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Abstract

The main objective of synchronized signal timing is to keep traffic moving along arterial in
platoons throughout the signal system by proper setting of left turn phase sequence at signals along
the arterials/networks. The synchronization of traffic signals located along the urban/suburban
arterials in metropolitan areas is perhaps one of the most cost-effective method for improving
traffic flow along these streets. The popular technique for solving this problem formulates it as
a mixed integer linear program and used Land and Powell branch and bound search to arrive at
the optimal solution. The computation time tends to be excessive for realistic multiarterial
network problems due to the exhaustive nature of the branch and bound search technique.
Furthermore, the Land and Powell branch and bound code is known to be numerically unstable,
which results in suboptimal solutions for network problems with a range on the cycle time
variable. This paper presents the development of a fast and numerically stable heuristic,
developed using MINOS linear programming solver. The new heuristic can generate
optimal/near-optimal solutions in a fraction of the time needed to compute the optimal solution
by Land and Powell code. The solution technique is based on restricted search using branch and
bound technique. The efficiency of the heuristic approach is demonstrated by numerical results

for a set of test problems.
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1.0 In i

Efficient transportation is very important to the nation's economic health. Nearly all economic
activity uses transportation directly or indirectly. The economic productivity of a nation is
boosted by improving the efficiency of transportation systems. The synchronization of traffic
signals, located along the urban/suburban arterials in metropolitan areas, is perhaps one of the
most cost effective method for improving traffic flow along these sections of the urban street
networks. The main objective of synchronized signal timing is to keep traffic moving along an

arterial in platoons throughout the signal system by proper synchronization of green signals along

the arterials/networks.

Over time, traffic engineering research has resulted in a number of techniques for setting traffic
signals along arterials and networks. These models can be classified into two major categories:
on-line models and off-line models. The on-line (also referred to as traffic adaptive) models
compute signal settings in real-time and are used for controlling traffic dynamicaily. OPAC

(Gartner [1983]) is an example of this type of model.

Off-line signal optimization models were developed in the late 1960's and early 1970's, and are
used for computing signal settings for recurrent traffic flow conditions. The existing models for
off-line determination of signal settings on single/multiarterial networks fall into one of two major
categories. One set of models are based on the criteria of minimizing system delays and stops,
while the other maximizes the progression bandwidth along the arterials. Delay minimization
models lead to signal settings that minimize the number of stops and delays experienced by
vehicles at intersections. Bandwidth maximization models lead to signal settings that maximize
the proportion of traffic flowing unimpeded through the signals. TRANSYT (Robertson [1968],
Wallace et al. [1988] ) and SIGOP III (Licberman et al. [1983]) are models that determine signal
settings that minimize delay. These models combine macroscopic simulation and nonlinear
optimization based gradient searches to determine the optimal signal settings. MAXBAND is a

model that maximize bandwidth for multiarterials (Messer et al. [1987], Chang et al. [1988]).
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The underlying optimization model in MAXBAND is a Mixed Integer Linear Programming
(MILP) model, originally formulated by Little [1966]. This formulation was extended to
triangular networks by Little, Kelson, and Gartner [1981]. Gartner et al. [1991] report the
extension of the arterial MILP formulation to include multi-band capability. Chaudhary et al.

[1993] report the development of bandwidth optimization formulation that include circular phasing

of signals and the new model is called PASSER IV.

Cohen [1983], Cohen and Liu [1986], and Liu [1988] used the good features of both delay
minimization model and bandwidth maximization model to obtain a combined model. These

model attempt to find a signal settings that minimizes delays and while maximizing progression
bandwidth.

TRANSYT is perhaps the most widely used traffic model in the practice of traffic engineering,
in spite of its limitations. TRANSYT minimizes delay-based disutility functions from which green
bands cannot always be found, and the model has no capability to perform left turn phase sequence
optimization. MAXBAND model maximizes green bands and optimizes left turn phase sequences.
Studies have shown (see Rogness [1981], Cohen et al. [1983]) that left turn phase sequence
optimization can substantially improve performance of signal timing plans. But, experience with
MAXBAND has shown that hours of computer time may be required to optimize a medium-sized
network problem even on a mainframe computer. The computational inefficiencies make the

current version of MAXBAND impractical for use by the traffic engineering community.

This paper describes the development of a new heuristic for the bandwidth maximization MILP
using restricted branch and bound approach. The new heuristic is fast, numerically stable, and
capable of generating an optimal/near-optimal solution for the MILP problem. The speed up in
execution time will make bandwidth optimization usage attractive for real-time applications and

for iterative use of bandwidth maximization with delay-minimization problems or simulation

procedures.




The remainder of this paper is organized as follows. In the next section, the MILP and the
heuristic are discussed. Section 3 discusses the LP solver and computer implementation. Section
4 reports the results for a number of network and arterial test problems. Finally, in section 5 the

conclusions and directions for future work are discussed.

2 B i imizati

The current version of MAXBAND (known as MAXBAND-86 or MAXBAND Version 2.1)
provided optimal solutions for arterial and network problems. This version of the program uses
the integer programming code from Land and Powell [1973]. The code uses branch and bound
logic in determining the optimal values of the integer variables. It requires an excessive amount
of computer time to solve even a small instance of a network problem. The code was also known
to be numerically unstable for problems where the optimal cycle time was to be selected from a
range of cycle times. The numerical instability resulted in the runs ending prematurely with
either a suboptimal solution or no solution at all. Some modifications were made to MAXBAND-
86 to stabilize the numerical computations (see Solanki et al. [1993]). In this effort, the research
staff at Oak Ridge National Laboratory (ORNL) developed a new heuristic solution technique that
is faster, numerically stable and capable of generating optimal/near-optimal solutions for the

bandwidth maximization MILP. The new heuristic is based on restricted branch and bound logic.

The MILP formuiation for multiarterial networks consist of blocks of constraints dealing with
individual arterials and some additional constraints that impose restrictions on loops of multiple
arterials. The derivation of the constraints and details of the formulation are provided in Messer
et al. [1987]. The difficulty in solving realistic problems arises due to the large number of integer
variables in the formulation. The heuristic is a search procedure for suitable values of the integer

variables. The set of integer variables in the MILP formulation can be divided into three sets:




o Intra-loop variables ( m; ) : are a set of general integer variables. This variable denotes the
number of cycles required to go from signal i to signal i+ and back, on arterial J. The my's
should assume integer values due to the fact that the progression bandwidth in a specified direction

- for arterial j should pass through the green interval of signal cycles at signal i and i+1. Little

[1966] provides the analytical justification for the integral nature of this set of variables.

Inter-loop variables ( n, ) : are a set of general integer variables. This variable denotes the
number of cycles required for traversing arterials in the loop. The inter-loop variables are the
reflection of network closure constriants which are required in a closed network consisting of
intersecting arterials and running on a common cycle length. These variables state that the sum
of the offsets around any closed loop in the network must be an integral multiple of the common

cycle length. Messer ez al. [1987] provide the analytical justification for the integer nature of this
set of variables.

r

Left-turn-phase sequence variables ( 8; ) : are a set of binary variables. These variables are used

to define the left turn phase sequence pattern on intersection i of arterial j.

The only known heuristics for the MILP are the two-step and three-step heuristic by Chaudhary
et al. [1991,1993]. The first step of the two-step heuristic relaxes the 8;'s to continuous variables
and searches for optimal m;'s and n;'s. The six best solutions obtained during the search are
saved. For each of these six solutions, the integer values of the m;'s and n,'s are fixed in the
second step, which searches for optimal integer values of the 8;'s. Similarly, the three-step
heuristic solves the integer values of the n;'s, m;'s and 8;'s in three steps, where the integer
values obtained in one step are fixed in the next step. As expected, the two-step heuristic
produces better solutions but consumes significantly more time compared with the three-step
heuristic. In both heuristic methods, at each step an exhaustive branch and bound search is

required to obtain optimal integer values. It was observed that, for some problem instances, the
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- lime required by the multi-step method could be more than the time required for the simultaneous

optimization of all integer variables.

The key observation of a good heuristic design is to identify suitable problems that can be solved
quickly and repetitively to generate improving solutions over iterations. The heuristic developed
for the bandwidth maximization MILP is a restricted branch and bound algorithm. The branch
and bound search is restricted to portions of solution space which is likely to contain good
solutions. Figure 1 gives an overview of the new heuristic. There are two key elements that
characterize the algorithm described here:

1. a greedy heuristic to generate a good lower bound to be used at the root node of the branch

and bound tree (Greedy Heuristic I), and

2. atree search approach that combines branching and bounding techniques.

Efficient implementation of these key elements allow us to solve large problem instances of the
MILP in reasonable time and memory allocations. Let P be the original MILP problem to be
maximized. Let V(P) be the optimal objective function value of P. Let P’ be the LP relaxation
of P, obtained by relaxing the integer variables m;'s, n,'s, and &;'s. Then, V(P') is the optimal
objective value of P'. It is obvious that V(P) < V(P’). If the optimal value of the solutions vector
corresponding to the variables m;'s, n,'s, and 8;'s are integer in P’, then the solution is optimal
to the original problem P. The greedy heuristic, developed to generate a lower bound that can

be used in the tree search procedure, shall be discussed first. This paper then continues to discuss

the restricted branch and bound algorithm.

Greedy heuristic I is based on the concept of local search in the space of integer variables.
Heuristic algorithms based on local searches have been found to be very effective in a large
variety of integer programming problems. The key to this algorithm is to restrict the integer

variable ranges to those values which are likely to yield good solutions. The local search is
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.. performed by fixing the values of the integer variables. The objective of the restricted problem

is evaluated by solving the resulting restricted linear program.
Algorithm I : Greedy Heuristic I

Input : P’, the set of integer variables

Step 1 : Initialize the current incumbent, Z* = -w. »

Step 2 : Perform steps 3 through 9 two times. Go to step 10.

Step 3 : Order the set of integer variables as follows I = {n, , ...., n,, my; , ...., Mgy }

Step 4 : Solve LP problem P'.

Step 5 : If the set / is empty then go to step 8; otherwise pick the next variable from the ordered
set I (say variable x; ) and delete it from set 1.

Step 6 : Set the upper and lower bounds of the variable x; as follows: b"f,,,w=b'7,,,, =Int(x;+0.5),
i.e. set the upper and lower bounds of the integer variable to be the integer value nearest the LP
solution.

Step 7 : Solve the restricted LP. If the current LP is infeasible then reset the variable last set to
the other end of the LP optimal solution (obtained in step 6) and re-solve. Go to step 5.

Step 8 : The algorithm reaches this step once all the integer variables have been set to the LP
solution upper or lower bound. If the final LP is feasible then the solution is a valid lower bound
for the problem P. If the objective is greater than the current incumbent, save the current solution
as the incumbent. Reset the bounds of all the integer variables.

Step 9 : Reverse the order of the integer variables and put it in set /, i.e. this time the variable
My is the first variable and variable 7, is the last variable. Go through steps 4 through 8.

Step 10: Fix the mj;'s and n,'s at their best values and use branch and bound code to integerize
the 8;'s.

The solution obtained at the end of step 10 of greedy heuristic I serves as a lower bound (best

incumbent) during the branch and bound procedure. Such a bound restricts the growth of the tree
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and hence helps in faster resolution of the optimal solution. The restricted tree search algorithm
(also called restricted branch and bound) developed for bandwidth optimization can then be
described as follows: In the tree-search procedure, the range over which the integer variables, mg's
and n;'s, can vary, are restricted. Integer variable my's are allowed only two values and integer
variable n,'s are allowed three values. The three values of ny's are selected such that the
incumbent value is the middle value. The two values of ;'s are selected such that the incumbent
value is the upper bound of this variable. For ease of exposition let an integer variable be denoted
Xy Let the set F; be the set of the integer variables fixed at the lower bound during the branch
and bound procedure i.e. F; = {x; / by, < X; < by, }. Let F,, be the set of integer variables fixed
at the middle value i.e. F,, = {X; / biny+1< Xx; < by, +1}, and F, be the set of integer variables
fixed at the upper bound i.e. F, = X / by, < X5 < by}, Then, let S be a family of ordered triple

of node sets <F;, F,,, F, >, and let Z°, referred to as an incumbent, be the incidence vector of
some integer feasible solution.

To describe the restricted branch and bound algorithm the following terminologies are used. Let

a tree-node, associated with the ordered set <F,, F,,, F, >, be the problem P(F,F,,F,). This

is a problem of finding a signal timing plan whose solution vector satisfies the inequalities (2.1a),
(2.1b), and (2.1c) given below:

biows Xj < by, for all integer variables in the set F, 2.1a)
biwt1< x; < by,,+1 for all integer variables in the set F, (2.1b)
by < x; < b, for all integer variables in the set F, (2.1¢)

Then, P'(F,F,,F,) is the linear relaxation of P(F,F,,F,) obtained by relaxing the integer variable
not in the set F, F,,, and F,. The tree-nodes are recorded by the ordered triple corresponding to
it. A tree-node is considered fathomed if one or more of the following conditions are satisfied:
i. the optimal LP objective i.e. V(P'(F,F,,F,)), at this node is less than the current incumbent,
ii. the depth of this tree-node is equal to the maximum depth (mdepth) specified,
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o lii. the LP, P'(F,F,,F,), is infeasible, or

iv. the optimal LP resuits in an integer feasible solution.

If the optimal solution of the current LP relaxation is fractional and the current depth (number of
integer variables fixed) is less than maximum depth, the algorithm selects a branching variable
Xy and branches, thus providing up to three new tree-nodes (<Fuixy},E, ,F.>,<F,
JFolg} F,> ,<F,,F,,Fu{x;}>). The root-node of the search-tree is the tree-node <o,2,2>.
During the algorithm the tree-nodes of the search-tree that are in S are called active tree-nodes.

The restricted branch and bound algorithm can then be described as follows:

Algorithm II : Restricted Branch and Bound

Input :Z', the LP problem P', the set of integer variables I.

Step 1 : (Initialization) Set § = { <o,8,6> }. Limit the ranges of the my's and n;'s. Select
the maximum depth (mdepth) of the tree to be half of the number of integer variables in the
problem. Number the integer variables such that the first consecutive number, (starting with
number 1), are given to the m;'s, the next consecutive numbers are given to n;'s and finally
number the 3;'s.

Step 2 : (Select a tree-node for evaluation). If § = o then stop - the current incumbent is a
local optima. Otherwise choose an ordered set <F,, F,,, F.> from S and set § = SI<F 19 Fn
, F.>.

Step 3 : (Greedy heuristic II). Fix the integer variables that are not yet fixed yet, (i.e. the set
of integer variables {x; /x; e I\(Fu F,u F,)} ), to an integer value nearest to the LP solution, i.e.
set b”}M=b‘7,,,, =Int(x;+0.5). Solve the new LP. If the optimal objective is greater than Z°, save
the solution and reset the variables fixed in this step.

Step 4 : (Evaluation of tree-node). Solve the linear program, P'(F, F,,F,), with the additional
restriction. Let Z' be its optimal solution. If Z’ s Z', go to step 2.
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e Step 5 : (Check for new incumbent) If Z’ is integer feasible, and the optimal objective value

is greater than Z*, then set Z* to Z'. Go to step 2.

Step 6 : (Create new set of tree-nodes) If the depth of the tree is greater than the maximum
depth specified for the problem instance then go to step 2. Otherwise, select a fractional integer
variable x; to branch on. Such a variable will be in \(Fu F,uF, ). SetS = Su <Fu {x;}
Fy, F,> v <F,F,u {x; },F, > u <F,,F,, ,F,u {x; }> and go to step 2.

’

Once an ordered triple is removed from S it is never again generated in Step 6, so the algorithm
terminates in a finite number of steps. When the algorithm stops, Z* is a local optima. The
performance of Algorithm II depends significantly on certain implementation details. In

particular, the following issues are key to the algorithm's performance:

(2) Whether or not early tree-nodes can be fathomed depends on the starting Z*. If this value is
close to the optimum, the search-tree will consist of few tree-nodes. Therefore it is necessary to
generate good feasible solutions early in the procedure. This objective is achieved by the Greedy
Heuristic I and Greedy Heuristic II.

(b) Steps 3 and 4 must be executed many times before a good solution is obtained. A large
portion of the final execution time of the algorithm is devoted to solving the LPs. Therefore, it
is important to use the LP-optimizer as efficiently as possible. The LP-optimizer of MINOS is
very fast and numerically very stable since it uses the state-of-art techniques of numerical analysis
and linear programming for updating basis and matrix inversions.

(c) The efficiency of the algorithm with respect to run time and memory usage depends on two
things: the way the ordered triple is chosen in Step 2, and the way the tree-nodes are created. The
tree-nodes were processed in a depth-first fashion (LIFO). The integer variables are ordered as
follows: (my's, n's, and 8;'s). Through experimentation, it was found that this particular order
led to incumbents that are close to optimal early on in the search tree. The depth of the search-
tree was also restricted to half the number of integer variables, m;'s and n,'s. This restricted the

number of tree-nodes generated and, hence, restricted the growth of the search tree. Further




restriction on the range of integer variables also limited the number of tree-nodes generated. As
will be seen in the numerical results both types of restriction helped in faster resolution of the
optimal solution. The experimentation with & variables revealed that these naturally turn out to
be integer or can be rendered integer by a minimal amount of branching in the branch and bound

search. Thus the 8 values are searched using the exact optimization technique.

The L, 1

For implementing of Algorithms I and II, the linear programming routines from MINOS 5.4
[1993] were used. MINOS is a FORTRAN-based computer system designed to solve large-scale
linear and nonlinear optimization problems. It has a collection of high-performance mathematical
subroutines which can be called from application programs. From this package we used only the
subroutines required for solving linear programming problems. The main reasons for choosing
this LP solver were the cost and the availability of source code. The availability of source code

allowed customization and therefore helped to speed up the executable.

MINOS performs scaling of rows, right hand side vectors, and columns by choosing appropriate
scale factors to make its rows and columns roughly the same length, in some appropriate norm
during the solution process; whereas, in Land and Powell the scaling of a problem instance had
to be performed by the user externally. In MINOS, the constraints and variables are scaled by
an iterative procedure that attempts to make the matrix coefficients as close as possible to 1. This
improves the solution performance. Data (both input and output) is stored within a work array
that is partitioned by a set of pointers to starting locations of individual arrays needed by the
procedure, each with an appropriate number of bytes that depends on whether the array is integer,
single, or double precision floating-point. This makes implementation largely independent of data
structures and it is then relatively easy to unplug one set of data structure and substitute another.
MINOS uses primal simplex algorithm to find the optimal solution of a given LP. In the primal

simplex algorithm basis inversion is done repeatedly. The basis inverse can be done either
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- explicitly or as a product of a sequence of pivot matrices. The major drawback of basis inversion
is that roundoff errors accumulate as the algorithm moves from step to step. LU-decomposition
technique is used compute the basis inverse ( see Murty [1983] for more on LU decomposition).

During LU factorization the near zero pivot elements lead to uncontrollable growth in the
elements and fill-in of L (lower triangular matrix) and U (upper triangular matrix). This in turn
results in large numerical errors and large computational times for the primal simplex algorithm
used for solving and LP. The solution is to choose pivot elements suitably so as to prevent such
element growth and fill-in growth. MINOS implementation is based on the Markowitz pivoting
strategy that balances considerations of stability and sparsity. The basis updating strategy used
by MINOS is the Bartels-Golub basis updating strategy in which updating is carried out with a
pivot strategy that balances considerations of stability and sparsity. The basis inverse is
maintained implicitly in product form. MINOS has also implemented various selection strategies
for actually making the choice of entering and exiting variables. These strategies lead to faster

resolution of the optimal solution, degeneracy resolution and also leads to numerical stability.

4.0 Numerical Results

A number of network and single arterial problems were solved using the new model. The test data
sets were obtained from FHWA. Tables I through IV report the solution quality and the
computation times for these problems. Tables I and II show the results of the arterial test
problems. Tables IIT and IV correspond to the network problem runs. The columns of Tables
III and IV can be described as follows. Column 1 specifies the names of the data set as identified
by the FHWA. The name is given here for reference purposes only. Column 2 contains the
problem sizes showing the number of arterials and total number of intersections. Column 3
contains the optimal objective value. Column 4 contains the objective function value at the end
of the LP based heuristic (greedy heuristic I); the numbers in parentheses show how close it is to

the optimal value. Column 5 contains the time in seconds for greedy heuristic I. Column 6

11
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contains the objective at the end of the restricted branch and bound procedure; the number in
parentheses shows how close this value is to the optimal objective value. The numbers in column
7 show the time taken in seconds for the entire algorithm. The computation times are reported
for an 80486/66 MHz personal computer. As is observed from the tables III and IV, the heuristic
performs very well in generating optimal/near-optimal solutions in a short amount of time. The
utility of the heuristic increases as the size of the problem grows and an exact search requires

excessive computation time. The arterial problems are solved optimally since all of them can be

solved in less than a minute.
nclusi nd Futur rk

In this paper, we describe a fast heuristic for the bandwidth optimization MILP. The restricted
branch and bound heuristic is able to obtain optimal and near-optimal solutions for a range of test
problems in only a fraction of the time needed by MAXBAND. The reductions in computation
times for difficult network problems is substantial, which allows for the use of repetitive solutions
of the bandwidth maximization problem in conjunction with the delay minimization problem or
simulation procedure. The arterial problems are solved optimally since they only require a few
seconds to solve. Additionally since MINOS 5.4 uses state-of-the art techniques in numerical
analysis and linear programming for invening matrices and updating basis this code is much faster

and numerically stable compared to the Land and Powell code.

Further work can be done to enhance the MILP formulation to include circular phasing and

multiband capability. Work can also be done in building a combined model based on bandwidth

maximization, delay minimization, and simulation.
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Table I : Arterial problem without left-turn phase sequence variables

Hawth (1,13) 0.2305 12.14 106
N33rd (1,9 0.1292 7.47 o |
Nicholas (1,12) 0.5454 11.53 56 |
Uniy (1,10) 0.2166 4.89 19
Fredrica (1,12) 0.6726 15.32 79
Mstreet (1,8) 0.6993 2.52 4

** These timings are for 486/33 MHz personal computer.

Table II: Arterial problem with left-turn phase sequence variables

Hawth.ph (1,13) 0.5796 15.38 389
N33rd.ph (1,9) 0.4735 16.53 44 “
Nicholas.ph (1,12) 0.6254 16.92 257
Univ.ph (1,10) 0.5000 7.36 23
Fredrica.ph (1,12) 0.7106 33.83 209
Felipe.ph (1,12) 0.6000 3.74 21

** These timings are for 486/33 MHz personal computer.
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