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1 INTRODUCTION

Processes involving liquid-to-gas phase change in porous media are routinely encountered, for ex-
ample in the recovery of oil, geothermal processes, nuclear waste disposal or enhanced heat transfer
[2, 3, 15, 16]. They involve diffusion (and convection) in the pore space, driven by an imposed su-
persaturation in pressure or temperature. Phase change proceeds by nucleation and phase growth.
Depending on pore surface roughness, a number of nucleation centers exist, thus phase growth
occurs from a multitude of clusters [18]. Contrary to growth in the bulk or in a Hele-Shaw cell
[8,‘ 13, 14], however, growth patterns in porous media are disordered and not compact. As in
immiscible displacements {7, 17], they reflect the underlying pore microstructure. The competi-‘
tion between multiple clusters is also different from the bulk. For example, cluster growth may
be controlled by a combination of diffusion (e.g. Laplace equation in the quasi-static case) with
percolation. Novel growth patterns are expected from this competition [11].

While multiple cluster growth is impoftzmt, the simpler problem of single-bubble growth is still
not well understood. In this section, we focus on the growth of a single bubble, subject to a fixed
far-field supersaturation (e.g. by lowering the pressure in a supersaturated solution or by raising
the temperature in a superheated liquid). Our emphasis is on deriving a scaling theory for growth
at conditions of quasi-static diffusion, guided by recent experimental observations.

Visualization of bubble growth in model porous media was recently conducted [9, 10] using
2-D etched-glass micromodels. Fig. 1 shows a typical CO, cluster evolving from carbonated water,
/initially saturated at 50 psi, the pressure of which was subsequently reduced to 14.7 psi. The
non-compact nature of the cluster is apparent. The cluster grows in a manner similar to external
drainage: gas-liquid interfaces are stable in the converging portion of a pore throat, but rapidly
move to occupy an adjacent pore (in an event known as a “rheon”), once the capillary pressure
barrier of that throat was exceeded. During the early stages, the growth occurs “one-site-at-a-time”,
which is a mode of interface advance typical of invasion percolation.

To model this problem, we developed a pore network simulation of multiple cluster growth (Li
and Yortsos [11]) and a scaling theory for single-bubble growth when mass transfer is diffusion-
controlled. This quasi-static limit is described below. We consider the initial conditions C =
Co, P, = Py, and the far-field conditions C' = Cy, P, = Py < Py = KCp; where C is solute

concentration, P is liquid pressure and K is a solubility constant. Equivalently, the supersaturation




Figure 1: Experimental snapshots of gas cluster growth from carbonated water in a glass micro-

model: (a) Large scale; (b) Pore scale sequence.




can be expressed with the Jacob number, Ja = EQ—},:—)&. At low supersaturations (Ja < 1) the
concentration field in the liquid is quasi-static and satisfies the Laplace equation DV2C = 0, where
D is the solute diffusivity. We consider a porous medium model in terms of an equivalent network
of bonds (throats) and sites (pores). The gas-liquid interface consists of menisci residing on the
cluster perimeter sites. We take the gas to be inviscid and ideal, such that P, is spatially uniform
and PV = nRT, where n is the number of moles in cluster of volume V. For simplicity, we take
linear phase equilibria, P, = K, in all penmeter sites ¢ (£ = 1, N). Bubble growth is dictated
by the net mass transfer rate, d't‘ = Y_;; Jij» where the sum is over all perimeter sites ¢ and the
liquid-occupied sites j adjacent to them. The diffusive fluxis J;; = DA,,g——;q-Ll where the area A;;
and the length [;; pertain to pore throat ij. Mass influx 3? > 0) results into either pressurization
(dP, > Q) or bubble growth (dV > 0). Pressurization is necessary to overcome the capillary barrier
of a perimeter bond, which occurs when the capillary pressure is sufficiently large, Py — Prj > ,—:—3’;,
where 7, ;; is the radius of the connecting bond and « the interfacial tension. Upon penetration,
the interface advances and occupies site . A measure of the driving force is the capillary number,
Ca = ﬂ%‘ﬂ, where * is a characteristic lattice spacing, k is permeability (which scales with the
average throat size [4], r}

ps as ko~ 1‘;2) and the characteristic velocity «* is based on diffusion,
* _ JaDI*
=%

u . Note the difference with the conventional C'a in external displacements [7, 17). An
additional relevant parameter is the solubility constant a = 'M&..,]_}("' where M,, is the solute molecular
weight.

To characterize bubble growth requires that the cluster pattern and its rate of growth be
determined. Growth in the bulk or in an effective porous medium is compact and obeys the

scaling [8, 13, 14] R ~ t!/2, In a random porous medium we expect percolation at sufficiently small

sizes and viscous fingering at larger sizes.

2 GROWTH PATTERNS

2.1 Percolation

The cluster will follow a percolation pattern, if perimeter bonds are invaded “one-at-a-time”, such
that the largest perimeter bond is always invaded first. These rules are the same with invasion

percolation, except that here invasion occurs from an internal, rather than an external source. The




following conditions must apply for percolation: (i) Immediately preceding and during pressuriza-
tion, all interfaces reside in converging pore geometries. (ii) During filling, only “one-site-at-a-time”
is invaded, the simultaneous penetration of another throat not being possible. Condition (i) is al-
ways statisfied, since liquid and gas pressures are spatially uniform (no flow) during pressurization.
Condition (ii) depends on the viscous pressure drop. During filling of a partly occupied site m, the
capillary pressure in the site is small, P, ~ P;,,. Simultaneous penetration at another location !
is not possible if P, — P;; < %, namely if the pressure difference between the two sites is small.
At the percolation boundary, the pattern ceases being pure percolation due to the viscous pressure
drop, which is in turn related to mass transfer. We shall denote by RP the cluster radius of gyration
when this is reached and proceed for its estimation as follows.

During percolation, growth occurs from one site only (say m) (although mass transfer to the
cluster is to all perimeter sites), thus the pressure field is set by the velocity of that site. The latter
can be estimated from mass balance, v,, ~ g% E:}j Jij where b denotes a length, b = 2rhr} in 2-D
and & = 4n732 in 3-D, where h is the thickness in 2-D and r¥ a typical site radius. To calculate
the mass flux, we must solve a problem of quasi-static diffusion in a Euclidean space, bounded
internally by a fractal interface. Following Ref. [1], this flux equals the mean-field result

> Jij ~2thDR? %ﬁ

.

_ 27hD(Cy ~ C;)
r=RPr - ITI%

o~ — '\ RP
. or %:J,J 4xD(Co — Ci)R (1)
in the two geometries, respectively, where R, denotes the outer boundé,ry in 2-D. The velocity

follows directly,

aJaD 1 aJaD RP
Uy ~ ~ 7= O Uy~ — ) (—* (2)
T l’n‘ﬁ% - TS Ts

in the two geometries, respectively. For a conservative estimate of the percolation limit we calculate
the pressure drop across a distance that scales with RP. To describe viscous flow in a pore, we
take Poiseunille’s law. Then, the flow problem involves solving the Laplace equation subject to the
velocity at site m given from (2). As before, we will use a mean field approach (see also a related

study [6]). We obtain,

vty RP Vit s? (1 1 ) U Ty
AP,, ~ f _ g v/ — = =]~ —
R oor AR k. \rt Rr k @)
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Then, substitution of (2) gives the final results

Rr
JaDayy ‘n;? JaDay; RP
Abho~—rng o AT Q)

in the two geometries, respectively.

We next define the percolation limit by requesting [6] that variations, AS, in the gas saturation
due to penetration of more than one sites as a result of viscous forces are negligible: %ﬁl =eL 1.
From percolation, this is equivalently expressed as l%ﬁ’ ~ (p— p.)"1Ap, where p is the percolation
probability and p. the percolation threshold. In-capillary-controlled displacements, p is related to
the pore throat size distribution ap(ry) via p = [ ap(7)dr, hence Ap ~ ap(rp)Ary ~ -‘3—:’:, where o
is a dimensionless measure of the variance of a,(r,). To relate Ary to AP,, we note that variations
in liquid pressure equal those in capillary pressure, AP, ~ AP.. The latter can be related to
variations in the occupied pore sizes, AP, = 21%12. Next, we identify the cluster extent with the
cluster correlation length, thus % ~ £ ~ (p — pe)~¥, where v is the correlation length exponent,

equal to % in 2-D and to 0.88 in 3-D. Then, we replace variations in p by variations in 7,, and

substitute the above to find the results

RP > 11?%1' aryCa RP\ i1 ar,Ca
a InB‘; o= ¢ a orr € )
. ,RP i §

in 2-D or 3-D geometries, respectively. Equation (5h) is analogous to the expression that delineates

the percolation limit in external displacements [6]. Clearly, the radius at the percolation limit

decreases as Ca increases, namely as Ja or D increase.

2.2 Viscous Fingering

As the cluster size increases, the pattern eventually departs from percolation. To infer its charac-
teristics, Li and Yortsos [8] performed a linear stability of the equivalent problem in an effective
porous medium (or a Hele-Shaw cell). In the absence of capillarity, the growth posesses the Mullins-
Sekerka instability of solidification [5, 12], which here also happens to coincide with the viscous
fingering instability. As a result, we expect a limiting pattern of the DLA type at sufficiently large
sizes. This was confirmed with numerical simulations (see below). To delineate the pattern bound-

ary, R*/, we proceed as in the previous. Now, however, we request that variations in the capillary
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Figure 2: Total net flux to a percolation cluster under quasi-static diffusion. The solid line is the

theoretical slope (eqn. 1).

pressure are small compared to the viscous pressure drop between adjacent sites, AP, < AP,. For

the latter, we take

ok *
s 102 or AP, ~ bl (6)

APy~ — 2%

and after substitution of »,,, we obtain

vf *
IR (aCa.) ~el o R (aCal ) ~ el )
gy )\ @ ]\ or}

in the two geometries, respectively. Large values of Ca result in promoting a pure DLA growth

pattern at smaller cluster sizes.

We used the numerical simulator in 2-D geometries (Li and Yortsos [11]), to test the validity of
the two limits. Simulations were performed in square lattices of variable sizes, but not larger than
50x50, due to computational limitations. First, the mean-field results for quasi-static mass transfer
were tested. Fig. 2 §hows a plot of the total net mass flux to a percolation cluster as a function of
the cluster size. Goéd agreement with the theory is found provided that the computational domain

is large (here equal to 200x200) and the cluster size sufficiently large, but not too large for the
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Figure 3: Percolation and viscous fingering boundaries from pore network simulations in a 50x50

square lattice. The solid line is a guide to the eye.

boundary to affect the radial symmetry. Plotted in Fig. 3 are numerical results for R? and R/,
where only quasi-.static diffusion was considered (the simulator can also account for convection and
transients [11]). The qualitative trend of the results is consistent with the theory. However, due
to the small size of the computational domain (50x50), which gives rise to substantial finite-size
effects, a quantitative agreement is difficult to be ascertained. The cluster must be large enough for\
meaningful percola.tion statistics, yet small enough compared to the outer boundary for the mean-
field theories to be valid. We expect a better agreement as the size increases to at least 200x200
(compare with Fig. 2). The transition from percolation to DLA is illustrated in Fig. 4, which

illustrates cluster growth under conditions of percolation (Fig. 4a) or viscous (Fig. 4b) control.

3 RATES OF GROWTH

From the above, rates of bubble growth can be calculated.” If Ny is the number of sites occupied
by the gas cluster and V, the average site volume, we have V,%ﬁ = Umb, where N, is related to

D
the radius Ry via Ny ~ (%‘) " and D s is the fractal dimension of the cluster. Substitution from
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(a) Capillary Control  (b) Viscous Control

Figure 4: Typical sequence of gas cluster growth under conditions of: (a) Capillary control (Ca=

0.00001); (b) Viscous control (Ca= 0.1).




(2) yields the results

Ry \Ps1 R.| «blaDDy (Rg)Df-l (Dy ~ 1) abl*JaD
= In—} ~ ——————=. —_ ~ 1
( m ) [1 + DﬂnRg} Vit t or . _ D; Vors? (8)

in the two geometries, respectively. The two scalings should be contrasted to the classical for
growth in the bulk, RZ ~ t. As a result of its ramified structure, the cluster grows faster than in
its effective medium analogue (for example, Ry ~ t%, for the 3-D case in either the percolation or
the viscous fingering limits).

~ All these scalings rely on the assumption of quasi-static mass transfer. For growth in the bulk
this is eglxivalent to the condition Ja < 1. In the general case, however, this condition becomes
{11} JatPr~" <« 1. Thus, contrary to the compact cluster (Ds = 3) the validity of the quasi-static
approximation in fractal pa.tf.erns (Dy < 3) is time-dependent. To check its validity when RP and

RYS are reached ‘we substitute in (5) and (7) the results from (8) to obtain Jal~H#16-D1) g

ptj(s—vz )
) B
and Jea -1

equivalent to the condition for bulk growth, Je < 1.

< 1, respectively. Since Dy ~ 2.5 in both patterns, the two conditions are still

4 CONCLUSIONS

We conclude that during single bubble growth in a porous medium the following regimes develop
in succession: a short duration early-time regime, where finite size effects dominate, the growth is
still compact and the effective medium scaling applies; a percolation regime (Ry < RP); a transition
to a viscous fingering regime (R? < R, < R*/); and a DLA regime (R*/ < R,). In the absence of

convection, the corresponding rates of growth are different than the classical. Effects of convection

are under study.
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