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The Rotationally Improved Skyrmion, or
“RISKY?”

NICHOLAS DOREY
Physics Department, University of Wales Swansea,
| Singleton Park, Swansea, SA2 8PP, UK

and

MICHAEL P. MATTIS
Theoretical Division, Los Alamos National Laboratory,
Los Alamos, NM 87545, USA

Abstract

The perceived inability of the Skyrme model to reproduce pseudovector
pion-baryon coupling has come to be known as the “Yukawa problem.” In this
talk, we review the complete solution to this problem. The solution involves a
new configuration known as the rotationally improved Skyrmion, or “RISKY,”
in which the hedgehog structure is modified by a small quadrupole distortion.
We illustrate our ideas both in the Skyrme model and in a simpler model with

a global U(1) symmetry.

Introduction. The Skyrme model [1, 2] provides an approximate description
of the baryon spectrum of QCD in the large-N, limit. The semiclassical expansion
about the Skyrmion corresponds directly to the 1/N. expansion in the underlying
gauge theory. In the previous talk [3], we established a direct connection between ef-
fective Lagrangian models, in which baryons are represented by pointlike Dirac spinor
fields, and Skyrme-type models, in which baryons are instead pictured as solitons in
the field of mesons. The connection is by means of the large-N. Renormalization
Group; we reviewed under what circamstances Skyrme-type models are, or are not,
the ultraviolet fixed points of the effective field theories, under the action of this RG
flow. ‘

Here we discuss the equivalence in the opposite direction: starting with the
Skyrme model, we explain how it bootstraps itself into an equivalent effective meson-
~ baryon Lagrangian, with explicit (rather than solitonic) baryon fields. In other words,

this talk supplies the “missing third leg” of Fig. 1 from the preceding lecture.
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Obviously the very first effective vertex one needs to recreate is the pseudovector
Yukawa coupling of the pion to the I = J tower of large- N, baryons. Such a vertex
is needed to account, not only for the hadronic decay of the A, that is A — 7 + N,
but also for the virtual processes N —+ m + N or A — 7 4+ A. Yet reproducing this
vertex directly from Skyrmion quantization has proved to be the most longstanding
headache in the Skyrme-model literature, and has come to be known as the “Yukawa

problem.”?

The origin of this problem lies in the fact that first variations off the
static hedgehog Skyrmion vanish, as the Skyrmion is, by definition, a solution to the
Euler-Lagrange equations. In this talk we review the complete solution to the Yukawa
problem, following our recent work [6, 7].2 At the same time, we present the solution
to another longstanding problem, not just with the Skyrme model, but with the entire
large- N, program: the fact that, as N, — oo, the spectrum of ground-state baryons

contains not only the nucleon and the A as desired, but also unwanted, unseen states
with I=J=35123...

While tied to the previous talk through Fig. 1, the physics issues involved
here are actually quite different. We will be interested in the analytic properties of
Skyrmions, and will find that while the usual hedgehog Skyrmion is inadequate, a
close relative, which we call the rotationally improved Skyrmion, or RISKY, serves our
purpose well. In a nutshell, the RISKY is obtained by including the (iso)rotational
kinetic energy term in the minimization of the static Hamiltonian. It is characterized
by an interesting small quadrupole distortion away from the hedgehog ansatz (as has
been derived independently, using other physics entirely, by Schroers [8]).

The Yukawa problem. It has long been suspected that the effective S-
matrix element describing A — 7+ N, N — 7w+ N, etc., in the Skyrme model
may be expressed in a particularly compact form. In [2] it is argued from general
considerations of symmetry and mass dimensions that the effective coupling of soft

pions to the Skyrmion should be of the form

[ = 39NN

— _TITNN g a At
'47rf1rMN6ﬂr Trn A, A, (0.1)

where A € SU(2) is the (iso)rotational collective coordinate of the Skyrmion and the
overall normalization of the coupling is determined by evaluating its matrix element
between initial and final nucleon states. We stress the word effective because, obvi-

ously, this coupling is not present in the Skyrme Lagrangian itself. The interaction

1Surprisingly, the next-most-complicated effective vertex, in which two pions are attached to the
baryon, is less sensitive to the Yukawa problem, and indeed constitutes one of the early phenomeno-
~ logical successes of the Skyrme model [4, 5].
2For a comprehensive list of references to other approaches to the Yukawa problem, see Ref. [7].




(0.1) yields predictions for the couplings of pions to the whole I = J tower of baryons
which arise when the isorotational motion of the Skyrmion is quantized. In particular,
the effective vertex for A decay comes with a coupling constant g,na =§g,rNN; this
relation yields a value for the width of the A within a few MeV of its experimentally
measured value. More generally, (0.1) embodies the “proportionality rule” which fixes
the ratios of the pion couplings to all the baryons in the large-N, I = J tower, and
which may be derived in many different ways (see preceding lecture for a discussion).

For many reasons, therefore, we should expect that the leading-order semi-
classical S-matrix elements for pion-baryon interactions in the Skyrme model should
coincide with the tree-level effective Yukawa couplings implied by (0.1). But as men-
tioned earlier, the problem of showing, from first principles of soliton quantization,
that this is actually the case presents some difficulty. Before presenting our solution
to this Yukawa problem it is convenient to review some of the basic issues in the
context of A decay. The obvious starting point for calculating the S-matrix element
for A decay is the one-point Green’s function of the pion field evaluated between an
incoming A-state and an outgoing nucleon, G*(x,t) = (N|r%(x,t)|A). When quan-

-tizing the Skyrmion it is customary to split up the pion field as # = %y + §7 where

74(x,t) = sin F(r)DS,)(A(t)):%b is the background Skyrmion field configuration and
d7 is the fluctuating part of the pion field: This division of the field defines two
contributions to the one-point function which we now examine in turn.

Early approaches to this problem identified the physical pion field with the
fluctuating part 67 [9]. A contribution of this sort requires a term linear in 7 in the
expansion of the Skyrme Lagrangian. However, precisely because the static Skyrmion
is a solution of the field equation, such a term is absent at leading order in 1/N. and
only appears when the rotation of the Skyrmion is included. The resulting coupling
is proportional to A and (since the large-N, Skyrmion (iso)rotates very slowly) is
therefore down in the 1/N, expansion relative to the desired result (0.1).

Because of these difficulties, several authors [10, 11] suggested that the effective
Yukawa interaction comes instead from the classical contribution to the pion one-
point function, G%(x,t) = (N |7r;‘:‘l(x, t)|A). However, as it stands, this idea cannot be
correct either. To see why not, we must consider the corresponding momentum space
one-point function. Because the Skyrmion profile function decays exponentially at

large r, its Fourier transform will have the following pole contribution:

(w— Ma+ My)

~ )
Ga(k,w) ~ - k| +m2

(0.2)

The position of the pole is always at an imaginary value of the pion momentum

k| = +im,. However, so long as m, < Ma — My, A decay occurs at the real
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value of the momentum dictated by energy and momentum conservation. Thus the
naive semiclassical Green’s function (0.2) cannot contribute to the on-shell S-matrix
element via the LSZ reduction formula. Put another way, LSZ requires that the
denominator in (0.2) read |k|?+m?2 —w? rather than just |k|*>+m2, where w, denotes
the energy of the emitted pion, or equivalently, the difference between the initial and
final Skyrmion energies. '

In summary, neither of the two contributions to the pion Green’s function identi-
fied above can, by itself, reproduce the effective Yukawa vertex (0.1). In the remainder
of this talk, we will explain how, when taken together, the Yukawa problem is solved,
in a rather surprising way.

Skyrmion quantization in 3+1 and 141 dimensions. In order to motivate
our solution it will be convenient to consider a simpler model than the SU(2) Skyrme
model which has only an abelian global internal symmetry. In the following we will
develop both models in parallel for maximum clarity. We will consider the case of a

real two-component scalar field q{_; = (¢1, ¢2) in two space-time dimensions,
~ ]. - - m2 - -
=10, 95~ 18 - W(d) (03)

In contrast, the Skyrme model is described by the following Lagrangian for an SU(2)

valued matrix field in four-dimensional spacetime:

2 £2
m T

T (U100, U'QU) + =52 T (U 1) . (0.4)

2
1
= I tom
L 16 r3L¢U3U+32(32

We will choose to rewrite the model in terms of the pion field as U = exp(2i7 - 7/ f»).
The Lagrangian then takes the general form

£ = Lies (R — V(F,0) (0.5)

In fact, it will not be necessary to specify the target space metric g;;(#) or the potential
V (7, 0;@). Our analysis will apply to any chiral soliton model which can be written
in the above form.

Provided the potential W has its minima at J; = 0, the model (0.3) has an
unbroken U(1) symmetry, é— M(9) - &, where

M(H):( cos 6 sinﬁ) (0.6)

—sinf cosé

Correspondingly, the Skyrme model has an unbroken SU(2) symmetry U — AU A'.
In terms of the pion field of (0.5) this symmetry takes the form # — D) (A). 7 where

1
DY(A) = STrrATAT. (0.7)




In either theory, soliton solutions are found by minimizing the corresponding

mass functionals:

1 2 -
Wdl = [desll+ S+ W)
M[7] = /fxwa@ﬂ. (0.8)

In the U(1l) model we will assume that this yields a soliton solution of the form
¢% = (¢s(z),0) 3. For reasons that will become clear below, we will sometimes write
the profile function as ¢g(x; m) to emphasize its parametric dependence on the meson
mass m. In the Skyrme model the Euler-Lagrange equation § M[7]/d7* = 0 yields a
chiral soliton solution with the characteristic hedgehog form

ol = %— sin F(r)t . (0.9)

In both models the ansatz chosen is the one of maximal symmetry; our assump-
tion that the U(1) soliton can be chosen to lie entirely in the first component of the
field 5 is analogous to the hedgehog ansatz in this respect. The profile functions,
¢s(z) and F(r) must be determined by solving a non-linear ODE. However, in both
cases, the spatial asymptotics of these functions can be determined by solving the
corresponding linearized equation. Thus ¢g(z;m) — Aexp (—mz) as |z| — oo, while

the large-r asymptotics of F' are given by
r 1
F(r)— B- (mT + ;3) exp (—m,r) . (0.10)

The constants A and B must determined by solving the corresponding non-linear
equation numerically.

In the U(1) model the full set of static one-soliton solutions is obtained by
acting on the solution ¢% with a U (1) rotation and a translation:

(23 X, 0) = M(0) - ¢z ~ X) (0-11)

while, for the Skyrme model, the full set is parametrized by the collective coordinates
A€ SU(2) and X € R?:

7 (X, A) = DO(A) - 7 (x — X) (0.12)

We are ignoring the Lorentz contraction of the soliton for notational simplicity; more-

over the translational collective coordinates will not play an important role in what

3Actually, in order to get such a soliton it is necessary to include in the model an additional
scalar field [12]. However, this field is neutral under the U(1) symmetry and its presence does not

affect our analysis in any way




follows and we will suppress them below. Instead we will concentrate on the dynamics
of the internal collective coordinates 6 and A.

It is convenient to define, in each model, a moment of inertia which is a func-

tional of the field:

NG = [dxd-d
A”[ﬁ] = /d3xeabi7r“gbd(fr')ejcd7r° (013)

In both models the semi-classical baryon spectrum is obtained by allowing the rota-
tional collective coordinate to be time-dependent. In the Skyrme case the effective

Lagrangian for this degree of freedom is*

L =—M + ATr AA? (0.14)

where both M and A ~ N,. Quantizing this system gives the standard rotor spectrum
first obtained by Adkins, Nappi and Witten: an infinite tower of states |I = J, %, s)

with masses,

J(J+1)
2A

In the U(1) model it is trivial to carry out the same procedure; in this case the effective

M(J)=M + (0.15)

dynamics of the time-dependent angle 8(¢) is just that of a free particle moving on a

circle,
L=—p+ %,\9’2 : (0.16)

In order to exploit the analogy to the Skyrme model to the full, we will choose
the N, dependence of the coupling constants in (0.3) so that 4 ~ N, and A ~ N,
(recognizing that in this toy model N, no longer corresponds to “quark number” of any
sort, but merely parametrizes the semiclassical expansion). The resulting spectrum
of states is labeled by a conserved U(1) charge ¢ = 0,£1,+2... analogous to the
(iso)spin quantum numbers of the Skyrme model baryon states. The corresponding

mass spectrum and wave-functions are given by,

2

Mo =p+ 3 (alf) = 71_2—7;exp<z'qe> (0.17)

Rotationally improved Skyrmions. In the U(1) model there is a process
which is precisely analogous to A decay: the state |¢ + 1) can decay on shell to the
state |¢) with the emission of a single physical meson, provided, of course, that the

meson mass m is less than the splitting between these states. Before describing how

“When evaluated on a hedgehog, the moment of inertia tensor collapses to a scalar: A;; = A d;;.
Deviations from hedgehog structure only affect this result at higher order in 1/N,.
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the S-matrix element for A decay can be calculated in the Skyrme model, we will
consider this simple process which contains many of the features of the Skyrme case.
As described earlier, the relevant Green’s function, from which the S-matrix element
can be extracted, is the one point function of the meson field sandwiched between

the initial and final soliton states.

9a(z,t) = (glda(2,t)lg + 1) (0.18)

The key idea introduced in Ref [6] is that this Greens function is given to leading
order in the semiclassical approximation by replacing qg with a saddle-point field con-
figuration %Sp(:c; 6, q) which depends both on the collective coordinate # of the soliton
and the conserved U (1) charge q. The relevant saddle-point equation is obtained by
minimizing the the mass functional ,u[cZ] augmented by a correction term due to the

rotational motion of the soliton:

(81 + 52=) =0 (0.19)

6a 2[4
This works out to, \
2 W _ q ¢a _
@+ me + 5~ E 0 (0.20)

The only modification, therefore, of the static equation of motion is a shift in the
meson mass term; m? — m2 — ¢2/A2[@]. It is straightforward to relate the solution of
(0.20) to the solution ¢s(z; m) of the static field equation. Writing 55,, = M(0)-(p,0),
the saddle-point profile function is given by ¢(z) = ¢s(z,/m? — ¢?/A%[q]) where A[q]
must be determined self-consistently: ‘

Nd) = [ do ¢(a;y/m2 = ¢2/32lq)) (0:21)

In [6] we showed that, with certain very mild assumptions, this equation always
has a real solution for g sufficiently small. For the present purposes it is only necessary
to observe that the self-consistency equation can be expanded in powers of 1/V, giving
Algl = A-[1+ O(1/N.)]. The net result of this shift in the effective meson mass is
that the profile of the rotationally improved soliton has a slower exponential fall off
at large |z| than its static counterpart,

w(z) = Aexp (—\/m2 — g2/ )\ |a:|> (0.22)

This “swelling” of the soliton is just its response to the centrifugal forces produced
by its internal rotation.
Just as in the simple U(1) case described above, the leading-order Green’s

function which contributes to A decay is dominated by a single field configuration;
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the Rotationally Improved Skyrmion or RISKY which satisfies a modified equation

of motion,

)
dme
where J is the classical angular momentum vector of the Skyrmion. Although we can-

(M[v?] + -;-JmA;n;[ﬁ]J”) —0 (0.23)

not solve this equation analytically it is straightforward to find the leading modifica-
tion of the spatial asymptotics of the static Skyrmion. Writing 7, = DW(A)-7(x;J),

as r — oo we have,

S (Tf+ 1>exp(—m7rr)(J-f')J

Jz r2
fm2 — J2/\2
+%( T . / +:12-) exp(—\/m,zr—J2/A2-r) (J xtxJ)

(0.24)

which properly collapses to the hedgehog in the limit J? — 0, as the reader may
verify. Here the situation is somewhat more complicated than the U(1) case; the
RISKY field configuration is a superposition of two different tensor structures. The
coefficient of the first tensor structure in (0.24), which is parallel to J, has the same
exponential fall-off as the static Skyrmion. In contrast the coefficient of the second
tensor structure, which is perpendicular to J has a modified tail analogous to that of
the rotating U(1) soliton: the pion mass is shifted as m2 — m2—J2?/A?. The physical
interpretation is clear; the rotating Skyrmion “swells” in the directions perpendicular
to its axis of rotation due to centrifugal forces.

We are still only half way to evaluating the required Green’s function; we have
calculated the saddle-point field configuration which gives the dominant semiclassical
contribution for a Skyrmion with collective coordinate A and conjugate angular mo-
mentum J, but it is still necessary to quantize these collective coordinate degrees of
freedom. Again we begin by treating the simpler U(1) case. The collective coordinate
9 and its conjugate momentum g become quantum operators 6, § with [é, g = . The
problem of evaluating the leading semiclassical contribution to the Green’s function
(0.18) reduces to that of calculating a quantum mechanical expectation value of the
saddle point field; g*(z,t) = (g|¢%,(z,¢;8,d)lg + 1) + O(1/N.) which gives

' (z,t) = (gMu (D) - ps(z;/m? — §2/X2)|q + 1) (0.25)

However, as it stands, this expression is ambiguous; we need to specify an ordering
prescription for the non-commuting operators 6 and §. This ordering problem is
quite generic to soliton quantization where the introduction of collective coordinates

always involves a nonlinear change of variables involving both the coordinates and
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their conjugate momenta [13]. The standard resolution of this problem is to choose
the Weyl ordering prescription which is known to have certain desirable properties;
in the case of translational motion of a soliton in one dimension this prescription is
required to preserve Lorentz invariance [14]. Using standard identities, the net result
of Weyl ordering the saddle-point field operator in (0.25) is that ¢ can be replaced
everywhere by its midpoint value ¢ = (g + 1/2). N

Taking a Fourier transform, the resulting semiclassical Green’s function for the
emission of a positively charged meson with energy w and momentum & contains a
pole contribution which is dictated by the spatial asymptotics of ¢*(z, ).

. : 21Ak
9(k,w) = 8(w — p(g+ 1) + p(q)) - PN §e + Non-pole terms  (0.26)

In order for a non-vanishing contribution to the S-matrix it is necessary that the pole
position coincides with the meson mass shell condition k% + m? = w? = (u(g+1) —
#(g))?. This follows immediately because x(g+1) —u(q) = ((g+ 1) — ¢%)/2X = g/ .
Hence we see that, when the operator ordering problem is correctly resolved, the
rotational improvement of the soliton profile has the effect of shifting the meson
pole to exactly the position required by the LSZ reduction formula. This means
that there will be a leading order contribution to the S-matrix for the decay process
lg+1) — |g) + one meson which coincides exactly with the expected Yukawa vertex.

In the Skyrme case, the one-pion Green’s function is dominated by the RISKY,
which solves equation (0.23). By analogy with our treatment of the U(1) case above,
we will now examine the pole contribution to the Fourier transform of this field

configuration which is dictated by the asymptotic form (0.24),

4riB 1 (j-k)j+ 1 IxkxJ
k| [[k[Z+m2 Jj2 k|2 +m2 — J2/A2  J?

7(k; J) ~ (0.27)
The resulting momentum-space configuration has two separate poles, corresponding
to the two tensor structures which contribute to the RISKY. However, this is appro-
priate in the Skyrme case because there are two separate processes allowed by spin
and isospin conservation. As well as the real process of A decay, A — N + 7 there
are also virtual processes N -+ N + 7 and A — A + 7, etc. As we showed in detail
in [7] there exists an ordering prescription for the non-commuting operators J and A,
analogous to the Weyl ordering chosen in the U(1) case, which produces exactly the
required analytic structure for the saddle-point Green’s function evaluated between

states of initial and final spin J and J’,

6p00(w) | bpy1d(w— M(J)+ M(J')) ]

Gep(k,w) = 47iBk -
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Thus we see that the two tensor structures give poles corresponding exactly to the

two allowed processes. The linear dependence on k means pseudovector coupling as
desired—even beyond the soft-pion kinematic regime where this is required by Adler’s
rule. Once again, large-V, reasoning allows an extrapolation to higher energies. The
constant B is fixed by (0.1) to be 3g,yn/87Mn.

Width calculations and the unwanted / = J baryons. In sum, we have
introduced a new configuration, the RISKY, whose analytic properties are precisely
such that the Skyrme model maps onto an effective meson-baryon Lagrangian (at
least at the level of the Yukawa vertex (0.1)). Furthermore, armed with this effective
coupling, we can also confront an importaht phenomenological objection to large-N,
physics, namely the existence of the unwanted I = J baryons with I > 2. They are
simply too broad to be seen! We can address this issue precisely because Eq. (0.1)
may be sandwiched between any of the I = J baryons, not just the nucleon or
A. Furthermore, all these decay amplitudes will be proportional to g.xny which sits
out in front (the “proportionality rule” described in the previous lecture). We refer
the interested reader to Ref. [7] for the (non-illuminating) calculational details, and
conclude by summarizing the principal findings:

1. With g.nxn drawn from experiment, the width of the A works out to 114 MeV
in the Skyrme model, within a few MeV of the actual value.

2. With this same value for g,ny, the widths of the higher-spin baryons rises
rapidly, thus I's;; ~ 800 MeV, T'7/; ~ 2600 MeV, I'y/; ~ 6400 MeV, etc. These are

so broad that there is no conflict whatever with phenomenology:.
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