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Abstract: Composites of carbon black particles in polyethylene

unusually rapid increase in resistivity as the applied field is
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are known to exhibit an

increased, making this

material useful in automatically resettable fuses. In this application the composite is in

series with the circuit it is protecting: at low ‘applied voltages this circuit is the load, but at

high applied vokages the composite becomes the load, limiting the current to the circuit.

We present a simple model of this behavior in terms of a network of nonlinear

conductors. Each conductor has a conductance that depends on its instantaneous Joule

heating. It is shown that in the fusing regime, where the current through the composite

decreases with increasing voltage, an plate-like dissipation instability develops normal to

the applied field. Experimental evidence of this phenomena is described.
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Introduction

The electrical conductivity of composites of conducting carbon-black particles in a solid

insulating polymeric matrix has been a subject of recent interest, due to the applications

of this material to automatically resettable fuses and self-regulating heating elements.

The novel property of this material is its extremely large, positive thermal coefficient of

resistance, which is roughly understood as follows. At sufficiently high concentrations of

carbon black, percolating paths of particles conduct current. The contact resistance of

these particles is sensitively dependent on the gap between particles, and when the

temperature of the composite is increased, the polymer expands, separating the particles

slightly, and greatly increasing the resistivity of the composite. Heaney [1,2] has

conducted careful experiments of this temperature dependence and has found a very

abrupt increase in the resistance at 133°C, which he has demonstrated is related to the

sudden specific volume increase that accompanies melting of the partially crystalline

polymer matrix.

sample, a smooth,

In fact, when the resistance is plotted against the thickness of the

superexponential dependence of the resistivity is found.

To understand Heaney’s data, various microscopic models have been proposed,

e.g. some suggesting that the contact resistance between particles can be modeled by

quantum mechanical tunneling currents, which are exponentially dependent on the

particle gaps [3]. Likewise, one could model the system classically, since the contact

resistance between spherical particles in a percolative conducting path depends inversely

on the gap between them. However, because the particles are rough, classical edge

singularities occur in the electrical field at the particle surfaces, so the situation is
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probably quite complex. These models have not taken into account the strong feedback

that can occur in network models that can fail catastrophically. Resistor-Short models,

where a resistor becomes a short when a critical voltage drop is exceeded, have been

shown to give a reasonable account of the dielectric breakdown behavior in materials,

especially when fluctuations are admitted into the model [4-6]. Likewise, Resistor-Fuse

models, where a resistor becomes a fuse when a critical current is exceeded, have been

shown to give a reasonable description of the mechanical fracture of materials [6].

Resistor-Short models show catastrophic behavior (strong positive feedback) when the

device is voltage driven, whereas Resistor-Fuse models show catastrophic, hard fusing

behavior when the device is current driven. We believe an approach of this type

describes some of the complex physics of conducting-particle composites, which exhibit

a sort of progressive soft fusing.

Rather than consider a specific microscopic model of this phenomena, we simply

start with the point of view that the temperature dependence of the contact resistance is

large. We then suggest a simple, generic nonlinear network model and show that this

leads to a 2-dimensional heat dissipation instability when the voltage applied to this

device is quickly ramped up. These instabilities occur in the regime where the resistivity

increases quickly enough with applied voltage to limit the current through the device, and

thus appear to be an inextricable aspect of soft fusing. In the following we describe the

non-linear network model, consider instabilities that occur in series networks, and apply

this model to simulated hard sphere composites.
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A tremendous amount of work has been done on electrical network models, most of

which has focused on the conductivity singularity that exists at the percolation threshold,

[7-8] but some of which has focused on various types of catastrophic behavior mentioned

above. Here we propose a primitive nonlinear network model of “soft” fusing. The

physical basis of this model is

show a strong increase of the

the aforementioned experiments of Heaney, [1,2] which

resistivity of the composite with temperature. In these

experiments the sample was heated uniformly in an oven, and a small voltage was

applied to measure the resistance. In the model we propose, the strong temperature

dependence of the resistivity plays a central role, but it is the applied voltage alone that

heats the sample.

When a carbon black composite is used as a resettable fuse, it is electrically in

series with the circuit it is protecting. Under normal operating conditions, the resistance

of the circuit is greater than that of the fuse, so the voltage drop across the fuse is small.

However, should a short occur, the resistance of the fuse will become much greater than

the remaining electrical path to ground and the voltage drop will occur across the

composite. Thus we treat the composite as a voltage controlled device and consider how

its resistivity increases with applied voltage. If the applied voltage is ramped up, then the

Joule heating produced at the resistive contact between two carbon black particles will

raise the temperature locally, causing the temperature to rise in that region, which further

increases the contact resistance. As the temperature increases, a steady state situation

will evolve, and the local temperature will be determined by the balance of heat

production and diffusion, provided the applied voltage is quasi-static on the timescale
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required to reach steady state. On the other hand, if the applied voltage is increased very

rapidly, the situation is quite complex, with the local temperature determined by the time

integral of the Joule heating.

Thermal Fusing Model. We model this system qualitatively by a network of nonlinear

conductors. Each conductor represents the contact resistance between carbon black

particles in contact, so the carbon black particles are the nodes of the network. The

conductance of each bond we will write as

g= go

1+ c(iAv)” =1+ [(g/ go;Av/vO)2]”
(1)

where i is the current across the conductor, Av is the voltage drop, iAv is the Joule

heating, and cxis an exponent that determines how rapidly the conductance changes with

heat production. At low values of Av the conductance of a bond is just the constant g,,,

–2a
whereas at high values of Av the conductance scales like g cc Avl+”.

The unstable nature of networks of these non-linear elements can be understood

by considering just two conductors in series, labeled as in Figure 1.. For simplicity, we

set VO= 1. One node is at ground potential, one is at an applied potential V, and the

potential of the central node, V2, is to be determined numerically, by an iterative

Eaplacian relaxation. To do this, one first guesses the potential of the central node, and
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The next approximation to the correct value of the floating potential will then be given by

solving the conductance-weighted average of the neighboring potentials, that is

v;=g,xo+g2xv
gl + g2

(2)

The difference AV2= v; – Vz is therefore the correction to the estimated voltage, and

understanding how this difference depends on V2for various values of the exponent a and

the applied voltage V illustrates the nature of the instabilities involved.

In Figure 2 we show the stability plot for the case where a = 1/2. In this case

there is only a single stable value of V2= V/2, and when the estimated value of V2is too

small, the correction is positive, so that successive iterations will lead to this stable value,

regardless of the applied voltage. Likewise, when the estimated value of Vzis too large,

the correction is negative, and successive iterations will again lead to V2= V/2. When the

exponent a = 2, this completely stable behavior is altered, Figure 3. Only for applied

voltages less than -2.84 is a

Vz= V/2 is found For larger

stable regime now observed, where only the single solution

values of the applied voltage, the solution V2= V/2 becomes

unstable, since the derivative dAv2 / dv2 becomes positive, and two symmetrically

disposed stable solutions appear with negative values of dAvz / dv2. Thus at high applied

voltages, an instability occurs where essential y all the voltage drop will be over one

-2(Z
conductor of very low conductance g cc V “a, and the other conductor will have g s 1.

The exponent a = 1 marks the boundary of stable and unstable nonlinear network models,

Figure 4. In this case there is a single stable solution at V2= V/2, but at high applied
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voltages the derivative dAv2 / dvz vanishes in the vicinity of the solution. Thus voltage

fluctuations can be expected to be quite large in a network with as 1, and solving

numerical problems in this limit with fixed numerical precision limits one to applied

voltages beneath some threshold value.

Fluctuations. The model just described lacks fluctuations, and clearly these can be

important in real physical systems. Fluctuations can be introduced in the voltage

crossover term VOor in the scale of the conductance gO. In some of the following

simulations we introduced fluctuations into gOto avoid numerical problems associated

with defining particles in contact with the electrodes, as discussed below. Introducing

these fluctuations has one subtle effect - the a = 1 case shows an instability.

Results

Series networks. Numerical solutions

worth pointing out to those that might

to simple series networks are instructive. It is

be interested in pursuing this model that these

computations require unusually high numerical accuracy. For example, we found it

necessary to solve Eq. 1 for the conductance to full double precision accuracy using a

variety of initial guesses and iterative schemes, depending on the value of at We then

used a Laplacian over-relaxation method with local update and an over-correction factor

of 1.94 to relax the node voltages.

With the exponent ix= 1 the results are shown in Figu~e 5 for a network of N= 10

conductors in series. As the voltage is increased the network remains stable, in that the
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conductors all have equal potential drops, and thus equal conductance. The network

conductance is then trivially G-l = ~ g-l, so G = g/ N. Solving Eq. 1 for g gives the

result

G=J+4WNJ-1=,03for ~>>~v (3)

N (/ )
2 v o

‘2 VNV
o

Thus in this special case the conductance becomes independent of the network size in the

non-linear regime. In this regime the current is then just given by 1 = GV = gOvo,and is

thus independent of the applied voltage. The Joule heating P does increase with applied

voltage, however, and is P = IV = govoV.

The case where a = 2, shown in Figure 6, is more interesting, and probably much

more relevant to real materials. The voltage drops across each of the 10 conductors

remain equal until the applied voltage reaches a critical value, at which point an

instability occurs and very rapidly essentially all of the voltage drop ends up across a

single conductor, and the other conductors end up with conductance close to 1. In fact,

studies of various system sizes shows that the limit of stability actually occurs at a fixed

electric field, which makes good sense physically. For these large voltages this leads to

so that the current actually decreases with the applied voltage as -

2a
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and the dissipation increases as

2—
P s govo%v”+’ . (6)

Within the context of this power-law Thermal Fusing model, the strongest soft fusing

behavior occurs when ct is infinite, whereupon G - V-2, I - V-l, and P - VO. Note that

in this limit the power dissipation actually becomes independent of the applied voltage.

Numerically computed currents are shown in Figure 7 for selected values of a. It is

noteworthy that just when the nonlinear behavior is strong enough to actually cause the

current to decrease with applied voltage, i.e. a= 1, the dissipation instability occurs.

Simulated composites. The structure of carbon blacldpolymer composites is complex,

apparently consisting of large carbon black aggregates that percolate to form a

conducting network. The experimentally determined percolation threshold [9, 10] for this

system is ca. @= 17 vol. %, so it is clear that the particle positions are strongly correlated,

given that in a random hard sphere system the percolation threshold occurs at the random

close pack concentration of 64 vol. 5%.

Rather than try to model the structure of these complex correlated materials we

took a simpler approach and generated random hard sphere systems at various

concentrations well beneath random close packed. These” systems will not percolate if

one insists that only perfectly contacting spheres have conducting pathways between

them, so to map these systems onto a conducting network, we simply defined a nonzero

threshold for the particle gaps that qualify as conducting paths. Particles closer than this
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threshold are considered to have a conducting path between them. Choosing this

threshold particle gap to be 2.5910 of the particle diameter then gives a percolation



threshold of ca. 42 vol. ‘7i0,and in point of fact, the value we choose is completely

arbitrary, being immaterial to all of the issues that follow. With this choice of the particle

gap, the dependence of the linear conductivity (fixed conductance) on particle volume

fraction is shown in Figure 8.

To investigate the dissipation instabilities that can occur in these systems we set a

= 2 and slowly ramped up the applied potential. Results well above the percolation

threshold were computed for a system at @= 55 vol. $%. In Figure 9a we show a

visualization of the particle voltages for a large applied voltage that is well into the

unstable region. A roughly two-dimensional zone perpendicular to the applied field can

be observed over which essentially all the voltage drop occurs. In Figure 9b we visualize

the zone of dissipation, and the plate-like nature of this zone becomes more apparent.

The dependence

Figures 10a&b.

of the conductance and current on the applied voltage are shown in

At this point a word of explanation is in order. We found that with the simple

model that did not include conductance fluctuations, the plate-like instability always

occurred at an electrode. This we attribute to the fact that the particles at an electrode are

at fixed potential and create a rough boundary condition that is subtly special. To

eliminate this tendency, we introduced small fluctuations into the conductance, which

are certainly reasonable from a physical standpoint.

Closer to the percolation threshold, this

increasing as the connectivity correlation length in
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zone becomes broader, probably

the material, which diverges at the

percolation threshold. The zone of dissipation also decreases to just a few particles, due

to the tenuous nature of percolating pathways close to the threshold. For samples near
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the percolation the currents are shown as functions of the applied voltage in Figure 11.

Proximity to the percolation threshold does not appear to cause the onset of nonlinear

behavior to occur at smaller voltages, but this is really a little misleading. Very close to

the critical point such an effect should be observed, since the length of a conducting path

that traverses the sample will increase. Networks near the percolation threshold do have

much smaller maximum currents, and will act as much more sensitive fuses, because

these will act as the load at much smaller circuit conductance, due to their lower

conductance. The maximum current near the percolation threshold will scale as the

conductivity in this model.

Discussion

The principal finding we have made is that in the regime where the fusing

behavior is strong enough to cause the current to decrease with increasing voltage, an

instability develops wherein dissipation occurs in a plate-like zone orthogonal to the

applied field. This plate-like failure occurs at a fixed field in the sample, essentially

independent of the proximity to the percolation threshold. It is in this unstable region

where the voltage drop and

plate-like zone should have

dissipation occurs. In real materials the formation of this

a tremendous impact on the rate of fusing: because Joule

heating is essentially confined to this region, the temperature rise should

causing fusing to occur very quickly.

Does this plate-like instability occur in real composite systems? In

be very fast,

fact, infrared

imaging of carbon black composites during fusing actually show this plate-like
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instability, and so this model describes some aspects of the physics of these devices. But

this limited success, should not be lead one to believe that this Thermal Fusing model is a

realistic description of the actual device. A more realistic description of automatically

resettable fuses should enable the prediction of the device dynamics, and this is a

complex issue involving heat production and thermal diffusion that is beyond the scope

of this model, and would probably require full scale, finite element modeling of the

material.

Conclusions

We have proposed a non-linear network model for the fusing behavior of carbon

blacldpolymer composites, wherein the conductance of the network elements depends on

their Joule heating in a power law fashion at high applied voltages. The underlying

motivation for this model is experiments reported by Heaney [1-2] that conclusively

show that the conductivity of these composites is a smooth, strong function of the thermal

expansion of the material, which increases the contact resistance between carbon black

particles. This model is solved for 1-D series networks and a dissipation instability is

shown to occur when the current through the network actually decreases with increasing

applied voltage. In the strong fusing limit of this model, the conductance decreases as the

inverse square of the applied voltage at high applied voltages, the current decreases as the

inverse voltage, and the Joule heating in the composite is independent of the voltage.

Networks constructed from random hard sphere composites show that in 3-D

networks this dissipation instability is plate-like, and roughly orthogonal to the field.
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Experimental measurements using thermal imaging confirm the development of the

dissipation instability during fusing behavior. Theexistence ofthis instability should

make these devices fuse much more rapidly than if this instability did not occur, since

heating is confined to a small region in the sample. Because the width of this zone

should scale as the connectivity correlation length of the material, one would guess that

the device dynamics

fusing more rapidly.

would be sensitive to the particle size, with small particle systems

Finally, the field at which the instability occurs is insensitive

threshold, but the maximum current that can be transmitted through

to the percolation

the device should

13

scale as the material conductivity, i.e. should obey a second-order critical point behavior,

and so in practical applications these devices should become more sensitive near the

percolation threshold.
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Figure Captions

1.

2.

3.

4.

5.

6.

The series network of two nonlinear conductors used to illustrate the emergence of

instabilities. V is the applied potential, and g the conductance.

When the exponent ct in Eq. 1 is less than 1.0 (in this case a=O.5) the”voltage of the

central node is always stable, regardless of the applied potential. Furthermore, Avz

increases with the applied potential V.

When the exponent a in Eq. 1 is greater than 1.0 (in this case CX=2)an instability

develops at the central node as the applied voltage increases. This instability occurs

when the derivative dvJdV changes sign from

this case at VS2.84.

The case cc=1 is at the edge of stability. At

negative to positive, which occurs in

high applied voltages the derivative

dAvz / dvz approaches O, so that essentially any value of V2is essentially a solution.

In this case large voltage fluctuations can be expected to be observed in the floating

potential nodes, and the system is quite sensitive to fluctuations in the conductance

gOand their crossover voltages VO. Numerically, this problem is quite difficult to

solve, requiring ever increasing numerical accuracy as the applied field increases.

A series network of 10 conductors solved for the case ct=l. The node voltages are

stable, and the network conductance is inversely proportional to the applied voltage.

A series network of 10 conductors solved for the case CZ=2illustrates the emergence of

a dissipation instability. The network conductance is inversely proportional to the

v4i3.
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7. A comparison between the computed I-V characteristics of stable and unstable

network models, in this case series networks of 10 conductors, shows that the

emergence of dissipation instabilities occurs when the thermal fusing is strong

enough to reduce the current with increasing voltage.

8. The conductivity as a function of hard sphere volume fraction @when particles with

gaps smaller than 2.5% of the particle diameter D have a contact resistance c. Here L

is the size of the simulation volume. The conductivity is zero until the percolation

threshold @c,whereupon it increases roughly quadratically with @@C.

9. a) The node potentials are visualized for a system of 10,000 hard spheres at 55 vol.

%, with a large applied voltage and CC=2. The ground electrode is at the bottom and

the high potential electrode at the top. Ground potential particles are colored blue,

and the color then increases with potential from blue to red to yellow to white.

Essentially all of the balls are either blue or white, due to the formation of an

instability. b) Thus all the voltage drop occurs over a narrow 2-D region, and this is

where power dissipation occurs. In this visualization the particle volume is

proportional to the power dissipation of the conductors to which it is a node. Particles

that essentially do not dissipate are shown in a reduced size.

10. a) The conductance of the 3-D random network of Figure 9 is shown, with the field

applied along the 3 orthogonal axes. As expected, this conductance decreases as V4’3.

b) The current is shown, which decreases as V1n.

11. Results near the percolation threshold show that the

essentially independent of particle concentration, so

16

voltage where fusing starts is

that the maximum current is

proportional to the conductivity.
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