), I'5™(z) in Eq. (212) and the iden-
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tity f1(2) - f2(2) = f1(2)(1 - fo(2))F(V) and approximating pj(z) = 8(j - 2), the impurity part

of Eg. (26) yields

i =22 TFWE il foe U< KV iy 16> G (83 =i0) P @8)

+I< 26V Hy 12k > Gyp (£, —i0) P,

which is identical to the two terms 1<jk'lH;m |jk>l2 in Eq. (5).

The one-impurity-rung diagram shown in Fig. 3(b) yields:

T =300 1 U@~ @I e R (Do (IRag )+ par (DR, 29)

where Rj(z) is the real part of Gj(z) and I ;- = <<1kH, |1k><2le;m 12k>>;,.. To pro-

ceed further, we approximate:

Re{G; (2 £i0)G, (z£i0)} << Re{Gy, (z F i0)G,; (z £ i0)}. | (30)

This relationship means that, when the quantities in Eq. (30) are multiplied by a slowly
varying function of &, and summed on &, the left hand side (LHS) gives a negligible con-
tribution compared to the right hand side (RHS). The basic reason is that any contribution,
to be significant, should arise from the region near the poles £;; =z il y;, gy =z * il
(assuming a constant I}k). For the quantity on the LHS, the integration contour can be
closed on the complex plane to enclose zero poles, yielding a vanishing contribution since
the poles are on the same side. This is not possible for the RHS, which has a sharp Lorent-

zian resonance when the two QW sublevels align. An alternate perturbative argument was
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given earlier. [10] With this approximation, Eg. (29) yields

[ = 8re

m = sz[fl(z) SIS W1 Hi 1> < 2k Hig 12455 @31y

X P (2)Pop () Re{Gyp (2 = i0) Gy (2 +10) }dz.

This result reduces to the cross terms in Eq. (5) in the limit py(z) = 8(&yy, - 2) and pydz) =
8(&yy - 2)- These terms contribute only when the impurities reside in the center barrier.
The contribution from the phonon-assisted tunneling to Eq. (26) is obtained by expand-
ing p1 (P22 = [T P*@)IG,; k(z-i0)|2p2k(z) + DyPY@DIG i (z-i0)Pp ()] 7! to the first
order in I;-k in Eq. (26). Using the expressions for ' P(z), I'P"(z) in Eq. (21b) and the

identity ];k"*’nsq =fix' g jj(z) and approximating p;;(z) = &(€j - z) we find

. 4 .
Iy = ;“’ﬁnwzma ) I V21 Ay(g,)Gue (e ~i0) y(a) P 32)

+145(q,)Go (e —i0) €(qy) PY(ep — £ 10 y)8 Ty

This contribution is to be identified with the two direct terms in Eq. (13).

The cross terms in Eq. (13) arise from the one-phonon-rung diagram shown in Fig. 3(c)

which reads:

Ve A1(g)A4(q,)
Kk € sqx € ()€ (g o, & (Ce—Cp)l
GG + Hy + 0,)Ge (G + 1)Gope (G + Mo + @, )0k ag,-

p.,(w,)—-ﬂﬁ'z G (G + 1) (33)

The quantity & kg here_can be replaced by ;- kg due to the in-plane inversion symme- .

try. An inversion symmetry in the growth direction (;Sj(z)2 = ¢j(-Z)2 simplifies A;(g,) to '

Afg)= [$2(2)cos(g,0)dz. | (34)
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The € and ¢ summations in Eq. (33) are converted into contour integrations on the com-
plex plane. These integrations generate many terms which contain the factors shown in Eq.

(30). After a lengthy calculation and employing the approximation given in Eq. (30), we

obtain,
« 8 LT
Iy = _;i_rc; JIF (V)_{deidxﬁ @~ 5 (X))k% P (2P (x)sgli"fq"sfz 35)
W 21092)8202) (G (x = 0)Gg (2 +10))8(x — 2% )0k e 1q, -
€ (qne(q) :
Combining Eqgs. (32) and (35), we find
e =22 PPRW) [dz [ difi- () 3o (o () iV, 36)
—oa oo . sq

XIAI(‘Iz)GIk' (x - iO)/El(q") + AZ(qz)GZk(z + iO)/ 82(q||)]25(x -2 + ha)xq)ak'kviq" .

This result is identical to the phonon-assisted tunneling current obtained in Eq. (13) in the
limit pj(z) = 8(z - £;) and pyAz) = &(z - £3)-

The contribution from electron-electron scattering to Eq. (26) is obtained by expanding
P1K@Dp@) = I 1 @IG, (Z-10)2p () + Ty E(2)IG 5 (z-10)2p(2)1777 ! to the first order in
Iy in Eq. (26). Using the expressions for I'1;*%(z), I5*°(z) in Eq. (21c) and approximat-
ing pj(z) = 8(gy - 2), we find
_ 8z

h sz(v)]&l k'zk‘,; fikf]‘kl (l—ka« )(l_f]k; )5(8116 +8jk1 _82k' —ejk;) (37)

Iee'

X [1 Uy (K =K)Gge (€, —i0) I 8;1+1Unpy (k' ~k)Goye (£ —i0) 1* 8 51.

This contribution is to be identified with the direct terms in Eqs. (19) and (20). The rung

correction to Eq. (37) arises from inter-QW Coulomb interaction and is small. The elec-




Page 17

tron-electron self-energy part in Eq. (21¢) is given by the upper part of Fig. 3(d) where the
wiggly curve denotes a dressed electron-electron interaction. The lower part of Fig. 3(d)
can be included in Eq. (37) by replacing Uy(k' - K> — Uj(k' - )2 -Uy(k' - Ujiky’ - k)2,
The phonon rung in the present tunneling problem gives a relatively smaller correction
compared with the single-QW or bulk transport problem, because each of the two EPI ver-
tices originate from different QW’s, yielding 4;(g,)*4,(q,) = lAl(qZ)lzeiqu. A significant
amount of contribution from the g, - integration arises only from a restricted region g, <<
1/d as discussed already in Sec. IL In view of the faf;t that d is large in tunneling structures,
successive rung diagrams are expected to converge rapidly. Also, the impurity-rung correc-
tion can be important only when the impurities are in the center baﬁier close to the wave

functions in both wells.

IV. NUMERICAL EVALUATION

In this_section, we evaluate the tunneling current in GaAs/Aly 3Gag 7As DQW’s with
120 A wide QW’s separated by a‘ 125 A wide center barrier and compare with recent data.
[8] The electron densities of the QW’s are Ny =8 and N, =2 X 101em™2, yielding the
Fermi energies ;g = 28.7 meV, &g =7.2 meV and 4 = 21.5 meV at zero bias for an effec-
tive mass m* = 0.067 (in units of free electron mass) in the wells. The dimension of the
geometric tunneling area of the sample is L, =0.02 cm, Ly = 0.05 cm. The center barrier is
dopant free, yielding a negligible contribution from the cross term in Eq. (5) and

m _ del?
-

=)t 2 "‘“")w(l — fyley ) 2k %"(3”5)1 39
+F + 15

Here, damping I}kim(z) in the numerators was defined in Eq. (21a) and is an impurity part

of I}k in the denominators. The quantity I}kim(z) follows from summing on one of the
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dummy wave numbers in Eq. (5). The Fermi function fi(2) was defined following Eq. (27).
For a numerical evaluation, we ignore the momentum dependence of the impurity scatter-
ing (relevant for short-range scattering) and approximate ijim(z) as a constant I}kim(z) o
I}im above the band bottom and zero otherwise. The quantities I}im depend on the doping
configuration of the sample and are not well known. Therefore, these quantities are taken
as adjustable parameters. O'ther damping parameters in ij from electron-electron and
electron-phonon scattering are calculated microscopically.

The EPI with the LO phonons are given by

172
4mh5/3w3/2
Vq,Lo=[ L |, | 69)

Qvolqz N 2m*

where (2, is the sample volume and 7= 0.06 is the dimensionless coupling parameter for
GaAs QW’s. The dispersion of the optical phonon frequency wili be ignored: ﬁwq = Zw,
=36.2 meV. The electrons interact with the .acoustic phonons through screened deforma-‘

tion potential scattering and piezoelectric scattering with the parameters given in Ref. 15.

The dielectric screening constant is approximated by

~T. -1
€;(q) = (1 +sqi Fy(all—e TJF/T]) ’ (40)

where Tir is the Fermi temperature, s = 2e2m*{kA?is the screening constant and k = 13.
The I-V curves are calculated using the results in Sec. II and employing an édjustable

parameter J = 0.001 meV, I'}'™ = 4 meV and I,™ = 12 meV. The ratio of ;"™ and I’ i

her;a equals the measured ratio of the low-temperature mobilities of the sample. The calcu-

lated I-V curves are displayed in Figs. 4 - 7 as a function of the voltage drop Vpqw across

the barrier for T=0K, 77 K and 300 K. The I - Vpqw curve at 77 K in Fig. 5 is similar to
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the experimentally observed I - Vgp curve in shape and magnitﬁde [8] except that the
experimental I - Vgp curve is skewed slightly toward the right due to the fact that 1) Vgp is
the sum of Vpqw and the in-plane voltage drop Vjin the QW’s, negiected in the present
treatment, and 2) V;is larger for a larger current. A tight-binding estimate of J for the sam-
ple yields J = 0.002 meV, twice the J = 0.001 meV employed. This discrepancy may be
due to the uncertainties in the calculation of J, the actual tunneling area which is smaller
than the geometric area = 0.02 X 0.05 cm? employed for the calculation [6], and uncer-
tainties in I'}'™ and I,'™. Larger '™ and I',™ broaden the 1 - Vbqw curve and lower the
peak current, requiring a larger J to produce the same peak current. In a more realistic cal-
culation with a known dopant distribution for the sample, the Vpqow-dependent J can be
calculated using a self-consistent density functional theory.

Fig. 4 shows the I - Vpqw curve at 0 K. The current arises primarily from impurity scat-
tering (dotted curve). The peak occurs slightly above eVpow = £ - €5 = 21.5 meV where
the two QW ground sublevels align. It is interesting to note that electron-electron scatter-
ing (dash-dotted curve) also contributes significantly. The small LO-phonon contribution
(dashed curve) increases until the Fermi level of QW2 is about 7wy =36.2 meV below the
bottom of the QW1 band (i.e., eV = fw, + £;5 = 64.9 meV), where all the electrons in
QW1 can tunnel into QW2 by emit}ing one LO-phonon. Thé acoustic-phonon contribu-
tion, included in the total current, is the Ieasvt important for the nonequilibrium tunneling
current at all temperatures and is not indicated separately, although it is more important
than the LO-phonon contribution at low temperaturé:s in the linear regime. -

At 77K, the I - Vpqw curve is broader and the peak current is much smaller than at T =

0 K as shown in Fig. 5. The LO-phonon scattering contribution is larger than at 0 K but is




Page 20

still smaller than the contributions from impurity and electron-electron scattering. At 300
K, the LO-phonon and electron-electron contribution have increased considerably relative
to the impurity contribution as seen in Fig. 6. It is interesting to note that the electrén-elec-
tron contribution is larger than the LO-phonon contribution. The impurity contribution is
large in Fig. 6 because of the large impurity damping I'1'™ = 4 meV and I,™ = 12 meV
chosen to simulate the 77 K experimental data in Ref. 8.

The current becomes much sharper as a function of V and increases in magnitude with-

- out impurity scattering as shown by the fine-dotted curve in Fig. 6. The temperature

dependence of the total tunneling current is plotted in Fig. 7. The solid curve shows the
total current at 300 K in the intrinéic limit, namely in the absencé of impurity scattering
@ie., I'™ = I';}’™ = (). This curve is much above the dash-dotted curve which includes the
contribution from impurity scattering. The resonance at about 90 mV for the intrinsic / - V
curve represents the current from tunneling between the ground sublevel of QW1 and the
second sublevel of QW2, using the same J value for comparison with the first resonance
current. The actnal tunneling integral for this case is expected to be larger than that

between the ground sublevels.

V. CONCLUSIONS

We presented a theory for nonequilibrium 2D-2D tunneling between double electron
layers separated by a wide barrier when the chemical potentials of the two electron gases
are arbitrarily biased. Initially, an intuitive but rigorous second-order perturbation theory
was established based on a transition-rate approach. The result was used for a numerical
evaluation of the I-V relationship. Contributions from electron-impurity, electron-electron,

and electron-phonon interactions have been considered. The validity of this treatment was
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examined using a field-theoretic formalism by expressing the tunneling current as a veloc-
ity-velocity correlation function. The correlatidn function was then evaluated employing a
standard temperature-ordered Green’s function technique. The formalism is exact to the
second order in the tunneling integral and to all orders iﬁ the interactions. It is similar to
that of a linear response theory and useful for a systematic study of higher-order effects.
The numerical results were compared with recent experimental data from
GaAs/Al,Ga,_,As double quantum wells at 77 K. These data show a large peak-to-valley
ratio in the I-V curve, yielding a first demonstration of a DELTT at 77 K. Numerically, a
large peak-to-valley ratio was obtained at 300 K predicting the feasibility of room temper-

ature DELTT s.
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Figure Captions
Fig. 1 Second-order two-step processes for tunnelirig through electron-impurity and elec-

tron-phonon interactions (black dots). Tunneling takes place (a) after and (b) before

the interaction.

Fig. 2 Second-order two-step processes for tunneling through electron-electron interaction

(wiggly vertical lines). Tunneling takes place (a) after and (b) before the interaction.

Fig. 3 Major contributions to the current correlation function. (a) Bubble diagram, (b)
One-impurity-rung diagram (dashed horizontal line with a cross), (c)
One-phonon-rung (wavy horizontal line) diagram and (d) electron-electron

self-energy part. The wiggly curves represent screened electron-electron interaction

in the random phase approximation.
Fig. 4 Tunneling current as a function of the voltage drop between the layers at 0 K.
Fig. 5 Tunneling current as a function of the voltage drop between the layers at 77 K.
Fig. 6 Tunneling current as a function of the voltage drop between the layers at 300 K.

Fig. 7 Total tunneling current as a function of the voltage between the layers at T=0, 77
and 300 K. The solid curve represents the intrinsic total current at 300 K in the

absence of impurity scattering and includes tunneling from the ground sublevel of

QW1 to the second sublevel of QW2.
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