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Abstract

A linear least-squares procedure for the determination of modal residues using time-domain system

realization theory is presented. The present procedure is shown to be theoretically equivalent to residue

determination in realization algorithms such as the Eigensystem Realization Algorithm (ERA) and Q-

Markov COVER. However, isolating the optimal residue estimation problem from the general realization
problem affords several advantages over standard realization algOrifhfns for structural dynamics identifi-
cation. Primary among these are the ability to identify data sets with large numbers of sensors using small
numbers of reference point responses, and the inclusion of terms which accurately model the effects of
residual flexibility. The accuracy and efficiency of the present realization theory-based procedure is dem-

onstrated for both simulated and experimental data.
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I. Introduction

Research in structural identification in recent years has lead to a proliferation of algorithms based upon
system realization theory!. These “modern” system identification techniqués“ have important direct ap-
plications to structural control, such as identification and order reduction of input-output models for robust
control and adaptive on-line identification for nonlinear systems control. These algorithms all realize a
model by minimizing some measure of the difference between the measured and reconstructed discrete-
time impulse response functions, heretofore referred to as Markov parameters. In contrast to many classi-
cal modal identification techniques, the system realiiation algorithms are time domain techniques and are
generally applicable to multiple-input multiple-output (MIMO) measured data systems.

These algorithms have arguably attracted the most attention for their use in modal test data analysis
and reduction for identification of structural parameters>9. There are a number of reasons for this. First,
these methods are fairly simple to understand and implement, requiring only standard matrix manipulation
and numerical analysis functions such as those available in Matlab. Secondly, these methods are founded
on sampled data systems theory, which is directly applicable to inexpensive microprocessor-based data
acquisition systems. Finally, system realization theory offered a simplification of the modal identification
process by providing a clear indication (at least ideally) of dynamic order and by unifying the pole identi-
fication and residue estimation problems into a single step analysis. In other words, these methods were
powerful tools at the right time; practically a “cookbook™ approach for engineers, including those unfa-
miliar with existing modal parameter identification methods and research.

These popular realization algorithms have, however, lacked the practical capabilities inherent in many
standard modal identification software packages. Although these packages use some multiple reference
time domain identification techniques, such as Polyreference’, they also feature separate treatment of pole

identification and residue estimation, and the capability to estimate residual flexibility and inertia which




improve model reconstructions. By contrast, ERA and other system realization theory-based techniques®
identify simultaneously the poles and residues in a unified model, and do not generally provide for the
modeling of residual effects. Furthermore, many researchers have noted problems in achieving highly ac-
curate reconstructions of some types of modal data using discrete time-domain realization algorithms,
which has lead, among other things, to the development of frequency domain-based realization
techniques®!” and residue re-estimation!-!2,

The pin‘pose of this paper is to develop additional practical capabilities for modern time domain real-
ization-based algorithms (such as ERA) through system realization terminology. As such, we intend the
present paper to provide a natural complement to existing system realization literature. Our approach is
based on a time domain least squares estimation of the modal residues and résidual flexibility, given a prior
identification of the pole information (i.e. frequencies and damping rates) and the modal participation fac-

tors of the system inputs. That is, for the discrete-time state space model

x(k+1) = Ax(k) + Bu(k)

(H
y(k) = Cx(k) + Du(k)

our approach determines C and D given that A and B have been identified in a prior analysis, using perhaps
a subset of the measured response functions. We will show how this estimation is consistent with, and re-
lated to, the residue estiination implicit in existing system realization algorithms. The present procedure
also provides a purely time-domain alternative to the approach of re-estimating of the mode shapes in the
frequency domain using the measured frequency response functions!!:!2,
To this end, the paper is organized as follows. In Section II, the time domain-based system realization
theory and procedure is presented. For reasons of clarity and conciseness, only the ERA procedure is de-
“tailed. In Section III, a procedure for optimally computing the mode shape matrix C using a linear least-

squares solution with A and B from Eqn. (1) is detailed using system realization theory, and its relationship




to the ERA computation of C is examined. In Section IV, the present mode shape estimation procedure is
utilized to develop three useful generalizations of ERA for identification of structural dynamic models.
Finally, Section V applies the present procedure to a very realistic simulated data example, and to exper-

imental data. Conclusions are offered in Section VL

II. Review of Time Domain Eigensystem Realization Algorithm

We begin by presenting the governing equations of motion for structural dynamics in their usual forms.
The response of a structure to a set of forces or inputs u(f) is usually modeled as a spatially discretized

second order matrix differential equation of the form:

MG(E) + Dg(t) + Kg(t) = Bu(t) 2)

where M is the mass matrix, P 1is the damping matrix, Xis the stiffness matrix, and B is the force influence
matrix. The vector g(t) includes all the physical degrees of freedom (DOF) of the model. Now define the

1 associated normal modes @ " of Eqn. (2) according to:

XD, = MP Q 3)
o ad = Q = diag {w,i=1
2 KP, = Q = diag{o ,i=1..n}
T - €
chM(Dn - Inxn
T —_
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where ®, ; are the undamped modal frequencies in rad/sec and E is the modal damping matrix which is
typically symmetric but not necessarily diagonal. If we expand 4(t) in Eqn. (2) as 4(f) = @, n(f), where
N(#) are the modal displacements, the structural model can be placed into the first order modal state-space

form, viz.




Anxn + Bu

=C,x_ +Du )
¥ = ba¥q
Here y(t) is a vector of measured responses, x,q(t) is the state variable defined as
nd)
o® = [ . ]
ne)
and the modal state-space matrices are given by:
0
-Q = (I)n B (©6)

2
¢, = [H, 0 +[H, oA, +[H, o4,
in which H,, H, and H, are the output displacement, velocity and acceleration location influence ar-
rays, respectively.
Because all experimental vibration data is sampled in time, all time domain linear system realization
procedures begin from the presumption that a finite order discrete state-space model of the system exists

of the form:

xtk +1) = Ax(k) + Bu(k)

7
y(k) = Cx(k) + Du(k) D

in which k is the time sample index. The procedure by which Eqn. (5) is sampled to lead to Eqn. (7) must
be done carefully to avoid illconditioning due to the transformation from the continuous (s) plane to the
discrete (z) plane. Likewise, the transformation from a realized model of the form of Eqn. (7) back to the
continuous representation of Eqn. (5) requires careful eigenrotation and mass normalization, as described
in [13].

When the model of Eqn. (7) is used as a predictor, the arbitrary response to an input u(k) is given by:




k
y) = z Mk -Du@@) 1<k<eoo (8)

i=1
in which the system Markov parameters M(k) are related to the state-space matrices by

D k=20
k-1 9
CA B k>0

All state-space time domain realization methods attempt to find the state space matrices A, B, C, D from
measurements of the sequence M(k). This is the process known as system realization.

The essential considerations in system realization are the selection of the model order (it is presumed
that the model form is correct) and the determination of the state space parameters from a minimization of
some prediction error. For ERA, the prediction error is defined in terms of a Hankel matrix of the Markov
parameters, as defined by:

Mk+1) Mk+2) ... Mk +3)
Hrs(k)zM(k+2) Mk+3) ... Mk+s+1) (10)

ME+r) Mk+r+1) ... Mk+r+s-1)
The ERA realization finds the linear least squares solution to minimize the error in the shift in the Hankel
matrix of the system model and the data according to:

k-1
Hrs(k—l) =VA W (11)

S

in which

W, = [B AB ... As_lB]




If the Hankel matrix is formed from the data, then the factors Vr and WS are obtained from a singular

value decomposition (SVD) of the 0-th Hankel matrix according to:

H.(0) = PS, Q.

r-rs

172 /2., T
V,=PS w, =5,7°Q,

T ¥ rs

(13)

The model order n,, is selected (in principle) by examining the numerical rank of H, (0) , truncating the

SVD as
P, = PG, 1:n)
Sps = S, (Lin, Lin)
és = Q. Liny)
and realizing H rs(O), Vr and WS as

TS(O) S SQS
~ ~1/2
= PS5,
From this, the system realization problem is solved by:
~~1/2~T ~ ~=1/2
A =Sy P, H (1)Q.Sys
~1/2 ~ T

B=5,.0Q E,
~ ~1/2

C = EP,S,,

D = M(0)

T
where E,, = I, 0...0] and E; = [1,,,

(14

(15)

(16)

0... 0] . Reference [14] 'discusses the computationally

more efficient approach of factoring H . s(O)Hfs(O) instead of H ; S(O) to obtain the factors of Eqn. (13). In

this case, it is more computationally efficient to calculate the factors using a symmetric eigensolver in




place of the SVD. By only computing the largest #,. eigenvalues and vectors of the Hankel matrix product,
it is possible to determine realizations using very large values of # and s without calculating the entire spec- -

tral decomposition.

III. Time Domain Residue Estimatiqn
Using the terminology consistent with system realization theory and outlined in Section II, we now
develop the time domain residue estimation as follows.
A. Least-Squares Solution for Residues

Suppose the state space matrices A and B have been determined from a data set using, for example,

ERA/DC or Q-Markov COVER. Then, using Eqn. (9), we have

CB = M (1)
CAB =M (2)
. (17)
cA* 1B = M(s)
Hence,
CW, = {M(1:5)} , (18)
where
W = [ s—1 ]
s=|BAB...A°"'B an

ML)} = [M1) M©@) ... M(5)]

L o

The least squares solution for C using Eqn. (18) is given by




{M(1:5)} W,
(20)

IM(1:5)} W, [WSWST]f?

1

The solution is well-defined as long as s > 72, where n is the system order (dimension of A). Note that the

solution for D, that is } .
D = M(0) 21)

holds under the present theory, so long as additional terms, such as residual flexibility, are not added to
the problem.
The implementation of Eqn. (20) is equally straightforward. This is because we can utilize the singular

value decomposition of H, (0) used in the previous analysis to realize A and B in order to determine

~ +
W, viz.
8 F
~ + ~ o~
Ws = QsSss (22)
Thus,
~ ~ 2
C = {M(1:5)} QsSys (23)

B. Relationship to Residue Estimation in ERA

As reviewed in Section II, in ERA the solution for C is given by

C = E\V, = E;P,S,; (24)

where E; = [I ix1 0. O] and {7r is the generalized observability matrix, which is realized from the sin-

gular value decomposition of the measured Hankel matrix H rs (0), viz.




~

H, (0) =H,s(0) = V,W; = P,5,5Q; (25)
Then, from Eqn. (24) we have

~ o~ - ~ ~ +
C = EV,W,W, = E;H,, ()W, 6

~ ~ +
{M(1:5)} W,

Thus, comparing Eqn. (20) and Eqn. (26), the new least squares solution for C is fully consistent with the
system realization theory-based residue determination. The fundamental distinction is that the ERA solu-
tion for C is optimal for the “realized” Markov parameters; that is, the approximated Markov parameters
as expressed by the realized or approximated Hankel matrix H rs (0) , whereas the least squares solution

is optimal for the actual measured Markov parameters.

IV. Algorithms Based on Present Theory

A. An Eigensystem Realization Aigoﬁthm using Reference Point Responses (ERA-RP)

The residue estimation algorithm presented in Section IT leads to a very useful generalization of ERA
for structural dynamics identification. Since the modes which are identifiable from the data are limited to
those which are disturbable from the system inputs, it is only necessary to include a small number of ref-
erence point responses from which the same modes are observable. In the case of structural dynamics
when the system is reciprocal (i.e. symmetric mass, stiffness and damping properties), the logical sensor
complements are driving point measurements, that is sensors co-located with the system input degrees of
freedom. -

The prime advantage of this approach is that it enables the use of longer data records for the same Han-
kel matrix dimension, or allows the reduction of the Hankel matrix dimension to increase overall compu-

tational efficiency. The use of longer data records is important for obtaining accurate and consistent




frequency and damping estimates from real data, although they must be weighed against possible biases
due to system nonlinearities. Reducing the size of the Hanicél matrix is also important because the major
computational overhead in the system realization procedure is strongly dictated by the minimum dimen-
sion of the matrix.

For example, suppose a typical modal test of a complex structure is performed for the purpose of char-
acterizing the normal modes. If the test data consists of 100 accelerometefs and 3 force inputs, an ERA
analysis might utilize Hankel block dimensions of r = 50, s = 2000, leading to a Hankel matrix of size
5000 x 6000 . On the other hand, a reference point ERA analysis might instead use r = 500, s = 1600,
for a Hankel matrix of size 1500 X 4800. In the latter case, the length of the Markov sequence actually
used in the Hankel matrix is slightly greater than in the ERA analysis, but the minimum matrix dimension
is reduced by 70% and the computational effort required to décompose the matrix is reduced by approxi-
mately 97%. ¥

B. Recomputing Residues after Elimination of Inaccurate Poles

The experimental study in Reference [15] found two main "problcms with determining structural poles

from time domain realization algorithms:

* Many structural poles converge only after massive overspecification of the model order (1, in Eqn.
(16)). Overspecification of model order, however, engenders additional computational or noise modes

which should not be retained for subsequent analysis using the identified model.

» Poles which have converged can occasionally split into two nearly repeated (but nonphysical) modes as

model order overspecification is increased to converge other less observable poles.

In view of these pathologies, it is usually necessary to use one or several quantitative model quality indi-

cators (MQI) to detect convergence and discriminate unwanted or unreliable modes from the system real-
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ization (e.g. see Reference [12]).
Unfortunately, because all the global mode shapes are ektracted through the realization process simul-
taneously, only the mode shapes of the full realization can be considered to be optimal in any sense. If,
however, some modes are not retained for further analysis, the remaining mode shapes cannot be said to
be optimal with respect to either the measured or the realized response parameters. This is often not a prob-
lem if the modes are well-spaced and orthogonal via the measurement points. It can be a serious problem,
however, when computational mode splitting, as described above, occurs in the realization analysis. In this
case, the mode shape information can split between the two nearly identical poles. Hence, when splitting
is detected and one pole is removed from the modal set, important mode shape information is also lost.
The application of the linear least-squares solution for C is straightforward in this case. Simply per-
form the system realization analysis to obtain A, B and C in their decoupled modal form. Then, after com-
puting various MQI and removing unreliable poles ﬂ;om A and B, C is recomputed using Eqn. (20). It
should be noted that the generalized controllability m;ltrix WS must be reéomputed using the reduced A
and B matrices, rather than using the singular values and vectors of the Hankel matrix as in Eqn. (23). This
is not a significant computational burden, however, as pow;:;s-of A are inexpensive to compute in the de-
coupled block modal form, and the largest matrix inV(;,rse .élpe"ration is of the order of the retained modes

(which is relatively small in most instances).
C. Inclusion of Residual Flexibility Terms

One serious deficiency of the discrete-time state space model form common to ERA and other algo-
rithms is that it cannot always account for the residual flexibility effects of modes outside the measurement
bandwidth. In particular, when using velocity sensors or accelerometers (arguably the most popular trans-
ducer types for modal testing), the modes above the measurement bandwidth contribute a sum term pro-

portional to the Laplace terms s and s, respectively (see [12] and [16]). Such terms cannot be properly




expressed in the discrete-time state-space model form, however, even though their influence is captured
in the measured FRFs (and thus the Markov parameters). |

One possible corrective approach is to compute a residual flexibility term by fitting the trend of the
frequency domain error between the measured FRF and its model-based reconstruction. This approach is
generally effective but ignores the weak coupling at all frequencies between the contribution of the iden-
tified modes and residues and the residual flexibility. The result also mixes least-squares time-domain and
frequency domain computations, obscuring the optimality criterion of the complete model response.

The present linear least-squares algorithm for estimating mode shapes of the system realization is eas-
ily extended to include the residual flexibility contribution in a consistent manner. Starting from the proper -

expression of the discrete FRF including residual terms, we have!?

j2rk -1 :
3 N ]an)
G(fk)-C e I-A /B D+(NAt F 27

where F is the residual flexibility mat;'ik and p is the differentiation order of the sensor type with respect
to displacement (i.e. p=1 for velocity, p=2 for acceleraﬁon).“ﬁere the Laplace term s has been evaluated
along the frequency axis j at the discrete frequency values @, = 2nfk., .where fy = k/ (NAt) andk,
N, and At are the sample index, total number of samples and sampling rate, respectively.
Taking the inverse discfete fourier transform (IDFT) of Eqn. (27) leads to the following relationships
M@©) =D+ MSP(O)F
M(1) = CB +Ms”(1)P
e MQ2) = CAB +MS,, (2)F (28)

M@ = CA* "B+ M (WF
S
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where M p(i) are the real-valued IDFT coefficients of the discrete function
s .

P _ Z'21tk)p '
*k (NAt (29)
evaluated at
k=N _ N N 30
[1 2...101...2 12] (30)

The order of values for k given in Eqn. (30) depends on the numerical algorithm for computing the IDFT;
the above ordering is consistent with that used for the inverse fast Fourier transform in Matlab!?, The time-
domain coefficients Ms”(i) of the residual term are essentially Markov parameters of the sum contribution
of the modes above the measurement bandwidth to the estimated FRFs, normalized such that the constant
coefficient F is the residual flexibility. Figure 1 shows the coefficicnts of s and s2 for a small sample record

with unit sample time. Using this result, we can then form the linear least-squares problem

WS
{M(1:9)} = [c F|
{M p(1:9)I,,}
S
. . . 1))
= [cAW
M(0) = D+M ,O)F
where
- I/‘\',S
. W =
M 4(1:9)1,} 32

(ML)} = (Ml ML, .. M),




and I m is the m x m identity matrix, where m are the number of inputs. The solution of Egn. (31) is then

[c F = M{1:5} WT(WWT)—I
D = MO - M ;OF

(33)

Note that when F and its coefficients are dropped from Eqn. (31), the solutions for C and D are given by
Eqn. (18) and Eqn. (21), respectively.

The above formulation can often lead to an illconditioned matrix due to the mixture of continuous and
discrete frequency domain terms. In order to avoid these problems, we replace s, in Eqn. (29) and F in

Eqgn. (31) by frequency-normalized counterparts

- 21k F :
—g At =12™ . p__L 4
Sk = SAL= g “an? (34)

Then the estimated term T is multiplied by (At) 7 to obtain the correct residual flexibility term consistent

with the continuous equations of motion.

V. Applications and:Examples

A. Numerical Example using Modal Test Simulator .

In order to properly understand the behavior of any system identification algorithm, it is important to
perform simulations using data which is highly characteristic of the actual data the algorithm will ultimate-
ly be applied to. Often, in time domain system identification research, this realism is limited to the addition
of gaussian noise to Markov parameters of displacement outputs, which are generated in the time domain
by the discretized system equations. Unfortunately, this approach neglects the process by which Markov

parameters are usually obtained in testing; that is, frequency domain FRF estimation of acceleration data

with signal conditioning, ensemble averaging and digital signal processing. The signal processing and re-
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sidual flexibility effects engendered can be far more significant on the pcrformance of system realization
algorithms than the level of noise which is typically cncouﬁtercd, at least in controlled modal testing en-
vironments. Therefore, a modal testing simulator was developed which includes all'of the aforementioned
effects, in addition to assumed measurement noise and burst random excitation.

Figure 2 shows a planar truss example. The model includes 36 unconstrained DOF, 18 acceleration
sensors and 3 externally applied force inputs; 3 of the sensors are collocated with the 3 inputs. The modal
testing simulator was used to generate the FRFs for all 54 input-output pairings. The simulator used 8192
samples per ensemble, sampled at 1000 Hz with anti-alias filtering set at 400 Hz. The FRFs were obtained
using 10 ensemble averages and 1% noise was added to the measurements of the forces and accelerations.

The first stage of the time-domain system realization process consists of the estimation of the reliable
system poles. For this example, the 3 driving-point (i.e. collocated output) measurements were retained as
reference responses for a total of 9 FRFs. An efﬁcien{: form of ERA!* was used with Hankel block dimen-
sions of =300 and s=2000 for total data matrix dimension of 900 X 6000 . If all response measurements
had been included in the data matrix, the dimension would have been 5400 x 6000 . The order of the ERA-
estimated model was varied from 50 to 100 states and the c;nv‘ergencc of various MQI were studied. The .
final model order chosen was n, = 52, for a nominal set of 26 modes. Of these, 3 modes (6 complex
poles) were judged as inaccurate or unreliable and thus were removed from the modal set. A comparison
of the retained modes to those of the exact model are shown in Table 1.

The second stage of the time-domain system identification consisted of using the present mode shape
estimation algorithm to obtain mode shapes for the full set of 18 measured' accelerometers. For the least-
squares estimation, th;;ﬁrst 2000 Markov parameters were used, consistent with the column dimension of
the Hankel matrix used for the pole estimation. Figures 3 and 4 show the FRF reconstructions using the

retained set of ERA modes together with the full mode shapes estimated using Eqn. (20). Before proceed-
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ing, we make the following observations.

First, the transfer FRF shown in Figure 4 cannot be,obtaihed from the ERA analysis alone, as the Mark-
ov parameters for this input-output pair were not included in the Hankel matrix. That is, although the ERA-
derived mode shapes did not include this response location, they were effectively estimated using the
present procedure. Second, because we chose to eliminate 3 modes of the ERA realization, it was also use-
ful to reestimate the mode shapes for the reference point responses, as the ERA mode shapes wérc extract-
ed simultaneously with the inaccurate modes. In this particular case, because the inaccurate poles were not
closely coupled with any of the retained poles, the original ERA mode shapes and the re-estimated mode
shapes at the reference points were essentially identical.

Finally, other than the resonance which was not identified at approximately 312 Hz, the reconstructed
FRFs are highly accurate at the resonance peaks. The zeros of the FRFs, however, show varying degrees
of error, particularly the driving point response. Thcsq errors are due to thé exclusion of a residual flexi-
bility term in the ERA model and in the new mode shape estim;ltion via Eqn. (19). If, however, we include
a term to model residual flexibility, as in Eqn. (33), the reconst,ructioh is significantly improved, as shown
in Figure 5. Further improvement at low frequency could p(;ssi‘bly be obtained by changing the number of
time points used, or by applying constraints to Eqn. (27). The aiccuracy of the estimated mode shapes from
Eqgn. (20) and Eqn. (33) with respect to the exact mode shapes of the example model is shown in the last
two columns of Table 1, in terms of the modal assurance criteria (normalized vector correlation). While
the mode shape estimate without including the residual term‘is nearly exact, there is an improvement in
the mode shape by simultaneously estimating the residual flexibility. This result is consistent with the ex-

[

istence of a weak coupling between the two response contributions.
B. Application to Experimental Data

Although the preceding numerical example was realistic via use of the modal testing simulator, it is

17




often helpful to verify the accuracy accrued by the curve fitting procedure through its application to actual
experimentally measured data. Figure 6 shows a photograéh of the three-dimensional cantilevered truss
structure tested. The modal testing used one force input and 61 accelerometers (inch'lding a driving point
locations), with a sampling frequency of 500 Hz and 50 ensemble averages.

As in the numerical example, the poles were estimated using ERA with the single driving point mea-
surement; after selecting n x =100 (50 modes), 28 modes were retained for the final model. The 61 response
measurements were then re-estimated to yield the desired mode shapes and residual flexibility. A repre-
sentative transfer FRF and the driving point are shown in Figures 7 and 8. One important lesson learned
with this data was that it was important to include the last 20 time samples of the impulse response in the
least squares equation in.order to obtain good estimates of the residual flexibility. This is because of the

magnitude increase of M , as k — N in Figure 1.
S

VI. Conclusions

A linear least-squares mode shape estimation algorithm using time domain system realization theory
has been presented. The present procedure enhances cxiéﬁf;é time domainsystem realization algorithms
such as ERA, ERA/DC and Q;Markov COVER by addingtﬁe ability to compute (or reestimate) global
mode shapes when performing reference point-based pole estimation and unreliable pole elimination. Fur-
thermore, the procedure can be generalized to estimate residual flexibility terms which cannot be modeled
within the discrete state space form. These capabilities have t;een demonstfafed via numerical and exper-

imental data.
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Table 1: Accuracy of Identified Modes using RP-ERA with and without Residual Flexibility

MAC using MAC using

Mode # foxace (Hz) fi 4o (HZ) Error% ERA/RP ERA/RP w/
_ Res. Flex.

1 23.062 23.065 0.0113 1.0000 1.0000
2 54.700 54.700 0.0011 1“.0000 | 1.0000
3 81.566 81.566 0.0004 1.0000 1.0000
4 92.457 92.457 0.0003 1.0000 1.0000
5 132.26 132.26 0.0005 1.0000 1.0000
6 162.94 162.94 0.0028 0.9999 1.0000
7 171.20 171.20 0.0002 1.0000 1.0000
8 205.43 205.43 0.0002 1.0000 1.0000
9 235.15 235.15 0.0006 1.0000 1.0000

10 237.93 237.93 0.0003 1.0000 1.0000
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Figure 2: 2-D Truss Numerical Example
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Frequency Response (Bode Diagram)
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Figure 3: Driving Point FRF Reconstruction




Frequency Response (Bode Diagram)
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Figure 4: Transfer FRF Reconstruction
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Frequency Response (Bode Diagram)
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Frequency Response (Bode Diagram)
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Figure 7: Driving Point FRF and Reconstruction with Residual Flexibility for Truss Tower
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Frequency Response (Bode Diagram)
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DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor any agency thereof, nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsi-
bility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Refer-
ence herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recom-
mendation, or favoring by the United States Government or any agency thereof. The views
and opinions of authors expressed herein do not necessarily state or reflect those of the
United States Government or any agency thereof.
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