

Report Title:

**Synthesis and Characterization of CO- and H₂S-Tolerant
Electrocatalysts for PEM Fuel Cell**

Report Type: **Semi-Annual Technical Report**

Reporting Period Start Date: **10/01/2003** End Date: **03/31/2004**

Principal Author(s): **Shamsuddin Ilias**

Report Issue Date: **March 29, 2005** DOE Award No.: **DE-FG26-02NT41673**

Name and Address of Submitting Organization:

North Carolina A&T State University
Department of Mechanical and Chemical Engineering
Greensboro, NC 27411

E-mail: ilias@ncat.edu
Tel: (336) 334-7564 ext. 317
Fax: (336) 334-7904

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

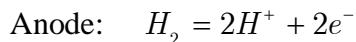
ABSTRACT

The present state-of-art Proton Exchange Membrane Fuel Cell (PEMFC) technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. This catalyst is highly active but susceptible to poisoning by CO, which may be present in the H₂-fuel used or may be introduced during the fuel processing. Presence of trace amount of CO and H₂S in the H₂-fuel poisons the anode irreversibly and decreases the performance of the PEMFCs. In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based binary, ternary, and quaternary electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H₂S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks.

During this reporting period several bi-metallic electrocatalysts were synthesized using ultra-sonication. These catalysts (Pt/Ru, Pt/Mo and Pt/Ir) were tested in MEAs. From Galvanostatic study the catalytic activity was found in the order of: Pt/Ru/C > Pt/Mo/C > Pt/Ir/C. It appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of tri-metallic electrocatalysts.

TABLE OF CONTENTS

Title page	i
Disclaimer	ii
Abstract	iii
Table of Contents	iv
Executive Summary	v
Introduction	1
Research Objectives	1
Experimental: Materials and Methods	2
Results and Discussion	3
Conclusions	4
References	5


EXECUTIVE SUMMARY

The Proton Exchange Membrane Fuel Cell (PEMFC) is one of the most promising power sources for stand-alone utility and electric vehicle applications. Platinum (Pt) catalyst is used for both fuel and air electrodes in PEMFCs. However, presence of CO and H₂S in H₂-fuel as contaminants greatly affects electrocatalysts used at the anode of PEMFCs and decreases cell performance. The irreversible poisoning of the anode can occur even in CO and H₂S concentrations as low as few parts per million (ppm). In an effort to reduce the Pt-loading and improve the PEMFC performance, we propose to synthesize a number of Pt-based bi-metallic, tri-metallic electrocatalysts using Ru, Mo, Ir, Ni, and Co as a substitute for Pt. By fine-tuning the metal loadings and compositions of candidate electrocatalysts, we plan to minimize the cost and optimize the catalyst activity and performance in PEMFC. The feasibility of the novel electrocatalysts will be demonstrated in the proposed effort with gas phase CO and H₂S concentrations typical of those found in reformed fuel gas with coal/natural gas/methanol feedstocks.

In our lab we used ultra-sonication process to synthesis several bi-metallic electrocatalysts (Pt/Ru, Pt/Mo and Pt/Ir) and tested in MEAs. From galvanostatic study, it appears that electrocatalysts prepared by ultra-sonication process are more active compared to the conventional technique. Work is in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of tri-metallic electrocatalysts.

INTRODUCTION

In recent years, there has been growing interest in Proton Exchange Membrane Fuel Cell (PEMFC) technologies for down-to-earth applications because of its high power density, high efficiency and almost zero emission to the environment. The major focus on PEMFC technology is to develop fuel cell system for transportation applications, which require development of low cost cell components and reliable, high-purity H₂-fuel source [1, 2]. The PEMFC technology is attractive because of its low operating temperature and ease of start-up. Reformed methanol and liquid hydrocarbons are expected to be major fuel source in PEMFCs for terrestrial transportation application as envisioned in Vision 21 for the 21st century. The present state-of-art PEMFC technology is based on platinum (Pt) as a catalyst for both the fuel (anode) and air (cathode) electrodes. The electrochemical reactions that occur at the Pt-electrodes are:

The over all fuel cell reaction is:

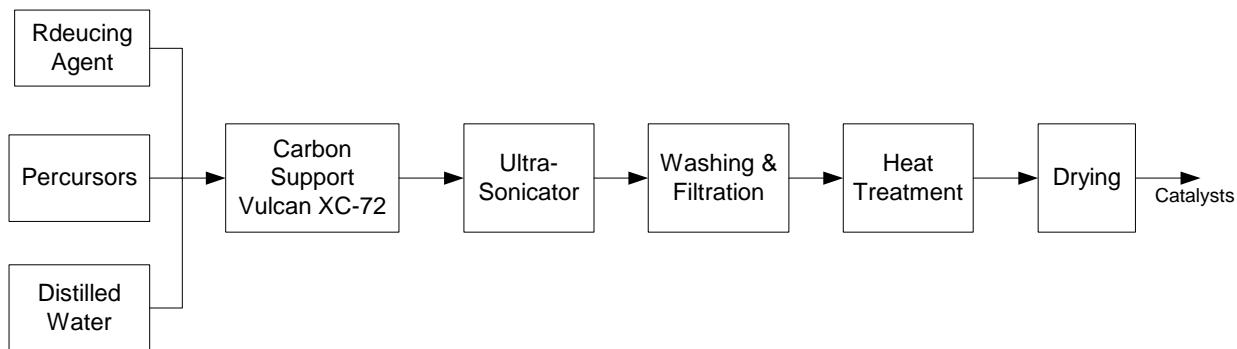
This Pt-catalyst is highly active but susceptible to poisoning by fuel impurities such as, H₂S and CO, which may be present in the H₂-fuel used or may be introduced during the fuel processing. These impurities poison the anode irreversibly and decrease the performance of the PEMFCs. This irreversible poisoning of the anode can happen even in CO concentrations as low as few ppm, and therefore, require expensive scrubbing of the H₂-fuel to reduce the contaminant concentration to acceptable level. In order to commercialize this environmentally sound source of energy/power system, development of suitable CO- and H₂S-tolerant catalyst is needed. The cost and reliability of electrocatalyst in PEMFCs are major impediments in commercial application [2, 3]. Innovations are needed to reduce system costs and to enhance operating life before fuel cell can become commercially competitive with conventional power generating systems.

In this work we propose to develop CO- and H₂S-tolerant electrocatalysts for PEMFC anode by combining platinum with additional metallic components. Ruthenium, a noble metal catalyst, is the preferred choice for providing CO tolerance. The sulfur tolerance may be imparted by a number of transition metals with molybdenum, cobalt, and tungsten as the leading candidates. Based on our current understanding and experience in the Pt-based bi-metallic and tri-metallic PEMFC electrocatalysts, we propose to further develop these electrocatalysts by fine-tuning the metal loadings and compositions to minimize the cost and optimize the catalyst activity and performance

RESEARCH OBJECTIVES

The objectives of this research are to:

- Synthesize novel candidate electrocatalyst materials
- Characterize the electro-catalytic activity in pure hydrogen half-cell studies
- Demonstrate electrocatalyst feasibility in contaminated hydrogen half-cell studies

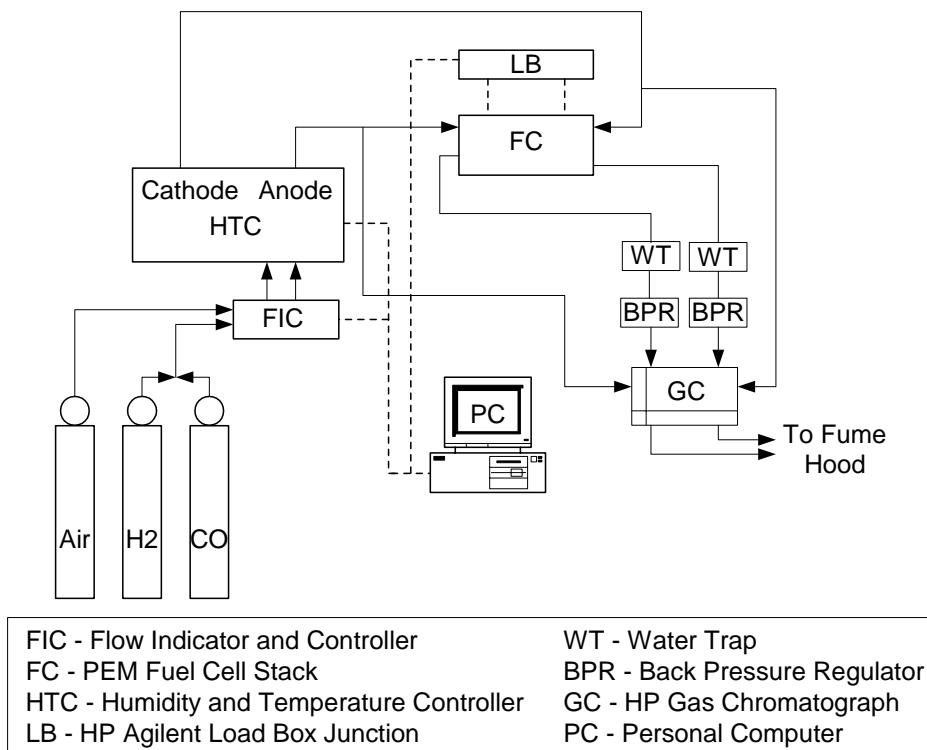

- Demonstrate H₂/O₂ fuel cell performance with the improved electrodes in contaminated hydrogen environment

EXPERIMENTAL: MATERIALS & METHODS

Catalysts Preparation

The metal catalysts were prepared by the reduction of respective metallic chlorides. The details of the preparation technique have been reported elsewhere [4]. Chlorides of metal salts of Pt, Co, Mo, Ru, and Ir as precursors obtained from Fisher Scientific were used in this work. Precursors were weighed stoichiometrically to maintain equal atom wt% and dissolved in distilled water. Sodium bisulfite was added slowly in the solution to form metal sulfite colloids. A solution of hydrogen peroxide was added to this slurry to obtain a colloidal solution of respective metal oxides. High surface area powdered carbon (VULCAN XC72) was dispersed into this metal colloid solution with a dry weight ratio of 2:3 to load the metal particles on to it. This powder was heated in the oven overnight at 150°C, which was followed by the passage of hydrogen for the reduction of metal oxides to respective metals.

To improve the dispersion of catalysts on support material, ultra-sonication was introduced as a step in the electrocatalysts synthesis steps, as shown by the block diagram in Figure 1. A Misonix 3000 Ultra-sonicator was used for mixing and even dispersion active metals on carbon.


Figure 1: Schematic of the electrocatalysts synthesis method

MEA preparation

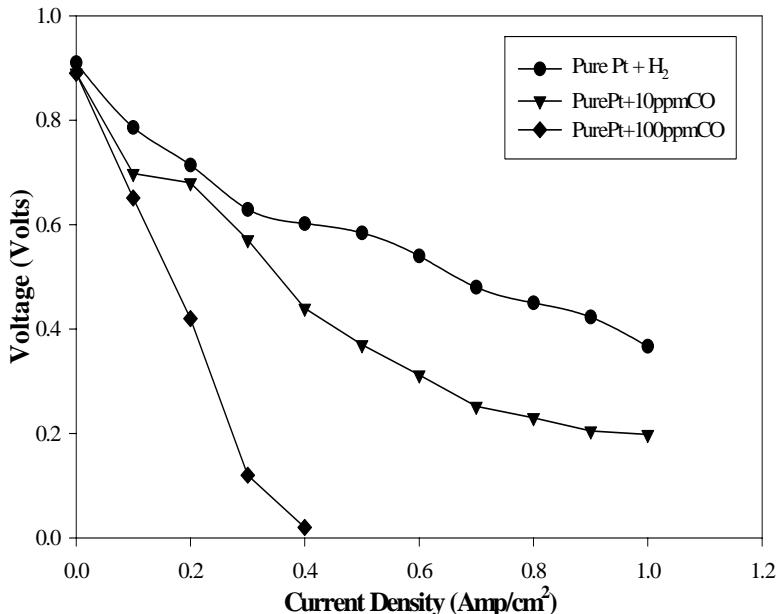
MEAs were prepared using brushing technique. Nafion112 was used as the proton conducting membrane electrolyte. Thick slurry was made out of the prepared catalyst powder, 5% Nafion solution and Teflon in 2-butanol. The slurry was stirred well and maintained at 70°C. It was then loaded on the pretreated hydrophobic carbon paper by brushing technique, and the substrate was maintained at a relatively high temperature of 120°C to evaporate the solvents. Spraying yields a slightly better performance than brushing, but brushing avoids wastage of catalyst powders by clogging. The catalyst loading of the thin film electrode was maintained at 0.4mg/cm² throughout the study. The loading was achieved using controlled weight and complete application of the slurry on to the hydrophobic carbon paper. The gas diffusion electrode thus prepared was hot pressed at a temperature of 110°C at 130 bars for 2 minutes.

Experimental Setup

The experimental set-up used for testing and evaluation of the membrane electrode assemblies (MEAs) in the PEMFC is shown in Figure 2. Galvanostatic polarization measurements are carried out using the FUEL CELL TEST Station obtained from Fuel Cell Technologies, Inc, NM. A single cell of 5cm^2 area will be used for evaluating MEA in PEMFC. The DC current through the fuel cell is controlled by a HP 6060B Agilent power source. It is interfaced to a computer and data was collected using National Instrument's Data acquisition card. A LABVIEW program is used to interface and control these components and the mass flow controllers. Humidification is achieved using a dual humidification bottle subsystem and was read through the LABVIEW program.

Figure 2: Schematic of Test Set-up of PEMFC for Evaluation of Electrocatalysts and MEAs.

RESULTS AND DISCUSSIONS


To improve the dispersion of active metals on carbon, ultra-sonication was used in the electrocatalyst preparation steps. The following bi-metallic catalysts were prepared by both ultra-sonication and without ultrasonication step for use in MEAs:

Pt/Ru/C; Pt/Mo/C and Pt/Ir/C

The metal ratios were maintained at equal atom wt% with a total metal loading of 20 wt%.

Polarization experiments were carried out at 85°C under constant stoichiometric flow of gases. A typical polarization curve of Pt/C (20 wt %) is shown in Figure 2, which has been used as standard reference curve (base case) for comparison of performance of electro catalysts. An open circuit voltage of 0.91V was measured at standard experimental conditions. Figure 3 shows

the performance of the PEMFC with pure and CO-contaminated hydrogen at two concentration levels (10 and 100 ppm) as fuel. With increasing CO concentration, the cell performance deteriorates very rapidly. This deterioration of the catalyst activity can be explained by the chemisorptions of the CO molecules on the active sites of the Pt-catalyst.

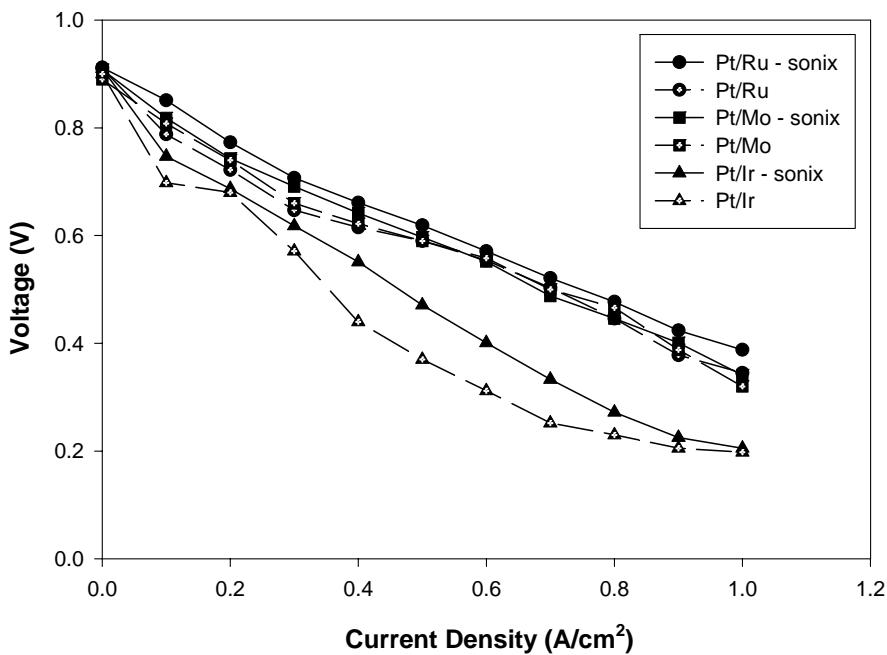


Figure 3: Current-Voltage curves of pure Pt (20wt%) catalyst with pure H₂ and with 10 and 100 ppm CO with the fuel.

Figure 4 shows the co-catalytic activity of each of Ru, Mo, and Ir towards the oxidation reaction along with Pt at 20-wt%. Pt/Ru/C shows the highest activity and it can also be noted that Pt/Mo/C binary system competes with the Pt/Ru/C system with its performance imparting almost the same performance of Pt/Ru/C. This suggests that Ru and Mo impart strongest co-catalytic activity for the oxidation reaction, than by Ir. From cell performance, the catalytic activity of the binary catalysts was found as: Pt/Ru/C > Pt/Mo/C > Pt/Ir/C. When we compare the polarization curves for electrocatalysts prepared by ultra-sonication process with that of without ultra-sonication, it may be observed that the sonication have a slightly higher voltage at a given current density. This is due in part to better dispersion of the active materials on the carbon support caused by the ultra-sonication process. Better dispersion leads to smaller particle size and more accessibility of the active sites for the hydrogen oxidation and oxygen reduction reaction taking place in the MEA of the fuel cell.

CONCLUSIONS

Three bi-metallic catalysts were prepared by ultra-sonication process and from polarization curves; it was observed that sonication process in electrocatalyst synthesis may help in providing better dispersion of the active metals. Work in progress to further study these catalysts for CO-tolerance in PEMFC and identify potential candidate metals for synthesis of tri-metallic electrocatalysts.

Figure 4: Performance comparison of binary catalysts (20 wt%) made with sonication (sonix) and without sonication during the synthesis process with pure H₂ in the anode feed stream.

REFERENCES

1. Prater, K. B., "Solid Polymer Fuel Cell Developments at Ballard," *J. Power Sources*, **37**, 181 (1992).
2. Ralph, T., "Proton Exchange Membrane Fuel Cell: Progress in Costs Reduction of the Key Components," *Platinum Metal Review*, **41**, 102 (1997).
3. Hirschenhofer, J. H., Stauffer, D. B., Engleman, R. R., and Klett, M. G., Fuel Cell Handbook, 4th Edition, DOE, DE-AC21-94MC31166, 1999.
4. Sharmin, S., S. Irulappan, and S. Ilias, "Synthesis of Novel Electrocatalysts for Proton Exchange Membrane Fuel Cells (PEMFC)," *Sep. Sci. Tech.*, **38**, 2963 (2003).