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Abstract: Composites of carbon black particles in polyethylene are known to exhibit an

unusually rapid increase in resistivity as the applied field is increased, making this

material useful in automatically resettable fuses. In this application the composite is in
series with the circuit it is protecting: at low applied voltages this circuit is the load, but at
high applied voltages the composite becomes the load, limiting the current to the circuit.
We present a simple model of this behavior in terms of a network of nonlinear
conductors. Each conductor has a conductance that depends on its instantaneous Joule
heating. It is shown that in the fusing regime, where the current through the composite
decreases with increasing voltage, an plate-like dissipation instability develops normal to

the applied field. Experimental evidence of this phenomena is described.r
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Introduction

The electrical conductivity of composites of conducting carbon-black particles in a solid
insulating polymeric matrix has been a subject of recent interest, due to the applications
of this material to automatically resettable fuses and self-regulating heating elements.
The novel property of this material is its extremely large, positive thermal coefficient of
resistance, which is roughly understood as follows. At sufficiently high concentrations of
carbon black, percolating paths of particles conduct current. The contact resistance of
these particles is sensitively dependent on the gap between particles, and when the
temperature of the composite is increaséd, the polymer expands, separating the particles
slightly, and greatly increasing the resistivity of the composite. Heaney [1,2] has
conducted careful experiments of this temperature dependence and has found a very
abrupt increase in the resistance at 133°C, which he has demonstrated is related to the
sudden specific volume increase that accompanies melting of the partially crystalline
polymer matrix. In fact, when the resistance is plotted against the thickness of the
sample, a smooth, superexponential dependence of the resistiyity is found.

To understand Heaney's data, various microscopic models have been proposed,
e.g. some suggesting that the contact resistance between particles can be modeled by
quantum mechanical tunneling currents, which are exponentially dependent on the
particle gaps [3]. Likewise, one could model the system classically, since the contact
resistance between spherical particles in a percolative conducting path depends inversely
on the gap between them. However, because the particles are rough, classical edge

singularities occur in the electrical field at the particle surfaces, so the situation is




probably quite complex. These models have not taken into account the strong feedback
that can occur in network models that can fail catastrophically. Resistor-Short models,
where a resistor becomes a short when a critical voltage drop is exceeded, have been
shown to give a reasonable account of the dielectric breakdown behavior in materials,
especially when fluctuations are admitted into the model [4-6]. Likewise, Resistor-Fuse
models, where a resistor becomes a fuse when a critical current is exceeded, have been
shown to give a reasonable description of the mechanical fracture of materials [6].
Resistor-Short models show catastrophic behavior (strong positive feedback) when the
device is voltage driven, whereas Resistor-Fuse models show catastro‘phic,’ hard fu‘sing
behavior when the deyice is current driven. We believe an approach of this type
describes some of the complex physics of conducting-particle composites, which exhibit
a sort of progressive soft fusing.

Rather than coﬂsider a specific microscopic model of this phenomena, we simply
start with the point of view that the temperature dependence of the contact resistance is
large. We then suggest a simple, generic nonlinear network model and éhow that this
leads to a 2-dimensional heat dissipation instability when the voltage applied to this
device is quickly ramped up. These instabilities occur in the regime where the resistivity
increases quickly enough with applied voltage to limit the current through the device, and
thus appear to be an inextricable aspect of soft fusing. In the following we describe the
non-linear network model, consider instabilities that occur in series networks, and apply

this model to simulated hard sphere composites.

Theory




A tremendous amount of work has been done on electrical network models, most of
which has focused on the conductivity singularity that exists at the percolation threshold,
[7-8] but some of which has focused on various types of catastrophic behavior mentioned
above. Here we propose a primitive nonlinear network model of "soft" fusing. The
physical basis of this model is the aforementioned experiments of Heaney, [1,2] which
show a strong increase of the resistivity of the composite with temperature. In these
experiments the sample was heated uniformly in an oven, and a small voltage was
applied to measure the resistance. In the model we propose, the strong temperature
dependence of the resistivity plays a central role, but it is the applied voltage alone that
heats the sample.

When a carbon black composite is used as a resettable fuse, it is electrically in
series with the circuit it is protecting. Under normal operating conditions, the resistance
of the circuit is greater than that of the fuse, so the voltage drop across the fuse is small.
However, should a short occur, the resistance of the fuse will become much greater than
the remaining electrical path to ground and the voltage drép will occur across the
composite. Thus we treat the composite as a voltage controlled device and consider how
its resistivity increases with appiied voltage. If the applied voltage is ramped up, then the
Joule heating produced at the resistive contact between two carbon black particles will
raise the temperature locally, causing the temperature to rise in that region, which further
increases the contact resistance. As the temperature increases, a steady state situation
.will evolve, and the local temperature will be determined by the balance of heat

production and diffusion, provided the applied voltage is quasi-static on the timescale




required to reach steady state. On the other hand, if the applied voltage is increased very
rapidly, the situation is quite complex, with the local temperature determined by the time

integral of the Joule heating.

Thermal Fusing Model. We model this system qualitatively by a network of nonlinear
conductors. Each conductor represents the contact resistance between carbon black
particles in contact, so the carbon black particles are the nodes of the network. The

conductance of each bond we will write as
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where i is the current across the conductor, Av is the voltage drop, iAv is the Joule
heating, and « is an exponent that determines how rapidly the conductance changes with

heat production. At low values of Av the conductance of a bond is just the constant g,

—2a

whereas at high values of Av the conductance scales like g o< Avive

The unstable nature of networks of these non-linear elements can be understood
by considering just two conductors in series, labeled as in Figure 1. For simplicity, we
set v, = 1. One node is at ground potential, one is at an applied potential V, and the
potential of the central node, v,, is to be determined numerically, by an iterative
Laplacian relaxation. To do this, one first guesses the potential of thé central node, and

then determines the conductances g, and g, from Eq. 1, with Av, =v, and Av, =V —v,.




The next approximation to the correct value of the floating potential will then be given by

solving the conductance-weighted average of the neighboring potentials, that is
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The difference Av, =V} —v, is therefore the correction to the estimated voltage, and
underStanding how this difference depends on v, for various values of the exponent « and
the applied voltage V illustrates the nature of the instabilities involved.

In Figure 2 we show the stability plot for the casé where o = 1/2. 1In this case
there is only a single sfable value of v, = V/Z, and when the estimated value of v, is too
small, the correction is positive, so that successive iterations Will lead to this stable value,
regardless of the applied voltage. Likewise, when the estimated value of v, 1s too large,
the correction is negative, and successive iterations will again lead to v, = V/2. When the
exponent & = 2, this completely stable behavior is altered, Figure 3. Only for applied
voltages less than ~2.84 is a stable regime now observed, where only the single solution
v, =V/2 is found For larger values of the applied voltage, the solution v, = V/2 becomes
unstable, since the derivative dAv,/dv,becomes positive, and two symmetrically
disposed stable solutions appear With negative values of dAv, /dv,. Thus at high applied

voltages, an instability occurs where essentially all the voltage drop will be over one

i =2
conductor of very low conductance g o< V'**, and the other conductor will have g = 1.

The exponent & = 1 marks the boundary of stable and unstable nonlinear network models,

Figure 4. In this case there is a single stable solution at v, = V/2, but at high applied




voltages the derivative dAv,/dv, vanishes in the vicinity of the solution. Thus voltage
fluctuations can be expected to be quite large in a network with o= 1, and solving

numerical problems in this limit with fixed numerical precision limits one to applied

voltages beneath some threshold value.

Fluctuations. The model just described lacks fluctuations, and clearly these can be
important in real physical systems. Fluctuations can be introduced in the voltage
crossover term v, or in the scale of the conductance g,. In some of the following
simulations we introduced fluctuations into g, to avoid numerical problems associated
‘With defining particles in contact with thé electrodes, as discussed below. Introducing

these fluctuations has one subtle effect - the & = 1 case shows an instability.
Results

Series networks. Numerical solutions to simple series networks are instructive. It is
worth pointing out to those that might be interested in pursuing this model that these
computations require unusually high numerical accuracy. For example, we found it
necessary to solve Eq. 1 for the conductances to full double precisioﬁ accuracy using a
variety .of initial guesses and iterative schemes, depending on the value of . We then
used a Laplacian over-relaxation method with local update and an over-correction factor
of 1.94 to relax the node voltages.

With the exponent ¢ = 1 the results are shown in Figure 5 for a network of N=10

conductors in series. As the voltage is increased the network remains stable, in that the




conductors all have equal potential drops, and thus equal conductances. The network

conductance is then trivially G™ =2 g”,s0 G=g/N. Solving Eq. 1 for g gives the

result
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for V>> Ny, 3)

Thus in this special case the conductance becomes independent of the network size in the
non-linear regime. In this regime the current is then just given by I = GV = g,v,, and is
thus independent of the applied voltage. The Joule heating P does increase with applied
voltage, however, and is P =1V = g v, V.

The case where o = 2, shown in Figure 6, is more interésting, and prdbably much
more relevant to real materials. The voltage drops across each of the 10 conductors
remain equal until the applied voltage reaches a critical value, at which point an
instability occurs and very rapidly essentially all of the voltage drop ends up across a
single conductor, and the other conductors end up with conductances close to 1. In fact,
studies of various system sizes shows that the limit of stability actually occurs at a fixed

electric field, which makes good sense physically: For these large voltages this leads to
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so that the current actually decreases with the applied voltage as
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and the dissipation increases as

2a =
P =g voari V!, (6)

Within the context of this powef—law Thermal Fusing model, the strongest soft fusing
behavior occurs when ¢ is infinite, whereupon G ~ V™, I~V™ and P~ V°. Note that
in this limit the power dissipation actually becomes independent of the applied voltage.
Numerically computed currents are shown in Figure 7 for selected values of a. It is
noteworthy that just when the nonlinear behavior is strong enough to actually cause the |

current to decrease with applied voltage, i.e. a=1, the dissipation instability occurs.

Simulated composites. The structure of carbon black/polymer composites is complex,
apparently consisting of large carbon black aggregates that percolate to form a
conducting network. The experimentally determined percolation threshold [9,10] for this
system is ca. ¢ = 17 vol. %, so it is clear that the particle positions are strongly correlated,
given that in a random hard sphere system the peréolation threshold occurs at the random
close pack concentration of 64 vol. %.

Rather than try to model the structure of these complex correlated materials we
took a simpler approach and generated random hard sphere systems at various
concentrations well beneath random close packed. These systems will not percolate if
one insists that only perfectly contacting spheres have conducting pathways between
them, so to map these systems onto a conducting network, we simply defined a nonzero
threshold for the particle gaps that qualify as condﬁcting paths. Particles closer than this

threshold are considered to have a conducting path between them. Choosing this

threshold particle gap to be 2.5% of the particle diameter then gives a percolation




threshold of ca. 42 vol. %, and in point of fact, the value we choose is completely
arbitrary, being immaterial to all of the iésues that follow. With this choice of the particle
gap, the dependence of the linear conductivity (fixed conductances) on particle volume
fraction is shown in Figure 8. |

To investigate the dissipation instabilities that can occur in these systems we set o
= 2 and slowly ramped up the applied potential. Results well above the percolation
threshold were computed for a system at ¢ = 55 vol. %. In Figure 9a we show a
visualization of the particle voltages for a large applied voltage that is well into the
unstable region. A roughly two-dimensional zone perpendicular to the applied field can
be observed over which essentially all the voltage drop occurs. In Figure Sb we visualize
the zone of dissipation, and the plate-like nature of this zone becomes more apparent.
The dependence of the conductance and current on the applied voltage are shown in
Figures 10a&b.

At this point a word of explanation is in order. We found that with the simple
model that did not include conductance fluctuations, the plate-like instability always
occurred at an electrode. This we attribute to the fact that the particles at an electrode are
at fixed potential and create a rough boundary condition that is subtly special. To
eliminate this tendency, we introduced small ﬂuctuatiéns into the conductances, which
are certainly reasonable from a physical standpoint.

Closer to the percolation threshold, this zone becomes broader, probably
increasing as the connectivity correlation length in the material, which diverges at the
percolation threshold. The zone of dissipaﬁon also decreases to just a few parﬁcles, dué

to the tenuous nature of percolating pathways close to the threshold. For samples near
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the percolation the currents are shown as functions of the applied voltage in Figure 11.
Proximity to the percolation ‘threshold does not appear to cause the 6nset of nonlinear
behavior to occur at smaller vbltages, but this is really a little misleading. Very close to
the critical point such an effect should be observed, since the length of a conducting path
that traverses the sample will increase. Networks near the percolation threshold do have
much smaller maximum currents, and will act as much more sensitive fuses, because
these will act as the load at much smailer circuit conductance, due to their lower
conductance. The maximum current near the percolation threshold will scale as the

conductivity in this model.
Discussion

The principal finding we have made is that in the regime where the fusing
behavior is strong enough to cause the current to decrease with increasing voltage, an
instability develops wherein dissipation occurs in a plate-like zone orthogonal to the
applied field. This plate-like failure occurs at a fixed field in the sample, essentially
iﬁdependent of the proximity to the percolation threshold. It is in this unstable region
where the voltage drop and dissipaﬁon occurs. In real materials the formation of this
plate-like zone should have a tremendous impact on the rate of fusing: because Joule
heating is essentially confined to this region, the temperature rise should be very fast,
causing fusing to occur very quickly.

Does this plate-like instability occur in real composite systems? In fact, infrared

imaging of carbon black composites during fusing actually show this plate-like




instability, and so this model describes some aspects of the physics of these devices. But
this limited success, should not be lead one to believe that this Thermal Fusing model is a
realistic description of the actual device. A more realistic description of autnomatically
resettable fuses should enable the prediction of the device dynamics, and this is a
complex issue involving heat productioﬂ and thermal diffusion that is beyond the scopé
of this model, and would probably require full scale, finite element modeling of the

material.
Conclusions

We have proposed é non-linear network model for the fusing behavior of carbon
black/polymer compoéites, wherein the conductance of the network elements depends on
their Joule heating in a power law fashion at high applied voltages. The underlying
motivation for this model is experiments reported by Heaney [1-2] that conclusively
»show that the conductivity of these composites is a smooth, strong function of the thermal
expansion of the material, which increases the contact resistance between carbon black
particles. This model is solved for 1-D series networks and a dissipation instability is
shown to occur when the current through the network actually decreases with increasing
applied voltage. In the strong fusing limit of this model, the conductance decreases as the
inverse square of the applied voltage at high applied voltages, the current decreases as the
inverse voltage, and the Joule heating in the composife is independent of the voltage.

~ Networks constructed from random hard sphere composites show that in 3-D

networks this dissipation instability is plate-like, and roughly orthogonal to the field.
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Experimental measurements using thermal imaging confirm the development of the
dissipation instability during fusing behavior. The existence of this instability should
make these devices fuse much more rapidly than if this instability did not occur, since
heating is confined to a small region in the sample. Because the width of this zone
should scale as the connectivity correlation length of the material, one would guess that
the device dynamics would be sensitive to the particle size, with small particle systems
fusing more rapidly.

Finally, the field at which the instability occurs is insensitive to the percolation
threshold, but the maximum current that can be fransmitted through the device should
scale as the material conductivity, i.e. should obey a second-order critical point behavior,

and so in practical applications these devices should become more sensitive near the

percolation threshold.
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Figure Captions

1. The series network of two nonlinear conductors used to illustrate the emergence of
instabilities. V 1s the applied potential, and g the conductances.

2. When the exponent o in Eq. 1 is less than 1.0 (in this case a=0.5) the voltage of the
central node is always stable, regardless of the applied potential. Furthermore, Av,
increases with the applied potential V.

3. When the exponent ¢ in Eq. 1 is greater than 1.0 (in this case =2) an instability
develéps at the central node as the applied voltage increases. This instability occurs
when the derivative dv,/dV changes sign from negative to positive, which occurs in
this case at V=2.84.

4. The case =1 is at the edge of stability. At high applied voltages the derivative
dAv, /dv, approaches 0, so that essentially any value of v, is essentially a solution.
In this case large voltage ﬂuctuatiqns can be expected tc; be observed in the floating
potential nodes, and the system is quite sensitive to fluctuations in the éonductances
g, and their crossover voltages v,. Numerically, this problem is quite difficult to
solve, requiring ever increasing numerical accuracy as the applied field increases.

5. A series network of 10 conductors solved for the case a=1. The node voltages are
stable, and the network conductance is inversely proportional to the applied Volfage.

6. A series network of 10 conductors solved for the case o=2 illustrates the emergence of

a dissipation instability. The network conductance is inversely proportional to the

v,




A comparison between the computed I-V characteristics yof stable and unstable
network models, in this case series networks of 10 conductors, shows that the
emergence of dissipation instabilities occurs when the thermal fusing is stroﬁg
enough to reduce the current with increasing voltage.

8. The conductivity as a function of hard sphere volume fraction ¢ when particles with
gaps smaller than 2.5% of the vparticle diameter D have a contact resistance c. Here L
is the size of the simulétion volume. The conductivity is zero until the percolation
threshold ¢,, whereupon it increases roughly quadratically with ¢-¢..

9. é) The node potentials are visualized for a system of 10,000 hard spheres at 55 vol.
%, with a large applied voltage and a=2. The ground electrode is at the bottom and
the high potential electrode at the top. Ground potential particles are colored blue,
and the color then increases with potential from blue to red to yellow to white.
Essentially all of the balls are either blue or white, due to the formation of an
instability. b) Thus all the voltage drob occurs over a narrow 2-D region, and this is
where power dissipation occurs. In this visualization the particle volume is
proportional to the power dissipation of the conductors to which it is a node. Particles
that essentially do not dissipate are shown in a reduced size.

10. a) The conductance of the 3-D random network of Figure 9 is shown, with the field
applied along the 3 orthogonal axes. As expected, this conductance decreases as V*°.
b) The current is shown, which decreases as V'~

11. Results near the percolation threshold show that the voltage where fusing starts is

essentially independent of particle concentration, so that the maximum current is

proportional to the conductivity.
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